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Foreword

Over ten years ago, I read about a software engineering course taught by Bernd Bruegge at
Carnegie-Mellon University. In software engineering courses at many other universities, small
groups of 3 or 4 students were assigned several toy problems during a semester with deadlines of
less than a month. On such small projects, one strong programmer can carry the whole team by
brute force. It isn’t necessary to learn communication skills, use modeling tools, or deal with the
ambiguities of actual problems. Students come away unprepared for the complexities of real-
world development. In Bruegge’s course, the entire class worked on a single, semester-long
project to produce a query-oriented navigation system for the city of Pittsburgh. They had to
build on the interactive mapping system produced by the previous semester’s class. The clients
were managers for the county planning department and port authority. The geographic and bus
schedule data had misspellings, inaccuracies, and incompatible formats. The students produced
an accepted system of over 27,000 lines of code. What a difference from the toy projects taught
at many other places! Students came away from the course with an appreciation of the need for
strategy, organization, and tools to deal with the complexity and messiness of the real world.
They learned software engineering the only way one learns any craft—by practicing it on
realistic cases.

This book is a reflection of that pragmatic philosophy of software development as an
engineering discipline. The authors adopt a point of view—an object-oriented approach using
UML—that makes the many facets of software engineering approachable to students. They
cover both the modeling techniques and the human communications skills needed to achieve
success. They also include several chapters on managing change, a topic that appears in every
real project but which is often neglected in texts. Readers of this book will gain a solid
appreciation of the rich scope and complexity of software engineering.



Vi Foreword

I particularly enjoyed the many illuminating anecdotes selected from a wide range of
fields. These provide lively examples of problems large and small that illustrate the subtleties
and traps that engineers must confront. Any book that makes relevant examples of Polynesian
navigation, the tangled history of the text of Tolkien’s Lord of the Rings, and grandmother’s
recipe for trimming hams is not only useful but also fun to read.

Jim Rumbaugh



Preface

The K2 towers at 8,611 meters in the Karakorum range of the western Himalayas. It is the
second highest peak of the world and is considered the most difficult 8000er to climb. An
expedition to the K2 typically lasts several months in the summer, when the weather is most
favorable. Even in summer, snowstorms are frequent. An expedition requires thousands of
pounds of equipment, including climbing gear, severe weather protection gear, tents, food,
communication equipment, and pay and shoes for hundreds of porters. Planning such an
expedition takes a significant amount of time in the life of a climber and requires dozens of
participants in supporting roles. Once on site, many unexpected events, such as avalanches,
porter strikes, or equipment failures, will force the climbers to adapt, find new solutions, or
retreat. The success rate for expeditions to the K2 is currently less than 40%.

The United States National Airspace System (NAS) monitors and controls air traffic in the
United States. The NAS includes more than 18,300 airports, 21 air route traffic control centers,
and over 460 control towers. These add up to more than 34,000 pieces of equipment, including
radar systems, communication switches, radios, computer systems, and displays. The current
infrastructure is aging rapidly. The computers supporting the 21 air route traffic control centers,
for example, are IBM 3083 mainframes that date back to the early 1980s. In 1996, the United
States government initiated a program to modernize the NAS infrastructure, including
improvements such as satellite navigation, digital controller/pilot communications, and a higher
degree of automation in controlling the air routes, deciding the order in which aircraft land, and
controlling ground traffic as aircraft move from and to the runways. Such a complex
infrastructure, however, can only be modernized incrementally. Consequently, while new
components offering new functionality are introduced, older components still need to be
supported. For example, during the transition period, a controller will have to be able to use both
analog and digital voice channels to communicate with pilots. Finally, the modernization of the

vii
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NAS coincides with a dramatic increase in global air traffic, predicted to double within the next
10-15 years. The previous modernizing effort of the NAS, called the Advanced Automation
System (AAS), was suspended in 1994 because of software-related problems, after missing its
initial deadline by several years and exceeding its budget by several billions of dollars.

Both of the above examples discuss complex systems in which external conditions can
trigger unexpected changes. Complexity puts the problem beyond the control of any single
individual. Change forces participants to move away from well-known solutions and to invent
new ones. In both examples, several participants need to cooperate and develop new techniques
to address these challenges. Failure to do so results in failure to reach the goal.

This book is about conquering complex and changing software systems.

The theme

The application domain (mountain expedition planning, air traffic control, financial
systems, word processing) usually includes many concepts that software developers are not
familiar with. The solution domain (user interface toolkits, wireless communication, middleware,
database management systems, transaction processing systems, wearable computers) is often
immature and provides developers with many competing implementation technologies.
Consequently, the system and the development project are complex, involving many different
components, tools, methods, and people.

As developers learn more about the application domain from their users, they update the
requirements of the system. As developers learn more about emerging technologies or about the
limitations of current technologies, they adapt the system design and implementation. As quality
control finds defects in the system and users request new features, developers modify the system
and its associated work products. The result is continuous change.

Complexity and change represent challenges that make it impossible for any single
person to control the system and its evolution. If controlled improperly, complexity and change
defeat the solution before its release, even if the goal is in sight. Too many mistakes in the
interpretation of the application domain make the solution useless for the users, forcing a
retreat from the route or the market. Immature or incompatible implementation technologies
result in poor reliability and delays. Failure to handle change introduces new defects in the
system and degrades performance beyond usability.

This book reflects more than 10 years of building systems and of teaching software
engineering project courses. We have observed that students are taught programming and
software engineering techniques in isolation, often using small problems as examples. As a
result, they are able to solve well-defined problems efficiently, but are overwhelmed by the
complexity of their first real development experience, when many different techniques and tools
need to be used and different people need to collaborate. Reacting to this state of affairs, the
typical undergraduate curriculum now often includes a software engineering project course,
organized as a single development project.
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The tools: UML, Java, and Design Patterns

We wrote this book with a project course in mind. The book can be used, however, in other
situations as well, such as short and intensive workshops or short-term R&D projects. We use
examples from real systems and examine the interaction among state-of-the art techniques, such
as UML (Unified Modeling Language), Java-based technologies, design patterns, design
rationale, configuration management, and quality control. Moreover, we discuss project
management related issues that are related to these techniques and their impact on complexity
and change.

The principles
We teach software engineering following five principles:

Practical experience. We believe that software engineering education must be linked with
practical experience. Students can understand complexity only by working with a complex
system—that is, a system that no single student can completely understand.

Problem solving. We believe that software engineering education must be based on problem
solving. Consequently, there are no right or wrong solutions, only solutions that are better or
worse relative to stated criteria. Although we survey existing solutions to real problems and
encourage their reuse, we also encourage criticism and the improvement of standard solutions.

Limited resources. If we have sufficient time and resources, we could perhaps build the ideal
system. There are several problems with such a situation. First, it is not realistic. Second, even if
we had sufficient resources, if the original problem rapidly changes during the development, we
would eventually deliver a system solving the wrong problem. As a result, we assume that our
problem-solving process is limited in terms of resources. Moreover, the acute awareness of
scarce resources encourages a component-based approach and reuse of knowledge, design, and
code. In other words, we support an engineering approach to software development.

Interdisciplinarity. Software engineering is an interdisciplinary field. It requires contributions
from areas spanning electrical and computer engineering, computer science, business
administration, graphic design, industrial design, architecture, theater, and writing. Software
engineering is an applied field. When trying to understand and model the application domain,
developers interact regularly with others, including users and clients, some of whom know little
about software development. This requires viewing and approaching the system from multiple
perspectives and terminologies.

Communication. Even if developers built software for developers only, they would still need
to communicate among themselves. As developers, we cannot afford the luxury of being able to
communicate only with our peers. We need to communicate alternatives, articulate solutions,
negotiate trade-offs, and review and criticize others’ work. A large number of failures in
software engineering projects can be traced to the communication of inaccurate information or
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to missing information. We must learn to communicate with all project participants, including,
most importantly, the client and the end users.

These five principles are the basis for this book. They encourage and enable the reader to
address complex and changing problems with practical and state-of-the-art solutions.

The book

This book is based on object-oriented techniques applied to software engineering. It is
neither a general software engineering book that surveys all available methods nor a
programming book about algorithms and data structures. Instead, we focus on a limited set of
techniques and explain their application in a reasonably complex environment, such as a multi-
team development project that includes 20 to 60 participants. Consequently, the book also
reflects our biases, our strengths, and our weaknesses. We hope, nevertheless, that all readers
will find something they can use. The book is structured into 16 chapters organized into three
parts, which can be taught as a semester-long course.

Part I, Getting Started, includes three chapters. In this part, we focus on the basic skills
necessary for a developer to function in a software engineering context.

e In Chapter 1, Introduction to Software Engineering, we describe the difference between
programming and software engineering, the current challenges in our discipline, and
basic definitions of concepts we use throughout the book.

e In Chapter 2, Modeling with UML, we describe the basic elements of a modeling
language, UML, used in object-oriented techniques. We present modeling as a
technique for dealing with complexity. This chapter teaches the reader how to read and
understand UML diagrams. Subsequent chapters teach the reader how to build UML
diagrams to model various aspects of the system. We use UML throughout the book to
model a variety of artifacts, from software systems to processes and work products.

e In Chapter 3, Project Organization and Communication, we introduce basic concepts
of project organization and communication. Developers and managers spend more than
half of their time communicating with others, either face-to-face or via E-mail,
groupware, video conference, or written documents. Whereas modeling deals with
complexity, communication deals with change. We describe project organizations and
discuss what constitutes effective communication.

In Part II, Dealing with Complexity, we focus on methods and technologies that enable
developers to specify, design, and implement complex systems.

e In Chapter 4, Requirements Elicitation, and Chapter 5, Analysis, we describe the
definition of the system from the users’ point of view. During requirements elicitation,
developers determine the functionality users need and a usable way of delivering it.
During analysis, developers formalize this knowledge and ensure its completeness and
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consistency. We focus on how UML is used to deal with application domain
complexity.

In Chapter 6, System Design: Decomposing the System, and Chapter 7, System Design:
Addressing Design Goals, we describe the definition of the system from the
developers’ point of view. During this phase, developers define the architecture of the
system in terms of design goals and a subsystem decomposition. They address global
issues, such as the mapping of the system onto hardware, the storage of persistent data,
and global control flow. We focus on how developers can use architectural styles,
components, and UML to deal with solution domain complexity.

In Chapter 9, Object Design: Specifying Interfaces, Chapter 9, Object Design:
Specifying Interfaces, and Chapter 10, Mapping Models to Code, we describe the
detailed modeling and construction activities related to the solution domain. During
this phase, developers identify and adapt design patterns and frameworks to realize
specific subsystems. They refine and specify precisely the interfaces of classes using
constraint languages such as UML’s Object Constraint Language. Finally, they map the
detailed object design model to source code and database schema.

In Chapter 11, Testing, we describe the validation of system behavior against the
system models. Testing detects faults in the system, including those introduced during
changes to the system or its requirements. Testing activities include unit testing,
integration testing, and system testing. We describe several testing techniques, such as
whitebox, blackbox, path testing, state-based testing, and inspections, and discuss their
application to object-oriented systems.

In Part III, Managing Change, we focus on methods and technologies that support the

control, assessment, and implementation of changes throughout the development of a system.

In Chapter 12, Rationale Management, we describe the capture of design decisions and
their justifications. The models developed during requirements elicitation, analysis, and
system design help us deal with complexity by providing different perspectives on what
the system should be doing and how it should do it. To be able to deal with change, we
need also to know why the system is the way it is. Capturing design decisions,
considered alternatives, and their argumentation enables us to access the rationale of
the system.

In Chapter 13, Configuration Management, we describe techniques for modeling the
project history. Configuration management complements rationale in helping us deal
with change. Version management records the evolution of the system. Release
management ensures consistency and quality across the components of a release.
Change management ensures that modifications to the system are consistent with
project goals.

In Chapter 14, Project Management, we describe techniques for initiating a software
development project, tracking its progress, and dealing with risks and unplanned
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events. We focus on organizations, roles, and management activities that allow a large
number of participants to collaborate and deliver a high-quality system within planned
constraints.

* In Chapter 15, Software Life Cycle, we describe software life cycles, such as Boehm’s
Spiral Model and the Unified Software Development Process, that provide an abstract
model of development activities. In this chapter, we also describe the Capability
Maturity Model, which is used for assessing the maturity of organizations.

e In Chapter 16, Methodologies: Putting It All Together, we describe methodologies and
heuristics for applying the material covered in the other chapters to concrete situations.
No matter how thorough the requirements elicitation or detailed the planning, projects
of any realistic size encounter unexpected events and changes. Dealing with uncertainty
makes real projects and systems look very different from projects and systems
examined in textbooks. In this chapter, we describe several different methodologies,
discuss issues that need to be addressed in every project, and present three case studies
of actual projects.

The topics above are strongly interrelated. To emphasize their relationships, we selected
an iterative approach. Each chapter consists of five sections. In the first section, we introduce the
issues relevant to the topic with an illustrative example. In the second section, we describe
briefly the activities of the topic. In the third section, we explain the basic concepts of the topic
with simple examples. In the fourth section, we detail the technical activities with examples
from real systems. Finally, we describe management activities and discuss typical trade-offs. In
Chapters 4-10, we present a running case study of a complex multi-user game management
system called ARENA. By repeating and elaborating on the same concepts in increasingly
complex examples, we hope to provide the reader with an operational knowledge of object-
oriented software engineering.

The courses

Building a large, complex system can be compared with climbing a big mountain. It is
good to have a route description, but the route can never be completely mapped out, as new
crevasses may open anytime. Even though we map out our software engineering knowledge in
this book, changes will occur and methods that we believe in now may be out of date soon.

How can we teach students to cope with such rapidly changing conditions? For us, the
most important thing to pass on to a student is not only knowledge of the map, but also the
ability to negotiate the terrain. Although it is wise to study the description of a route, there is no
substitute for the experience of actually traveling the route.

We wrote this book for a semester-long software engineering project course for senior or
graduate students. We assume that students have experience with a programming language such
as C, C++, C#, or Java. We expect that students have the necessary problem-solving skills to
attack technical problems, but we do not expect that they have been exposed to the complex or
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changing situations typical of system development. This book can also be used for other types of
courses, such as short, intensive professional courses.

Project and senior-level courses. A project course should include all the chapters of the
book, roughly in the order presented. An instructor may consider teaching more advanced
project management concepts from Chapter 14, Project Management, early in the course so that
students become familiar with planning and controlling.

Introductory-level course. An introductory course with homework should focus on the first
three sections of each chapter. The fourth section and the case study can be used as material for
homework and can simulate the building of a minisystem using paper for UML diagrams,
documents, and code.

Short technical course. The book can also be used for a short, intensive course geared
toward professionals. A technical course focusing on UML and object-oriented methods could
use the chapter sequence 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, covering all development phases from
requirements elicitation to testing. An advanced course would also include Chapter 12,
Rationale Management, and Chapter 13, Configuration Management.

Short management course. The book can also be used for a short, intensive course geared
toward managers. A management course focusing on managerial aspects such as
communication, risk management, rationale, maturity models, and UML could use the chapter
sequence 1, 2, 3, 14, 15, 16, 12, 13.

Changes since the second edition

This edition started as an upgrade of our book to UML 2 and to the latest advances in agile
methods. In the process, we also added new material about system design and testing. We thank
Tracy Dunkelberger, our publisher, for her patience. We made the following changes:

e Comprehensive upgrade to the latest UML and OCL standards. We revised most
diagrams in the book to take advantage of the latest advances of UML and OCL. In
particular, we use component diagrams with ball-and-socket notation during system
and object design.

e Expanded material on agile methods. In the second edition, we introduced coverage of
the XP methodology in Chapter 16. In this edition, we extended the material on agile
methods to Scrum and Rugby and consequently adapted the material on testing,
configuration management, and project management in Chapters 11, 13, and 14.

* New material on continuous integration. A practice of agile methods, used in other
contexts as well, is the continuous integration of software changes into main production
trunk. While this practice allows integration problems to be identified, and thus
resolved, much earlier, its realization presents initially many challenges. We present
this new material in Chapter 13, Software Configuration Management.
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* New material on U2TP and automated testing. In our teaching, we found the extensions
of the UML 2 Testing Profile facilitate the discussion of testing concepts, in particular,
the distinction between the testing system and the system under test. This also allowed
us to extend the material on testing to automated testing and automatic test generation.

o Improvements of the case study and examples throughout. Since the last edition, we
received a lot of feedback about the case study and the examples in this book. We are
grateful of this feedback and consequently implemented many suggestions, too
numerous to enumerate here in detail.

Typographical conventions

‘We use the following conventions throughout the book:

* A new term appears in bold when defined the first time.

* Book titles, chapter titles, and emphasized terms appear in italics.

¢ The names of systems and of modeling elements (e.g., class, attribute, operation, state,
variable) appear in monospaced font.

¢ The names of abstract classes appear in italics monospaced font.

* Object names appear underlined in figures.

¢ URLSs appear in underlined roman.

e Source code appears in monospaced font, with reserved keywords in bold and
comments in jtalics.

Production notes

This book was written and composed using Adobe Framemaker. The final print images
were generated as PDF files using Adobe Acrobat Distiller.

About the authors

Dr. Bernd Bruegge has been studying and teaching Software Engineering at Carnegie
Mellon University for 20 years, where he received his masters and doctorate degrees. He
received his Diplom from the University of Hamburg. He is now a university professor of
Computer Science with a chair for Applied Software Engineering at the Technische Universitit
Miinchen and an adjunct faculty member of Carnegie Mellon University. He has taught
object-oriented software engineering project courses on the text materials and website described
in this book for 15 years. He won the Herbert A. Simon Excellence in Teaching Award at
Carnegie Mellon University in 1995. Bruegge is also an international consultant and has used
the techniques in this book to design and implement many real systems, including an
engineering feedback system for DaimlerChrysler, an environmental modeling system for the
U.S. Environmental Protection Agency, and an accident management system for a municipal
police department, to name just a few.
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Dr. Allen Dutoit works in the aerospace industry in the area of avionics software
development. He received his M.S. and Ph.D. from Carnegie Mellon University and his Dipléme
d’Ingénieur from the Swiss Federal Institute of Technology in Lausanne. He has taught software
engineering project courses with Professor Bruegge since 1993, both at Carnegie Mellon
University and the Technische Universitit Miinchen, where they used and refined the methods
described in this book. Dutoit’s research covered several areas of software engineering and
object-oriented systems, including requirements engineering, rationale management, distributed
development, and prototype-based systems. He was previously affiliated with the Software
Engineering Institute and the Institute for Complex Engineered Systems at Carnegie Mellon
University.

Opener Pictures

The pictures at the beginning of each chapter are from an Alpine-style ascent of the West
Rib of Denali (6,193 m) made by one of the authors before starting to work on this book. During
this trip, the analogy between software development and mountaineering became more than
obvious. The pictures chronicle the climb, showing our expedition car on the Alaskan Canadian
Highway, a view of Mt. Robson with the Kain Face (Chapter 1), a view of Denali from the plane
(Chapters 2 and 4), the beginning of the West Rib (Chapter 3), a look 1000 meters down from
the top of the West Rib showing our foot tracks on the East Kahiltna Glacier (Chapter 5), Mt.
Foraker from Camp 5 (Chapter 6), a beautiful but difficult edge around 5,000m (Chapter 7), the
Base Camp of the normal route where we reused the remains of an igloo (Chapter 8), the landing
area for Doug Geeting’s plane (Chapter 9), a bivouac place at the top of the West Rib named
“Hotel Crux,” because one cannot dig an area big enough for a tent (Chapter 10), crossing the
Bergschrund (Chapter 11), a fresh avalanche area (Chapter 12), Denali with the Cassin Ridge
(Chapter 13), plans for different routes to the summit (Chapter 14), a “horizontal” sunrise at the
start of the Cassin Ridge (Chapter 15), and the summit of Denali (Chapter 16).

The cover picture shows the summit of K2.
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Introduction to
Software Engineering

The amateur software engineer is always in search of magic,
some sensational method or tool whose application promises to
render software development trivial. It is the mark of the
professional software engineer to know that no such panacea
exists.

—Grady Booch, in Object-Oriented Analysis and Design

The term software engineering was coined in 1968 as a response to the desolate state of the
art of developing quality software on time and within budget. Software developers were not able
to set concrete objectives, predict the resources necessary to attain those objectives, and manage
the customers’ expectations. More often than not, the moon was promised, a lunar rover built,
and a pair of square wheels delivered.

The emphasis in software engineering is on both words, software and engineering. An
engineer is able to build a high-quality product using off-the-shelf components and integrating
them under time and budget constraints. The engineer is often faced with ill-defined problems
and partial solutions, and has to rely on empirical methods to evaluate solutions. Engineers
working in such application domains as passenger aircraft design and bridge construction have
successfully met similar challenges. Software engineers have not been as successful.

The problem of building and delivering complex software systems on time has been
actively investigated and researched. Everything has been blamed, from the customer (“What do
you mean I can’t get the moon for $50?7”) to the “soft” in software (“If I could add that one last
feature ...”) to the youth of this discipline. What is the problem?

Complexity and change

Useful software systems are complex. To remain useful they need to evolve with the end users’
need and the target environment. In this book, we describe object-oriented techniques for
conquering complex and changing software systems. In this chapter, we provide a motivation for
object-oriented techniques and define the basic concepts used throughout this book.
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1.1 Introduction: Software Engineering Failures

Consider the following examples [Neumann, 1995]:

Year 1900 bug

In 1992, Mary from Winona, Minnesota, received an invitation to attend a kindergarten. Mary
was 104 at the time.

Leap-year bug

A supermarket was fined $1000 for having meat around 1 day too long, on February 29, 1988.
The computer program printing the expiration date on the meat labels did not take into account
that 1988 was a leap year.

Interface misuse

On April 10, 1990, in London, an underground train left the station without its driver. The driver
had taped the button that started the train, relying on the system that prevented the train from
moving when doors were open. The train operator had left his train to close a door which was
stuck. When the door was finally shut, the train simply left.

Security

CERT (Computer Emergency Response Team) at the Software Engineering Institute is a
government-funded organization for assisting the community in dealing with security incidents,
vulnerabilities, and security know-how. The number of security incidents reported to CERT from
the United States increased from 252 incidents in 1990 to 21,756 in 2000, and more than 40,000
incidents were reported in 2001.

Late and over budget

In 1995, bugs in the automated luggage system of the new Denver International Airport caused
suitcases to be chewed up. The airport opened 16 months late, $3.2 billion over budget, with a
mostly manual luggage system.

Late and over budget (2)

In 2002, the Swanick Air Traffic Control system covers all the enroute air traffic over England
and Wales. The system was delivered substantially over budget (cost £623 million, originally
planned at £350 million) and 6 years late. Two major upgrades of the system were delivered after
training of the traffic controllers had started.

On-time delivery

After 18 months of development, a $200-million system was delivered to a health insurance
company in Wisconsin in 1984. However, the system did not work correctly: $60 million in
overpayments were issued. The system took 3 years to fix.

Unnecessary complexity

The C-17 cargo plane by McDonnell Douglas ran $500 million over budget because of problems
with its avionics software. The C-17 included 19 onboard computers, 80 microprocessors, and 6
different programming languages.
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Each of the failures described above resulted from a software-related problem. In some cases,
developers did not anticipate seldom-occurring situations (a person living more than 100 years,
leap years impacting expiration dates). In other cases, developers did not anticipate the user
actively misusing the system (taping down a button, exploiting security holes in network
software). In yet other cases, system failures resulted from management failures (late and over-
budget delivery, on-time delivery of an incorrect system, unnecessary complexity).

Software systems are complex creations. They perform many functions; they are built to
achieve many different, and often conflicting, objectives. They comprise many components;
many of their components are custom made and complex themselves. Many participants from
different disciplines take part in the development of these components. The development process
and the software life cycle often spans many years. Finally, complex systems are difficult to
understand completely by any single person. Many systems are so hard to understand, even
during their development phase, that they are never finished: these are called vaporware.

Software development projects are subject to constant change. Because requirements are
complex, they need to be updated when errors are discovered and when the developers have a
better understanding of the application. If the project lasts many years, the staff turn-around is
high, requiring constant training. The time between technological changes is often shorter than
the duration of the project. The widespread assumptions of a software project manager that all
changes have been dealt with and that the requirements can be frozen will lead to the
deployment of an irrelevant system.

In the next section, we present a high-level view of software engineering. We describe
software engineering from the perspective of science, engineering, and knowledge acquisition
and formalization. In Section 1.3, we describe in more detail the main terms and concepts we
use in this book. In Section 1.4, we provide an overview of the development activities of
software engineering. In Section 1.5, we provide an overview of the managerial activities of
software engineering.

1.2 What Is Software Engineering?

Software engineering is a modeling activity. Software engineers deal with complexity through
modeling, by focusing at any one time on only the relevant details and ignoring everything else.
In the course of development, software engineers build many different models of the system and
of the application domain.

Software engineering is a problem-solving activity. Models are used to search for an
acceptable solution. This search is driven by experimentation. Software engineers do not have
infinite resources and are constrained by budget and deadlines. Given the lack of a fundamental
theory, they often have to rely on empirical methods to evaluate the benefits of different
alternatives.

Software engineering is a knowledge acquisition activity. In modeling the application and
solution domain, software engineers collect data, organize it into information, and formalize it
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into knowledge. Knowledge acquisition is not sequential, as a single piece of additional data can
invalidate complete models.

Software engineering is a rationale-driven activity. When acquiring knowledge and
making decisions about the system or its application domain, software engineers also need to
capture the context in which decisions were made and the rationale behind these decisions.
Rationale information, represented as a set of issue models, enables software engineers to
understand the implication of a proposed change when revisiting a decision.

In this section, we describe in more detail software engineering from the perspectives of
modeling, problem solving, knowledge acquisition, and rationale. For each of these activities,
software engineers have to work under people, time, and budget constraints. In addition, we
assume that change can occur at any time.

1.2.1 Modeling

The purpose of science is to describe and understand complex systems, such as a system of
atoms, a society of human beings, or a solar system. Traditionally, a distinction is made between
natural sciences and social sciences to distinguish between two major types of systems. The
purpose of natural sciences is to understand nature and its subsystems. Natural sciences include,
for example, biology, chemistry, physics, and paleontology. The purpose of the social sciences is
to understand human beings. Social sciences include psychology and sociology.

There is another type of system that we call an artificial system. Examples of artificial
systems include the space shuttle, airline reservation systems, and stock trading systems. Herbert
Simon coined the term sciences of the artificial to describe the sciences that deal with artificial
systems [Simon, 1970]. Whereas natural and social sciences have been around for centuries, the
sciences of the artificial are recent. Computer science, for example, the science of understanding
computer systems, is a child of the twentieth century.

Many methods that have been successfully applied in the natural sciences and humanities
can be applied to the sciences of the artificial as well. By looking at the other sciences, we can
learn quite a bit. One of the basic methods of science is modeling. A model is an abstract
representation of a system that enables us to answer questions about the system. Models are
useful when dealing with systems that are too large, too small, too complicated, or too expensive
to experience firsthand. Models also allow us to visualize and understand systems that either no
longer exist or that are only claimed to exist.

Fossil biologists unearth a few bones and teeth preserved from some dinosaur that no one
has ever seen. From the bone fragments, they reconstruct a model of the animal, following rules
of anatomy. The more bones they find, the clearer their idea of how the pieces fit together and
the higher the confidence that their model matches the original dinosaur. If they find a sufficient
number of bones, teeth, and claws, they can almost be sure that their model reflects reality
accurately, and they can guess the missing parts. Legs, for example, usually come in pairs. If the
left leg is found, but the right leg is missing, the fossil biologists have a fairly good idea what the
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missing leg should look like and where it fits in the model. This is an example of a model of a
system that no longer exists.

Today’s high-energy physicists are in a position similar to that of a fossil biologist who has
found most of the bones. Physicists are building a model of matter and energy and how they fit
together at the most basic, subatomic level. Many years of experiments with particle accelerators
have given high-energy physicists enough confidence that their models reflect reality and that
the remaining pieces that are not yet found will fit into the so-called standard model. This is an
example of a model for a system that is claimed to exist.

Both system modelers, fossil biologists and high-energy physicists, deal with two types of
entities: the real-world system, observed in terms of a set of phenomena, and the application
domain model, represented as a set of interdependent concepts. The system in the real world is a
dinosaur or subatomic particles. The application domain model is a description of those aspects
of the real-world system that are relevant to the problem under consideration.

Software engineers face similar challenges as fossil biologists and high-energy physicists.
First, software engineers need to understand the environment in which the system has to operate.
For a train traffic control system, software engineers need to know train signaling procedures.
For a stock trading system, software engineers need to know trading rules. The software
engineer does not need to become a fully certified train dispatcher or a stock broker; they only
need to learn the application domain concepts that are relevant to the system. In other terms,
they need to build a model of the application domain.

Second, software engineers need to understand the systems they could build, to evaluate
different solutions and trade-offs. Most systems are too complex to be understood by any one
person, and most systems are expensive to build. To address these challenges, software
engineers describe important aspects of the alternative systems they investigate. In other terms,
they need to build a model of the solution domain.

Object-oriented methods combine the application domain and solution domain modeling
activities into one. The application domain is first modeled as a set of objects and relationships.
This model is then used by the system to represent the real-world concepts it manipulates. A
train traffic control system includes train objects representing the trains it monitors. A stock
trading system includes transaction objects representing the buying and selling of commodities.
Then, solution domain concepts are also modeled as objects. The set of lines used to depict a
train or a financial transaction are objects that are part of the solution domain. The idea of
object-oriented methods is that the solution domain model is a transformation of the application
domain model. Developing software translates into the activities necessary to identify and
describe a system as a set of models that addresses the end user’s problem. We describe in more
detail modeling and the concepts of objects in Chapter 2, Modeling with UML.
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1.2.2 Problem Solving

Engineering is a problem-solving activity. Engineers search for an appropriate solution, often
by trial and error, evaluating alternatives empirically, with limited resources and incomplete
knowledge. In its simplest form, the engineering method includes five steps:

Formulate the problem.

Analyze the problem.

Search for solutions.

Decide on the appropriate solution.

M

Specify the solution.

Software engineering is an engineering activity. It is not algorithmic. It requires experi-
mentation, the reuse of pattern solutions, and the incremental evolution of the system toward a
solution that is acceptable to the client.

Object-oriented software development typically includes six development activities:
requirements elicitation, analysis, system design, object design, implementation, and testing.
During requirements elicitation and analysis, software engineers formulate the problem with the
client and build the application domain model. Requirements elicitation and analysis correspond
to steps 1 and 2 of the engineering method. During system design, software engineers analyze
the problem, break it down into smaller pieces, and select general strategies for designing the
system. During object design, they select detail solutions for each piece and decide on the most
appropriate solution. System design and object design result in the solution domain model.
System and object design correspond to steps 3 and 4 of the engineering method. During
implementation, software engineers realize the system by translating the solution domain model
into an executable representation. Implementation corresponds to step 5 of the engineering
method. What makes software engineering different from problem solving in other sciences is
that change occurs in the application and the solution domain while the problem is being solved.

Software development also includes activities whose purpose is to evaluate the
appropriateness of the respective models. During the analysis review, the application domain
model is compared with the client’s reality, which in turn might change as a result of modeling.
During the design review, the solution domain model is evaluated against project goals. During
testing, the system is validated against the solution domain model, which might be changed by
the introduction of new technologies. During project management, managers compare their
model of the development process (i.e., the project schedule and budget) against reality (i.e., the
delivered work products and expended resources).

1.2.3 Knowledge Acquisition

A common mistake that software engineers and managers make is to assume that the acquisition
of knowledge needed to develop a system is linear. This mistake is not made by software
managers alone; it can be found in other areas as well. In the 17th century, a book was published



What Is Software Engineering? 9

that offered to teach all the German poems by pouring them into the student’s head in 6 hours
with a funnel.! The idea of using a funnel for learning is based on the widespread assumption
that our mind is a bucket that is initially empty and can be filled in a linear fashion. Material
enters through our senses, accumulates, and is digested. Popper calls this linear acquisition
model for knowledge “the bucket theory of the mind.” Among the many other things that are
wrong with this theory (described in [Popper, 1992]) is the assumption that knowledge is
conceived as consisting of things that can fill a bucket; that is, the fuller the bucket, the more we
know.

Knowledge acquisition is a nonlinear process. The addition of a new piece of information
may invalidate all the knowledge we have acquired for the understanding of a system. Even if
we had already documented this understanding in documents and code (“The system is 90%
coded, we will be done next week’), we must be mentally prepared to start from scratch. This
has important implications on the set of activities and their interactions we define to develop the
software system. The equivalent of the bucket theory of the mind is the sequential waterfall
model for software development, in which all steps of the engineering method are accomplished
sequentially.

There are several software processes that deal with this problem by avoiding the sequential
dependencies inherent in the waterfall model. Risk-based development attempts to anticipate
surprises late in a project by identifying the high-risk components. Issue-based development
attempts to remove the linearity altogether. Any development activity—analysis, system design,
object design, implementation, testing, or delivery—can influence any other activity. In issue-
based development, all these activities are executed in parallel. The difficulty with nonsequential
development models, however, is that they are difficult to manage.

1.2.4 Rationale

When describing the acquisition or evolution of knowledge, we are even less well equipped than
when describing the knowledge of an existing system. How does a mathematician derive a
proof? Mathematical textbooks are full of proofs, but rarely provide hints about the proof
derivation. This is because mathematicians do not think this background is important. Once the
axioms and the rules of deduction have been stated, the proof is timeless.

For software engineers, the situation is different. Assumptions that developers make about
a system change constantly. Even though the application domain models eventually stabilize
once developers acquire an adequate understanding of the problem, the solution domain models
are in constant flux. Design and implementation faults discovered during testing and usability
problems discovered during user evaluation trigger changes to the solution models. Changes can
also be caused by new technology. The availability of a long-life battery and of high-bandwidth
wireless communication, for example, can trigger revisions to the concept of a portable terminal.

1. G. P. Harsdoerfer (1607-1658), “Poetischer Trichter, die teutsche Dicht- und Reimkunst, ohn Behuf der lateinischen
Sprache, in 6 Stunden einzugieBen,” Nuernberg, 1630.
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Change introduced by new technology often allows the formulation of new functional or
nonfunctional requirements. A typical task of software engineers is to change a currently
operational software system to incorporate this new enabling technology. To change the system,
it is not enough to understand its current components and behavior. It is also necessary to
capture and understand the context in which each design decision was made. This additional
knowledge is called the rationale of the system.

Capturing and accessing the rationale of a system is not trivial. First, for every decision
made, several alternatives may have been considered, evaluated, and argued. Consequently,
rationale represents a much larger amount of information than do the solution models. Second,
rationale information is often not explicit. Developers make many decisions based on their
experience and their intuition, without explicitly evaluating different alternatives. When asked to
explain a decision, developers may have to spend a substantial amount of time recovering its
rationale. In order to deal with changing systems, however, software engineers must address the
challenges of capturing and accessing rationale.

1.3 Software Engineering Concepts

So far, we have presented a high-level view of software engineering from the perspectives of
modeling, problem solving, knowledge acquisition, and rationale. In this section, we describe
the main terms and concepts we use throughout the book.” A Project, whose purpose is to
develop a software system, is composed of a number of Activities. Each Activity is in turn
composed of a number of Tasks. A Task consumes Resources and produces a WorkProduct. A
WorkProduct can be either a System, a Model, or a Document. Resources are either
Participants, Time, or Equipment. A graphical representation of these concepts is shown in
Figure 1-1. Each rectangle represents a concept. The lines among the rectangles represent
different relationships between the concepts. For example, the diamond shape indicates
aggregation: a Project includes a number of Activities, which includes a number of Tasks.
The triangle shape indicates a generalization relationship; Participants, Time, and Equipment
are specific kinds of Resources. Figure 1-1 is represented in the Unified Modeling Language
(UML) notation. We use UML throughout the book to represent models of software and other
systems. Intuitively, you should be able to understand this diagram without full knowledge of the
UML semantics. Similarly, you can also use UML diagrams when interacting with a client or a
user, even though they may not have any knowledge of UML. We describe the semantics of
these diagrams in detail in Chapter 2, Modeling with UML.

2. As much as possible, we follow the definitions of the IEEE standards on Software Engineering [IEEE Std. 610.12-
1990].
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Project
Activity
is produced by ?" consumes
WorkProduct - Task - Resources
[ [
System Participant
Model Time
Document Equipment

Figure 1-1 Software engineering concepts depicted as a UML class diagram [OMG, 2009].

1.3.1 Participants and Roles

Developing a software system requires the collaboration of many people with different
backgrounds and interests. The client orders and pays for the system. The developers construct
the system. The project manager plans and budgets the project and coordinates the developers
and the client. The end users are supported by the system. We refer to all the persons involved in
the project as participants. We refer to a set of responsibilities in the project or the system as a
role. A role is associated with a set of tasks and is assigned to a participant. The same
participant can fill multiple roles.

Consider a TicketDistributor system:

TicketDistributor is a machine that distributes tickets for trains. Travelers have the option of
selecting a ticket for a single trip or for multiple trips, or selecting a time card for a day or a week. The
TicketDistributor computes the price of the requested ticket based on the area in which the trip will
take place and whether the traveler is a child or an adult. The TicketDistributor must be able to
handle several exceptions, such as travelers who do not complete the transaction, travelers who attempt
to pay with large bills, and resource outages, such as running out of tickets, change, or power.

Treating the development of this TicketDistributor as a software engineering project,
Table 1-1 provides examples of roles for this example.
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Table 1-1  Examples of roles in software engineering for the TicketDistributor project.
Role Responsibilities Examples
Client The client is responsible for providing the high- Train company that
level requirements on the system and for defining  contracts the
the scope of the project (delivery date, budget, TicketDistributor.
quality criteria).
User The user is responsible for providing domain Travelers
knowledge about current user tasks. Note that the
client and the user are usually filled by different
persons.
Manager A manager is responsible for the work Alice (boss)
organization. This includes hiring staff, assigning
them tasks, monitoring their progress, providing
for their training, and generally managing the
resources provided by the client for a successful
delivery.
Human Factors A human factors specialist is responsible for the Zoe (Human Computer

Specialist

usability of the system.

Interaction specialist)

Developer

A developer is responsible for the construction of
the system, including specification, design,
implementation, and testing. In large projects, the
developer role is further specialized.

John (analyst), Marc
(programmer), & Zoe
(tester)®

Technical Writer

The technical writer is responsible for the
documentation delivered to the client. A technical
writer interviews developers, managers, and users
to understand the system.

John

a. AsTicketDistributor is a small project, Zoe fills both the human factor specialist and the tester roles,

and John fills the analyst and the technical writer roles.

1.3.2 Systems and Models

We use the term system as a collection of interconnected parts. Modeling is a way to deal with
complexity by ignoring irrelevant details. We use the term model to refer to any abstraction of
the system. A TicketDistributor for an underground train is a system. Blueprints for the
TicketDistributor, schematics of its electrical wiring, and object models of its software are
models of the TicketDistributor. Note that a development project is itself a system that can be
modeled. The project schedule, its budget, and its planned deadlines are models of the
development project.
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1.3.3 Work Products

A work product is an artifact that is produced during the development, such as a document or a
piece of software for other developers or for the client. We refer to a work product for the
project’s internal consumption as an internal work product. We refer to a work product that
must be delivered to a client as a deliverable. Deliverables are generally defined prior to the
start of the project and specified by a contract binding the developers with the client. Table 1-2
describes examples of work products for the TicketDistributor example.

13

Table 1-2  Examples of work products for the TicketDistributor project.

Work product Type Description

Specification Deliverable The specification describes the system from the user’s point of
view. It is used as a contractual document between the project
and the client. The TicketDistributor specification
describes in detail how the system should appear to the traveler.

Operation Deliverable The operation manual for the TicketDistributor is used by

manual the staff of the train company responsible for installing and

configuring the TicketDistributor. Such a manual describes,
for example, how to change the price of tickets and the
structure of the network into zones.

Status report

Internal work
product

A status report describes at a given time the tasks that have
been completed and the tasks that are still in progress. The
status report is produced for the manager, Alice, and is usually
not seen by the train company.

Test manual

Internal work
product

The test plans and results are produced by the tester, Zoe. These
documents track the known defects in the prototype
TicketDistributor and their state of repair. These documents
are usually not shared with the client.

1.3.4 Activities, Tasks, and Resources

An activity is a set of tasks that is performed toward a specific purpose. For example,
requirements elicitation is an activity whose purpose is to define with the client what the system
will do. Delivery is an activity whose purpose is to install the system at an operational location.
Management is an activity whose purpose is to monitor and control the project such that it meets
its goals (e.g., deadline, quality, budget). Activities can be composed of other activities. The
delivery activity includes a software installation activity and an operator training activity.
Activities are also sometimes called phases.
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A task represents an atomic unit of work that can be managed: A manager assigns it to a
developer, the developer carries it out, and the manager monitors the progress and completion of
the task. Tasks consume resources, result in work products, and depend on work products
produced by other tasks.

Resources are assets that are used to accomplish work. Resources include time,
equipment, and labor. When planning a project, a manager breaks down the work into tasks and
assigns them to resources.

Table 1-3 describes examples of activities, tasks, and resources in software engineering.

Table 1-3  Examples of activities, tasks, and resources for the TicketDistributor project.

Example Type Description

Requirements elicitation Activity The requirements elicitation activity includes
obtaining and validating requirements and domain
knowledge from the client and the users. The
requirements elicitation activity produces the
specification work product (Table 1-2).

Develop “Out of Change” Task This task, assigned to Zoe (the tester) focuses on
test case for verifying the behavior of the ticket distributor
TicketDistributor when it runs out of money and cannot give the

correct change back to the user. This activity
includes specifying the environment of the test, the
sequence of inputs to be entered, and the expected

outputs.
Review “Access Online Task This task, assigned to John (the human factors
Help” use case for usability specialist) focuses on detecting usability issues in

accessing the online help features of the system.

Tariff Database Resource The tariff database includes an example of tariff
structure with a train network plan. This example
is a resource provided by the client for
requirements and testing.

1.3.5 Functional and Nonfunctional Requirements

Requirements specify a set of features that the system must have. A functional requirement is a
specification of a function that the system must support, whereas a nonfunctional requirement
is a constraint on the operation of the system that is not related directly to a function of the
system.

For example, The user must be able to purchase tickets and The user must be able to
access tariff information are functional requirements. The user must be provided feedback in less
than one second and The colors used in the interface should be consistent with the company



Software Engineering Concepts 15

colors are nonfunctional requirements. Other nonfunctional requirements may include using
specific hardware platform for the system, security requirements, how the system should deal
with failures and faults, and how to provide backward compatibility with an old system that the
client is unwilling to retire.

1.3.6 Notations, Methods, and Methodologies

A notation is a graphical or textual set of rules for representing a model. The Roman alphabet is
a notation for representing words. UML (Unified Modeling Language [OMG, 2009]), the
notation we use throughout this book, is a notation for representing object-oriented models. The
use of notations in software engineering is common and predates object-oriented concepts. Data
flow diagrams [De Marco, 1978] is a notation for representing systems in terms of data sources,
data sinks, and data transformations. Z [Spivey, 1989] is a notation for representing systems
based on set theory.

A method is a repeatable technique that specifies the steps involved in solving a specific
problem. A recipe is a method for cooking a specific dish. A sorting algorithm is a method for
ordering elements of a list. Rationale management is a method for justifying change.
Configuration management is a method for tracking change.

A methodology is a collection of methods for solving a class of problems and specifies
how and when each method should be used. A seafood cookbook with a collection of recipes is
a methodology for preparing seafood if it also contains advice on how ingredients should be
used and what to do if not all ingredients are available. Royce’s methodology [Royce, 1998], the
Object Modeling Technique (OMT [Rumbaugh et al., 1991]), the Booch methodology [Booch,
1994], and Catalysis [D’Souza & Wills, 1999] are object-oriented methodologies for developing
software.

Software development methodologies decompose the process into activities. OMT
provides methods for three activities: Analysis, which focuses on formalizing the system
requirements into an object model, System Design, which focuses on strategic decisions, and
Object Design, which transforms the analysis model into an object model that can be
implemented. The OMT methodology assumes that requirements have already been defined and
does not provide methods for eliciting requirements. The Unified Software Development
Process also includes an Analysis activity and treats System Design and Object Design as a
single activity called Design. The Unified Process, unlike OMT, includes a Requirements
Capture activity for eliciting and modeling requirements. Catalysis, while using the same
notations as the Unified Process, focuses more on reuse of design and code using patterns and
frameworks. All of these methodologies focus on dealing with complex systems.

In this book, we present a methodology for developing complex and changing systems.
During the course of our teaching and research ([Bruegge, 1992], [Bruegge & Coyne, 1993],
[Bruegge & Coyne, 1994], [Coyne et al., 1995]), we have adapted and refined methods from a
variety of sources. For activities modeling the application domain, such as requirements
elicitation and analysis, we describe methods similar to those of OOSE [Jacobson et al., 1992].
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For solution domain modeling activities, such as system design and object design, we describe
object-oriented activities similar to those of OMT. For change-related activities, we focus on
rationale management, which originated from design rationale research [Moran & Carroll,
1996], and configuration management, which originated from the maintenance of large systems
[Babich, 1986].

1.4 Software Engineering Development Activities

In this section, we give an overview of the technical activities associated with object-oriented
software engineering. Development activities deal with the complexity by constructing and
validating models of the application domain or the system. Development activities include

¢ Requirements Elicitation (Section 1.4.1)
¢ Analysis (Section 1.4.2)

¢ System Design (Section 1.4.3)

¢ Object Design (Section 1.4.4)

¢ Implementation (Section 1.4.5)

¢ Testing (Section 1.4.6).

Figure 1-2 depicts an overview of the relationship among these activities and their
products. In Section 1.5, we give an overview of the managerial activities associated with
software engineering. In Chapter 14, Project Management, and in Chapter 15, Software Life
Cycle, we discuss in more detail the modeling, planning, and software engineering activities.

1.4.1 Requirements Elicitation

During requirements elicitation, the client and developers define the purpose of the system.
The result of this activity is a description of the system in terms of actors and use cases. Actors
represent the external entities that interact with the system. Actors include roles such as end
users, other computers the system needs to deal with (e.g., a central bank computer, a network),
and the environment (e.g., a chemical process). Use cases are general sequences of events that
describe all the possible actions between an actor and the system for a given piece of
functionality. Figure 1-3 depicts a use case for the TicketDistributor example we discussed
previously. We describe requirements elicitation, including use cases and nonfunctional
requirements, in detail in Chapter 4, Requirements Elicitation.

1.4.2 Analysis

During analysis, developers aim to produce a model of the system that is correct, complete,
consistent, and unambiguous. Developers transform the use cases produced during requirements
elicitation into an object model that completely describes the system. During this activity,
developers discover ambiguities and inconsistencies in the use case model that they resolve with
the client. The result of analysis is a system model annotated with attributes, operations, and
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Figure 1-2 An overview of object-oriented software engineering development activities and their
products. This diagram depicts only logical dependencies among work products. Object-oriented software
engineering is iterative; that is, activities can occur in parallel and more than once.
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Use case name

PurchaseOneWayT1icket

Farticipating actor

Initiated by Traveler

Flow of events

1. The Traveler selects the zone in which the destination station is located.

2. The TicketDistributor displays the price of the ticket.

3. The Traveler inserts an amount of money that is at least as much as the
price of the ticket.

4. The TicketDistributor issues the specified ticket to the Traveler and
returns any change.

Entry condition

The Traveler stands in front of the TicketDistributor, which may be
located at the station of origin or at another station.

Exit condition

The Traveler holds a valid ticket and any excess change.

Quality requirements

If the transaction is not completed after one minute of inactivity, the
TicketDistributor returns all inserted change.

Figure 1-3 An example of use case, PurchaseOneWayTicket.

associations. The system model can be described in terms of its structure and its dynamic
interoperation. Figure 1-4 depicts an example of dynamic model for the TicketDistributor.
Figure 1-5 depicts an example of object model for the TicketDistributor.

:TicketDistributor :Zone :Balance
:Traveler ' ' I
selectZone() _ | getPrice() ‘E] I
I
<53.@@9QDFDE§ _ Ij_ I
insertChange() I, updateBaIance()I
amountDue I '[:
insertChange() | I
updateBalance(), o
T
acknowledgement LJ
«create» I

printedTicket

———————————— :Ticket
— I I I
I '

Figure 1-4 A dynamic model for the TicketDistributor (UML sequence diagram). This diagram
depicts the interactions between the actor and the system during the PurchaseOneWayTicket use case and
the objects that participate in the use case.
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Figure 1-5 An object model for the TicketDistributor (UML class diagram). In the
PurchaseOneWayTicket use case, a Traveler initiates a transaction that will result in a Ticket. A Ticket
is valid only for a specified Zone. During the Transaction, the system tracks the Balance due by counting
the Coins and Bi11s inserted.

We describe analysis, including object models, in detail in Chapter 5, Analysis. We
describe in detail the UML notation for representing models in Chapter 2, Modeling with UML.

1.4.3 System Design

During system design, developers define the design goals of the project and decompose the
system into smaller subsystems that can be realized by individual teams. Developers also select
strategies for building the system, such as the hardware/software platform on which the system
will run, the persistent data management strategy, the global control flow, the access control
policy, and the handling of boundary conditions. The result of system design is a clear
description of each of these strategies, a subsystem decomposition, and a deployment diagram
representing the hardware/software mapping of the system. Whereas both analysis and system
design produce models of the system under construction, only analysis deals with entities that
the client can understand. System design deals with a much more refined model that includes
many entities that are beyond the comprehension (and interest) of the client. Figure 1-6 depicts
an example of system decomposition for the TicketDistributor. We describe system design
and its related concepts in detail in Chapter 6, System Design: Decomposing the System, and in
Chapter 7, System Design: Addressing Design Goals.

1.4.4 Object Design

During object design, developers define solution domain objects to bridge the gap between the
analysis model and the hardware/software platform defined during system design. This includes
precisely describing object and subsystem interfaces, selecting off-the-shelf components,
restructuring the object model to attain design goals such as extensibility or understandability,
and optimizing the object model for performance. The result of the object design activity is a
detailed object model annotated with constraints and precise descriptions for each element. We
describe object design and its related concepts in detail in Chapter 8, Object Design: Reusing
Pattern Solutions, and Chapter 9, Object Design: Specifying Interfaces.
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Figure 1-6 A subsystem decomposition for the TicketDistributor (UML class diagram, packages
represent subsystems, dashed lines represent dependencies). The TravelerInterface subsystem is
responsible for collecting input from the Traveler and providing feedback (e.g., display ticket price,
returning change). The LocalTariff subsystem computes the price of different tickets based on a local
database. The CentralTariff subsystem, located on a central computer, maintains a reference copy of the
tariff database. An Updater subsystem is responsible for updating the local databases at each
TicketDistributor through a network when ticket prices change.

1.4.5 Implementation

During implementation, developers translate the solution domain model into source code. This
includes implementing the attributes and methods of each object and integrating all the objects
such that they function as a single system. The implementation activity spans the gap between
the detailed object design model and a complete set of source code files that can be compiled.
We describe the mapping of UML models to code in Chapter 10, Mapping Models to Code. We
assume the reader is already familiar with programming concepts and knows how to program
data structures and algorithms using an object-oriented language such as Java or C++.

1.4.6 Testing

During testing, developers find differences between the system and its models by executing the
system (or parts of it) with sample input data sets. During unit testing, developers compare the
object design model with each object and subsystem. During integration testing, combinations
of subsystems are integrated together and compared with the system design model. During
system testing, typical and exception cases are run through the system and compared with the
requirements model. The goal of testing is to discover as many faults as possible such that they
can be repaired before the delivery of the system. The planning of test phases occurs in parallel
to the other development activities: System tests are planned during requirements elicitation and
analysis, integration tests are planned during system design, and unit tests are planned during
object design. We describe these issues in more detail in Chapter 11, Testing.
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1.5 Managing Software Development

In this section, we briefly describe the activities involved in managing a software engineering
project. Management activities focus on planning the project, monitoring its status, tracking
changes, and coordinating resources such that a high-quality product is delivered on time and
within budget. Management activities not only involve managers, but also most of the other
project participants as well. Management activities include

¢ Communication (Section 1.5.1)

¢ Rationale Management (Section 1.5.2)

* Software Configuration Management (Section 1.5.3)
¢ Project Management (Section 1.5.4)

¢ Software Life Cycle (Section 1.5.5).

Software maintenance, which we do not cover in this book, includes the development
activities that occur after the delivery of the system to the client. Traditionally, software
maintenance has been distinguished from the other development activities as it is highly change
driven and is performed by a different team than the original development team. As modern
software engineering projects become more change driven, the distinction between construction
activities and maintenance activities is blurred. Many of the activities described in this book
can carry on to maintenance, including object design, implementation, testing, rationale
management, and software configuration management.

1.5.1 Communication

Communication is the most critical and time-consuming activity in software engineering.
Misunderstandings and omissions often lead to faults and delays that are expensive to correct
later in the development. Communication includes the exchange of models and documents about
the system and its application domain, reporting the status of work products, providing feedback
on the quality of work products, raising and negotiating issues, and communicating decisions.
Communication is made difficult by the diversity of participants’ backgrounds, by their
geographic distribution, and by the volume, complexity, and evolution of the information
exchanged.

To deal with communication issues, project participants have many tools available. The
most effective one is conventions: When participants agree on notations for representing
information, on tools for manipulating information, and on procedures for raising and resolving
issues, they already have eliminated substantial sources of misunderstanding. Examples of
notations include UML diagrams, templates for writing documents and meeting minutes, and
identification schemes for naming software components. Examples of tools include Computer
Aided Software Engineering (CASE) tools for maintaining models, word processors for
generating documents, and interchange formats for publishing information. Examples of
procedures include meeting procedures for organizing, conducting, and capturing a meeting,
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review procedures for reviewing documents and providing feedback, and inspection procedures
for detecting defects in models or source code. The selected conventions do not need to be the
best available; they only need to be shared and agreed on by everybody. We describe
communication issues in detail in Chapter 3, Project Organization and Communication.

1.5.2 Rationale Management

Rationale is the justification of decisions. Given a decision, its rationale includes the problem
that it addresses, the alternatives that developers considered, the criteria that developers used to
evaluate the alternatives, the debate developers went through to achieve consensus, and the
decision. Rationale is the most important information developers need when changing the
system. If a criterion changes, developers can reevaluate all decisions that depend on this
criterion. If a new alternative becomes available, it can be compared with all the other
alternatives that were already evaluated. If a decision is questioned, they can recover its rationale
to justify it.

Unfortunately, rationale is also the most complex information developers deal with during
development, and thus, the most difficult to update and maintain. To deal with this challenge,
developers capture rationale during meetings and on-line discussions, represent rationale with
issue models, and access rationale during changes. We describe these issues in detail in
Chapter 12, Rationale Management.

1.5.3 Software Configuration Management

Software configuration management is the process that monitors and controls changes in work
products. Change pervades software development. Requirements change as the client requests
new features and as developers improve their understanding of the application domain. The
hardware/software platform on which the system is built changes as new technology becomes
available. The system changes as faults are discovered during testing and are repaired. Software
configuration management used to be in the realm of maintenance, when improvements are
incrementally introduced in the system. In modern development processes, however, changes
occur much earlier than maintenance does. Thus, changes during development can be dealt with
using configuration management at all stages.

Configuration management enables developers to track changes. The system is
represented as a number of configuration items that are independently revised. For each
configuration item, its evolution is tracked as a series of versions. Selecting versions enables
developers to roll back to a well-defined state of the system when a change fails.

Configuration management also enables developers to control change. After a baseline has
been defined, any change needs to be assessed and approved before being implemented. This
enables management to ensure that the system is evolving according to project goals and that the
number of problems introduced into the system is limited. We describe these issues in detail in
Chapter 13, Configuration Management.
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1.5.4 Project Management

Project management does not produce any artifact of its own. Instead, project management
includes the oversight activities that ensure the delivery of a high-quality system on time and
within budget. This includes planning and budgeting the project during negotiations with the
client, hiring developers and organizing them into teams, monitoring the status of the project,
and intervening when deviations occur. Most project management activities are beyond the
scope of this book. We describe, however, the project management activities that are visible to
the developers and techniques that make the development-management communication more
effective. We describe these issues in detail in Chapter 14, Project Management.

1.5.5 Software Life Cycle

In this chapter, we describe software engineering as a modeling activity. Developers build
models of the application and solution domains to deal with their complexity. By ignoring
irrelevant details and focusing only on what is relevant to a specific issue, developers can more
effectively resolve issues and answer questions. The process of developing software can also be
viewed as a complex system with inputs, outputs, activities, and resources. It is not surprising,
then, that the same modeling techniques applied to software artifacts are used for modeling
software processes. A general model of the software development process is called a software
life cycle. We describe software life cycles in Chapter 15, Software Life Cycle.

1.5.6 Putting It All Together

After reading Chapters 1-15 in this book, you will have an overview of the current state-of-the-
art methods in object-oriented software engineering, which you can view as a thick cookbook of
recipes. In practice, however, a cookbook is rarely enough for the novice to cook a complete
meal. Moreover, not all ingredients are always available, and the cook has to improvise to bridge
the gaps.

Chapter 14, Project Management, focuses on planning and controlling projects.
Chapter 15, Software Life Cycle, focuses on modeling, improving, and repeating software life
cycle processes. Both chapters, because they focus on techniques and models, take an optimistic
view of project execution. In Chapter 16, Methodologies: Putting It All Together, we examine
what happens outside of textbook situations. We provide methodologies and heuristics for
adapting the building blocks presented in the other chapter to specific situations. In particular,
we describe several agile and heavier methodologies.

1.6 ARENA Case Study

In each chapter, we introduce concepts and activities using increasingly complex examples,
starting with toy examples from the classroom and moving to actual examples from project
courses or from real systems. Moreover, to put the activities of each chapter in the context of the
overall software engineering project, we also use a single, comprehensive case study throughout
the book, describing the development of a system called ARENA.
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ARENA is a multi-user, Web-based system for organizing and conducting tournaments.
ARENA is game independent in the sense that organizers can adapt a new game to the ARENA game
interface, upload it to the ARENA server, and immediately announce and conduct tournaments
with players and spectators located anywhere on the Internet. Organizers can also define new
tournament styles, describing how players are mapped to a set of matches and how to compute
an overall ranking of players by adding up their victories and losses (hence, figuring out who
won the tournament). To recoup their operational costs, organizers can also invite potential
sponsors to display advertisement banners during games.

In the section entitled “ARENA Case Study” located at the end of each chapter, we discuss
issues, design decisions, and trade-offs specific to the chapter in the context of ARENA. We also
relate these issues to the parts of the case study presented in previous chapters, thereby
emphasizing inter-chapter dependencies. For example:

¢ In Chapter 4, Requirements Elicitation, we describe how developers write an initial set
of use cases based on information provided by a client. We define in more detail how
tournaments should be organized and announced, and how players apply for new
tournaments. In the process, we generate more questions for the client and uncover
ambiguities and missing information about the system.

e In Chapter 5, Analysis, we describe how an object model and a behavior model are
constructed from the use case model. We also examine how the development of these
models leads to more refinements in the use case model and in the discovery of
additional requirements. For example, we define more formally the concept of
exclusive sponsorship, describe the workflow associated with deciding on the
sponsorship of a tournament, and consolidate the object model.

e In Chapter 7, System Design: Addressing Design Goals, we select a client server
architecture and a framework for realizing the system, and address issues such as data
storage and access control. We examine different mechanisms for authenticating users
on the Web, identify the persistent objects we need to store (e.g., game state,
tournament results, player profiles), and decompose ARENA into smaller subsystems that
can be handled by single programmers.

e In Chapter 8, Object Design: Reusing Pattern Solutions, and in Chapter 9, Object
Design: Specifying Interfaces, we identify additional solution domain objects to fill the
gap between the system design and the implementation. We reuse template solutions by
selecting design patterns for addressing specific issues. For example, a strategy pattern
is used to encapsulate different tournament styles.

¢ In Chapter 10, Mapping Models to Code, we translate the UML models we built so far
into Java code, and reexamine the object design as new optimization issues are
discovered. In this chapter, we illustrate the tight iteration between object design and
implementation.
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The work products associated with the ARENA system, along with a demonstration, are available
from http://wwwbruegge.in.tum.de/OOSE/WebHome.

1.7 Further Reading

The fundamental issues associated with software engineering are not new and have been written
about for several decades.

In the Mythical Man Month [Brooks, 1995], first published in 1975, Frederick Brooks
reflects on his experience with developing an operating system for the IBM 360 mainframe, a
multi-million dollar, multi-year project that went over budget and schedule. Since then, different
techniques, tools, and methods have enabled software engineers to tackle more complex and
challenging problems, only to experience failures that are more expensive and more spectacular.
Many basic lessons of this landmark book are still applicable today.

In Computer-Related Risks [Neumann, 1995], Peter Neumann relates a collection of
computer-related failures, examine roots causes and effects of these failures, and discusses what
might be done to avoid them. Computer-Related Risks is a sobering account that should be read
by any software engineer who dreams of building and mastering complex systems.

Objective Knowledge: An Evolutionary Approach [Popper, 1992] is an essay about
knowledge construction. Karl Popper breaks from traditional knowledge theories dating back to
Aristotle and proposes that scientific knowledge, once stated in a human language, becomes a
separate entity that grows through selection. As software engineering is a collaborative
knowledge-gathering and construction activity, Popper’s book can be useful to stimulate critical
thinking and provide a different perspective on the field.

In this book, we focus on object-oriented software engineering and target senior-level
software engineering project courses. Consequently, we leave out several historical and
management topics that are traditionally included in software engineering books, such as
software metrics, cost estimation, and formal methods. An overview of these topics can be found
in more general software engineering textbooks, such as Software Engineering [Sommerville,
2006] and Software Engineering: A Practitioner’s Approach [Pressman, 2009].

1.8 Exercises

1-1 What is the purpose of modeling?

1-2 A programming language is a notation for representing algorithms and data structures.
List two advantages and two disadvantages of using a programming language as the
sole notation throughout the development process.

1-3  Consider a task you are not familiar with, such as designing a zero-emissions car. How
would you attack the problem?

1-4  What is meant by “knowledge acquisition is not sequential”’? Provide a concrete
example of knowledge acquisition that illustrates this.

1-5 Hypothesize a rationale for the following design decisions:
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1-6

1-7

1-8

1-9
1-10
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e “The TicketDistributor will be at most one and a half meters tall.”
e “The TicketDistributor will include two redundant computer systems.”

e “The TicketDistributor interface will consist of a touch screen for displaying
instructions and accessing commands and a single button for aborting transactions.”

Specify which of these statements are functional requirements and which are
nonfunctional requirements:

e “The TicketDistributor must enable a traveler to buy weekly passes.”
e “The TicketDistributor must be written in Java.”

e “The TicketDistributor must be easy to use.”

e “The TicketDistributor must always be available.”

e “The TicketDistributor must provide a phone number to call when it fails.”
Specify which of these decisions were made during requirements or system design:

e “The TicketDistributor is composed of a user interface subsystem, a subsystem
for computing tariff, and a network subsystem for managing communication with
the central computer.”

e “The TicketDistributor hardware uses PowerPC processor chips.”

e “The TicketDistributor provides the traveler with online help.”

In the following description, explain when the term account is used as an application
domain concept and when as a solution domain concept:

“Assume you are developing an online system for managing bank accounts for
mobile customers. A major design issue is how to provide access to the accounts
when the customer cannot establish an online connection. One proposal is that
accounts are made available on the mobile computer, even if the server is not up. In
this case, the accounts show the amounts from the last connected session.”

What is the difference between a task and an activity?

A passenger aircraft is composed of several millions of parts and requires thousands of
persons to assemble. A four-lane highway bridge is another example of complexity.
The first version of Word for Windows, a word processor released by Microsoft in
1989, required 55 person-years, resulted into 249,000 lines of source code, and was
delivered 4 years late. Aircraft and highway bridges are usually delivered on time and
within budget, whereas software is often not. Discuss what are, in your opinion, the
differences between developing an aircraft, a bridge, and a word processor that would
cause this situation.
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2

Modeling with UML

Every mechanic is familiar with the problem of the part you
can’t buy because you can'’t find it because the
manufacturer considers it a part of something else.

—Raobert Pirsig, in Zen and the Art of Motorcycle
Maintenance

Notations enable us to articulate complex ideas succinctly and precisely. In projects
involving many participants, often of different technical and cultural backgrounds, accuracy and
clarity are critical as the cost of miscommunication increases rapidly.

For a notation to enable accurate communication, it must come with a well-defined
semantics, it must be well suited for representing a given aspect of a system, and it must be well
understood among project participants. In the latter lies the strength of standards and
conventions: when a notation is used by a large number of participants, there is little room for
misinterpretation and ambiguity. Conversely, when many dialects of a notation exists, or when a
very specialized notation is used, the notation users are prone to misunderstandings as each user
imposes its own interpretation. We selected UML (Unified Modeling Language, [OMG, 2009])
as a primary notation for this book because it provides a spectrum of notations for representing
different aspects of a system and has been accepted as a standard notation in the industry.

In this chapter, we first describe the concepts of modeling in general and object-oriented
modeling in particular. We then describe five fundamental notations of UML that we use
throughout the book: use case diagrams, class diagrams, interaction diagrams, state machine
diagrams, and activity diagrams. For each of these notations, we describe its basic semantics and
provide examples. We revisit these notations in detail in later chapters as we describe the
activities that use them. Specialized notations that we use in only one chapter are introduced
later, such as UML deployment diagrams in Chapter 6, System Design: Decomposing the
System, and PERT charts in Chapter 14, Project Management.

29
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2.1 Introduction

UML is a notation that resulted from the unification of OMT (Object Modeling Technique
[Rumbaugh et al., 1991]), Booch [Booch, 1994], and OOSE (Object-Oriented Software
Engineering [Jacobson et al., 1992]). UML has also been influenced by other object-oriented
notations, such as those introduced by Mellor and Shlaer [Mellor & Shlaer, 1998], Coad and
Yourdon [Coad et al., 1995], Wirfs-Brock [Wirfs-Brock et al., 1990], and Martin and Odell
[Martin & Odell, 1992].

The goal of UML is to provide a standard notation that can be used by all object-oriented
methods and to select and integrate the best elements of precursor notations. For example, UML
includes the use case diagrams introduced by OOSE and uses many features of the OMT class
diagrams. UML also includes new concepts that were not present in other major methods at the
time, such as extension mechanisms and a constraint language. UML has been designed for a
broad range of applications. Hence, it provides constructs for a broad range of systems and
activities (e.g., distributed systems, analysis, system design, deployment). System development
focuses on three different models of the system (see Figure 1-2):

¢ The functional model, represented in UML with use case diagrams, describes the
functionality of the system from the user’s point of view.

* The object model, represented in UML with class diagrams, describes the structure of
the system in terms of objects, attributes, associations, and operations. During
requirements and analysis, the object model starts as the analysis object model and
describes the application concepts relevant to the system. During system design, the
object model is refined into the system design object model and includes descriptions of
the subsystem interfaces. During object design, the object model is refined into the
object design model and includes detailed descriptions of solution objects.

e The dynamic model, represented in UML with interaction diagrams, state machine
diagrams, and activity diagrams, describes the internal behavior of the system.
Interaction diagrams describe behavior as a sequence of messages exchanged among a
set of objects, whereas state machine diagrams describe behavior in terms of states of
an individual object and the possible transitions between states. Activity diagrams
describe behavior in terms control and data flows.

In this chapter, we describe UML diagrams for representing these models. Introducing
these notations represents an interesting challenge: understanding the purpose of a notation
requires some familiarity with the activities that use it. However, it is necessary to understand
the notation before describing the activities. To address this issue, we introduce UML iteratively.
In the next section, we first provide an overview of the five basic notations of UML. In
Section 2.3, we introduce the fundamental ideas of modeling. In Section 2.4, we revisit the five
basic notations of UML in light of modeling concepts. In subsequent chapters, we discuss these
notations in even greater detail when we introduce the activities that use them.
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2.2 An Overview of UML

In this section, we briefly introduce five UML notations:

e Use Case Diagrams (Section 2.2.1)

¢ Class Diagrams (Section 2.2.2)

¢ Interaction Diagrams (Section 2.2.3)

¢ State Machine Diagrams (Section 2.2.4)
e Activity Diagrams (Section 2.2.5).

2.2.1 Use Case Diagrams

Use cases are used during requirements elicitation and analysis to represent the functionality of
the system. Use cases focus on the behavior of the system from an external point of view. A use
case describes a function provided by the system that yields a visible result for an actor. An actor
describes any entity that interacts with the system (e.g., a user, another system, the system’s
physical environment). The identification of actors and use cases results in the definition of the
boundary of the system, that is, in differentiating the tasks accomplished by the system and the
tasks accomplished by its environment. The actors are outside the boundary of the system,
whereas the use cases are inside the boundary of the system.

For example, Figure 2-1 depicts a use case diagram for a simple watch. The WatchUser
actor may either consult the time on their watch (with the ReadTime use case) or set the time
(with the SetTime use case). However, only the WatchRepairPerson actor can change the
battery of the watch (with the ChangeBattery use case).

SimpleWatch
ReadTime
= D
WatchUser SetTime ////////&;;;hRepairPerson
ChangeBattery

Figure 2-1 A UML use case diagram describing the functionality of a simple watch. The WatchUser actor
may either consult the time on her watch (with the ReadTime use case) or set the time (with the SetTime use
case). However, only the WatchRepairPerson actor can change the battery of the watch (with the
ChangeBattery use case). Actors are represented with stick figures, use cases with ovals, and the boundary
of the system with a box enclosing the use cases.
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2.2.2 Class Diagrams

Class diagrams are used to describe the structure of the system. Classes are abstractions that
specify the common structure and behavior of a set of objects. Objects are instances of classes
that are created, modified, and destroyed during the execution of the system. An object has state
that includes the values of its attributes and its links with other objects.

Class diagrams describe the system in terms of objects, classes, attributes, operations, and
their associations. For example, Figure 2-2 is a class diagram describing the elements of all the
watches of the SimpleWatch class. These watch objects all have an association to an object of the
PushButton class, an object of the Display class, an object of the Time class, and an object of
the Battery class. The numbers on the ends of associations denote the number of links each
SimpleWatch object can have with an object of a given class. For example, a SimpleWatch has
exactly two PushButtons, one Display, two Batteries, and one Time. Similarly, all
PushButton, Display, Time, and Battery objects are associated with exactly one SimpleWatch
object.

SimpleWatch
1 1 1 1
2| 1] 12 |1
PushButton Display Battery Time

Figure 2-2 A UML class diagram describing the elements of a simple watch.

At the analysis level, associations represent existence relationships. For example, a
SimpleWatch requires the correct number of PushButtons, Displays, Batteries, and Time. In
this example, the association is symmetrical: PushButton cannot perform its function without a
SimpleWatch. UML also allows for one-directional relationships, which we describe in
Section 2.4.2. At the implementation level, associations are realized as references (i.e., pointers)
to objects.

2.2.3 Interaction Diagrams

Interaction diagrams are used to formalize the dynamic behavior of the system and to visualize
the communication among objects. They are useful for identifying additional objects that
participate in the use cases. We call objects involved in a use case participating objects. An
interaction diagram represents the interactions that take place among these objects. For example,
Figure 2-3 is a special form of interaction diagram, called a sequence diagram, for the SetTime
use case of our simple watch. The left-most column represents the WatchUser actor who initiates
the use case. Labeled arrows represent stimuli that an actor or an object sends to other objects. In
this case, the WatchUser presses button 1 twice and button 2 once to set her watch a minute
ahead. The SetTime use case terminates when the WatchUser presses both buttons
simultaneously.
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:WatchUser ' ' I
[] pressButtonl() | bT1inkHours () | |
pressButtonl() bTinkMinutes() L] |
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pressButton2Q  _ | Lrl'incrementM‘inutesQ I
I_,_l | - refresh() 'J
pressButtonslAndZQ | ITl commitNewTime() L/
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stopBlinking() |_:| |T|
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Figure 2-3 A UML sequence diagram for the Watch. The left-most column represents the timeline of the
WatchUser actor who initiates the use case. The other columns represent the timeline of the objects that
participate in this use case. Object names are underlined to denote that they are instances (as opposed to
classes). Labeled arrows are stimuli that an actor or an object sends to other objects.

2.2.4 State Machine Diagrams

State machine diagrams describe the dynamic behavior of an individual object as a number of
states and transitions between these states. A state represents a particular set of values for an
object. Given a state, a transition represents a future state the object can move to and the
conditions associated with the change of state. For example, Figure 2-4 is a state machine
diagram for the Watch. A small black circle initiates that B1inkHours is the initial state. A circle
surrounding a small black circle indicates that StopBlinking is a final state. Note that this
diagram represents different information than the sequence diagram of Figure 2-3. The sequence
diagram focuses on the messages exchanged between objects as a result of external events
created by actors. The state machine diagram focuses on the transitions between states as a result
of external events for an individual object.

2.2.5 Activity Diagrams

An activity diagram describes the behavior of a system in terms of activities. Activities are
modeling elements that represent the execution of a set of operations. The execution of an
activity can be triggered by the completion of other activities, by the availability of objects, or by
external events. Activity diagrams are similar to flowchart diagrams in that they can be used to
represent control flow (i.e., the order in which operations occur) and data flow (i.e., the objects
that are exchanged among operations). For example, Figure 2-5 is an activity diagram
representing activities related to managing an Incident. Rounded rectangles represent
activities; arrows between activities represent control flow; thick bars represent the
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}
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StopBlinking
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Figure 2-4 A UML state machine diagram for SetTime use case of the Watch.

synchronization of the control flow. The activity diagram of Figure 2-5 depicts that the

AllocateResources, CoordinateResources, and DocumentIncident can be initiated only after
the OpenIncident activity has been completed. Similarly, the ArchiveIncident activity can be
initiated only after the completion of AllocateResources, Coordinate-Resources, and
DocumentIncident. These latter three activities, however, can occur concurrently.

This concludes our first walkthrough of the five basic notations of UML. Now, we go into
more detail: In Section 2.3, we introduce basic modeling concepts, including the definition of

Open
Incident

Allocate
Resources

Coordinate
Resources

Document
Incident

Archive
Incident

Figure 2-5 An example of a UML activity diagram. Activity diagrams represent behavior in terms of
activities and their precedence constraints. The completion of an activity triggers an outgoing transition,

which in turn may initiate another activity.
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systems, models, types, and instances, abstraction, and falsification. In Sections 2.4.1-2.4.5, we
describe in detail use case diagrams, class diagrams, sequence diagrams, state machine
diagrams, and activity diagrams. We illustrate their use with a simple example. Section 2.4.6
describes miscellaneous constructs, such as packages and notes, that are used in all types of
diagrams. We use these five notations throughout the book to describe software systems, work
products, activities, and organizations. By the consistent and systematic use of a small set of
notations, we hope to provide the reader with an operational knowledge of UML.

2.3 Modeling Concepts

In this section, we describe the basic concepts of modeling. We first define the terms system,
model, and view, and discuss the purpose of modeling. We explain their relationship to
programming languages and terms such as data types, classes, instances, and objects. Finally,
we describe how object-oriented modeling focuses on building an abstraction of the system
environment as a basis for the system model.

2.3.1 Systems, Models, and Views

A system is an organized set of communicating parts. We focus here on engineered systems,
which are designed for a specific purpose, as opposed to natural systems, such as a planetary
system, whose ultimate purpose we may not know. A car, composed of four wheels, a chassis, a
body, and an engine, is designed to transport people. A watch, composed of a battery, a circuit,
wheels, and hands, is designed to measure time. A payroll system, composed of a mainframe
computer, printers, disks, software, and the payroll staff, is designed to issue salary checks for
employees of a company. Parts of a system can in turn be considered as simpler systems called
subsystems. The engine of a car, composed of cylinders, pistons, an injection module, and many
other parts, is a subsystem of the car. Similarly, the integrated circuit of a watch and the
mainframe computer of the payroll system are subsystems. This subsystem decomposition can
be recursively applied to subsystems. Objects represent the end of this recursion, when each
piece is simple enough that we can fully comprehend it without further decomposition.

Many systems are made of numerous subsystems interconnected in complicated ways,
often so complex that no single developer can manage its entirety. Modeling is a means for
dealing with this complexity. Complex systems are generally described by more than one model,
each focusing on a different aspect or level of accuracy. Modeling means constructing an
abstraction of a system that focuses on interesting aspects and ignores irrelevant details. What is
interesting or irrelevant varies with the task at hand. For example, assume we want to build an
airplane. Even with the help of field experts, we cannot build an airplane from scratch and hope
that it will function correctly on its maiden flight. Instead, we first build a scale model of the air
frame to test its aerodynamic properties. In this scale model, we only need to represent the
exterior surface of the airplane. We can ignore details such as the instrument panel or the engine.
In order to train pilots for this new airplane, we also build a flight simulator. The flight simulator
needs to accurately represent the layout and behavior of flight instruments. In this case, however,
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details about the exterior of the plane can be ignored. Both the flight simulator and the scale
model are much less complex than the airplane they represent. Modeling allows us to deal with
complexity through a divide-and-conquer approach: For each type of problem we want to solve
(e.g., testing aerodynamic properties, training pilots), we build a model that only focuses on the
issues relevant to the problem. Generally, modeling focuses on building a model that is simple
enough for a person to grasp completely. A rule of thumb is that each entity should contain at
most 7 + 2 parts [Miller, 1956].

Modeling also helps us deal with complexity by enabling us to incrementally refine simple
models into more detailed ones that are closer to reality. In software engineering, as in all
engineering disciplines, the model usually precedes the system. During analysis, we first build a
model of the environment and of the common functionality that the system must provide, at a
level that is understandable by the client. Then we refine this model, adding more details about
the forms that the system should display, the layout of the user interface, and the response of the
system to exceptional cases. The set of all models built during development is called the system
model. If we did not use models, but instead started coding the system right away, we would
have to specify all the details of the user interface before the client could provide us with
feedback. Thus we would lose much time and resources when the client then introduces
changes.

Unfortunately, even a model may become so complex that it is not easily understandable.
We can continue to use the divide-and-conquer method to refine a complex model into simpler
models. A view focuses on a subset of a model to make it understandable (Figure 2-6). For
example, all the blueprints necessary to construct an airplane constitute a model. Excerpts
necessary to explain the functioning of the fuel system constitute the fuel system view. Views
may overlap: a view of the airplane representing the electrical wiring also includes the wiring for
the fuel system.

Scale model

QH blueprints
Airplane
( Flight simulator

Figure 2-6 A model is an abstraction describing a subset of a system. A view depicts selected aspects of
a model. Views and models of a single system may overlap each other.
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Notations are graphical or textual rules for representing views. A UML class diagram is a
graphical view of the object model. In wiring diagrams, each connected line represents a
different wire or bundle of wires. In UML class diagrams, a rectangle with a title represents a
class. A line between two rectangles represents a relationship between the two corresponding
classes. Note that different notations can be used to represent the same view (Figure 2-7).

UML
1 *
Book Chapter
composed-of
Booch
—~ N\ — N
e N N N
. Book @ composed—of | Chapter
- _ - _
~N N

Figure 2-7 Example of describing a model with two different notations. The model includes two classes,
Book and Chapter, with the relationship, Book is composed of Chapters. In UML, classes are depicted
by rectangles and aggregation associations by a line terminated with a diamond. In the Booch notation,
classes are depicted by clouds, and aggregation associations are depicted with a line terminated with a solid
circle.

In software engineering, there are many other notations for modeling systems. UML
describes a system in terms of classes, events, states, interactions, and activities. Data flow
diagrams [De Marco, 1978] depict how data is retrieved, processed, and stored. Z Schemes
[Spivey, 1992] represent the system in terms of invariants (conditions that never change) and in
terms of what is true before and after the execution of an operation. Each notation is tailored for
a different problem.

In the next sections, we focus in more detail on the process of modeling.

2.3.2 Data Types, Abstract Data Types, and Instances

A data type is an abstraction in the context of a programming language. A data type has a
unique name that distinguishes it from other data types. It denotes a set of values that are
members of the data type (i.e., the instances of the data type) and defines the structure and the
operations valid in all instances of the data type. Data types are used in typed languages to
ensure that only valid operations are applied to specific instances.

For example, the name int in Java corresponds to all the signed integers between 2% and
232 _ 1. The valid operations on this type are all the integer arithmetic operations (e.g., addition,
subtraction, multiplication, division) and all the functions and methods that have parameters of
type int (e.g., mod). The Java run-time environment throws an exception if a floating point
operation is applied to an instance of the int data type (e.g., trunc or floor).
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An abstract data type is a data type defined by an implementation-independent
specification. Abstract data types enable developers to reason about a set of instances without
looking at a specific implementation of the abstract data type. Examples of abstract data types
are sets and sequences, which can be mathematically defined. A system may provide different
implementations of the set abstract data type, each optimizing different criteria (e.g., memory
consumption, insertion time). However, a developer using a set only needs to understand its
semantics and need not be aware of the internal representation of the set. For example, the
abstract data type Person may define the operations getName 0.,! getSocialSecurityNumber(),
and getAddress(). The fact that the social security number of the person is stored as a number
or as a string is not visible to the rest of the system. Such decisions are called implementation
decisions.

2.3.3 Classes, Abstract Classes, and Objects

A class is an abstraction in object-oriented modeling and in object-oriented programming
languages. Like abstract data types, a class encapsulates both structure and behavior. Unlike
abstract data types, classes can be defined in terms of other classes by using inheritance. Assume
we have a watch that also can function as a calculator. The class CalculatorWatch can then be
seen as a refinement of the class Watch. This type of relationship between a base class and a
refined class is called inheritance. The generalization class (e.g., Watch) is called the
superclass, the specialized class (e.g., CalculatorWatch) is called the subclass. In an
inheritance relationship, the subclass refines the superclass by defining new attributes and
operations. In Figure 2-8, CalculatorWatch defines functionality for performing simple
arithmetic that regular Watches do not have. Superclass and subclass are relative terms. The
same class can be a subclass with respect to one class and a superclass with respect to another
class.

When an inheritance relationship serves only to model shared attributes and operations,
that is, if the generalization is not meant to be instantiated, the resulting class is called an
abstract class. Abstract classes often represent generalized concepts in the application domain,
and their names are italicized. For example, in chemistry, Benzene can be considered a class of
molecules that belongs to the abstract class OrganicCompound (Figure 2-9). OrganicCompound is
a generalization and does not correspond to any one molecule; that is, it does not have any
instances. In Java, Collection is an abstract class providing a generalization for all collection
classes. However, there are no instances of the class Collection. Rather, all collection objects
are instances of one of the subclasses of Collection, such as LinkedList, ArraylList, or
HashMap. Note that not all generalizations are abstract classes. For example, in Figure 2-8 the
Watch class is not an abstract class as it has instances. When modeling software systems,

1. We refer to an operation by its name followed by its arguments in parentheses. If the arguments are not specified, we
suffix the name of the operation by a pair of empty parentheses. We describe operations in detail in the next section.
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Watch
time
date
SetDate(d) CalculatorWatch
calculatorState
EnterCalcMode()
InputNumber(n)

Figure2-8 A UML class diagram depicting two classes, Watch and CalculatorWatch.
CalculatorWatch is arefinement of Watch, providing calculator functionality not found in normal watches.
In a UML class diagram, classes and objects are represented as boxes with three compartments: the first
compartment depicts the name of the class, the second depicts its attributes, the third its operations. The
second and third compartments can be omitted for brevity. An inheritance relationship is displayed by a line
with a triangle. The triangle points to the superclass, and the other end is attached to the subclass.

abstract classes sometimes do not correspond to an existing application domain concept, but
rather are introduced to reduce complexity in the model or to promote reuse.

A class defines the operations that can be applied to its instances. Operations of a
superclass can be inherited and applied to the objects of the subclass as well. For example, in
Figure 2-8, the operation SetDate(d), setting the current date of a Watch, is also applicable to
CalculatorWatches. The operation EnterCalcMode(), however, defined in the
CalculatorWatch class, is not applicable in the Watch class.

A class defines the attributes that apply to all its instances. An attribute is a named slot in
the instance where a value is stored. Attributes have a unique name within the class and the type.
Watches have a time and a date attribute. CalculatorWatches have a calculatorState
attribute.

An object is an instance of a class. An object has an identity and stores attribute values.
Each object belongs to exactly one class. In UML, an instance is depicted by a rectangle with its
name underlined. This convention is used throughout UML to distinguish between instances and

OrganicCompound

Benzene

Figure 2-9 An example of abstract class (UML class diagram). OrganicCompound is never instantiated
and only serves as a generalization class. The names of abstract classes are italicized.
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classes.? In Figure 2-10, simpTeWatch1291 is an instance of Watch, and calculatorWatch1515
is an instance of CalculatorWatch. Note that, although the operations of Watch are applicable to
calculatorWatchl515, calculatorWatch1515 is not an instance of the class Watch. The
attributes of an object can be visible to other parts of the system in some programming
languages. For example, Java allows the implementor to specify in great detail which attributes
are visible and which are not.

«instanceOf»

simpleWatchl291:Watch |- _ _ _ _ _ _ = Watch
calculatorWatchl515 «instanceOf»
:CalculatorWatch |- — — — — — — —| (CalculatorWatch

Figure 2-10 A UML class diagram depicting instances of two classes. simpTeWatch1291 is an instance
of Watch. calculatorWatchl515 is an instance of CalculatorWatch. Although the operations of Watch
are also applicable to calculatorWatch1515, the latter is not an instance of the former.

2.3.4 Event Classes, Events, and Messages

Event classes are abstractions representing a kind of event for which the system has a common
response. An event, an instance of an event class, is a relevant occurrence in the system. For
example, an event can be a stimuli from an actor (e.g., “the WatchUser presses the left button™),
a time-out (e.g., “after 2 minutes”), or the sending of a message between two objects. Sending a
message is the mechanism by which the sending object requests the execution of an operation in
the receiving object. The message is composed of a name and a number of arguments. The
receiving object matches the name of the message to one of its operations and passes the
arguments to the operation. Any results are returned to the sender.

For example, in Figure 2-11, the :Watch object computes the current time by getting the
Greenwich time from the :Time object and the time difference from the :TimeZone object by
sending the getTime() and the getTimeDelta() messages, respectively. Note that :Watch
denotes an undesignated object of class Watch.

Events and messages are instances: they represent concrete occurrences in the system.
Event classes are abstractions describing groups of events for which the system has a common
response. In practice, the term “event” can refer to instances or classes. This ambiguity is
resolved by examining the context in which the term is used.

2. Underlined strings are also used for representing Uniform Resource Locators (URLs). To improve readability, we do
not use an underlined font in the text, but rather, we use the same font to denote instances and classes. In general, this
ambiguity can be resolved by examining the context. In UML diagrams, however, we always use an underlined font
to distinguish instances from classes.
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Figure 2-11 Examples of message sends (UML sequence diagram). The Watch object sends the
getTime() message to a Time object to query the current Greenwich time. It then sends the
getTimeDelta() message to a TimeZone object to query the difference to add to the Greenwich time. The
dashed arrows represent the replies (i.e., message results that are sent back to the sender).

2.3.5 Object-Oriented Modeling

The application domain represents all aspects of the user’s problem. This includes the physical
environment, the users and other people, their work processes, and so on. It is critical for
analysts and developers to understand the application domain for a system to accomplish its
intended task effectively. Note that the application domain changes over time, as work processes
and people change.3

The solution domain is the modeling space of all possible systems. Modeling in the
solution domain represents the system design and object design activities of the development
process. The solution domain model is much richer and more volatile than the application
domain model. This is because the system is usually modeled in much more detail than the
application domain. Emerging technologies (also called technology enablers), deeper
understanding of implementation technology by the developers, and changes in requirements
trigger changes to the solution domain models. Note that the deployment of the system can
change the application domain as users develop new work processes to accommodate the
system.

Object-oriented analysis is concerned with modeling the application domain.
Object-oriented design is concerned with modeling the solution domain. Both modeling
activities use the same representations (i.e., classes and objects). In object-oriented analysis and

3. The application domain is sometimes further divided into a user domain and a client domain. The client domain
includes the issues relevant to the client, such as, operation cost of the system, impact of the system on the rest of the
organization. The user domain includes the issues relevant to the end user, such as, functionality, ease of learning
and of use.
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design, the application domain model is also part of the system model. For example, an air
traffic control system has a TrafficController class to represent individual users, their
preferences, and log information. The system also has an Aircraft class to represent
information associated with the tracked aircraft. TrafficController and Aircraft are
application domain concepts that are encoded into the system (Figure 2-12).

Application Domain Solution Domain
Application Domain Model System Model
TrafficControl \ | SummaryDisplay | MapDisplay
~

. | TrafficController | ™l | FlightPlanDatabase |
.
FlightPlan | TrafficControl |

Figure 2-12 The application domain model represents entities of the environment that are relevant to an
air traffic control system (e.g., aircraft, traffic controllers). The system model represents entities that are part
of the system (e.g., map display, flight plan database). Note that in object-oriented analysis and design, the
application domain model is part of the system model. The system model refines the application domain
model to include solution domain concepts, such as SummaryDisplay, MapDisplay, and FightPlan-
Database. (For more details, see Chapter 5, Analysis.)

Modeling the application domain and the solution domain with a single notation has
advantages and disadvantages. On the one hand, it can be powerful: solution domain classes that
represent application concepts can be traced back to the application domain. Moreover, these
classes can be encapsulated into subsystems independent of other implementation concepts
(e.g., user interface and database technology) and be packaged into a reusable toolkit of domain
classes. On the other hand, using a single notation can introduce confusion because it removes
the distinction between the real world and the model of it. The solution domain is bound to be
simpler and biased toward the solution. To address this issue, we use a single notation and, in
cases of ambiguity, we distinguish between the two domains. In most cases, we are referring to
the model (e.g., “an Aircraft is associated with a F1ightPlan” is a statement about the model).
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2.3.6 Falsification and Prototyping

A model is a simplification of reality in the sense that irrelevant details are ignored. Relevant
details, however, need to be represented. Falsification [Popper, 1992] is the process of
demonstrating that relevant details have been incorrectly represented or not represented at all;
that is, the model does not correspond to the reality it is supposed to represent.

The process of falsification is well known in other sciences: researchers propose different
models of a reality, which are gradually accepted as an increasing amount of data supports the
model, then rejected once a counterexample is found. Near the end of the 18th century, for
example, it was discovered that the orbit of the planet Mercury did not exactly match the orbit
predicted by Newton’s theory of gravity. Later, Einstein’s general theory of relativity predicted a
slightly different orbit that better matched the results. In other words, Newton’s theory was
falsified in favor of Einstein’s. Note, however, that we still use Newton’s theory for practical
applications on Earth, because the differences predicted by both theories are small in these
situations and Newton’s theory is much simpler. In other words, the details ignored by Newton’s
theory are not relevant for the scales we are accustomed to.

We can apply falsification to software system development as well. For example, a
technique for developing a system is prototyping: when designing the user interface, developers
construct a prototype that only simulates the user interface of a system. The prototype is then
presented to potential users for evaluation—that is, falsification—and modified subsequently. In
the first iterations of this process, developers are likely to throw away the initial prototype as a
result of feedback from the users. In other terms, users falsify the initial prototype, a model of
the future system, because it does not accurately represent relevant details.

Note that it is only possible to demonstrate that a model is incorrect. Although in some
cases, it is possible to show mathematically that two models are equivalent, it is not possible to
show that either of them correctly represents reality. For example, formal verification techniques
can enable developers to show that a specific software implementation is consistent with a
formal specification. However, only field testing and extended use can indicate that a system
meets the needs of the client. At any time, system models can be falsified due to changes in the
requirements, in the implementation technology, or in the environment.

2.4 A Deeper View into UML

We now describe in detail the five main UML diagrams we use in this book.

e Use case diagrams represent the functionality of the system from a user’s point of
view. They define the boundaries of the system (Section 2.4.1).

¢ Class diagrams represent the static structure of a system in terms of objects, their
attributes, operations, and relationships (Section 2.4.2).

* Interaction diagrams represent the system’s behavior in terms of interactions among a
set of objects. They are used to identify objects in the application and implementation
domains (Section 2.4.3).
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* State machine diagrams represent the behavior of nontrivial objects (Section 2.4.4).

e Activity diagrams are flow diagrams used to represent the data flow or the control
flow through a system (Section 2.4.5).

241 Use Case Diagrams

Use cases and actors

Actors are external entities that interact with the system. Examples of actors include a
user role (e.g., a system administrator, a bank customer, a bank teller) or another system (e.g., a
central database, a fabrication line). Actors have unique names and descriptions.

Use cases describe the behavior of the system as seen from an actor’s point of view.
Behavior described by use cases is also called external behavior. A use case describes a
function provided by the system as a set of events that yields a visible result for the actors.
Actors initiate a use case to access system functionality. The use case can then initiate other use
cases and gather more information from the actors. When actors and use cases exchange
information, they are said to communicate. We will see later that we represent these exchanges
with communication relationships.

For example, in an accident management system, field officers (such as a police officer or
a fire fighter) have access to a wireless computer that enables them to interact with a dispatcher.
The dispatcher in turn can visualize the current status of all its resources, such as police cars or
trucks, on a computer screen and dispatch a resource by issuing commands from a workstation.
In this example, field officer and dispatcher can be modeled as actors.

Figure 2-13 depicts the actor FieldOfficer who invokes the use case ReportEmergency
to notify the actor Dispatcher of a new emergency. As a response, the Dispatcher invokes the

FRIEND

ReportEmergency

OpenIncident Dispatcher

/

AllocateResources

FieldOfficer

Figure 2-13 An example of a UML use case diagram for First Responder Interactive Emergency
Navigational Database (FRIEND), an accident management system. Associations between actors and use
cases denote information flows. These associations are bidirectional: they can represent the actor initiating
a use case (FieldOfficer initiates ReportEmergency) or a use case providing information to an actor
(ReportEmergency notifies Dispatcher). The box around the use cases represents the system boundary.



A Deeper View into UML 45

OpenIncident use case to create an incident report and initiate the incident handling. The
Dispatcher enters preliminary information from the FieldOfficer in the incident database
(FRIEND) and orders additional units to the scene with the AlTocateResources use case.

For the textual description of a use case, we use a template composed of six fields (see
Figure 2-14) adapted from [Constantine & Lockwood, 2001]:

¢ The name of the use case is unique across the system so that developers (and project
participants) can unambiguously refer to the use case.

* Participating actors are actors interacting with the use case.

¢ Entry conditions describe the conditions that need to be satisfied before the use case is

initiated.
Use case name ReportEmergency
Participating Initiated by FieldOfficer
actors Communicates with Dispatcher
Flow of events 1. The FieldOfficer activates the “Report Emergency” function of her terminal.

2. FRIEND responds by presenting a form to the FieldOfficer.

3. The FieldOfficer fills out the form by selecting the emergency level, type,
location, and brief description of the situation. The FieldOfficer also
describes possible responses to the emergency situation. Once the form is
completed, the FieldOfficer submits the form.

4. FRIEND receives the form and notifies the Dispatcher.

5. The Dispatcher reviews the submitted information and creates an Incident in
the database by invoking the OpenIncident use case. The Dispatcher selects a
response and acknowledges the report.

6. FRIEND displays the acknowledgment and the selected
response to the FieldOfficer.

Entry condition e The FieldOfficer is logged into FRIEND.

Exit condition e The FieldOfficer has received an acknowledgment and the selected response
from the Dispatcher, OR
e The FieldOfficer has received an explanation indicating why the transaction
could not be processed.

Quality e The FieldOfficer’s report is acknowledged within 30 seconds.
requirements ¢ The selected response arrives no later than 30 seconds after it is sent by the
Dispatcher.

Figure 2-14 An example of a use case, ReportEmergency.
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¢ The flow of events describes the sequence of interactions of the use case, which are to
be numbered for reference. The common case (i.e., cases that are expected by the user)
and the exceptional cases (i.e., cases unexpected by the user, such as errors and unusual
conditions) are described separately in different use cases for clarity. We organize the
steps in the flow of events in two columns, the left column representing steps
accomplished by the actor, the right column representing steps accomplished by the
system. Each pair of actor—system steps represents an interaction.

¢ [Exit conditions describe the conditions satisfied after the completion of the use case.

¢ Quality requirements are requirements that are not related to the functionality of the
system. These include constraints on the performance of the system, its
implementation, the hardware platforms it runs on, and so on. Quality requirements are
described in detail in Chapter 4, Requirements Elicitation.

Use cases are written in natural language. This enables developers to use them for
communicating with the client and the users, who generally do not have an extensive knowledge
of software engineering notations. The use of natural language also enables participants from
other disciplines to understand the requirements of the system. The use of the natural language
allows developers to capture things, in particular special requirements, that cannot easily be
captured in diagrams.

Use case diagrams can include four types of relationships: communication, inclusion,
extension, and inheritance. We describe these relationships in detail next.

Communication relationships

Actors and use cases communicate when information is exchanged between them.
Communication relationships are depicted by a solid line between the actor and use case
symbol. In Figure 2-13, the actors FieldOfficer and Dispatcher communicate with the
ReportEmergency use case. Only the actor Dispatcher communicates with the use cases
OpenIncident and AllocateResources. Communication relationships between actors and use
cases can be used to denote access to functionality. In the case of our example, a FieldOfficer
and a Dispatcher are provided with different interfaces to the system and have access to
different functionality.

Include relationships

When describing a complex system, its use case model can become quite complex and can
contain redundancy. We reduce the complexity of the model by identifying commonalities in
different use cases. For example, assume that the Dispatcher can press at any time a key to
access a street map. This can be modeled by a use case ViewMap that is included by the use cases
OpenIncident and AllocateResources (and any other use cases accessible by the Dispatcher).
The resulting model only describes the ViewMap functionality once, thus reducing complexity of
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the overall use case model. Two use cases are related by an include relationship if one of them
includes the second one in its flow of events. In use case diagrams, include relationships are
depicted by a dashed open arrow originating from the including use case (see Figure 2-15).
Include relationships are labeled with the string «include».

«include»

OpenIncident ™ - ©
—_— - 7

- ViewMap
«include»
AllocateResources

Figure 2-15 An example of an «include» relationship (UML use case diagram).

Use case name AllocateResources

Participating actor Initiated by Dispatcher

Flow of events

Entry condition e The Dispatcher opens an Incident.

Exit condition * Additional Resources are assigned to the Incident.
* Resources receives notice about their new assignment.
* FieldOfficer in charge of the Incident receives notice about the new
Resources.

Quality requirements At any point during the flow of events, this use case can include the ViewMap
use case. The ViewMap use case is initiated when the Dispatcher invokes the
map function. When invoked within this use case, the system scrolls the map
so that location of the current Incident is visible to the Dispatcher.

Figure 2-16 Textual representation of include relationships of Figure 2-15. “Include” in bold for clarity.

We represent include relationships in the textual description of the use case with one of
two ways. If the included use case can be included at any point in the flow of events (e.g., the
ViewMap use case), we indicate the inclusion in the Quality requirements section of the use case
(Figure 2-16). If the included use case is invoked during an event, we indicate the inclusion in
the flow of events.

Extend relationships

Extend relationships are an alternate means for reducing complexity in the use case
model. A use case can extend another use case by adding events. An extend relationship
indicates that an instance of an extended use case may include (under certain conditions) the



48 Chapter 2 ¢« Modeling with UML

behavior specified by the extending use case. A typical application of extend relationships is the
specification of exceptional behavior. For example (Figure 2-17), assume that the network
connection between the Dispatcher and the FieldOfficer can be interrupted at any time. (e.g.,
if the FieldOfficer enters a tunnel). The use case ConnectionDown describes the set of events
taken by the system and the actors while the connection is lost. ConnectionDown extends the use
cases OpenIncident and AllocateResources. Separating exceptional behavior from common
behavior enables us to write shorter and more focused use cases. In the textual representation of
a use case, we represent extend relationships as entry conditions of the extending use case. For
example, the extend relationships depicted in Figure 2-17 are represented as an entry condition
of the ConnectionDown use case (Figure 2-18).

«extend»

—

OpenIncident ~ -

—

<= ConnectionDown

«extend»
AlTlocateResources

Figure 2-17 An example of an «extend» relationship (UML use case diagram).

Use case name ConnectionDown

Farticipating actor Communicates with FieldOfficer and Dispatcher.

Flow of events

Entry condition This use case extends the OpenIncident and the AllocateResources use
cases. It is initiated by the system whenever the network connection between
the FieldOfficer and Dispatcher is lost.

Exit condition

Figure 2-18 Textual representation of extend relationships of Figure 2-17. “Extends” in bold for clarity.

The difference between the include and extend relationships is the location of the
dependency. Assume that we add several new use cases for the actor Dispatcher, such as
UpdateIncident and ReallocateResources. If we modeled the ConnectionDown use case with
include relationships, the authors of UpdateIncident and ReallocateResources use cases need
to know about and include the ConnectionDown use case. If we used extend relationships
instead, only the ConnectionDown use case needs to be modified to extend the additional use
cases. In general exception cases (such as help, errors, and other unexpected conditions) are
modeled with extend relationships. Use cases that describe behavior commonly shared by a
limited set of use cases are modeled with include relationships.
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Inheritance relationships

An inheritance relationship is a third mechanism for reducing the complexity of a
model. One use case can specialize another more general one by adding more detail. For
example, FieldOfficers are required to authenticate before they can use FRIEND. During early
stages of requirements elicitation, authentication is modeled as a high-level Authenticate use
case. Later, developers describe the Authenticate use case in more detail and allow for several
different hardware platforms. This refinement activity results in two more use cases:
AuthenticateWithPassword which enables FieldOfficers to login without any specific
hardware, and AuthenticateWithCard which enables FieldOfficers to login using a smart
card. The two new use cases are represented as specializations of the Authenticate use case
(Figure 2-19). In the textual representation, specialized use cases inherit the initiating actor and
the entry and exit conditions from the general use case (Figure 2-20).

Authenticate \\\\\\Zil
WithPassword
Authenticate

Authenticate
WithCard

Figure 2-19 An example of an inheritance relationship (UML use case diagram). The Authenticate use
case is a high-level use case describing, in general terms, the process of authentication.
AuthenticateWithPassword and AuthenticateWithCard are two specializations of Authenticate.

Use case name AuthenticateWithCard
Participating actor Inherited from Authenticate use case.
Flow of events 1. The FieldOfficer inserts her card into the field terminal.

2. The field terminal acknowledges the card and prompts
the actor for her personal identification number (PIN).

3. The Fie1dOfficer enters her PIN with the numeric keypad.

4. The field terminal checks the entered PIN against the PIN
stored on the card. If the PINs match, the FieldOfficer
is authenticated. Otherwise, the field terminal rejects the
authentication attempt.

Entry condition Inherited from Authenticate use case.

Exit condition Inherited from Authenticate use case.

Figure 2-20 Textual representation of inheritance relationships of Figure 2-19.
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Note that extend relationships and inheritance relationships are different. In an extend
relationship, each use case describes a different flow of events to accomplish a different task. In
Figure 2-17, the OpenIncident use cases describes the actions that occur when the Dispatcher
creates a new Incident, whereas the ConnectionDown use case describes the actions that occur
during network outages. In Figure 2-19, AuthenticateWithPassword and Authenticate both
describe the same task, each at different abstraction levels.

Scenarios

A use case is an abstraction that describes all possible scenarios involving the described
functionality. A scenario is an instance of a use case describing a concrete set of actions.
Scenarios are used as examples for illustrating common cases; their focus is on
understandability. Use cases are used to describe all possible cases; their focus is on
completeness. We describe a scenario using a template with three fields:

¢ The name of the scenario enables us to refer to it unambiguously. The name of a
scenario is underlined to indicate that it is an instance.

¢ The participating actor instances field indicates which actor instances are involved in
this scenario. Actor instances also have underlined names.

* The flow of events of a scenario describes the sequence of events step by step.

Note that there is no need for entry or exit conditions in scenarios. Entry and exit
conditions are abstractions that enable developers to describe a range of conditions under which
a use case is invoked. Given that a scenario only describes one specific situation, such conditions
are unnecessary (Figure 2-21).

2.4.2 Class Diagrams

Classes and objects

Class diagrams describe the structure of the system in terms of classes and objects.
Classes are abstractions that specify the attributes and behavior of a set of objects. A class is a
collection of objects that share a set of attributes that distinguish the objects as members of the
collection. Objects are entities that encapsulate state and behavior. Each object has an identity:
it can be referred individually and is distinguishable from other objects.

In UML, classes and objects are depicted by boxes composed of three compartments. The
top compartment displays the name of the class or object. The center compartment displays its
attributes, and the bottom compartment displays its operations. The attribute and operation
compartments can be omitted for clarity. Object names are underlined to indicate that they are
instances. By convention, class names start with an uppercase letter. Objects in object diagrams
may be given names (followed by their class) for ease of reference. In that case, their name starts
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Scenario name warehouseOnFire

Participating actor bob, alice:FieldOfficer

instances john:Dispatcher

Flow of events 1. Bob, driving down main street in his patrol car, notices smoke coming out

of a warehouse. His partner, Alice, activates the “Report Emergency”
function from her FRIEND laptop.

2. Alice enters the address of the building, a brief description of its location
(i.e., northwest corner), and an emergency level. In addition to a fire unit,
she requests several paramedic units on the scene given that area appears
to be relatively busy. She confirms her input and waits for an
acknowledgment.

3. John, the Dispatcher, is alerted to the emergency by a beep of his
workstation. He reviews the information submitted by Alice and
acknowledges the report. He allocates a fire unit and two paramedic units
to the Incident site and sends their estimated arrival time (ETA) to Alice.

4. Alice receives the acknowledgment and the ETA.

Figure 2-21 The warehouseOnF1ire scenario for the ReportEmergency use case.

EmergencyReport 1 = 1 Incident
reportsGenerated | * reports 'inc*identsGeneratez
Fieldofficer Dispatcher
name:String 1 name:String 1

badgeNumber:Integer [ thor badgeNumber: Integer |5y o

Figure 2-22 An example of a UML class diagram: classes that participate in the ReportEmergency use
case. Detailed type information is usually omitted until object design (see Chapter 9, Object Design:
Specifying Interfaces).

with a lowercase letter. In the FRIEND example (Figures 2-22 and 2-23), Bob and Alice are field
officers, represented in the system as FieldOfficer objects called bob:FieldOfficer and
alice:FieldOfficer. FieldOfficer is a class describing all FieldOfficer objects, whereas
Bob and Alice are represented by two individual Fie1dOfficer objects.

In Figure 2-22, the Fie1dOfficer class has two attributes: a name and a badgeNumber. This
indicates that all FieldOfficer objects have these two attributes. In Figure 2-23, the
bob:FieldOfficer and alice:FieldOfficer objects have specific values for these attributes:
“Bob. D.” and “Alice W.”, respectively. In Figure 2-22, the Fie1dOfficer.name attribute is of
type String, which indicates that only instances of String can be assigned to the
FieldOfficer.name attribute. The type of an attribute is used to specify the valid range of
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report_1291 incident_1515
bob: Fieldofficer I:—g =

name = “Bob D.
badgeNumber = 132

john:Dispatcher

alice:FieldOfficer ngSeﬁumggptDiZ

name = “Alice W.”
badgeNumber = 23

Figure 2-23 An example of a UML object diagram: objects that participate in warehouseOnFire.

values the attribute can take. Note that when attribute types are not essential to the definition of
the system, attribute type decisions can be delayed until object design. This allows the
developers to concentrate on the functionality of the system and to minimize the number of
trivial changes when the functionality of the system is revised.

Associations and links

A link represents a connection between two objects. Associations are relationships between
classes and represent groups of links. Each FieldOfficer object also has a list of
EmergencyReports that has been written by the FieldOff1icer. In Figure 2-22, the line between the
FieldOfficer class and the EmergencyReport class is an association. In Figure 2-23, the line
between the alice:FieldOfficer object and the report_1291:EmergencyReport object is a link.
This link represents a state that is kept in the system to denote that alice:FieldOfficer generated
report_1291:EmergencyReport.

In UML, associations can be symmetrical (bidirectional) or asymmetrical (unidirectional).
All the associations in Figure 2-22 are symmetrical. Figure 2-24 depicts an example of one-
directional association between Polygon and Point. The navigation arrow at the Point end of
the association indicates that the system only supports navigation from the Polygon to the
Point. In other words, given a specific Polygon, it is possible to query all Points that make up

Polygon Point

Figure 2-24 Example of a one-directional association. Developers usually omit navigation during analysis
and add navigation information during object design, when they make such decisions (see Chapter 8, Object
Design: Reusing Pattern Solutions, and Chapter 9, Object Design: Specifying Interfaces).



A Deeper View into UML 53

the Polygon. However, the navigation arrow indicates that given a specific Point, it is not
possible to find which Polygons the Point is part of. UML allows navigation arrows to be
displayed on both ends of an association. By convention, however, an association without arrows
indicates that navigation is supported in both directions.

Association class

Associations are similar to classes, in that they can have attributes and operations attached
to them. Such an association is called an association class and is depicted by a class symbol that
contains the attributes and operations and is connected to the association symbol with a dashed
line. For example, in Figure 2-25, the allocation of FieldOfficers to an Incident is modeled as
an association class with attributes role and notificationTime.

Any association class can be transformed into a class and simple associations as shown in
Figure 2-26. Although this representation is similar to Figure 2-25, the association class
representation is clearer in Figure 2-25: an association cannot exist without the classes it links.
Similarly, the Allocation object cannot exist without a FieldOfficer and an Incident.
Although Figure 2-26 carries the same information, this diagram requires careful examination of
the association multiplicity. We examine such modeling trade-offs in Chapter 5, Analysis.

Allocates

role:String
notificationTime:Time

FieldOfficer Incident

name:String : 1
badgeNumber:Integer resources

1..% incident

Figure 2-25 An example of an association class (UML class diagram).

1 Allocation
role:String !
_ i notificationTime:Time
FieldOfficer
incident | 1
name:String
badgeNumber:Integer 7. * resources Incident

Figure 2-26  Alternative model for A11ocation (UML class diagram).
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Roles

Each end of an association can be labeled by a role. In Figure 2-22, the roles of the
association between EmergencyReport and FieldOfficer are author and reportsGenerated.
Labeling the end of associations with roles allows us to distinguish among the multiple
associations originating from a class. Moreover, roles clarify the purpose of the association.

Multiplicity

Each end of an association can be labeled by a set of integers indicating the number of
links that can legitimately originate from an instance of the class connected to the association
end. This set of integers is called the multiplicity of the association end. In Figure 2-22, the
association end author has a multiplicity of 1. This means that all EmergencyReports are
written by exactly one FieldOfficer. In other terms, each EmergencyReport object has exactly
one link to an object of class FieldOfficer. The multiplicity of the association end
reportsGenerated role is “many,” shown as a star. The “many”” multiplicity is shorthand for
0..n. This means that any given FieldOfficer may be the author of zero or more
EmergencyReports.

In UML, an association end can have an arbitrary set of integers as a multiplicity. For
example, an association could allow only a prime number of links and thus, would have a
multiplicity 1, 2, 3, 5, 7, 11, 13, and so forth. In practice, however, most of the associations we
encounter belong to one of the following three types (see Figure 2-27):

* A one-to-one association has a multiplicity 1 on each end. A one-to-one association
between two classes (e.g., PoliceOfficer and BadgeNumber) means that exactly one
link exists between instances of each class (e.g., a PoliceOfficer has exactly one
BadgeNumber, and a BadgeNumber denotes exactly one Pol1iceOfficer).

* A one-to-many association has a multiplicity 1 on one end and 0. . n (also represented
by a star) or 1..n on the other. A one-to-many association between two classes (e.g.,
FireUnit and FireTruck) denotes composition (e.g., a FireUnit owns one or more
FireTrucks, a FireTruck is owned exactly by one FireUnit).

* A many-to-many association has a multiplicity 0..n or 1. .n on both ends. A many-
to-many association between two classes (e.g., FieldOfficer and IncidentReport)
denotes that an arbitrary number of links can exist between instances of the two classes
(e.g., a FieldOfficer can write many IncidentReports, an IncidentReport can be
written by many FieldOfficers). This is the most complex type of association.

Adding multiplicity to associations increases the amount of information we capture from
the application or the solution domain. Specifying the multiplicity of an association becomes
critical when we determine which use cases are needed to manipulate the application domain
objects. For example, consider a file system made of Directories and Files. A Directory can
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1 1
PoliceOfficer BadgeNumber
. . 1 * -
FireUnit owner property FireTruck
FieldOfficer author report| IncidentReport

Figure 2-27 Examples of multiplicity (UML class diagram). The association between Po1iceOfficer
and BadgeNumber is one-to-one. The association between FireUnit and FireTruck is one-to-many. The
association between FieldOfficer and IncidentReport is many-to-many.

contain any number of FileSystemElements. A FileSystemElement is a concept that denotes
either a Directory or a File. In case of a strictly hierarchical system, a FileSystemETement is
part of exactly one Directory, which we denote with a one-to-many multiplicity (Figure 2-28).

If, however, a File or a Directory can be simultaneously part of more than one
Directory, we need to represent the aggregation of FileSystemETement into Directories asa
many-to-many association (see Figure 2-29).

FileSystemElement

T

LAV |

Directory File

Figure 2-28 Example of a hierarchical file system. A Directory can contain any number of
FileSystemElements (a FileSystemElement is either a File or a Directory). A given
FileSystemETement, however, is part of exactly one Directory.

FileSystemElement

W ZF |

Directory File

Figure 2-29 Example of a nonhierarchical file system. A Directory can contain any number of
FileSystemElements (a FileSystemElement is either a File or a Directory). A given
FileSystemETement can be part of many Directories.
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This discussion may seem to be considering detailed issues that could be left for later
activities in the development process. The difference between a hierarchical file system and a
nonhierarchical one, however, is also in the functionality it offers. If a system allows a given
File to be part of multiple Directories, we need to define a use case describing how a user
adds an existing File to existing Directories (e.g., the Unix 1ink command or the Macintosh
MakeAlias menu item). Moreover, use cases removing a File from a Directory must specify
whether the File is removed from one Directory only or from all Directories that reference
it. Note that a many-to-many association can result in a substantially more complex system.

Aggregation

Associations are used to represent a wide range of connections among a set of objects. In
practice, a special case of association occurs frequently: aggregation. For example, a State
contains many Counties, which in turn contain many Townships. A PoliceStation is
composed of PoliceOfficers. A Directory contains a number of Files. Such relationships
could be modeled using a one-to-many association. Instead, UML provides the concept of an
aggregation, denoted by a simple line with a diamond at the container end of the association (see
Figures 2-28 and 2-30). One-to-many associations and aggregations, although similar, cannot be
used interchangeably: aggregations denote hierarchical aspects of the relationship and can have
either one-to-many or many-to-many multiplicity, whereas one-to-many associations imply a
peer relationship. For example, in Figure 2-30, the PoliceOfficers are part of the
PoliceStation. In Figure 2-22, a FieldOfficer writes zero or many EmergencyReports.
However, the FieldOfficer is not composed EmergencyReports. Consequently, we use an
association in the latter case and an aggregation in the former case.

1 * 1 *
State K >—— County K o>— Township
1 *
PoTliceStation PoTliceOfficer
l %
Directory File

Figure 2-30 Examples of aggregations (UML class diagram). A State contains many Counties, which
in turn contains many Townships. A PoliceStation has many PoliceOfficers. A file system Directory
contains many Files.

Qualification

Qualification is a technique for reducing multiplicity by using keys. Associations with a
0. .1 or 1 multiplicity are easier to understand than associations with a 0. .n or 1. .n multiplicity.
Often in the case of a one-to-many association, objects on the “many” side can be distinguished
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from one another using a name. For example, in a hierarchical file system, each file belongs to
exactly one directory. Each file is uniquely identified by a name in the context of a directory.
Many files can have the same name in the context of the file system; however, two files cannot
share the same name within the same directory. Without qualification (see top of Figure 2-31),
the association between Directory and File has a one multiplicity on the Directory side and a
zero-to-many multiplicity on the File side. We reduce the multiplicity on the File side by using
the filename attribute as a key, also called a qualifier (see top of Figure 2-31). The relationship
between Directory and File is called a qualified association.

Without qualification
1
Directory
With qualification
. - 1 0..1 )

Figure 2-31 Example of how a qualified association reduces multiplicity (UML class diagram). Adding a
qualifier clarifies the class diagram and increases the conveyed information. In this case, the model
including the qualification denotes that the name of a file is unique within a directory.

Reducing multiplicity is always preferable, as the model becomes clearer and fewer cases
have to be taken into account. Developers should examine each association that has a one-to-
many or many-to-many multiplicity to see if a qualifier can be added. Often, these associations
can be qualified with an attribute of the target class (e.g., filename in Figure 2-31).

Inheritance

Inheritance is the relationship between a general class and one or more specialized
classes. Inheritance enables us to describe all the attributes and operations that are common to a
set of classes. For example, FieldOfficer and Dispatcher both have name and badgeNumber
attributes. However, FieldOfficer has an association with EmergencyReport, whereas
Dispatcher has an association with Incident. The common attributes of FieldOfficer and
Dispatcher can be modeled by introducing a PoliceOfficer class that is specialized by the
FieldOfficer and the Dispatcher classes (see Figure2-32). PoliceOfficer, the
generalization, is called a superclass. FieldOfficer and Dispatcher, the specializations, are
called the subclasses. The subclasses inherit the attributes and operations from their parent
class. Abstract classes (defined in Section 2.3.3) are distinguished from concrete classes by
italicizing the name of abstract classes. In Figure 2-32, PoliceOfficer is an abstract class.
Abstract classes are used in object-oriented modeling to classify related concepts, thus reducing
the overall complexity of the model.
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PoliceOfficer

name:String
badgeNumber:Integer

~

_ . author . | initiator
FieldOfficer Dispatcher 1
1
* reportsGenerated * incidents
EmergencyReport 1 = L Incident

Figure 2-32 An example of an inheritance (UML class diagram). PoliceOfficer is an abstract class
which defines the common attributes and operations of the Fiel1dOfficer and Dispatcher classes.

Object behavior is specified by operations. An object requests the execution of an
operation from another object by sending it a message. The message is matched up with a
method defined by the class to which the receiving object belongs or by any of its superclasses.
The methods of a class in an object-oriented programming language are the implementations of
these operations.

The distinction between operations and methods allows us to distinguish between the
specification of behavior (i.e., an operation) and its implementation (i.e., a set of methods that
are possibly defined in different classes in the inheritance hierarchy). For example, the class
Incident in Figure 2-33 defines an operation, called assignResource(), which, given a
FieldOfficer, creates an association between the receiving Incident and the specified
Resource. The assignResource() operation may also have a side effect such as sending a
notification to the newly assigned Resource. The close() operation of Incident is responsible
for closing the Incident. This includes going over all the resources that have been assigned to
the incident over time and collecting their reports. Although UML distinguishes operations from
methods, in practice, developers usually do not and simply refer to methods.

Incident

assignResource()
close()

Figure 2-33 Examples of operations provided by the Incident class (UML class diagram).
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Applying class diagrams

Class diagrams are used for describing the structure of a system. During analysis, software
engineers build class diagrams to formalize application domain knowledge. Classes represent
participating objects found in use cases and interaction diagrams, and describe their attributes and
operations. The purpose of analysis models is to describe the scope of the system and discover its
boundaries. For example, using the class diagram pictured in Figure 2-22, an analyst could examine
the multiplicity of the association between FieldOfficer and EmergencyReport (i.e., one
FieldOfficer can write zero or more EmergencyReports, but each EmergencyReport is written
by exactly one FieldOfficer) and ask the user whether this is correct. Can there be more than one
author of an EmergencyReport? Can there be anonymous reports? Depending on the answer from
the user, the analyst would then change the model to reflect the application domain. The
development of analysis models is described in Chapter 5, Analysis.

Analysis models do not focus on implementation. Concepts such as interface details,
network communication, and database storage are not represented. Class diagrams are refined
during system design and object design to include classes representing the solution domain. For
example, the developer adds classes representing databases, user interface windows, adapters
around legacy code, optimizations, and so on. The classes are also grouped into subsystems with
well-defined interfaces. The development of design models is described in Chapter 6, System
Design: Decomposing the System, Chapter 8, Object Design: Reusing Pattern Solutions,
Chapter 9, Object Design: Specifying Interfaces, and Chapter 10, Mapping Models to Code.

2.4.3 Interaction Diagrams

Interaction diagrams describe patterns of communication among a set of interacting objects.
An object interacts with another object by sending messages. The reception of a message by an
object triggers the execution of a method, which in turn may send messages to other objects.
Arguments may be passed along with a message and are bound to the parameters of the
executing method in the receiving object. In UML, interaction diagrams can take one of two
forms: sequence diagrams or communication diagrams.

Sequence diagrams represent the objects participating in the interaction horizontally and
time vertically. For example, consider a watch with two buttons (hereafter called 2Bwatch).
Setting the time on 2Bwatch requires the actor 2BWatchOwner to first press both buttons
simultaneously, after which 2Bwatch enters the set time mode. In the set time mode, 2Bwatch
blinks the number being changed (e.g., the hours, minutes, seconds, day, month, or year).
Initially, when the 2BWatchOwner enters the set time mode, the hours blink. If the actor presses
the first button, the next number blinks (e.g, if the hours are blinking and the actor presses the
first button, the hours stop blinking and the minutes start blinking). If the actor presses the
second button, the blinking number is incremented by one unit. If the blinking number reaches
the end of its range, it is reset to the beginning of its range (e.g., assume the minutes are blinking
and its current value is 59, its new value is set to 0 if the actor presses the second button). The
actor exits the set time mode by pressing both buttons simultaneously. Figure 2-34 depicts a
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sequence diagram for an actor setting his 2Bwatch one minute ahead. Each column represents an
object that participates in the interaction. Messages are shown by solid arrows. Labels on solid
arrows represent message names and may contain arguments. Activations (i.e., executing
methods) are depicted by vertical rectangles. The actor who initiates the interaction is shown in
the left-most column. The messages coming from the actor represent the interactions described
in the use case diagrams. If other actors communicate with the system during the use case, these
actors are represented on the right-hand side and can receive messages. Although for simplicity,
interactions among objects and actors are uniformly represented as messages, the modeler
should keep in mind that interactions between actors and the system are of a different nature
than interactions among objects.

Sequence diagrams can be used to describe either an abstract sequence (i.e., all possible
interactions) or concrete sequences (i.e., one possible interaction, as in Figure 2-34). When
describing all possible interactions, sequence diagrams provide notations for iterations and
conditionals. An iteration is denoted by a combined fragment labeled with the 1oop operator (see
Figure 2-35). An alternative is denoted by a combined fragment containing a partition for each
alternative. The alternatives are selected by guards on the first message of the partition ([i>0]
and [else] in Figure 2-35). If i is positive, the top alternative of the alt combined fragment is
executed and the op1() message is sent. Otherwise, the bottom alternative is executed and the
op2 () message is sent.

stopBlinkingO |£| L
> |
|

: 2BwatchOwner :2BwatchInput :2BwatchDisplay 2BwatchTime
—_— T ' I
|
| pressButtonslAndZQlli b1inkHours () o | |
| pressButtonl)  _ ™ piinkMinutes() JTl |
o pressButton2() | incrementMinutes() |
E 1 >
",:' |_|_I | __refreshQ

| pressButtons1And2() | L commi tNewTime ()

| » | - 1

| L

Figure 2-34 Example of a sequence diagram: setting the time on 2Bwatch.
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Toop )0p3() |

Figure 2-35 Examples of conditions and iterators in sequence diagrams.

Communication diagrams depict the same information as sequence diagrams.
Communication diagrams represent the sequence of messages by numbering the interactions.
On one hand, this removes the need for geometrical constraints on the objects and results in a
more compact diagram. On the other hand, the sequence of messages becomes more difficult to
follow. Figure 2-36 depicts the communication diagram that is equivalent to the sequence
diagram of Figure 2-34.

:2BwatchOwner

1:pressButtonslAnd2()
2:pressButtonl()
3:pressButton2()

4:pressButtons1And2() blinkHours() #

1.1:

2.1:blinkMinutes()
4.2:stopBlinking() # )
:2BwatchInput :2BwatchDisplay

3.1:incrementMinutes()
4.1:commitNewTime()

3.2:refresh() »

:2BwatchTime

Figure 2-36 Example of a communication diagram: setting the time on 2Bwatch. This diagram represents
the same use case as the sequence diagram of Figure 2-34.
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Applying interaction diagrams

Interaction diagrams describe interactions among several objects. One of the main reasons
for constructing an interaction diagram is to uncover the responsibilities of the classes in the
class diagrams and to discover even new classes. In other words, the interaction diagram helps
the developer in deciding which objects require particular operations. Typically, there is an
interaction diagram for every use case with focus on the event flow. The developer identifies the
objects that participate in the use case, and assigns pieces of the use case behavior to the objects
in the form of operations.

The class diagram and the associated interaction diagrams are usually constructed in
tandem after the initial class diagram has been defined. This process often also leads to
refinements in the use case (e.g., correcting ambiguous descriptions, adding missing behavior)
and consequently, the discovery of more objects and more services. We describe in detail the use
of interaction diagrams in Chapter 5, Analysis.

2.4.4 State Machine Diagrams

A UML state machine is a notation for describing the sequence of states an object goes through
in response to external events. UML state machines are extensions of the finite state machine
model. On one hand, state machines provide notation for nesting states and state machines (i.e.,
a state can be described by a state machine). On the other hand, state machines provide notation
for binding transitions with message sends and conditions on objects. UML state machines are
largely based on Harel’s statecharts [Harel, 1987] and have been adapted for use with object
models [Douglass, 1999]. UML state machines can be used to represent any Mealy or Moore
state machine.

A state is a condition satisfied by the attributes of an object. For example, an Incident
object in FRIEND can exist in four states: Active, Inactive, Closed, and Archived (see
Figure 2-37). An active Incident denotes a situation that requires a response (e.g., an ongoing
fire, a traffic accident). An inactive Incident denotes a situation that was handled, but for which
reports are yet to be written (e.g., the fire has been put out, but damage estimates have not yet
been completed). A closed Incident denotes a situation that has been handled and documented.
An archived Incident is a closed Incident whose documentation has been moved to off-site
storage. In this example, we can represent these four states with a single attribute in the
Incident class—a status attribute that can take any of four values: Active, Inactive, Closed,
and Archived. In general, a state can be computed from the values of several attributes.

A transition represents a change of state triggered by events, conditions, or time. For
example, Figure 2-37 depicts three transitions: from the Active state into the Inactive
state, from the Inactive state to the Closed state, and from the Closed state to the Archived
state.

A state is depicted by a rounded rectangle. A transition is depicted by an open arrow
connecting two states. States are labeled with their name. A small solid black circle indicates the
initial state. A circle surrounding a small solid black circle indicates a final state.
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incidentHandled incidentDocumented dincidentArchived

Figure 2-37 A UML state machine diagram for the Incident class.

Figure 2-38 displays another example, a state machine for the 2Bwatch (for which we
constructed a sequence diagram in Figure 2-34). At the highest level of abstraction, 2Bwatch has
two states, MeasureTime and SetTime. 2Bwatch changes states when the user presses and
releases both buttons simultaneously. During the transition from the SetTime state to the
MeasureTime state, 2Bwatch beeps. This is indicated by the action /beep on the transition. When
2Bwatch is first powered on, it is in the SetTime state. This is modeled by making SetTime the
initial state. When the battery of the watch runs out, the 2Bwatch is permanently out of order.
This is indicated with a final state. In this example, transitions can be triggered by an event (e.g.,
pressBothButtons) or by the passage of time (e.g., after 2 min.).

pressBothButtons w

MeasureTime SetTime

after 2 min.

batteryEmpty pressBothButtons/beep

batteryEmpty

DeadBattery

Figure 2-38 State machine diagram for 2Bwatch set time function.

Figure 2-39 depicts a refined state machine diagram for the 2Bwatch depicted in
Figure 2-38 using actions to denote the behavior within the states. Actions are fundamental units
of processing that can take a set of inputs, produce a set of outputs, and can change the state of
the system. Actions normally take a short amount of time to execute and are not interruptable.
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For example, an action can be realized by an operation call. Actions can occur in three places in
a state machine:

* when a transition is taken (e.g., beep when the transition between SetTime and
MeasureTime is fired on the pressBothButtons event)

* when a state is entered (e.g., blink hours in the SetTime state in Figure 2-39)

* when a state is exited (e.g., stop blinking in the SetTime state in Figure 2-39).

During a transition, the exit actions of the source state are executed first, then the actions
associated with the transition are executed, then the entry actions of the destination state are
executed. The exit and entry actions are always executed when a state is exited or entered,
respectively. They do not depend on the specific transition that was used to exit or enter the state.

An internal transition is a transition that does not leave the state. Internal transitions are
triggered by events and can have actions associated with them. However, the firing of an internal
transition does not result in the execution of any exit or entry actions. For example, in
Figure 2-39, the SetTime state has two internal transitions, one associated with pressing the left
button and one associated with pressing the right button.

An activity is a coordinated set of actions. A state can be associated an activity that is
executed as long as an object resides in this state. While an action is short and non-interruptable,
an activity can take a substantial amount of time and is interrupted when a transition exiting the

pressBothButtons

/ MeasureTime \ / SetTime

do/count ticks entry/blink hours

pressLeftButton/blink next number
pressRightButton/increment current number
ex1t/stop bTinking

pressBothButtons/beep
batteryEmpty
batteryEmpty

/ DeadBattery \

!

Figure 2-39 Internal transitions associated with the SetTime state (UML state machine diagram).
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state is fired. Activities are associated with state using the do label and are placed inside the state
where they executed. For example, in Figure 2-39, count ticks is an activity associated with
the MeasureTime state

Nested state machines reduce complexity. They can be used instead of internal
transitions. In Figure 2-40, the current number is modeled as a nested state, whereas actions
corresponding to modifying the current number are modeled using internal transitions. Note that
each state could be modeled as a nested state machine. For example, the BlinkHours state
machine would have 24 substates that correspond to the hours in the day; transitions between
these states would correspond to pressing the second button.

SetTime
1B 1B

B1inkHours ﬁinkM‘inth ﬁ'inkSecon(Q
rB/incr hour \rB/incr min./ rB/incr sec.

BTinkDay
rB/incr day
\ 18 1B /

Figure 2-40 Refined state machine associated with the SetTime state (UML state machine diagram). 1B
and rB correspond to pressing the left and right button, respectively.

1B 1B

[ BlinkYear \ [/ BlinkMonth \

rB/incr year rB/incr mo.

Applying state machine diagrams

State machine diagrams are used to represent nontrivial behavior of a subsystem or an
object. Unlike interaction diagrams that focus on the events impacting the behavior of a set of
objects, state machine diagrams make explicit which attribute or set of attributes have an impact
on the behavior of a single object. State machines are used to identify object attributes and to
refine the behavior description of an object, and interaction diagrams are used to identify
participating objects and the services they provide. State machine diagrams can also be used
during system and object design to describe solution domain objects with interesting behavior.
We describe the use of state machine diagrams in detail in Chapter 5, Analysis, and Chapter 6,
System Design: Decomposing the System.

2.4.5 Activity Diagrams

UML activity diagrams represent the sequencing and coordination of lower level behaviors. An
activity diagram denotes how a behavior is realized in terms of one or several sequences of
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activities and the object flows needed for coordinating the activities. Activity diagrams are
hierarchical: an activity is made out of either an action or a graph of subactivities and their
associated object flow. Figure 2-41 is an activity diagram corresponding to the state diagram in
Figure 2-37. Rounded rectangles represent actions and activities. Edges between activities
represent control flow. An activity can be executed only after all predecessor activities
completed.

Handle Document Archive

Incident Incident Incident

Figure 2-41 A UML activity diagram for Incident. During the action Hand1eIncident, the Dispatcher
receives reports and allocates resources. Once the Incident is closed, the Incident moves to the
DocumentIncident activity during which all participating Fie1d0fficers and Dispatchers document the
Incident. Finally, the ArchiveIncident activity represents the archival of the Incident related
information onto slow access medium.

Control nodes coordinate control flows in an activity diagram, providing mechanisms for
representing decisions, concurrency, and synchronization. The main control nodes we use are
decisions, fork nodes, and join nodes.

Decisions are branches in the control flow. They denote alternatives based on a condition
of the state of an object or a set of objects. Decisions are depicted by a diamond with one or
more incoming open arrows and two or more outgoing arrows. The outgoing edges are labeled
with the conditions that select a branch in the control flow. The set of all outgoing edges from a
decision represents the set of all possible outcomes. In Figure 2-42, a decision after the
OpenIncident action selects between three branches: If the incident is of high priority and if it is
a fire, the FireChief is notified. If the incident is of high priority and is not a fire, the
PoliceChief is notified. Finally, if neither condition is satisfied, that is, if the Incident is of low
priority, no superior is notified and the resource allocation proceeds.

Fork nodes and join nodes represent concurrency. Fork nodes denote the splitting of the
flow of control into multiple threads, while join nodes denotes the synchronization of multiple
threads and their merging of the flow of control into a single thread. For example, in
Figure 2-43, the actions AllocateResources, Coordinate-Resources, and DocumentIncident
may all occur in parallel. However, they can only be initiated after the OpenIncident action, and
the ArchiveIncident action may only be initiated after all other activities have been completed.

Activities may be grouped into swimlanes (also called activity partitions) to denote the
object or subsystem that implements the actions. Swimlanes are represented as rectangles
enclosing a group of actions. Transitions may cross swimlanes. In Figure 2-44, the Dispatcher
swimlane groups all the actions that are performed by the Dispatcher object. The
FieldOfficer swimlane denotes that the FieldOfficer object is responsible for the
DocumentIncident action.
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[TowPriority] Allocate

\\\Resources
[fire & highPriority]

Notify
Fire Chief

Open
Incident

[not fire & highPriority]

Notify
Police Chief

Figure 2-42 Example of decision in the OpenIncident process. If the Incident is a fire and is of high
priority, the Dispatcher notifies the FireChief. If it is a high-priority Incident that is not a fire, the
PoliceChief is notified. In all cases, the Dispatcher allocates resources to deal with the Incident.

AlTlocate
Resources

Coordinate Archive

Resources

Open
Incident

Incident

Document

Incident

Figure 2-43 An example of fork and join nodes in a UML activity diagram.

Dispatcher

Allocate
Resources

Coordinate Archive

Resources

Open
Incident

Incident

FieldOfficer
Document

Incident

Figure 2-44 An example of swimlanes in a UML activity diagram.
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Applying activity diagrams

Activity diagrams provide a task-centric view of the behavior of a set of objects. They can
be used: for example, to describe sequencing constraints among use cases, sequential activities
among a group of objects, or the tasks of a project. In this book, we use activity diagrams to
describe the activities of software development in Chapter 14, Project Management, and
Chapter 15, Software Life Cycle.

2.4.6 Diagram Organization

Models of complex systems quickly become complex as developers refine them. The complexity
of models can be dealt with by grouping related elements into packages. A package is a
grouping of model elements, such as use cases or classes, defining scopes of understanding.

For example, Figure 2-45 depicts use cases of the FRIEND system, grouped by actors.
Packages are displayed as rectangles with a tab attached to their upper-left corner. Use cases
dealing with incident management (e.g., creating, resource allocation, documentation) are grouped
in the IncidentManagement package. Use cases dealing with incident archive (e.g., archiving an
incident, generating reports from archived incidents) are grouped in the IncidentArchive
package. Use cases dealing with system administration (e.g., adding users, registering end stations)
are grouped in the SysAdministration package. This enables the client and the developers to
organize use cases into related groups and to focus on only a limited set of use cases at a time.

InC'identManagement\

Aport Emer‘gency\\

/ OpenIncident /Dispatcher

FieldOfficer

AllocateResources

IncidentArchive \ SysAdm'in'istr‘at'ion\

4 ArchiveIncident ManageUsers \>

N I

Librarian g - SysAdmin
SearchArchive ManageTerminals

Figure 2-45 Example of packages: use cases of FRIEND organized by actors (UML use case diagram).
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- %
IncidentManagement |
FieldOfficer Dispatcher

A\ A\

IncidentArchive SysAdministration —(———

Librarian SysAdmin

Figure 2-46 Example of packages. This figure displays the same packages as Figure 2-45 except that the
details of each packages are suppressed (UML use case diagram).

FieldStation \ DispatcherStation \

FieldOfficer |7 Dispatcher |7

| EmergencyReport I I Incident |

Figure 2-47 Example of packages. The Fie1dOfficer and EmergencyReport classes are located in the
FieldStation package, and the Dispatcher and Incident classes are located on the DispatcherStation
package.

Figures 2-46 and 2-47 are examples of class diagrams using packages. Classes from the
ReportEmergency use case are organized according to the site where objects are created.
FieldOfficer and EmergencyReport are part of the FieldStation package, and Dispatcher
and Incident are part of the DispatcherStation. Figure 2-47 displays the packages with the
model elements they contain, and Figure 2-46 displays the same information without the
contents of each package. Figure 2-46 is a higher-level picture of the system and can be used for
discussing system-level issues, whereas Figure 2-47 is a more detailed view that can be used to
discuss the content of specific packages.

Packages are used to deal with complexity in the same way a user organizes files and
subdirectories into directories. However, packages are not necessarily hierarchical: the same
class may appear in more than one package. To reduce inconsistencies, classes (more generally
model elements) are owned by exactly one package, whereas the other packages are said to refer
to the modeling element. Note that packages are organizing constructs, not objects. They have
no associated behavior and cannot send and receive messages.

A note is a comment attached to a diagram. Notes are used by developers for attaching
information to models and model elements. This is an ideal mechanism for recording
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outstanding issues relevant to a model, clarifying a complex point, or recording to-dos or
reminders. Although notes have no semantics per se, they are sometimes used to express
constraints that cannot otherwise be expressed in UML. Figure 2-48 is an example of a note.

FieldStation \ DispatcherStation \
FieldOfficer Dispatcher
The EmergencyReport
class is defined in FieldStation .
EmergencyReport package and used in both stations. Incident

Figure 2-48 An example of a note. Notes can be attached to a specific element in a diagram.

2.4.7 Diagram Extensions

The goal of the UML designers was to provide a set of notations to model a broad class of
software systems. They also recognized that a fixed set of notations could not achieve this goal,
because it is impossible to anticipate the needs encountered in all application and solution
domains. For this reason, UML provides a number of extension mechanisms enabling the
modeler to extend the language. In this section, we describe two such mechanisms, stereotypes
and constraints.

A stereotype is an extension mechanism that allows developers to classify model
elements in UML. A stereotype is represented by string enclosed by guillemets (e.g.,
«boundary») and attached to the model element to which it applies, such as a class or an
association. Formally, attaching a stereotype to a model element is semantically equivalent to
creating a new class in the UML meta-model (i.e., the model that represents the constructs of
UML). This enables modelers to create new kinds of building blocks that are needed in their
domain. For example, during analysis, we classify objects into three types: entity, boundary, and
control. Entity, boundary, and control objects have the same structure (i.e., they have attributes,
operations, and associations), but serve different purposes. The base UML language only
includes one type of object. To represent these three types, we use the stereotypes «entity»,
«boundary», and «control» (Figure 2-49). The «entity», «boundary», and «control»
stereotypes are described in Chapter 5, Analysis. Another example is the relationships among
use cases. As we saw in Section 2.4.1, include relationships in use case diagrams are denoted
with a dashed open arrow and the «include» stereotype.

A constraint is a rule that is attached to a UML model element restricting its semantics.
This allows us to represent phenomena that cannot otherwise be expressed with UML. For
example, in Figure 2-50, an Incident may be associated with one or more EmergencyReports
from the field. However, it is important that the Dispatchers are able to view the reports
chronologically. We represent the chronological ordering of EmergencyReport to Incident with
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«entity» «control» «boundary»
Year ChangeDateControl Button
«entity» «entity» «boundary»

Month Day LCDDisplay

Figure 2-49 Examples of stereotypes (UML class diagram).

reports 1
l..s': '

Incident

EmergencyReport

{ordered by time of receipt}

Figure 2-50 An example of constraint (UML class diagram).

the constraint {ordered by time of receipt}. Constraints can be expressed as an informal
string or by using a formal language such as OCL (Object Constraint Language, [OMG, 2009]).
We describe OCL and the use of constraints in Chapter 9, Object Design: Specifying Interfaces.

2.5 Further Readings

The historic roots of modeling notations can be traced back to structured analysis [De Marco,
1978] and structured design [Yourdon & Constantine, 1975], which is based on functional
decomposition. These methods were based data flow diagrams [De Marco, 1978]. Data flow
diagrams are quite important for software engineers who need to maintain legacy systems
designed with structured analysis techniques.

UML came out of the teachings and efforts of many researchers and practitioners, some of
whom we cited earlier in this chapter. The efforts of Booch, Jacobson, and Rumbaugh enabled a
broadly accepted unified notation. Their earlier works [Booch, 1994], [Jacobson et al., 1992],
[Rumbaugh et al., 1991] give much insight into the roots of object-oriented analysis and design
and still provide valuable knowledge about object-oriented modeling.

Because it was designed to address a broad range of systems and concern, UML is a
complex standard. In this chapter, we focused on the basic elements of UML that you need to
understand before proceeding with the next chapters. For further information on UML, refer to
the following books:

UML Distilled [Fowler, 2003] is a brief introduction to UML and illustrated with many
examples. For readers without any knowledge of UML, this book is a useful overview to get into
the notation quickly.

The Unified Modeling Language User Guide [Booch et al., 2005] is a comprehensive
presentation of UML by its principal designers. It covers much more material than UML
Distilled and is more appropriate for the advanced modeler. As the UML User Guide has fewer
examples, UML Distilled is more appropriate for novices.
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The OMG Unified Modeling Language Superstructure [OMG, 2009] is the official
specification of UML. It is continuously maintained by a revision task force that is responsible
for clarifying ambiguities, correcting errors, and resolving inconsistencies found by the UML
community.

2.6 Exercises

2-1

2-2
2-3

2-4

2-5

2-6

2-7
2-8

29

2-10

Consider an ATM system. Identify at least three different actors that interact with this
system.

Can the system under consideration be represented as an actor? Justify your answer.

What is the difference between a scenario and a use case? When do you use each
construct?

Draw a use case diagram for a ticket distributor for a train system. The system includes
two actors: a traveler who purchases different types of tickets, and a central computer
system that maintains a reference database for the tariff. Use cases should include
BuyOneWayTicket, BuyWeeklyCard, BuyMonthlyCard, and UpdateTariff. Also include
the following exceptional cases: TimeOut (i.e., traveler took too long to insert the right
amount), TransactionAborted (i.e., traveler selected the cancel button without
completing the transaction), DistributorOutOfChange, and DistributorOutOfPaper.

Write the flow of events and specify all fields for the use case UpdateTariff that you
drew in Exercise 2-4. Do not forget to specify any relationships.

Draw a class diagram representing a book defined by the following statement: “A book
is composed of a number of parts, which in turn are composed of a number of chapters.
Chapters are composed of sections.” Focus only on classes and relationships.

Add multiplicity to the class diagram you produced in Exercise 2-6.

Draw an object diagram representing the first part of this book (i.e., Part I, Getting
Started). Make sure that the object diagram you draw is consistent with the class
diagram of Exercise 2-6.

Extend the class diagram of Exercise 2-6 to include the following attributes:

* abook includes a publisher, publication date, and an ISBN
¢ apart includes a title and a number

* achapter includes a title, a number, and an abstract

¢ asection includes a title and a number.

Consider the class diagram of Exercise 2-9. Note that the Part, Chapter, and Section
classes all include title and number attributes. Add an abstract class and an inheritance
relationship to factor out these two attributes into the abstract class.

Draw a class diagram representing the relationship between parents and children. Take
into account that a person can have both a parent and a child. Annotate associations
with roles and multiplicities.
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2-12

2-13

2-14

2-15

2-16

2-17
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Draw a class diagram for bibliographic references. Use the references in Appendix C,
Bibliography, to test your class diagram. Your class diagram should be as detailed as
possible.

Draw a sequence diagram for the warehouseOnFire scenario of Figure 2-21. Include
the objects bob, alice, john, FRIEND, and instances of other classes you may need.
Draw only the first five message sends.

Draw a sequence diagram for the ReportIncident use case of Figure 2-14. Draw only
the first five message sends. Make sure it is consistent with the sequence diagram of
Exercise 2-13.

Consider the process of ordering a pizza over the phone. Draw an activity diagram
representing each step of the process, from the moment you pick up the phone to the
point where you start eating the pizza. Do not represent any exceptions. Include
activities that others need to perform.

Add exception handling to the activity diagram you developed in Exercise 2-15.
Consider at least three exceptions (e.g., delivery person wrote down wrong address,
delivery person brings wrong pizza, store out of anchovies).

Consider the software development activities which we described in Section 1.4 in
Chapter 1, Introduction to Software Engineering. Draw an activity diagram depicting
these activities, assuming they are executed strictly sequentially. Draw a second activity
diagram depicting the same activities occurring incrementally (i.e., one part of the
system is analyzed, designed, implemented, and tested completely before the next part
of the system is developed). Draw a third activity diagram depicting the same activities
occurring concurrently.
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3

Project Organization
and Communication

Two electrical boxes for a rocket, manufactured by different
contractors, were connected by a pair of wires. Thanks to a
thorough preflight check, it was discovered that the wires had
been reversed. After the rocket crashed, the inquiry board
revealed that the contractors had indeed corrected the reversed
wires as instructed.

In fact, both of them had.

Software engineering is a collaborative activity. The development of software brings together
participants from different backgrounds, such as domain experts, analysts, designers,
programmers, managers, technical writers, graphic designers, and users. No single participant
can understand or control all aspects of the system under development, and thus, all participants
depend on others to accomplish their work. Moreover, any change in the system or the
application domain requires participants to update their understanding of the system. These
dependencies make it critical to share information in an accurate and timely manner.

Communication can take many forms depending on the type of activity it is supporting.
Participants communicate their status during regular meetings and record it into meeting
minutes. Participants communicate project status to the client during client reviews. The
communication of requirements and design alternatives is supported by models and their
corresponding documents. Crises and misunderstandings are handled through spontaneous
information exchanges such as telephone calls, messages, hallway conversations, and ad hoc
meetings. As software engineering projects become large, the time each participant must spend
in communication increases, thus decreasing the time spent on technical activities. To address
these issues, the organization of projects into teams and the sharing of information through
formal and informal channels is essential.

We first describe the basic concepts associated with project organization, such as task,
work product, and deliverable. We then describe the communication mechanisms available to
participants. Finally, we describe the activities associated with project organization and
communication. This chapter is written from the perspective of a project participant (e.g., a
developer) who needs to understand the project organization and communication infrastructure.
The creation of the project organization and communication infrastructure is the task of the
project manager and is the topic of Chapter 14, Project Management.

77
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3.1 Introduction: A Rocket Example

When realizing a system, developers focus on constructing a system that behaves according to
specifications. When interacting with other project participants, developers focus on
communicating information accurately and efficiently. Even if communication may not appear
to be a creative or challenging activity, it contributes as much to the success of the project as a
good design or efficient implementation, as illustrated by the following example [Lions, 1996].

Ariane 501

June 4, 1996, 30 seconds into lift-off, Ariane 501, the first prototype of the Ariane 5 series, exploded.
The main navigational computer experienced an arithmetic overflow, shut down, and handed control
over to its twin backup, as it was designed to do. The backup computer, having experienced the same
exception a few hundredths of a second earlier, had already shut down. The rocket, without a navigation
system, took a fatal sharp turn to correct a deviation that had not occurred.

An independent board of inquiry took less than 2 months to document how a software error resulted in
the massive failure. The navigational system of the Ariane 5 design was one of the few components of
Ariane 4 that was reused. It had been flight tested and had not failed for Ariane 4.

The navigation system is responsible for calculating course corrections from a specified trajectory based
on input from the inertial reference system. An inertial reference system allows a moving vehicle (e.g.,
a rocket) to compute its position solely based on sensor data from accelerometers and gyroscopes, that
is, without reference to the outside world. The inertial system must first be initialized with the starting
coordinates and align its axis with the initial orientation of the rocket. The alignment calculations are
done by the navigation system before launch and need to be continuously updated to take into account
the rotation of the Earth. Alignment calculations are complex and take approximately 45 minutes to
complete. Once the rocket is launched, the alignment data are transferred to the flight navigational
system. By design, the alignment calculations continue for another 50 seconds after the transfer of data
to the navigation system. The decision enables the countdown to be stopped after the transfer of
alignment data takes place but before the engines are ignited without having to restart the alignment
calculations (that is, without having to restart a 45-minute calculation cycle). In the event the launch
succeeds, the alignment module just generates unused data for another 40 seconds after lift-off.

The computer system of Ariane 5 differed from Ariane 4. The electronics were doubled: two inertial
reference systems to compute the position of the rocket, two computers to compare the planned
trajectory with the actual trajectory, and two sets of control electronics to steer the rocket. If any
component would fail, the backup system would take over.

The alignment system, designed for onground calculations only, used 16-bit words to store horizontal
velocity (more than enough for displacements due to the wind and to the rotation of the earth). Thirty
seconds into flight, the horizontal velocity of Ariane 5 caused an overflow, raised an exception that was
handled by shutting down the onboard computer and handing control to the backup system.

Discussion. The alignment software had not been adequately tested. Although it had been subjected to
thousands of tests, none included an actual trajectory. The navigation system was tested individually.
Tests were specified by the system team and executed by the builders of the navigation system. The
system team did not realize that the alignment module could cause the main processor to shut down,
especially not in flight. The component team and the system team had failed to communicate.
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In this chapter, we discuss organizational and communication issues within a software
project. This topic is not specific to software engineering. Communication is, however,
pervasive throughout a software development project. Communication failure is costly and can
have a high, and sometimes fatal, impact on the project and the quality of the delivered system.

3.2 An Overview of Projects

The techniques and notations we presented in Chapter 2, Modeling with UML, enable project
participants to build models of the system and communicate about them. However, system
models are not the only information needed when communicating in a project. For example,
developers need to know

e Who is responsible for which part of the system?

¢  Which part of the system is due by when?

¢ Who should be contacted when a problem with a specific version of a component is
discovered?

¢ How should a problem be documented?

e What are the quality criteria for evaluating the system?

¢ In which form should new requirements be communicated to developers?

¢  Who should be informed of new requirements?

e Who is responsible for talking to the client?

Although these questions can be relatively easy answered when all participants share a
coffee break in the afternoon, the development of large software systems usually does not
succeed with such an ad hoc approach. From a developer’s perspective, a project consists of four
components (Figure 3-1):

* Work product. This is any item produced by the project, such as a piece of code, a
model, or a document. Work products produced for the client are called deliverables.

* Schedule. This specifies when work on the project should be accomplished.

e Participant. This is any person participating in a project. Sometimes we also call the
participant project member.

Project

I Q? ?Q |

Work Product Schedule Task Participant

Figure 3-1 Model of a project (UML class diagram).
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e Task. This is the work to be performed by a project participant to create a work
product.

Projects can be defined formally or informally. A signed contract between you and a client
requiring the delivery of a software system in three months for one million dollars defines a
project; an informal promise you make to your friend to install a new software release on her
computer by next week defines a project as well.

Projects come in different types and sizes. Sometimes the characterization of the project
type is by the nature of the deliverable. If the outcome is a software system, the project is usually
called a software project; building a space shuttle system is called a system project. Projects also
come in quite different sizes. Installing a new a space shuttle system, with costs of more than
$10 billion and a duration of 10 to 15 years, is a large project, where as changing the furniture of
your room is a small project.

From a dynamic point of view, a project can be in any of several phases shown in
Figure 3-2. During the project definition phase, the project manager, a possible client, and a
key project member, the software architect, are involved. The two areas of focus during this
phase are an initial understanding of the software architecture, in particular the subsystem
decomposition, and the project, in particular the schedule, the work to be performed, and the
resources required to do it. This is documented in three documents: the problem statement, the
initial software architecture document, and the initial software project management plan. During
the project start phase, the project manager sets up the project infrastructure, hires participants,
organizes them in teams, defines major milestones, and kicks off the project.

During the project definition and project start phases, most decisions are made by the
project manager. During the project steady state phase, the participants develop the system.
They report to their team leader, who is responsible for tracking the status of the developers and
identifying problems. The team leaders report the status of their team to the project manager,
who then evaluates the status of the complete project. Team leaders respond to deviations from

w Scope Defined
N

/ Definition \f Start \

Qo/Def'i ne Scopy Qo/Assign Tasks

Tasks
Assigned

/ Termination \

do/Deliver System

Steady State
do/Develop System

System Done

Figure 3-2 States in a software project (UML state machine diagram).
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the plan by reallocating tasks to developers or obtaining additional resources from the project
manager. The project manager is responsible for the interaction with the client, obtaining formal
agreement and renegotiating resources and deadlines.

During the project termination phase, the project outcome is delivered to the client and
the project history is collected. Most of the developers’ involvement with the project ends before
this phase. A handful of key developers, the technical writers, and the team leaders are involved
with wrapping up the system for installation and acceptance and collecting the project history
for future use.

Communication within a project occurs through planned and unplanned events. Planned
communication includes:

¢ problem inspection, during which developers gather information from the problem
statement, the client, and the user about their needs and the application domain

¢ status meetings, during which teams review their progress

e peer reviews, during which team members identify defects and find solutions in
preliminary work products

¢ client and project reviews, during which the client or project members review the
quality of a work product, in particular deliverables

¢ releases, during which project participants make available to the client and end users
versions of the system and its documentation.

Unplanned communication includes:

* requests for clarification, during which participants request specific information from
others about the system, the application domain, or the project

* requests for change, during which participants describe problems encountered in the
system or new features that the system should support

* issue resolution, during which a conflict between different stakeholders is identified,
solutions explored and negotiated, and a resolution agreed upon.

Planned communication helps disseminate information that targeted participants are
expected to use. Unplanned communication helps deal with crises and with unexpected
information needs. All three communication needs must be addressed for project participants to
communicate accurately and efficiently.

When a developer joins a project during the start phase, a problem statement already
exists; project management has already written an initial plan to attack the problem, set up a
project organization, defined planned communication events, and provided an infrastructure for
planned and unplanned communication. Most of the developer’s effort when joining a project is
to understand these documents and join the existing organizational and communication
structures. This is addressed by the following activities:
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Attend the kick-off meeting. During this activity, the project participants hear from the
client about the problem to be solved and the scope of the system to be developed. This
helps them to get a high-level understanding of the problem, which serves as a basis for
all other activities.

Join a team. The project manager has decomposed the project into work for individual
teams. Participants are assigned to a team based on their skills and interests.

Attend training sessions. Participants who do not have skills for required tasks receive
additional training.

Join communication infrastructure. Participants join the project communication
infrastructure that supports both planned and unplanned communication events. The
infrastructure includes a collection of mechanisms such as groupware, address books,
phone books, E-mail services, and video conferencing equipment.

Extend communication infrastructure. Additional bulletin boards and team portals are
established specifically for the project.

Attend first team status meeting. During this activity, project participants are taught to
conduct status meetings, record status information, and disseminate it to other members
of the project.

Understand the review schedule. The review schedule contains a set of high-level
milestones to communicate project results in the form of reviews to the project manager
and to the client. The objective of project reviews is to inform the project participants of
the other teams’ status and to identify open issues. The objective of client reviews is to
inform the client about the status of the project and to obtain feedback.

In the following sections, we examine these concepts and activities in detail. In

Section 3.3, we describe a team-based project organization. In Section 3.4, we discuss the
concepts related to project communication. In Section 3.5, we detail the project start activities of
a typical team member. In Section 3.6, we provide references to further reading on this topic.

In this chapter, we focus on the perspective of a developer joining a software project, so

we do not describe the activities needed to create and manage a project organization and
communication infrastructure. We cover these topics in later chapters. Chapter 12, Rationale

Management, discusses topics related to identifying, negotiating, resolving, and recording

issues. Chapter 13, Configuration Management, discusses topics related to managing versions,

configurations, and releases of documents and system components. In Chapter 14, Project

Management, we revisit project organization and communication issues from the perspective of

the project manager.
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3.3 Project Organization Concepts

In this section, we define the following concepts:

* Project Organizations (Section

* Roles (Section 3.3.2)

33.1)

¢ Tasks and Work Products (Section 3.3.3)

¢ Schedule (Section 3.3.4).

3.3.1 Project Organizations
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An important part of any project organization is to define the relationships among participants
and between them and tasks, schedule, and work products. In a team-based organization
(Figure 3-3), the participants are grouped into teams, where a team is a small set of participants
working on the same activity or task. We distinguish teams from other sets of people, in
particular groups and committees. A group, for example, is a set of people who are assigned a
common task, but they work individually without any need for communication to accomplish
their part of the task. A committee is comprised of people who come together to review and

critique issues and propose actions.

Figure 3-4 shows an instance diagram of an organization for a simple software project
consisting of a management team and three developer teams.

Organization Ko———

Team <>—

Participant

Figure 3-3 A team-based organization consists of organizational units called teams, which consist of
participants or other teams (UML class diagram).

Simple Project
:0rganization

Management UserInter
:Team :Team

face Database

:Team

Control
:Team

Figure 3-4 Example of a simple project organization (UML instance diagram). Reporting, deciding, and

communicating are all made via the aggregation association of the organization.
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Project participants interact with each other. The three major types of interaction in a
project are:

* Reporting. This type of interaction is used for reporting status information. For
example, a developer reports to another developer that an API (Application
Programmer Interface) is ready, or a team leader reports to a project manager that an
assigned task has not yet been completed.

¢ Decision. This type of interaction is used for propagating decisions. For example, a
team leader decides that a developer has to publish an API, a project manager decides
that a planned delivery must be moved up in time. Another type of decision is the
resolution of an issue.

¢ Communication. This type of interaction is used for exchanging all the other types of
information needed for decision or status. Communication can take many flavors.
Examples are the exchange of requirements or design models or the creation of an
argument to support a proposal. An invitation to eat lunch is also a communication.

We call the organization hierarchical if both status and decision information are
unidirectional; that is, decisions are always made at the root of the organization and passed via
the interaction association to the leaves of the organization. Status in hierarchical organizations
is generated at the leaves of the organization and reported to the root via the interaction
association. The structure of the status and decision information flow is often called the
reporting structure of the organization. Figure 3-5 illustrates the reporting structure in a
hierarchical team-based organization.

In hierarchical organizations, such as a military, the reporting structure also accomplishes
the exchange of communication needs. In complex software projects, however, using the
existing reporting structure for communication causes many problems. For example, many
technical decisions need to be made locally by the developers, but depend on information from
developers in other teams. If this information is exchanged via the established reporting

Management

. . :Team . .
communicateDecision() communicateDecision()
- —
communicateStatus() communicateStatus()
— -
UserInterface Control
:Team Database :Team
:Team

Figure 3-5 Example of reporting structure in a hierarchical organization (UML communication diagram).
Status information is reported to the project manager, and corrective decisions are communicated back to
the teams by the team leaders. The team leaders and the project manager are called the management team.
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structure, the decision-making process can be slowed significantly. Even worse, it often leads to
garbling of the information, given its complexity and volume.

The solution to this problem is to exchange information via an additional communication
structure that allows participants to communicate directly with each other and in ways different
from the reporting structure. Often the communication is delegated to a developer, called a
liaison, who is responsible for shuttling information back and forth.

Figure 3-6 depicts an example of an organization with liaisons and additional
communication lines that deviate from the reporting structure. The documentation team, for
example, has a liaison to the user interface team to facilitate information about recent changes
made to the appearance of the system. Teams that do not work directly on a subsystem, but
rather work on a task that crosses the subsystem team organization, are called cross-functional
teams. Examples of cross-functional teams include the documentation team, the architecture
team, and the testing team.

We call this communication structure, and often also the organization itself, liaison based.
Liaisons use non-hierarchical communication lines to talk with the liaisons in cross-functional
teams. In liaison-based communication structures, the responsibility of team leaders is extended
by a new task: not only do they have to make sure that the project manager is aware of the status
of the team, but also that team members have all the information they need from other teams.
This requires the selection of effective communicators as liaisons to ensure that necessary

UserInterface
:Team
Alice communicates Management
team leader :Developer :Team
John communicates Architecture
API engineer :Developer :Team
Mary communicates Documentation
documentation liaison :Developer :Team
Chris communicates Testing
implementor :Developer :Team
Sam
implementor :Developer

Figure 3-6 Examples of a liaison-based communication structure (UML object diagram). The team is
composed of five developers. Alice is the team leader, also called the liaison to the management team. John
is the API engineer, also called the liaison to the architecture team. Mary is the liaison to the documentation
team. Chris and Sam are implementors and interact with other teams only informally.
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communication paths exist. If we allow developers to communicate directly with each other as
well, we call the communication structure (and the organization) peer based.

3.3.2 Roles

A role defines the set of technical and managerial tasks that are expected from a participant or
team. In a team-based organization, we assign tasks to a person or a team via a role. For
example, the role of tester of a subsystem team consists of the tasks to define the test suites for
the subsystem under development, for executing these tests, and for reporting discovered defects
back to the developers.

In a software project we distinguish between the following four types of roles:
management roles, development roles, cross-functional roles, and consultant roles (Figure 3-7).

Management roles (e.g., project manager, team leader) are concerned with the
organization and execution of the project within constraints. We describe this type of role in
more detail in Chapter 14, Project Management.

Development roles are concerned with specifying, designing, and constructing
subsystems. These roles include the analyst, the system architect, the object designer, the
implementor, and the tester. Table 3-1 describes examples of development roles in a subsystem
team. We describe development roles in more detail in Chapters 5—-11.

—| Developer

API Engineer

Document Editor

—| Liaison

Manager

Configuration |

Tester

Role |<]—

Project Manager |

Team Leader |

Application
Domain Specialist

Domain Specialist

|<]_
—| Manager |<]—
|<‘_

—| Consultant

Client

End User

NN NN

Solution |

Figure 3-7 Types of roles found in a software engineering project (UML class diagram).
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Table 3-1 Examples of roles.

Role

Responsibilities

System architect

The system architect ensures consistency in design decisions and interface
styles. The system architect ensures the consistency of the design in the
configuration management and testing teams, in particular in the formulation
of the configuration management policy as well as the system integration
strategy. This is mainly an integration role consuming information from each
subsystem team.

Object designer

The object designer is responsible for the interface definition of the assigned
subsystem. The interface has to reflect the functionality already assigned to
the subsystem and to accommodate the needs of the dependent subsystems.
When functionality is traded off with other subsystems, resulting in
subsystem changes, the object designer is responsible for propagating
changes back to the subsystem team.

Implementor

The implementor is responsible for the coding of a class or a number of
classes associated with the subsystem.

Tester

A tester is responsible for evaluating that each subsystem works as specified
by the object designer. Often, development projects have a separate team
responsible only for testing. Separating the roles of implementor and tester
leads to more effective testing.

Cross-functional roles are concerned with coordination among teams. Developers filling
these roles are responsible for exchanging information relevant to other teams and negotiating

interface details. The cro

ss-functional role is also called liaison. The liaison is responsible for

disseminating information along the communication structure from one team to another. In some

cases (such as the API engineer), a liaison functions as a representative of a subsystem team and
may be called to resolve inter-team issues. There are four types of liaisons:

e The API engine

er is responsible for the interface definition of the assigned subsystem.

The interface has to reflect the functionality already assigned to the subsystem and to

accommodate th

e needs of the dependent subsystems. When functionality is traded off

with other subsystems, resulting in subsystem changes, the API engineer is responsible
for propagating changes back to the subsystem team.

¢ The document editor is responsible for integrating documents produced by a team. A

document editor
subsystem team.

can be seen as a service provider to other teams that depend on a given
A document editor also manages information released internally to the

team, such as the meeting agendas and minutes.

e The configuration manager is responsible for managing different versions of

documents, mo

dels, and code produced by a team. For simple configuration
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management policies (e.g., single hardware platform, single branch), this role may be
assumed by the team leader.

e A tester is responsible for ensuring that each subsystem works as specified by the
designer. Often, development projects have a separate team responsible only for testing.
Separating the roles of designer, implementor, and tester leads to more effective testing.

Consultant roles are concerned with providing temporary support in areas where the
project participants lack expertise. The users and the client act in most projects as consultants on
the application domain. Technical consultants may bring expertise on new technologies or
methods. Non-technical consultants can help to address legal and marketing issues. We
distinguish the following types of consultant roles.

¢ The client, also called customer, is responsible for the formulation of scenarios and the
requirements. This includes functional and nonfunctional requirements, as well as
constraints. The client is expected to be able to interact with the other developers.

¢ The end user is the person who will be using the delivered system. Sometimes the
project does not have access to an end user, or the end user is still unknown. In this
case, the end user is represented by the client or even developer of the system.

¢ The application domain specialist is responsible for providing domain knowledge
about a specific functional area of the system. Whereas the client has a global view of
the required functionality, the application domain specialist has detailed knowledge of
a specific problem area.

¢ The solution domain specialist is responsible for providing knowledge about solutions
to implement the system. This can include the development method, the process,
implementation technology, or the development environment.

3.3.3 Tasks and Work Products

A task is a well-defined work assignment for a role. Groups of related tasks are called activities.
The project manager or team leader assigns a task to a role. The participant who is assigned the
role carries out the task, and the manager monitors its progress and completion. A work
product is a tangible item that results from a task. Examples of work products include an object
model, a class diagram, a piece of source code, a document, or parts of documents. Work
products result from tasks, are subject to deadlines, and feed into other tasks. For example, the
test planning activity for the database subsystem results in a work product including a number of
test suites and their expected results. The test suite is then fed to the testing activity of the given
subsystem (Figure 3-8 and Table 3-2).
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Database Subsystem
Work Products

persistent objects:Class Model

\

design objects:Class Model

/ source:Source Code

inspection defects:Document

test plan:Document

testing defects:Document

Figure 3-8 Work products for the database subsystem team (UML object diagram). Associations
represent dependencies among work products.

Table 3-2  Description of the internal work products depicted in Figure 3-8.

Work product Type Description

Persistent Class model This class model describes completely the objects that are

Objects stored by the storage subsystem. For each class, this includes
all the attributes, associations, roles, and multiplicities.

Design objects Class model This class model describes all the objects needed by the storage
subsystem that are not described in the persistent object class
model.

Subsystem Source code This is the source code delivered to the testing team.

Test plan Document This document outlines the test strategy, test criteria, and test
cases that are used to find defects in the storage subsystem.

Testing defects Document This document lists all the defects that have already been found
in the storage subsystem through testing.

Inspection Document This document lists all the defects that have already been found

defects in the storage subsystem through peer review, as well as their

planned repairs.
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Any work product to be delivered to the client is called a deliverable. The software
system and the accompanying documentation usually constitute a set of deliverables. Work
products that are not visible to the client are called internal work products.

The specification of work to be accomplished in completing a task or activity is described
in a work package. A work package includes the task name, the task description, resources
needed to perform the task, dependencies on inputs (work products produced by other tasks) and
outputs (work products produced by the task in question), as well as dependencies on other
tasks. Figure 3-9 depicts the relationships among work packages, activities, tasks, roles, and
work products. Table 3-3 provides examples of work packages.

describes i
Work Package results in Work Product

Unit Of Work

1V | |
Activity Task

* .
\— Role

assigned to

Figure 3-9 Associations among tasks, activities, roles, work products, and work packages (UML class
diagram).

Work products are important management artifacts, because we can assess their delivery and
the start of the tasks depending on other work products. The late delivery of a testing suite for a
subsystem, for example, delays the start of its testing. Note, however, that focusing only on timely
delivery is not sufficient: rushing the delivery of test suites meets the project schedule, but can also
mean that critical faults are not discovered in time.

3.3.4 Schedule

A schedule is the mapping of tasks onto time: each task is assigned start and end times. This
allows us to plan the deadlines for individual deliverables. The two most often used
diagrammatic notations for schedules are PERT and Gantt charts [Gantt, 1910]. A Gantt chart
is a compact way to present the schedule of a software project along the time axis. A Gantt chart
is a bar graph on which the horizontal axis represents time and the vertical axis lists the different
tasks to be done. Tasks are represented as bars whose length corresponds to the planned duration
of the task. A schedule for the database subsystem example is represented as a Gantt chart in
Figure 3-10.
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Table 3-3  Examples of tasks for the realization of the database subsystem.
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Assign I

Task name roslzlg ed Task description Input Output
Database System Elicits requirements from Team Database
subsystem architect subsystem teams about liaisons subsystem API,
requirements their storage needs, persistent object
elicitation . . . .
e including persistent analysis model

objects, their attributes, (UML class

and relationships diagram)
Database Object Designs the database Subsystem Database
M designer subsystem, including the API subsystem
design possible selection of a design (UML

commercial product diagram)
Database Implementor | Implements the database Subsystem Source code
subsystem subsystem design
implementation
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Figure 3-10 An example of schedule for the database subsystem (Gantt chart).
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A PERT chart represents a schedule as an acyclic graph of tasks. Figure 3-11 is a PERT
chart for the database subsystem schedule. The planned start and duration of the tasks are used
to compute the critical path, which represents the shortest possible path through the graph. The
length of the critical path corresponds to the shortest possible schedule, assuming sufficient
resources to accomplish, in parallel, tasks that are independent. Moreover, tasks on the critical
path are the most important, as a delay in any of these tasks will result in a delay in the overall
project. The tasks and bars represented in thicker lines belong to the critical path.

Storage subsystem

test plan

5 10d
Storage subsystem Storage subsystem Nov 27 Dec 10
system analysis ,= object design
1 5d 2 5d
Nov 13 Nov 19 Nov 20 Nov 26 Storage subsystem

implementation
3 15d
Nov 27 Dec 17

Figure 3-11 Schedule for the database subsystem (PERT chart). Thick lines denote the critical path.

3.4 Project Communication Concepts

So far we have talked about the organization of a project. We now turn to communication in a
project. We cover two types of communication that typically occur: planned communication
(Section 3.4.1) and unplanned communication (Section 3.4.2). We then survey tools to support
project communication (Section 3.4.3). Figure 3-12 shows the interplay between project
organization and communication.

3.4.1 Planned Communication

Planned communication events are scheduled points in time during which participants
exchange information on a specific topic or review a work product. Such events are formalized
and structured to maximize the amount of information communicated and to minimize the time
participants spend on communication. Typical planned communication events include

* Problem presentation
¢ (Client reviews

* Project reviews

¢ Peer reviews

e Status reviews

* Brainstorming

¢ Releases

¢ Postmortem reviews.
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Figure 3-12 Relationships among organizational and communication concepts (UML class diagram).

We describe these communication events in more detail next.

Problem presentation

The focus of problem presentation is the presentation of the Problem Statement that
describes the problem, the application domain, and the desired functionality of the system. It
also contains nonfunctional requirements such as platform specification or speed constraints.
Figure 3-13 depicts excerpts from an actual problem statement.

The problem statement does not include a complete specification of the system. It is
merely a preliminary requirements activity that establishes common ground between the client
and the project team. We discuss requirements activities in Chapter 4, Requirements Elicitation,

and Chapter 5, Analysis.
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OWL PROBLEM STATEMENT

1. Problem domain

A current trend in the building industry is to provide distributed services and control for the individual
occupant as a strategy to correct the overreliance on large centralized systems that characterize office
buildings built in the last 30 years. At the Intelligent Workplace, workers will have more control over
their environmental conditions—adjusting light level and temperature of their workspace, reducing glare,
controlling speed and direction of air flow delivered to workspace. (You can do that in your car—why not
in your office?) An energy-efficient facade will allow fresh air ventilation from operable windows and
incorporate movable shading devices that adjust to minimize glare and maximize natural lighting of the
workspace.

It is desirable to adopt three forms of control in the Intelligent Workplace: responsive, scheduled, and
user driven. Responsive control is when the system reacts to a change in sensor reading by actuating
some components. Scheduled control can be adopted in the presence of predictable data that allows the
components to be directly controlled by a carefully designed schedule. For example, because the position
of the sun is predictable, a schedule for the interior shades of the Intelligent Workplace can be adopted.
Control system should be flexible enough to respond to the needs of the occupants. If they would like to
change the temperature of their local environment, they should be given that opportunity.

In this project, you are asked to build a system called OWL (Object-Oriented Workplace Laboratory) that
attempts to improve the way we deal with buildings.

[...]
2. Scenarios
2.1 Building control

The building occupant uses a Web browser to access his Personal Environment Module (PEM). He
adjusts the temperature and airspeed to cool his workspace. The control information is sent to the PEM
equipment. The control actions are logged in the database and the equipment adjusts the heater and the
ventilation of the workspace. The system checks neighboring PEMs to check if cooling this particular
workspace requires other workspaces heating to be increased.

[...]
2.5 Building maintenance

The system monitors the behavior of the controlled devices to detect faults in the system. Faulty light
bulbs and unusual parameter readings are reported to the facilities manager, who then plans inspections
and repairs. The occurrences of device faults are logged and analyzed for trends, enabling the facilities
manager to anticipate faults in the future.

[..]

Figure 3-13 Excerpts from the problem statement of OWL [OWL, 1996].
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Client review

The goal of client reviews is for the client to assess the progress of the development and
for the developers to confirm or change the requirements of the system. The client review is used
to manage expectations on both sides and to increase the shared understanding among
participants. The focus of the review is on what the system does and what constraints are
relevant to the client (e.g., performance, platform). In most cases, the review should not focus on
the design or implementation of the system unless they affect the client or the user. Exceptions
include contracts that impose constraints on the development process, such as those related to
safety or regulatory requirements.

A client review is conducted as a formal presentation during which the developers focus
on specific functionality with the client. The review is preceded by the release of a work product,
such as a specification document, an interface mock-up, or an evaluation prototype. At the
outcome of the review, the client provides feedback to the developers. This feedback may consist
of a general approval or a request for detailed changes in functionality or schedule. Figure 3-14
depicts an example of an agenda for a client review.

Project review

The goals of a project review are for the project manager to assess status and for teams to
review subsystem interfaces. Project reviews can also encourage the exchange of operational
knowledge across teams, such as common problems encountered with tools or the system. The
focus of the review depends on the deliverable under review. For system design, the
decomposition and high-level subsystem interfaces are reviewed. For object design, the object
interfaces are reviewed. For integration and testing, the tests and their results are reviewed.

A project review is typically conducted as a formal presentation during which each team
presents its subsystem to the management or to teams that depend on the subsystem. The review

OWL Client acceptance test agenda

Date: 12/5

Time: 3—4:30 P.M.

Location: Forest Hall

Goal: review of the system by the client and identification of open issues
Overview

¢ Problem statement

e Design goals

e System architecture

¢ Demo 1: Remote user interface and control

e Demo 2: Site editor

¢ Demo 3: 3D Visualization and speech user interface
¢ Questions and answers

e Review wrap up

Figure 3-14 An example of an agenda for a client review.
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is usually preceded by the release of a document (e.g., system design document) describing the
aspects of the system under review (e.g., the subsystems interfaces). At the close of the review,
the developers may negotiate changes in the interfaces and changes in schedule.

Peer review

The objective of code inspections and walkthroughs is to increase the quality of a
subsystem through peer review (as opposed to management or client review). During walkthrough,
a developer presents to the other members of her team line-by-line the code she has written. The
other team members challenge any suspicious code and attempt to discover as many errors as
possible. The role of the developer is to facilitate the presentation and answer the team’s questions.
During inspections, the members of the team focus on the compliance of the code with a
predefined list of criteria. (For example, does the code implement the specified algorithm? Does
the code correctly use dependent subsystem interfaces?) During inspections, the team leads the
discussion, and the developer answers questions. The focus of the inspection or walkthrough is on
the code, not on the programmer or the design.

Communication among participants is code based. The actual code is used as a common
frame of reference. Inspections are similar to project reviews in their objective to increase
quality and disseminate operational information. They differ from reviews in their formality,
their limited audience, and their extended duration. Inspections and walkthroughs are widely
used and have been effective at detecting defects early [Fagan, 1976]. We describe walkthroughs
more fully in Chapter 11, Testing.

Status review

Unlike client and project reviews that focus on the system, status reviews focus on tasks.
Status reviews are primarily conducted in a team (e.g., weekly) and occasionally conducted in a
project (e.g., monthly). The objective of status reviews is to detect deviations from the task plan
and to correct them. Status reviews also encourage developers to complete pending tasks. The
review of task status encourages the discussion of open issues and unanticipated problems, and,
thus, encourages informal communication among team members. Often, solutions to common
issues can be shared and operational knowledge disseminated more effectively when discussed
within the scope of a team (as opposed to within the scope of the project).

Status reviews represent an investment in person power. Increasing the effectiveness of
reviews has a global impact on the team performance. Status meetings should have an agenda,
available prior to the meeting, that describes the tasks and issues to be reviewed. This enables
meeting participants to prepare for the meeting and redirect the agenda if an urgent issue arises.
Minutes for each meeting should be taken by a designated participant in order to capture as
much information (mainly status and decisions) as possible. Minutes are made available to the
participants for review as early as possible after the meeting. This encourages the minute taker to
complete the minutes and for team members who missed the meeting to catch up with team
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status. Meeting minutes are subsequently referenced when related tasks are discussed or when
clarification is needed. Moreover, meeting minutes represent a portion of the project history that
can be analyzed after the project is completed.

Brainstorming

The goal of the brainstorming process is to generate a large number of solutions to a
problem, regardless of their merit, then evaluate them. Brainstorming is usually done in face-to-
face meetings, but can also be done via E-mail or groupware. The fundamental idea behind
brainstorming is that ideas, however invalid, proposed by any participant can trigger other ideas
and proposals from other participants. In particularly difficult problems, the solution often
comes from an idea that initially sounded very wrong. Brainstorming encourages thinking
“outside the box.” When many ideas have been generated, begin evaluating them. Brainstorming
also has two beneficial side effects: evaluating proposals within the group will lead to more
explicit evaluation criteria, and the brainstorming process itself has the effect of building
consensus for the chosen solution.

Release

The goal of a release is to make a work product available to other project participants,
often replacing an older version of the artifact. A release can be as simple as a two-line
electronic message (see Figure 3-15), or it can consist of several pieces of information: the new
version of the artifact, a list of changes made since the last release of the artifact, a list of
problems or issues yet to be addressed, and an author.

Releases are used to make a large amount of information available in a controlled manner
by batching, documenting, and reviewing many changes together. Project and client reviews are
typically preceded by a release of one or more deliverables.

From: Al

Newsgroups: cs413.f96.architecture.discuss
Subject: SDD

Date: Thu, 25 Nov 03:39:12 -0500

Lines: 6

Message-ID: <3299B30.3507@andrew.cmu.edu>
MimeVersion: 1.0

Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit

An updated version of the API document for the Notification Subsystem can be found
here: http: //decaf/~al/FRIEND/notifapi.html

--A1
Notification Group Leader

Figure 3-15 An example of a release announcement.
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We describe the management of versions of documents, models, and subsystems in
Chapter 13, Configuration Management.

Postmortem review

Postmortem reviews focus on extracting lessons from the development team once the
software is delivered. Postmortem reviews need to be conducted shortly after the end of the
project so that minimal information is lost or distorted by subsequent experience. The end of the
project is usually a good point in time to assess which techniques, methods, and tools have
worked and have been critical to the success (or failure) of the system.

A postmortem can be conducted as a brainstorming session, a structured questionnaire
followed by interviews, or individual reports written by teams (or participants). In all cases, the
areas covered should include the tools, methods, organization, and procedures used by the
project. Figure 3-16 is an example of questions that can be used during a postmortem.

Even if the results of post mortems are not disseminated through the company via formal
channels (e.g., technical reports), they can still be disseminated indirectly to the project
participants. Project participants are frequently reassigned to different projects or functions and
often disseminate the lessons learned from the old project to other parts of the company. Hence,
postmortem reviews are ideal for crystallizing the lessons learned from a recently completed (or
canceled) project.

Question about problems that What kinds of communication and negotiation problems have
occurred emerged in the development of the system?

Question eliciting possible Speculate on what kind of information structure is needed for team-
solutions to those problems based design in conjunction with a model-based object-oriented

software engineering methodology.

Do you feel the forums provided (Discuss, Issues, Documents,
Announce, etc.) solved this challenge? Identify issues with the
information structure and propose solutions.

Question eliciting other aspects What observations and comments do you have about the project
of the project that were either concerning:
perceived as positive or could be *  your expectations at the beginning of the project and how they
improved evolved

e the goals of this project

e the use of use cases

e the life cycle used in the project

¢ the project management (meetings, communication, etc.)

¢ the documentation process

Open-ended catch-all question In addition to the above questions, please feel free to discuss any
other issues and proposed solutions that you feel are relevant.

Figure 3-16 An example of questions for a postmortem review.
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3.4.2 Unplanned Communication

In an ideal project, all communication takes place during planned communication events. In
practice, however, it is difficult to anticipate all information needs and plan all communications.
Consider the following example:

Sunday, March 29, 1998. Participants of the JAMES project are frantically preparing for the delivery of
the system to their client. The client acceptance test is scheduled two days later, at 15:00 CED (Central
European Daylight saving time). Daylight saving time has just come into effect, removing an hour of
development. The client acceptance test is to be conducted as a high-bandwidth, three-way video
conference among the client site in Stuttgart, the German developer site in Munich, and the American
developer site in Pittsburgh, PA. The American team will participate in the conference starting at 9 A.M.
EDT (Eastern Daylight Time). The agenda has been agreed. Each team has been allocated 12 minutes to
present the functionality of its subsystem.

Later that evening. The American developer visiting the German team realizes that Germany has
switched to daylight saving time one week before the United States. Consequently, the time difference
between Munich and Pittsburgh is 7 hours, not 6 hours, as originally thought. Hence, the video
conference will actually take place at 8 A.M. EST (Eastern Standard Time). Less than 48 hours before
the client acceptance test, the American team realized they were going to miss the deadline by one hour.
It takes another day until all members of the American team are notified.

In the above example, basic information about when Germany and the United States
switched to daylight saving time was not properly shared among the developer sites; a visiting
member accidently stumbled upon this information. Retrospectively, this may appear as a gross
oversight. However, in the heat of the preparation activities, JAMES project participants focused
mostly on their own tasks, in the context of their own site, and did not step back and anticipate
inter-site issues. Generally, issues resulting from a combination of seemingly isolated facts from
different areas of the project are difficult to anticipate since no participants have a global
overview of all the facts. Consequently, a project should be prepared to deal with unexpected
situations, often under pressure. We call the communication resulting from such crises
unplanned communication events. They include

* Requests for clarification
* Requests for changes
e Issue resolution.

We describe unplanned communication events in more detail next.

Regquest for clarification

Requests for clarification represent the bulk of the communication among developers,
clients, and users. Requests for clarification are unplanned. A participant may request
clarification about any aspect of the system that seems ambiguous. Requests for clarification
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may occur during informal meetings, phone calls, E-mail, or any other communication
mechanism available to the project. Situations in which most information needs are handled
through requests for clarifications are symptoms of a defective communication infrastructure.
Such projects often face serious failures downstream resulting from misunderstandings and
missing and misplaced information. Figure 3-17 depicts an example of request for clarification.

From: Alice

Newsgroups: cs4l3.architecture.discuss
Subject: SDD

Date: Thu, 10 Oct 23:12:48 -0400
Message-ID: <325DBB30.4380@andrew.cmu.edu>
MimeVersion: 1.0

Content-Type: text/plain; charset=us-ascii

When exactly would you 1ike the System Design Document? There is some confusion over
the actual deadline: the schedule claims it to be October 22, while the template
says we have until November 7.
Thanks,

Alice

Figure 3-17 An example of a request for clarification.

Regquest for change

During a request for change, a participant reports a problem and, in some cases, proposes
solutions. The participant reports a problem with the system itself, its documentation, the
development process, or the project organization. Requests for change are often formalized
when the number of participants and the system size is substantial. Change requests contain a
classification (e.g., severe defect, feature request, comment), a description of the problem, a
description of the context in which it occurs, and any supporting material. Change request forms
have been popularized by defects-tracking software. They can be applied to other aspects of the
project (e.g., task plan, development process, testing procedures). Figure 3-18 depicts an
example of change request form.

Issue resolution

Once problems have been reported and solutions proposed and evaluated, a single solution
must be selected, communicated, and implemented. A flat organization may select a solution
through the brainstorming process. A hierarchical organization or a crisis situation may require a
single individual to select and impose a solution. In all cases, the decision needs to be
documented and communicated to the relevant participants. Documentation of the resolution
allows participants to refer back to the decision later in the project, in case of a
misunderstanding. Effective communication of the decision enables participants to remain
synchronized.
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Header information for
identifying the change

Context information for locating
the problem

Description of the problem and
the rationale for change

Description of desired change

Report number: 1291

Date: 5/3

Author: Dave

Synopsis: The FRIEND client crashes when empty forms
are submitted.

Subsystem: User interface

Version: 3.4.1

Classification:

e missing/incorrect functionality
« convention violation

e bug
e documentation error
Severity:

¢ severe
« moderate
e« annoying
Description:
Rationale:

Proposed solution:

Figure 3-18 An example of a change request form.

An issue base can serve as a communication mechanism for supporting problem tracking
and issue resolution. The issue base displayed in Figure 3-19 displays a list of messages
exchanged as a result of issue resolutions. The message captions preceded by I: denote issues;

cture Discuss ..

By Thread

-
By Category

By Date

By Unread

By Author, L
28.06.99 TrackSections? (Alice Parker)

28.06.99 (Open) I: Can a dispatcher modify another dispatchers’

CTC Architecture Discuss By Thread

n) I: Can a dispatcher see other dispatchers'

P: TrackSection has access list. (Dave Smith 28.06)

. ¥P: TrackSection has subscription operations. (Alice Parker
28.06)

pro: Extensibility. (Alice Parker 28.06)
pro: Centralize all protected operations. (Dave Smith 28.06)

. ¥P: NotificationService is not part of access (Ed Jones 28.06)
pro: Dispatchers can see all TrackSections (Ed Jones 28.06)

pro: Simplicity (Ed Jones 28.06)

TrackSections? (Alice Parker)

Figure 3-19 An example of an issue base (Domino Lotus Notes database).
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those preceded by P: (for proposal) are suggested solutions; A+ and A- denote arguments for
and against a solution. Finally, once issues are resolved, a single message, called a resolution, is
posted to document the decision that was made on the issue. We describe issue bases and issue
modeling in Chapter 12, Rationale Management.

3.4.3 Communication Mechanisms

A communication mechanism refers to a tool or procedure that can be used to transmit and
receive information and support a communication event. Smoke signals and fax machines are
communication mechanisms. Communication mechanisms are synchronous if they require both
sender and receivers to be available at the same time. Otherwise, communication mechanisms
are called asynchronous. Smoke signals are synchronous, whereas fax machines are
asynchronous.

Both synchronous and asynchronous communication mechanisms can be used to support
planned communication. For example, in Figure 3-20, either smoke signals or a fax machine can
be used for a client review. On the other hand, only asynchronous communication mechanisms can
be used for supporting unplanned communication: reporting a problem with smoke signals may
lead to loss of information if nobody was scheduled to watch the smoke. Note that a single
communication activity can be supported by several communication mechanisms: the
requirements analysis document can be faxed to the client, and the client sends back her comments
using smoke signals. Similarly, the same mechanism can support many communication events: the
fax machine can receive either problem reports or comments from a client review.

Table 3-4 depicts the synchronous communication mechanisms we describe in this section
and the communication events they support. Table 3-5 depicts the asynchronous communication
mechanisms.

Client Review is supported by Smoke Signals
:Planned Communication :Synchronous Mechanism

is supperted by

Problem Reporting Fax: Asynchronous
:UnpTanned Communication is supported by Mechanism

Figure 3-20 Examples of mechanisms (UML class diagram). Both planned and unplanned
communication can be supported by asynchronous mechanisms. Unplanned communication, however, can
only be supported by asynchronous mechanisms.
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Table 3-4 Examples of synchronous mechanisms of communication.

Mechanism

Supported communication events

Hallway conversations

Request for clarification
Request for change

Questionnaires and structured interviews

Problem definition
Postmortem review

Meetings (face-to-face, telephone, video)

Problem definition
Client review
Project review
Peer review

Status review
Postmortem review
Brainstorming
Issue resolution

Synchronous groupware

Client review
Project review
Peer review
Brainstorming
Issue resolution

Table 3-5 Examples of asynchronous mechanisms of communication.

Mechanism

Supported communication events

Electronic mail

Change request
Brainstorming

Newsgroups

Change request
Brainstorming

World Wide Web

Release

Asynchronous peer reviews
Change request
Brainstorming

Lotus Notes

Release

Asynchronous peer reviews
Change request
Brainstorming
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Hallway conversations

Hallway conversations are unplanned, informal exchanges of information based on
opportunity. Two participants meet by accident and take advantage of the situation to exchange
information. The daylight saving time problem we described before was discovered during such
a hallway conversation. Below is another example:

Two project participants, Sally and Bob, meet at the coffee machine. Sally, member of the user interface
team, remembers that Bob is a member of the notification team, which is responsible for the
communication between the client subsystems and the server. All morning Sally has been experiencing
random failures when receiving packets from the server. She is not sure if the problem comes from the
server, the communication subsystem, or her code. Bob answers that he was not aware that the server
was being used at this time and that he had been testing a new revision of the communication system,
explaining the behavior that Sally had observed. Bob had bypassed configuration management policy to
save time.

Hallway conversations represent a substantial part in the overall project communication.
They are cheap and effective for resolving simple problems that are caused by a lack of
coordination between project members. In addition, they are also effective in supporting the
exchange of operational knowledge, such as frequently asked questions about tools, procedures,
or the location of project information. The drawbacks of hallway conversations include their
small audience and lack of history: important information can be lost, and misunderstandings
may occur when the content of the conversation is relayed to other participants. Moreover, no
document, database, or electronic message can be accessed when referring to a decision that was
made and communicated during a hallway conversation. Thus important hallway decisions
should be followed up by an E-mail covering the topic of the conversation for the record.

Questionnaires and structured interviews

The objective of a questionnaire is to elicit information from one or more persons in a
structured manner. Questionnaires are typically used for eliciting domain knowledge from users
and experts, understanding user requirements and priorities. They can also be used for extracting
lessons learned during a postmortem review. Questionnaires can include both multiple-choice
questions and open-ended questions. Questionnaires have the advantage of eliciting reliable
information at minimal cost to the user. Questionnaires can be answered by users independently,
then reviewed and analyzed by the analyst or developer. Clarifications of ambiguous or
incomplete answers are then obtained during a structured interview. The drawback of
questionnaires is that they are difficult to design. However, the consequences of requirements
errors and misunderstandings between the client and the developer often justify their cost.
Subsequently, sufficient information is gathered about the domain and a requirements analysis
document is written, so that most revisions to the systems and additional issues are addressed in
client reviews. [Barone & Switzer, 1995] provides more information about designing
questionnaires and interviews.
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Meetings

Face-to-face meetings enable a number of participants to share, review, and negotiate
issues and solutions. To date, meetings are the only mechanism that allow effective resolution of
issues and the building of consensus. The drawback of meetings is their cost in resources and the
difficulty in managing them. In order to increase the information transfer and the number of
decisions made during a meeting, roles are assigned to selected participants:

* The facilitator is responsible for organizing the meeting and guiding its execution. The
facilitator writes an agenda describing the objective and the scope of the meeting. The
agenda is generally released before the meeting for preview by its participants. This
allows participants to decide whether the meeting is relevant to them and to allow
preparation of support material for the meeting.

¢ The minute taker is responsible for recording the meeting. The minute taker may take
notes on paper or on a laptop computer, organize them after the meeting, and release
them shortly after the meeting for review by the meeting participants. This enables the
participants to reiterate their commitment to the outcome of the meeting. The written
record of the meeting also makes it easier for participants to share information with
members who were not present at the meeting.

¢ The timekeeper is responsible for keeping track of time and notifying the facilitator if
a discussion consumes more time than is allocated by the agenda.

A meeting agenda consists of at least three sections: a header identifying the planned
meeting location, time, and participants; a list of items participants will report on; and a list of
issues to be discussed and resolved in the meeting. Each information-sharing and discussion
item is also assigned a time that allows the timekeeper to ensure that the meeting ends on time.
Figure 3-21 depicts a meeting agenda. Figure 3-22 depicts a poor one.

A set of meeting minutes consists of three sections that correspond to the sections of the
agenda. In addition, meeting minutes include a section describing the action items resulting from
the meeting; these are items describing actions to be taken by the meeting participants as a
consequence of the meeting. The header section contains the actual meeting location, time, and
participants. The information-sharing item section contains the information that was shared
during the meeting. The decision-item section contains a record of the decisions made and not
made. Figure 3-23 is an example of meeting minutes.

Although meetings conducted in a single location are most efficient, it is possible to
conduct meetings when participants are distributed geographically by using teleconferencing or
video conferencing. This reduces costs at the expense of a lower bandwidth and lower reliability.
A well-structured agenda available prior to the meeting becomes crucial as floor control
becomes difficult with lower audio and visual quality. Also, knowledge of the individual voices
and particularities improves communication among participants.



106 Chapter 3 ¢ Project Organization and Communication

Header information identifying ~ When and Where Role

the meeting and audience Date: 1/30 Primary Facilitator: Peter
Start: 4:30 p.M. Timekeeper: Dave
End: 5:30 p.M. Minute Taker: Ed

Room: WH, 3420

Desired outcome of the meeting 1. Objective
Resolve any requirements issues that prevent us from starting

prototyping.

Action items to be reported on 2. Status [Allocated Time: 15 minutes]
Dave: State of command parsing code

Issues scheduled to be discussed 3. Discussion items [Allocated Time: 35 minutes]

(and resolved) during the 3.1 How to deal with arbitrarily formatted input data sets?
meeting 3.2 How to deal with output data?
3.3 Command parsing code (modifiability, backward
compatibility)

The wrap-up period is the same 4. Wrap up [Allocated Time: 5 minutes]
for all meetings 4.1 Review and assign new action items
4.2 Meeting critique

Figure 3-21 An example of a meeting agenda.

Open-ended meetings take more  'When and Where  Role

time than necessary. Date: 1/30 Primary Facilitator: Peter
Start: 4:30 p.M. Timekeeper: Dave
End: open Minute Taker: Ed
Room: WH 3420
This objective is difficult to 1. Objective
achieve and cannot be verified. =~ Resolve open issues
Lack of context: what were 2. Status [Allocated Time: 15 minutes]
Dave’s action items? Dave: Dave’s action items
Lack of content: what are the 3. Discussion items [Allocated Time: 35 minutes]
current issues in each of these 3.1 Requirements issues
activities? 3.2 Design issues

3.3 Implementation issues

4. Wrap up [Allocated Time: 5 minutes]
4.1 Review and assign new action items
4.2 Meeting critique

Figure 3-22 An example of poor meeting agenda.



Project Communication Concepts 107

Header information
identifying the meeting
and audience

Verbatim from agenda

Summary of the
information that was
exchanged

Record of issue
discussion and resolution

Additions and
modifications to the task
plan

When and Where Role

Date: 1/30 Primary Facilitator: Peter
Start: 4:30 p.M. Timekeeper: Dave
End: 6:00 p.M. Minute Taker: Ed

Room: WH 3420 Attending: Ed, Dave, Mary, Peter, Alice
1. Objective

2. Status

3. Discussion

3.1 Command parsing code is a 1200-1300 line if statement. This makes it
fairly hard to add new commands or to modify existing commands without
breaking backward compatibility with existing clients.

Proposals: 1) Restructure the command parsing code by assigning one
object per kind of command. 2) Pass all command arguments by name. The
latter would make it easier to maintain backward compatibility. On the other
hand, this would increase the size of the commands, thus increasing the size
of the command file.

Resolution: Restructure code for now. Revisit this issue if backward
compatibility is really an issue (the calling code might be rewritten anyway).
See AI[1].

Discussion of the other issues omitted for brevity

4. Wrap up

Al[1] For: Dave.
Revisit command parsing code. Emphasis on modularity. Coordinate with
Bill from the database group (who might assume backward compatibility).

Other action items and meeting critique omitted for brevity

Figure 3-23 An example of meeting minutes.

When writing a meeting agenda, the facilitator should be as concrete as possible without
adding to the length of the agenda. It is often tempting to develop a generic template agenda and
reuse it systematically without modifications. This has the drawback of taking the substance out
of the meeting process, turning it into a bureaucratic procedure. Figure 3-22 is an example of
contentless agenda. By only modifying the header, this agenda could apply to most subsystem
meetings, and thus, does not convey any new information to the participants.
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Groupware

Same time, different place groupware are tools that allow distributed users to
collaborate synchronously. For a long time, these tools were only available in the realm of
research [Grudin, 1988], [Borghoff & Schlichter, 2000], but they become more common in the
commercial world with the popularization of Internet chatrooms. Tools such as Netmeeting
[Microsoft] enable a group of participants to collaborate synchronously over a shared
workspace. They provide a meeting metaphor: users “enter” a chat room, which then allows
them to view a graphic or a text under consideration. All users see the same state. Usually only
one can modify it at any one time. Floor control can be anarchic (whoever takes the floor has it)
or sequential (whoever has the floor relinquishes it to the next user).

A weakness of same-time groupware is the difficulty in coordinating users. Typing takes
more time than users are prepared to invest. Written words need to be chosen more carefully,
given that nonverbal information is lost. Moreover, slight glitches in the network connection
may represent enough interference for user coordination to be lost. While video-based Internet
conferencing tools such as Lotus Sametime [Lotus] and increases in network bandwidth promise
to alleviate these problems, synchronous groupware tools have not quite reached a level of
maturity sufficient for everyday use in the workplace.

In all cases, different-place collaboration is still a nontrivial exercise that must be scripted
and planned in advance. Collaborative development of procedures for supporting collaboration
is a challenging task when proximity and nonverbal communication are not available.

Different time, different place groupware, or simply, asynchronous groupware, has
had more success during the past two decades. In its simplest form, newsgroups enable users to
discuss issues publicly by contributing messages to discussion threads. The World Wide Web
enables the quick access to large repositories of documents acquired from various sources.

Currently, in any software engineering project including more than a couple of people,
participants use a combination of forums, repositories, calendars, and address books ranging
from free tools for small projects to commercial tools supporting large organizations. A free tool
such as Yahoo Groups [Yahoo] allows a team to set up a place quickly to share photos and files,
plan events, send newsletters, and discuss topics. BSCW (Basic Support for Cooperative Work)
[BSCW] also enables collaboration over the Web and supports document upload, event
notification, and team management. Wiki [Wiki] is another simple but powerful Web-based
collaboration platform. An interesting feature in Wiki is that all the pages are open for anyone to
edit. The system creates cross-reference hyperlinks between web pages automatically.
Commercial tools such as Microsoft’s Sharepoint Team Services [Microsoft] provide groupware
support for Microsoft Office users. Workflow engines such as Lotus Notes [Lotus] provide
replication mechanisms, repository features, and an address book making public organizational
structures. Repetitive procedures can be automated. Formalized activities, such as the
asynchronous review of a document by different stakeholders, can be effectively supported by
sending notices to each participant as the document advances through the review pipeline.
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3.5 Organizational Activities

We now examine the activities of a developer when joining a project organization and its
communication infrastructure. The activities include

¢ Joining a Team (Section 3.5.1)

¢ Joining the Communication Infrastructure (Section 3.5.2)
¢ Attending Team Status Meetings (Section 3.5.3)

¢ Organizing Client and Project Reviews (Section 3.5.4).

We describe these activities for an example project, focusing on the development of a new
system with multiple teams.

3.5.1 Joining a Team

During the project definition phase, the project manager identified a subsystem team for each
subsystem in the initial decomposition of the software architecture. Additionally, cross-
functional teams (e.g., architecture team, integration team) are formed to support the subsystem
teams. Each team has a team leader who was also already selected during the project definition
phase. An important activity during the project start phase is now the assignments of participants
to teams.

Based on the interests and skills of the team members, the project manager and team
leaders assign them to a team. Each subsystem team also has to nominate a liaison to the cross-
functional teams to facilitate information transfer among teams. Table 3-6 depicts an example of
role assignment to participants for the database team of the OWL project. The project manager and
team leader also determine the training needs for the participants and teams.

3.5.2 Joining the Communication Infrastructure

Two sets of forums are created to support project and team communication, respectively.
Members subscribe to all project forums and to their team’s forums. Project forums include

* Announce. Major events (e.g., review agendas, releases) are announced by management
by posting to this forum. Only management can post announcements to this forum;
project members can post replies and read all documents.

* Discuss. Project-level requests for clarification and requests for change are posted in
this forum. Discussion about the requests (e.g., arguments and alternate solutions) are
posted as replies to the original messages. All project members can post to this forum
and read its documents.

* Issues. Open issues and their current state are posted in this forum. All project members
can post to this forum and read its documents.
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Table 3-6  Role assignment, skills, and training needs for the database team of OWL.

Participant  Roles Skills Training needs
Alice Team leader Management: team leader UML
Programming: C Communication skills

Configuration management

John Architecture liaison Programming: C++ Java
Implementor Modeling: UML

Mary Configuration manager  Programming: C++, Java Object-oriented databases
Implementor Modeling: Entity relationship UML modeling

Databases: relational
Configuration management

Chris Implementor Programming: C++, Java UML modeling
Modeling: Entity relationship
Databases: object-oriented

Sam Facilities management Programming: C++ Inspections
liaison Testing: whitebox, blackbox Java
Tester

* Documents. The latest versions of the project deliverables (e.g., Requirements Analysis
Document, System Design Document) and other internal project documents (e.g.,
Software Project Management Plan) are posted in this forum. Only the documentation
team can post documents to this forum. All project members can post replies (i.e.,
annotations to the documents) and read the documents.

e Equipment list. This forum contains descriptions of equipment and its status (e.g.,
availability, current borrower). Only the equipment manager can post to this forum.

The team forums are similar to the project forums, except that they support team
communication. Team forums include team discussion, team issues, and team documents. Each
project member may read any other team’s forum. Team members can post only to their own
team’s forum. Note that the forums can be created as soon as the subsystem decomposition is
relatively stable. Once forums and group accesses are set up, accounts for individual members
can be created as the project is staffed.

3.5.3 Attending Team Status Meetings

An important part of a software project is the weekly team meeting. It allows all teams to
participate in status reviews, brainstorming, and issue resolution. The weekly team meeting is
organized and captured as described in Section 3.4.1. Particularly important is the first time the
team meets. Few members will know each other socially or professionally. Moreover, few of
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them are familiar with formal meeting roles and procedures. Management takes the opportunity
of the first weekly team meeting to introduce meeting procedures, explain the importance of
these procedures, and motivate team members in their use. Figure 3-24 displays the agenda
posted by the management for the first meeting.

The goal of the first meeting is to train participants by example. Discussion about the
procedures is encouraged. The meeting and group roles are explained to the participants and
assigned by the team for the rest of the project. The role of facilitator is emphasized in that its
purpose is to increase the efficiency of the meeting, not to impose decisions. Team members are
taught that any meeting participant can take the role of secondary facilitator; that is, any
participant can intervene in the discussion in order to put the meeting back within the scope of
the agenda. Participants are taught keyword phrases for standard situations. For example, “Let
me play the role of secondary facilitator” stands for The scope of the current discussion is
outside the agenda. Let us get back on track. “Can we pop up a level?” stands for The discussion
has delved into a level of detail that is unnecessary for this audience. Actually, most of us are
already lost. More generally, team members are taught that it is easy to waste time during a
meeting, and that the primary goal of any meeting is to communicate efficiently and accurately
so that they can go back to their respective tasks.

Management rotates roles on a regular basis so that all participants have the opportunity to
fill every role. This has the advantage of creating redundant skills in the project team and
increases information sharing. The drawback is that, in the short term, participants will not have
time to mature into their roles and thus will not become highly effective at any given task.
Requiring early role assignment, role rotation, and fixed meeting procedures may introduce
turbulence at the beginning of the project, but represents a healthy investment in the long term.
Everyday meeting and communication skills should be well in place before crisis-driven
communication needs surface during the implementation and code activities.

The teams are responsible for assigning meeting roles and posting them in their respective
team’s Announce forum. One day before the status meeting, the meeting facilitator is required to
post in the team’s Announce forum the initial draft of the agenda, composed of action items
taken from the previous meeting’s minutes and issues taken from the Issues forum. The minute
taker is required to post the minutes within a day of the meeting, as a reply to the corresponding
agenda. Other team members may comment on the agenda and minutes by posting replies. The
facilitator or the minute taker may then amend the corresponding document.

Meeting roles and procedures are often perceived as overhead. Management is aware of
that perception and invests time in the beginning of the project to illustrate the benefits of the
meeting procedures. In the first weeks of the project, management systematically reviews the
agendas and minutes of the first few weekly meetings, suggests time-saving improvements to the
facilitators (e.g., keeping an active document containing open issues and active action items
from which the agenda can be cut and pasted), and to the minute takers (e.g., focusing on
capturing the action items and unresolved issues first, then focusing on the discussion).
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When and Where Role

Date: 1/9 Primary Facilitator: Alice
Start: 4:30 p.M. Timekeeper: Dave

End: 5:30 .M. Minute Taker: Ed
Building: Wean Hall

Room: 3420

1. Objective
Become familiar with project management roles for a medium-scale project with a two-level hierarchy.
In particular:
* Understand the difference between a role and a person
¢ Group roles are assigned to people
¢ Meeting times are finalized
» First set of action items for next meeting

2.Status and information sharing [Allocated time: 40 minutes]
2.1. How to organize a meeting
Meeting ground rules:
¢ Active listening
¢ Active participating
¢ Punctual attendance
* No one-on-one or side meetings
* Respect the agenda
¢ Keep time
* Willingness to reach consensus
¢ Freedom to check process and ground rules
Meeting roles:
* Primary Facilitator
* Timekeeper
¢ Minute taker
e Scribe
2.2 Following the agenda

Omitted for brevity

3. Discussion items [Allocated time: 15 minutes]
3.1 Team address book
3.2 Meeting roles assignments
3.3 Group roles assignment

4. Wrap up [Allocated time: 5 minutes]
4.1 Review and assign new action items
4.2 Meeting critique

Figure 3-24 First weekly team meeting agenda.
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3.5.4 Organizing Client and Project Reviews
Client reviews are conducted after the release of the requirements analysis document and after
the delivery of the system. Project reviews are conducted to review the system design
documents, the detailed object design, and the test. A project review may also be conducted
before delivery as a dry run for the client acceptance test.

Project management schedules all reviews during the planning phase (Table 3-7).

Table 3-7  An example of a review schedule.

Review Date Deliverable

(release due 1 week before review)
Client review week 7 Requirements Analysis Document
System design review week 9 System Design Document
Object design review week 13 Object Design Document

(2 sessions)

Internal review week 16 Unit and integration tests
Client acceptance test dry run ~ week 17 All project deliverables
Client acceptance test week 17 All project deliverables

Management also introduces procedures for organizing reviews:

1. The deliverables being reviewed are released one week ! prior to the review.

2. Shortly after the release, management publishes a draft agenda listing presentation
topics for each team. The initial draft of the agenda is posted in the Announce forum.

3. Candidate presenters reply to the original agendas and refine the presentation topic.
Management modifies the agenda based on the replies.

4. Presenters submit their slides by replying to the agenda and including the slides in the
reply. The management collates the slides before the presentation and updates the
agenda.

The management also assigns the responsibility of minute taker, using the same
procedure, to a project member, who will be briefed on how to take minutes by management.
During the review, the minute taker uses a laptop and carefully records all the questions and

1. This leaves slack time for late documents. Realistically, some deliverables are delivered as late as one day before the
review. The critical issues here are: (1) Can the deliverable be made available to all review participants? and (2) Do
they have enough time to review them?
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answers from the audience. Finally, within a day of the review, the minute taker and
management merge their notes and generate a list of action items to be completed as a result of
the review and a list of open issues that could not be resolved during the review. These post-
processed minutes are posted on the Announce forum.

The emphasis on using the communication infrastructure for coordinating the organization
of the review and the submission of slides enables more information to be captured, and thus,
more information is accessible to all participants in the long run.

3.6 Further Readings

Researchers and practitioners have long noted the importance of communication in software
engineering. As projects grow larger and more complex, however, communication becomes
increasingly more critical.

[Curtis et al., 1988] is a landmark paper identifying and classifying communication
problems in software development. In a field study of 17 large government projects, researchers
observe that documentation does not reduce the need for communication, in particular; during
the early phases of the project, when stakeholders define terms, coordinate their representational
conventions, and create informal communication networks. The study also shows that obstacles
to informal communication (e.g., organizational barriers and geographical distance) can lead to
misunderstandings in design conventions and rationale.

[Kraut & Streeter, 1995], another landmark paper in the field, observe that communication
(e.g., meeting, formal specifications, peer reviews) is useful for routine coordination, whereas
informal communication (e.g., hallway conversations, telephone calls, brainstorming) is needed
in the face of uncertainty and unanticipated problems, which are typical of software
development. In their study, they observe that the need for informal communication increases
dramatically as the size and complexity of the software increases.

As face-to-face (or video conference) meetings are still the principal means of
communication among project participants—for communicating status, identifying conflicts,
and resolving issues—meeting skills are required of all software engineers in order to conduct
meetings efficiently and to avoid information loss. However, meeting procedures and meeting
skills are usually not included in standard software engineering curricula. How to make meetings
work [Doyle & Straus, 1982] and Mining Group Gold [Kayser, 1990] (from which we derived
the agenda and minutes templates for this chapter) describe many useful procedures and
heuristics for conducting efficient meetings.

Getting To Yes [Fischer et al., 1991] explains the mechanisms of negotiation and proposes
approaches to avoid deadlocks while addressing the conflicts that prompted the negotiation.
Interviewing: Art and Skill [Barone & Switzer, 1995] provides guidance on how to design a
questionnaire and conduct an interview.

Computer-Supported Collaborative Work [Borghotf & Schlichter, 2000] provides a good
introduction to the discipline and to groupware in general. Moreover, it can serve as a guide for
users and software engineers interested in addressing communication issues with groupware.
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3.7 Exercises

3-1 What is the difference between a role and a participant?

3-2 Can arole be shared between two or more participants? Why or why not?
3-3  What is the difference between a client and an end user?

3-4  To which roles would you assign the following tasks?

* Change a subsystem interface to accommodate a new requirement.
¢ Communicate the subsystem interface change to other teams.

* Change the documentation as a result of the interface change.

* Design a test suite to find defects introduced by the change.

* Ensure that the change is completed on schedule.

3-5  You are responsible for coordinating the development of a system for processing credit
applications for a bank. In what roles would the following project participants be able
to contribute most to the project?

¢ abank employee responsible for processing credit applications

¢ the manager of the information technology group at the bank, who contracted the
system

* afreelancer who developed similar systems in the past

¢ atechnical writer

e you.

3-6 Draw a UML activity diagram representing the meeting process described in
Section 3.4.1. Focus in particular on the work products generated before and after the
meeting, such as the agenda and the meeting minutes. Use swimlanes to represent
roles.

3-7 What is the difference between a work package and a work product? When is a work
package defined? When is a work product defined? Consider an assignment where two
students collaborate to plan and develop a system for sorting lists of names using two
different sort algorithms. The deliverables for the assignment are the source code, the
system documentation, and a manual for other developers explaining how new sorting
algorithms can be integrated into the code. Give examples of work packages and work
products in this project.

3-8 What is the difference between a cross-functional team and a subsystem team? Provide
examples and justify your choices.

3-9 As many critical communication events are planned (e.g., client reviews, project
reviews, peer reviews), why is there still a need for unplanned communication events
(e.g., request for clarification, request for change, issue resolution)?

3-10 Select at random a working day in your work week. Log all activities that qualify as
communication activities (e.g., taking to friends over coffee, obtaining information
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3-12

3-13

3-14
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from a fellow student, providing information, negotiating, advertising, browsing the
web). Which fraction of your working day does communication represent?

You are a member of the user interface team. You are responsible for designing and
implementing forms that collect information about users of the system (e.g., first name,
last name, address, E-mail address, level of expertise). The information you are
collecting is stored in the database and used by the reporting subsystem. You are not
sure which fields are required information and which are optional. How do you find
out?

You have been reassigned from the user interface team to the database team due to staff
shortages and replanning. The implementation phase is well underway. In which role
would you be most proficient, given your knowledge of the user interface design and
implementation?

Assume the development platform is Unix and the documentation team writes on the
Macintosh platform. The client requires the documents to be available on the Windows
platform. Developers produce the design documentation using Adobe FrameMaker.
The documentation team uses Microsoft Word for the user-level documentation. The
client submits corrections on hardcopies and does not need to modify the delivered
documents. How could the information flow between the developers, the technical
writers, and the client be set up (e.g., format, tools, etc.) such that duplication of files is
minimized, while everybody’s tool preferences and platform requirements are still
satisfied?

Which changes in the organization and communication infrastructure would you
recommend for a successor of the Ariane 5 project as a consequence of the Ariane 501
failure described at the beginning of this chapter?
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Requirements
Elicitation

A common mistake that people make when trying to design
something completely foolproof is to underestimate the
ingenuity of complete fools.

—Douglas Adams, in Mostly Harmless

A requirement is a feature that the system must have or a constraint that it must satisfy to be
accepted by the client. Requirements engineering aims at defining the requirements of the
system under construction. Requirements engineering includes two main activities;
requirements elicitation, which results in the specification of the system that the client
understands, and analysis, which results in an analysis model that the developers can
unambiguously interpret. Requirements elicitation is the more challenging of the two because it
requires the collaboration of several groups of participants with different backgrounds. On the
one hand, the client and the users are experts in their domain and have a general idea of what the
system should do, but they often have little experience in software development. On the other
hand, the developers have experience in building systems, but often have little knowledge of the
everyday environment of the users.

Scenarios and use cases provide tools for bridging this gap. A scenario describes an
example of system use in terms of a series of interactions between the user and the system. A use
case is an abstraction that describes a class of scenarios. Both scenarios and use cases are written
in natural language, a form that is understandable to the user.

In this chapter, we focus on scenario-based requirements elicitation. Developers elicit
requirements by observing and interviewing users. Developers first represent the user’s current
work processes as as-is scenarios, then develop visionary scenarios describing the functionality
to be provided by the future system. The client and users validate the system description by
reviewing the scenarios and by testing small prototypes provided by the developers. As the
definition of the system matures and stabilizes, developers and the client agree on a
requirements specification in the form of functional requirements, nonfunctional requirements,
use cases, and scenarios.

121
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4.1 Introduction: Usability Examples

Feet or miles??

During a laser experiment, a laser beam was directed at a mirror on the Space Shuttle Discovery. The
test called for the laser beam to be reflected back toward a mountain top. The user entered the elevation
of the mountain as “10,023,” assuming the units of the input were in feet. The computer interpreted the
number in miles and the laser beam was reflected away from Earth, toward a hypothetical mountain
10,023 miles high.

Decimal point versus thousand separator

In the United States, decimal points are represented by a period (“.”) and thousand separators are
represented by a comma (“,”). In Germany, the decimal point is represented by a comma and the
thousand separator by a period. Assume a user in Germany, aware of both conventions, is viewing an

online catalog with prices listed in dollars. Which convention should be used to avoid confusion?

Standard patterns

In the Emacs text editor, the command <Control-x><Control-c> exits the program. If any files need
to be saved, the editor will ask the user, “Save file myDocument.txt? (y or n)”. If the user answers y, the
editor saves the file prior to exiting. Many users rely on this pattern and systematically type the
sequence <Control-x><Control-c> followed by a “y” when exiting an editor. Other editors, however,
ask when exiting the question: “Are you sure you want to exit? (y or n)”. When users switch from
Emacs to such an editor, they will fail to save their work until they manage to break this pattern.

a.  Examples from [Nielsen, 1993] and [Neumann, 1995].

Requirements elicitation is about communication among developers, clients, and users to
define a new system. Failure to communicate and understand each others’ domains results in a
system that is difficult to use or that simply fails to support the user’s work. Errors introduced
during requirements elicitation are expensive to correct, as they are usually discovered late in the
process, often as late as delivery. Such errors include missing functionality that the system
should have supported, functionality that was incorrectly specified, user interfaces that are
misleading or unusable, and obsolete functionality. Requirements elicitation methods aim at
improving communication among developers, clients, and users. Developers construct a model
of the application domain by observing users in their environment. Developers select a
representation that is understandable by the clients and users (e.g., scenarios and use cases).
Developers validate the application domain model by constructing simple prototypes of the user
interface and collecting feedback from potential users. An example of a simple prototype is the
layout of a user interface with menu items and buttons. The potential user can manipulate the
menu items and buttons to get a feeling for the usage of the system, but there is no actual
response after buttons are clicked, because the required functionality is not implemented.

Section 4.2 provides an overview of requirements elicitation and its relationship to the
other development activities. Section 4.3 defines the concepts used in this chapter. Section 4.4
discusses the activities of requirements elicitation. Section 4.5 discusses the management
activities related to requirements elicitation. Section 4.6 discusses the ARENA case study.
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4.2 An Overview of Requirements Elicitation

Requirements elicitation focuses on describing the purpose of the system. The client, the
developers, and the users identify a problem area and define a system that addresses the
problem. Such a definition is called a requirements specification and serves as a contract
between the client and the developers. The requirements specification is structured and
formalized during analysis (Chapter 5, Analysis) to produce an analysis model (see Figure 4-1).
Both requirements specification and analysis model represent the same information. They differ
only in the language and notation they use; the requirements specification is written in natural
language, whereas the analysis model is usually expressed in a formal or semiformal notation.
The requirements specification supports the communication with the client and users. The
analysis model supports the communication among developers. They are both models of the
system in the sense that they attempt to represent accurately the external aspects of the system.
Given that both models represent the same aspects of the system, requirements elicitation and
analysis occur concurrently and iteratively.

Requirements elicitation and analysis focus only on the user’s view of the system. For
example, the system functionality, the interaction between the user and the system, the errors
that the system can detect and handle, and the environmental conditions in which the system
functions are part of the requirements. The system structure, the implementation technology
selected to build the system, the system design, the development methodology, and other aspects
not directly visible to the user are not part of the requirements.

problem

/ statement

Requirements
elicitation

Requirements \
Specification

nonfunctional
requirements

functional
model

VA

Analysis

=
)

Analysis Model \

y

dynamic model

'X\[ analysis object
model

Figure 4-1 Products of requirements elicitation and analysis (UML activity diagram).
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Requirements elicitation includes the following activities:

Identifying actors. During this activity, developers identify the different types of users
the future system will support.

Identifying scenarios. During this activity, developers observe users and develop a set
of detailed scenarios for typical functionality provided by the future system. Scenarios
are concrete examples of the future system in use. Developers use these scenarios to
communicate with the user and deepen their understanding of the application domain.

Identifying use cases. Once developers and users agree on a set of scenarios, developers
derive from the scenarios a set of use cases that completely represent the future system.
Whereas scenarios are concrete examples illustrating a single case, use cases are
abstractions describing all possible cases. When describing use cases, developers
determine the scope of the system.

Refining use cases. During this activity, developers ensure that the requirements
specification is complete by detailing each use case and describing the behavior of the
system in the presence of errors and exceptional conditions.

Identifying relationships among use cases. During this activity, developers identify
dependencies among use cases. They also consolidate the use case model by factoring
out common functionality. This ensures that the requirements specification is
consistent.

Identifying nonfunctional requirements. During this activity, developers, users, and
clients agree on aspects that are visible to the user, but not directly related to
functionality. These include constraints on the performance of the system, its
documentation, the resources it consumes, its security, and its quality.

During requirements elicitation, developers access many different sources of information,

including client-supplied documents about the application domain, manuals and technical
documentation of legacy systems that the future system will replace, and most important, the
users and clients themselves. Developers interact the most with users and clients during
requirements elicitation. We focus on two methods for eliciting information, making decisions
with users and clients, and managing dependencies among requirements and other artifacts:

1.

Joint Application Design (JAD) focuses on building consensus among developers,
users, and clients by jointly developing the requirements speciﬁcation.l

Traceability focuses on recording, structuring, linking, grouping, and maintaining
dependencies among requirements and between requirements and other work products.

Note that the use of the term “design” in JAD is a misnomer: it has nothing to do with our use of the term in the
subsequent chapters on system and object design.
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4.3 Requirements Elicitation Concepts

In this section, we describe the main requirements elicitation concepts used in this chapter. In
particular, we describe

* Functional Requirements (Section 4.3.1)

¢ Nonfunctional Requirements (Section 4.3.2)

¢ Completeness, Consistency, Clarity, and Correctness (Section 4.3.3)

¢ Realism, Verifiability, and Traceability (Section 4.3.4)

¢ Greenfield Engineering, Reengineering, and Interface Engineering (Section 4.3.5).

We describe the requirements elicitation activities in Section 4.4.

4.3.1  Functional Requirements

Functional requirements describe the interactions between the system and its environment
independent of its implementation. The environment includes the user and any other external
system with which the system interacts. For example, Figure 4-2 is an example of functional
requirements for SatWatch, a watch that resets itself without user intervention:

SatWatch is a wrist watch that displays the time based on its current location. SatWatch uses GPS
satellites (Global Positioning System) to determine its location and internal data structures to convert this
location into a time zone.

The information stored in SatWatch and its accuracy measuring time is such that the watch owner never
needs to reset the time. SatWatch adjusts the time and date displayed as the watch owner crosses time
zones and political boundaries. For this reason, SatWatch has no buttons or controls available to the user.

SatWatch determines its location using GPS satellites and, as such, suffers from the same limitations as
all other GPS devices (e.g., inability to determine location at certain times of the day in mountainous
regions). During blackout periods, SatWatch assumes that it does not cross a time zone or a political
boundary. SatWatch corrects its time zone as soon as a blackout period ends.

SatWatch has a two-line display showing, on the top line, the time (hour, minute, second, time zone) and
on the bottom line, the date (day, date, month, year). The display technology used is such that the watch
owner can see the time and date even under poor light conditions.

When political boundaries change, the watch owner may upgrade the software of the watch using the
WebifyWatch device (provided with the watch) and a personal computer connected to the Internet.

Figure 4-2 Functional requirements for SatWatch.

The above functional requirements focus only on the possible interactions between
SatWatch and its external world (i.e., the watch owner, GPS, and WebifyWatch). The above
description does not focus on any of the implementation details (e.g., processor, language,
display technology).
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4.3.2 Nonfunctional Requirements

Nonfunctional requirements describe aspects of the system that are not directly related to the
functional behavior of the system. Nonfunctional requirements include a broad variety of
requirements that apply to many different aspects of the system, from usability to performance.
The FURPS+ model? used by the Unified Process [Jacobson et al., 1999] provides the following
categories of nonfunctional requirements:

e Usability is the ease with which a user can learn to operate, prepare inputs for, and
interpret outputs of a system or component. Usability requirements include, for
example, conventions adopted by the user interface, the scope of online help, and the
level of user documentation. Often, clients address usability issues by requiring the
developer to follow user interface guidelines on color schemes, logos, and fonts.

* Reliability is the ability of a system or component to perform its required functions
under stated conditions for a specified period of time. Reliability requirements include,
for example, an acceptable mean time to failure and the ability to detect specified faults
or to withstand specified security attacks. More recently, this category is often replaced
by dependability, which is the property of a computer system such that reliance can
justifiably be placed on the service it delivers. Dependability includes reliability,
robustness (the degree to which a system or component can function correctly in the
presence of invalid inputs or stressful environment conditions), and safety (a measure
of the absence of catastrophic consequences to the environment).

¢ Performance requirements are concerned with quantifiable attributes of the system,
such as response time (how quickly the system reacts to a user input), throughput
(how much work the system can accomplish within a specified amount of time),
availability (the degree to which a system or component is operational and accessible
when required for use), and accuracy.

* Supportability requirements are concerned with the ease of changes to the system
after deployment, including for example, adaptability (the ability to change the system
to deal with additional application domain concepts), maintainability (the ability to
change the system to deal with new technology or to fix defects), and
internationalization (the ability to change the system to deal with additional
international conventions, such as languages, units, and number formats). The ISO
9126 standard on software quality [ISO Std. 9126], similar to the FURPS+ model,
replaces this category with two categories: maintainability and portability (the ease
with which a system or component can be transferred from one hardware or software
environment to another).

2. FURPS+ is an acronym using the first letter of the requirements categories: Functionality, Usability, Reliability,
Performance, and Supportability. The + indicates the additional subcategories. The FURPS model was originally
proposed by [Grady, 1992]. The definitions in this section are quoted from [IEEE Std. 610.12-1990].
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The FURPS+ model provides additional categories of requirements typically also included

under the general label of nonfunctional requirements:

¢ Implementation requirements are constraints on the implementation of the system,
including the use of specific tools, programming languages, or hardware platforms.

¢ Interface requirements are constraints imposed by external systems, including legacy
systems and interchange formats.

e Operations requirements are constraints on the administration and management of
the system in the operational setting.

* Packaging requirements are constraints on the actual delivery of the system (e.g.,
constraints on the installation media for setting up the software).

¢ Legal requirements are concerned with licensing, regulation, and certification issues.
An example of a legal requirement is that software developed for the U.S. federal
government must comply with Section 508 of the Rehabilitation Act of 1973, requiring
that government information systems must be accessible to people with disabilities.

Nonfunctional requirements that fall into the URPS categories are called quality

requirements of the system. Nonfunctional requirements that fall into the implementation,

interface, operations, packaging, and legal categories are called constraints or pseudo
requirements. Budget and schedule requirements are usually not treated as nonfunctional
requirements, as they constrain attributes of the projects (see Chapter 14, Project Management).
Figure 4-3 depicts the nonfunctional requirements for SatWatch.

Quality requirements for SatWatch

Any user who knows how to read a digital watch and understands international time zone
abbreviations should be able to use SatWatch without the user manual. [Usability requirement]

As the SatWatch has no buttons, no software faults requiring the resetting of the watch should occur.
[Reliability requirement]

SatWatch should display the correct time zone within 5 minutes of the end of a GPS blackout period.
[Performance requirement]

SatWatch should measure time within 1/100th second over 5 years. [Performance requirement]
SatWatch should display time correctly in all 24 time zones. [Performance requirement]

SatWatch should accept upgrades to its onboard via the Webify Watch serial interface.
[Supportability requirement]

Constraints for SatWatch

All related software associated with SatWatch, including the onboard software, will be written using
Java, to comply with current company policy. [Implementation requirement]

SatWatch complies with the physical, electrical, and software interfaces defined by WebifyWatch
API 2.0. [Interface requirement]

Figure 4-3 Nonfunctional requirements for SatWatch.
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4.3.3 Completeness, Consistency, Clarity, and Correctness

Requirements are continuously validated with the client and the user. Validation is a critical step
in the development process, given that both the client and the developer depend on the
requirements specification. Requirement validation involves checking that the specification is
complete, consistent, unambiguous, and correct. It is complete if all possible scenarios through
the system are described, including exceptional behavior (i.e., all aspects of the system are
represented in the requirements model). The requirements specification is consistent if it does
not contradict itself. The requirements specification is unambiguous if exactly one system is
defined (i.e., it is not possible to interpret the specification two or more different ways). A
specification is correct if it represents accurately the system that the client needs and that the
developers intend to build (i.e., everything in the requirements model accurately represents an
aspect of the system to the satisfaction of both client and developer). These properties are
illustrated in Table 4-1.

The correctness and completeness of a requirements specification are often difficult to
establish, especially before the system exists. Given that the requirements specification serves as
a contractual basis between the client and the developers, the requirements specification must be

Table 4-1  Specification properties checked during validation.

Complete—All features of interest are described by requirements.

Example of incompleteness: The SatWatch specification does not specify the boundary behavior when
the user is standing within GPS accuracy limitations of a state’s boundary.

Solution: Add a functional requirement stating that the time depicted by SatWatch should not change
more often than once very 5 minutes.

Consistent—No two requirements of the specification contradict each other.

Example of inconsistency: A watch that does not contain any software faults need not provide an
upgrade mechanism for downloading new versions of the software.

Solution: Revise one of the conflicting requirements from the model (e.g., rephrase the requirement
about the watch not containing any faults, as it is not verifiable anyway).

Unambiguous—A requirement cannot be interpreted in two mutually exclusive ways.

Example of ambiguity: The SatWatch specification refers to time zones and political boundaries. Does
the SatWatch deal with daylight saving time or not?

Solution: Clarify the ambiguous concept to select one of the mutually exclusive phenomena (e.g., add a
requirement that SatWatch should deal with daylight saving time).

Correct—The requirements describe the features of the system and environment of interest to the client
and the developer, but do not describe other unintended features.

Example of fault: There are more than 24 time zones. Several countries and territories (e.g, India) are
half an hour ahead of a neighboring time zone.
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carefully reviewed by both parties. Additionally, parts of the system that present a high risk
should be prototyped or simulated to demonstrate their feasibility or to obtain feedback from the
user. In the case of SatWatch described above, a mock-up of the watch would be built using a
traditional watch and users surveyed to gather their initial impressions. A user may remark that
she wants the watch to be able to display both American and European date formats.

4.3.4 Realism, Verifiability, and Traceability

Three more desirable properties of a requirements specification are that it be realistic, verifiable,
and traceable. The requirements specification is realistic if the system can be implemented
within constraints. The requirements specification is verifiable if, once the system is built,
repeatable tests can be designed to demonstrate that the system fulfills the requirements
specification. For example, a mean time to failure of a hundred years for Satwatch would be
difficult to verify (assuming it is realistic in the first place). The following requirements are
additional examples of nonverifiable requirements:

o The product shall have a good user interface.—Good is not defined.
o The product shall be error free.—Requires large amount of resources to establish.

e The product shall respond to the user with I second for most cases.—“Most cases” is
not defined.

A requirements specification is traceable if each requirement can be traced throughout the
software development to its corresponding system functions, and if each system function can be
traced back to its corresponding set of requirements. Traceability includes also the ability to
track the dependencies among requirements, system functions, and the intermediate design
artifacts, including system components, classes, methods, and object attributes. Traceability is
critical for developing tests and for evaluating changes. When developing tests, traceability
enables a tester to assess the coverage of a test case, that is, to identify which requirements are
tested and which are not. When evaluating changes, traceability enables the analyst and the
developers to identify all components and system functions that the change would impact.

4.3.5 Greenfield Engineering, Reengineering, and Interface Engineering

Requirements elicitation activities can be classified into three categories, depending on the
source of the requirements. In greenfield engineering, the development starts from scratch—no
prior system exists—so the requirements are extracted from the users and the client. A
greenfield engineering project is triggered by a user need or the creation of a new market.
SatWatch is a greenfield engineering project.

A reengineering project is the redesign and reimplementation of an existing system
triggered by technology enablers or by business processes [Hammer & Champy, 1993].
Sometimes, the functionality of the new system is extended, but the essential purpose of the
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system remains the same. The requirements of the new system are extracted from an existing
system.

An interface engineering project is the redesign of the user interface of an existing
system. The legacy system is left untouched except for its interface, which is redesigned and
reimplemented. This type of project is a reengineering project in which the legacy system cannot
be discarded without entailing high costs.

In both reengineering and greenfield engineering, the developers need to gather as much
information as possible from the application domain. This information can be found in
procedures manuals, documentation distributed to new employees, the previous system’s
manual, glossaries, cheat sheets and notes developed by the users, and user and client interviews.
Note that although interviews with users are an invaluable tool, they fail to gather the necessary
information if the relevant questions are not asked. Developers must first gain a solid knowledge
of the application domain before the direct approach can be used.

Next, we describe the activities of requirements elicitation.

4.4 Requirements Elicitation Activities

In this section, we describe the requirements elicitation activities. These map a problem
statement (see Chapter 3, Project Organization and Communication) into a requirements
specification that we represent as a set of actors, scenarios, and use cases (see Chapter 2,
Modeling with UML). We discuss heuristics and methods for eliciting requirements from users
and modeling the system in terms of these concepts. Requirements elicitation activities include

¢ Identifying Actors (Section 4.4.1)

¢ Identifying Scenarios (Section 4.4.2)

¢ Identifying Use Cases (Section 4.4.3)

¢ Refining Use Cases (Section 4.4.4)

* Identifying Relationships Among Actors and Use Cases (Section 4.4.5)
» Identifying Initial Analysis Objects (Section 4.4.6)

¢ Identifying Nonfunctional Requirements (Section 4.4.7).

The methods described in this section are adapted from OOSE [Jacobson et al., 1992], the
Unified Software Development Process [Jacobson et al., 1999], and responsibility-driven design
[Wirfs-Brock et al., 1990].

4.41 Identifying Actors

Actors represent external entities that interact with the system. An actor can be human or an
external system. In the SatWatch example, the watch owner, the GPS satellites, and the
WebifyWatch serial device are actors (see Figure 4-4). They all exchange information with the
SatWatch. Note, however, that they all have specific interactions with SatWatch: the watch
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/ GPS
.
WatchOwner SatWatch \ i

WebifyWatch

Figure 4-4 Actors for the SatWatch system. WatchOwner moves the watch (possibly across time zones)
and consults it to know what time it is. SatWatch interacts with GPS to compute its position. Webi fyWatch
upgrades the data contained in the watch to reflect changes in time policy (e.g., changes in daylight savings
time start and end dates).

owner wears and looks at her watch; the watch monitors the signal from the GPS satellites; the
WebifyWatch downloads new data into the watch. Actors define classes of functionality.

Consider a more complex example, FRIEND, a distributed information system for accident
management [Bruegge et al., 1994]. It includes many actors, such as FieldOfficer, who
represents the police and fire officers who are responding to an incident, and Dispatcher, the
police officer responsible for answering 911 calls and dispatching resources to an incident.
FRIEND supports both actors by keeping track of incidents, resources, and task plans. It also has
access to multiple databases, such as a hazardous materials database and emergency operations
procedures. The Fie1dOfficer and the Dispatcher actors interact through different interfaces:
FieldOfficers access FRIEND through a mobile personal assistant, Dispatchers access FRIEND
through a workstation (see Figure 4-5).

Actors are role abstractions and do not necessarily directly map to persons. The same
person can fill the role of FieldOfficer or Dispatcher at different times. However, the
functionality they access is substantially different. For that reason, these two roles are modeled
as two different actors.

The first step of requirements elicitation is the identification of actors. This serves both to
define the boundaries of the system and to find all the perspectives from which the developers

—> <—
FRIEND

FieldOfficer Dispatcher

Figure 4-5 Actors of the FRIEND system. FieldOfficers not only have access to different functionality,
they use different computers to access the system.
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need to consider the system. When the system is deployed into an existing organization (such as
a company), most actors usually exist before the system is developed: they correspond to roles in
the organization.

During the initial stages of actor identification, it is hard to distinguish actors from objects.
For example, a database subsystem can at times be an actor, while in other cases it can be part of
the system. Note that once the system boundary is defined, there is no trouble distinguishing
between actors and such system components as objects or subsystems. Actors are outside of the
system boundary; they are external. Subsystems and objects are inside the system boundary;
they are internal. Thus, any external software system using the system to be developed is an
actor. When identifying actors, developers can ask the following questions:

Questions for identifying actors

*  Which user groups are supported by the system to perform their work?

*  Which user groups execute the system’s main functions?

¢ Which user groups perform secondary functions, such as maintenance and administration?
* With what external hardware or software system will the system interact?

In the FRIEND example, these questions lead to a long list of potential actors: fire fighter,
police officer, dispatcher, investigator, mayor, governor, an EPA hazardous material database,
system administrator, and so on. We then need to consolidate this list into a small number of
actors, who are different from the point of view of the usage of the system. For example, a fire
fighter and a police officer may share the same interface to the system, as they are both involved
with a single incident in the field. A dispatcher, on the other hand, manages multiple concurrent
incidents and requires access to a larger amount of information. The mayor and the governor
will not likely interact directly with the system, but will use the services of a trained operator
instead.

Once the actors are identified, the next step in the requirements elicitation activity is to
determine the functionality that will be accessible to each actor. This information can be
extracted using scenarios and formalized using use cases.

4.4.2 Identifying Scenarios

A scenario is “a narrative description of what people do and experience as they try to make use
of computer systems and applications” [Carroll, 1995]. A scenario is a concrete, focused,
informal description of a single feature of the system from the viewpoint of a single actor.
Scenarios cannot (and are not intended to) replace use cases, as they focus on specific instances
and concrete events (as opposed to complete and general descriptions). However, scenarios
enhance requirements elicitation by providing a tool that is understandable to users and clients.
Figure 4-6 is an example of scenario for the FRIEND system, an information system for
incident response. In this scenario, a police officer reports a fire and a Dispatcher initiates the
incident response. Note that this scenario is concrete, in the sense that it describes a single
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Scenario name warehouseOnFire

Participating actor bob, alice:FieldOfficer

instances john:Dispatcher

Flow of events 1. Bob, driving down main street in his patrol car, notices smoke coming out

of a warehouse. His partner, Alice, activates the “Report Emergency”
function from her FRIEND laptop.

2. Alice enters the address of the building, a brief description of its location
(i.e., northwest corner), and an emergency level. In addition to a fire unit,
she requests several paramedic units on the scene, given that the area
appears to be relatively busy. She confirms her input and waits for an
acknowledgment.

3. John, the Dispatcher, is alerted to the emergency by a beep of his
workstation. He reviews the information submitted by Alice and
acknowledges the report. He allocates a fire unit and two paramedic units
to the Incident site and sends their estimated arrival time (ETA) to Alice.

4. Alice receives the acknowledgment and the ETA.

Figure 4-6 warehouseOnFire scenario for the ReportEmergency use case.

instance. It does not attempt to describe all possible situations in which a fire incident is
reported. In particular, scenarios cannot contain descriptions of decisions. To describe the
outcome of a decision, two scenarios would be needed, one for the “true” path, and another one
for the “false” path.

Scenarios can have many different uses during requirements elicitation and during other
activities of the life cycle. Below is a selected number of scenario types taken from
[Carroll, 1995]:

e As-is scenarios describe a current situation. During reengineering, for example, the
current system is understood by observing users and describing their actions as
scenarios. These scenarios can then be validated for correctness and accuracy with the
users.

* Visionary scenarios describe a future system. Visionary scenarios are used both as a
point in the modeling space by developers as they refine their ideas of the future system
and as a communication medium to elicit requirements from users. Visionary scenarios
can be viewed as an inexpensive prototype.

« Evaluation scenarios describe user tasks against which the system is to be evaluated.
The collaborative development of evaluation scenarios by users and developers also
improves the definition of the functionality tested by these scenarios.

¢ Training scenarios are tutorials used for introducing new users to the system. These
are step-by-step instructions designed to hand-hold the user through common tasks.
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In requirements elicitation, developers and users write and refine a series of scenarios in
order to gain a shared understanding of what the system should be. Initially, each scenario may
be high level and incomplete, as the warehouseOnFire scenario is. The following questions can
be used for identifying scenarios.

Questions for identifying scenarios

* What are the tasks that the actor wants the system to perform?

¢ What information does the actor access? Who creates that data? Can it be modified or removed? By
whom?

¢ Which external changes does the actor need to inform the system about? How often? When?

*  Which events does the system need to inform the actor about? With what latency?

Developers use existing documents about the application domain to answer these
questions. These documents include user manuals of previous systems, procedures manuals,
company standards, user notes and cheat sheets, user and client interviews. Developers should
always write scenarios using application domain terms, as opposed to their own terms. As
developers gain further insight into the application domain and the possibilities of the available
technology, they iteratively and incrementally refine scenarios to include increasing amounts of
detail. Drawing user interface mock-ups often helps to find omissions in the specification and to
build a more concrete picture of the system.

In the FRIEND example, we identify four scenarios that span the type of tasks the system is
expected to support:

* warehouseOnFire (Figure 4-6): A fire is detected in a warehouse; two field officers
arrive at the scene and request resources.

e fenderBender: A car accident without casualties occurs on the highway. Police officers
document the incident and manage traffic while the damaged vehicles are towed away.

e catInATree: A cat is stuck in a tree. A fire truck is called to retrieve the cat. Because
the incident is low priority, the fire truck takes time to arrive at the scene. In the
meantime, the impatient cat owner climbs the tree, falls, and breaks a leg, requiring an
ambulance to be dispatched.

e earthQuake: An unprecedented earthquake seriously damages buildings and roads,
spanning multiple incidents and triggering the activation of a statewide emergency
operations plan. The governor is notified. Road damage hampers incident response.

The emphasis for developers during actor identification and scenario identification is to
understand the application domain. This results in a shared understanding of the scope of the
system and of the user work processes to be supported. Once developers have identified and
described actors and scenarios, they formalize scenarios into use cases.
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4.4.3 Identifying Use Cases

A scenario is an instance of a use case; that is, a use case specifies all possible scenarios for a
given piece of functionality. A use case is initiated by an actor. After its initiation, a use case
may interact with other actors, as well. A use case represents a complete flow of events through
the system in the sense that it describes a series of related interactions that result from its
initiation.

Figure 4-7 depicts the use case ReportEmergency of which the scenario warehouseOnFire
(see Figure 4-6) is an instance. The FieldOfficer actor initiates this use case by activating the
“Report Emergency” function of FRIEND. The use case completes when the Fie1dOfficer actor
receives an acknowledgment that an incident has been created. The steps in the flow of events
are indented to denote who initiates the step. Steps 1 and 3 are initiated by the actor, while steps

Use case name ReportEmergency

Participating Initiated by FieldOfficer

actors Communicates with Dispatcher

Flow of events 1. The FieldOfficer activates the “Report Emergency” function of her terminal.

2. FRIEND responds by presenting a form to the FieldOfficer.

3. The Fiel1dOfficer completes the form by selecting the emergency level, type,
location, and brief description of the situation. The Fiel1dOfficer also
describes possible responses to the emergency situation. Once the form is
completed, the FieldOfficer submits the form.

4. FRIEND receives the form and notifies the Dispatcher.

5. The Dispatcher reviews the submitted information and creates an Incident in
the database by invoking the OpenIncident use case. The Dispatcher selects a
response and acknowledges the report.

6. FRIEND displays the acknowledgment and the selected
response to the FieldOfficer.

Entry condition ¢ The FieldOfficer is logged into FRIEND.

Exit conditions e The FieldOfficer has received an acknowledgment and the selected response
from the Dispatcher, OR
e The FieldOfficer has received an explanation indicating why the transaction
could not be processed.

Quality e The FieldOfficer’s report is acknowledged within 30 seconds.
requirements ¢ The selected response arrives no later than 30 seconds after it is sent by the
Dispatcher.

Figure 4-7 An example of a use case, ReportEmergency. Under ReportEmergency, the left column
denotes actor actions, and the right column denotes system responses.



136 Chapter 4 « Requirements Elicitation

2 and 4 are initiated by the system. This use case is general and encompasses a range of
scenarios. For example, the ReportEmergency use case could also apply to the fenderBender
scenario. Use cases can be written at varying levels of detail as in the case of scenarios.

Generalizing scenarios and identifying the high-level use cases that the system must
support enables developers to define the scope of the system. Initially, developers name use
cases, attach them to the initiating actors, and provide a high-level description of the use case as
in Figure 4-7. The name of a use case should be a verb phrase denoting what the actor is trying
to accomplish. The verb phrase “Report Emergency” indicates that an actor is attempting to
report an emergency to the system (and hence, to the Dispatcher actor). This use case is not
called “Record Emergency” because the name should reflect the perspective of the actor, not the
system. It is also not called “Attempt to Report an Emergency” because the name should reflect
the goal of the use case, not the actual activity.

Attaching use cases to initiating actors enables developers to clarify the roles of the
different users. Often, by focusing on who initiates each use case, developers identify new actors
that have been previously overlooked.

Describing a use case entails specifying four fields. Describing the entry and exit
conditions of a use case enables developers to understand the conditions under which a use case
is invoked and the impact of the use case on the state of the environment and of the system. By
examining the entry and exit conditions of use cases, developers can determine if there may be
missing use cases. For example, if a use case requires that the emergency operations plan dealing
with earthquakes should be activated, the requirements specification should also provide a use
case for activating this plan. Describing the flow of events of a use case enables developers and
clients to discuss the interaction between actors and system. This results in many decisions
about the boundary of the system, that is, about deciding which actions are accomplished by the
actor and which actions are accomplished by the system. Finally, describing the quality
requirements associated with a use case enables developers to elicit nonfunctional requirements
in the context of a specific functionality. In this book, we focus on these four fields to describe
use cases as they describe the most essential aspects of a use case. In practice, many additional
fields can be added to describe an exceptional flow of events, rules, and invariants that the use
case must respect during the flow of events.

Writing use cases is a craft. An analyst learns to write better use cases with experience.
Consequently, different analysts tend to develop different styles, which can make it difficult to
produce a consistent requirements specification. To address the issue of learning how to write
use cases and how to ensure consistency among the use cases of a requirements specification,
analysts adopt a use case writing guide. Figure 4-8 is a simple writing guide adapted from
[Cockburn, 2001] that can be used for novice use case writers. Figure 4-9 provides an example
of a poor use case that violates the writing guideline in several ways.
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The ReportEmergency use case in Figure 4-7 may be illustrative enough to describe how

FRIEND supports reporting emergencies and to obtain general feedback from the user, but it does
not provide sufficient detail for a requirements specification. Next, we discuss how use cases are
refined and detailed.

Simple Use Case Writing Guide

Use cases should be named with verb phrases. The name of the use case should indicate what the user
is trying to accomplish (e.g., ReportEmergency, OpenIncident).

Actors should be named with noun phrases (e.g., FieldOfficer, Dispatcher, Victim).

The boundary of the system should be clear. Steps accomplished by the actor and steps accomplished
by the system should be distinguished (e.g., in Figure 4-7, system actions are indented to the right).
Use case steps in the flow of events should be phrased in the active voice. This makes it explicit who
accomplished the step.

The causal relationship between successive steps should be clear.

A use case should describe a complete user transaction (e.g., the ReportEmergency use case
describes all the steps between initiating the emergency reporting and receiving an acknowledgment).
Exceptions should be described separately.

A use case should not describe the user interface of the system. This takes away the focus from the
actual steps accomplished by the user and is better addressed with visual mock-ups (e.g., the
ReportEmergency only refers to the “Report Emergency” function, not the menu, the button, nor the
actual command that corresponds to this function).

A use case should not exceed two or three pages in length. Otherwise, use include and extend
relationships to decompose it in smaller use cases, as explained in Section 4.4.5.

Figure 4-8 Example of use case writing guide.

Use case name  Accident Bad name: What is the user trying

to accomplish?

Initiating actor  Initiated by FieldOfficer

Flow of events 1. The Fie1dOfficer reports the accident.

2. An ambulance is dispatched. Causality: Which action caused the
FieldOfficer to receive an
acknowledgment?

Passive voice: Who dispatches the
ambulance?

3. The Dispatcher is notified when the Incomplete transaction: What does
ambulance arrives on site. the FieldOfficer do after the
ambulance is dispatched?

Figure 4-9 An example of a poor use case. Violations of the writing guide are indicated in ifalics in the
right column.
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4.4.4 Refining Use Cases

Figure 4-10 is a refined version of the ReportEmergency use case. It has been extended to
include details about the type of incidents known to FRIEND and detailed interactions indicating
how the Dispatcher acknowledges the FieldOfficer.

Use case name ReportEmergency
Farticipating Initiated by FieldOfficer
actors

Communicates with Dispatcher

Flow of events 1. The FieldOfficer activates the “Report Emergency” function of her terminal.

2. FRIEND responds by presenting a form to the officer. The form
includes an emergency type menu (general emergency, fire,
transportation) and location, incident description, resource
request, and hazardous material fields.

3. The FieldOfficer completes the form by specifying minimally the emergency
type and description fields. The FieldOfficer may also describe possible
responses to the emergency situation and request specific resources. Once the
form is completed, the Fie1d0fficer submits the form.

4. FRIEND receives the form and notifies the Dispatcher by a
pop-up dialog.

5. The Dispatcher reviews the submitted information and creates an Incident in
the database by invoking the OpenIncident use case. All the information
contained in the FieldOfficer’s form is automatically included in the
Incident. The Dispatcher selects a response by allocating resources to the
Incident (with the AllocateResources use case) and acknowledges the
emergency report by sending a short message to the FieldOfficer.

6. FRIEND displays the acknowledgment and the selected
response to the FieldOfficer.

Entry condition .

Figure 4-10 Refined description for the ReportEmergency use case. Additions emphasized in italics.

The use of scenarios and use cases to define the functionality of the system aims at
creating requirements that are validated by the user early in the development. As the design and
implementation of the system starts, the cost of changing the requirements specification and
adding new unforeseen functionality increases. Although requirements change until late in the
development, developers and users should strive to address most requirements issues early. This
entails many changes and much validation during requirements elicitation. Note that many use
cases are rewritten several times, others substantially refined, and yet others completely
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dropped. To save time, much of the exploration work can be done using scenarios and user
interface mock-ups.

The following heuristics can be used for writing scenarios and use cases:

Heuristics for developing scenarios and use cases

¢ Use scenarios to communicate with users and to validate functionality.

» First, refine a single scenario to understand the user’s assumptions about the system. The user may
be familiar with similar systems, in which case, adopting specific user interface conventions would
make the system more usable.

¢ Next, define many not-very-detailed scenarios to define the scope of the system. Validate with the
user.

¢ Use mock-ups as visual support only; user interface design should occur as a separate task after the
functionality is sufficiently stable.

¢ Present the user with multiple and very different alternatives (as opposed to extracting a single
alternative from the user). Evaluating different alternatives broadens the user’s horizon. Generating
different alternatives forces developers to “think outside the box.”

¢ Detail a broad vertical slice when the scope of the system and the user preferences are well
understood. Validate with the user.

The focus of this activity is on completeness and correctness. Developers identify
functionality not covered by scenarios, and document it by refining use cases or writing new
ones. Developers describe seldom occurring cases and exception handling as seen by the actors.
Whereas the initial identification of use cases and actors focused on establishing the boundary of
the system, the refinement of use cases yields increasingly more details about the features
provided by the system and the constraints associated with them. In particular, the following
aspects of the use cases, initially ignored, are detailed during refinement:

¢ The elements that are manipulated by the system are detailed. In Figure 4-10, we added
details about the attributes of the emergency reporting form and the types of incidents.

¢ The low-level sequence of interactions between the actor and the system are specified.
In Figure 4-10, we added information about how the Dispatcher generates an
acknowledgment by selecting resources.

* Access rights (which actors can invoke which use cases) are specified.
* Missing exceptions are identified and their handling specified.

¢ Common functionality among use cases are factored out.

In the next section, we describe how to reorganize actors and use cases with relationships,
which addresses the last three bullets points above.
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4.4.5 Identifying Relationships among Actors and Use Cases

Even medium-sized systems have many use cases. Relationships among actors and use cases
enable the developers and users to reduce the complexity of the model and increase its
understandability. We use communication relationships between actors and use cases to describe
the system in layers of functionality. We use extend relationships to separate exceptional and
common flows of events. We use include relationships to reduce redundancy among use cases.

Communication relationships between actors and use cases

Communication relationships between actors and use cases represent the flow of
information during the use case. The actor who initiates the use case should be distinguished
from the other actors with whom the use case communicates. By specifying which actor can
invoke a specific use case, we also implicitly specify which actors cannot invoke the use case.
Similarly, by specifying which actors communicate with a specific use case, we specify which
actors can access specific information and which cannot. Thus, by documenting initiation and
communication relationships among actors and use cases, we specify access control for the
system at a coarse level.

The relationships between actors and use cases are identified when use cases are
identified. Figure 4-11 depicts an example of communication relationships in the case of the
FRIEND system. The «initiate» stereotype denotes the initiation of the use case by an actor, and
the «participate» stereotype denotes that an actor (who did not initiate the use case)
communicates with the use case.

Extend relationships between use cases

A use case extends another use case if the extended use case may include the behavior of
the extension under certain conditions. In the FRIEND example, assume that the connection
between the FieldOfficer station and the Dispatcher station is broken while the

«initiate» «initiate»
FieldOfficer D1spatcher\ OpenIncident

«initiate»

ReportEmergenc
P 9 y AlTlocateResources

Figure 4-11 Example of communication relationships among actors and use cases in FRIEND (UML use
case diagram). The FieldOfficer initiates the ReportEmergency use case, and the Dispatcher initiates
the OpenIncident and A1locateResources use cases. FieldOfficers cannot directly open an incident or
allocate resources on their own.



Requirements Elicitation Activities 141

FieldOfficer is filling the form (e.g., the FieldOfficer’s car enters a tunnel). The
FieldOfficer station needs to notify the FieldOfficer that his form was not delivered and
what measures he should take. The ConnectionDown use case is modeled as an extension of
ReportEmergency (see Figure 4-12). The conditions under which the ConnectionDown use case
is initiated are described in ConnectionDown as opposed to ReportEmergency. Separating
exceptional and optional flows of events from the base use case has two advantages. First, the
base use case becomes shorter and easier to understand. Second, the common case is
distinguished from the exceptional case, which enables the developers to treat each type of
functionality differently (e.g., optimize the common case for response time, optimize the
exceptional case for robustness). Both the extended use case and the extensions are complete use
cases of their own. They each must have entry and end conditions and be understandable by the
user as an independent whole.

—

\ L~ - ConnectionDown

FieldOfficer «extend>
ReportEmergency

Figure 4-12 Example of use of extend relationship (UML use case diagram). ConnectionDown extends
the ReportEmergency use case. The ReportEmergency use case becomes shorter and solely focused on
emergency reporting.

Include relationships between use cases

Redundancies among use cases can be factored out using include relationships. Assume,
for example, that a Dispatcher needs to consult the city map when opening an incident (e.g., to
assess which areas are at risk during a fire) and when allocating resources (e.g., to find which
resources are closest to the incident). In this case, the ViewMap use case describes the flow of
events required when viewing the city map and is used by both the OpenIncident and the
AllocateResources use cases (Figure 4-13).

«include»

T =
OpenIncident
— 2 ViewMap

«include»

—

AllocateResources

Figure 4-13 Example of include relationships among use cases. ViewMap describes the flow of events for
viewing a city map (e.g., scrolling, zooming, query by street name) and is used by both OpenIncident and
AllocateResources use cases.
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Factoring out shared behavior from use cases has many benefits, including shorter
descriptions and fewer redundancies. Behavior should only be factored out into a separate use
case if it is shared across two or more use cases. Excessive fragmentation of the requirements
specification across a large number of use cases makes the specification confusing to users and
clients.

Extend versus include relationships

Include and extend are similar constructs, and initially it may not be clear to the developer
when to use each one [Jacobson et al., 1992]. The main distinction between these constructs is
the direction of the relationship. For include relationships, the event triggering the target (i.e.,
included) use case is described in the flow of event of the source use case. For extend
relationships, the event triggering the source (i.e., extending) use case is described in the source
use case as a precondition. In other words, for include relationships, every including use case
must specify where the included use case should be invoked. For extend relationships, only the
extending use case specifies which use cases are extended. Hence, a behavior that is strongly
tied to an event and that occurs only in a relatively few use cases should be represented with an
included relationship. These types of behavior usually include common system functions that
can be used in several places (e.g., viewing a map, specifying a filename, selecting an element).
Conversely, a behavior that can happen anytime or whose occurrence can be more easily
specified as an entry condition should be represented with an extend relationship. These types of
behavior include exceptional situations (e.g., invoking the online help, canceling a transaction,
dealing with a network failure).

Figure 4-14 shows the ConnectionDown example described with an include relationship
(left column) and with an extend relationship (right column). In the left column, we need to
insert text in two places in the event flow where the ConnectionDown use case can be invoked.
Also, if additional exceptional situations are described (e.g., a help function on the
FieldOfficer station), the ReportEmergency use case will have to be modified and will become
cluttered with conditions. In the right column, we need to describe only the conditions under
which the exceptional use case is invoked, which can include a large number of use cases (e.g.,
“any use case in which the connection between the FieldOfficer and the Dispatcher is lost™).
Moreover, additional exceptional situations can be added without modifying the base use case
(e.g., ReportEmergency). The ability to extend the system without modifying existing parts is
critical, as it allows us to ensure that the original behavior is left untouched. The distinction
between include and extend is a documentation issue: using the correct type of relationship
reduces dependencies among use cases, reduces redundancy, and lowers the probability of
introducing errors when requirements change. However, the impact on other development
activities is minimal.

In summary, the following heuristics can be used for selecting an extend or an include
relationship.
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Heuristics for extend and include relationships

* Use extend relationships for exceptional, optional, or seldom-occurring behavior. An example of
seldom-occurring behavior is the breakdown of a resource (e.g., a fire truck). An example of
optional behavior is the notification of nearby resources responding to an unrelated incident.

¢ Use include relationships for behavior that is shared across two or more use cases.

* However, use discretion when applying the above two heuristics and do not overstructure the use
case model. A few longer use cases (e.g., two pages long) are easier to understand and review than
many short ones (e.g., ten lines long).

In all cases, the purpose of adding include and extend relationships is to reduce or remove
redundancies from the use case model, thus eliminating potential inconsistencies.

4.4.6 Identifying Initial Analysis Objects

One of the first obstacles developers and users encounter when they start collaborating with each
other is differing terminology. Although developers eventually learn the users’ terminology, this
problem is likely to be encountered again when new developers are added to the project.
Misunderstandings result from the same terms being used in different contexts and with different
meanings.

To establish a clear terminology, developers identify the participating objects for each
use case. Developers should identify, name, and describe them unambiguously and collate them
into a glossary.3 Building this glossary constitutes the first step toward analysis, which we
discuss in the next chapter.

The glossary is included in the requirements specification and, later, in the user manuals.
Developers keep the glossary up to date as the requirements specification evolves. The benefits
of the glossary are manyfold: new developers are exposed to a consistent set of definitions, a
single term is used for each concept (instead of a developer term and a user term), and each term
has a precise and clear official meaning.

The identification of participating objects results in the initial analysis object model. The
identification of participating objects during requirements elicitation only constitutes a first step
toward the complete analysis object model. The complete analysis model is usually not used as a
means of communication between users and developers, as users are often unfamiliar with
object-oriented concepts. However, the description of the objects (i.e., the definitions of the
terms in the glossary) and their attributes are visible to the users and reviewed. We describe in
detail the further refinement of the analysis model in Chapter 5, Analysis.

3. The glossary is also called a “data dictionary” [Rumbaugh et al., 1991].
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ReportEmergency (include relationship)

1. ..

3. The FieldOfficer completes the form by
selecting the emergency level, type, location,
and brief description of the situation. The
Fie1dOfficer also describes possible
responses to the emergency situation. Once the
form is completed, the Fiel1dOfficer submits
the form, at which point, the Dispatcher is
notified.

If the connection with the Dispatcher is
broken, the ConnectionDown use case is used.

4. If the connection is still alive, the Dispatcher
reviews the submitted information and creates
an Incident in the database by invoking the
OpenIncident use case. The Dispatcher
selects a response and acknowledges the
emergency report.

If the connection is broken, the
ConnectionDown use case is used.
5. ..

ReportEmergency (extend relationship)

. The Fiel1dOfficer completes the form by

selecting the emergency level, type, location,
and brief description of the situation. The
FieldOfficer also describes possible
responses to the emergency situation. Once the
form is completed, the Fie1dOfficer submits
the form, at which point, the Dispatcher is
notified.

. The Dispatcher reviews the submitted

information and creates an Incident in the
database by invoking the OpenIncident use
case. The Dispatcher selects a response and
acknowledges the emergency report.

ConnectionDown (include relationship)

1. The FieldOfficer and the Dispatcher are
notified that the connection is broken. They are
advised of the possible reasons why such an
event would occur (e.g., “Is the FieldOfficer
station in a tunnel?”).

2. The situation is logged by the system and
recovered when the connection is reestablished.

3. The FieldOfficer and the Dispatcher enter
in contact through other means and the
Dispatcher initiates ReportEmergency from
the Dispatcher station.

ConnectionDown (extend relationship)

The ConnectionDown use case extends any use
case in which the communication between the
FieldOfficer and the Dispatcher can be
lost.

. The FieldOfficer and the Dispatcher are

notified that the connection is broken. They are
advised of the possible reasons why such an
event would occur (e.g., “Is the FieldOfficer
station in a tunnel?”).

. The situation is logged by the system and

recovered when the connection is reestablished.

. The FieldOfficer and the Dispatcher enter

in contact through other means and the
Dispatcher initiates ReportEmergency from
the Dispatcher station.

Figure 4-14 Addition of ConnectionDown exceptional condition to ReportEmergency. An extend
relationship is used for exceptional and optional flow of events because it yields a more modular description.
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Many heuristics have been proposed in the literature for identifying objects. Here are a

selected few:

Heuristics for identifying initial analysis objects

* Terms that developers or users must clarify to understand the use case

¢ Recurring nouns in the use cases (e.g., Incident)

* Real-world entities that the system must track (e.g., Fiel1dOfficer, Resource)

* Real-world processes that the system must track (e.g., EmergencyOperationsPlan)
¢ Use cases (e.g., ReportEmergency)

* Data sources or sinks (e.g., Printer)

* Artifacts with which the user interacts (e.g., Station)

e Always use application domain terms.

During requirements elicitation, participating objects are generated for each use case. If
two use cases refer to the same concept, the corresponding object should be the same. If two
objects share the same name and do not correspond to the same concept, one or both concepts
are renamed to acknowledge and emphasize their difference. This consolidation eliminates any
ambiguity in the terminology used. For example, Table 4-2 depicts the initial participating
objects we identified for the ReportEmergency use case.

Table 4-2  Participating objects for the ReportEmergency use case.

Dispatcher

Police officer who manages Incidents. A Dispatcher opens, documents,
and closes incidents in response to EmergencyReports and other
communication with Fie1dOfficers. Dispatchers are identified by badge
numbers.

EmergencyReport

Initial report about an Incident from a FieldOfficer to a Dispatcher.
An EmergencyReport usually triggers the creation of an Incident by the
Dispatcher. An EmergencyReport is composed of an emergency level, a
type (fire, road accident, other), a location, and a description.

FieldOfficer

Police or fire officer on duty. A FieldOfficer can be allocated to at most
one Incident at a time. Fie1dOfficers are identified by badge numbers.

Incident

Situation requiring attention from a FieldOfficer. An Incident may be
reported in the system by a FieldOfficer or anybody else external to the
system. An Incident is composed of a description, a response, a status
(open, closed, documented), a location, and a number of FieldOfficers.
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Once participating objects are identified and consolidated, the developers can use them as
a checklist for ensuring that the set of identified use cases is complete.

Heuristics for cross-checking use cases and participating objects

*  Which use cases create this object (i.e., during which use cases are the values of the object attributes
entered in the system)?

* Which actors can access this information?

*  Which use cases modify and destroy this object (i.e., which use cases edit or remove this information
from the system)?

*  Which actor can initiate these use cases?

* s this object needed (i.e., is there at least one use case that depends on this information?)

4.4.7 Identifying Nonfunctional Requirements

Nonfunctional requirements describe aspects of the system that are not directly related to its
functional behavior. Nonfunctional requirements span a number of issues, from user interface
look and feel to response time requirements to security issues. Nonfunctional requirements are
defined at the same time as functional requirements because they have as much impact on the
development and cost of the system.

For example, consider a mosaic display that an air traffic controller uses to track planes. A
mosaic display system compiles data from a series of radars and databases (hence the term
“mosaic”) into a summary display indicating all aircraft in a certain area, including their
identification, speed, and altitude. The number of aircraft such a system can display constrains
the performance of the air traffic controller and the cost of the system. If the system can only
handle a few aircraft simultaneously, the system cannot be used at busy airports. On the other
hand, a system able to handle a large number of aircraft is more costly and more complex to
build and to test.

Nonfunctional requirements can impact the work of the user in unexpected ways. To
accurately elicit all the essential nonfunctional requirements, both client and developer must
collaborate so that they identify (minimally) which attributes of the system that are difficult to
realize are critical for the work of the user. In the mosaic display example above, the number of
aircraft that a single mosaic display must be able to handle has implications on the size of the
icons used for displaying aircraft, the features for identifying aircraft and their properties, the
refresh rate of the data, and so on.

The resulting set of nonfunctional requirements typically includes conflicting
requirements. For example, the nonfunctional requirements of the SatWatch (Figure 4-3) call for
an accurate mechanism, so that the time never needs to be reset, and a low unit cost, so that it is
acceptable to the user to replace the watch with a new one when it breaks. These two
nonfunctional requirements conflict as the unit cost of the watch increases with its accuracy. To
deal with such conflicts, the client and the developer prioritize the nonfunctional requirements,
so that they can be addressed consistently during the realization of the system.
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Table 4-3  Example questions for eliciting nonfunctional requirements.

Category Example questions
Usability What is the level of expertise of the user?
What user interface standards are familiar to the user?
What documentation should be provided to the user?
Reliability How reliable, available, and robust should the system be?

(including robustness,
safety, and security)

Is restarting the system acceptable in the event of a failure?
How much data can the system loose?

How should the system handle exceptions?

Are there safety requirements of the system?

Are there security requirements of the system?

Performance How responsive should the system be?
Are any user tasks time critical?
How many concurrent users should it support?
How large is a typical data store for comparable systems?
What is the worse latency that is acceptable to users?
Supportability What are the foreseen extensions to the system?
(including ‘Who maintains the system?
maintainability and Are there plans to port the system to different software or
portability) hardware environments?
Implementation Are there constraints on the hardware platform?
Are constraints imposed by the maintenance team?
Are constraints imposed by the testing team?
Interface Should the system interact with any existing systems?
How are data exported/imported into the system?
‘What standards in use by the client should be supported by
the system?
Operation Who manages the running system?
Packaging Who installs the system?
How many installations are foreseen?
Are there time constraints on the installation?
Legal How should the system be licensed?

Are any liability issues associated with system failures?
Are any royalties or licensing fees incurred by using specific
algorithms or components?

147



148 Chapter 4 « Requirements Elicitation

There are unfortunately few systematic methods for eliciting nonfunctional requirements.
In practice, analysts use a taxonomy of nonfunctional requirements (e.g., the FURPS+ scheme
described previously) to generate check lists of questions to help the client and the developers
focus on the nonfunctional aspects of the system. As the actors of the system have already been
identified at this point, this check list can be organized by role and distributed to representative
users. The advantage of such check lists is that they can be reused and expanded for each new
system in a given application domain, thus reducing the number of omissions. Note that such
check lists can also result in the elicitation of additional functional requirements. For example,
when asking questions about the operation of the system, the client and developers may uncover
a number of use cases related with the administration of the system. Table 4-3 depicts example
questions for each of the FURPS+ category.

Once the client and the developers identify a set of nonfunctional requirements, they can
organize them into refinement and dependency graphs to identify further nonfunctional
requirements and identify conflicts. For more material on this topic, the reader is referred to the
specialized literature (e.g., [Chung et al., 1999]).

4.5 Managing Requirements Elicitation

In the previous section, we described the technical issues of modeling a system in terms of use
cases. Use case modeling by itself, however, does not constitute requirements elicitation. Even
after they become expert use case modelers, developers still need to elicit requirements from the
users and come to an agreement with the client. In this section, we describe methods for eliciting
information from the users and negotiating an agreement with a client. In particular, we
describe:

* Negotiating Specifications with Clients: Joint Application Design (Section 4.5.1)
* Maintaining Traceability (Section 4.5.2)
¢ Documenting Requirements Elicitation (Section 4.5.3).

4.5.1 Negotiating Specifications with Clients: Joint Application Design

Joint Application Design (JAD) is a requirements method developed at IBM at the end of the
1970s. Its effectiveness lies in that the requirements elicitation work is done in one single
workshop session in which all stakeholders participate. Users, clients, developers, and a trained
session leader sit together in one room to present their viewpoints, listen to other viewpoints,
negotiate, and come to a mutually acceptable solution. The outcome of the workshop, the final
JAD document, is a complete requirements specification document that includes definitions of
data elements, work flows, and interface screens. Because the final document is jointly
developed by the stakeholders (that is, the participants who not only have an interest in the
success of the project, but also can make substantial decisions), the final JAD document
represents an agreement among users, clients, and developers, and thus minimizes requirements
changes later in the development process. JAD is composed of five activities (Figure 4-15):
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Figure 4-15 Activities of JAD (UML activity diagram). The heart of JAD is the Session activity during
which all stakeholders design and agree to a requirements specification. The activities prior to the Session
maximize its efficiency. The production of the final document captures the decisions made during the

Session.
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1. Project definition. During this activity, the JAD facilitator interviews the project
manager and the client to determine the objectives and the scope of the project. The
findings from the interviews are collected in the Management Definition Guide.

2. Research. During this activity, the JAD facilitator interviews present and future users,
gathers information about the application domain, and describes a first set of high-level
use cases. The JAD facilitator also starts a list of problems to be addressed during the
session. The results of this activity are a Session Agenda and a Preliminary
Specification listing work flow and system information.

3. Preparation. During this activity, the JAD facilitator prepares the session. The JAD
facilitator creates a Working Document, which is the first draft of the final document, an
agenda for the session, and any overhead slides or flip charts representing information
gathered during the Research activity. The JAD facilitator also selects a team composed
of the client, the project manager, selected users, and developers. All stakeholders are
represented, and the participants are able to make binding decisions.

4. Session. During this activity, the JAD facilitator guides the team in creating the
requirements specification. A JAD session lasts for 3 to 5 days. The team defines and
agrees on the scenarios, use cases, and user interface mock-ups. All decisions are
documented by a scribe.

5. Final document. The JAD facilitator prepares the Final Document, revising the working
document to include all decisions made during the session. The Final Document
represents a complete specification of the system agreed on during the session. The
Final Document is distributed to the session participants for review. The participants
then attend a 1- to 2-hour meeting to discuss the reviews and finalize the document.

JAD has been used by IBM and other companies. JAD leverages group dynamics to
improve communication among participants and to accelerate consensus. At the end of a JAD
session, developers are more knowledgeable of user needs, and users are more knowledgeable of
development trade-offs. Additional gains result from a reduction of redesign activities
downstream. Because of its reliance on social dynamics, the success of a JAD session often
depends on the qualifications of the JAD facilitator as a meeting facilitator. For a detailed
overview of JAD, the reader is referred to [Wood & Silver, 1989].

4.5.2 Maintaining Traceability

Traceability is the ability to follow the life of a requirement. This includes tracing where the
requirements came from (e.g., who originated it, which client need does it address) to which
aspects of the system and the project it affects (e.g., which components realize the requirement,
which test case checks its realization). Traceability enables developers to show that the system is
complete, testers to show that the system complies with its requirements, designers to record the
rationale behind the system, and maintainers to assess the impact of change.
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Consider the SatWatch system we introduced at the beginning of the chapter. Currently,
the specification calls for a two-line display that includes time and date. After the client decides
that the digit size is too small for comfortable reading, developers change the display
requirement to a single-line display combined with a button to switch between time and date.
Traceability would enable us to answer the following questions:

¢ Who originated the two-line display requirement?

¢ Did any implicit constraints mandate this requirement?

¢ Which components must be changed because of the additional button and display?
* Which test cases must be changed?

The simplest approach to maintaining traceability is to use cross-references among
documents, models, and code artifacts. Each individual element (e.g., requirement, component,
class, operation, test case) is identified by a unique number. Dependencies are then documented
manually as a textual cross-reference containing the number of the source element and the
number of the target element. Tool support can be as simple as a spreadsheet or a word
processing tool. This approach is expensive in time and personpower, and it is error prone.
However, for small projects, developers can observe benefits early.

For large-scale projects, specialized database tools enable the partial automation of the
capture, editing, and linking of traceability dependencies at a more detailed level (e.g., DOORS
[Telelogic] or RequisitePro [Rational]). Such tools reduce the cost of maintaining traceability,
but they require the buy-in and training of most stakeholders and impose restrictions on other
tools in the development process.

4.5.3 Documenting Requirements Elicitation

The results of the requirements elicitation and the analysis activities are documented in the
Requirements Analysis Document (RAD). This document completely describes the system in
terms of functional and nonfunctional requirements. The audience for the RAD includes the
client, the users, the project management, the system analysts (i.e., the developers who
participate in the requirements), and the system designers (i.e., the developers who participate in
the system design). The first part of the document, including use cases and nonfunctional
requirements, is written during requirements elicitation. The formalization of the specification in
terms of object models is written during analysis. Figure 4-16 is an example template for a RAD
used in this book.

The first section of the RAD is an Introduction. Its purpose is to provide a brief overview
of the function of the system and the reasons for its development, its scope, and references to the
development context (e.g., reference to the problem statement written by the client, references to
existing systems, feasibility studies). The introduction also includes the objectives and success
criteria of the project.

The second section, Current system, describes the current state of affairs. If the new
system will replace an existing system, this section describes the functionality and the problems
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Requirements Analysis Document

1. Introduction
1.1 Purpose of the system
1.2 Scope of the system
1.3 Objectives and success criteria of the project
1.4 Definitions, acronyms, and abbreviations
1.5 References
1.6 Overview
2. Current system
3. Proposed system
3.1 Overview
3.2 Functional requirements
3.3 Nonfunctional requirements
3.3.1 Usability
3.3.2 Reliability
3.3.3 Performance
3.3.4 Supportability
3.3.5 Implementation
3.3.6 Interface
3.3.7 Packaging
3.3.8 Legal
3.4 System models
3.4.1 Scenarios
3.4.2 Use case model
3.4.3 Object model
3.4.4 Dynamic model
3.4.5 User interface—navigational paths and screen mock-ups
4. Glossary

Figure 4-16 Outline of the Requirements Analysis Document (RAD). Sections in italics are completed
during analysis (see next chapter).

of the current system. Otherwise, this section describes how the tasks supported by the new
system are accomplished now. For example, in the case of SatWatch, the user currently resets
her watch whenever she travels across a time zone. Because of the manual nature of this
operation, the user occasionally sets the wrong time and occasionally neglects to reset. In
contrast, the SatWatch will continually ensure accurate time within its lifetime. In the case of
FRIEND, the current system is paper based: dispatchers keep track of resource assignments by
filling out forms. Communication between dispatchers and field officers is by radio. The current
system requires a high documentation and management cost that FRIEND aims to reduce.

The third section, Proposed system, documents the requirements elicitation and the
analysis model of the new system. It is divided into four subsections:

e Overview presents a functional overview of the system.
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* Functional requirements describes the high-level functionality of the system.

* Nonfunctional requirements describes user-level requirements that are not directly
related to functionality. This includes usability, reliability, performance, supportability,
implementation, interface, operational, packaging, and legal requirements.

o System models describes the scenarios, use cases, object model, and dynamic models
for the system. This section contains the complete functional specification, including
mock-ups illustrating the user interface of the system and navigational paths
representing the sequence of screens. The subsections Object model and Dynamic
model are written during the Analysis activity, described in the next chapter.

The RAD should be written after the use case model is stable, that is, when the number of
modifications to the requirements is minimal. The requirements, however, are updated
throughout the development process when specification problems are discovered or when the
scope of the system is changed. The RAD, once published, is baselined and put under
configuration mana\gement.4 The revision history section of the RAD will provide a history of
changes include the author responsible for each change, the date of the change, and a brief
description of the change.

4.6 ARENA Case Study

In this section, we apply the concepts and methods described in this chapter to the ARENA system.
We start with the initial problem statement provided by the client, and develop a use case model
and an initial analysis object model. In previous sections, we selected examples for their
illustrative value. In this section, we focus on a realistic example, describe artifacts as they are
created and refined. This enables us to discuss more realistic trade-offs and design decisions and
focus on operational details that are typically not visible in illustrative examples. In this
discussion, “ARENA” denotes the system in general, whereas ‘“arena” denotes a specific
instantiation of the system.

4.6.1 Initial Problem Statement

After an initial meeting with the client, the problem statement is written (Figure 4-17).

Note that this brief text describes the problem and the requirements at a high level. This is
not typically the stage at which we commit to a budget or a delivery date. First, we start
developing the use case model by identifying actors and scenarios.

4. A baseline is a version of a work product that has been reviewed and formally approved. Configuration
management is the process of tracking and approving changes to the baseline. We discuss configuration
management in Chapter 13, Configuration Management.
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ARENA Problem Statement
1. Problem

The popularity of the Internet and the World Wide Web has enabled the creation of a variety of virtual
communities, groups of people sharing common interests, but who have never met each other in person.
Such virtual communities can be short lived (e.g., a group of people meeting in a chat room or playing a
tournament) or long lived (e.g., subscribers to a mailing list). They can include a small group of people or
many thousands.

Many multi-player computer games now include support for the virtual communities that are players of
the given game. Players can receive news about game upgrades, new game maps and characters; they can
announce and organize matches, compare scores and exchange tips. The game company takes advantage
of this infrastructure to generate revenue or to advertise its products.

Currently, however, each game company develops such community support in each individual game.
Each company uses a different infrastructure, different concepts, and provides different levels of support.
This redundancy and inconsistency results in many disadvantages, including a learning curve for players
when joining each new community, for game companies who need to develop the support from scratch,
and for advertisers who need to contact each individual community separately. Moreover, this solution
does not provide much opportunity for cross-fertilization among different communities.

2. Objectives
The objectives of the ARENA project are to:

* provide an infrastructure for operating an arena, including registering new games and players,
organizing tournaments, and keeping track of the players scores.

e provide a framework for league owners to customize the number and sequence of matches and the
accumulation of expert rating points.

e provide a framework for game developers for developing new games, or for adapting existing games
into the ARENA framework.

» provide an infrastructure for advertisers.

3. Functional requirements

ARENA supports five types of users:

* The operator should be able to define new games, define new tournament styles (e.g., knock-out
tournaments, championships, best of series), define new expert rating formulas, and manage users.

* League owners should be able to define a new league, organize and announce new tournaments
within a league, conduct a tournament, and declare a winner.

* Players should be able to register in an arena, apply for a league, play the matches that are assigned to
the player, or drop out of the tournament.

* Spectators should be able to monitor any match in progress and check scores and statistics of past
matches and players. Spectators do not need to register in an arena.

* The advertiser should be able to upload new advertisements, select an advertisement scheme (e.g.,
tournament sponsor, league sponsor), check balance due, and cancel advertisements.

Figure 4-17 Initial ARENA problem statement.
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4. Nonfunctional requirements

e Low operating cost. The operator must be able to install and administer an arena without purchasing
additional software components and without the help of a full-time system administrator.

» Extensibility. The operator must be able to add new games, new tournament styles, and new expert
rating formulas. Such additions may require the system to be temporarily shut down and new modules
(e.g., Java classes) to be added to the system. However, no modifications of the existing system
should be required.

* Scalability. The system must support the kick-off of many parallel tournaments (e.g., 10), each
involving up to 64 players and several hundreds of simultaneous spectators.

e Low-bandwidth network. Players should be able to play matches via a 56K analog modem or faster.

5. Target environment

* All users should be able to access any arena with a web browser supporting cookies, Javascript, and
Java applets. Administration functions (e.g., adding new games, tournament styles, and users) used by
the operator should not be available through the web.

* ARENA should run on any Unix operating system (e.g., MacOS X, Linux, Solaris).

Figure 4-17 Continued.

4.6.2 Identifying Actors and Scenarios

We identify five actors, one for each type of user in the problem statement (Operator,
LeagueOwner, Player, Spectator, and Advertiser). As the core functionality of the system is to
organize and play tournaments, we first develop an example scenario, organize-
TicTacToeTournament (Figure 4-18) to elicit and explore this functionality in more detail. By
first focusing on a narrow vertical slice of the system, we understand better the client’s
expectation of the system, including the boundary of the system and the kinds of interactions
between the user and the system. Using the organizeTicTacToeTournament scenario of
Figure 4-18, we produce a series of questions for the client depicted in (Figure 4-19). Based on
the answers from the client, we refine the scenario accordingly.

Note that when asking questions of a client, our primary goal is to understand the client’s
needs and the application domain. Once we understand the domain and produce a first version of
the requirements specification, we can start trading off features and cost with the client and
prioritizing requirements. However, intertwining elicitation and negotiation too early is usually
counterproductive.

After we refine the first scenario to the point that both we agree with the client on the
system boundary (for that scenario), we focus on the overall scope of the system. This is done by
identifying a number of shorter scenarios for each actor. Initially, these scenarios are not
detailed, but instead, cover a broad range of functionality (Figure 4-20).

When we encounter disagreements or ambiguities, we detail specific scenarios further. In
this example, the scenarios defineKnockOutStyle and installTicTacToeGame would be
refined to a comparable level of detail as the organizeTicTacToeTournament (Figure 4-18).
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Scenario name

organizeTicTacToeTournament

Participating
actor instances

alice:Operator, joe:LeagueOwner, bill:Spectator, mary:Player

Flow of events

1. Joe, a friend of Alice, is a Tic Tac Toe aficionado and volunteers to organize a
tournament.

2. Alice registers Joe in the arena as a league owner.

3. Joe first defines a Tic Tac Toe beginners league, in which any players can be
admitted. This league, dedicated to Tic Tac Toe games, stipulates that tournaments
played in this league will follow the knockout tournament style and “Winner Takes
All” formula.

4. Joe schedules the first tournament in the league for 16 players starting the next day.

Joe announces the tournament in a variety of forums over the Web and sends mail to

other Tic Tac Toe community members.

Bill and Mary receive the E-mail notification.

Mary is interested in playing the tournament and registers. 19 others apply.

Joe schedules 16 players for the tournament and rejects the 4 that applied last.

The 16 players, including Mary, receive an electronic token for entering the

tournament and the time of their first match.

10. Other subscribers to the Tic Tac Toe mailing list, including Bill, receive a second
notice about the Tournament, including the name of the players and the schedule of
matches.

11. As Joe kicks off the tournament, the players have a limited amount of time to enter
the match. If a player fails to show up, he loses the game.

12.Mary plays her first match and wins. She advances in the tournament and is
scheduled for the next match against another winner of the first round.

13. After visiting the Tic Tac Toe Tournament’s home page, Bill notices Mary’s victory
and decides to watch her next match. He selects the match, and sees the sequence of
moves of each player as they occur. He also sees an advertisement banner at the
bottom of his browser, advertising other tournaments and tic tac toe products.

14.The tournament continues until the last match, at which point the winner of the
tournament is declared and his league record is credited with all the points
associated with the tournament.

15. Also, the winner of the tournament accumulates expert rating points.

16.Joe can choose to schedule more tournaments in the league, in which case, known
players are notified about the date and given priority over new players.

W

Lo

Figure 4-18 organizeTicTacToeTournament scenario for ARENA.

Typical scenarios, once refined, span several pages of text. We also start to maintain a glossary
of important terms, to ensure consistency in the specification and to ensure that we use the
client’s terms. We quickly realize that the terms Match, Game, Tournament, and League represent
application domain concepts that need to be defined precisely, as these terms could have a
different interpretation in other gaming contexts. To accomplish this, we maintain a working
glossary and revise our definitions as our exploratory work progresses (Table 4-4).
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Steps 2, 7: Different actors register with the system. In the first case, the administrator registers Joe as a
league owner; in the second case, a player registers herself with the system.

* Registration of users should follow the same paradigm. Who provides the registration information
and how is the information reviewed, validated, and accepted?

e Client: Two processes are confused in steps 2 & 7, the registration process, during which new users
(e.g., a player or a league owner) establish their identity, and the application process, during which
players indicate they want to take part in a specific tournament. During the registration process, the
user provides information about themselves (name, nickname, E-mail) and their interests (types of
games and tournaments they want to be informed about). The information is validated by the
operator. During the application process, players indicate which tournament they want to participate
in. This is used by the league owner during match scheduling.

* Since the player information has already been validated by the operator, should the match scheduling
be completely automated?

e Client: Yes, of course.

Step 5: Joe sends mail to the Tic Tac Toe community members:

¢ Does ARENA provide the opportunity to users to subscribe to individual mailing lists?

e Client: Yes. There should be mailing lists for announcing new games, new leagues, new tournaments,
etc.

* Does ARENA store a user profile (e.g., game watched, games played, interests specified by a user
survey) for the purpose of advertisement?

e Client: Yes, but users should still be able to register without completing a user survey, if they want to.
They should be encouraged to enter the survey, but this should not prevent them from entering. They
will be exposed to advertisements anyway.

» Should the profile be used to automatically subscribe to mailing lists?

e Client: No, we think users in our community would prefer having complete control over their mailing
list subscriptions. Guessing subscriptions would not give them the impression they are in control.

Step 13: Bill browses match statistics and decides to see the next match in real time.

* How are players identified to the spectators? By real name, by E-mail, by nickname?

e Client: This should be left to the user during the registration.

¢ Can a spectator replay old matches?

e Client: Games should be able to provide this ability, but some games (e.g., real-time, 3D action
games) may choose not to do so because of resource constraints.

* ARENA should support real-time games?

e Client: Yes, these represent the largest share of our market. In general, ARENA should support as broad
a range of games as possible.

Figure 4-19 Questions generated from the scenario of Figure 4-18. Answers from the client emphasized
in italics. The interviewer can ask follow-up questions as new knowledge is accidentally stumbled upon.
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defineKnockOutStyle

alice:Operator
installTicTacToeGame

Q mary:Player
A organizeTicTacToeTournament

joe:LeagueOwner

bil11:Spectator
analyzeTicTacToeTournament

sponsorTicTacToeBeginnerslLeague

zoe:Advertiser

Figure 4-20  High-level scenarios identified for ARENA. Clients and developers initially briefly describe
scenarios. They refine them further to clarify ambiguities or uncover disagreements.

Table 4-4 Working glossary for ARENA. Keeping track of important terms and their definitions ensures
consistency in the specification and ensures that developers use the language of the client.

Game A Game is a competition among a number of Players that is conducted
according to a set of rules. In ARENA, the term Game refers to a piece of software
that enforces the set of rules, tracks the progress of each PT1ayer, and decides the
winner. For example, tic tac toe and chess are Games.

Match A Match is a contest between two or more Players following the rules of a
Game. The outcome of a Match can be a single winner and a set of losers or a tie
(in which their are no winners or losers). Some Games may disallow ties.

Tournament A Tournament is a series of Matches among a set of Players. Tournaments
end with a single winner. The way Players accumulate points and Matches are
scheduled is dictated by the League in which the Tournament is organized.

League A League represents a community for running Tournaments. A League is
associated with a specific Game and TournamentStyle. Players registered with
the League accumulate points according to the ExpertRating defined in the
League. For example, a novice chess League has a different ExpertRating
formula than an expert League.

TournamentStyle The TournamentSty1le defines the number of Matches and their sequence for a
given set of Players. For example, Players face all other Players in the
Tournament exactly once in a round robin TournamentStyle.
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Once we agree with the client on a general scope of the system, we formalize the
knowledge acquired so far in the form of high-level use cases.

4.6.3 Identifying Use Cases

Generalizing scenarios into use cases enables developers to step back from concrete situations
and consider the general case. Developers can then consolidate related functionality into single
use cases and split unrelated functionality into several use cases.

When inspecting the organizeTicTacToeTournament scenario closely, we realize that it
covers a broad range of functionality initiated by many actors. We anticipate that generalizing
this scenario would result in a use case of several dozen pages long, and attempt to split it into
self-contained and independent use cases initiated by single actors. We first decide to split the
functionality related to user accounts into two use cases, ManageUserAccounts, initiated by the
Operator, and Register, initiated by potential players and league owners (Figure 4-21). We
identify a new actor, Anonymous, representing these potential users who do not yet have an
account. Similarly, we split the functionality with browsing past matches and with managing
user profiles into separate use cases (BrowseTournamentHistory and ManageOwnProfile,
initiated by the Spectator and the Player, respectively). Finally, to further shorten the use case
OrganizeTournament, we split off the functionality for creating new leagues into the
DefinelLeague use case, as a LeagueOwner may create many tournaments within the scope of a
single league. Conversely, we anticipate that the installation of new games and new styles
requires similar steps from the Operator. Hence, we consolidate all functionality related to
installing new components into the ManageComponents use case initiated by the Operator.

We capture these decisions by drawing an overview use case diagram and by briefly
describing each use case (Figure 4-21). Note that a use case diagram alone does not describe
much functionality. Instead, it is an index into the many descriptions produced during this phase.

Next, we describe the fields of each high-level use case, including the participating actors,
entry and exit conditions, and a flow of events. Figure 4-22 depicts the high-level
OrganizeTournament use case.

Note that all steps in this flow of events describe actor actions. High-level use cases focus
primarily on the task accomplished by the actor. The detailed interaction with the system, and
decisions about the boundaries of the system, are initially postponed to the refinement phase.
This enables us to first describe the application domain with use cases, capturing, in particular,
how different actors collaborate to accomplish their goals.

In Figure 4-22, we describe the sequence of actions that are performed by four actors to
organize a tournament: the LeagueOwner, who facilitates the complete activity, the Advertiser,
to resolve exclusive sponsorship issues, the potential Players who want to participate, and the
Spectators. In the first step, we describe the handling of the sponsorship issue, thus making
clear that any sponsorship issue needs to be resolved before the tournament is advertised and
before the players apply for the tournament. Originally, the sponsorship issue was not described
clearly in the scenarios of Figure 4-20 (which only described the sponsorships of leagues). After
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Anonymous users register with an Arena for a Player or a League-
Owner account. User accounts are required before applying for a
tournament or organizing a league. Spectators do not need accounts.

The Operator accepts registrations from LeagueOwners and for
Players, cancels existing accounts, and interacts with users about
extending their accounts.

The Operator installs new games and defines new tournament styles
(generalizes defineKnockOutStyle and instal1TicTacToeGame).

The LeagueOwner defines a new league (generalizes the first steps of
the scenario organizeTicTacToeTournament).

The LeagueOwner creates and announces a new tournament, accepts
player applications, schedules matches, and kicks off the tournament.
During the tournament, players play matches and spectators follow
matches. At the end of the tournament, players are credited with points
(generalizes the scenario organizeTicTacToeTournament).

The Advertiser uploads banners and sponsors league or tournaments
(generalizes sponsorTicTacToeBeginnersLeague).

The Players manage their subscriptions to mailing lists and answer a
marketing survey.

Spectators examine tournament statistics and player statistics, and
replay matches that have already been concluded (generalizes the
scenario analyzeTicTacToeTournament).

Figure 4-21 High-level use cases identified for ARENA.
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Use case name OrganizeTournament

Participating Initiated by LeagueOwner

actors Communicates with Advertiser, Player, and Spectator

Flow of events 1. The LeagueOwner creates a Tournament, solicits sponsorships from
Advertisers, and announces the Tournament (include use case
AnnounceTournament).

2. The Players apply for the Tournament (include use case

ApplyForTournament).

3. The LeagueOwner processes the Player applications and assigns them to
matches (include use case ProcessApplications).

4. The LeagueOwner kicks off the Tournament (include use case
KickoffTournament).

5. The Players compete in the matches as scheduled and Spectators view the
matches (include use case PlayMatch).

6. The LeagueOwner declares the winner and archives the Tournament (include
use case ArchiveTournament).

Entry condition e The LeagueOwner is logged into ARENA.

Exit conditions ¢ The LeagueOwner archived a new tournament in the ARENA archive and the
winner has accumulated new points in the league, OR
¢ The LeagueOwner cancelled the tournament and the players’ standing in the
league is unchanged.

Figure 4-22 An example of a high-level use case, OrganizeTournament.

discussions with the client, we decided to handle also tournament sponsorship, and to handle it
at the beginning of each tournament. On the one hand, this enables new sponsors to be added to
the system, and on the other hand, it allows the sponsor, in exchange, to advertise the tournament
using his or her own resources. Finally, this enables the system to better select advertisement
banners during the application process.

In this high-level use case, we boiled down the essentials of the organize-
TicTacToeTournament scenario into six steps and left the details to the detailed use case. By
describing each high-level use case in this manner, we capture all relationships among actors
that the system must be aware of. This also results in a summary description of the system that is
understandable to any newcomer to the project.

Next, we write the detailed use cases to specify the interactions between the actors and the
system.

4.6.4 Refining Use Cases and ldentifying Relationships

Refining use cases enables developers to define precisely the information exchanged among the
actors and between the actors and the system. Refining use cases also enables the discovery of
alternative flows of events and exceptions that the system should handle.
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To keep the case study manageable, we do not show the complete refinement. We start by
identifying one detailed use case for each step of the flow of events in the high-level
OrganizeTournament use case. The resulting use case diagram is shown in Figure 4-23. We then
focus on the use case, AnnounceTournament: Figure 4-24 contains a description of the flow of
events, and Figure 4-25 identifies the exceptions that could occur in AnnounceTournament. The
remaining use cases will be developed similarly.

LeagueOwner
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«include»
————»@

OrganizeTournament

~ ArchiveTournament
«include» - // \‘ b
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AnnounceTournament PTayMatch
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Figure 4-23 Detailed use cases refining the OrganizeTournament high-level use case.

All of the use cases in Figure 4-23 are initiated by the LeagueOwner, except that the
ApplyForTournament and PlayMatch are initiated by the Player. The Advertiser participates
in AnnounceTournament and the Spectator participates in AnnounceTournament and PlayMatch
use cases. The Player participates in all use cases that refine OrganizeTournament. To keep the
use case diagram readable, we omitted the «initiate» relationships between the LeagueOwner
and the refined use cases. When using a UML modeling tool, we would include those
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Name AnnounceTournament

Farticipating  Initiated by LeagueOwner
actors Communicates with Player, Advertiser, Spectator

Flow of events 1. The LeagueOwner requests the creation of a tournament.

2. The system checks if the LeagueOwner has exceeded the number
of tournaments in the league or in the arena. If not, the system
presents the LeagueOwner with a form.

3. The LeagueOwner specifies a name, application start and end dates during which
Players can apply to the tournament, start and end dates for conducting the
tournament, and a maximum number of Players.

4. The system asks the LeagueOwner whether an exclusive
sponsorship should be sought and, if yes, presents a list of
Advertisers who expressed the desire to be exclusive sponsors.

5. If the LeagueOwner decides to seek an exclusive sponsor, he selects a subset of the
names of the proposed sponsors.

6. The system notifies the selected sponsors about the upcoming
tournament and the flat fee for exclusive sponsorships.
7. The system communicates their answers to the LeagueOwner-.

8. If there are interested sponsors, the LeagueOwner selects one of them.

9. The system records the name of the exclusive sponsor and charges
the flat fee for sponsorships to the Advertiser’s account. From
now on, all advertisement banners associated with the tournament
are provided by the exclusive sponsor only.

10.Otherwise, if no sponsors were selected (either because no
Advertiser was interested or the LeagueOwner did not select
one), the advertisement banners are selected at random and
charged to the Advertiser’s account on a per unit basis.

11.Once the sponsorship issue is closed, the system prompts the
LeagueOwner with a list of groups of Players, Spectators, and
Advertisers that could be interested in the new tournament.

12.The LeagueOwner selects which groups to notify.

13.The system creates a home page in the arena for the tournament.
This page is used as an entry point to the tournament (e.g., to
provide interested P1ayers with a form to apply for the
tournament, and to interest Spectators in watching matches).

14.0n the application start date, the system notifies each interested
user by sending them a link to the main tournament page. The
Players can then apply for the tournament with the
ApplyForTournament use case until the application end date.

Figure 4-24 An example of a detailed use case, AnnounceTournament.
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Entry
condition

The LeagueOwner is logged into ARENA.

Exit
conditions

The sponsorship of the tournament is settled: either a single exclusive Advertiser
paid a flat fee or banners are drawn at random from the common advertising pool of
the Arena.

Potential P1ayers received a notice concerning the upcoming tournament and can
apply for participation.

Potential Spectators received a notice concerning the upcoming tournament and
know when the tournament is about to start.

The tournament home page is available for any to see, hence, other potential
Spectators can find the tournament home page via web search engines, or by
browsing the Arena home page.

Quality

requirements

Offers to and replies from Advertisers require secure authentication, so that
Advertisers can be billed solely on their replies.

Advertisers should be able to cancel sponsorship agreements within a fixed
period, as required by local laws.

Figure 4-24 Continued.

relationships as well. We start by writing out the flow of events for the AnnounceTournament use

case (Figure 4-24).

The steps in Figure 4-24 describe in detail the information exchanged between the actor
and the system. Note, however, that we did not describe any details of the user interface (e.g.,

forms, buttons, layout of windows or web pages). It is much easier to design a usable user

interface later, after we know the intent and responsibility of each actor. Hence, the focus on the

refinement phase is to assign (or discover) the detailed intent and responsibilities of each actor.

When describing the steps of the detailed AnnounceTournament use case, we and the client
made more decisions about the boundaries of the system:

e We introduced start and end dates for the application process and for executing the
tournament (Step 3 in Figure 4-24). This enables us to communicate deadlines to all

actors involved to ensure that the tournament happens within a reasonable time frame.

e We decided that advertisers indicate in their profile whether they are interested in
exclusive sponsorships or not. This enables the LeagueOwner to target Advertisers
more specifically (Step 4 in Figure 4-24).

* We also decided to enable advertisers to commit to sponsorship deals through the

system and automated the accounting of advertisement and the billing. This entails
security and legal requirements on the system, which we document in the “quality
requirements” field of the use case (Step 9 and 10 in Figure 4-24).
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Note that these decisions are validated with the client. Different clients and environments
can lead to evaluating trade-offs differently for the same system. For example, the decision about
soliciting Advertisers and obtaining a commitment through the system results in a more
complex and expensive system. An alternative would have been to solicit Advertisers via
E-mail, but obtain their commitment via phone. This would have resulted in a simpler system,
but more work on the part of the LeagueOwner. The client is the person who decides between
such alternatives, understanding, of course, that these decisions have an impact on the cost and
the delivery date of the system.

Next, we identify the exceptions that could occur during the detailed use case. This is done
by reviewing every step in the use case and identifying all the events that could go wrong. We
briefly describe the handling of each exception and depict the exception handling use cases as
extensions of the AnnounceTournament use case (Figure 4-25).

Note that not all exceptions are equal, and different kinds of exceptions are best addressed
at different stages of development. In Figure 4-25, we identify exceptions caused by resource
constraints (MaxNumberOfTournamentsExceeded), invalid user input (InvalidDate, NameInUse),
or application domain constraints (AdvertiserCreditExceeded, NoMatchingSponsorFound).
Exceptions associated with resource constraints are best handled during system design. Only
during system design will it become clear which resources are limited and how to best share

«extend» ©
C DO ==
<- — __ __ _ «extend» InvalidDate

AnnounceTournament —_—
o T~
- «extend» : -
AN ~ AdvertiserCreditExceeded
«extend» | N ~ <

N «extend»
I

NoMatchingSponsorFound

MaxNumberOfTournamentsExceeded

NameInUse

AdvertiserCreditExceeded The system removes the Advertiser from the list of potential
Sponsors.

InvalidDate The system informs the LeagueOwner and prompts for a new date.
MaxNumberOfTournaments The AnnounceTournament use case is terminated.
Exceeded
NameInUse The system informs the LeagueOwner and prompts for a new name.
NoMatchingSponsorFound The system skips the exclusive sponsor steps and chooses random

advertisements from the advertisement pool.

Figure 4-25  Exceptions occurring in AnnounceTournament represented as extending use cases. (Note
that AnnounceTournament in this figure is the same as the use case in Figure 4-23).
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them among different users which may, in turn, trigger further requirements activities during
system design to validate with the client the handling of such exceptions. Exceptions associated
with invalid user input are best handled during user interface design, when developers will be
able to decide at which point to check for invalid input, how to display error messages, and how
to prevent invalid inputs in the first place. The third category of exceptions—application domain
constraints—should receive the focus of the client and developer early. These are exceptions that
are usually not obvious to the developer. When missed, they require substantial rework and
changes to the system. A systematic way to elicit those exceptions is to walk through the use
case step by step with the client or a domain expert.

Many exceptional events can be represented either as an exception (e.g.,
AdvertiserCreditExceeded) or as a nonfunctional requirement (e.g., “An Advertiser should
not be able to spend more advertisement money than a fixed limit agreed beforehand with the
Operator during the registration”). The latter representation is more appropriate for global
constraints that apply to several use cases. Conversely, the former is more appropriate for events
that can occur only in one use case (e.g., “NoMatchingSponsorFound”).

Writing each detailed use case, including their exceptions, constitutes the lion’s share of
the requirements elicitation effort. Ideally, developers write every detailed use case and address
all application domain issues before committing to the project and initiating the realization of
the system. In practice, this never happens. For large systems, the developers produce a large
amount of documentation in which it is difficult, if not impossible, to maintain consistency.
Worse, the requirements elicitation activity of large projects should already be financed, as this
phase requires a lot of resources from both the client and the development organization.
Moreover, completeness at an early stage can be counterproductive: use case steps change
during development as new domain facts are discovered. The decision about how many use
cases to detail and how much to leave implicit is as much a question of trust as of economics: the
client and the developers should share a sufficiently good understanding of the system to be
ready to commit to a schedule, a budget, and a process for handling future changes (including
changes in requirements, schedule, and budget).

In ARENA, we focus on specifying in detail the interactions that involve the Advertisers
and the Players, since they have critical roles in generating revenue. Use cases associated with
the administration of the system or the installation of new games or tournament styles are left for
later, since they also include more technical issues that are dependent on the solution domain.

4.6.5 Identifying Nonfunctional Requirements

Nonfunctional requirements come from a variety of sources during the elicitation. The problem
statement we started with in Figure 4-17 already specified performance and implementation
requirements. When detailing the AnnounceTournament use case, we identified further legal
requirements for billing Advertisers. When reviewing exceptions in the previous section, we
identified a constraint on the amount of money Advertisers can spend. Although we encounter
many nonfunctional requirements while writing use cases and refining them, we cannot ensure
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that we identify all the essential nonfunctional requirements. To ensure completeness, we use the
FURPS+ categories we described in Section 4.3.2 (or any other systematic taxonomy of
nonfunctional requirements) as a checklist for asking questions of the client. Table 4-5 depicts
the nonfunctional requirements we identified in ARENA after detailing the AnnounceTournament

use case.

Table 4-5 Consolidated nonfunctional requirements for ARENA, after the first version of the detailed
AnnounceTournament use case.

Category

Nonfunctional requirements

Usability

Spectators must be able to access games in progress without prior
registration and without prior knowledge of the Game.

Reliability

Crashes due to software bugs in game components should interrupt at
most one Tournament using the Game. The other Tournaments in
progress should proceed normally.

When a Tournament is interrupted because of a crash, its LeagueOwner
should be able to restart the Tournament. At most, only the last move of
each interrupted Match can be lost.

Performance

The system must support the kick-off of many parallel Tournaments
(e.g., 10), each involving up to 64 Players and several hundreds of
simultaneous Spectators.

Players should be able to play matches via an analog modem.

Supportability

The Operator must be able to add new Games and new
TournamentStyles. Such additions may require the system to be
temporarily shut down and new modules (e.g., Java classes) to be added
to the system. However, no modifications of the existing system should
be required.

Implementation

All users should be able to access an Arena with a web browser
supporting cookies, Javascript, and Java applets. Administration
functions used by the operator are not available through the web.

ARENA should run on any Unix operating system (e.g., MacOS X, Linux,
Solaris).

Operation

An Advertiser should not be able to spend more advertisement money
than a fixed limit agreed beforehand with the Operator during the
registration.

Legal

Offers to and replies from Advertisers require secure authentication, so
that agreements can be built solely on their replies.

Advertisers should be able to cancel sponsorship agreements within a
fixed period, as required by local laws.
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4.6.6 Lessons Learned

In this section, we developed an initial use case and analysis object model based on a problem
statement provided by the client. We used scenarios and questions as elicitation tools to clarify
ambiguous concepts and uncover missing information. We also elicited a number of
nonfunctional requirements. We learned that

¢ Requirements elicitation involves constant switching between perspectives (e.g., high-
level vs. detailed, client vs. developer, activity vs. entity).

* Requirements elicitation requires a substantial involvement from the client.
* Developers should not assume that they know what the client wants.

* Eliciting nonfunctional requirements forces stakeholders to make and document
trade-offs.

4.7 Further Readings

The concept of use case was made popular by Ivar Jacobson in his landmark book, Object-
Oriented Software Engineering: A Use Case Approach [Jacobson et al., 1992]. For an account of
the early research on scenario-based requirements and, more generally, on participatory design,
Scenario-Based Design [Carroll, 1995] includes many papers by leading researchers about
scenarios and use cases. This book also describes limitations and pitfalls of scenario-based
requirements and participatory design, which are still valid today.

For specific method guidance, Software for Use [Constantine & Lockwood, 1999]
contains much material on specifying usable systems with use cases, including eliciting
imprecise knowledge from users and clients, a soft topic that is usually not covered in software
engineering text books. Writing Effective Use Cases [Cockburn, 2001] and its accompanying
website http://www.usecases.org provide many practical heuristics for writing use cases
textually (as opposed to just drawing them).

End users play a critical role during requirements elicitation. Norman illustrates this by
using examples from everyday objects such as doors, stoves, and faucets [Norman, 2002]. He
argues that users should not be expected to read a user manual and learn new skills for every
product to which they are exposed. Instead, knowledge about the use of the product, such as
hints indicating in which direction a door opens, should be embedded in its design. He takes
examples from everyday objects, but the same principles are applicable to computer systems and
user interface design.

The world of requirements engineering is much poorer when it comes to dealing with
nonfunctional requirements. The NFR Framework, described in Non-Functional Requirements
in Software Engineering [Chung et al., 1999], is one of the few methods that addresses this topic
systematically and thoroughly.

The RAD template introduced in this chapter is just one example of how to organize a
requirements document. IEEE published the documentation standard IEEE-Std 830-1998 for
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software requirements specifications [IEEE Std. 830-1998]. The appendix of the standard
contains several sample outlines for the description of specific requirements.

The examples in this chapter followed a dialectic approach to requirements elicitation, a
process of discussion and negotiation among developers, the client, and the end users. This
approach works well when the client is the end user, or when the client has a sufficiently detailed
knowledge of the application domain. In large systems, such as an air traffic control system, no
single user or client has a complete perspective of the system. In these situations, the dialectic
approach breaks down, as much implicit knowledge about the users’ activities is not
encountered until too late. In the past decade, ethnography, a field method from anthropology,
has gained popularity in requirements engineering. Using this approach, analysts immerse
themselves in the world of users, observe their daily work, and participate in their meetings.
Analysts record their observations from a neutral point of view. The goal of such an approach is
to uncover implicit knowledge. The coherence method, reported in Social analysis in the
requirements engineering process: from ethnography to method [Viller & Sommerville, 1999],
provides a practical example of ethnography applied to requirements engineering.

Managing traceability beyond requirements is still a research topic, the reader is referred
to the specialized literature [Jarke, 1998].

Finally, Software Requirements & Specifications: A Lexicon of Practice, Principles and
Prejudices [Jackson, 1995] is a concise, incisive, and entertaining piece that provides many
insights into principles and methods of requirements engineering.

4.8 EXxercises

4-1 Consider your watch as a system and set the time 2 minutes ahead. Write down each
interaction between you and your watch as a scenario. Record all interactions, includ-
ing any feedback the watch provides you.

4-2  Consider the scenario you wrote in Exercise 4-1. Identify the actor of the scenario.
Next, write the corresponding use case SetTime. Include all cases, and include setting
the time forward and backward, and setting hours, minutes, and seconds.

4-3  Assume the watch system you described in Exercises 4-1 and 4-2 also supports an
alarm feature. Describe setting the alarm time as a self-contained use case named
SetAlarmTime.

4-4 Examine the SetTime and SetAlarmTime use cases you wrote in Exercises 4-2 and 4-3.
Eliminate any redundancy by using an include relationship. Justify why an include
relationship is preferable to an extend relationship in this case.

4-5 Assume the FieldOfficer can invoke a Help feature when filling an
EmergencyReport. The HelpReportEmergency feature provides a detailed description
for each field and specifies which fields are required. Modify the ReportEmergency use
case (described in Figure 4-10) to include this help functionality. Which relationship
should you use to relate the ReportEmergency and HelpReportEmergency?
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4-8

4-9

4-10

4-12

4-13

4-14

Chapter 4 « Requirements Elicitation

Below are examples of nonfunctional requirements. Specify which of these
requirements are verifiable and which are not:

¢ “The system must be usable.”

¢ “The system must provide visual feedback to the user within one second of issuing a
command.”

e “The availability of the system must be above 95 percent.”

e “The user interface of the new system should be similar enough to the old system
that users familiar with the old system can be easily trained to use the new system.”

The need for developing a complete specification may encourage an analyst to write
detailed and lengthy documents. Which competing quality of specification (see
Table 4-1) may encourage an analyst to keep the specification short?

Maintaining traceability during requirements and subsequent activities is expensive,
because of the additional information that must be captured and maintained. What are
the benefits of traceability that outweigh this overhead? Which of those benefits are
directly beneficial to the analyst?

Explain why multiple-choice questionnaires, as a primary means of extracting
information from the user, are not effective for eliciting requirements.

From your point of view, describe the strengths and weaknesses of users during the
requirements elicitation activity. Describe also the strengths and weaknesses of
developers during the requirements elicitation activity.

Briefly define the term “menu.” Write your answer on a piece of paper and put it upside
down on the table together with the definitions of four other students. Compare all five
definitions and discuss any substantial difference.

Write the high-level use case ManageAdvertisement initiated by the Advertiser, and
write detailed use cases refining this high-level use case. Consider features that enable
an Advertiser to upload advertisement banners, to associate keywords with each
banner, to subscribe to notices about new tournaments in specific leagues or games, and
to monitor the charges and payments made on the advertisement account. Make sure
that your use cases are also consistent with the ARENA problem statement provided in
Figure 4-17.

Considering the AnnounceTournament use case in Figure 4-24, write the event flow,
entry conditions, and exit conditions for the use case ApplyForTournament, initiated by
a Player interested in participating in the newly created tournament. Consider also the
ARENA problem statement provided in Figure 4-17. Write a list of questions for the
client when you encounter any alternative.

Write the event flows, entry conditions, and exit conditions for the exceptional use
cases for AnnounceTournament depicted in Figure 4-25. Use include relationships if
necessary to remove redundancy.



References

References

[Bruegge et al., 1994]

[Carroll, 1995]
[Chung et al., 1999]

[Cockburn, 2001]

[Constantine & Lockwood, 1999]

[Grady, 1992]

[Hammer & Champy, 1993]

[IEEE Std. 610.12-1990]

[IEEE Std. 830-1998]

[ISO Std. 9126]

[Jackson, 1995]

[Jacobson et al., 1992]

[Jacobson et al., 1999]

[Jarke, 1998]

[Neumann, 1995]
[Nielsen, 1993]
[Norman, 2002]
[Rational]

[Rumbaugh et al., 1991]

[Telelogic]

[Viller & Sommerville, 1999]

[Wirfs-Brock et al., 1990]

[Wood & Silver, 1989]

171

B. Bruegge, K. O’Toole, & D. Rothenberger, “Design considerations for an accident
management system,” in M. Brodie, M. Jarke, M. Papazoglou (eds.), Proceedings of
the Second International Conference on Cooperative Information Systems, pp. 90—
100, University of Toronto Press, Toronto, Canada, May 1994.

J. M. Carroll (ed.), Scenario-Based Design: Envisioning Work and Technology in
System Development. Wiley, New York, 1995.

L. Chung, B. A. Nixon, E. Yu & J. Mylopoulos, Non-Functional Requirements in
Software Engineering, Kluwer Academic, Boston, 1999.

A. Cockburn, Writing Effective Use Cases, Addison-Wesley, Reading, MA, 2001.

L. L Constantine & L. A. D. Lockwood, Software for Use, Addison-Wesley,
Reading, MA, 1999.

R. Grady, Practical Software Metrics for Project Management and Process
Improvement, Prentice Hall, Englewood Cliffs, NJ, 1992.

M. Hammer & J. Champy, Reengineering The Corporation: a Manifesto For
Business Revolution, Harper Business, New York, 1993.

IEEE, IEEE Standard Computer Dictionary: A Compilation of IEEE Standard
Computer Glossaries, New York, NY, 1990.

IEEE Standard for Software Requirements Specification, IEEE Standards Board,
1998.

International Standards Organization. Software engineering—Product quality.
ISO/IEC-9126, Geneva, Switzerland, 2001.

M. Jackson, Software Requirements & Specifications: A Lexicon of Practice,
Principles and Prejudices, Addison-Wesley, Reading, MA, 1995.

I. Jacobson, M. Christerson, P. Jonsson, & G. Overgaard, Object-Oriented Software
Engineering—A Use Case Driven Approach, Addison-Wesley, Reading, MA, 1992.

I. Jacobson, G. Booch, & J. Rumbaugh, The Unified Software Development Process,
Addison-Wesley, Reading, MA, 1999.

M. Jarke, “Requirements tracing,” Communications of the ACM, Vol. 41, No. 12,
December 1998.

P. G. Neumann, Computer-Related Risks, Addison-Wesley, Reading, MA, 1995.
J. Nielsen, Usability Engineering, Academic, New York, 1993.

D. A. Norman, The Design of Everyday Things, Basic Books, New York, 2002.
Rationale, http://www.rational.com.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, & W. Lorensen, Object-Oriented
Modeling and Design, Prentice Hall, Englewood Cliffs, NJ, 1991.

Telelogic, http://www.telelogic.se.

S. Viller & I. Sommerville, “Social analysis in the requirements engineering process:
from ethnography to method,” International Symposium on Requirements
Engineering (ISRE’99), Limerick, Ireland, June 1999.

R. Wirfs-Brock, B. Wilkerson, & L. Wiener, Designing Object-Oriented Software,
Prentice Hall, Englewood Cliffs, NJ, 1990.

J. Wood & D. Silver, Joint Application Design®, Wiley, New York, 1989.


http://www.rational.com
http://www.telelogic.se

51
5.2
5.3

54

5.5

5.6
5.7
5.8

Introduction: An Optical Illusion
An Overview of Analysis

Analysis Concepts

5.3.1 Analysis Object Models and Dynamic Models
5.3.2 Entity, Boundary, and Control Objects

5.3.3 Generalization and Specialization

Analysis Activities: From Use Cases to Objects

5.4.1 Identifying Entity Objects

5.4.2 Identifying Boundary Objects

5.4.3 Identifying Control Objects

5.4.4 Mapping Use Cases to Objects with Sequence Diagrams
5.4.5 Modeling Interactions among Objects with CRC Cards
5.4.6 Identifying Associations

5.4.7 Identifying Aggregates

5.4.8 Identifying Attributes

5.4.9 Modeling State-Dependent Behavior of Individual Objects
5.4.10 Modeling Inheritance Relationships between Objects
5.4.11 Reviewing the Analysis Model

5.4.12 Analysis Summary

Managing Analysis

5.5.1 Documenting Analysis

5.5.2 Assigning Responsibilities

5.5.3 Communicating about Analysis

5.5.4 TIterating over the Analysis Model
5.5.5 Client Sign-Off

ARENA Case Study
Further Readings
Exercises

References

172

174
174

176

176
177
178

179

180
182
184
185
189
190
192
193
194
195
196
197

199

199
200
201
203
204

206
218
219
221



Analysis

I am Foo with a name, if I could only remember it.

—A programmer of very little brain

A nalysis results in a model of the system that aims to be correct, complete, consistent, and
unambiguous. Developers formalize the requirements specification produced during
requirements elicitation and examine in more detail boundary conditions and exceptional cases.
Developers validate, correct and clarify the requirements specification if any errors or
ambiguities are found. The client and the user are usually involved in this activity when the
requirements specification must be changed and when additional information must be gathered.

In object-oriented analysis, developers build a model describing the application domain.
For example, the analysis model of a watch describes how the watch represents time: Does the
watch know about leap years? Does it know about the day of the week? Does it know about the
phases of the moon? The analysis model is then extended to describe how the actors and the
system interact to manipulate the application domain model: How does the watch owner reset
the time? How does the watch owner reset the day of the week? Developers use the analysis
model, together with nonfunctional requirements, to prepare for the architecture of the system
developed during high-level design (Chapter 6, System Design: Decomposing the System).

In this chapter, we discuss the analysis activities in more detail. We focus on the
identification of objects, their behavior, their relationships, their classification, and their
organization. We describe management issues related to analysis in the context of a multi-team
development project. Finally, we discuss in more detail analysis issues and trade-offs using the
ARENA case study.
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5.1 Introduction: An Optical lllusion

In 1915, Rubin exhibited a drawing similar to Figure 5-1 to illustrate the concept of multi-stable
images. What do you see? Two faces looking at each other? If you focus more closely on the
white area, you can see a vase instead. Once you are able to perceive both shapes individually, it
is easier to switch back and forth between the vase and the faces.

Figure 5-1 Ambiguity: what do you see?

If the drawing in Figure 5-1 had been a requirements specification, which models should
you have constructed? Specifications, like multi-stable images, contain ambiguities caused by
the inaccuracies inherent to natural language and by the assumptions of the specification
authors. For example, a quantity specified without a unit is ambiguous (e.g., the “Feet or Miles?”
example in Section 4.1), a time without time zone is ambiguous (e.g., scheduling a phone call
between different countries).

Formalization helps identify areas of ambiguity as well as inconsistencies and omissions
in a requirements specification. Once developers identify problems with the specification, they
address them by eliciting more information from the users and the client. Requirements
elicitation and analysis are iterative and incremental activities that occur concurrently.

5.2 An Overview of Analysis

Analysis focuses on producing a model of the system, called the analysis model, which is
correct, complete, consistent, and verifiable. Analysis is different from requirements elicitation
in that developers focus on structuring and formalizing the requirements elicited from users
(Figure 5-2). This formalization leads to new insights and the discovery of errors in the
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Figure 5-2 Products of requirements elicitation and analysis (UML activity diagram).

requirements. As the analysis model may not be understandable to the users and the client,
developers need to update the requirements specification to reflect insights gained during
analysis, then review the changes with the client and the users. In the end, the requirements,
however large, should be understandable by the client and the users.

There is a natural tendency for users and developers to postpone difficult decisions until
later in the project. A decision may be difficult because of lack of domain knowledge, lack of
technological knowledge, or simply because of disagreements among users and developers.
Postponing decisions enables the project to move on smoothly and avoids confrontation with
reality or peers. Unfortunately, difficult decisions eventually must be made, often at higher cost
when intrinsic problems are discovered during testing, or worse, during user evaluation.
Translating a requirements specification into a formal or semiformal model forces developers to
identify and resolve difficult issues early in the development.

The analysis model is composed of three individual models: the functional model,
represented by use cases and scenarios, the analysis object model, represented by class and
object diagrams, and the dynamic model, represented by state machine and sequence diagrams
(Figure 5-3). In the previous chapter, we described how to elicit requirements from the users and
describe them as use cases and scenarios. In this chapter, we describe how to refine the
functional model and derive the object and the dynamic model. This leads to a more precise and
complete specification as details are added to the analysis model. We conclude the chapter by
describing management activities related to analysis. In the next section, we define the main
concepts of analysis.
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use case class state machine sequence
diagram:View diagram:View diagram:View diagram:View
functional object dynamic
model :Model modeT :Model model :Model
analysis

modeT :Model

Figure 5-3 The analysis model is composed of the functional model, the object model, and the dynamic
model. In UML, the functional model is represented with use case diagrams, the object model with class
diagrams, and the dynamic model with state machine and sequence diagrams.

5.3 Analysis Concepts

In this section, we describe the main analysis concepts used in this chapter. In particular, we
describe

* Analysis Object Models and Dynamic Models (Section 5.3.1)
» Entity, Boundary, and Control Objects (Section 5.3.2)
¢ Generalization and Specialization (Section 5.3.3).

5.3.1 Analysis Object Models and Dynamic Models

The analysis model represents the system under development from the user’s point of view. The
analysis object model is a part of the analysis model and focuses on the individual concepts that
are manipulated by the system, their properties and their relationships. The analysis object
model, depicted with UML class diagrams, includes classes, attributes, and operations. The
analysis object model is a visual dictionary of the main concepts visible to the user.

The dynamic model focuses on the behavior of the system. The dynamic model is
depicted with sequence diagrams and with state machines. Sequence diagrams represent the
interactions among a set of objects during a single use case. State machines represent the
behavior of a single object (or a group of very tightly coupled objects). The dynamic model
serves to assign responsibilities to individual classes and, in the process, to identify new classes,
associations, and attributes to be added to the analysis object model.

When working with either the analysis object model or the dynamic model, it is essential
to remember that these models represent user-level concepts, not actual software classes or
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components. For example, classes such as Database, Subsystem, SessionManager, Network,
should not appear in the analysis model as the user is completely shielded from those concepts.
Note that most classes in the analysis object model will correspond to one or more software
classes in the source code. However, the software classes will include many more attributes and
associations than their analysis counterparts. Consequently, analysis classes should be viewed as
high-level abstractions that will be realized in much more detail later. Figure 5-4 depicts good
and bad examples of analysis objects for the SatWatch example.

Domain concepts that should be represented Software classes that should not be represented
in the analysis object model. in the analysis object model.
Refers to how time zones B
UniversalTime TimeZoneDatabase || are stored (design
decision).
Denotes to how location B
TimeZone GPSLocator is measured (design
decision).
Refers to an internal Il
Location UserId mechanism for
identifying

Figure 5-4 Examples and counterexamples of classes in the analysis object model of SatWatch.

5.3.2 Entity, Boundary, and Control Objects

The analysis object model consists of entity, boundary, and control objects [Jacobson et al.,
1999]. Entity objects represent the persistent information tracked by the system. Boundary
objects represent the interactions between the actors and the system. Control objects are in
charge of realizing use cases. In the 2Bwatch example, Year, Month, and Day are entity objects;
Button and LCDDisplay are boundary objects; ChangeDateControl is a control object that
represents the activity of changing the date by pressing combinations of buttons.

Modeling the system with entity, boundary, and control objects provides developers with
simple heuristics to distinguish different, but related concepts. For example, the time that is
tracked by a watch has different properties than the display that depicts the time. Differentiating
between boundary and entity objects forces that distinction: The time that is tracked by the
watch is represented by the Time object. The display is represented by the LCDDisplay. This
approach with three object types results in smaller and more specialized objects. The three-
object-type approach also leads to models that are more resilient to change: the interface to the
system (represented by the boundary objects) is more likely to change than its basic
functionality (represented by the entity and control objects). By separating the interface from the
basic functionality, we are able to keep most of a model untouched when, for example, the user
interface changes, but the entity objects do not.
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To distinguish between different types of objects, UML provides the stereotype
mechanism to enable the developer to attach such meta-information to modeling elements. For
example, in Figure 5-5, we attach the «control» stereotype to the ChangeDateControl object.
In addition to stereotypes, we may also use naming conventions for clarity and recommend
distinguishing the three different types of objects on a syntactical basis: control objects may
have the suffix Control appended to their name; boundary objects may be named to clearly
denote an interface feature (e.g., by including the suffix Form, Button, Display, or Boundary);
entity objects usually do not have any suffix appended to their name. Another benefit of this
naming convention is that the type of the class is represented even when the UML stereotype is
not available, for example, when examining only the source code.

«entity» «control» «boundary»
Year ChangeDateControl Button
«entity» «boundary»

Month LCDDisplay

«entity»
Day

Figure 5-5 Analysis classes for the 2Bwatch example.

5.3.3 Generalization and Specialization

As we saw in Chapter 2, Modeling with UML, inheritance enables us to organize concepts into
hierarchies. At the top of the hierarchy is a general concept (e.g., an Incident, Figure 5-6), and
at the bottom of the hierarchy are the most specialized concepts (e.g., CatInTree,
TrafficAccident, BuildingFire, EarthQuake, ChemicalLeak). There may be any number of
intermediate levels in between, covering more-or-less generalized concepts (e.g.,
LowPriorityIncident, Emergency, Disaster). Such hierarchies allow us to refer to many
concepts precisely. When we use the term Incident, we mean all instances of all types of
Incidents. When we use the term Emergency, we only refer to an Incident that requires an
immediate response.

Generalization is the modeling activity that identifies abstract concepts from lower-level
ones. For example, assume we are reverse-engineering an emergency management system and
discover screens for managing traffic accidents and fires. Noticing common features among
these three concepts, we create an abstract concept called Emergency to describe the common
(and general) features of traffic accidents and fires.

Specialization is the activity that identifies more specific concepts from a high-level one.
For example, assume that we are building an emergency management system from scratch and
that we are discussing its functionality with the client. The client first introduces us with the
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Incident
I |
LowPriority Emergency Disaster
ﬁl I I
CatInTree EarthQuake ChemicallLeak
I I
TrafficAccident BuildingFire

Figure 5-6 An example of a generalization hierarchy (UML class diagram). The top of the hierarchy
represents the most general concept, whereas the bottom nodes represent the most specialized concepts.

concept of an incident, then describes three types of Incidents: Disasters, which require the
collaboration of several agencies, Emergencies, which require immediate handling but can be
handled by a single agency, and LowPriorityIncidents, that do not need to be handled if
resources are required for other, higher-priority Incidents.

In both cases, generalization and specialization result in the specification of inheritance
relationships between concepts. In some instances, modelers call inheritance relationships
generalization-specialization relationships. In this book, we use the term “inheritance” to
denote the relationship and the terms “generalization” and ‘“‘specialization” to denote the
activities that find inheritance relationships.

5.4 Analysis Activities: From Use Cases to Objects

In this section, we describe the activities that transform the use cases and scenarios produced
during requirements elicitation into an analysis model. Analysis activities include:

e Identifying Entity Objects (Section 5.4.1)

¢ Identifying Boundary Objects (Section 5.4.2)

¢ Identifying Control Objects (Section 5.4.3)

¢ Mapping Use Cases to Objects with Sequence Diagrams (Section 5.4.4)

* Modeling Interactions among Objects with CRC Cards (Section 5.4.5)

¢ Identifying Associations (Section 5.4.6)

¢ Identifying Aggregates (Section 5.4.7)

¢ Identifying Attributes (Section 5.4.8)

* Modeling State-Dependent Behavior of Individual Objects (Section 5.4.9)
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* Modeling Inheritance Relationships (Section 5.4.10)
¢ Reviewing the Analysis Model (Section 5.4.11).

We illustrate each activity by focusing on the ReportEmergency use case of FRIEND
described in Chapter 4, Requirements Elicitation. These activities are guided by heuristics. The
quality of their outcome depends on the experience of the developer in applying these heuristics
and methods. The methods and heuristics presented in this section are adapted from [De Marco,
1978], [Jacobson et al., 1999], [Rumbaugh et al., 1991], and [Wirfs-Brock et al., 1990].

5.4.1 Identifying Entity Objects

Participating objects (see Section 4.4.6) form the basis of the analysis model. As described in
Chapter 4, Requirements Elicitation, participating objects are found by examining each use case
and identifying candidate objects. Natural language analysis [Abbott, 1983] is an intuitive set of
heuristics for identifying objects, attributes, and associations from a requirements specification.
Abbott’s heuristics maps parts of speech (e.g., nouns, having verbs, being verbs, adjectives) to
model components (e.g., objects, operations, inheritance relationships, classes). Table 5-1
provides examples of such mappings by examining the ReportEmergency use case (Figure 5-7).

Natural language analysis has the advantage of focusing on the users’ terms. However, it
suffers from several limitations. First, the quality of the object model depends highly on the style
of writing of the analyst (e.g., consistency of terms used, verbification of nouns). Natural
language is an imprecise tool, and an object model derived literally from text risks being
imprecise. Developers can address this limitation by rephrasing and clarifying the requirements
specification as they identify and standardize objects and terms. A second limitation of natural

Table 5-1  Abbott’s heuristics for mapping parts of speech to model components [Abbott, 1983].

Part of speech Model component Examples

Proper noun Instance Alice

Common noun Class Field officer

Doing verb Operation Creates, submits, selects
Being verb Inheritance Is a kind of, is one of either
Having verb Aggregation Has, consists of, includes
Modal verb Constraints Must be

Adjective Attribute Incident description
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Use case name ReportEmergency
Entry condition 1. The FieldOfficer activates the “Report Emergency” function of her terminal.
Flow of events 2. FRIEND responds by presenting a form to the officer. The form includes an

emergency type menu (general emergency, fire, transportation), a location,
incident description, resource request, and hazardous material fields.

3. The Fie1dOfficer completes the form by specifying minimally the emergency
type and description fields. The Fie1dOfficer may also describe possible
responses to the emergency situation and request specific resources. Once the
form is completed, the Fie1d0fficer submits the form by pressing the “Send
Report” button, at which point, the Dispatcher is notified.

4. The Dispatcher reviews the information submitted by the FieldOfficer and
creates an Incident in the database by invoking the OpenIncident use case.
All the information contained in the Fie1dOfficer’s form is automatically
included in the incident. The Dispatcher selects a response by allocating
resources to the incident (with the A1TocateResources use case) and
acknowledges the emergency report by sending a FRIENDgram to the
FieldOfficer.

Exit condition 5. The Fiel1dOfficer receives the acknowledgment and the selected response.

Figure 5-7 An example of use case, ReportEmergency (one-column format).

language analysis is that there are many more nouns than relevant classes. Many nouns
correspond to attributes or synonyms for other nouns. Sorting through all the nouns for a large
requirements specification is a time-consuming activity. In general, Abbott’s heuristics work
well for generating a list of initial candidate objects from short descriptions, such as the flow of
events of a scenario or a use case. The following heuristics can be used in conjunction with
Abbott’s heuristics:

Heuristics for identifying entity objects

¢ Terms that developers or users need to clarify in order to understand the use case

¢ Recurring nouns in the use cases (e.g., Incident)

¢ Real-world entities that the system needs to track (e.g., FieldOfficer, Dispatcher, Resource)
¢ Real-world activities that the system needs to track (e.g., EmergencyOperationsPlan)

¢ Data sources or sinks (e.g., Printer).

Developers name and briefly describe the objects, their attributes, and their
responsibilities as they are identified. Uniquely naming objects promotes a standard
terminology. For entity objects we recommend always to start with the names used by end users
and application domain specialists. Describing objects, even briefly, allows developers to clarify
the concepts they use and avoid misunderstandings (e.g., using one object for two different but
related concepts). Developers need not, however, spend a lot of time detailing objects or



182 Chapter 5 ¢ Analysis

attributes given that the analysis model is still in flux. Developers should document attributes
and responsibilities if they are not obvious; a tentative name and a brief description for each
object is sufficient otherwise. There will be plenty of iterations during which objects can be
revised. However, once the analysis model is stable, the description of each object should be as
detailed as necessary (see Section 5.4.11).

For example, after a first examination of the ReportEmergency use case (Figure 5-7), we
use application domain knowledge and interviews with the users to identify the objects
Dispatcher, EmergencyReport, FieldOfficer, and Incident. Note that the EmergencyReport
object is not mentioned explicitly by name in the ReportEmergency use case. Step 4 of the use
case refers to the emergency report as the “information submitted by the FieldOfficer.” After
review with the client, we discover that this information is usually referred to as the “emergency
report” and decide to name the corresponding object EmergencyReport.

The definition of entity objects leads to the initial analysis model described in Table 5-2.
Note that this model is far from a complete description of the system implementing the
ReportEmergency use case. In the next section, we describe the identification of boundary
objects.

Table 5-2  Entity objects for the ReportEmergency use case.

Dispatcher Police officer who manages Incidents. A Dispatcher opens, documents, and
closes Incidents in response to Emergency Reports and other communication
with FieldOfficers. Dispatchers are identified by badge numbers.

EmergencyReport Initial report about an Incident from a FieldOfficer to a Dispatcher. An
EmergencyReport usually triggers the creation of an Incident by the
Dispatcher. An EmergencyReport is composed of an emergency level, a type
(fire, road accident, other), a location, and a description.

FieldOfficer Police or fire officer on duty. A Fie1dOfficer can be allocated to, at most, one
Incident at atime. FieldOfficers are identified by badge numbers.

Incident Situation requiring attention from a Fie1dOfficer. An Incident may be
reported in the system by a Fie1d0fficer or anybody else external to the system.
An Incident is composed of a description, a response, a status (open, closed,
documented), a location, and a number of FieldOfficers.

5.4.2 Identifying Boundary Objects

Boundary objects represent the system interface with the actors. In each use case, each actor
interacts with at least one boundary object. The boundary object collects the information from
the actor and translates it into a form that can be used by both entity and control objects.
Boundary objects model the user interface at a coarse level. They do not describe in detail
the visual aspects of the user interface. For example, boundary objects such as “menu item” or
“scroll bar” are too detailed. First, developers can discuss user interface details more easily with
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sketches and mock-ups. Second, the design of the user interface continues to evolve as a
consequence of usability tests, even after the functional specification of the system becomes
stable. Updating the analysis model for every user interface change is time consuming and does
not yield any substantial benefit.

suited for that).

Heuristics for identifying boundary objects

* Identify user interface controls that the user needs to initiate the use case (e.g.,
ReportEmergencyButton).

* Identify forms the users needs to enter data into the system (e.g., EmergencyReportForm).

* Identify notices and messages the system uses to respond to the user (e.g.,
AcknowledgmentNotice).

¢ When multiple actors are involved in a use case, identify actor terminals (e.g., DispatcherStation)
to refer to the user interface under consideration.

* Do not model the visual aspects of the interface with boundary objects (user mock-ups are better

e Always use the end user’s terms for describing interfaces; do not use terms from the solution or
implementation domains.

We find the boundary objects of Table 5-3 by examining the ReportEmergency use case.

Table 5-3 Boundary objects for the ReportEmergency use case.

AcknowledgmentNotice

Notice used for displaying the Dispatcher’s acknowledgment to the
FieldOfficer.

DispatcherStation

Computer used by the Dispatcher-.

ReportEmergencyButton

Button used by a FieldOff1icer to initiate the ReportEmergency use
case.

EmergencyReportForm

Form used for the input of the ReportEmergency. This form is
presented to the FieldOfficer on the FieldOfficerStation when
the “Report Emergency” function is selected. The
EmergencyReportForm contains fields for specifying all attributes of an
emergency report and a button (or other control) for submitting the
completed form.

FieldOfficerStation

Mobile computer used by the FieldOfficer.

IncidentForm

Form used for the creation of Incidents. This form is presented to the
Dispatcher on the DispatcherStation when the EmergencyReport
is received. The Dispatcher also uses this form to allocate resources
and to acknowledge the FieldOfficer’s report.
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Note that the IncidentForm is not explicitly mentioned anywhere in the ReportEmergency
use case. We identified this object by observing that the Dispatcher needs an interface to view
the emergency report submitted by the Fie1dOfficer and to send back an acknowledgment. The
terms used for describing the boundary objects in the analysis model should follow the user
terminology, even if it is tempting to use terms from the implementation domain.

We have made progress toward describing the system. We now have included the interface
between the actor and the system. We are, however, still missing some significant pieces of the
description, such as the order in which the interactions between the actors and the system occur.
In the next section, we describe the identification of control objects.

5.4.3 Identifying Control Objects

Control objects are responsible for coordinating boundary and entity objects. Control objects
usually do not have a concrete counterpart in the real world. Often a close relationship exists
between a use case and a control object; a control object is usually created at the beginning of a
use case and ceases to exist at its end. It is responsible for collecting information from the
boundary objects and dispatching it to entity objects. For example, control objects describe the
behavior associated with the sequencing of forms, undo and history queues, and dispatching
information in a distributed system.

Initially, we model the control flow of the ReportEmergency use case with a control object
for each actor: ReportEmergencyControl for the FieldOfficer and ManageEmergency-Control
for the Dispatcher, respectively (Table 5-4).

The decision to model the control flow of the ReportEmergency use case with two control
objects stems from the knowledge that the FieldOfficerStation and the DispatcherStation
are actually two subsystems communicating over an asynchronous link. This decision could
have been postponed until the system design activity. On the other hand, making this concept
visible in the analysis model allows us to focus on such exception behavior as the loss of
communication between both stations.

Heuristics for identifying control objects

¢ Identify one control object per use case.

* Identify one control object per actor in the use case.

¢ The life span of a control object should cover the extent of the use case or the extent of a user
session. If it is difficult to identify the beginning and the end of a control object activation, the
corresponding use case probably does not have well-defined entry and exit conditions.

In modeling the ReportEmergency use case, we modeled the same functionality by using
entity, boundary, and control objects. By shifting from the event flow perspective to a structural
perspective, we increased the level of detail of the description and selected standard terms to
refer to the main entities of the application domain and the system. In the next section, we
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Table 5-4  Control objects for the ReportEmergency use case.

ReportEmergencyControl Manages the ReportEmergency reporting function on the
FieldOfficerStation. This object is created when the FieldOfficer
selects the “Report Emergency” button. It then creates an
EmergencyReportForm and presents it to the Fie1dOfficer. After
submitting the form, this object then collects the information from the
form, creates an EmergencyReport, and forwards it to the Dispatcher.
The control object then waits for an acknowledgment to come back
from the DispatcherStation. When the acknowledgment is received,
the ReportEmergencyControl object creates an
AcknowledgmentNotice and displays it to the FieldOfficer.

ManageEmergencyControl  Manages the ReportEmergency reporting function on the
DispatcherStation. This object is created when an
EmergencyReport is received. It then creates an IncidentForm and
displays it to the Dispatcher. Once the Dispatcher has created an
Incident, allocated Resources, and submitted an acknowledgment,
ManageEmergencyControl forwards the acknowledgment to the
FieldOfficerStation.

construct a sequence diagram using the ReportEmergency use case and the objects we
discovered to ensure the completeness of our model.

5.4.4 Mapping Use Cases to Objects with Sequence Diagrams

A sequence diagram ties use cases with objects. It shows how the behavior of a use case (or
scenario) is distributed among its participating objects. Sequence diagrams are usually not as
good a medium for communication with the user as use cases are, since sequence diagrams
require more background about the notation. For computer savvy clients, they are intuitive and
can be more precise than use cases. In all cases, however, sequence diagrams represent another
shift in perspective and allow the developers to find missing objects or grey areas in the
requirements specification.

In this section, we model the sequence of interactions among objects needed to realize the
use case. Figures 5-8 through 5-10 are sequence diagrams associated with the ReportEmergency
use case. The columns of a sequence diagram represent the objects that participate in the use
case. The left-most column is the actor who initiates the use case. Horizontal arrows across
columns represent messages, or stimuli, that are sent from one object to the other. Time proceeds
vertically from top to bottom. For example, the first arrow in Figure 5-8 represents the press
message sent by a FieldOfficer to an ReportEmergencyButton. The receipt of a message
triggers the activation of an operation. The activation is represented by a vertical rectangle from
which other messages can originate. The length of the rectangle represents the time the
operation is active. In Figure 5-8, the operation triggered by the press message sends a create
message to the ReportEmergencyControl class. An operation can be thought of as a service that
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the object provides to other objects. Sequence diagrams also depict the lifetime of objects.
Objects that already exist before the first stimuli in the sequence diagram are depicted at the top
of the diagram. Objects that are created during the interaction are depicted with the «create»
message pointing to the object. Instances that are destroyed during the interaction have a cross
indicating when the object ceases to exist. Between the rectangle representing the object and the
cross (or the bottom of the diagram, if the object survives the interaction), a dashed line
represents the time span when the object can receive messages. The object cannot receive
messages below the cross sign. For example, in Figure 5-8 an object of class
ReportEmergencyForm is created when object of ReportEmergencyControl sends the «create»
message and is destroyed once the EmergencyReportForm has been submitted.

Report Manage
EmergencyButton EmergencyControl

. - !
FieldOfficer o | «Create»

— ReportEmergency
—
pressQ Control

«Create»
«create | ReportEmergency
Form

fillContents ()

submit() [I:I

‘ submitReport()

|

«create»
I ——— A Emergency
Report

submitReportToDispatcher()

«destroy»

I
I
I
I
I
I
I
I
o

Figure 5-8 Sequence diagram for the ReportEmergency use case.

In general, the second column of a sequence diagram represents the boundary object with
which the actor interacts to initiate the use case (e.g., ReportEmergencyButton). The third
column is a control object that manages the rest of the use case (e.g., ReportEmergency-
Control). From then on, the control object creates other boundary objects and may interact with
other control objects as well (e.g., ManageEmergencyControl).

In Figure 5-9, we discover the entity object Acknowledgment that we forgot during our
initial examination of the ReportEmergency use case (in Table 5-2). The Acknowledgment object
is different from an AcknowledgmentNotice: Acknowledgment holds the information associated
with an Acknowledgment and is created before the AcknowledgmentNotice boundary object.
When describing the Acknowledgment object, we also realize that the original ReportEmergency
use case (described in Figure 5-7) is incomplete. It only mentions the existence of an
Acknowledgment and does not describe the information associated with it. In this case,
developers need clarification from the client to define what information is needed in the
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Figure 5-9 Sequence diagram for the ReportEmergency use case (continued from Figure 5-8).
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Figure 5-10 Sequence diagram for the ReportEmergency use case (continued from Figure 5-9).

Acknowledgment. After obtaining such clarification, the Acknowledgment object is added to the
analysis model (Table 5-5), and the ReportEmergency use case is clarified to include the
additional information (Figure 5-11).

By constructing sequence diagrams, we not only model the order of the interaction among
the objects, we also distribute the behavior of the use case. That is, we assign responsibilities to
each object in the form of a set of operations. These operations can be shared by any use case in
which a given object participates. Note that the definition of an object that is shared across two
or more use cases should be identical; that is, if an operation appears in more than one sequence
diagram, its behavior should be the same.
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Use case name

ReportEmergency

Entry condition

1.

The FieldOfficer activates the “Report Emergency” function of her
terminal.

Flow of events

FRIEND responds by presenting a form to the officer. The form includes an
emergency type menu (general emergency, fire, transportation), a location,
incident description, resource request, and hazardous material fields.

The FieldOfficer completes the form by specifying minimally the
emergency type and description fields. The Fiel1dOfficer may also
describe possible responses to the emergency situation and request specific
resources. Once the form is completed, the FieldOfficer submits the
form by pressing the “Send Report” button, at which point the Dispatcher
is notified.

The Dispatcher reviews the information submitted by the Fie1dOfficer
and creates an Incident in the database by invoking the OpenIncident
use case. All the information contained in the Fie1d0fficer’s form is
automatically included in the Incident. The Dispatcher selects a
response by allocating resources to the Incident (with the
AllocateResources use case) and acknowledges the emergency report by
sending a FRIENDgram to the Fie1dOfficer. The Acknowledgment
indicates to the Fiel1dOfficer that the EmergencyReport was received,
an Incident created, and resources allocated to the Incident. The
Acknowledgment includes the resources (e.g., a fire truck) and their
estimated arrival time.

Exit condition

The FieldOfficer receives the Acknowledgment and the selected
response.

Figure 5-11 Refined ReportEmergency use case. The discovery and addition of the Acknowledgment
object to the analysis model revealed that the original ReportEmergency use case did not accurately
describe the information associated with Acknowledgments. The refinements are indicated in boldface.

Table 5-5 Acknowledgment object for the ReportEmergency use case.

Acknowledgment

Response of a dispatcher to a Fie1dOfficer’s EmergencyReport. By
sending an Acknowledgment, the Dispatcher communicates to the
Fie1dOfficer that she has received the EmergencyReport, created an
Incident, and assigned resources to it. The Acknowledgment contains the
assigned resources and their estimated arrival time.

Sharing operations across use cases allows developers to remove redundancies in the
requirements specification and to improve its consistency. Note that clarity should always be
given precedence to eliminating redundancy. Fragmenting behavior across many operations
unnecessarily complicates the requirements specification.

In analysis, sequence diagrams are used to help identify new participating objects and
missing behavior. Because sequence diagrams focus on high-level behavior, implementation



Analysis Activities: From Use Cases to Objects 189

issues such as performance should not be addressed at this point. Given that building interaction
diagrams can be time consuming, developers should focus on problematic or underspecified
functionality first. Drawing interaction diagrams for parts of the system that are simple or well
defined might not look like a good investment of analysis resources, but it should also be done to
avoid overlooking some key decisions.

Heuristics for drawing sequence diagrams

¢ The first column should correspond to the actor who initiated the use case.

¢ The second column should be a boundary object (that the actor used to initiate the use case).

¢ The third column should be the control object that manages the rest of the use case.

* Control objects are created by boundary objects initiating use cases.

* Boundary objects are created by control objects.

* Entity objects are accessed by control and boundary objects.

* Entity objects never access boundary or control objects; this makes it easier to share entity objects
across use cases.

5.4.5 Modeling Interactions among Objects with CRC Cards

An alternative for identifying interactions among objects are CRC cards [Beck & Cunningham,
1989]. CRC cards (CRC stands for class, responsibilities, and collaborators) were initially
introduced as a tool for teaching object-oriented concepts to novices and to experienced
developers unfamiliar with object-orientation. Each class is represented with an index card
(called the CRC card). The name of the class is depicted on the top, its responsibilities in the left
column, and the names of the classes it needs to accomplish its responsibilities are depicted in
the right column. Figure 5-12 depicts two cards for the ReportEmergencyControl and the
Incident classes.

CRC cards can be used during modeling sessions with teams. Participants, typically a mix
of developers and application domain experts, go through a scenario and identify the classes that
are involved in realizing the scenario. One card per instance is put on the table. Responsibilities

ReportEmergencyControl |
Incident
Responsibilities Collaborators
Responsibilities Collaborators
Collects input from Field- EmergencyReportForm
officer EmergencyReport Track all information Resource
Controls sequence of AcknowledgementNotic| re]ated to a single inci-
forms during emergency dent.
reporting

Figure 5-12 Examples of CRC cards for the ReportEmergencyControl and the Incident classes.
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are then assigned to each class as the scenario unfolds and participants negotiate the
responsibilities of each object. The collaborators column is filled as the dependencies with other
cards are identified. Cards are modified or pushed to the side as new alternatives are explored.
Cards are never thrown away, because building blocks for past alternatives can be reused when
new ideas are put on the table.

CRC cards and sequence diagrams are two different representations for supporting the
same type of activity. Sequence diagrams are a better tool for a single modeler or for
documenting a sequence of interactions, because they are more precise and compact. CRC cards
are a better tool for a group of developers refining and iterating over an object structure during a
brainstorming session, because they are easier to create and to modify.

5.4.6 Identifying Associations

Whereas sequence diagrams allow developers to represent interactions among objects over time,
class diagrams allow developers to describe the interdependencies of objects. We described the
UML class diagram notation in Chapter 2, Modeling with UML, and use it throughout the book
to represent various project artifacts (e.g., activities, deliverables). In this section, we discuss the
use of class diagrams for representing associations among objects. In Section 5.4.8, we discuss
the use of class diagrams for representing object attributes.

An association shows a relationship between two or more classes. For example, a
FieldOfficer writes an EmergencyReport (see Figure 5-13). Identifying associations has two
advantages. First, it clarifies the analysis model by making relationships between objects explicit
(e.g., an EmergencyReport can be created by a FieldOfficer or a Dispatcher). Second, it
enables the developer to discover boundary cases associated with links. Boundary cases are
exceptions that must be clarified in the model. For example, it is intuitive to assume that most
EmergencyReports are written by one FieldOfficer. However, should the system support
EmergencyReports written by more than one? Should the system allow for anonymous
EmergencyReports? Those questions should be investigated during analysis by discussing them
with the client or with end users.

Associations have several properties:

* A name to describe the association between the two classes (e.g., Writes in
Figure 5-13). Association names are optional and need not be unique globally.

; ; 1 writes
FieldOfficer EmergencyReport

author document

Figure 5-13 An example of association between the EmergencyReport and the FieldOfficer classes.
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* A role at each end, identifying the function of each class with respect to the
associations (e.g., author is the role played by FieldOfficer in the Writes
association).

* A multiplicity at each end, identifying the possible number of instances (e.g., *
indicates a FieldOfficer may write zero or more EmergencyReports, whereas 1
indicates that each EmergencyReport has exactly one Fie1dOfficer as author).

Initially, the associations between entity objects are the most important, as they reveal
more information about the application domain. According to Abbott’s heuristics (see
Table 5-1), associations can be identified by examining verbs and verb phrases denoting a state
(e.g., has, is part of, manages, reports to, is triggered by, is contained in, talks to, includes).
Every association should be named, and roles should be assigned to each end.

Heuristics for identifying associations

¢ Examine verb phrases.

* Name associations and roles precisely.

* Use qualifiers as often as possible to identify namespaces and key attributes.
» Eliminate any association that can be derived from other associations.

* Do not worry about multiplicity until the set of associations is stable.

¢ Too many associations make a model unreadable.

The object model will initially include too many associations if developers include all
associations identified after examining verb phrases. In Figure 5-14, for example, we identify
two relationships: the first between an Incident and the EmergencyReport that triggered its
creation; the second between the Incident and the reporting FieldOfficer. Given that the
EmergencyReport and FieldOfficer already have an association modeling authorship, the
association between Incident and FieldOfficer is not necessary. Adding unnecessary
associations complicates the model, leading to incomprehensible models and redundant
information.

Most entity objects have an identifying characteristic used by the actors to access them.
FieldOfficers and Dispatchers have a badge number. Incidents and Reports are assigned
numbers and are archived by date. Once the analysis model includes most classes and
associations, the developers should go through each class and check how it is identified by the
actors and in which context. For example, are Fie1d0fficer badge numbers unique across the
universe? Across a city? A police station? If they are unique across cities, can the FRIEND system
know about FieldOfficers from more than one city? This approach can be formalized by
examining each individual class and identifying the sequence of associations that need to be
traversed to access a specific instance of that class.
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author document
1 writes *

FieldOfficer EmergencyReport
1 1
reports triggers

P 1 Incident 1 99

Figure 5-14 Eliminating redundant association. The receipt of an EmergencyReport triggers the creation
of an Incident by a Dispatcher. Given that the EmergencyReport has an association with the
FieldOfficer that wrote it, it is not necessary to keep an association between FieldOfficer and
Incident.

5.4.7 Identifying Aggregates

Aggregations are special types of associations denoting a whole—part relationship. For example,
a FireStation consists of a number of FireFighters, FireEngines, Ambulances, and a
LeadCar. A State is composed of a number of Counties that are, in turn, composed of a number
of Townships (Figure 5-15). An aggregation is shown as a association with a diamond on the
side of the whole part.

There are two types of aggregation, composition and shared. A solid diamond denotes
composition. A composition aggregation indicates that the existence of the parts depends on
the whole. For example, a County is always part of exactly one State, a Township is always part
of a County. As political boundaries do not change often, a Township will not be part of or
shared with another County (at least, in the life time of the emergency response system).

A hollow diamond denotes a shared aggregation relationship, indicating the whole and
the part can exist independently. For example, although a FireEngine is part of at most one
FireStation at the time, it can be reassigned to a different FireStation during its life time.

State FireStation
County
FireFighter LeadCar
FireEngine Ambulance
Township

Figure 5-15 Examples of aggregations and compositions (UML class diagram). A State is composed of
many Counties, which in turn is composed of many Townships. A FireStation includes FireFighters,
FireEngines, Ambulances, and a LeadCar.
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Aggregation associations are used in the analysis model to denote whole—part concepts.
Aggregation associations add information to the analysis model about how containment
concepts in the application domain can be organized in a hierarchy or in a directed graph.
Aggregations are often used in the user interface to help the user browse through many
instances. For example, in Figure 5-15, FRIEND could offer a tree representation for
Dispatchers to find Counties within a State or Townships with a specific County. However, as
with many modeling concepts, it is easy to over-structure the model. If you are not sure that the
association you are describing is a whole—part concept, it is better to model it as a one-to-many
association, and revisit it later when you have a better understanding of the application domain.

5.4.8 Identifying Attributes

Attributes are properties of individual objects. For example, an EmergencyReport, as described
in Table 5-2, has an emergency type, a location, and a description property (see Figure 5-16).
These are entered by a FieldOfficer when she reports an emergency and are subsequently
tracked by the system. When identifying properties of objects, only the attributes relevant to the
system should be considered. For example, each Field0Officer has a social security number that
is not relevant to the emergency information system. Instead, Fie1dOfficers are identified by
badge number, which is represented by the badgeNumber property.

EmergencyReport

emergencyType:{fire,traffic,other}
location:String
description:String

Figure 5-16 Attributes of the EmergencyReport class.

Properties that are represented by objects are not attributes. For example, every
EmergencyReport has an author that is represented by an association to the FieldOfficer class.
Developers should identify as many associations as possible before identifying attributes to
avoid confusing attributes and objects. Attributes have:

* A name identifying them within an object. For example, an EmergencyReport may
have a reportType attribute and an emergencyType attribute. The reportType
describes the kind of report being filed (e.g., initial report, request for resource, final
report). The emergencyType describes the type of emergency (e.g., fire, traffic, other).
To avoid confusion, these attributes should not both be called type.

* A brief description.
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* A type describing the legal values it can take. For example, the description attribute
of an EmergencyReport is a string. The emergencyType attribute is an enumeration that
can take one of three values: fire, traffic, other. Attribute types are based on
predefined basic types in UML.

Attributes can be identified using Abbott’s heuristics (see Table 5-1). In particular, a noun
phrase followed by a possessive phrase (e.g., the description of an emergency) or an adjective
phrase (e.g., the emergency description) should be examined. In the case of entity objects, any
property that must be stored by the system is a candidate attribute.

Note that attributes represent the least stable part of the object model. Often, attributes are
discovered or added late in the development when the system is evaluated by the users. Unless
the added attributes are associated with additional functionality, the added attributes do not
entail major changes in the object (and system) structure. For these reasons, the developers need
not spend excessive resources in identifying and detailing attributes that represent less important
aspects of the system. These attributes can be added later when the analysis model or the user
interface sketches are validated.

Heuristics for identifying attributes?®

* Examine possessive phrases.

* Represent stored state as an attribute of the entity object.

* Describe each attribute.

* Do not represent an attribute as an object; use an association instead (see Section 5.4.6).
* Do not waste time describing fine details before the object structure is stable.

a.  Adapted from [Rumbaugh et al., 1991].

5.4.9 Modeling State-Dependent Behavior of Individual Objects

Sequence diagrams are used to distribute behavior across objects and to identify operations.
Sequence diagrams represent the behavior of the system from the perspective of a single use
case. State machine diagrams represent behavior from the perspective of a single object.
Viewing behavior from the perspective of each object enables the developer to build a more
formal description of the behavior of the object, and consequently, to identify missing use cases.
By focusing on individual states, developers may identify new behavior. For example, by
examining each transition in the state machine diagram that is triggered by a user action, the
developer should be able to identify a flow step in a use case that describes the actor action that
triggers the transition. Note that it is not necessary to build state machines for every class in the
system. Only objects with an extended lifespan and state-dependent behavior are worth
considering. This is almost always the case for control objects, less often for entity objects, and
almost never for boundary objects.
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Figure 5-17 displays a state machine for the Incident class. The examination of this state
machine may help the developer to check if there are use cases for documenting, closing, and
archiving Incidents. By further refining each state, the developer can add detail to the different
user actions that change the state of an incident. For example, during the Active state of an
indicate, FieldOfficers should be able to request new resources, and Dispatchers should be
able to allocate resource to existing incidents.

Y
e Active \

field officer
arrives on site

dispatcher
allocates resources

Assessment

field officer requests
additional resources

Disengagement

field officer

Response

K releases resources(@) /

all resources
deallocated when date > 1lyr.

Inactive Archived

all resources
submitted reports

Figure 5-17 UML state machine for Incident.

5.4.10 Modeling Inheritance Relationships between Objects

Generalization is used to eliminate redundancy from the analysis model. If two or more classes
share attributes or behavior, the similarities are consolidated into a superclass. For example,
Dispatchers and FieldOfficers both have a badgeNumber attribute that serves to identify them
within a city. FieldOfficers and Dispatchers are both PoliceOfficers who are assigned
different functions. To model explicitly this similarity, we introduce an abstract PoT17iceOfficer
class from which the FieldOfficer and Dispatcher classes inherit (see Figure 5-18).
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PoliceOfficer

badgeNumber:Integer

AN

FieldOfficer | | Dispatcher

Figure 5-18 An example of inheritance relationship (UML class diagram).

5.4.11 Reviewing the Analysis Model

The analysis model is built incrementally and iteratively. The analysis model is seldom correct
or even complete on the first pass. Several iterations with the client and the user are necessary
before the analysis model converges toward a correct specification usable by the developers for
design and implementation. For example, an omission discovered during analysis will lead to
adding or extending a use case in the requirements specification, which may lead to eliciting
more information from the user.

Once the number of changes to the model are minimal and the scope of the changes
localized, the analysis model becomes stable. Then the analysis model is reviewed, first by the
developers (i.e., internal reviews), then jointly by the developers and the client. The goal of the
review is to make sure that the requirements specification is correct, complete, consistent, and
unambiguous. Moreover, developers and client also review if the requirements are realistic and
verifiable. Note that developers should be prepared to discover errors downstream and make
changes to the specification. It is, however, a worthwhile investment to catch as many
requirements errors upstream as possible. The review can be facilitated by a checklist or a list of
questions. Below are example questions adapted from [Jacobson et al., 1999] and [Rumbaugh et
al., 1991].

The following questions should be asked to ensure that the model is correct:
¢ Is the glossary of entity objects understandable by the user?
¢ Do abstract classes correspond to user-level concepts?
¢ Are all descriptions in accordance with the users’ definitions?
¢ Do all entity and boundary objects have meaningful noun phrases as names?
* Do all use cases and control objects have meaningful verb phrases as names?
¢ Are all error cases described and handled?

The following questions should be asked to ensure that the model is complete:
¢ For each object: Is it needed by any use case? In which use case is it created? modified?
destroyed? Can it be accessed from a boundary object?



Analysis Activities: From Use Cases to Objects 197

* For each attribute: When is it set? What is its type? Should it be a qualifier?

* For each association: When is it traversed? Why was the specific multiplicity chosen?
Can associations with one-to-many and many-to-many multiplicities be qualified?

* For each control object: Does it have the necessary associations to access the objects
participating in its corresponding use case?

The following questions should be asked to ensure that the model is consistent:
¢ Are there multiple classes or use cases with the same name?
* Do entities (e.g., use cases, classes, attributes) with similar names denote similar
concepts?
e Are there objects with similar attributes and associations that are not in the same
generalization hierarchy?

The following questions should be asked to ensure that the system described by the analysis
model is realistic:
¢ Are there any novel features in the system? Were any studies or prototypes built to
ensure their feasibility?
e Can the performance and reliability requirements be met? Were these requirements
verified by any prototypes running on the selected hardware?

5.4.12 Analysis Summary

The requirements elicitation activity is highly iterative and incremental. Chunks of functionality
are sketched and proposed to the users and the client. The client adds requirements, criticizes
existing functionality, and modifies existing requirements. The developers investigate
nonfunctional requirements through prototyping and technology studies and challenge each
proposed requirement. Initially, requirements elicitation resembles a brainstorming activity. As
the description of the system grows and the requirements become more concrete, developers
need to extend and modify the analysis model in a more orderly manner to manage the
complexity of information.

Figure 5-19 depicts a typical sequence of the analysis activities. The users, developers, and
client are involved in developing an initial use case model. They identify a number of concepts
and build a glossary of participating objects. These first two activities were discussed in the
previous chapter. The remaining activities were covered in this section. The developers classify
the participating objects into entity, boundary, and control objects (in Define entity objects,
Section 5.4.1, Define boundary objects, Section5.4.2, and Define control objects,
Section 5.4.3). These activities occur in a tight loop until most of the functionality of the system
has been identified as use cases with names and brief descriptions. Then the developers
construct sequence diagrams to identify any missing objects (Define interactions, Section 5.4.4).
When all entity objects have been named and briefly described, the analysis model should
remain fairly stable as it is refined.
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Figure 5-19 Analysis activities (UML activities diagram).

Define associations (Section 5.4.6), Define attributes (Section 5.4.8) and Define state-
dependent behavior (Section 5.4.9) constitute the refinement of the analysis model. These three
activities occur in a tight loop during which the state of the objects and their associations are
extracted from the sequence diagrams and detailed. The use cases are then modified to account
for any changes in functionality. This phase may lead to the identification of an additional chunk
of functionality in the form of additional use cases. The overall process is then repeated
incrementally for these new use cases.

During Consolidate model (Section 5.4.10), the developers solidify the model by
introducing qualifiers and generalization relationships and suppressing redundancies. During
Review model (Section 5.4.11), the client, users, and developers examine the model for
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correctness, consistency, completeness, and realism. The project schedule should plan for
multiple reviews to ensure high-quality requirements and to provide opportunities to learn the
requirements activity. However, once the model reaches the point where most modifications are
cosmetic, system design should proceed. There will come a point during requirements where no
more problems can be anticipated without further information from prototyping, usability
studies, technology surveys, or system design. Getting every detail right becomes a wasteful
exercise: some of these details will become irrelevant by the next change. Management should
recognize this point and initiate the next phase in the project.

5.5 Managing Analysis

In this section, we discuss issues related to managing the analysis activities in a multi-team
development project. The primary challenge in managing the requirements in such a project is to
maintain consistency while using so many resources. In the end, the requirements analysis
document should describe a single coherent system understandable to a single person.

We first describe a document template that can be used to document the results of analysis
(Section 5.5.1). Next, we describe the role assignment to analysis (Section 5.5.2). We then
address communication issues during analysis. Next, we address management issues related to
the iterative and incremental nature of requirements (Section 5.5.4).

5.5.1 Documenting Analysis

As we saw in the previous chapter, the requirements elicitation and analysis activities are
documented in the Requirements Analysis Document (RAD, Figure 5-20). RAD Sections 1
through 3.5.2 have already been written during requirements elicitation. During analysis, we
revise these sections as ambiguities and new functionality are discovered. The main effort,
however, focuses on writing the sections documenting the analysis object model (RAD Sections
3.5.3 and 3.5.4).

RAD Section 3.5.3, Object models, documents in detail all the objects we identified, their
attributes, and, when we used sequence diagrams, operations. As each object is described with
textual definitions, relationships among objects are illustrated with class diagrams.

RAD Section 3.5.4, Dynamic models, documents the behavior of the object model in terms
of state machine diagrams and sequence diagrams. Although this information is redundant with
the use case model, dynamic models enable us to represent more precisely complex behaviors,
including use cases involving many actors.

The RAD, once completed and published, will be baselined and put under configuration
management. The revision history section of the RAD will provide a history of changes
including the author responsible for each change, the date of the change, and brief description of
the change.
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Requirements Analysis Document

1. Introduction
2. Current system
3. Proposed system
3.1 Overview
3.2 Functional requirements
3.3 Nonfunctional requirements
3.4 System models
3.4.1 Scenarios
3.4.2 Use case model
3.4.3 Object model
3.4.3.1 Data dictionary
3.4.3.2 Class diagrams
3.4.4 Dynamic models
3.4.5 User interface—navigational paths and screen mock-ups
4. Glossary

Figure 5-20 Overview outline of the Requirements Analysis Document (RAD). See Figure 4-16 for a
detailed outline.

5.5.2 Assigning Responsibilities

Analysis requires the participation of a wide range of individuals. The target user provides
application domain knowledge. The client funds the project and coordinates the user side of the
effort. The analyst elicits application domain knowledge and formalizes it. Developers provide
feedback on feasibility and cost. The project manager coordinates the effort on the development
side. For large systems, many users, analysts, and developers may be involved, introducing
additional challenges during for integration and communication requirements of the project.
These challenges can be met by assigning well-defined roles and scopes to individuals. There
are three main types of roles: generation of information, integration, and review.

¢ The end user is the application domain expert who generates information about the
current system, the environment of the future system, and the tasks it should support.
Each user corresponds to one or more actors and helps identify their associated use
cases.

e The client, an integration role, defines the scope of the system based on user
requirements. Different users may have different views of the system, either because
they will benefit from different parts of the system (e.g., a dispatcher vs. a field officer)
or because the users have different opinions or expectations about the future system.
The client serves as an integrator of application domain information and resolves
inconsistencies in user expectations.
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e The analyst is the application domain expert who models the current system and
generates information about the future system. Each analyst is initially responsible for
detailing one or more use cases. For a set of use cases, the analysis will identify a
number of objects, their associations, and their attributes using the techniques outlined
in Section 5.4. The analyst is typically a developer with broad application domain
knowledge.

¢ The architect, an integration role, unifies the use case and object models from a system
point of view. Different analysts may have different styles of modeling and different
views of the parts of the systems for which they are not responsible. Although analysts
work together and will most likely resolve differences as they progress through
analysis, the role of the architect is necessary to provide a system philosophy and to
identify omissions in the requirements.

¢ The document editor is responsible for the low-level integration of the document and
for the overall format of the document and its index.

¢ The configuration manager is responsible for maintaining a revision history of the
document as well as traceability information relating the RAD with other documents
(such as the System Design Document; see Chapter 6, System Design: Decomposing
the System).

¢ The reviewer validates the RAD for correctness, completeness, consistency, and
clarity. Users, clients, developers, or other individuals may become reviewers during
requirements validation. Individuals that have not yet been involved in the development
represent excellent reviewers, because they are more able to identify ambiguities and
areas that need clarification.

The size of the system determines the number of different users and analysts that are
needed to elicit and model the requirements. In all cases, there should be one integrating role on
the client side and one on the development side. In the end, the requirements, however large the
system, should be understandable by a single individual knowledgeable in the application
domain.

5.5.3 Communicating about Analysis

The task of communicating information is most challenging during requirements elicitation and
analysis. Contributing factors include

* Different backgrounds of participants. Users, clients, and developers have different
domains of expertise and use different vocabularies to describe the same concepts.

* Different expectations of stakeholders. Users, clients, and managements have different
objectives when defining the system. Users want a system that supports their current
work processes, with no interference or threat to their current position (e.g., an
improved system often translates into the elimination of current positions). The client
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wants to maximize return on investment. Management wants to deliver the system on
time. Different expectations and different stakes in the project can lead to a reluctance
to share information and to report problems in a timely manner.

* New teams. Requirements elicitation and analysis often marks the beginning of a new

project. This translates into new participants and new team assignments, and, thus, into
a ramp-up period during which team members must learn to work together.

Evolving system. When a new system is developed from scratch, terms and concepts
related to the new system are in flux during most of the analysis and the system design.
A term may have a different meaning tomorrow.

No requirements method or communication mechanism can address problems related to

internal politics and information hiding. Conflicting objectives and competition will always be
part of large development projects. A few simple guidelines, however, can help in managing the
complexity of conflicting views of the system:

* Define clear territories. Defining roles as described in Section 5.5.2 is part of this

activity. This also includes the definition of private and public discussion forums. For
example, each team may have a discussion database as described in Chapter 3, Project
Organization and Communication, and discussion with the client is done on a separate
client database. The client should not have access to the internal database. Similarly,
developers should not interfere with client/user internal politics.

Define clear objectives and success criteria. The codefinition of clear, measurable, and
verifiable objectives and success criteria by both the client and the developers
facilitates the resolution of conflicts. Note that defining a clear and verifiable objective
is a nontrivial task, given that it is easier to leave objectives open-ended. The objectives
and the success criteria of the project should be documented in Section 1.3 of the RAD.

Brainstorm. Putting all the stakeholders in the same room and to quickly generate
solutions and definitions can remove many barriers in communication. Conducting
reviews as a reciprocal activity (i.e., reviewing deliverables from both the client and the
developers during the same session) has a similar effect.

Brainstorming, and more generally the cooperative development of requirements, can lead

to the definition of shared, ad hoc notations for supporting the communication. Storyboards,
user interface sketches, and high-level dataflow diagrams often appear spontaneously. As the
information about the application domain and the new system accrue, it is critical that a precise
and structured notation be used. In UML, developers employ use cases and scenarios for
communicating with the client and the users, and use object diagrams, sequence diagrams, and
state machines to communicate with other developers (see Sections 4.4 and 5.4). Moreover, the
latest release of the requirements should be available to all participants. Maintaining a live
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online version of the requirements analysis document with an up-to-date change history
facilitates the timely propagation of changes across the project.

5.5.4 lterating over the Analysis Model

Analysis occurs iteratively and incrementally, often in parallel with other development activities
such as system design and implementation. Note, however, that the unrestricted modification
and extension of the analysis model can only result in chaos, especially when a large number of
participants are involved. Iterations and increments must be carefully managed and requests for
changes tracked once the requirements are baselined. The requirements activity can be viewed
as several steps (brainstorming, solidification, maturity) converging toward a stable model.

Brainstorming

Before any other development activity is initiated, requirements is a brainstorming
process. Everything—concepts and the terms used to refer to them—changes. The objective of a
brainstorming process is to generate as many ideas as possible without necessarily organizing
them. During this stage, iterations are rapid and far reaching.

Solidification

Once the client and the developers converge on a common idea, define the boundaries of
the system, and agree on a set of standard terms, solidification starts. Functionality is organized
into groups of use cases with their corresponding interfaces. Groups of functionality are
allocated to different teams that are responsible for detailing their corresponding use cases.
During this stage, iterations are rapid but localized.

Maturity

Changes at the higher level are still possible but more difficult, and thus, are made more
carefully. Each team is responsible for the use cases and object models related to the
functionality they have been assigned. A cross-functional team, the architecture team, made of
representatives of each team, is responsible for ensuring the integration of the requirements (e.g.,
naming).

Once the client signs off on the requirements, modification to the analysis model should
address omissions and errors. Developers, in particular the architecture team, need to ensure that
the consistency of the model is not compromised. The requirements model is under
configuration management and changes should be propagated to existing design models.
Iterations are slow and often localized.

The number of features and functions of a system will always increase with time. Each
change, however, can threaten the integrity of the system. The risk of introducing more problems
with late changes results from the loss of information in the project. The dependencies across
functions are not all captured; many assumptions may be implicit and forgotten by the time the
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change is made. Often the change responds to a problem, in which case there is a lot of pressure
to implement it, resulting in only a superficial examination of the consequence of the change.
When new features and functions are added to the system, they should be challenged with the
following questions: Were they requested by the client? Are they necessary, or are they
embellishments? Should they be part of a separate, focused utility program instead of part of the
base system? Are the changes core requirements or optional features? What is the impact of the
changes to existing functions in terms of consistency, interface, reliability?

When changes are necessary, the client and developer define the scope of the change and
its desired outcome and change the analysis model. Given that a complete analysis model exists
for the system, specifying new functionality is easier (although implementing it is more
difficult).

5.5.5 Client Sign-Off

The client sign-off represents the acceptance of the analysis model (as documented by the
requirements analysis document) by the client. The client and the developers converge on a
single idea and agree about the functions and features that the system will have. In addition, they
agree on:

¢ alist of priorities

* arevision process

* alist of criteria that will be used to accept or reject the system
¢ aschedule and a budget.

Prioritizing system functions allows the developers to understand better the client’s
expectations. In its simplest form, it allows developers to separate bells and whistles from
essential features. It also allows developers to deliver the system in incremental chunks:
essential functions are delivered first, additional chunks are delivered depending on the
evaluation of the previous chunk. Even if the system is to be delivered as a single, complete
package, prioritizing functions enables the client to communicate clearly what is important to
her and where the emphasis of the development should be. Figure 5-21 provides an example of a
priority scheme.

Each function shall be assigned one of the following priorities

* High priority—A high-priority feature must be demonstrated successfully during client acceptance.
*  Medium priority—A medium-priority feature must be taken into account in the system design and
the object design. It will be implemented and demonstrated in the second iteration of the system

development.
¢ Low priority—A low-priority feature illustrates how the system can be extended in the longer term.

Figure 5-21 An example of a priority scheme for requirements.
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After the client sign off, the requirements are baselined and are used for refining the cost
estimate of the project. Requirements continue to change after the sign-off, but these changes are
subject to a more formal revision process. The requirements change, whether because of errors,
omissions, changes in the operating environment, changes in the application domain, or changes
in technology. Defining a revision process up front encourages changes to be communicated
across the project and reduces the number of surprises in the later stages. Note that a change
process need not be bureaucratic or require excessive overhead. It can be as simple as naming a
person responsible for receiving change requests, approving changes, and tracking their
implementation. Figure 5-22 depicts a more complex example in which changes are designed

Client Developer

Report problem Design change
or . —and,

change request estimate impact

[change rejected]

Archive
request

Review
proposed change

[change approved]

Update
requirements

Update code
(if applicable)

Execute all
relevant tests

Review actual
change

Figure 5-22 An example of a revision process (UML activity diagram).
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and reviewed by the client before they are implemented in the system. In all cases,
acknowledging that requirements cannot be frozen (but only baselined) will benefit the project.

The list of acceptance criteria is revised prior to sign-off. The requirements elicitation and
analysis activity clarifies many aspects of the system, including the nonfunctional requirements
with which the system should comply and the relative importance of each function. By restating
the acceptance criteria at sign-off, the client ensures that the developers are updated about any
changes in client expectations.

The budget and schedule are revisited after the analysis model becomes stable. We
describe in Chapter 14, Project Management, issues related to cost estimation.

Whether the client sign-off is a contractual agreement or whether the project is already
governed by a prior contract, it is an important milestone in the project. It represents the
convergence of client and developer on a single set of functional definitions of the system and a
single set of expectations. The acceptance of the requirements analysis document is more critical
than any other document, given that many activities depend on the analysis model.

5.6 ARENA Case Study

In this section, we apply the concepts and methods described in this chapter to the ARENA system.
We start with the use case model and the glossary developed in the previous chapter. We identify
participating entity, boundary, and control objects, and refine them by adding attributes and
associations to the analysis object model. Finally, we identify inheritance relationships and
consolidate the analysis object model. In this section, we focus primarily on the
AnnounceTournament use case.

5.6.1 Identifying Entity Objects

Entity objects represent concepts in the application domain that are tracked by the system. We
use the glossary produced during elicitation as a starting point for identifying entity objects in
ARENA. We identify additional entity objects and their attributes by applying Abbott’s heuristics
on the use cases. We initially focus only on noun phrases that denote concepts of the application
domain. Figure 5-23 depicts the AnnounceTournament use case with the first occurrence of noun
phrases we identified in bold.

Note that we identify entity objects corresponding to actors in the use case model. Actors
are concepts in the application domain and are relevant to the system (e.g., for access control or
for documenting responsibilities or authorship). In ARENA, each legitimate LeagueOwner is
represented with an object that is used to store data specific to that LeagueOwner, such as her
contact information, the leagues that she manages, and so on.

Note, also, that not all noun phrases we identified correspond to classes. For example,
name of a tournament is a noun phrase referring to an attribute of the Tournament class. List
of Advertisers is an association, in this case, between the League class and the Advertiser
class. We can use a few simple heuristics to distinguish between noun phrases that correspond to
objects, attributes, and associations:
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Name AnnounceTournament

Flow of events 1. The LeagueOwner requests the creation of a tournament.

2. The system checks if the LeagueOwner has exceeded the number of
tournaments in the Teague or in the arena. If not, the system presents
the LeagueOwner with a form.

3. The LeagueOwner specifies a name, application start and end dates during
which PTayers can apply to the tournament, start and end dates for conducting
the tournament, and a maximum number of Players.

4. The system asks the LeagueOwner whether an exclusive sponsorship
should be sought and, if yes, presents a 1ist of Advertisers who
expressed the desire to be exclusive sponsors.

5. If the LeagueOwner decides to seek an exclusive sponsor, he selects a subset of the
names of the proposed sponsors.

6. The system notifies the selected sponsors about the upcoming tournament
and the flat fee for exclusive sponsorships.
7. The system communicates their answers to the LeagueOwner.

8. If there are interested sponsors, the LeagueOwner selects one of them.

9. The system records the name of the exclusive sponsor and charges the flat
fee for sponsorships to the Advertiser’s account. From now on, all
advertisement banners associated with the tournament are provided
by the exclusive sponsor only.

10.1f no sponsors were selected (either because no Advertisers were
interested or the LeagueOwner did not select any), the advertisement
banners are selected at random and charged to each Advertiser’s
account on a per unit basis.

11.Once the sponsorship issues is closed, the system prompts the
LeagueOwner with a 1ist of groups of Players, Spectators, and
Advertisers that could be interested in the new tournament.

12.The LeagueOwner selects which groups to notify.

13.The system creates a home page in the arena for the tournament. This
page is used as an entry point to the tournament (e.g., to provide
interested P1ayers with a form to apply for the tournament, and to
interest Spectators into watching matches).

14. At the application start date, the system notifies each interested
user by sending them a link to the main tournament page. The Players
can then apply for the tournament with the ApplyForTournament use
case until the application end date.

Figure 5-23 Applying Abbott’s heuristics for identifying entity objects in the AnnounceTournament use
case. The first occurrence of a noun phrase is emphasized in bold.
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o Atrtributes are properties. Attributes represent a single property of an object. They
represent a partial aspect of an object and are incomplete. For example, the name of an
Advertiser is an attribute that identifies an Advertiser. However, it does not include
other relevant information about the Advertiser (e.g., her current account balance, the
type of banners she advertises, etc.) that are represented by other attributes or
associations of the Advertiser class.

o Attributes have simple types. Attributes are properties that often have types such as a
number (e.g., maximum number of Tournaments), string (e.g., the name of an
Advertiser), dates (e.g., the application start and end date of a Tournament).
Properties such as an address, a social security number, and a vehicle identification
number are also usually considered as simple types (and hence represented as
attributes) because users treat those as simple, atomic concepts. Complex concepts are
represented as objects that are related to other objects with associations. For example,
an Account is an object that is related to the corresponding Advertiser and can include
a balance, a history of transactions, a credit limit, and other similar properties.

*  Nouns referring to collections are associations, often with implicit ends. Lists, groups,
tables, and sets are represented by associations. For example, ARENA prompts the
LeagueOwner with a list of Advertisers that are potentially interested in exclusive
sponsorships. This concept can be represented with an association between the Arena
class and the Advertiser class, denoting which Advertisers are interested in
exclusive sponsorships. Often, the association end is implicit. For example, when
sponsorship issues are closed, ARENA prompts the LeagueOwner with a list of groups of
Players, Spectators, and Advertisers. We identify a new class, InterestGroup,
representing collections of users interested in new events about a league or a game.
Then, we identify an association between the Arena class and the InterestGroup class
(corresponding to the word “list”) representing all InterestGroups. Then, we identify
an association between the InterestGroup class and the Player, Spectator, and
Advertisers classes (corresponding to the word “group”). Finally, we identify
additional associations originating from the InterestGroup class to other classes
representing the interest of the users in the InterestGroup (i.e., League, Game).

Table 5-6 lists the entity objects, their attributes, and their associations that we identified
so far from the AnnounceTournament use case. We attach the attributes and associations to their
relevant classes and write definitions for new classes. Writing definitions has several purposes.
First, a name is not specific enough for all stakeholders to share the same understanding about
the concept. For example, terms such as Game and Match can be interchanged in many contexts.
In ARENA, however, they refer to distinct concepts (i.e., a Game represents a set of rules enforced
by a piece of software, a Match represent a competition among a set of Players). Second,
objects identified during analysis correspond also to terms in the glossary we started during
elicitation. Stakeholders use the glossary throughout development to resolve ambiguities and
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establish a standard terminology. Writing short definitions as classes are identified is the best
way to prevent ambiguities and misunderstandings. Postponing the writing of definitions results

in loss of information and in incomplete definitions.

Table 5-6  Entity objects participating in the AnnounceTournament use case identified from noun
phrases in the use case. “(?)” denote areas of uncertainty that lead to the questions in Figure 5-24.

Entity Object Attributes & Associations Definition

Account balance An Account represents the amount currently
history of charges (?) owed by an Advertiser, a history of charges,
history of payments (?) and payments.

Advertiser name Actor interested in displaying advertisement
leagues of interest for banners during the Matches.
exclusive sponsorships (?)
sponsored tournaments
account

Advertisement associated game (?) Image provided by an Advertiser for display

during matches.

Arena max number of tournaments  An instantiation of the ARENA system.
flat fee for sponsorships (?)
leagues (implied)
interest groups (implied)

Game A Game is a competition among a number of

Players that is conducted according to a set
of rules. In ARENA, the term Game refers to a
piece of software that enforces the set of rules,
tracks the progress of each Player, and
decides the winner.

InterestGroup list of players, spectators, or ~ InterestGroups are lists of users in the
advertisers ARENA which share an interest (e.g, for a game
games and leagues of or a league). InterestGroups are used as
interests (implied) mailing lists for notifying potential actors of

new events.

League max number of tournament A League represents a community for running

game

Tournaments. A League is associated with a
specific Game and TournamentStyTe.
Players registered with the League
accumulate points according to the
ExpertRating of the League.
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Entity Object Attributes & Associations

Definition

LeagueOwner .

name (implied)

The actor creating a League and responsible
for organizing Tournaments within the
League.

Match * tournament A Match is a contest between two or more
* players Players within the scope of a Game. The

outcome of a Match can be a single winner and
a set of losers or a tie (in which their are no
winners or losers). Some TournamentStyles
may disallow ties.

Player e name (implied)

Tournament * name A Tournament is a series of Matches among a

application start date
application end date
play start date

play end date

max number of players
exclusive sponsor

set of Players. Tournaments end with a
single winner. The way Players accumulate
points and Matches are scheduled is dictated
by the League in which the Tournament is
organized.

The identification of entity objects and their related attributes usually triggers additional
questions for the client. For example, when we identify implicit attributes and associations, we
should double-check with the client to confirm whether our intuition was correct. In other cases,
the ends of an association are ambiguous. We collect all the questions generated by the
identification of objects and go back to the client (or the domain expert). Figure 5-24 depicts the
questions we have after identifying entity objects participating in the AnnounceTournament use

case.

Questions for the ARENA client

¢ What information should be recorded in the advertisers’ accounts? For example, should a complete
log of the display of each advertisement banner be recorded?
* Do advertisers express the interest for exclusive sponsorships for specific leagues or for the complete

arena?

* Should advertisement banners be associated to games (to enable a more intelligent selection of

banners when there is no exclusive sponsorship)?

* Does the flat fee for exclusive sponsorship vary across leagues or tournaments?

Figure 5-24 Questions triggered by the identification of entity objects.
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5.6.2 Identifying Boundary Objects

Boundary objects represent the interface between the system and the actors. They are identified
from the use cases and usually represent the user interface at a coarse level. Do not represent
layout information or user interface details such as menus and buttons. User interface mock-ups
are much better suited for this type of information. Instead, boundary objects represent concepts
such as windows, forms, or hardware artifacts such as workstations. This enables stakeholders to
visualize where functionality is available in the system.

Abbott’s heuristics do not identify many boundary objects, as they are often left implicit
initially. Instead, we scan the AnnounceTournament use case (Figure 5-23) and identify where
information is exchanged between the actors and the system. We focus both on forms in which
actors provide information to the system (e.g., the form used by the LeagueOwner to create a
Tournament) and on notices in which the system provides information to the actors (e.g., a
notice received by Advertisers requesting sponsorship). As with other objects, we briefly
define each class as we identify it. Table 5-7 depicts the boundary objects we identified for
AnnounceTournament with their definitions. Figure 5-25 depicts our additional questions.

Note that AnnounceTournament is a relatively complex use case involving several actors.
This yields a relatively large number boundary objects. In practice, a use case can have as few as
a single boundary object to represent the interface between the initiating actor and the system. In
all cases, however, each use case should have at least one participating boundary object
(possibly shared with other use cases).

Table 5-7 Boundary objects participating in the AnnounceTournament use case.

Boundary Object Definition

TournamentForm Form used by the LeagueOwner to specify the properties
of a Tournament during creation or editing.

RequestSponsorshipForm Form used by the LeagueOwner to request sponsorships
from interested Advertisers.

SponsorshipRequest Notice received by Advertisers requesting sponsorship.

SponsorshipReply Notice received by LeagueOwner indicating whether an
Advertiser wants the exclusive sponsorship of the
tournament.

SelectExclusiveSponsorForm Form used by the LeagueOwner to close the sponsorship
issue.

NotifyInterestGroupsForm Form used by the LeagueOwner to notify interested users.

InterestGroupNotice Notice received by interested users about the creation of a

new Tournament.
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More questions for the ARENA client

e What should we do about sponsors who do not answer?
¢ How should we advertise a new tournament if there are no relevant interest groups?
*  How should users be notified (e.g., E-mail, cell phone, ARENA notice box)?

Figure 5-25 Questions triggered by the identification of boundary objects.

5.6.3 Identifying Control Objects

Control objects represent the coordination among boundary and entity objects. In the common
case, a single control object is created at the beginning of the use case and accumulates all the
information needed to complete the use case. The control object is then destroyed with the
completion of the use case.

In  AnnounceTournament, we identify a single control object called
AnnounceTournamentControl, which is responsible for sending and collecting notices to
Advertisers, checking resource availability, and, finally, notifying interested users. Note that,
in the general case, several control objects could participate in the same use case, if, for
example, there are alternate flows of events to be coordinated, multiple workstations operating
asynchronously, or if some control information survives the completion of the use case.

5.6.4 Modeling Interactions Among Objects

We have identified a number of entity, boundary, and control objects participating in the
AnnounceTournament use case. Along the way, we also identified some of their attributes and
associations. We represent these objects in a sequence diagram, depicting the interactions that
occur during the use case to identify additional associations and attributes.

In the sequence diagram, we arrange the objects we identified along the top row. We place
left-most the initiating actor (i.e., LeagueOwner), followed by the boundary object responsible
for initiating the use case (i.e., TournamentForm), followed by the main control object (i.e.,
AnnounceTournamentControl), and the entity objects (i.e., Arena, League, and Tournament).
Any other participating actors and their corresponding boundary objects are on the right of the
diagram. We split the sequence diagram associated with AnnounceTournament into three figures
for space reasons. Figure 5-26 depicts the sequence of interactions leading to the creation of a
tournament. Figure 5-27 depicts the workflow for requesting and selecting an exclusive sponsor.
Figure 5-28 focuses on the notification of interest groups.

The sequence diagram in Figure 5-26 is straightforward. The LeagueOwner requests the
creation of the tournament and specifies its initial parameter (e.g., name, maximum number of
players). The AnnounceTournamentControl instance is created and, if resources allow, a
Tournament entity instance is created.

The sequence diagram in Figure 5-27 is more interesting as it leads to the identification of
additional associations and attributes. When requesting sponsorships, the control object must
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Figure 5-26 UML sequence diagram for AnnounceTournament, tournament creation workflow.

first obtain a list of interested sponsors. It requests it from the Arena class, which maintains the
list of interested sponsors. This entails that the Arena class maintains at all times the list of all
Advertisers, so that it can return this list to the AnnounceTournamentControl object (or control
objects for other use cases that require the list of all Advertisers). To notify an Advertiser, we
also may need contact information, such as E-mail address, or we may need to create a mailbox
for notices within ARENA. Consequently, we add an contact attribute to the Advertiser class,
which initially stores the E-mail address of the Advertiser until further devices are supported.
Anticipating similar needs for other actors, we also add contact attributes to the LeagueOwner
and Player classes.

When constructing the sequence diagram for notifying interest groups (Figure 5-28), we
realize that the use case does not specify how the selected sponsor is notified. Consequently, we
add a step in the use case to notify all sponsors who replied about the sponsorship decisions
before interest groups are notified. This requires the identification of a new boundary object,
SponsorNotice. The rest of the interaction does not yield any new discovery, as we already
anticipated the need for the InterestGroup and the InterestGroupNotice classes.

5.6.5 Reviewing and Consolidating the Analysis Model

Now that we have identified most participating objects, their associations, and their attributes,
we draw UML class diagrams documenting the results of our analysis so far. As we have
identified many objects, we use several class diagrams to depict the analysis object model. We
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use these class diagrams as a visual index into the glossary we developed. Although we should
not expect the client or the users to be able to review class diagrams, we can use class diagrams
for generating more questions for interviews with the client.

We first focus on the entity objects, since these need to be carefully reviewed by the client
as they represent application domain concepts (Figure 5-29). Note that we use the Arena class as
a root object in the system; the Arena class represents a specific instantiation. For example,
given an instantiation, it is possible to get a list of all InterestGroups, Advertisers,
LeagueOwners, Games, and TournamentStyles by querying the Arena class. Moreover, note that
objects are not shared among instantiations. For example, LeagueOwners belong to exactly one
instantiation of the system. If a user is a LeagueOwner in several ARENA instantiations of the
system, she holds a LeagueOwner account in each instantiation. We make these type of choices
during analysis based on our interpretation of the problem statement, based on our experience,
and based on resources available to build in the system. In all cases, these decisions need to be
reviewed and confirmed by the client.

Next, we draw a class diagram depicting the inheritance hierarchies (Figure 5-30).
Although UML allows inheritance relationships and associations to coexist in the same diagram,
it is good practice during analysis to draw two separate diagrams to depict each type of

—> Arena <
1 1
max tournaments "
sponsorship fee 1
7 T 1 | Advertiser li
1 1
%
| Advertisement |
1
Account
balance
charges
* payments
| LeagueOwner | *
? 1 }I Game *
e % * *
| % 3 |

| League - Interest Group
* * l
1 1
Q * 1] TournamentStyle | Q *
I

| Tournament I User
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Q 1
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Figure 5-29 Entity objects identified after analyzing the AnnounceTournament use case.
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Figure 5-30 Inheritance hierarchy among entity objects of the AnnounceTournament use case.

relationship. First, the UML symbols used to denote each type are similar and easily confused.
Second, analysts usually focus on inheritance and associations at different times. We will see
later, in Chapters 6 through 10, that this is not the case during system design and object design,
where it is often necessary to consider both relationships to understand how different classes are
related.

Figure 5-30 shows three inheritance hierarchies. First, we identified an abstract class User
through generalization. This enables us to treat common attributes of various users in a more
general fashion, including contact information and registration procedures. Note that in the
problem statement and in the use cases, we already used the term “user,” so we are simply
formalizing a concept that was already in use. We identified two other inheritance hierarchies,
Game and TournamentStyTe, identified through specialization to provide examples for both
concepts and to provide traceability to the problem statement. The TicTacToe and the Chess
classes are concrete specializations of Game that embody rules for the games called “tic tac toe”
and “chess,” respectively. The KnockOutStyle and the RoundRobinStyle classes are concrete
specializations of the TournamentSty1e that provide algorithms for assigning Players to knock-
out tournaments (in which players need to win to remain in the tournament) and round robin
tournaments (in which each player plays all other players exactly once), respectively.

Finally, we draw a class diagram that depicts the associations among the boundary,
control, and selected entity objects associated with the use case (Figure 5-31). To generate this
diagram from the sequence diagrams, we draw the equivalent communication diagram, with the
control object to the left, the boundary objects in the center, and the entity objects on the right.
We then replace the iterations with associations, where necessary, so that the objects in the
workflow can carry send messages to objects depicted in the sequence diagrams. We then add
navigation to the associations to denote the direction of the dependencies: control and boundary
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objects usually know about each other, but entity objects do not depend on any control or
boundary objects.

Whereas the class diagram in Figure 5-29 focused primarily on the relationships among
application domain concepts, the class diagram of Figure 5-31 focuses on the concepts
associated with workflow of the use case at a coarse level. The control object acts as the glue
among boundary and entity objects, since it represents the coordination and the sequencing
among the forms and notices. As indicated in the sequence diagrams in Figures 5-26 through
5-28, the control object also creates several of the boundary objects. The class diagram in
Figure 5-31 provides a summary of the objects participating in the use case and the associations
traversed during the use case. However, the sequence diagrams provide the complete sequencing
information of the workflow.

AnnounceTournamentControl Arena

L TournamentForm Tournament

RequestSponsorshipForm

I— SponsorshipRequest Advertiser

L SponsorshipReply LeagueOwner

SelectExclusiveSponsorForm

I— SponsorNotice

NotifyInterestGroupsForm = InterestGroup

I— InterestGroupNotice

Figure 5-31 Associations among boundary, control, and selected entity objects participating in the
AnnounceTournament use case.

5.6.6 Lessons Learned

In this section, we developed the part of the analysis object model relevant to the
AnnounceTournament use case of ARENA. We started by identifying entity objects using Abbott’s
heuristics, then identified boundary and control objects, and used sequence diagrams to find
additional associations, attributes, and objects. Finally, we consolidated the object model and
depicted it with a series of class diagrams. We learned that:
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¢ Identifying objects, their attributes and associations, takes many iterations, often with
the client.

¢ Object identification uses many sources, including the problem statement, use case
model, the glossary, and the event flows of the use cases.

* A nontrivial use case can require many sequence diagrams and several class diagrams.
It is unrealistic to represent all discovered objects in a single diagram. Instead, each
diagram serves a specific purpose—for example, depicting associations among entity
objects, or depicting associations among participating objects in one use case.

¢ Key deliverables, such as the glossary, should be kept up to date as the analysis model
is revised. Others, such as sequence diagrams, can be redone later if necessary.
Maintaining consistency at all times, however, is unrealistic.

¢ There are many different ways to model the same application domain or the same
system, based on the personal style and experience of the analyst. This calls for
developing style guides and conventions within a project, so that all analysts can
communicate effectively.

5.7 Further Readings

The classification of analysis objects into entity, boundary, and control objects has been made
popular by the Objectory method [Jacobson et al., 1992]. These concepts originated from the
model/view/controller (MVC) paradigm used in the Smalltalk-80 environment and also found
their way into the Java Swing user interface framework [JFC, 2009].

CRC cards were introduced by Beck and Cunningham for teaching object-oriented
thinking to novices and experienced developers in an OOPSLA paper entitled A Laboratory For
Teaching Object-Oriented Thinking [Beck & Cunningham, 1989]. CRC cards are used
extensively in the responsibility-driven design method from Wirfs-Brock [Wirfs-Brock et al.,
1990].

Object-oriented analysis and design has evolved from many different sets of heuristics and
terminologies. Modeling, like programming, is a craft, and requires much experience and
willingness to make mistakes (hence the importance of client and user feedback). Object-
Oriented Modeling and Design [Rumbaugh et al., 1991] provides an excellent guide to novices
for class modeling. A more recent book, Applying UML and Patterns [Larman, 2005], provides
a comprehensive treatment of object-oriented analysis and design, including use case modeling
and reusing design patterns. For dynamic modeling with state machines, Doing Hard Time:
Using Object Oriented Programming and Software Patterns in Real Time Applications
[Douglass, 1999] provides detailed information and modeling heuristics on the topic.
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5.8 Exercises

5-1 Consider a file system with a graphical user interface, such as Macintosh’s Finder,
Microsoft’s Windows Explorer, or Linux’s KDE. The following objects were identified
from a use case describing how to copy a file from a floppy disk to a hard disk: File,
Icon, TrashCan, Folder, Disk, Pointer. Specify which are entity objects, which are
boundary objects, and which are control objects.

5-2 Assuming the same file system as before, consider a scenario consisting of selecting a
File on a floppy, dragging it to Folder and releasing the mouse. Identify and define at
least one control object associated with this scenario.

5-3  Arrange the objects listed in Exercises 5-1 and 5-2 horizontally on a sequence diagram,
the boundary objects to the left, then the control object you identified, and finally, the
entity objects. Draw the sequence of interactions resulting from dropping the file into a
folder. For now, ignore the exceptional cases.

5-4 Examining the sequence diagram you produced in Exercise 5-3, identify the
associations between these objects.

5-5 Identify the attributes of each object that are relevant to this scenario (copying a file
from a floppy disk to a hard disk). Also consider the exception cases “There is already
a file with that name in the folder” and “There is no more space on disk.”

5-6 Consider the object model in Figure 5-32 (adapted from [Jackson, 1995]):

| Year |

Y

| Month |

Y

| Week |

Q 1
Day

Figure 5-32 A naive model of the Gregorian calendar (UML class diagram).

Given your knowledge of the Gregorian calendar, list all the problems with this model.
Modify it to correct each of them.

5-7 Consider the object model of Figure 5-32. Using association multiplicity only, can you
modify the model such that a developer unfamiliar with the Gregorian calendar could
deduce the number of days in each month? Identify additional classes if necessary.
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5-8

5-9

5-10

5-12

5-13

Chapter 5 ¢ Analysis

Consider a traffic light system at a four-way crossroads (two roads intersecting at right
angles). Assume the simplest algorithm for cycling through the lights (e.g., all traffic on
one road is allowed to go through the crossroad, while the other traffic is stopped).
Identify the states of this system and draw a state machine describing them. Remember
that each individual traffic light has three states (green, yellow, and red).

From the sequence diagram Figure 2-34, draw the corresponding class diagram. Hint:
Start with the participating objects in the sequence diagram.

Consider the addition of a nonfunctional requirement stipulating that the effort needed
by Advertisers to obtain exclusive sponsorships should be minimized. Change the
AnnounceTournament (Figure 5-23) and the ManageAdvertisements use case (solution
of Exercise 4-12) so that the Advertiser can specify preferences in her profile so that
exclusive sponsorships can be decided automatically by the system.

Identify and write definitions for any additional entity, boundary, and control objects
participating in the AnnounceTournament use case that were introduced by realizing the
change specified in Exercise 5-10.

Update the class diagrams of Figure 5-29 and Figure 5-31 to include the new objects
you identified in Exercise 5-11.

Draw a state machine describing the behavior of the AnnounceTournamentControl
object based on the sequence diagrams of Figures 5-26 through 5-28. Treat the sending
and receiving of each notice as an event that triggers a change of state.
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System Design:
Decomposing the
System

There are two ways of constructing a software design:
One way is to make it so simple that there are obviously
no deficiencies, and the other way is to make it so
complicated that there are no obvious deficiencies.
—C.AR. Hoare, in The Emperor’s Old Clothes

System design is the transformation of an analysis model into a system design model. During
system design, developers define the design goals of the project and decompose the system into
smaller subsystems that can be realized by individual teams. Developers also select strategies for
building the system, such as the hardware/software strategy, the persistent data management
strategy, the global control flow, the access control policy, and the handling of boundary
conditions. The result of system design is a model that includes a subsystem decomposition and
a clear description of each of these strategies.

System design is not algorithmic. Developers have to make trade-offs among many design
goals that often conflict with each other. They also cannot anticipate all design issues that they
will face because they do not yet have a clear picture of the solution domain. System design is
decomposed into several activities, each addressing part of the overall problem of decomposing
the system:

* Identify design goals. Developers identify and prioritize the qualities of the system that
they should optimize.

e Design the initial subsystem decomposition. Developers decompose the system into
smaller parts based on the use case and analysis models. Developers use standard
architectural styles as a starting point during this activity.

* Refine the subsystem decomposition to address the design goals. The initial
decomposition usually does not satisfy all design goals. Developers refine it until all
goals are satisfied.

In this chapter, we focus on the first two activities. In the next chapter, we refine the
system decomposition and provide an in-depth example with the ARENA case study.

223
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6.1 Introduction: A Floor Plan Example

System design, object design, and implementation constitute the construction of the system.
During these three activities, developers bridge the gap between the requirements specification,
produced during requirements elicitation and analysis, and the system that is delivered to the
users. System design is the first step in this process and focuses on decomposing the system into
manageable parts. During requirements elicitation and analysis, we concentrated on the purpose
and the functionality of the system. During system design, we focus on the processes, data
structures, and software and hardware components necessary to implement it. The challenge of
system design is that many conflicting criteria and constraints must be met when decomposing
the system.

Consider, for example, the task of designing a residential house. After agreeing with the
client on the number of rooms and floors, the size of the living area, and the location of the
house, the architect must design the floor plan, that is, where the walls, doors, and windows
should be located. He must do so according to a number of functional requirements: the kitchen
should be close to the dining room and the garage, the bathroom should be close to the
bedrooms, and so on. The architect can also rely on a number of standards when establishing the
dimensions of each room and the location of the door: kitchen cabinets come in fixed increments
and beds come in standard sizes. Note, however, that the architect does not need to know the
exact contents of each room and the layout of the furniture; on the contrary, these decisions
should be delayed and left to the client.

Figure 6-1 shows three successive revisions to a floor plan for a residential house. We set
out to satisfy the following constraints:

1. This house should have two bedrooms, a study, a kitchen, and a living room area.
2. The overall distance the occupants walk every day should be minimized.
3. The use of daylight should be maximized.

To satisfy the above constraints, we assume that most of the walking will be done between
the entrance door and the kitchen, when groceries are unloaded from the car, and between the
kitchen and the living/dining area, when dishes are carried before and after the meals. The next
walking path to minimize is the path from the bedrooms to the bathrooms. We assume that the
occupants of the house will spend most of their time in the living/dining area and in the master
bedroom.

In the first version of our floor plan (at the top of Figure 6-1), we find that the dining room
is too far from the kitchen. To address this problem, we exchange it with bedroom 2 (see gray
arrows in Figure 6-1). This also has the advantage of moving the living room to the south wall of
the house. In the second revision, we find that the kitchen and the stairs are too far from the
entrance door. To address this problem, we move the entrance door to the north wall. This allows
us to reorient bedroom 2 and move the bathroom closer to both bedrooms. The living area is
increased, and we satisfied all original constraints.
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Figure 6-1 Example of floor plan design. Three successive versions show how we minimize walking
distance and take advantage of sunlight.
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At this point, we can position the doors and the windows of each room to meet localized
requirements. Once this is done, we have completed the design without detailed knowledge of
the layout of each individual room. Plans for plumbing, electrical lines, and heating ducts can
proceed.

The design of a floor plan in architecture is similar to system design in software
engineering (Table 6-1). The whole is divided into simpler components and interfaces, while
taking into account nonfunctional and functional requirements. System design impacts
implementation activities and results in costly rework if changed later. The design of individual
components is delayed until later.

Table 6-1 Mapping of architectural and software engineering concepts.

Architectural concept Software engineering concept
Components Rooms Subsystems
Interfaces Doors Services
Nonfunctional requirements Living area Response time
Functional requirements Residential house Use cases
Costly rework Moving walls Change of subsystem interfaces

Section 6.2 provides a bird’s-eye view of system design and its relationship to analysis.
Section 6.3 describes the concept of subsystems and subsystem decomposition. Section 6.4
describes system design activities and uses an example to illustrate how these building blocks
can be used together.

6.2 An Overview of System Design

Analysis results in the requirements model described by the following products:

e a set of nonfunctional requirements and constraints, such as maximum response time,
minimum throughput, reliability, operating system platform, and so on

* ause case model, describing the system functionality from the actors’ point of view
* an object model, describing the entities manipulated by the system

* a sequence diagram for each use case, showing the sequence of interactions among
objects participating in the use case.

The analysis model describes the system completely from the actors’ point of view and
serves as the basis of communication between the client and the developers. The analysis model,
however, does not contain information about the internal structure of the system, its hardware
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configuration, or more generally, how the system should be realized. System design is the first
step in this direction. System design results in the following products:

* design goals, describing the qualities of the system that developers should optimize

* software architecture, describing the subsystem decomposition in terms of subsystem
responsibilities, dependencies among subsystems, subsystem mapping to hardware,
and major policy decisions such as control flow, access control, and data storage

e boundary use cases, describing the system configuration, startup, shutdown, and
exception handling issues.

The design goals are derived from the nonfunctional requirements. Design goals guide the
decisions to be made by the developers when trade-offs are needed. The subsystem
decomposition constitutes the bulk of system design. Developers divide the system into
manageable pieces to deal with complexity: each subsystem is assigned to a team and realized
independently. For this to be possible, developers need to address system-wide issues when
decomposing the system. In this chapter, we describe the concept of subsystem decomposition
and discuss examples of generic system decompositions called “architectural styles.” In the next
chapter, we describe how the system decomposition is refined to meet specific design goals.
Figure 6-2 depicts the relationship of system design with other software engineering activities.

nonfunct1ona1
“requirements

Analysis

dynamic model

analysis object

/ model

System design )

design goals

subsystem

/ decomposition

Object design )

\ object design

mode

Figure 6-2 The activities of system design (UML activity diagram).
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6.3 System Design Concepts

In this section, we describe subsystem decompositions and their properties in more detail. First,
we define the concept of subsystem and its relationship to classes (Section 6.3.1). Next, we look
at the interface of subsystems (Section 6.3.2): subsystems provide services to other subsystems.
A service is a set of related operations that share a common purpose. During system design, we
define the subsystems in terms of the services they provide. Later, during object design, we
define the subsystem interface in terms of the operations it provides. Next, we look at two
properties of subsystems, coupling and cohesion (Section 6.3.3). Coupling measures the
dependencies between two subsystems, whereas cohesion measures the dependencies among
classes within a subsystem. Ideal subsystem decomposition should minimize coupling and
maximize cohesion. Then, we look at layering and partitioning, two techniques for relating
subsystems to each other (Section 6.3.4). Layering allows a system to be organized as a
hierarchy of subsystems, each providing higher-level services to the subsystem above it by using
lower-level services from the subsystems below it. Partitioning organizes subsystems as peers
that mutually provide different services to each other. In Section 6.3.5, we describe a number of
typical software architectures that are found in practice.

6.3.1 Subsystems and Classes

In Chapter 2, Modeling with UML, we introduced the distinction between application domain
and solution domain. In order to reduce the complexity of the application domain, we identified
smaller parts called “classes” and organized them into packages. Similarly, to reduce the
complexity of the solution domain, we decompose a system into simpler parts, called
“subsystems,” which are made of a number of solution domain classes. A subsystem is a
replaceable part of the system with well-defined interfaces that encapsulates the state and
behavior of its contained classes. A subsystem typically corresponds to the amount of work that
a single developer or a single development team can tackle. By decomposing the system into
relatively independent subsystems, concurrent teams can work on individual subsystems with
minimal communication overhead. In the case of complex subsystems, we recursively apply this
principle and decompose a subsystem into simpler subsystems (see Figure 6-3).

|

Class | | Subsystem l<>—

Figure 6-3 Subsystem decomposition (UML class diagram).
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For example, the accident management system we previously described can be
decomposed into a DispatcherInterface subsystem, realizing the user interface for the
Dispatcher; a FieldOfficerInterface subsystem, realizing the user interface for the
FieldOfficer; an IncidentManagement subsystem, responsible for the creation, modification,
and storage of Incidents; a ResourceManagement subsystem, responsible for tracking available
Resources (e.g., FireTrucks and Ambulances); a MapManagement for depicting Maps and
Locations; and a Notification subsystem, implementing the communication between
FieldOfficer terminals and Dispatcher stations.

This subsystem decomposition is depicted in Figure 6-4 using UML components.
Components are depicted as rectangles with the component icon in the upper right corner.
Dependencies among components can be depicted with dashed stick arrows. In UML,
components can represent both logical and physical components. A logical component
corresponds to a subsystem that has no explicit run-time equivalent, for example, individual
business components that are composed together into a single run-time application logic layer. A
physical component corresponds to a subsystem that as an explicit run-time equivalent, for
example, a database server.
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Figure 6-4 Subsystem decomposition for an accident management system (UML component diagram).
Subsystems are shown as UML components. Dashed arrows indicate dependencies between subsystems.

Several programming languages (e.g., Java and Modula-2) provide constructs for
modeling subsystems (packages in Java, modules in Modula-2). In other languages, such as C or
C++, subsystems are not explicitly modeled, so developers use conventions for grouping classes
(e.g., a subsystem can be represented as a directory containing all the files that implement the
subsystem). Whether or not subsystems are explicitly represented in the programming language,
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developers need to document carefully the subsystem decomposition as subsystems are usually
realized by different teams.

6.3.2 Services and Subsystem Interfaces

A subsystem is characterized by the services it provides to other subsystems. A service is a set
of related operations that share a common purpose. A subsystem providing a notification
service, for example, defines operations to send notices, look up notification channels, and
subscribe and unsubscribe to a channel. The set of operations of a subsystem that are available to
other subsystems form the subsystem interface. The subsystem interface includes the name of
the operations, their parameters, their types, and their return values. System design focuses on
defining the services provided by each subsystem, that is, enumerating the operations, their
parameters, and their high-level behavior. Object design will focus on the application
programmer interface (API), which refines and extends the subsystem interfaces. The API also
includes the type of the parameters and the return value of each operation.

Provided and required interfaces can be depicted in UML with assembly connectors, also
called ball-and-socket connectors. The provided interface is shown as a ball icon (also called
lollipop) with its name next to it. A required interface is shown as a socket icon. The dependency
between two subsystems is shown by connecting the corresponding ball and socket in the
component diagram.

Figure 6-5 depicts the dependencies among the FieldOfficerInterface,
DispatchterInterface and ResourceManagement subsystems. The FieldOfficerInterface
requires the ResourceUpdateService to update the status and location of the FieldOfficer.
The DispatcherInterface requires the ResourceAllocationService to identify available
resources and allocating them to new Incidents. The ResourceManagement subsystem provides
both services. Note that we use the ball-and-socket notation when the subsystem decomposition
is already fairly stable and that our focus has shifted from the identification of subsystems to the
definition of services. During the early stages of system design, we may not have such a clear
understanding of the allocation of functionality to subsystems, in which case we use the
dependency notation (dashed arrows) of Figure 6-4

The definition of a subsystem in terms of the services it provides helps us focus on its
interface as opposed to its implementation. When writing a subsystem interface, one should
strive to minimize the amount of information provided about the implementation. For example, a
subsystem interface should not refer to internal data structures, such as linked lists, arrays, or
hash tables. This allows us to minimize the impact of change when we revise the implementation
of a subsystem. More generally, we want to minimize the impact of change by minimizing the
dependencies among subsystems.

6.3.3 Coupling and Cohesion

Coupling is the number of dependencies between two subsystems. If two subsystems are
loosely coupled, they are relatively independent, so modifications to one of the subsystems will
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Figure 6-5 Services provided by the ResourceManagement subsystem (UML component diagram, ball-
and-socket notation depicting provided and required interfaces).

have little impact on the other. If two subsystems are strongly coupled, modifications to one
subsystem is likely to have impact on the other. A desirable property of a subsystem
decomposition is that subsystems are as loosely coupled as reasonable. This minimizes the
impact that errors or future changes in one subsystem have on other subsystems.

Consider, for example, the emergency response system depicted in Figure 6-4. During
system design, we decide to store all persistent data (i.e., all data that outlive a single execution
of the system) in a relational database. This leads to an additional subsystem called Database
(Figure 6-6). Initially, we design the interface of the database subsystem so that subsystems that
need to store data simply issue commands in the native query language of the database, such as
SQL. For example, the IncidentManagement subsystem issues SQL queries to store and retrieve
records representing Incidents in the database. This leads to a situation with a high coupling
among the Database subsystem and the three client subsystems (i.e., IncidentManagement,
ResourceManagement, and MapManagement) that need to store and retrieve data, as any change in
the way the data is stored will require changes in the client subsystems. For example, if we
change database vendors we will have to change the subsystems to use a different dialect of the
query language. To reduce the coupling among these four subsystems, we decide to create a new
subsystem, called Storage, which shields the Database from the other subsystems. In this
alternative, the three client subsystems use services provided by the Storage subsystem, which
is then responsible for issuing queries in SQL to the Database subsystem. If we decide to change
database vendors or to use a different storage mechanism (e.g., flat files), we only need to
change the Storage subsystem. Hence, the overall coupling of the subsystem decomposition has
been decreased.

Note that reducing coupling is not an end in itself. In the example above, reducing the
coupling resulted in additional complexity. By reducing coupling, developers can introduce
many unnecessary layers of abstraction that consume development time and processing time.
High coupling is an issue only if it is likely that any subsystem changes.

Cohesion is the number of dependencies within a subsystem. If a subsystem contains
many objects that are related to each other and perform similar tasks, its cohesion is high. If a
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Alternative 1: Direct access to the Database subsystem
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Alternative 2: Indirect access to the Database through a Storage subsystem
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Figure 6-6 Example of reducing the coupling of subsystems (UML component diagram, subsystems
FieldOfficerInterface, DispatcherInterface, and Notification omitted for clarity). Alternative 1
depicts a situation where all subsystems access the database directly, making them vulnerable to changes in
the interface of the Database subsystem. Alternative 2 shields the database with an additional subsystem
(Storage). In this situation, only one subsystem will need to change if there are changes in the interface of
the Database subsystem. The assumption behind this design change is that the Storage subsystem has a
more stable interface than the Database subsystem.
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subsystem contains a number of unrelated objects, its cohesion is low. A desirable property of a
subsystem decomposition is that it leads to subsystems with high cohesion.

For example, consider a decision tracking system for recording design problems,
discussions, alternative evaluations, decisions, and their implementation in terms of tasks
(Figure 6-7). DesignProblem and Option represent the exploration of the design space: we
formulate the system in terms of a number of DesignProblems and document each Option they
explore. The Criterion class represents the qualities in which we are interested. Once we
assessed the explored Options against desirable Criteria, we implement Decisions in terms of
Tasks. Tasks are recursively decomposed into Subtasks small enough to be assigned to
individual developers. We call atomic tasks ActionItems.

DecisionSubsystem EE]
assesses
Criterion — — Option
. TvableB
DesignProblem S0 vav'ety based-on
resolvedBy
SubTask "
Z?k i Decision
' imp1ementeds
implemente
ActionItem Task k> p y
subtasks

Figure 6-7 Decision tracking system (UML component diagram). The DecisionSubsystem has a low
cohesion: The classes Criterion, Option, and DesignProblem have no relationships with Subtask,
ActionItem, and Task.

The decision tracking system is small enough that we could lump all these classes into one
subsystem called DecisionSubsystem (see Figure 6-7). However, we observe that the class
model can be partitioned into two subgraphs. One, called the RationaleSubsystem, contains the
classes DesignProblem, Option, Criterion, and Decision. The other, called the
PlanningSubsystem, contains Task, Subtask, and ActionItem (see Figure 6-8). Both
subsystems have a higher cohesion than the original DecisionSubsystem. This enables us to
reuse each part independently, as other subsystems need only the planning part or the rationale
part. Moreover, the resulting subsystems are smaller than the original subsystem, enabling us to
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RationaleSubsystem EE]
- - assesses -
Criterion - " Option
DesignProblem solvableBy based-on
resolvedBy
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implementedBy
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SubTask
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subtasks

Figure 6-8 Alternative subsystem decomposition for the decision tracking system of Figure 6-7 (UML
component diagram, ball-and-socket notation). The cohesion of the RationaleSubsystem and the
PlanningSubsystem 1is higher than the cohesion of the original DecisionSubsystem. The
RationaleSubsystem and PlanningSubsystem subsystems are also simpler. However, we introduced an
interface for realizing the relationship between Task and Decision.

assign each of them to a single developer. The coupling between the subsystems is relatively
low, with only one association between the two subsystems.

In general, there is a trade-off between cohesion and coupling. We can often increase
cohesion by decomposing the system into smaller subsystems. However, this also increases
coupling as the number of interfaces increases. A good heuristic is that developers can deal with
7 + 2 concepts at any one level of abstraction. If there are more than nine subsystems at any
given level of abstraction, or if a subsystem provides more than nine services, you should
consider revising the decomposition. By the same token, the number of layers should not be
more than 7 = 2. In fact, good systems design can often be accomplished with just three layers.
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6.3.4 Layers and Partitions

A hierarchical decomposition of a system yields an ordered set of layers. A layer is a grouping
of subsystems providing related services, possibly realized using services from another layer.
Layers are ordered in that each layer can depend only on lower level layers and has no
knowledge of the layers above it. The layer that does not depend on any other layer is called the
bottom layer, and the layer that is not used by any other is called the top layer (Figure 6-9). In a
closed architecture, each layer can access only the layer immediately below it. In an open
architecture,' a layer can also access layers at deeper levels.

[\
A: Subsystem Layer 1 (Top)

B:Subsystem | C:Subsystem | | D:Subsystem | Layer 2

| E:Subsystem | | F:Subsystem | G:Subsystem Layer 3 (Bottom)

Figure 6-9 Subsystem decomposition of a system into three layers (UML object diagram, layers depicted
as packages). A subset from a layered decomposition that includes at least one subsystem from each layer
is called a vertical slice. For example, the subsystems A, B, and E constitute a vertical slice, whereas the
subsystems D and G do not.

An example of a closed architecture is the Reference Model of Open Systems
Interconnection (in short, the OSI model), which is composed of seven layers [Day &
Zimmermann, 1983]. Each layer is responsible for performing a well-defined function. In
addition, each layer provides its services by using services of the layer below (Figure 6-10).

The Physical layer represents the hardware interface to the network. It is responsible for
transmitting bits over a communication channel. The DatalLink layer is responsible for
transmitting data frames without error using the services of the Physical layer. The Network
layer is responsible for transmitting and routing packets within a network. The Transport layer
is responsible for ensuring that the data are reliably transmitted from end to end. The Transport
layer is the interface Unix programmers see when transmitting information over TCP/IP sockets
between two processes. The Session layer is responsible for initializing and authenticating a
connection. The Presentation layer performs data transformation services, such as byte
swapping and encryption. The Application layer is the system you are designing (unless you
are building an operating system or protocol stack). The AppTlication layer can also consist of
layered subsystems.

1. In the software engineering community, the term open usually means non-proprietary. We use the term open
architecture as defined by [Rumbaugh et al., 1991], not to imply non-proprietary architecture.
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Figure 6-10 An example of closed architecture: the OSI model (UML component diagram). The OSI
model decomposes network services into seven layers, each responsible for a different level of abstraction.

Until recently, only the four bottom layers of the OSI model were well standardized. Unix
and many desktop operating systems, for example, provide interfaces to TCP/IP that
implemented the Transport, Network, and Datalink layers. The application developer still
needed to fill the gap between the Transport layer and the App1ication layer. With the growing
number of distributed applications, this gap motivated the development of middleware such as
CORBA [OMG, 2008] and Java RMI [RMI, 2009]. CORBA and Java RMI allow us to access
remote objects transparently by sending messages to them as messages are sent to local objects,
effectively implementing the Presentation and Session layers (see Figure 6-11).

An example of an open architecture is the Swing user interface toolkit for Java [JFC,
2009]. The lowest layer is provided by the operating system or by a windowing system, such as
X11, and provides basic window management. AWT is an abstract window interface provided by
Java to shield applications from specific window platforms. Swing is a library of user interface
objects that provides a wide range of facilities, from buttons to geometry management. An
Application usually accesses only the Swing interface. However, the Application layer may



System Design Concepts 237

AppTication @
Presentation @x\ E Object
b CORBA
Session @ z
T
Transport @ X @ Socket
T ~
\l/ ) TCP/IP
Network @ z
T
DataLink Ef_|§ gl MAC Address
T
\l/ b Ethernet
7
Physical @ 73

Figure 6-11 An example of closed architecture (UML component diagram). CORBA enables the access
of objects implemented in different languages on different hosts. CORBA effectively implements the
Presentation and Session layers of the OSI stack.

bypass the Swing layer and directly access AWT. In general, the openness of the architecture
allows developers to bypass the higher layers to address performance bottlenecks (Figure 6-12).

Closed, layered architectures have desirable properties: they lead to low coupling between
subsystems, and subsystems can be integrated and tested incrementally. Each level, however,
introduces a speed and storage overhead that may make it difficult to meet nonfunctional
requirements. Also, adding functionality to the system in later revisions may prove difficult,
especially when the additions were not anticipated. In practice, a system is rarely decomposed
into more than three to five layers.

Another approach to dealing with complexity is to partition the system into peer
subsystems, each responsible for a different class of services. For example, an onboard system
for a car could be decomposed into a travel service that provides real-time directions to the
driver, an individual preferences service that remembers a driver’s seat position and favorite
radio station, and vehicle service that tracks the car’s gas consumption, repairs, and scheduled
maintenance. Each subsystem depends loosely on the others, but can often operate in isolation.
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Figure 6-12 An example of open architecture: the Swing user interface library on an X11 platform (UML
component diagram). X11 provides low-level drawing facilities. AWT is the low-level interface provided by
Java to shield programmers from the window system. Swing provides a large number of sophisticated user
interface objects. Some App1ications often bypass the Swing layer.

In general, a subsystem decomposition is the result of both partitioning and layering. We
first partition the system into top-level subsystems, which are responsible for specific
functionality or run on a specific hardware node. Each of the resulting subsystems are, if
complexity justifies it, decomposed into lower- and lower-level layers until they are simple
enough to be implemented by a single developer. Each subsystem adds a certain processing
overhead because of its interface with other systems. Excessive partitioning or layering can
increase complexity.

6.3.5 Architectural Styles

As the complexity of systems increases, the specification of system decomposition is critical. It
is difficult to modify or correct weak decomposition once development has started, as most
subsystem interfaces would have to change. In recognition of the importance of this problem,
the concept of software architecture has emerged. A software architecture includes system
decomposition, global control flow, handling of boundary conditions, and intersubsystem
communication protocols [Shaw & Garlan, 1996].

In this section, we describe several architectural styles that can be used as a basis for the
architecture of different systems. This is by no means a systematic or thorough exposition of the
subject. Rather, we aim to provide a few representative examples and refer the reader to the
literature for more details.
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Repository

In the repository architectural style (see Figure 6-13), subsystems access and modify a
single data structure called the central repository. Subsystems are relatively independent and
interact only through the repository. Control flow can be dictated either by the central repository
(e.g., triggers on the data invoke peripheral systems) or by the subsystems (e.g., independent
flow of control and synchronization through locks in the repository).

Repository E

E «provided interfaces»

_____ ; createData()
— setData8
getData
Subsystem2 E - searchData()

Subsysteml

Figure 6-13 Repository architectural style (UML component diagram). Every Subsystem depends only
on a central data structure called the Repository. The Repository has no knowledge of the other
Subsystems.

Repositories are typically used for database management systems, such as a payroll
system or a bank system. The central location of the data makes it easier to deal with
concurrency and integrity issues between subsystems. Compilers and software development
environments also follow a repository architectural style (Figure 6-14). The different subsystems
of a compiler access and update a central parse tree and a symbol table. Debuggers and syntax
editors access the symbol table as well.

The repository subsystem can also be used for implementing the global control flow. In
the compiler example of Figure 6-14, each individual tool (e.g., the compiler, the debugger, and
the editor) is invoked by the user. The repository only ensures that concurrent accesses are
serialized. Conversely, the repository can be used to invoke the subsystems based on the state of
the central data structure. These systems are called “blackboard systems.” The HEARSAY II
speech understanding system [Erman et al., 1980], one of the first blackboard systems, invoked
tools based on the current state of the blackboard.

Repositories are well suited for applications with constantly changing, complex data-
processing tasks. Once a central repository is well defined, we can easily add new services in the
form of additional subsystems. The main disadvantage of repository systems is that the central
repository can quickly become a bottleneck, both from a performance aspect and a modifiability
aspect. The coupling between each subsystem and the repository is high, thus making it difficult
to change the repository without having an impact on all subsystems.
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Figure 6-14 An instance of the repository architectural style (UML component diagram). A Compiler
incrementally generates a ParseTree and a Symbo1TabTe that can be used by SourceLevelDebuggers and
SyntaxEditors.

Model/View/Controller

In the Model/View/Controller (MVC) architectural style (Figure 6-15), subsystems are
classified into three different types: model subsystems maintain domain knowledge, view
subsystems display it to the user, and controller subsystems manage the sequence of
interactions with the user. The model subsystems are developed such that they do not depend on
any view or controller subsystem. Changes in their state are propagated to the view subsystem
via a subscribe/notify protocol. The MVC is a special case of the repository where Model
implements the central data structure and control objects dictate the control flow.

initiator repository
* 1

Model

Controller

1| notifier

subscriber

*

View

Figure 6-15 Model/View/Controller architectural style (UML class diagram). The Controller gathers
input from the user and sends messages to the Mode1. The Mode1 maintains the central data structure. The
Views display the Mode1 and are notified (via a subscribe/notify protocol) whenever the Mode1 is changed.
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For example, Figures 6-16 and 6-17 illustrate the sequence of events that occur in an MVC
architectural style. Figure 6-16 displays two views of a file system. The bottom window lists the
content of the Comp-Based Software Engineering folder, including the file
9DesignPatterns2.ppt. The top window displays information about this file. The name of the
file 9DesignPatterns2.ppt appears in three places: in both windows and in the title of the top
window. Assume now that we change the name of the file to 9DesignPatterns.ppt. Figure 6-17
shows the sequence of events:

1. The InfoView and the FolderView both subscribe for changes to the File models they
display (when they are created).

2. The user types the new name of the file.

3. The Controller, the object responsible for interacting with the user during file name
changes, sends a request to the Model.

4. The Mode1 changes the file name and notifies all subscribers of the change.

5. Both InfoView and FolderView are updated, so the user sees a consistent change.

3 ) ) 9DesignPatterns.ppt2 info
v Ceneral:
EESTS L= CBSE o 9DesignPatterns.ppt2
— ———— I o]
@ =¥ FRa My &_: *’{.,k 'v’ Kind: Microsoft PowerPoint document
o i . T { Size: 268 KB on disk (269,598 bytes)
Back  Forward Wiew i Computer Home  Fawvorita Where: Macintosh
& items, 1.67 GB availablg HD:Users:bob:Documents:teaching:
i 7 = CBSE:CBSE:
ame A€ Created: Wed, Jan 23, 2002, 14:17
= 1 .
=] 9DesignPatterns.ppt Fri, ] Modified: Wed, Jan 23, 2002, 14:17
[ 9DesignPatterns.ppt2 Wed,
[ 10DesignPatterns2.ppt Thu, [ Stationery Pad
&9 11Testing.ppt Fri, ] ) Locked
. 11Tes'trngz.p|‘3t Fr!,! B Name & Extension:
=] 120hject Design.ppt Fri, | >
Bl Open with:
b Preview:
p Ownership & Permissions:
b Comments:

Figure 6-16 An example of MVC architectural style. The “model” is the filename
9DesignPAtterns2.ppt. One “view” is a window titled CBSE, which displays the contents of a folder
containing the file 9DesignPatterns2.ppt. The other “view” is window called 9DesignPatterns2.ppt
Info, which displays information related to the file. If the file name is changed, both views are updated by
the “controller.”
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2:enterNewFileName(file,newName) 3

3:setName(newName) 3

:Controller

:Model

1:subscribeToFileEvents(file)»
5:getName() 3

:InfoView

<& 4:notifySubscribedViews(file)

<& 4:notifySubscribedViews(file)

:FolderView

1:subscribeToFileEvents(file) »
5:getName() »

Figure 6-17 Sequence of events in the Model/View/Control architectural style (UML communication
diagram).

The subscription and notification functionality associated with this sequence of events is
usually realized with an Observer design pattern (see Section A.7). The Observer design
pattern allows the Model and the View objects to be further decoupled by removing direct
dependencies from the Mode1 to the View. For more details, the reader is referred to [Gamma et
al., 1994] and to Section A.7.

The rationale between the separation of Model, View, and Controller is that user
interfaces, i.e., the View and the Controller, are much more often subject to change than is
domain knowledge, i.e., the Model1. Moreover, by removing any dependency from the Model on
the View with the subscription/notification protocol, changes in the views (user interfaces) do
not have any effect on the model subsystems. In the example of Figure 6-16, we could add a
Unix-style shell view of the file system without having to modify the file system. We described a
similar decomposition in Chapter 5, Analysis, when we identified entity, boundary, and control
objects. This decomposition is also motivated by the same considerations about change.

MVC is well suited for interactive systems, especially when multiple views of the same
model are needed. MVC can be used for maintaining consistency across distributed data;
however it introduces the same performance bottleneck as for other repository styles.

Client/server

In the client/server architectural style (Figure 6-18), a subsystem, the server, provides
services to instances of other subsystems called the clients, which are responsible for interacting
with the user. The request for a service is usually done via a remote procedure call mechanism or
a common object broker (e.g., CORBA, Java RMI, or HTTP). Control flow in the clients and the
servers is independent except for synchronization to manage requests or to receive results.
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Figure 6-18 Client/server architectural style (UML component diagram). C1ients request services from
one or more Servers. The Server has no knowledge of the C1ient. The client/server architectural style is
a specialization of the repository architectural style.

An information system with a central database is an example of a client/server
architectural style. The clients are responsible for receiving inputs from the user, performing
range checks, and initiating database transactions when all necessary data are collected. The
server is then responsible for performing the transaction and guaranteeing the integrity of the
data. In this case, a client/server architectural style is a special case of the repository
architectural style in which the central data structure is managed by a process. Client/server
systems, however, are not restricted to a single server. On the World Wide Web, a single client
can easily access data from thousands of different servers (Figure 6-19).

safari:WebBrowser @* —

www.in.tum.de:WebServer E

=
. =
1exp1orer:WebBrowser£|— - =
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~
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firefox:WebBrowser gl -

Figure 6-19 The Web as an instance of the client/server architectural style (UML deployment diagram).

Client/server architectural styles are well suited for distributed systems that manage large
amounts of data.

Peer-to-peer

A peer-to-peer architectural style (see Figure 6-20) is a generalization of the client/
server architectural style in which subsystems can act both as client or as servers, in the sense
that each subsystem can request and provide services. The control flow within each subsystem is
independent from the others except for synchronizations on requests.

An example of a peer-to-peer architectural style is a database that both accepts requests
from the application and notifies to the application whenever certain data are changed
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servicel()
service2() *
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Figure 6-20 Peer-to-peer architectural style (UML class diagram). Peers can request services from and
provide services to other peers.

(Figure 6-21). Peer-to-peer systems are more difficult to design than client/server systems
because they introduce the possibility of deadlocks and complicate the control flow.

Callbacks are operations that are temporary and customized for a specific purpose. For
example, a DBUser peer in Figure 6-21 can tell the DBMS peer which operation to invoke upon a
change notification. The DBUser then uses the callback operation specified by each DBUser for
notification when a change occurs. Peer-to-peer systems in which a “server” peer invokes
“client” peers only through callbacks are often referred to as client/server systems, even though
this is inaccurate since the “server” can also initiate the control flow.

applicationl:DBUser 1. updateData()

database:DBMS

2. notify(change)
application2:DBUser

Figure 6-21 An example of peer-to-peer architectural style (UML communication diagram). The database
server can both process requests from and send notifications to applications.

Three-tier

The three-tier architectural style organizes subsystems into three layers (Figure 6-22):

e The interface layer includes all boundary objects that deal with the user, including
windows, forms, web pages, and so on.

e The application logic layer includes all control and entity objects, realizing the
processing, rule checking, and notification required by the application.

* The storage layer realizes the storage, retrieval, and query of persistent objects.
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Figure 6-22 Three-tier architectural style (UML component diagram). Objects are organized into three
layers realizing the user interface, the processing, and the storage.

The three-tier architectural style was initially described in the 1970s for information
systems. The storage layer, an analog to the Repository subsystem in the repository
architectural style, can be shared by several different applications operating on the same data. In
turn, the separation between the interface layer and the application logic layer enables the

development or modification of different user interfaces for the same application logic.

Four-tier

The four-tier architectural style is a three-tier architecture in which the Interface layer is
decomposed into a Presentation Client layer and a Presentation Server layer
(Figure 6-23). The Presentation Client layer is located on the user machines, whereas the
Presentation Server layer can be located on one or more servers. The four-tier architecture
enables a wide range of different presentation clients in the application, while reusing some of
the presentation objects across clients. For example, a banking information system can include a
host of different clients, such as a Web browser interface for home users, an Automated Teller
Machine, and an application client for bank employees. Forms shared by all three clients can
then be defined and processed in the Presentation Server layer, thus removing redundancy

across clients.

Pipe and filter

In the pipe and filter architectural style (Figure 6-24), subsystems process data received
from a set of inputs and send results to other subsystems via a set of outputs. The subsystems are
called “filters,” and the associations between the subsystems are called “pipes.” Each filter

knows only the content and the format of the data received on the input pipes, not the filters that
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Figure 6-23 Four-tier architectural style (UML component diagram). The Interface layer of the three-
tier style is split into two layers to enable more variability on the user interface style.

*

input output 1
Filter Pipe
* output input 1

Figure 6-24 Pipe and filter architectural style (UML class diagram). A Fi1ter can have many inputs and
outputs. A Pipe connects one of the outputs of a Filter to one of the inputs of another Filter.

produced them. Each filter is executed concurrently, and synchronization is accomplished via
the pipes. The pipe and filter architectural style is modifiable: filters can be substituted for others
or reconfigured to achieve a different purpose.

The best known example of a pipe and filter architectural style is the Unix shell [Ritchie &
Thompson, 1974]. Most filters are written such that they read their input and write their results
on standard pipes. This enables a Unix user to combine them in many different ways.
Figure 6-25 shows an example made of four filters. The output of ps (process status) is fed into
grep (search for a pattern) to remove all the processes that are not owned by a specific user. The
output of grep (i.e., the processes owned by the user) is then sorted by sort and sent to more,

which is a filter that displays its input to a terminal, one screen at a time.

Pipe and filter styles are suited for systems that apply transformations to streams of data
without intervention by users. They are not suited for systems that require more complex
interactions between components, such as an information management system or an interactive

system.
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% ps auxwww | grep dutoit | sort | more

dutoit 19737 0.2 1.6 1908 1500 pts/6 0 15:24:36 0:00 -tcsh
dutoit 19858 0.2 0.7 816 580 pts/6 S 15:38:46 0:00 grep dutoit
dutoit 19859 0.2 0.6 812 540 pts/6 0 15:38:47 0:00 sort

Figure 6-25 Unix command line as an instance of the pipe and filter style (UML activity diagram).

6.4 System Design Activities: From Objects to Subsystems

System design consists of transforming the analysis model into the design model that takes into
account the nonfunctional requirements described in the requirements analysis document. We
illustrate these activities with an example, MyTrip, a route planning system for car drivers. We
start with the analysis model from MyTrip; then we describe the identification of design goals
(Section 6.4.2) and the design of an initial system decomposition (Section 6.4.3).

6.4.1 Starting Point: Analysis Model for a Route Planning System

Using MyTrip, a driver can plan a trip from a home computer by contacting a trip-planning
service on the Web (P1anTrip in Figure 6-26). The trip is saved for later retrieval on the server.
The trip-planning service must support more than one driver.

Use case name PlanTrip

Flow of events 1. The Driver activates her computer and logs into the trip-planning Web service.

2. The Driver enters constraints for a trip as a sequence of destinations.

3. Based on a database of maps, the planning service computes the shortest way of
visiting the destinations in the order specified. The result is a sequence of
segments binding a series of crossings and a list of directions.

4. The Driver can revise the trip by adding or removing destinations.

5. The Driver saves the planned trip by name in the planning service database for
later retrieval.

Figure 6-26 PlanTrip use case of the MyTrip system.

The driver then goes to the car and starts the trip, while the onboard computer gives
directions based on trip information from the planning service and her current position indicated
by an onboard GPS system (ExecuteTrip in Figure 6-27).

We perform the analysis for the MyTrip system following the techniques outlined in
Chapter 5, Analysis, and obtain the model in Figure 6-28.
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Use case name

ExecuteTrip

Flow of events

1.
2. Upon successful login, the Driver specifies the planning service and the name of

The Driver starts her car and logs into the onboard route assistant.

the trip to be executed.

The onboard route assistant obtains the list of destinations, directions, segments,
and crossings from the planning service.

Given the current position, the route assistant provides the driver with the next set
of directions.

The Driver arrives to destination and shuts down the route assistant.

Figure 6-27 ExecuteTrip use case of the MyTrip system.

| RouteAssistant PTanningService
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| Location | | Direction |
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Direction

Location
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A Crossing is a geographical point where several Segments meet.

A Destination represents a location where the driver wishes to go.

Given a Crossing and an adjacent Segment, a Direction describes in natural
language how to steer the car onto the given Segment.

A Location is the position of the car as known by the onboard GPS system or
the number of turns of the wheels.

A PlanningService is a Web server that can supply a trip, linking a number
of destinations in the form of a sequence of Crossings and Segments.

A RouteAssistant gives Directions to the driver, given the current
Location and upcoming Crossing.

A Segment represents the road between two Crossings.

A Tripis a sequence of Directions between two Destinations.

Figure 6-28  Analysis model for the MyTr1ip route planning and execution.
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In addition, during requirements elicitation, our client specified the following
nonfunctional requirements for MyTrip:

Nonfunctional requirements for MyTrip

1. MyTrip is in contact with the P1anningService via a wireless modem. Assume that the wireless
modem functions properly at the initial destination.

2. Once the trip has been started, MyTr1ip should give correct directions even if modem fails to maintain

a connection with the P1anningService.

MyTrip should minimize connection time to reduce operation costs.

Replanning is possible only if the connection to the P1anningService is possible.

5. The P1anningService can support at least 50 different drivers and 1,000 trips.

>

6.4.2 Identifying Design Goals

The definition of design goals is the first step of system design. It identifies the qualities that our
system should focus on. Many design goals can be inferred from the nonfunctional requirements
or from the application domain. Others will have to be elicited from the client. It is, however,
necessary to state them explicitly such that every important design decision can be made
consistently following the same set of criteria.

For example, in the light of the nonfunctional requirements for MyTrip described in
Section 6.4.1, we identify reliability and fault tolerance to connectivity loss as design goals. We
then identify security as a design goal, as numerous drivers will have access to the same trip
planning server. We add modifiability as a design goal, as we want to provide the ability for
drivers to select a trip planning service of their choice. The following box summarizes the design
goals we identified.

Design goals for MyTrip

¢ Reliability: MyTrip should be reliable [generalization of nonfunctional requirement 2].

¢ Fault Tolerance: MyTr1ip should be fault tolerant to loss of connectivity with the routing service
[rephrased nonfunctional requirement 2].

e Security: MyTrip should be secure, i.e., not allow other drivers or nonauthorized users to access a
driver’s trips [deduced from application domain].

*  Modifiability: MyTrip should be modifiable to use different routing services [anticipation of change
by developers].

In general, we can select design goals from a long list of highly desirable qualities. Tables
6-2 through 6-6 list a number of possible design criteria. These criteria are organized into five
groups: performance, dependability, cost, maintenance, and end user criteria. Performance,
dependability, and end user criteria are usually specified in the requirements or inferred from the
application domain. Cost and maintenance criteria are dictated by the customer and the supplier.
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Performance criteria (Table 6-2) include the speed and space requirements imposed on
the system. Should the system be responsive, or should it accomplish a maximum number of
tasks? Is memory space available for speed optimizations, or should memory be used sparingly?

Table 6-2 Performance criteria.

Design criterion Definition

Response time How soon is a user request acknowledged after the request has been issued?
Throughput How many tasks can the system accomplish in a fixed period of time?
Memory How much space is required for the system to run?

Dependability criteria (Table 6-3) determine how much effort should be expended in
minimizing system crashes and their consequences. How often can the system crash? How
available to the user should the system be? Should the system tolerate errors and failures? Are
security risks associated with the system environment? Are safety issues associated with system
crashes?

Table 6-3 Dependability criteria.

Design criterion Definition

Robustness Ability to survive invalid user input

Reliability Difference between specified and observed behavior

Availability Percentage of time that system can be used to accomplish normal tasks

Fault tolerance Ability to operate under erroneous conditions

Security Ability to withstand malicious attacks

Safety Ability to avoid endangering human lives, even in the presence of errors and
failures

Cost criteria (Table 6-4) include the cost to develop the system, to deploy it, and to
administer it. Note that cost criteria not only include design considerations but managerial ones,
as well. When the system is replacing an older one, the cost of ensuring backward compatibility
or transitioning to the new system has to be taken into account. There are also trade-offs between
different types of costs such as development cost, end user training cost, transition costs, and
maintenance costs. Maintaining backward compatibility with a previous system can add to the
development cost while reducing the transition cost.
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Table 6-4  Cost criteria.

Design criterion Definition

Development cost Cost of developing the initial system

Deployment cost Cost of installing the system and training the users

Upgrade cost Cost of translating data from the previous system. This criteria results

in backward compatibility requirements

Maintenance cost Cost required for bug fixes and enhancements to the system

Administration cost Cost required to administer the system

Maintenance criteria (Table 6-5) determine how difficult it is to change the system after
deployment. How easily can new functionality be added? How easily can existing functions be
revised? Can the system be adapted to a different application domain? How much effort will be
required to port the system to a different platform? These criteria are harder to optimize and plan
for, as it is seldom clear how successful the project will be and how long the system will be
operational.

Table 6-5 Maintenance criteria.

Design criterion Definition

Extensibility How easy is it to add functionality or new classes to the system?
Modifiability How easy is it to change the functionality of the system?
Adaptability How easy is it to port the system to different application domains?
Portability How easy is it to port the system to different platforms?
Readability How easy is it to understand the system from reading the code?
Traceability of requirements How easy is it to map the code to specific requirements?

End user criteria (Table 6-6) include qualities that are desirable from a users’ point of
view, but have not yet been covered under the performance and dependability criteria. Is the
software difficult to use and to learn? Can the users accomplish needed tasks on the system?
Often these criteria do not receive much attention, especially when the client contracting the
system is different from its users.
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Table 6-6 End user criteria.

Chapter 6 * System Design: Decomposing the System

Design criterion

Definition

Utility

How well does the system support the work of the user?

Usability

How easy is it for the user to use the system?

When defining design goals, only a small subset of these criteria can be simultaneously
taken into account. It is, for example, unrealistic to develop software that is safe, secure, and
cheap. Typically, developers need to prioritize design goals and trade them off against each other
as well as against managerial goals as the project runs behind schedule or over budget. Table 6-7
lists several possible trade-offs.

Table 6-7 Examples of design goal trade-offs.

Trade-off

Rationale

Space vs. speed

If the software does not meet response time or throughput requirements,
more memory can be expended to speed up the software (e.g., caching,
more redundancy). If the software does not meet memory space
constraints, data can be compressed at the cost of speed.

Delivery time vs.
functionality

If development runs behind schedule, a project manager can deliver less
functionality than specified on time, or deliver the full functionality at a
later time. Contract software usually puts more emphasis on functionality,
whereas off-the-shelf software projects put more emphasis on delivery
date.

Delivery time vs. quality

If testing runs behind schedule, a project manager can deliver the software
on time with known bugs (and possibly provide a later patch to fix any
serious bugs), or deliver the software later with fewer bugs.

Delivery time vs.
staffing

If development runs behind schedule, a project manager can add resources
to the project to increase productivity. In most cases, this option is only
available early in the project: adding resources usually decreases
productivity while new personnel are trained or brought up to date. Note
that adding resources will also raise the cost of development.

Managerial goals can be traded off against technical goals (e.g., delivery time vs.
functionality). Once we have a clear idea of the design goals, we can proceed to design an initial

subsystem decomposition.
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6.4.3 Identifying Subsystems

Finding subsystems during system design is similar to finding objects during analysis. For
example, some of the object identification techniques we described in Chapter 5, Analysis, such
as Abbotts’s heuristics, are applicable to subsystem identification. Moreover, subsystem
decomposition is constantly revised whenever new issues are addressed: several subsystems are
merged into one subsystem, a complex subsystem is split into parts, and some subsystems are
added to address new functionality. The first iterations over subsystem decomposition can
introduce drastic changes in the system design model. These are often best handled through
brainstorming.

The initial subsystem decomposition should be derived from the functional requirements.
For example, in the MyTrip system, we identify two major groups of objects: those that are
involved during the PlanTrip use case and those that are involved during the ExecuteTrip use
case. The Trip, Direction, Crossing, Segment, and Destination classes are shared between
both use cases. This set of classes is tightly coupled as it is used as a whole to represent a Trip.
We decide to assign them with P1anningService to the PlanningSubsystem, and the remainder
of the classes are assigned to the RoutingSubsystem (Figure 6-29). This leads to only one
association crossing subsystem boundaries. Note that this subsystem decomposition is a
repository in which the P1anningSubsystem is responsible for the central data structure.

Another heuristic for subsystem identification is to keep functionally related objects
together. A starting point is to assign the participating objects that have been identified in each
use case to the subsystems. Some group of objects, as the Trip group in MyTrip, are shared and
used for communicating information from one subsystem to another. We can either create a new
subsystem to accommodate them or assign them to the subsystem that creates these objects.

Heuristics for grouping objects into subsystems

* Assign objects identified in one use case into the same subsystem.

¢ Create a dedicated subsystem for objects used for moving data among subsystems.
* Minimize the number of associations crossing subsystem boundaries.

¢ All objects in the same subsystem should be functionally related.

Encapsulating subsystems with the Facade design pattern

Subsystem decomposition reduces the complexity of the solution domain by minimizing
coupling among subsystems. The Facade design pattern (see Appendix A.6 and [Gamma et al.,
1994]) allows us to further reduce dependencies between classes by encapsulating a subsystem
with a simple, unified interface. For example, in Figure 6-30, the Compiler class is a facade
hiding the classes CodeGenerator, Optimizer, ParseNode, Parser, and Lexer. The facade
provides access only to the public services offered by the subsystem and hides all other details,
effectively reducing coupling between subsystems.
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RoutingSubsystem P1 anm'ngSubsystem\

| RouteAssistant I\ PlanningService
\ \| Trip

| Location | | Direction |
Destination
| Crossing |
\| Segment
PlanningSubsystem The PT1anningSubsystem is responsible for constructing a Trip connecting a

sequence of Destinations. The P1anningSubsystem is also responsible for
responding to replan requests from RoutingSubsystem.

RoutingSubsystem The RoutingSubsystem is responsible for downloading a Trip from the
PlanningService and executing it by giving Directions to the driver based
on its Location.

Figure 6-29 Initial subsystem decomposition for MyTrip (UML class diagram).

Compiler \\ Compiler
compile()
CodeGenerator —J L— Lexer
create() getToken()
Optimizer Parser
create() generateParseTree()
ParseNode
create()

Figure 6-30 An example of the Facade design pattern (UML class diagram).
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Subsystems identified during the initial subsystem decomposition often result from
grouping several functionally related classes. These subsystems are good candidates for the
Facade design pattern and should be encapsulated under one class.

6.5 Further Readings

Historically, the discipline of software architecture originated with Dijkstra and Parnas. They
pointed out that the structure of a piece of software is as critical as its ability to compute correct
results. Dijkstra introduced the concept of a layered architecture and discussed its application to
the design of the operating system T.H.E. [Dijkstra, 1968]. Parnas introduced the concept of
information hiding and discussed the criteria that should be used when decomposing a system
[Parnas, 1972].

The Structured Design method [ Yourdon & Constantine, 1979] introduced the concepts of
cohesion and coupling metrics to design a software architecture.

Although the need and advantages for software architectures have been well understood
since then, the field of software architecture has continued to evolve for several decades. The
main barriers so far have been a lack of common language to describe architectures and a lack of
analysis methods for comparing architectures and predicting whether they can meet the
specified requirements of the system.

Software Architecture: Perspectives on an Emerging Discipline [Shaw & Garlan, 1996]
and Pattern-Oriented Software Architecture [Buschmann et al., 1996] are the first widely cited
systematic efforts to provide a catalog of architectures. Shaw and Garlan introduced the concept
of architectural styles; Buschmann et al. used architectural patterns as a description language.

In the 1990s, more case studies in product line engineering provided concrete examples of
the benefits of reusing of software architectures, not only from a technical point of view (design
decisions about structure and components are reused), but also from a management point of
view (team organizations and methods of communication are reused). The Software Engineering
Institute at Carnegie Mellon University has collected, maintained, and developed extensive
material on software architecture and product lines. For example, Software Architecture in
Practice [Bass et al., 2003] and Evaluating Software Architectures [Clements et al., 2002]
describe methods and case studies for selecting and evaluating software architecture.

Also relevant to software architecture is Applied Software Architecture [Hofmeister,
2000], which focuses on practical industrial applications of software architecture.

6.6 EXxercises

6-1 Decomposing a system into subsystems reduces the complexity developers have to deal
with by simplifying the parts and increasing their coherence. Decomposing a system
into simpler parts usually increases a different kind of complexity: simpler parts also
means more parts and more interfaces. If cohesion is the guiding principle driving
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6-2

6-3

6-4

6-5

6-6

6-7
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developers to decompose a system into small parts, which competing principle drives
them to keep the total number of parts small?

In Section 6.4.2, we classified design goals into five categories: performance,
dependability, cost, maintenance, and end user. Assign one or more categories to each
of the following goals:

* Users must be given feedback within one second after they issue any command.

¢ The TicketDistributor must be able to issue train tickets, even in the event of a
network failure.

e The housing of the TicketDistributor must allow for new buttons to be installed
in case the number of fares increases.

¢ The AutomatedTellerMachine must withstand brute force attacks (i.e., users
attempting to discover a identification number by systematic trial).

You are developing a system that stores its data on a Unix file system. You anticipate
that you will port future versions of the system to other operating systems that provide
different file systems. Propose a subsystem decomposition that anticipates this change.

Older compilers were designed according to a pipe and filter architecture, in which
each stage would transform its input into an intermediate representation passed to the
next stage. Modern development environments, including compilers integrated into
interactive development environments with syntactical text editors and source-level
debuggers, use a repository architecture. Identify the design goals that may have
triggered the shift from pipe and filter to repository architecture.

Consider the model/view/control example depicted in Figures 6-17 and 6-16

a. Redraw the communication diagram of Figure 6-17 as a sequence diagram.
b. Discuss how the MV C architecture helps or hurts the following design goals:
* Extensibility (e.g., the addition of new types of views)

* Response time (e.g., the time between a user input and the time all views have
been updated)

* Modifiability (e.g., the addition of new attributes in the model)

e Access control (i.e., the ability to ensure that only legitimate users can access
specific parts of the model).

List design goals that would be difficult to meet when using a closed architecture with
many layers, such as the OSI example depicted in Figure 6-11.

In many architectures, such as the three- and four-tier architectures (Figures 6-22 and
6-23), the storage of persistent objects is handled by a dedicated layer. In your opinion,
which design goals have lead to this decision?
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System Design:
Addressing Design
Goals

Good, fast, cheap. Pick any two.
—OId software engineering aphorism

During system design, we identify design goals, decompose the system into subsystems, and
refine the subsystem decomposition until all design goals are addressed. In the previous chapter,
we described the concepts of design goals and system decomposition. In this chapter, we
introduce the system design activities that address the design goals. In particular, we examine

o Selection of off-the-shelf and legacy components. Off-the-shelf or legacy components
realize specific subsystems more economically. The initial subsystem decomposition is
adjusted to accommodate them.

* Mapping of subsystem to hardware. When the system is deployed on several nodes,
additional subsystems are required for addressing reliability or performance issues.

e Design of a persistent data management infrastructure. Managing the states that
outlives a single execution of the system has an impact on overall system performance
and leads to the identification of one or more storage subsystems.

* Specification of an access control policy. Shared objects are protected so that user
access to them is controlled. Access control impacts how objects are distributed within
subsystems.

e Design of the global control flow. Determining the sequence of operations impacts the
interface of the subsystems.

* Handling of boundary conditions. Once all subsystems have been identified, developers
decide on the order in which individual components are started and shutdown.

We then describe the management issues related to system design, such as documentation,

responsibilities, and communication. We conclude this chapter by discussing in more detail
system design issues and trade-offs using the ARENA case study.
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7.1 Introduction: A Redundancy Example

Redundancy in the Space Shuttle computer system

Unlike previous spacecraft, the space shuttle was designed to be autonomous. Space shuttle missions
would be longer and crews larger than on Apollo or Gemini missions. It was also expected that multiple
missions would be in space at the same time. Hence, the space shuttle would need to tolerate several
failures before aborting the mission, and its design included many redundant features, including a fault-
tolerant computer system responsible for guidance, navigation, and altitude control.

Using redundancy in spacecraft computer systems was not new. The Saturn rocket that launched the
Apollo spacecraft used triple modular redundancy for the guidance system; that is, each of the
components in the computer was tripled. The failure of a single component was detected when it
produced a different output than the other two. A voting component would compare these outputs at all
times and mask single failures. This type of computer was expensive to manufacture and could only
address local single failures. It would not have survived a massive failure, such as the explosion on
Apollo 13.

The Skylab space station took a different approach. The computer systems were completely duplicated
and located at different ends of the station. When one computer failed, the other would be switched on
to take over. Whereas a slow switch-over was acceptable for a space station (i.e., the space station could
loose some altitude before safety became an issue), it would not be acceptable for the space shuttle,
whose computer system was responsible for high-frequency tasks such as guidance during take-off and
landing.

Hence, the space shuttle needed a computer system that was duplicated at the system level, as in the
Skylab, but that functioned simultaneously so that switch-over could happen in a short time, as in the
Saturn rocket. The initial requirements by NASA were that the Shuttle should be able to experience two
consecutive failures before the mission was aborted. This lead to a system design with five identical
computers running the same software. If two individual computers failed, the last three would constitute
a triple redundancy system for landing. If a third computer failed during the decent, the last two would
be enough to ensure a safe landing.

Due to cost consideration, NASA later decided to lower its requirement to one failure before mission
abort. However, since the procurement for the five computers was already completed and the five
computers had been factored into the design, the fifth computer evolved into a back-up system. While
the quadruple redundancy protects against hardware failures, it does not increase reliability against
software faults, as all four main computers run the same software. The back-up system, however, runs a
simpler version of the software that is only able to guide the shuttle during take-off and landing.

The example above illustrates how architectural decisions were made during the design of
a complex computer system. While some decisions are historical, most are driven by design
goals and nonfunctional requirements. Addressing design goals for software systems entails
different approaches than a hardware system such as the space shuttle. However, the impact is
similar: one design goal is examined at the time, influencing the system decomposition and
resulting in the change of the subsystem decomposition or its interfaces. By the end of system
design, all design goals should have been addressed. Section 7.2 provides a bird’s-eye view of
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the activities of system design for addressing design goals. Section 7.3 describes the concept of
UML deployment diagram. Section 7.4 describes system design activities and uses an example
to illustrate how these building blocks can be used together. Section 7.5 describes management
issues related to system design. Section 7.6 discusses these concepts in more detail with the
ARENA case study.

7.2 An Overview of System Design Activities

Design goals guide the decisions to be made by the developers especially when trade-offs are
needed. Developers divide the system into manageable pieces to deal with complexity: each
subsystem is assigned to a team and realized independently. In order for this to be possible,
though, developers need to address system-wide issues when decomposing the system. In
particular, they need to address the following issues:

* Hardware/software mapping: What is the hardware configuration of the system?
Which node is responsible for which functionality? How is communication between
nodes realized? Which services are realized using existing software components? How
are these components encapsulated? Addressing hardware/software mapping issues
often leads to the definition of additional subsystems dedicated to moving data from
one node to another, dealing with concurrency, and reliability issues. Off-the-shelf
components enable developers to realize complex services more economically. User
interface packages and database management systems are prime examples of off-the-
shelf components. Components, however, should be encapsulated to minimize
dependency on a particular component; a competing vendor may offer a better product
in the future, and you want the option to switch.

e Data management: Which data should be persistent? Where should persistent data be
stored? How are they accessed? Persistent data represents a bottleneck in the system on
many different fronts: most functionality in system is concerned with creating or
manipulating persistent data. For this reason, access to the data should be fast and
reliable. If retrieving data is slow, the whole system will be slow. If data corruption is
likely, complete system failure is likely. These issues must be addressed consistently at
the system level. Often, this leads to the selection of a database management system
and of an additional subsystem dedicated to the management of persistent data.

* Access control: Who can access which data? Can access control change dynamically?
How is access control specified and realized? Access control and security are system-
wide issues. The access control must be consistent across the system; in other words,
the policy used to specify who can and cannot access certain data should be the same
across all subsystems.

* Control flow: How does the system sequence operations? Is the system event driven?
Can it handle more than one user interaction at a time? The choice of control flow has
an impact on the interfaces of subsystems. If an event-driven control flow is selected,
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subsystems will provide event handlers. If threads are selected, subsystems must
guarantee mutual exclusion in critical sections.

Boundary conditions: How is the system initialized and shut down? How are
exceptional cases handled? System initialization and shutdown often represent much of
the complexity of a system, especially in a distributed environment. Initialization,
shutdown, and exception handling have an impact on the interface of all subsystems.

Figure 7-1 depicts the activities of system design. Each activity addresses one of the issues

we described above. Addressing any one of these issues can lead to changes in subsystem
decomposition and raising new issues. As you will see in this chapter, system design is a highly
iterative activity that likely results in the identification of new subsystems, the modification of
existing subsystems, and system-wide revisions that impact all subsystems.

Define
subsystems

Define

Implement
design goals

subsystems

Map subsystems
to hardware/
software platform

Manage
persistent data

Define access
={ control policies

Select a
global
control flow

Describe boundary
conditions

Figure 7-1 The activities of system design (UML activity diagram).

7.3 Concepts: UML Deployment Diagrams

UML deployment diagrams are used to depict the relationship among run-time components
and nodes. Components are self-contained entities that provide services to other components or

actors. A Web server, for example, is a component that provides services to Web browsers. A
Web browser such as Safari is a component that provides services to a user. A node is a physical
device or an execution environment in which components are executed. A system is composed
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of interacting run-time components that can be distributed among several nodes. Furthermore a
node can contain another node, for example, a device can contain an execution environment.

In UML deployment diagrams, nodes are represented by boxes containing component
icons. Nodes can be stereotyped to denote physical devices or execution environments.
Communication paths between nodes are represented by solid lines. The protocol used by two
nodes to communicate can be indicated with a stereotype on the communication path. Figure 7-2
depicts an example of a deployment diagram with two Web browsers accessing a Web server.
The Web server in turns accesses a database server. We can see from the diagram that the Web
browsers do not directly access the database at any time.

«device» «de_V‘i ce»
myMac:Mac «http» :UnixHost
:Safari gl :WebServer gl
«httpy
:IExp1or‘er‘gl :Database gl

Figure 7-2 A UML deployment diagram representing the allocation of components to different nodes.
Web browsers on PCs and Macs can access a WebServer that provides information from a Database.

The deployment diagram in Figure 7-2 focuses on the allocation of components to nodes
and provides a high-level view of each component. Components can be refined to include
information about the interfaces they provide and the classes they contain. Figure 7-3 illustrates
the WebServer component and its containing classes.

WebServer @
http Serviet jdbc
O—D\ —C
HttpService DBProxy

Figure 7-3 Refined view of the WebServer component (UML component diagram). WebServer provides
an http interface and requires a jdbc interface. The http interface is realized by the HttpService class.
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7.4 System Design Activities: Addressing Design Goals

In this section, we describe the activities needed to ensure that subsystem decomposition
addresses all the nonfunctional requirements and can account for any constraints during the
implementation phase. In Section 6.4, we identified a set of design goals and designed an initial
subsystem decomposition for MyTrip. Here, we refine the subsystem decomposition by

* Mapping Subsystems to Processors and Components (Section 7.4.1)
¢ Identifying and Storing Persistent Data (Section 7.4.2)

¢ Providing Access Control (Section 7.4.3)

* Designing the Global Control Flow (Section 7.4.4)

* Identifying Services (Section 7.4.5)

¢ Identifying Boundary Conditions (Section 7.4.6)

¢ Reviewing the System Design Model (Section 7.4.7).

7.4.1 Mapping Subsystems to Processors and Components

Selecting a hardware configuration and a platform

Many systems run on more than one computer and depend on access to an intranet or to
the Internet. The use of multiple computers can address high-performance needs and
interconnect multiple distributed users. Consequently, we need to examine carefully the
allocation of subsystems to computers and the design of the infrastructure for supporting
communication between subsystems. These computers are modeled as nodes in UML
deployment diagrams. Because the hardware mapping activity has significant impact on the
performance and complexity of the system, we perform it early in system design.

Selecting a hardware configuration also includes selecting a virtual machine onto which
the system should be built. The virtual machine includes the operating system and any software
components that are needed, such as a database management system or a communication
package. The selection of a virtual machine reduces the distance between the system and the
hardware platform on which it will run. The more functionality the components provide, the less
development work is involved. The selection of the virtual machine, however, may be
constrained by a client who acquires hardware before the start of the project. The selection of a
virtual machine may also be constrained by cost considerations: it can be difficult to estimate
whether building a component costs more than buying it.

In MyTrip, we deduce from the requirements that PlanningSubsystem and
RoutingSubsystem run on two different nodes: the former is a Web-based service on an Internet
host, the latter runs on the onboard computer. Figure 7-4 illustrates the hardware allocation for
MyTrip with two devices called :0OnBoardComputer and :WebHost, and an execution
environment called :Apache.

We select a Unix machine as the virtual machine for the :WebServer, and the Web
browsers Safari and Internet Explorer as the virtual machines for the :OnBoardComputer.
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«device»

:WebHost
«device»
:0OnBoardComputer «webservers»
«http» X
:Apache
:RoutingSubsystem

:PTanningSubsystem

Figure 7-4 Allocation of MyTrip subsystems to devices and execution environments (UML deployment
diagram). RoutingSubsystem runs on the OnBoardComputer; PlanningSubsystem runs on an Apache
server.

Allocating objects and subsystems to nodes

Once the hardware configuration has been defined and the virtual machines selected,
objects and subsystems are assigned to nodes. This often triggers the identification of new
objects and subsystems for transporting data among the nodes.

In the MyTrip system, both RoutingSubsystem and PTanningSubsystem share the objects
Trip, Destination, Crossing, Segment, and Direction. Instances of these classes need to
communicate via a wireless modem using some communication protocol. We create a new
subsystem to support this communication: CommunicationSubsystem, a subsystem located on
both nodes for managing the communication between them.

We also notice that only segments constituting the planned trip are stored in
RoutingSubsystem. Adjacent segments not part of the trip are stored only in the
PlanningSubsystem. To take this into account, we need objects in the RoutingSubsystem that
can act as surrogates to Segments and Trips in the PlanningSubsystem. An object that acts on
the behalf of another one is called a “proxy.” We therefore create two new classes,
SegmentProxy and TripProxy, and make them part of the RoutingSubsystem. These proxies are
examples of the Proxy design pattern (see Appendix A.8 and [Gamma et al., 1994]).

In case of replanning by the driver, this class will transparently request the
CommunicationSubsystem to retrieve the information associated with its corresponding
Segments on the PlanningSubsystem. Finally, the CommunicationSubsystem is used for
transferring a complete trip from PlanningSubsystem to RouteAssistant. The revised design
model and the additional class descriptions are depicted in Figure 7-5.

In general, allocating subsystems to hardware nodes enables us to distribute functionality
and processing power where it is most needed. Unfortunately, it also introduces issues related to
storing, transferring, replicating, and synchronizing data among subsystems. For this reason,
developers also select the components they will use for developing the system.
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RoutingSubsystem 53] PlanningSubsystem = ]
| RouteAssistant | |P1ann'ingSerV‘ice|
| Location | | Trip || Destination |

| TripProxy | | Direction |
[seqnentproxy | || L__Crossing g

CommunicationSubsystem E

| Message |

| Connection |

CommunicationSubsystem  The CommunicationSubsystem is responsible for transporting objects
from the P1anningSubsystem to the RoutingSubsystem.

Connection A Connection represents an active link between the Planning-
Subsystem and the RoutingSubsystem. A Connection object handles
exceptional cases associated with loss of network services.

Message A Message represents a Trip and its related Destinations, Segments,
Crossings, and Directions, encoded for transport.

Figure 7-5 Revised design model for MyTrip (UML component diagram).

7.4.2 Identifying and Storing Persistent Data

Persistent data outlive a single execution of the system. For example, at the end of the day, an
author saves his work into a file on a word processor. The file can then be reopened later. The
word processor need not run for the file to exist. Similarly, information related to employees,
their employment status, and their paychecks live in a database management system. This allows
all the programs that operate on employee data to do so consistently. Moreover, storing data in a
database enables the system to perform complex queries on a large data set (e.g., the records of
several thousand employees).

Where and how data is stored in the system affects system decomposition. In some cases,
for example, in a repository architectural style (see Section 6.3.5), a subsystem can be
completely dedicated to the storage of data. The selection of a specific database management
system can also have implications on the overall control strategy and concurrency management.

For example, in MyTrip, we decide to store the current Trip in a file on a removable disk
to allow the recovery of the Trip in case the driver shuts off the car before reaching the final
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Destination. Using a file is the simplest and most efficient solution in this case, given that the
RoutingSubsystem will only store complete Trips to the file before shutdown and load the file
at start-up. In the PTanningSubsystem, however, the Trips will be stored in a database. This
subsystem can then be used to manage all Trips for many drivers, as well as the maps needed to
generate the Trips. Using a database for this subsystem allows us to perform complex queries
on these data. We add the TripFileStoreSubsystem and the MapDBStoreSubsystem subsystems
to MyTrip to reflect these decisions, as illustrated in Figure 7-6.

=] =]

RoutingSubsystem PTanningSubsystem

-
/ ~ \

YA RN \
= | = | = |

TripFileStoreSubsystem CommunicationSubsystem MapDBStoreSubsystem

TripFileStoreSubsystem The TripFileStoreSubsystem is responsible for storing trips in files
on the onboard computer. Because this functionality is only used for
storing trips when the car shuts down, this subsystem only supports the
fast storage and loading of whole trips.

MapDBStoreSubsystem The MapDBStoreSubsystem is responsible for storing maps and trips in
a database for the PlanningSubsystem. This subsystem supports
multiple concurrent Drivers and planning agents.

Figure 7-6  Subsystem decomposition of MyTrip after deciding on the issue of data stores (UML
component diagram).

Identifying persistent objects

First, we identify which data must be persistent. The entity objects identified during
analysis are obvious candidates for persistency. In MyTrip, Trips and their related classes
(Crossing, Destination, PlanningService, and Segment) must be stored. Note that not all
entity objects must be persistent. For example, Location and Direction are constantly
recomputed as the car moves. Persistent objects are not limited to entity objects, however. In a
multi-user system, information related to users (e.g., Drivers) is persistent, as well as some
attributes of the boundary objects (e.g., window positions, user interface preferences, state of
long-running control objects). In general, we can identify persistent objects by examining all the
classes that must survive system shutdown, either in case of a controlled shutdown or an
unexpected crash. The system will then restore these long-lived objects by retrieving their
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attributes from storage during system initialization or on demand as the persistent objects are
needed.

Selecting a storage management strategy

Once all persistent objects are identified, we need to decide how these objects should be
stored. The decision for storage management is more complex and is usually dictated by
nonfunctional requirements: Should the objects be retrieved quickly? Must the system perform
complex queries to retrieve these objects? Do objects require a lot of memory or disk space? In
general, there are currently three options for storage management:

e Flat files. Files are the storage abstractions provided by operating systems. The
application stores its data as a sequence of bytes and defines how and when data should
be retrieved. The file abstraction is relatively low level and enables the application to
perform a variety of size and speed optimizations. Files, however, require the
application to take care of many issues, such as concurrent access and loss of data in
case of system crash.

* Relational database. A relational database provides data abstraction at a higher level
than flat files. Data are stored in tables that comply with a predefined type called a
schema. Each column in the table represents an attribute. Each row represents a data
item as a tuple of attribute values. Several tuples in different tables are used to represent
the attributes of an individual object. Mapping complex object models to a relational
schema is challenging. Specialized methods, such as [Blaha & Premerlani, 1998],
provide a systematic way of performing this mapping. Relational databases also
provide services for concurrency management, access control, and crash recovery.
Relational databases have been used for a while and are a mature technology. Although
scalable and ideal for large data sets, they are relatively slow for small data sets and for
unstructured data (e.g., images, natural language text).

e Object-oriented database. An object-oriented database provides services similar to a
relational database. Unlike a relational database, it stores data as objects and
associations. In addition to providing a higher level of abstraction (and thus reducing
the need to translate between objects and storage entities), object-oriented databases
provide developers with inheritance and abstract data types. Object-oriented databases
significantly reduce the time for the initial development of the storage subsystem.
However, they are slower than relational databases for typical queries and are more
difficult to tune.

Figure 7-7 summarizes trade-offs when selecting a storage management system. Note that
within a complex system, hybrid solutions mixing flat files and a database management system
can be used for different sets of persistent objects. In Chapter 10, Mapping Models to Code, we
examine how persistent objects are mapped into database tables and flat files.
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Trade-off between flat files, relational databases, and object-oriented databases

When should you choose flat files?

¢ Voluminous data (e.g., images)
e Temporary data (e.g., core file)
* Low information density (e.g., archival files, history logs)

When should you choose a relational or an object-oriented database?

e Concurrent accesses
* Access at finer levels of detail
e Multiple platforms or applications for the same data

When should you choose a relational database?

* Complex queries over attributes
* Large data set

When should you choose an object-oriented database?

¢ Extensive use of associations to retrieve data
¢ Medium-sized data set
* Irregular associations among objects

Figure 7-7 Trade-off between files and databases for storage management.

7.4.3 Providing Access Control

In multi-user systems, different actors have access to different functionality and data. For
example, an everyday actor may only access the data it creates, whereas a system administrator
actor may have unlimited access to system data and to other users’ data. During analysis, we
modeled these distinctions by associating different use cases to different actors. During system
design, we model access by determining which objects are shared among actors, and by defining
how actors can control access. Depending on the security requirements of the system, we also
define how actors are authenticated to the system (i.e., how actors prove to the system who they
are) and how selected data in the system should be encrypted.

For example, in MyTrip, storing maps and Trips for many drivers in the same database
introduces security issues. We must ensure that Trips are sent only to the driver who created
them. This is consistent with the security design goal we defined in Section 6.4.2 for MyTrip.
Consequently, we model a driver with the Driver class and associate it with the Trip class. The
PlanningSubsystem also becomes responsible for authenticating Drivers before sending Trips.
Finally, we decide to encrypt the communication traffic between the RoutingSubsystem and the
PlanningSubsystem. This will be done by the CommunicationSubsystem. The descriptions for
the Driver class and the revised descriptions for the PlanningSubsystem and the
CommunicationSubsystem are displayed in Table 7-1. The revisions to the design model are
indicated in italics.
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Table 7-1  Revisions to the design model stemming from the decision to authenticate Drivers and
encrypt communication traffic. The text added to the model is in italics.

Communication  The CommunicationSubsystem is responsible for transporting Trips from the

Subsystem PlanningSubsystem to the RoutingSubsystem. The CommunicationSubsystem
uses the Driver associated with the Trip being transported for selecting a key and
encrypting the communication traffic.

Planning The P1anningSubsystem is responsible for constructing a Trip connecting a

Subsystem sequence of Destinations. The PlanningSubsystem is also responsible for
responding to replan requests from RoutingSubsystem. Prior to processing any
requests, the PlanningSubsystem authenticates the Driver from the
RoutingSubsystem. The authenticated Driver is used to determine which Trips
can be sent to the corresponding RoutingSubsystem.

Driver A Driver represents an authenticated user. It is used by the
CommunicationSubsystem to remember keys associated with a user and by the
PlanningSubsystem to associate Trips with users.

Defining access control for a multi-user system is usually more complex than in MyTrip.
In general, we need to define for each actor which operations they can access on each shared
object. For example, a bank teller may post credits and debits up to a predefined amount. If the
transaction exceeds the predefined amount, a manager must approve the transaction. Managers
can examine the branch statistics; but cannot access the statistics of other branches. Analysts can
access information across all branches of the corporation, but cannot post transactions on
individual accounts. We model access on classes with an access matrix. The rows of the matrix
represent the actors of the system. The columns represent classes whose access we control. An
entry (class, actor) in the access matrix is called an access right and lists the operations
(e.g., postSmal1Debit(), postLargeDebit(), examineGlobalStats()) that can be executed on
instances of the class by the actor. Table 7-2 depicts the access matrix for our bank.

We can represent the access matrix using one of three different approaches: global access
table, access control list, and capabilities.

* A global access table represents explicitly every cell in the matrix as a (actor,class,
operation) tuple. Determining if an actor has access to a specific object requires
looking up the corresponding tuple. If no such tuple is found, access is denied.

* An access control list associates a list of (actor,operation) pairs with each class to
be accessed. Empty cells are discarded. Every time an object is accessed, its access list
is checked for the corresponding actor and operation. An example of an access control
list is the guest list for a party. A butler checks the arriving guests by comparing their
names against names on the guest list. If there is a match, the guests can enter;
otherwise, they are turned away.
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* A capability associates a (class,operation) pair with an actor. A capability allows
an actor access to an object of the class described in the capability. Denying a capability
is equivalent to denying access. An example of a capability is an invitation card for a
party. In this case, the butler checks if the arriving guests hold an invitation for the
party. If the invitation is valid, the guests are admitted; otherwise, they are turned away.
No other checks are necessary.

The representation of the access matrix is also a performance issue. Global access tables
require a lot of space. Access control lists make it faster to answer the question, “Who has access
to this object?”, whereas capability lists make it faster to answer the question, “Which objects
has this actor access to?”

Each row in the global access matrix represents a different access view of the classes listed
in the columns. All of these access views should be consistent. Usually, however, access views
are implemented by defining a subclass for each different type of (actor,operation) tuple. For
example, in our banking system, we would implement an AccountViewedByTeller and
AccountViewedByManager class as subclasses of Account. Only the appropriate classes are
available to the corresponding actor. For example, the Analyst client software would not include
an Account class, because the Analyst has no access to any operation in this class. This reduces
the risk that an error in the system results in the possibility of unauthorized access.

Often, the number of actors and the number of protected objects are too large for either the
capability or the access control list representations. In such cases, rules can be used as a compact
representation of the global access matrix. For example, firewalls protect services located on
Intranet Hosts from other hosts on the Internet. Based on the source host and port, destination
host and port, and packet size, the firewall allows or denies packets to reach their destination.

Table 7-2  Access matrix for a banking system. Tellers can perform small transactions and inquire
balances. Managers can perform larger transactions and access branch statistics in addition to the
operations accessible to the Tellers. Analysts can access statistics for all branches, but cannot perform
operations at the account level.

Objects Corporation LocalBranch Account

Actors

Teller postSmallDebit()
postSmallCredit()
examineBalance()

Manager examineBranchStats() postSmallDebit()
postSmallCredit()
postLargeDebit()
postLargeCredit()
examineBalance()
examineHistory()

Analyst examineGlobalStats() examineBranchStats()
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As there are potentially many different combinations of source and destination hosts and
ports, firewall access is specified in terms of a list of rules. For a given packet, the list is searched
sequentially until a matching rule is found. The action of the matching rule then dictates whether
the current packet should be filtered or not. For completeness, the last rule of the list matches
any packet and has a deny action, thus filtering out packets that do not match any of the other
rules. Table 7-3 depicts an example list of rules for the firewall depicted in Figure 7-8. The first
two rules allow any host (located in the internet or in the intranet) to access the http service on
the Web Server and to deliver mail to the Mai1 Server. The next two rules allow Intranet hosts
to update the pages of the Web Server and to retrieve mail from the Mai1l Server. Consequently,
since these are the last two rules that allow packets through, all Internet hosts are denied access
to modify web pages on the Web Server, read mail from the Mail Server, or any other service on
any of the Intranet hosts. For readability and robustness purposes, these can also have been
specified with deny rules (rows 5-7 in Table 7-3).
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Intranet host
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( \
( Internet\ <=——=
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Figure 7-8 Packet filtering firewall: a filter, located at the router, allows or denies individual packets
based on header information, such as source and destination.

When the number of actors and objects is large, a rule-based representation is more
compact than either access control lists or capabilities. Moreover, a small set of rules is more
readable, and hence, more easily proofed by a human reader, which is a critical aspect when
setting up a secure environment.

An access matrix only represents static access control. This means that access rights can
be modeled as attributes of the objects of the system. In the bank information system example,
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Table 7-3  Simplified example of packet filtering rules for firewall of Figure 7-8.
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Source Host Destination Host Destination Port Action
any® Web Server http allow
any Mail Server smtp allow
Intranet host Web Server rsync allow
Intranet host Mail Server pop allow
Internet host Web Server rsync deny
Internet host Mail Server pop deny
Internet host Intranet host any deny
any any any deny

a. any means any one of Intranet host, Internet host, Web Server, or Mail Server.

consider a broker actor who is assigned a set of portfolios. By policy, a broker cannot access
portfolios managed by another broker. In this case, we need to model access rights dynamically
in the system, and, hence, this type of access is called dynamic access control. For example,
Figure 7-9 shows how this access can be implemented with a protection Proxy design pattern
(Appendix A.8, [Gamma et al., 1994]). For each Portfolio, we create a PortfolioProxy to
protect the Portfolio and check for access. An Access association between a legitimate Broker
and a PortfolioProxy indicates which Portfolio the Broker has access to. To access a
Portfolio, the Broker sends a message to the corresponding PortfolioProxy. The
PortfolioProxy first checks if the invoking Broker has the appropriate association with the
PortfolioProxy. If access is granted, the PortfolioProxy delegates the message to the
Portfolio. Otherwise, the operation fails.

In both static and dynamic access control, we assume that we know the actor: either the
user behind the keyboard or the calling subsystem. This process of verifying the association
between the identity of the user or subsystem and the system is called authentication. A widely
used authentication mechanism, for example, is for the user to specify a user name, known by
everybody, and a corresponding password, only known to the system and stored in an access
control list. The system protects its users’ passwords by encrypting them before storing or
transmitting them. If only a single user knows this user name—password combination, then we
can assume that the user behind the keyboard is legitimate. Although password authentication
can be made secure with current technology, it suffers from many usability disadvantages: users
choose passwords that are easy to remember and, thus, easy to guess. They also tend to write
their password on notes that they keep close to their monitor, and thus, visible to many other
users, authorized or not. Fortunately, other, more secure authentication mechanisms are
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Access

isAccessible(op)
T

Broker

*

PortfolioProxy Portfolio
buy () buy ()
sell1Q 1 sell
estimateYield() estimateYield()

Figure 7-9 Dynamic access implemented with a protection Proxy. The Access association class contains
a set of operations that a Broker can use to access a Portfolio. Every operation in the PortfolioProxy
first checks with the isAccessible() operation if the invoking Broker has legitimate access. Once access
has been granted, PortfolioProxy delegates the operation to the actual Portfolio object. One Access
association can be used to control access to many Portfolios.

available. For example, a smart card can be used in conjunction with a password: an intruder
would need both the smart card and the password to gain access to the system. Better, we can
use a biometric sensor for analyzing patterns of blood vessels in a person’s fingers or eyes. An
intruder would then need the physical presence of the legitimate user to gain access to the
system, which is much more difficult than just stealing a smart card.

In an environment where resources are shared among multiple users, authentication is
usually not sufficient. In the case of a network, for example, it is relatively easy for an intruder to
find tools to snoop the network traffic, including packets generated by other users (see
Figure 7-10). Worse, protocols such as TCP/IP were not designed with security in mind: an
intruder can forge packets such that they appear as if they were coming from legitimate users.

Encryption is used to prevent such unauthorized access. Using an encryption algorithm,
we can translate a message, called “plaintext,” into an encrypted message, called a “ciphertext,”
such that even if intercepted, it cannot be understood. Only the receiver has sufficient knowledge
to correctly decrypt the message, that is, to reverse the original process. The encryption process
is parameterized by a “key,” such that the method of encryption and decryption can be switched
quickly in case the intruder manages to obtain sufficient knowledge to decrypt the message.

Secure authentication and encryption are fundamentally difficult problems. You should
always select one or more off-the-shelf algorithms or packages instead of designing your own
(unless you are in the business of building such packages). Many such packages are based on
public standards that are widely reviewed by academia and the industry, thus ensuring a
relatively high level of reliability and security.

Once authentication and encryption are provided, application-specific access control can
be more easily implemented on top of these building blocks. In all cases, addressing security
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Figure 7-10 Passive attack. Given current technology, a passive intruder can listen to all network traffic.
To prevent this kind of attack, encryption makes the information in transit difficult to understand.

issues is a difficult topic. When addressing these issues, developers should record their
assumptions and describe the intruder scenarios they are considering. When several alternatives
are explored, developers should state the design problems they are attempting to solve and
record the results of the evaluation. We describe in the next chapter how to do this systematically
using issue modeling.

7.4.4 Designing the Global Control Flow

Control flow is the sequencing of actions in a system. In object-oriented systems, sequencing
actions includes deciding which operations should be executed and in which order. These
decisions are based on external events generated by an actor or on the passage of time.

Control flow is a design problem. During analysis control flow is not an issue, because we
assume that all objects are running simultaneously executing operations any time they need to.
During system design, we need to take into account that not every object has the luxury of
running on its own processor. There are three possible control flow mechanisms:

¢ Procedure-driven control. Operations wait for input whenever they need data from an
actor. This kind of control flow is mostly used in legacy systems and systems written in
procedural languages. It introduces difficulties when used with object-oriented
languages. As the sequencing of operations is distributed among a large set of objects,
it becomes increasingly difficult to determine the order of inputs by looking at the code
(Figure 7-11).
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Stream in, out;
String userid, passwd;

/* Initialization omitted */
out.println(“Login:”);
in.readln(userid);
out.printin(“Password:”);
in.readTn(passwd);
if (!security.check(userid, passwd)) {

out.printin(“Login failed.”);
system.exit(-1);

/L

Figure 7-11 An example of procedure driven control (Java). The code prints out messages and waits for
input from the user.

¢ Event-driven control. A main loop waits for an external event. Whenever an event
becomes available, it is dispatched to the appropriate object, based on information
associated with the event. This kind of control flow has the advantage of leading to a
simpler structure and to centralizing all input in the main loop. However, it makes the
implementation of multi-step sequences more difficult to implement (Figure 7-12).

Iterator subscribers, eventStream;
Subscriber subscriber;
Event event;
EventStream eventStream;
/E
while (eventStream.hasNext()) {
event = eventStream.next();
subscribers = dispatchInfo.getSubscribers(event);
while (subscribers.hasNext()) {
subscriber = subscribers.next()) {
subscriber.process(event);

}
/:-“ L. :l‘/

Figure 7-12 An example of main loop for event-driven control (Java). An event is taken from an
eventStream and sent to objects interested in it.

¢ Threads. Threads are the concurrent variation of procedure-driven control: The system
can create an arbitrary number of threads, each responding to a different event. If a
thread needs additional data, it waits for input from a specific actor. This kind of
control flow is the most intuitive of the three mechanisms. However, debugging
threaded software requires good tools: preemptive thread schedulers introduce
nondeterminism and, thus, make testing harder (Figure 7-13).
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Thread thread;

Event event;

EventHandler eventHandler;
boolean done;

VA4

while (!done) {
event = eventStream.getNextEvent();
eventHandler = new EventHandler(event)
thread = new Thread(eventHandler);
thread.start();

}

/E L

Figure 7-13 An example of event processing with threads (Java). eventHandTer is an object dedicated to
handling event. It implements the run() operation, which is invoked when thread is started.

Procedure-driven control is useful for testing subsystems. A driver makes specific calls to
methods offered by the subsystem. For the control flow of the final system, though, procedure-
driven control should be avoided.

The trade-off between event-driven control and threads is more complicated. Event-driven
control is more mature than threads. Modern languages have only recently started to provide
support for thread programming. As more debugging tools become available and experience is
accumulated, developing thread-based systems will become easier. Also, many user interface
packages supply the infrastructure for dispatching events and impose this kind of control flow on
the design. Although threads are more intuitive, they currently introduce many problems during
debugging and testing. Until more mature tools and infrastructures are available for developing
with threads, event-driven control flow is preferred.

Once a control flow mechanism is selected, we can realize it with a set of one or more
control objects. The role of control objects is to record external events, store temporary states
about them, and issue the right sequence of operation calls on the boundary and entity objects
associated with the external event. Localizing control flow decisions for a use case in a single
object not only results in more understandable code, but it also makes the system more resilient
to changes in control flow implementation.

7.4.5 Identifying Services

Until this point, we have examined the key system design decisions that impact the subsystem
decomposition. We have now identified the main subsystems and we have a rough idea of how to
allocate responsibilities to each subsystem. In this activity, we refine the subsystem
decomposition by identifying the services provided by each subsystems. We review each
dependency between subsystems and define an interface for each service we identified (depicted
in UML by a lollipop). In this activity, we name the identified services. During object design, we
specify each service precisely in terms of operations, parameters, and constraints (see Chapter 9,
Object Design: Specifying Interfaces).
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By focusing on dependencies between subsystems, we refine the subsystem
responsibilities, we find omissions in our decomposition, and we validate the current software
architecture. By focusing on services (as opposed to attributes or operations), we remain at the
architectural abstraction level, allowing us to reassign responsibilities between subsystems,
without changing many modeling elements.

For example, let us focus on the interfaces of the CommunicationSubsystem of MyTrip.
The responsibility of the CommunicationSubsystem is to transport trips from the
PlanningSubsystem to the RoutingSubsystem. The RoutingSubsystem initiates the connection,
as the PlanningSubsystem is a server that is always available, while the RoutingSubsystem runs
only while the car is powered. This asymmetry leads us to define three interfaces (Figure 7-14):

* ConnectionManager allows a subsystem to register with the CommunicationSubsystenm,
to authenticate, find other nodes, and initiate and close connections.

* TripRequester allows a subsystem to request a list of available trips and download
selected trips.

* TripProvider allows a subsystem to provide a list of trips that are available for the
specified car driver and respond to specific trip requests.

=] =]

RoutingSubsystem PTanningSubsystem
L4 NP
\ AN / /
N\ / /
N N\ / /

\ ConnectionManager /

TripRequester TripProvider

=]

CommunicationSubsystem

Figure 7-14 Refining the subsystem decompositions by identifying subsystem services (UML component
diagram). The CommunicationSubsystem provides three services for managing connections, uploading
trips, and downloading trips.

While we have not yet specified any operations of the CommunicationSubsystem, naming
services provides us with enough detail for identifying missing functionality and discussing
design trade-offs. For example:
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* Should the RoutingSubsystem be able to provide data (e.g., average speed on current
trip leg, location of traffic jam) back to the PTanningSubsystem in a future use case?

¢ Should the CommunicationSubsystem only deal with entire trips or should provide the
ability to send trips in multiple packages?

These questions lead us to further design decisions. We add service to the
CommunicationSubsystem for returning real-time data to the PlanningSubsystem. We can
structure the interface of the CommunicationSubsystem so that we could support either
downloading policy.

Note that, by convention, we use noun phrases to name services (e.g., TripRequester), as
they correspond to an interface including both attributes and operations. Operations provided by
the interface are named with verb phrases starting with a lower case (e.g, requestTrip()).
Attributes defined by the interface are named with noun phrases starting with a lower case (e.g.,
connectionStatus).

Once we reviewed the dependencies among subsystems and identified corresponding
services, we have a concrete understanding of the subsystem responsibilities for the steady state.
We are now ready to examine boundary cases.

7.4.6 Identifying Boundary Conditions

In previous sections, we dealt with designing and refining the system decomposition. We now
have a better idea of how to decompose the system, how to distribute use cases among
subsystems, where to store data, and how to achieve access control and ensure security. We still
need to examine the boundary conditions of the system—that is, to decide how the system is
started, initialized, and shut down—and we need to define how we deal with major failures such
as data corruption and network outages, whether they are caused by a software error or a power
outage. Uses cases dealing with these conditions are called boundary use cases.

For example, we now have a good idea of how MyTrip should work in steady state. We
have, however, not yet addressed how MyTrip is initialized. For example, how are maps loaded
into the P1anningService? How is MyTrip installed in the car? How does MyTrip know which
PlanningService to connect to? How are drivers added to the P1anningService? We quickly
discover use cases that have not been specified.

It is common that boundary use cases are not specified during analysis or that they are
treated separately from the common use cases. For example, many system administration
functions can be inferred from the everyday user requirements (registering and deleting users,
managing access control), whereas, many other functions are consequences of design decisions
(cache sizes, location of database server, location of backup server) and not of requirement
decisions. In general, we identify boundary use cases by examining each subsystem and each
persistent object:
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Configuration. For each persistent object, we examine in which use cases it is created
or destroyed (or archived). For objects that are not created or destroyed in any of the
common use cases (e.g., Maps in the MyTrip system), we add a use case invoked by a
system administrator (e.g., ManageMaps in the MyTrip system).

Start-up and shutdown. For each component (e.g., a WebServer), we add three use
cases to start, shutdown, and configure the component. Note that a single use case can
manage several tightly coupled components.

Exception handling. For each type of component failure (e.g., network outage), we
decide how the system should react (e.g., inform users of the failure). We document
each of these decisions with an exceptional use case that extends the relevant common
uses cases identified during requirements elicitation. Note that, when tolerating the
effects of a failure, the handling of an exceptional condition can lead to changing the
system design instead of adding an exceptional use case. For example, the
RouteAssistant can completely download the Trip onto the car before the start of the
trip.

In general, an exception is an event or error that occurs during the execution of the
system. Exceptions are caused by three different sources:

* A hardware failure. Hardware ages and fails. A hard disk crash can lead to the

permanent loss of data. The failure of a network link, for example, can momentarily
disconnect two nodes of the system.

Changes in the operating environment. The environment also affects the way a system
works. A wireless mobile system can loose connectivity if it is out of range of a
transmitter. A power outage can bring down the system, unless it is fitted with back-up
batteries.

* A software fault. An error can occur because the system or one of its components

contains a design error. Although writing bug-free software is difficult, individual
subsystems can anticipate errors from other subsystems and protect against them.

Exception handling is the mechanism by which a system treats an exception. In the case
of a user error, the system should display a meaningful error message to the user so that she can
correct her input. In the case of a network link failure, the system should save its temporary state
so that it can recover when the network comes back on line.

For example, consider a wireless navigation system in a car that retrieves on-demand
traffic information from a central computer. When the car enters a tunnel, the transfer of
information will be interrupted in the physical network layer. The network layer will raise an
exception (e.g., “socket unexpectedly closed”) and forward it to the upper layer. The upper layer
has the option of forwarding the exception to a higher layer or of tolerating the exception (e.g.,
wait for a short time and attempt to retrieve the data again, operate with older traffic data). When



System Design Activities: Addressing Design Goals 281

identifying boundary conditions, developers examine each component failure and decide how to
handle it. They can design components to tolerate the failure or write boundary use cases to
specify how the user will experience the failure. Note that during system design, we only
examine failures at the level of components. In Chapter 9, Object Design: Specifying Interfaces,
we will examine how to handle exceptions at the object level.

Developing reliable systems is a difficult topic. Often, trading off some functionality can
make system design easier. In MyTrip, we assumed that the connection is always possible at the
source destination and that replanning could be affected by communication problems along the
trip.

For example (Figure 7-15), we now modify the analysis model for MyTrip to include the
boundary use cases. In particular, we add three use cases: ManageDrivers, to add, remove, and
edit drivers; ManageMaps, to add, remove, and update maps used to generate trips; and
ManageServer, to perform routine configuration, start-up, and shutdown. StartServer, part of
ManageServer, is provided as an example in Figure 7-16.

ManageDrivers

—— «include»

: ; ManageMaps e StartServer
PlanningService -
Administrator e
2 «include»
—>

< — — —

~
ManageServer ~ ShutdownServer
«include»

ConfigureServer

Figure 7-15 Administration use cases for MyTrip (UML use case diagram). ManageDrivers is invoked to
add, remove, modify, or read data about drivers (e.g., user name and password, usage log, encryption key
generation). ManageMaps is invoked to add, remove, or update maps that are used to generate trips.
ManageServer includes all the functions necessary to start up and shutdown the server.

In this case, revising the use case model by adding three use cases does not affect
subsystem decomposition. We added, however, new use cases to existing subsystems: The
MapDBStoreSubsystem should be able to detect whether or not it was properly shut down and
should be able to perform consistency checks and repair corrupted data, as necessary. We revise
the description of MapDBStoreSubsystem (Figure 7-17).
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Use case name StartServer
Entry condition 1. The P1anningServiceAdministrator logs into the server machine.
Flow of events 2. Upon successful login, the PTanningServiceAdministrator executes

the startPlanningService command.

3. If the P1lanningService was previously shutdown normally, the server
reads the list of legitimate Drivers and the index of active Trips and
Maps. If the P1anningService had crashed, it notifies the
PlanningServiceAdministrator and performs a consistency check on
the MapDBStore.

Exit condition 4. The PlanningService is available and waits for connections from
RoutingAssistants.

Figure 7-16 StartServer use case of the MyTrip system.

MapDBStoreSubsystem The MapDBStoreSubsystem is responsible for storing Maps and Trips in a
database for the PlanningSubsystem. This subsystem supports multiple
concurrent Drivers and planning agents. When starting up, the
MapDBStoreSubsystem detects if it was properly shut down. If not, it
performs a consistent check on Maps and Trips and repairs corrupted
data if necessary.

Figure 7-17 Revised description for MapDBStoreSubsystem based on the additional StartServer use
case of Figure 7-16. (Changes indicated in italics.)

7.4.7 Reviewing System Design

Like analysis, system design is an evolutionary and iterative activity. Unlike analysis, there is no
external agent, such as the client, to review the successive iterations and ensure better quality.
This quality improvement activity is still necessary, and project managers and developers need
to organize a review process to substitute for it. Several alternatives exist, such as using the
developers who were not involved in system design to act as independent reviewers, or to use
developers from another project to act as a peer review. These review processes work only if the
reviewers have an incentive to discover and report problems.

In addition to meeting the design goals that were identified during system design, we need
to ensure that the system design model is correct, complete, consistent, realistic, and readable.
The system design model is correct if the analysis model can be mapped to the system design
model. You should ask the following questions to determine if the system design is correct:

* Can every subsystem be traced back to a use case or a nonfunctional requirement?
¢ Can every use case be mapped to a set of subsystems?

¢ Can every design goal be traced back to a nonfunctional requirement?
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¢ Is every nonfunctional requirement addressed in the system design model?
¢ Does each actor have an access policy?
* s every access policy consistent with the nonfunctional security requirement?

The model is complete if every requirement and every system design issue has been addressed.
You should ask the following questions to determine if the system design is complete:

¢ Have the boundary conditions been handled?

* Was there a walkthrough of the use cases to identify missing functionality in the system
design?

* Have all use cases been examined and assigned a control object?

* Have all aspects of system design (i.e., hardware allocation, persistent storage, access
control, legacy code, boundary conditions) been addressed?

¢ Do all subsystems have definitions?

The model is consistent if it does not contain any contradictions. You should ask the following
questions to determine if a system design is consistent:

* Are conflicting design goals prioritized?

¢ Does any design goal violate a nonfunctional requirement?

¢ Are there multiple subsystems or classes with the same name?

¢ Are collections of objects exchanged among subsystems in a consistent manner?

The model is realistic if the corresponding system can be implemented. You ask the following
questions to determine if a system design is realistic:

* Are any new technologies or components included in the system? Was the
appropriateness or robustness of these technologies or components evaluated? How?

¢ Have performance and reliability requirements been reviewed in the context of
subsystem decomposition?

* Have concurrency issues (e.g., contention, deadlocks) been addressed?

The model is readable if developers not involved in the system design can understand the
model. You should ask the following questions to ensure that the system design is readable:

¢ Are subsystem names understandable?
* Do entities (e.g., subsystems, classes) with similar names denote similar concepts?
* Are all entities described at the same level of detail?

In many projects, you will find that system design and implementation overlap quite a bit.
For example, you may build prototypes of selected subsystems before the architecture is stable
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in order to evaluate new technologies. This leads to many partial reviews instead of an
encompassing review followed by a client sign-off, as for analysis. Although this process yields
greater flexibility, it also requires developers to track open issues more carefully. Many difficult
issues tend to be resolved late not because they are difficult, but because they fell through the
cracks of the process.

7.5 Managing System Design

In this section, we discuss issues related to managing the system design activities. As in
analysis, the primary challenge in managing the system design is to maintain consistency while
using as many resources as possible. In the end, the software architecture and the system
interfaces should describe a single cohesive system understandable by a single person.

We first describe a document template that can be used to document the results of system
design (Section 7.5.1). Next, we describe the role assignment during system design
(Section 7.5.2) and address communication issues during system design (Section 7.5.3). Next,
we address management issues related to the iterative nature of system design (Section 7.5.4).

7.5.1 Documenting System Design

System design is documented in the System Design Document (SDD). It describes design goals
set by the project, subsystem decomposition (with UML class diagrams), hardware/software
mapping (with UML deployment diagrams), data management, access control, control flow
mechanisms, and boundary conditions. The SDD is used to define interfaces between teams of
developers and serve as a reference when architecture-level decisions need to be revisited. The
audience for the SDD includes the project management, the system architects (i.e., the
developers who participate in the system design), and the developers who design and implement
each subsystem. Figure 7-18 is an example template for a SDD.

The first section of the SDD is an Introduction. Its purpose is to provide a brief overview
of the software architecture and the design goals. It also provides references to other documents
and traceability information (e.g., related requirements analysis document, references to existing
systems, constraints impacting the software architecture).

The second section, Current software architecture, describes the architecture of the system
being replaced. If there is no previous system, this section can be replaced by a survey of current
architectures for similar systems. The purpose of this section is to make explicit the background
information that system architects used, their assumptions, and common issues the new system
will address.

The third section, Proposed system architecture, documents the system design model of
the new system. It is divided into seven subsections:

e QOverview presents a bird’s-eye view of the software architecture and briefly describes
the assignment of functionality to each subsystem.
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System Design Document

1.

Introduction

1.1
1.2
1.3
1.4
1.5

3.1
32
33
34
3.5
3.6
3.7

Purpose of the system

Design goals

Definitions, acronyms, and abbreviations
References

Overview

. Current software architecture
. Proposed software architecture

Overview

Subsystem decomposition
Hardware/software mapping
Persistent data management
Access control and security
Global software control
Boundary conditions

. Subsystem services

Glossary

Figure 7-18 Example outline for the System Design Document (SDD).

Subsystem decomposition describes the decomposition into subsystems and the
responsibilities of each. This is the main product of system design.

Hardware/software mapping describes how subsystems are assigned to hardware and
off-the-shelf components. It also lists the issues introduced by multiple nodes and
software reuse.

Persistent data management describes the persistent data stored by the system and the
data management infrastructure required for it. This section typically includes the
description of data schemes, the selection of a database, and the description of the
encapsulation of the database.

Access control and security describes the user model of the system in terms of an
access matrix. This section also describes security issues, such as the selection of an
authentication mechanism, the use of encryption, and the management of keys.

Global software control describes how the global software control is implemented. In
particular, this section should describe how requests are initiated and how subsystems
synchronize. This section should list and address synchronization and concurrency
issues.

Boundary conditions describes the start-up, shutdown, and error behavior of the
system. (If new use cases are discovered for system administration, these should be
included in the requirements analysis document, not in this section.)
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The fourth section, Subsystem services, describes the services provided by each
subsystem. Although this section is usually empty or incomplete in the first versions of the SDD,
this section serves as a reference for teams for the boundaries between their subsystems. The
interface of each subsystem is derived from this section and detailed in the Object Design
Document.

The SDD is written after the initial system decomposition is done; that is, system
architects should not wait until all system design decisions are made before publishing the
document. The SDD, moreover, is updated throughout the process when design decisions are
made or problems are discovered. The SDD, once published, is baselined and put under
configuration management. The revision history section of the SDD provides a history of
changes as a list of changes, including author responsible for the change, date of change, and
brief description of the change.

7.5.2 Assigning Responsibilities

Unlike analysis, system design is the realm of developers. The client and the end user fade into
the background. Note, however, that many activities in system design trigger revisions to the
analysis model. The client and the user are brought back into the process for such revisions.
System design in complex systems is centered around the architecture team. This is a
cross-functional team made up of architects who define the subsystem decomposition and
selected developers who will implement the subsystem. It is critical that system design include
people who are exposed to the consequences of system design decisions. The architecture team
starts work as soon as the analysis model is stable and continues to function until the end of the
integration phase. This creates an incentive for the architecture team to anticipate problems
encountered during integration. Below are the main roles of system design:

¢ The architect takes the main role in system design. The architect ensures consistency
in design decisions and interface styles. The architect ensures the consistency of the
design in the configuration management and testing teams, in particular in the
formulation of the configuration management policy and the system integration
strategy. This is mainly an integration role consuming information from each
subsystem team. The architect is the leader of the cross-functional architecture team.

¢ Architecture liaisons are the members of the architecture team. They are
representatives from the subsystem teams. They convey information from and to their
teams and negotiate interface changes. During system design, they focus on the
subsystem services; during the implementation phase, they focus on the consistency of
the APIs.

¢ The document editor, configuration manager, and reviewer roles are the same as for
analysis (see Section 5.5.2).
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The number of subsystems determines the size of the architecture team. For complex
systems, an architecture team is introduced for each level of abstraction. In all cases, there
should be one integrating role on the team to ensure consistency and the understandability of the
architecture by a single individual.

7.5.3 Communicating about System Design

Communication during system design should be less challenging than during analysis: the
functionality of the system has been defined, project participants have similar backgrounds and
by now should know each other better. Communication is still difficult, due to new sources of
complexity:

* Size. The number of issues to be dealt with increases as developers start designing. The
number of items that developers manipulate increases: each piece of functionality
requires many operations on many objects. Moreover, developers investigate, often
concurrently, multiple designs and multiple implementation technologies.

* Change. The subsystem decomposition and the interfaces of the subsystems are in
constant flux. Terms used by developers to name different parts of the system evolve
constantly. If the change is rapid, developers may not be discussing the same version of
the subsystem, which can lead to much confusion.

* Level of abstraction. Discussions about requirements can be made concrete by using
interface mock-ups and analogies with existing systems. Discussions about
implementation become concrete when integration and test results are available.
System design discussions are seldom concrete, as consequences of design decisions
are felt only later, during implementation and testing.

* Reluctance to confront problems. The level of abstraction of most discussions can also
make it easy to delay the resolution of difficult issues. A typical resolution of control
issues is often, “Let us revisit this issue during implementation.” Whereas it is usually
desirable to delay certain design decisions, such as the internal data structures and
algorithms used by each subsystem, any decision that has an impact on the system
decomposition and the subsystem interfaces should not be delayed.

* Conflicting goals and criteria. Individual developers often optimize different criteria.
A developer experienced in user interface design will be biased toward optimizing
response time. A developer experienced in databases might optimize throughput. These
conflicting goals, especially when implicit, result in developers pulling the system
decomposition in different directions and lead to inconsistencies.

The same techniques we discussed in analysis (see Section 5.5.3) can be applied during
system design:
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o Identify and prioritize the design goals for the system and make them explicit (see
Section 6.4.2). If the developers concerned with system design have input in this
process, they will have an easier time committing to these design goals. Design goals
also provide an objective framework against which decisions can be evaluated.

* Make the current version of the system decomposition available to all concerned. A
live document distributed via the Internet is one way to achieve rapid distribution.
Using a configuration management tool to maintain the system design documents helps
developers in identifying recent changes.

* Maintain an up-to-date glossary. As in analysis, defining terms explicitly reduces
misunderstandings. When identifying and modeling subsystems, provide definitions in
addition to names. A UML diagram with only subsystem names is not sufficient for
supporting effective communication. A brief and substantial definition should
accompany every subsystem and class name.

* Confront design problems. Delaying design decisions can be beneficial when more
information is needed before committing to the design decision. This approach,
however, can prevent the confrontation of difficult design problems. Before tabling an
issue, several possible alternatives should be explored and described, and the delay
justified. This ensures that issues can be delayed without serious impact on the system
decomposition.

» [terate. Selected excursions into the implementation phase can improve the system
design. For example, new features in a vendor-supplied component can be evaluated by
implementing a vertical prototype (see Section 7.5.4) for the functionality most likely
to benefit from the feature.

Finally, no matter how much effort is expended on system design, the system
decomposition and the subsystem interfaces will almost certainly change during
implementation. As new information about implementation technologies becomes available,
developers have a clearer understanding of the system, and design alternatives are discovered.
Developers should anticipate change and reserve some time to update the SDD before system
integration.

7.5.4 lterating over the System Design

As in the case of requirements, system design occurs through successive iteration and change.
Change, however, should be controlled to prevent chaos, especially in complex projects
including many participants. We distinguish three types of iterations during system design. First,
major decisions early in system design affect subsystem decomposition as each of the different
activities of system design is initiated. Second, revisions to the interfaces of the subsystems
occur when evaluation prototypes are created to evaluate specific issues. Third, errors and
oversights that are discovered late trigger changes to the subsystem interfaces and sometimes to
the system decomposition itself.
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The first set of iterations is best handled in brainstorming sessions (either face-to-face or
electronic). Definitions are still in flux, developers do not have yet a grasp of the whole system,
and communication should be maximized at the expense of formality or procedure. Often in
team-based projects, the initial system decomposition is designed before the analysis is
complete. Decomposing the system early allows the responsibility of different subsystems to be
assigned to different teams. Change and exploration should be encouraged, if only to broaden
the developers’ shared understanding or to generate supporting evidence for the current design.
For this reason, a bureaucratic formal change process should not be used during this phase.

The second set of iterations aims at solving difficult and focused issues, such as the choice
of a specific vendor or technology. The subsystem decomposition is stable (ideally, it should be
independent of vendors and technology), and most of these explorations aim at identifying
whether a specific package is appropriate for the system. During this period, developers can also
create a vertical prototype1 for a critical use case to test the appropriateness of the
decomposition. This enables control flow issues to be discovered and addressed early. Again, a
formal change process is not necessary. A list of pending issues and their status can help
developers quickly propagate the results of a technology investigation.

The third set of iterations remedies design problems discovered late in the process.
Although developers would much rather avoid these iterations, as they tend to be costly and
introduce many new bugs in the system, they should anticipate changes late in development.
Anticipating late iterations includes documenting dependencies among subsystems, the design
rationale for subsystem interfaces, and any workaround that is likely to fail in case of change.
Change should be carefully managed, and a change process similar to the one tracking
requirements changes should be put in place.

We can achieve the progressive stabilization of subsystem decomposition by using the
concept of a design window. To encourage change while controlling it, critical issues are left
open only during a specified time. For example, the hardware/software platform on which the
system is targeted should be resolved early in the project so that purchasing decisions for the
hardware can be done in time for development. Internal data structures and algorithms, however,
can be left open until after integration, allowing developers to revise them based on performance
testing. Once the design window is closed, the issue must be resolved and can only be reopened
in a subsequent iteration.

With the pace of technology innovation quickening, many changes can be anticipated
when a dedicated part of the organization is responsible for technology management.
Technology managers scan new technologies, evaluate them, and accumulate knowledge that is
used during the selection of components. Often, change happens so fast that companies are not
aware of which technologies they themselves provide.

1. A vertical prototype completely implements a restricted functionality, for example, all the interface, control, and
entity objects for one use case. A horizontal prototype partially implements a broad range of functionality, for
example, only the interface objects for a number of use cases.
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7.6 ARENA Case Study

In this section, we apply the concepts and methods described in this chapter to the ARENA system.
We start with identifying the design goals for ARENA and design an initial subsystem
decomposition. We then select a software and hardware platform and define the persistent stores,
access control, and global control flow. Finally, we look at the boundary conditions of ARENA.

7.6.1 Identifying Design Goals

Design goals are qualities that enable us to prioritize the development of the system. Design
goals originate from the nonfunctional requirements specified during requirements elicitation
and from technical and management goals specified by the project.

In ARENA, the main client is the ArenaOperator, who provides the resources for setting up
an Arena for a particular community. ArenaOperators are themselves Players who may have
system administration or even programming skills. The advertisement features allow them to
recoup some of their costs. Moreover, we anticipate that ArenaOperators will form a
community and that the integration of new games into ARENA and improvements to ARENA will be
mostly contributed by ArenaOperators. However, advertisement is not the main purpose of
ARENA. From these observations and from the ARENA problem statement (Figure 4-17), we
identify the following design goals:

e Low operating cost. To minimize the need for advertisement, the cost of running the
system (e.g., hardware resources, network resources, administration costs, etc.) should
be minimized. This also leads us to select free or open-source components. This design
goal is a refinement of the nonfunctional requirement “low operating cost” of the ARENA
problem statement (Figure 4-17).

* High availability. The value of an Arena increases with the number of players available
for playing tournaments. Unexpected crashes and interruptions in tournaments will
create a lot of frustration for the players and discourage them from attending other
tournaments. This design goal is not explicitly stated in the problem statement or the
requirements, but is necessary if an Arena is to attract and keep a sufficiently large
number of players.

* Scalability in terms of number of players and concurrent tournaments. The response
time of the Arena may not degrade dramatically with the number of Players. When
needed, an ArenaOperator should have the option of increasing the capacity of an
Arena by adding hardware nodes. This design goal is a refinement of the nonfunctional
requirement “scalability” in the ARENA problem statement (Figure 4-17).

* Ease of adding new games. Some games, such as chess, are timeless. However, the
computer game industry evolves with different fashions and hardware improvements.
Consequently, to keep an Arena active, it should be relatively easy to adapt and install
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new games. This design goal is a refinement of the nonfunctional requirement
“extensibility” in the ARENA problem statement (Figure 4-17).

* Documentation for open source development. The organization and documentation of
the ARENA game framework should then make it easier for new developers to contribute
features to the code. This includes source code documentation that supports low-level
changes and improvements, as well as a good architecture-level documentation that
supports the addition of new features. This design goal originated from the developers
and management of ARENA (as opposed to the client). Note that such design goals may
require additional interaction with the client, as they might interfere with implicit client
goals that have not yet been made explicit.

7.6.2 Identifying Subsystems

We first identify subsystems from the functional requirements of ARENA and from the analysis
model. The purpose of this activity is to divide the system in self-contained components that can
be managed by individuals. As we address other design issues, such as access control and
persistency management, we will refine or modify this initial subsystem decomposition.

We first distinguish two main parts of the ARENA subsystem: the game organization part of
the system, which is responsible for coordinating Users when organizing an Arena, a League, or
a Tournament, and the game playing part, in which Players conduct individual Matches in the
scope of a Tournament.

For the game organization part, we select a three-tier architectural style (Figure 7-19) in
which an ArenaClient subsystem provides a front end for users to initiate all organization-
related use cases (e.g., AnnounceTournament, ApplyForTournament, RegisterPlayer). The
ArenaServer subsystem is responsible for access control and concurrency control, and delegates
to nested subsystems for the application logic. Different subsystems are dedicated to the user
management of users, advertisements, tournaments, and games. The bottom tier is realized by
the ArenaStorage subsystem, responsible for storing any persistent objects, except for those
representing Match states.

For the game playing part, the client server architecture may not be sufficient for
synchronous games in which the action of one player can trigger events for another player
within a relatively short time. Synchronous behavior could be simulated with polling; however,
because of scalability and responsiveness goals, we select a peer-to-peer architecture in which
MatchFrontEndPeer subsystems provide the user interface and a GamePeer maintains the state of
the matches currently under way and enforces the game rules. MatchFrontEndPeers may also
communicate directly with each other for real-time games. To achieve the game independence
design goal, ARENA provides a framework for both the MatchFrontEndPeer and the GamePeer,
while the bulk of the game logic is provided by customized game-dependent components.
Adding a game consists of developing adapters for existing games or ARENA-compliant
components for new games. The TournamentManagement subsystem uses the GameManagement
subsystem to initiate a GamePeer and to collect the results of the individual Matches. The
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Figure 7-19 ARENA subsystem decomposition, game organization part (UML component diagram, layers
shown as UML packages).

MatchFrontEndPeer uses the AdvertisementManagement subsystem to retrieve
Advertisements (Figure 7-20). Note that for turn-based games, a client server architectural
style would be sufficient, as the response time for such games is less critical. The selection of the
peer-to-peer style does not prevent specific games from following a client server style.

7.6.3 Mapping Subsystems to Processors and Components

Mapping subsystems to processors and components enables us to identify potential concurrency
among subsystems and to address performance and reliability goals.

ARENA is inherently a distributed system, as users sit in front of different machines,
possibly several time zones apart. However, we distinguish only between two types of nodes: the
UserMachine to provide a user interface and the ServerMachines to run the application logic
and storage and, more generally, to provide the ARENA services. ArenaClient and the
MatchFrontEndPeer subsystems run on the UserMachine. In an installation of ARENA with few
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Figure 7-20 ARENA subsystem decomposition, game playing part (UML component diagram).

players, all other subsystems can be collocated onto a single ServerMachine. However, to
ensure scalability, we identify an additional subsystem dedicated to send advertisement banners
to the browser, and assign the AdvertisementServer, the GamePeer, the ArenaStorage, and the
ArenaServer subsystems to different processes that can run on different ServerMachines. The
ArenaServer component includes the nested, TournamentManagement, UserManagement, and
GameManagement subsystems (Figure 7-21).

For the realization of the game organization part of ARENA, we select the Java EE
framework. Java EE is a collection of interfaces and standards developed by Sun Microsystems
and community efforts for developing portable web-based information systems in Java. The

«device»

«device» :ServerMachine
:UserMachine EE] EE]
. __|== :ArenaServer [—=>| :ArenaStorage
:ArenaClient =l -
™~
—
~ ~
I _
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Figure 7-21 ARENA hardware/software mapping (UML deployment diagram). Note that each run-time
component may support several subsystems.



294 Chapter 7 ¢ System Design: Addressing Design Goals

advantage of this standard is that it is implemented by several open-source and commercial
products, thus enabling an ArenaOperator to trade off scale (e.g., number of players,
tournaments, and leagues) for set-up cost (e.g., licensing and run-time costs). Also, in their
simplest form, open-source components of this framework are easy to install and require little
prior administration knowledge.

Consequently, the ArenaClient is a Web browser and the ArenaServer and the other
game organization subsystems are accessed through a Web server. To realize the ArenaServer
and related subsystems, we select Java Servlets and Java Server Pages (JSP), components of
Java EE, as the main technology for implementing the boundary objects. Servlets are classes that
are located on the ServerMachine. Servlets receive, process, and respond to requests from a Web
browser by generating an HTML page. JSPs provide a compact way of specifying servlets using
a language similar to HTML. A preprocessor then generates a servlet from a JSP. We use JSPs to
realize the boundary and control objects of ARENA. JSPs in turn invoke methods on entity objects
and storage objects, which are also realized using the Java Foundation classes.

Having identified the subsystems, the concurrency, and the hardware/software mapping,
we now turn our attention to persistency management.

7.6.4 Identifying and Storing Persistent Data

Identifying persistent objects

ARENA deals with two sets of objects that must be stored. The first set includes the objects
that are created and accessed by the game organization subsystems (e.g., Tournament, Game,
Match, Player) and that need to be persistent to track the progress of Leagues, Matches,
Tournaments, and their Players. The second set includes the objects that are created and
accessed by the GamePeer and the MatchFrontEndPeer during Matches, which are used to replay
matches for Spectators and to resume Matches that were interrupted by system crashes. The
first set of objects is well defined and will probably not change much during the lifetime of
ARENA. The second set of objects are specific to each Game and are defined by the Game
developers. Hence, we decide to manage the first set of persistent objects with the ArenaStorage
subsystem of ARENA and let game developers decide how to manage the state of the Matches in
game-specific components. The persistent objects of each Game will then only be accessed
through a generic Game interface implemented by each individual Game.

Selecting a storage strategy

Selecting a persistent storage strategy during system design enables us to deal with other
issues related to storage management, such as concurrency control and crash recovery. For
example, many database management systems allow concurrent queries and provide transaction
mechanisms to ensure data integrity.
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Our highest priority design goal in ARENA is to minimize operating costs, so we first
consider using flat files for storage. Such a system can be installed easily, since there is no
database management system to configure or to manage. However, a system based solely on flat
files would not scale to large installations with dozens of games and thousands of players.

To accommodate both goals, we select a mixed strategy. The storage subsystem will
provide an abstract interface that enables both a flat file and a relational database
implementation. When installing an Arena the first time, the ArenaOperator selects which
implementation fits the goals best. The ArenaOperator will not be able to switch strategies at
run time, but will be able to convert persistent objects from flat files to the database and back
during system reconfiguration. This will increase the development cost of ARENA, but provide
more flexibility to the ArenaOperator. To reduce development risks, the initial prototype of
ARENA will only use flat files. A second prototype will use a database-independent API (e.g.,
JDBC [JDBC, 2009]) to store persistent objects in a relational database, thus enabling
ArenaOperators to use different relational products.

Game developers will address game storage issues individually. Given the sequential
nature of game data, we anticipate games to use flat files for storage as well.

7.6.5 Providing Access Control

As ARENA is a multi-user system, different actors are allowed to view different sets of objects and
invoke different types of operations on them. To succinctly document access rights, we draw an
access control matrix (Table 7-4) depicting the allowed operations on the entity objects for each
actor. In summary, ArenaOperator can create Users and Leagues, LeagueOwners can create
Tournaments and Matches. Advertisers can upload and remove advertisements as well as
apply for sponsorship of Leagues or Tournaments. Note that the LeagueOwner makes the final
sponsorship decision, as documented in the analysis. Players can subscribe to a League (to
receive announcements), apply for a Tournament, and play Matches they have been scheduled
for. Finally, Spectators can view player statistics, view League and Tournament schedules, and
subscribe to receive notifications and view Matches.

Note that most of the access control information is already available in the use case model.
The access control matrix, however, presents a more detailed and compact view, thus enabling a
client to review access control more easily and a developer to implement it correctly.

Spectators are actors that are not authenticated to the system. All other actors must first
authenticate before they can modify any object in the system. We select a user name/password
mechanism for initiating sessions. We then use access control lists on each object (e.g., Leagues,
Tournaments, and Matches) to check the access privileges of the user. A Session object per
authenticated user tracks currently logged in users.
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Table 7-4  Access matrix for main ARENA objects.
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Objects
Arena User League Tournament Match
Actors
ArenaOperator «create» «create» «create»
createUser deactivate archive
getStats archive «create» «create»
LeagueOwner getInfo setSponsor archive end
setSponsor
Advertiser uploadAds apply for apply for
removeAds sponsorship sponsorship
apply for setInfo view apply for play
Player LeagueOwner subscribe tournament end
view
subscribe
apply for getStats view view subscribe
Spectator Player subscribe subscribe replay
apply for
Advertiser

7.6.6 Designing the Global Control Flow

As described in Section 7.4.4, there are three types of control flow paradigms: procedure-driven,
event-driven, or threaded control flow paradigm. The selection of one paradigm over another
depends on response time and throughput requirements on the system and development
complexity. Moreover, in a system with multiple components, it is possible to select different
control paradigms for different components.

In Sections 7.6.3 and 7.6.4, when selecting components for the interface and storage
subsystems of ARENA, we effectively restricted the alternatives for control flow mechanisms for
the game organization part. The WebServer waits for requests from the WebBrowser. Upon the
receipt of a request, the WebServer processes it and dispatches it to the appropriate servlet or
JSP, thus resulting in an event-based control flow. The WebServer allocates a new thread for
each request, allowing the parallel handling of requests. This results in a more responsive system
by enabling the WebServer to respond to individual WebBrowser requests before other requests
have been completely processed, and can increase throughput by enabling the processing of one
request while another is waiting for the database to respond. The drawback of threads is the
higher complexity of the system resulting from synchronizing parallel threads. To ensure a
robust design with respect to concurrency, we define the following strategy for dealing with
concurrent accesses to shared data:
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* Boundary objects should not define any fields. Instead, boundary objects hold
temporary data associated with the current request in local variables. As boundary
objects are shared among threads, this prevents concurrency hazards at that level.

e Control objects should not be shared among threads. Instead, there should be at most
one control object associated with each session, and users should not be able to issue
concurrent requests involving the same control object within the same session. This
should especially be enforced when control objects survive the processing of a single
request.

» Entity objects should not provide direct access to their fields. Instead, all changes and
accesses to the object state should be done through dedicated methods. Moreover, these
methods should only access the fields of the receiver object (i.e., this), and not of other
instances of the same class. If classes are realized as abstract data types (see
Section 2.3.2), all fields should already be private.

e Methods for accessing state in entity objects should be synchronized. That is, the
synchronized mechanism provided by Java should be used so that only one thread at a
time can be active in the access method.

* Nested calls to synchronized methods should be avoided. Developers of synchronized
methods should investigate if a nested method call can result in calling another
synchronized method. This could lead to deadlocks and should be avoided. If such
nested calls cannot be avoided, developers should either reallocate class behavior
among methods to avoid such nested calls, or impose a strict ordering of synchronized
method calls.

* Redundant state should be time-stamped. The state of an object can occasionally be
duplicated. One example of duplication is when the state of an object is stored in a Web
form in the WebBrowser and in storage subsystem. To detect situations in which
concurrent changes to the same object can lead to a conflict, a time-stamp should be
added to the duplicated data to represent the last modification time.

For the game part of ARENA, the MatchFrontEndPeer and the GamePeer run in separate
processes. These processes are started by the GameManagement subsystem as required by
Tournament schedules and Player attendance. The internal control flow of the
MatchFrontEndPeer and the GamePeer can be event driven or threaded, depending on the needs
of the specific game.

7.6.7 Identifying Services

We have now defined a subsytem decomposition and decided on the control flow paradgms for
each run-time component and for the system as a whole. We are now ready to identify services
provided by each subsystem.
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In this example, we focus on the dependencies among ArenaServer, UserManagement,
AdvertisementManagement, and TournamentManagement, in the context of the Organize-
Tournament use case (Figure 4-24).

We first notice that all requests handled by the ArenaServer must be authorized according
to the access control policy defined in Section 7.6.5. This leads us to define an Authentication
service to check a user’s credentials upon login, and an Authorization service to check if the
request is allowed for the role of the requesting user. We assign both services to
UserManagement.

During the first steps in the OrganizeTournament use case, the LeagueOwner creates a
Tournament in the context of a League. TournamentManagement therefore needs to provide
services for creating and getting information about Tournaments and Leagues. These services
are trivial but are needed for every class in the analysis model. To denote that the
TournamentManagement subsystem owns the Tournament and League classes, we define the
Tournament and League services. In practice, these types of services are left implicit in the
model to avoid overcrowding, as they add little information.

In the next steps, the LeagueOwner invites Advertisers to sponsor the new Tournament.
We add the Sponsorship service to AdvertisementManagement, allowing the LeagueOwner to
invite Advertisers and Advertisers to respond. Defining both sets of actions in the same
service allows us to keep all operations related to sponsorship in one place.

When the LeagueOwner selects Advertisers to sponsor a Tournament, we are presented
with the option of defining a new service either in AdvertisementManagement or in
TournamentManagement, as each subsystem owns an end of the Advertiser-Tournament
association. We decide to assign the responsibility to track the state of the OrganizeTournament
activity to TournamentManagement, as the use case centers on the definition of Tournaments. In
analysis terms, TournamentManagement owns the control object associated with
OrganizeTournament. Consequently, we add a SponsorSelection service to the
TournamentManagement subsystem.

In the next steps of OrganizeTournament, the LeagueOwner advertises the Tournament and
interested Players apply and are selected. We are faced with the question of allocating the
Player service to the UserManagement or the TournamentManagement subsystem. We decide to
assign Player to the TournamentManagement, as Player is strongly connected with League and
Tournament. As accepting Players in Tournaments goes beyond simply creating Players and
getting information about them, we define a P1ayerAcceptance service to support this step.

Figure 7-22 depicts the services identified so far. We observe two trends during the above
discussion:

¢ When trading off services between two subsystems, functionality tends to aggregate in
the subsystem where the control object corresponding to the use case is defined. While
this results in subsystem with high coherence, we need to be careful that the resulting
complexity of the subsystem is not too high.
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Figure 7-22 ARENA subsystem decomposition, game organization part with services identified (UML
component diagram, ball-and-socket notation, dependencies omitted for clarity).

* Defining services based on steps in a use case tend to result in fine grained services.
While this allows us to validate the subsystem decomposition, it may result in many
interfaces that each define a single operation. This is a sign that we are moving too
quickly towards object design. During a second pass, we may choose to consolidate
several related services into single services to keep the design at the architectural level
of abstraction and the subsystem decomposition understandable. Naming services with
noun phrases that denote a collection of operations also helps us in avoiding this
pittfall.

7.6.8 Identifying Boundary Conditions

During this activity, we review the design decisions we made so far and identify additional
administrator use cases. We first examine the life time of the persistent objects of ARENA, the life
time of each run-time component, and the types of system failures.

Configuration use cases

The handling of most persistent objects is already described in the use cases developed
during analysis (Figure 4-21) and in the access control matrix (Table 7-4). For example,
ArenaOperators create and deactivate Users. LeagueOwners create and archive Leagues and
Tournaments. Players initiate and end Matches. Advertisers manage Advertisement
Banners. However, the handling of the Arena and Game objects has not been described in the use
case model so far, as these objects have been refined during system design. Arena is created with
the installation of the system. Games are created and destroyed whenever Games are added or
deleted from the system. Hence, we identify two additional use cases invoked by the
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ArenaOperator, InstallArena and ManageGames. Moreover, we decided, when discussing
persistent storage (Section 7.6.4), that an ArenaOperator could convert the persistent objects
between a flat file representation and a database representation. This results in an additional

configuration use case, ConvertPersistentStorage (Table 7-5).

Table 7-5  Additional ARENA boundary use cases identified when reviewing persistent objects.

InstallArena The ArenaOperator creates an Arena, gives it a name, selects a persistent storage
subsystem (either flat file or database), and configures resource parameters (e.g.,
maximum number of concurrent tournaments, file path for storage).

ManageGames The ArenaOperator installs or removes a Game, including custom code for the
GamePeer and MatchFrontEndPeer. The list of Games is updated for the next time
a LeagueOwner creates a League.

Convert When the ArenaServer is shut down, the ArenaOperator can convert the
29”515"9“ persistent storage from a flat file storage to a database storage or from a database
torage

storage to a flat file storage.

Start-up and shutdown use cases

As depicted in the UML deployment diagram in Figure 7-21, ARENA includes five run-time
components: the WebBrowser, the ArenaServer (which includes the subsystems
UserManagement, GameManagement, TournamentManagement, Notification, and Arena-
Storage), the MatchFrontEndPeer, the GamePeer, and for the second prototype, the
DatabaseServer. The WebBrowser and the DatabaseServer are off-the-shelf components and
are started and shut down individually. The MatchFrontEndPeer and the GamePeer are started
and shut down by the WebBrowser and the ArenaServer, respectively. The start-up and shutdown
of ArenaServer is currently not described in the use case model. Hence, we identify two
additional use cases invoked by the ArenaOperator (Table 7-6).

Table 7-6 ~ Additional ARENA boundary use cases identified when reviewing runtime components.

StartArenaServer The ArenaOperator starts the ArenaServer. If the server was not
cleanly shut down, this use case invokes the Check Data Integrity
use case described in the next section. As soon as the initialization of
the server is complete, LeagueOwners, Players, Spectators, and
Advertisers can initiate any of their use cases.

ShutDownArenaServer The ArenaOperator stops the ArenaServer. The server terminates
any ongoing Matches and stores any cached data.
MatchFrontEndPeers and GamePeers are shut down. Once this use
case is completed, the LeagueOwners, Players, Spectators, and
Advertisers cannot access or modify the Arena.
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Exception use cases

ARENA can experience four major classes of system failures:

* A network failure in which one or more connections among MatchFrontEndPeers and

GamePeers are interrupted

* A host or a component failure in which one or more MatchFrontEndPeers or
GamePeers are unexpectedly terminated

¢ A network failure in which one or more connections between a WebBrowser and the
ArenaServer are interrupted

* A server failure in which the ArenaServer is unexpectedly terminated.

We decide to handle the first two classes of exceptions in the custom Game components.
We will provide generic methods for MatchFrontEndPeers and GamePeers to re-establish
connection after a network failure or to restore the state of Matches after a crash. However, the
handling of the exception itself depends on the type of game. For example, a real-time
simulation game will not tolerate network failures and should be interrupted or restarted,
whereas a board game can tolerate short interruptions transparently from its Players. Hence, we

leave the flexibility to the game developers to decide how to handle those exceptions.

We handle network failures interrupting connections between the WebBrowser and the
ArenaServer by notifying the user of the network failure, similar to current WebBrowsers. We
expect the actors to retry later, at the cost of loosing the data that was already entered in a form.
Consequently, we will design forms in such a way that little data can be lost in any one failure.

We decide to handle the last type of failure by a use case for checking the integrity of the
persistent data after an unexpected termination of the ArenaServer (see Table 7-7). This use
case can be invoked automatically by the system upon start-up (see StartArenaServer in
Table 7-6) or manually by the ArenaOperator. We also identify an additional use case to restart
interrupted GamePeers and notify relevant players.

Table 7-7  Additional ARENA boundary use cases identified when reviewing persistent objects.

CheckDatalIntegrity ARENA checks the integrity of the persistent data. For file-based
storage, this may include checking if the last logged transactions were
saved to disk. For database storage, this may include invoking tools
providing by the database system to re-index the tables.

RestartGamePeers ARENA starts any interrupted Matches and notifies any running
MatchFrontEndPeer that GamePeer is back on-line.
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7.6.9 Lessons Learned

In this section, we examined the system design issues for the ARENA system. We identified and
prioritized design goals, we decomposed the system into subsystems, we mapped the
subsystems to components and platforms, we selected a persistent data storage strategy, we
described the access control mechanisms for the system, we examined control flow issues, and
we identified use cases for handling boundary cases. We learned that

* Most system design issues are interrelated. For example, selecting a component for
boundary or storage objects has implications on the global control flow of the system.

* Some system design issues have different solutions in different parts of the system. For
example, we dealt with issues related to architecture, control flow, crash recovery, and
storage issues differently for the organization part than for the game playing part of
ARENA.

e Some system design issues can be postponed until the object design phase (e.g.,
decisions about GamePeers) or to a later release (e.g., storage implementation).

* In all cases, design goals serve to prioritize and evaluate different design alternatives.

7.7 Further Readings

Meeting multiple, conflicting design goals is a difficult task that can only be accomplished with
experience and practice. Here are a few books related to the material presented in this chapter.

Software Architecture in Practice [Bass et al., 2003] and Evaluating Software
Architectures [Clements et al., 2002] focus on general methods for evaluating architectures
given a set of design goals. Both books also include case studies from the state of the art.

Object-Oriented Modeling and Design for Database Applications [Blaha & Premerlani,
1998] describes methods for realizing database applications, taking into consideration design
goals such as performance, extensibility, and modifiability.

Reliable Computer Systems: Design and Evaluation [Siewiorek & Swarz, 1992] is the
reference book for reliable system design. It includes a broad survey of techniques and methods
for achieving reliability as well as a substantial number of case studies for industry projects.

Safeware: System Safety and Computers [Leveson, 1995] surveys a large number of cases
of computer failures and draws several conclusions. It then surveys current approaches to safety
and emphasizes the need for comprehensive methods in the design of systems.

Service-Oriented Architectures [Erl, 2005] provides an introduction and tutorial for
designing service-oriented web platform. The goal of SOA architectures is to structure the
application around business processes, making it easier to evolve or combine services offered to
the end user.
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7.8 Exercises

7-1 Consider a system that includes a Web server and two database servers. Both database
servers are identical: the first acts as a main server, and the second acts as a redundant
back-up in case the first one fails. Users use Web browsers to access data through the
Web server. They also have the option of using a proprietary client that accesses the
databases directly. Draw a UML deployment diagram representing the hardware/soft-
ware mapping of this system.

7-2  Consider a legacy, fax-based, problem-reporting system for an aircraft manufacturer.
You are part of a reengineering project replacing the core of the system with a
computer-based system that includes a database and a notification system. The client
requires the fax to remain an entry point for problem reports. You propose an E-mail
entry point. Describe a subsystem decomposition that would allow both interfaces.
Note that such systems are used to process many problem reports per day (e.g., 2000
faxes per day).

7-3  You are designing the access control policies for a Web-based retail store. Customers
access the store via the Web, browse product information, input their address and
payment information, and purchase products. Suppliers can add new products, update
product information, and receive orders.The store owner sets the retail prices, makes
tailored offers to customers based on their purchasing profiles, and provides marketing
services. You have to deal with three actors: StoreAdministrator, Supplier, and
Customer. Design an access control policy for all three actors. Customers can be
created via the Web, whereas Suppliers are created by the StoreAdministrator.

7-4  Select a control flow mechanism you find most appropriate for each of the following
systems. Because multiple choices are possible in most cases, justify your choices.

* a Web server designed to sustain high loads
¢ agraphical user interface for a word processor

* areal-time embedded system (e.g., a guidance system on a satellite launcher).

7-5 Why can you not describe boundary use cases during requirements elicitation or
analysis?

7-6  You are designing a caching subsystem that temporarily stores data retrieved over the
network (e.g., web pages) into a faster access storage (e.g., the hard disk). Due to a
change in requirements, you define an additional service in your subsystem for
configuring cache parameters (e.g., the maximum amount of hard disk the cache can
use). Which project participants do you notify?
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Object Design:
Reusing Pattern
Solutions

Cheating rule: You cheat if you do not acknowledge the
contribution made by others.
—15-413, Software Engineering,

Carnegie Mellon University

During analysis, we describe the purpose of the system. This results in the identification of
application objects. During system design, we describe the system in terms of its architecture,
such as its subsystem decomposition, global control flow, and persistency management. During
system design, we also define the hardware/software platform on which we build the system.
This allows the selection of off-the-shelf components that provide a higher level of abstraction
than the hardware. During object design, we close the gap between the application objects and
the off-the-shelf components by identifying additional solution objects and refining existing
objects. Object design includes

¢ reuse, during which we identify off-the-shelf components and design patterns to make
use of existing solutions

* service specification, during which we precisely describe each class interface

e object model restructuring, during which we transform the object design model to
improve its understandability and extensibility

* object model optimization, during which we transform the object design model to
address performance criteria such as response time or memory utilization.

Object design, like system design, is not algorithmic. The identification of existing
patterns and components is central to the problem-solving process. We discuss these building
blocks and the activities related to them. In this chapter, we provide an overview of object design
and focus on reuse, that is the selection of components and the application of design patterns. In
the next chapter, we focus on service specification. In Chapter 10, Mapping Models to Code, we
focus on the object model restructuring and optimization activities.

307



308 Chapter 8 ¢ Object Design: Reusing Pattern Solutions

8.1 Introduction: Bloopers

Consider the following examples from the movie industry:

Speed (1994)

Harry, an LAPD cop, is taken hostage by Howard, a mad bomber. Jack, Harry’s partner, shoots Harry in
the leg to slow down Howard’s advance. Harry is shot in the right leg. Throughout the movie, Harry
limps on the left leg.

Star Wars Trilogy (1977, 1980, & 1983)

At the end of episode V, The Empire Strikes Back (1980), Han Solo is captured and frozen into carbonite
for delivery to Jabba. At the beginning of episode VI, The Return of the Jedi (1983), the frozen Han
Solo is recovered by his friends and thawed back to life. When being frozen, Solo is wearing a jacket.
When thawed, he is wearing a white shirt.

Titanic (1997)

Jack, a drifter, is teaching Rose, a high-society lady, to spit. He demonstrates by example and
encourages Rose to practice as well. During the lesson, Rose’s mother arrives impromptu. As Jack starts
to turn to face Rose’s mother, there is no spit on his face. As he completes his turn, he has spit on his
chin.

The budgets for Speed, The Empire Strikes Back, The Return of the Jedi, and Titanic were 30, 18, 32.5,
and 200 millions dollars, respectively.

Movies are systems that contain (often many) bugs when delivered to the client. It is
surprising, considering their cost of production, that any obvious mistakes should remain in the
final product. Movies, however, are more complex than they seem.

Many factors conspire to introduce mistakes in a movie: movies require the cooperation of
many different people; scenes are shot out of sequence; some scenes are reshot out of schedule;
details, such as props and costumes, are changed during production; the pressure of the release
date is high during the editing process, when all the pieces are integrated together. When a scene
is shot, the state of every object and actor in the scene should be consistent with the scenes
preceding and following it. This can include the pose of each actor, the condition of his or her
clothes, jewelry, makeup, and hair, the content of their glasses, and so on. When different
segments are combined into a single scene, an editor, called the “continuity editor,” ensures that
such details were restored correctly. When changes occur, such as the addition or removal of a
prop, the change must not interfere with other scenes.

Software systems, like movies, are complex, subject to continuous change and integrated
under time pressure. During object design, developers close the gap between the application
objects identified during analysis and the hardware/software platform selected during system
design. Developers identify and build custom solution objects whose purpose is to realize any
remaining functionality and to bridge the gap between application objects and the selected
hardware/software platform. During object design, developers realize custom objects in a way
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similar to the shooting of movie scenes. They are implemented out of sequence, by different
developers, and change several times before they reach their final form. Often, the caller of an
operation has only an informal specification of the operation and makes assumptions about its
side effects and its boundary cases. This results in mismatches between caller and callee,
missing behavior, or incorrect behavior. To address these issues, developers construct precise
specifications of the classes, attributes, and operations in terms of constraints. Similarly,
developers adjust and reuse off-the-shelf components that have been annotated with interface
specifications. Finally, developers restructure and optimize the object design model to address
design goals such as maintainability, extensibility, efficiency, response time, or timely delivery.

Section 8.2 provides an overview of object design. Section 8.3 defines the main object
design concepts, such as constraints used to specify interfaces. Section 8.4 describes in more
detail the activities of object design. Section 8.5 discusses management issues related with
object design. We do not describe activities such as implementing algorithms and data structures
or using specific programming languages. First, we assume the reader already has experience in
those areas. Second, these activities become less critical as more and more off-the-shelf
components become available.

8.2 An Overview of Object Design

Conceptually, software system development fills the gap between a given problem and an
existing machine. The activities of system development incrementally close this gap by
identifying and defining objects that realize part of the system (Figure 8-1).

Analysis reduces the gap between the problem and the machine by identifying objects
representing problem-specific concepts. During analysis the system is described in terms of
external behavior such as its functionality (use case model), the application domain concepts it
manipulates (object model), its behavior in terms of interactions (dynamic model), and its
nonfunctional requirements.

System design reduces the gap between the problem and the machine in two ways. First,
system design results in a virtual machine that provides a higher level of abstraction than the
machine. This is done by selecting off-the-shelf components for standard services such as
middleware, user interface toolkits, application frameworks, and class libraries. Second, system
design identifies off-the-shelf components for application domain objects such as reusable class
libraries of banking objects.

After several iterations of analysis and system design, the developers are usually left with
a puzzle that has a few pieces missing. These pieces are found during object design. This
includes identifying new solution objects, adjusting off-the-shelf components, and precisely
specifying each subsystem interface and class. The object design model can then be partitioned
into sets of classes that can be implemented by individual developers.
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AppTlication objects\

Requirements gap
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Off-the-shelf components\ \ ________
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Figure 8-1 Object design closes the gap between application objects identified during requirements and
off-the-shelf components selected during system design (stylized UML class diagram).

Object design includes four groups of activities (see Figure 8-2):

* Reuse. Off-the-shelf components identified during system design are used to help in the
realization of each subsystem. Class libraries and additional components are selected
for basic data structures and services. Design patterns are selected for solving common
problems and for protecting specific classes from future change. Often, components
and design patterns need to be adapted before they can be used. This is done by
wrapping custom objects around them or by refining them using inheritance. During all
these activities, the developers are faced with the same buy-versus-build trade-offs they
encountered during system design.

e Interface specification. During this activity, the subsystem services identified during
system design are specified in terms of class interfaces, including operations,
arguments, type signatures, and exceptions. Additional operations and objects needed
to transfer data among subsystems are also identified. The result of service
specification is a complete interface specification for each subsystem. The subsystem
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service specification is often called subsystem API (Application Programmer
Interface).

* Restructuring. Restructuring activities manipulate the system model to increase code
reuse or meet other design goals. Each restructuring activity can be seen as a graph
transformation on subsets of a particular model. Typical activities include transforming
N-ary associations into binary associations, implementing binary associations as
references, merging two similar classes from two different subsystems into a single
class, collapsing classes with no significant behavior into attributes, splitting complex
classes into simpler ones, and/or rearranging classes and operations to increase the
inheritance and packaging. During restructuring, we address design goals such as
maintainability, readability, and understandability of the system model.

e Optimization. Optimization activities address performance requirements of the system
model. This includes changing algorithms to respond to speed or memory
requirements, reducing multiplicities in associations to speed up queries, adding
redundant associations for efficiency, rearranging execution orders, adding derived
attributes to improve the access time to objects, and opening up the architecture, that is,
adding access to lower layers because of performance requirements.

Object design is not sequential. Although each group of activities described above
addresses a specific object design issue, they usually occur concurrently. A specific off-the-shelf
component may constrain the number of types of exceptions mentioned in the specification of an
operation and thus may impact the subsystem interface. The selection of a component may
reduce the implementation work while introducing new “glue” objects, which also need to be
specified. Finally, restructuring and optimizing may reduce the number of components to be
implemented by increasing the amount of reuse in the system.

Usually, interface specification and reuse activities occur first, yielding an object design
model that is then checked against the use cases that exercise the specific subsystem.
Restructuring and optimization activities occur next, once the object design model for the
subsystem is relatively stable. Focusing on interfaces, components, and design patterns results in
an object design model that is much easier to modify. Focusing on optimizations first tends to
produce object design models that are rigid and difficult to modify. However, as depicted in
Figure 8-2, activities of object design occur iteratively.

Given the variety and breadth of activities in object design, we divided this material into
three different chapters. This chapter focuses on activities related to reuse, in particular,
components and design patterns. In the next chapter, Chapter 9, Object Design: Specifying
Interfaces, we examine the activities related to interface specification, in particular, UML’s
Object Constraint Language and its use for specifying invariants, preconditions, and post
conditions. In Chapter 10, Mapping Models to Code, we examine the activities related to
restructuring and optimization.
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8.3 Reuse Concepts: Solution Objects, Inheritance, and Design Patterns

In this section, we present the object design concepts related to reuse:

¢ Application Objects and Solution Objects (Section 8.3.1)

¢ Specification Inheritance and Implementation Inheritance (Section 8.3.2)
¢ Delegation (Section 8.3.3)

¢ The Liskov Substitution Principle (Section 8.3.4)

¢ Delegation and Inheritance in Design Patterns (Section 8.3.5).

8.3.1 Application Objects and Solution Objects

As we saw in Chapter 2, Modeling with UML, class diagrams can be used to model both the
application domain and the solution domain. Application objects, also called “domain objects,”
represent concepts of the domain that are relevant to the system. Solution objects represent
components that do not have a counterpart in the application domain, such as persistent data
stores, user interface objects, or middleware.

During analysis, we identify entity objects and their relationships, attributes, and
operations. Most entity objects are application objects that are independent of any specific
system. During analysis, we also identify solution objects that are visible to the user, such as
boundary and control objects representing forms and transactions defined by the system. During
system design, we identify more solution objects in terms of software and hardware platforms.
During object design, we refine and detail both application and solution objects and identify
additional solution objects needed to bridge the object design gap.

8.3.2 Specification Inheritance and Implementation Inheritance

During analysis, we use inheritance to classify objects into taxonomies. This allows us to
differentiate the common behavior of the general case, that is, the superclass (also called the
“base class™), from the behavior that is specific to specialized objects, that is, the subclasses
(also called the “derived classes”). The focus of generalization (i.e., identifying a common
superclass from a number of existing classes) and specialization (i.e., identifying new subclasses
given an existing superclass) is to organize analysis objects into an understandable hierarchy.
Readers of the analysis model can start from the abstract concepts, grasp the core functionality
of the system, and make their way down to concrete concepts and review specialized behavior.
For example, when examining the analysis model for the FRIEND emergency response system
described in Chapter 4, Requirements Elicitation, we first focus on understanding how the
system deals with Incidents in general, and then move to the differences in handling Traffic
Accidents or Fires.

The focus of inheritance during object design is to reduce redundancy and enhance
extensibility. By factoring all redundant behavior into a single superclass, we reduce the risk of
introducing inconsistencies during changes (e.g., when repairing a defect) since we have to
make changes only once for all subclasses. By providing abstract classes and interfaces that are
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used by the application, we can write new specialized behavior by writing new subclasses that
comply with the abstract interfaces. For example, we can write an application manipulating
images in terms of an abstract Image class, which defines all the operations that all Images
should support, and a series of specialized classes for each image format supported by the
application (e.g., GIFImage, JPEGImage). When we need to extend the application to a new
format, we only need to add a new specialized class.

Although inheritance can make an analysis model more understandable and an object
design model more modifiable or extensible, these benefits do not occur automatically. On the
contrary, inheritance is such a powerful mechanism that novice developers often produce code
that is more obfuscated and more brittle than if they had not used inheritance in the first place.

Consider the following example: Assume for a moment that Java does not provide a set
abstraction and that we needed to write our own. We decide to reuse the java.util.Hashtable
class to implement a set abstraction that we call MySet. Inserting an element in MySet is
equivalent to checking if the corresponding key exists in the table and creating an entry if
necessary. Checking if an element is in MySet is equivalent to checking if an entry is associated
with the corresponding key (see Figure 8-3, left column).

Such an implementation of a set allows us to reuse code and provides us with the desired
behavior. It also provides us, however, with unwanted behavior. For example, Hashtable
implements the containsKey () operation to check if the specified object exists as a key in the
Hashtable and the containsValue() operation to check if the specified object exists as an entry.
containsKey() is inherited by MySet, but containsvValue() is overwritten. Given our
implementation, the operation containsValue() invoked on a MySet object has the same
behavior as containsKey(), which is counterintuitive. Worse, a developer could use both
containsKey() and containsValue(), which would make it difficult to change the internal
representation of MySet in the future. For example, if we decided to implement MySet as a List
instead of a Hashtable, all invocations to containsKey () would become invalid. To address this
issue, we could overwrite all operations inherited from Hashtable that should not be used on
MySet with methods throwing exceptions. However, this would lead to a MySet class that is
difficult to understand and reuse.

Inheritance yields its benefits by decoupling the classes using a superclass from the
specialized subclasses. In doing so, however, it introduces a strong coupling along the
inheritance hierarchy between the superclass and the subclass. Whereas this is acceptable when
the inheritance hierarchy represents a taxonomy (e.g., it is acceptable for Image and GIFImage to
be tightly coupled), it introduces unwanted coupling in the other cases. In our example, two
previously unrelated concepts, Hashtable and Set, become tightly coupled as a result of
subclassing, introducing many issues when Hashtable is modified or when a Set is used by a
class as a specialized Hashtable. The fundamental problem in this example is that, although
Hashtable provides behavior that we would like to reuse in implementing Set, because that
would save us time, there is no taxonomy in which the Set concept is related to the Hashtable
concept.
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Object design model before transformation

Hashtable

put(key,element)

get(key) :0Object
containsKey(key) :booTlean
containsValue(element) :boolean

___________....

MySet

put(element)
containsValue(element) :boolean

Object design model after transformation

Hashtable

put(key,element)

get(key) :0Object
containsKey(key) :booTlean
containsValue(element) :boolean

table |1
1
MySet
put(element)

containsValue(element) :boolean

/* Implementation of MySet using
inheritance */
class MySet extends Hashtable {

/* Implementation of MySet using
delegation */
class MySet {

/* Constructor omitted */
MySet() {
}

void put(Object element) {
if (!containsKey(element)){
put(element, this);

private Hashtable table;

MySet() {
table = Hashtable();
}

void put(Object element) {
if (!containsValue(element)){
table.put(element,this);

} }
} }
boolean containsValue(Object boolean containsValue(Object

element){ element) {

return containsKey(element); return
} (table.containsKey(element));
/* Other methods omitted */ }

} /* Other methods omitted */
}

Figure 8-3 An example of implementation inheritance. The left column depicts a questionable
implementation of MySet using implementation inheritance. The right column depicts an improved
implementation using delegation (UML class diagram and Java).

The use of inheritance for the sole purpose of reusing code is called implementation
inheritance. With implementation inheritance, developers reuse code quickly by subclassing an
existing class and refining its behavior. A Set implemented by inheriting from a Hashtable is an
example of implementation inheritance. Conversely, the classification of concepts into type
hierarchies is called specification inheritance (also called “interface inheritance”). The UML
class model of Figure 8-4 summarizes the four different types of inheritance we discussed in this
section.
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Inheritance
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Inheritance
Taxonomy for Reuse
Inheritance detected Inheritance detected Specification Implementation
during specialization| |during generalization Inheritance Inheritance

Figure 8-4 Inheritance meta-model (UML class diagram). In object-oriented analysis and design,
inheritance is used for achieving several goals, in particular modeling taxonomies and reusing behavior from
abstract classes. When modeling taxonomies, the inheritance relationships can be identified either during
specializations (when specialized classes are identified after general ones) or during generalizations (when
general classes are abstracted out of a number of specialized ones). When using inheritance for reuse,
specification inheritance represents subtyping relationships, and implementation inheritance represents
reuse among conceptually unrelated classes.

8.3.3 Delegation

Delegation is the alternative to implementation inheritance that should be used when reuse is
desired. A class is said to delegate to another class if it implements an operation by resending a
message to another class. Delegation makes explicit the dependencies between the reused class
and the new class. The right column of Figure 8-3 shows an implementation of MySet using
delegation instead of implementation inheritance. The only significant change is the private field
table and its initialization in the MySet() constructor. This addresses both problems we
mentioned before:

* Extensibility. The MySet on the right column does not include the containsKey(Q)
method in its interface and the new field table is private. Hence, we can change the
internal representation of MySet to another class (e.g., a List) without impacting any
clients of MySet.

e Subtyping. MySet does not inherit from Hashtab1le and, hence, cannot be substituted for
a Hashtable in any of the client code. Consequently, any code previously using
Hashtables still behaves the same way.

Delegation is a preferable mechanism to implementation inheritance as it does not interfere with
existing components and leads to more robust code. Note that specification inheritance is
preferable to delegation in subtyping situations as it leads to a more extensible design.
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8.3.4 The Liskov Substitution Principle

The Liskov Substitution Principle [Liskov, 1988] provides a formal definition for specification
inheritance. It essentially states that, if a client code uses the methods provided by a superclass,
then developers should be able to add new subclasses without having to change the client code.
For example, in the left column of Figure 8-3, this means that, if a client uses a Hashtable, the
client should not have to be modified when we substitute the Hashtable for any of its subclasses,
for example MySet. Clearly, this is not the case, so the relationship between MySet and
Hashtable is not a specification inheritance relationship. Below is the formal definition of the
Liskov Substitution Principle:

Liskov Substitution Principle

If an object of type S can be substituted in all the places where an object of type T is expected, then S is
a subtype of T.

Interpretation

In object design, the Liskov Substitution Principle means that if all classes are subtypes of their
superclasses, all inheritance relationships are specification inheritance relationships. In other words, a
method written in terms of a superclass T must be able to use instances of any subclass of T without
knowing whether the instances are of a subclass. Consequently, new subclasses of T can be added
without modifying the methods of T, hence leading to an extensible system. An inheritance relationship
that complies with the Liskov Substitution Principle is called strict inheritance.

8.3.5 Delegation and Inheritance in Design Patterns

In general, when to use delegation or inheritance is not always clear and requires some
experience and judgement on the part of the developer. Inheritance and delegation, used in
different combinations, can solve a wide range of problems: decoupling abstract interfaces from
their implementation, wrapping around legacy code, and/or decoupling classes that specify a
policy from classes that provide mechanism.

In object-oriented development, design patterns are template solutions that developers
have refined over time to solve a range of recurring problems [Gamma et al., 1994]. A design
pattern has four elements:

1. A name that uniquely identifies the pattern from other patterns.

2. A problem description that describes the situations in which the pattern can be used.
Problems addressed by design patterns are usually the realization of modifiability and
extensibility design goals and nonfunctional requirements.

3. A solution stated as a set of collaborating classes and interfaces.

4. A set of consequences that describes the trade-offs and alternatives to be considered
with respect to the design goals being addressed.
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For example, we can restate the problem of writing a set class of Figure 8-3 as
implementing a new class (i.e., MySet) that complies with an existing interface (i.e., the Java Set
interface) reusing the behavior provided by an existing class (i.e., the Hashtable class). Both the
Set interface and the Hashtable class are already provided and neither can be modified. The
Adapter design pattern (Figure 8-5; Appendix A.2) is a template solution for such problems.

The Adapter pattern works as follows: An Adapter class implements each method
declared in the ClientInterface in terms of requests to the LegacyClass. Any conversion of
data structures or adjustment of behaviors is done in the Adapter class so that Adapter behaves
as expected by the Client. The Adapter pattern enables reuse since neither the
ClientInterface nor the LegacyClass need to be modified. The Adapter pattern also
encourages extensibility, as the same Adapter class can be used for any subtypes of the
LegacyClass, as subtypes can be substituted for their supertype, according to the Liskov
Substitution Principle. By applying the Adapter pattern to our Set problem (Figure 8-6), we end
up with the same delegation relationship between MySet and Hashtab1e as in Figure 8-3.

Note that the Adapter pattern uses both inheritance and delegation. When studying design
patterns, you will notice that many patterns use a mix of inheritance and delegation and therefore
look similar. However, the same mechanisms are used in subtly different ways. To clarify the
differences, we use the following terms to denote different classes participating in the pattern:

e The client class accesses the pattern. In the class diagram of the Adapter pattern
(Figure 8-5), this class is simply called Client. Client classes can be either existing
classes of a class library or new classes of the system under development.

¢ The pattern interface is the part of the pattern that is visible to the client class. Often,
the pattern interface is realized by an abstract class or an interface. In the Adapter
pattern, this class is called C1ientInterface.

¢ The implementor class provides the lower-level behavior of the pattern. In the Adapter
pattern, the LegacyClass and the Adapter are implementor classes. In many patterns, a
number of collaborating implementor classes are needed to realize the pattern behavior.

e The extender class specializes an implementor class to provide a different
implementation or an extended behavior of the pattern. In the Adapter pattern, the
subtypes of LegacyClass are extender classes. Note that, often, extender classes
represent future classes that developers anticipate.

Since developers have strived to evolve and refine design patterns for maximizing reuse
and flexibility, they are usually not solutions that programmers would initially think of. As
design patterns capture a great deal of knowledge (e.g., by documenting the context and trade-
offs involved in applying a pattern), they also constitute a source of guidance about when to use
inheritance and delegation.

In the next section, we examine the use of design patterns and frameworks for solving a
range of common object design problems.
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Name Adapter Design Pattern

Problem description Convert the interface of a legacy class into a different interface expected by the
client, so that the client and the legacy class can work together without changes.

Solution An Adapter class implements the ClientInterface expected by the client.
The Adapter delegates requests from the client to the LegacyClass and
performs any necessary conversion.

Client

L = ClientInterface LegacyClass

Request() ExistingRequest()

{; adaptee

Adapter

Request()

Consequences e (Client and LegacyClass work together without modification of neither
Client nor LegacyClass.
e Adapter works with LegacyClass and all of its subclasses.
* A new Adapter needs to be written for each specialization (e.g., subclass) of
ClientInterface.

Figure 8-5 An example of design pattern, Adapter (adapted from [Gamma et al., 1994]).

— = Set Hashtable

add(element) put(key,element)

adaptee

MySet

add(element)

Figure 8-6 Applying the Adapter design pattern to the Set problem of Figure 8-3 (UML class diagram).
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8.4 Reuse Activities: Selecting Design Patterns and Components

System design and object design introduce a strange paradox in the development process. On the
one hand, during system design, we construct solid walls between subsystems to manage
complexity by breaking the system into smaller pieces and to prevent changes in one subsystem
from affecting other subsystems. On the other hand, during object design, we want the software
to be modifiable and extensible to minimize the cost of future changes. These are conflicting
goals: we want to define a stable architecture to deal with complexity, but we also want to allow
flexibility to deal with change later in the development process. This conflict can be solved by
anticipating change and designing for it, as sources of later changes tend to be the same for
many systems:

* New vendor or new technology. Commercial components used to build the system are
often replaced by equivalent ones from a different vendor. This change is common and
generally difficult to cope with. The software marketplace is dynamic, and vendors
might go out of business before your project is completed.

e New implementation. When subsystems are integrated and tested together, the overall
system response time is, more often than not, above performance requirements. System
performance is difficult to predict and should not be optimized before integration.
Developers should focus on the subsystem services first. This triggers the need for
more efficient data structures and algorithms—often under time constraints.

* New views. Testing the software with real users uncovers many usability problems.
These often translate into the need to create additional views on the same data.

*  New complexity of the application domain. The deployment of a system triggers ideas
of new generalizations: a bank information system for one branch may lead to the idea
of a multi-branch information system. The application domain itself might also
increase in complexity: previously, flight numbers were associated with one plane, and
one plane only, but with air carrier alliances, one plane can now have a different flight
number from each carrier.

e Errors. Many requirements errors are discovered when real users start using the system.

The use of delegation and inheritance in conjunction with abstract classes decouples the
interface of a subsystem from its actual implementation. In this section, we provide selected
examples of design patterns that can deal with the type of changes mentioned above.

After identifying a design pattern for each type of anticipated change (Table 8-1), we
discuss the pattern in the context of an actual situation and, in each case, discuss how inheritance
and delegation are used as building blocks to achieve modifiability and extensibility.
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Table 8-1 Selected design patterns and the changes they anticipate.

Design Pattern | Anticipated Change References

Bridge New vendor, new technology, new implementation. This pattern | Section 8.4.1
decouples the interface of a class from its implementation. It serves | Appendix A.3
the same purpose as the Adapter pattern except that the developer
is not constrained by an existing component.

Adapter New vendor, new technology, new implementation. This pattern | Section 8.4.2
encapsulates a piece of legacy code that was not designed to work | Appendix A.2
with the system. It also limits the impact of substituting the piece
of legacy code for a different component.

Strategy New vendor, new technology, new implementation. This pattern | Section 8.4.3
decouples an algorithm from its implementation(s). It serves the | Appendix A.9
same purpose as the Adapter and Bridge patterns, except that the
encapsulated unit is a behavior.

Abstract New vendor, new technology. Encapsulates the creation of families | Section 8.4.4
Factory of related objects. This shields the client from the creation process | Appendix A.1
and prevents the use of objects from different (incompatible)
families.
Command New functionality. This patterns decouples the objects responsible | Section 8.4.5

for command processing from the commands themselves. This | Appendix A.4
pattern protects these objects from changes due to new
functionality.

Composite New complexity of application domain. This pattern encapsulates | Section 8.4.6
hierarchies by providing a common superclass for aggregate and | Appendix A.5
leaf nodes. New types of leaves can be added without modifying
existing code.

8.4.1 Encapsulating Data Stores with the Bridge Pattern

Consider the problem of incrementally developing, testing, and integrating subsystems realized
by different developers. Subsystems may be completed at different times, delaying the
integration of all subsystems until the last one is completed. To avoid this delay, projects often
use a stub implementation in place of a specific subsystem so that the integration tests can start
even before the subsystems are completed. In other situations, several implementations of the
same subsystem are realized, such as a reference implementation that realizes the specified
functionality with the most basic algorithms, or an optimized implementation that delivers better
performance at the cost of additional complexity. In short, a solution is needed for dynamically
substituting multiple realizations of the same interface for different uses.

This problem can be addressed with the Bridge design pattern (Appendix A.3, [Gamma
et al., 1994]). For example, consider the storage of Leagues in ARENA. In the early stages of the
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project, we are interested in a rudimentary storage subsystem based on object serialization for
the purpose of debugging and testing the core use cases of the TournamentManagement
subsystem. The entity objects will be subject to many changes, and we do not know yet what
performance bottlenecks will be encountered during storage. Consequently, an efficient storage
subsystem should not be the focus of the first prototype. As discussed during the system design
of ARENA (Section 7.6.4), however, we anticipate that both a file-based implementation and a
relational database implementation of the storage subsystem should be provided, in the first and
second iteration of the system, respectively. In addition, a set of stubs should be provided to
allow early integration testing even before the file-based implementation is ready. To solve this
problem, we apply the Bridge pattern shown in Figure 8-7. The LeagueStore is the interface
class to the pattern, and provides all high-level functionality associated with storage. The
LeagueStoreImplementor is an abstract interface that provides the common interface for the
three implementations, namely the StubStoreImplementor for the stubs, the
XMLStoreImplementor for the file-based implementation, and the JDBCStoreImplementor for
the relational database implementation.

Arena
| imp
e LeagueStore <>——— LeagueStoreImplementor
[ I ]
Stub Store XML Store JDBC Store
Implementor Implementor Implementor

Figure 8-7 Applying the Bridge design pattern for abstracting database vendors (UML class diagram).

Note that even if most LeagueStoreImplementors provide similar services, using a
Bridge abstraction reduces performance. The design goals we defined at the beginning of system
design (Section 6.4.2) help us decide about performance and modifiability trade-offs.

Inheritance and delegation in the Bridge pattern

The Bridge pattern interface is realized by the Abstraction class, and its behavior by the
selected ConcreteImplementor class. The design pattern can be extended by providing new
RefinedAbstraction or ConcreteImplementor classes. This pattern is a classic example of
combining specification inheritance and delegation to achieve both reuse and flexibility.

On the one hand, specification inheritance is used between the abstract Implementor
interface and the classes ConcreteImplementors. As a result, each ConcreteImplementor can
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be substituted transparently at runtime, from the Abstraction class and RefinedAbstraction
classes. This also ensures that, when adding a new ConcreteImplementor, developers will strive
to provide the same behavior as all other ConcreteImplementors.

On the other hand, Abstraction and Implementor are decoupled using delegation. This
enables the distribution of different behavior in each of the side of the bridge. For example, the
LeagueStore class in Figure 8-7 provides the high-level behavior for storing Leagues, whereas
the concrete LeagueStoreImplementor provides specific lower-level functionality that differs in
its realization from one storage approach to the other. Since LeagueStore and
LeagueStoreImplementor provide different behaviors, they cannot be treated as subtypes
according to the Liskov Substitution Principle.

8.4.2 Encapsulating Legacy Components with the Adapter Pattern

As the complexity of systems increases and the time to market shortens, the cost of software
development significantly exceeds the cost of hardware. Hence, developers have a strong
incentive to reuse code from previous projects or to use off-the-shelf components. Interactive
systems, for example, are now rarely built from scratch; they are developed with user interface
toolkits that provide a wide range of dialogs, windows, buttons, or other standard interface
objects. Interface engineering projects focus on reimplementing only part of an existing system.
For example, corporate information systems, costly to design and build, must be updated to new
client hardware. Often, only the client side of the system is upgraded with new technology; the
back end of the system left untouched. Whether dealing with off-the-shelf component or legacy
code, developers have to deal with code they cannot modify and which usually was not designed
for their system.

We deal with existing components by encapsulating them. This approach has the
advantage of decoupling the system from the encapsulated component, thus minimizing the
impact of existing software on the new design. This can be done using an Adapter pattern.

The Adapter design pattern (Appendix A.2, [Gamma et al., 1994]) converts the interface
of a component into an interface that the client expects. This interface is called the
ClientInterface in Figure 8-5. An Adapter class provides the glue between ClientInterface
and LegacyClass. For example, assume the client is the static sort() method of the Java Array
class (Figures 8-8 and 8-9). This method expects two arguments a, an Array of objects, and c, a
Comparator object, which provides a compare() method to define the relative order between
elements. Assume we are interested in sorting strings of the class MyString, which defines the
greaterThan() and an equals() methods. To sort an Array of MyStrings, we need to define a
new comparator, MyStringComparator, which provides a compare() method using

greaterThan() and equals(). MyStringComparator is an Adapter class.!

1. When designing a new system, adaptors are seldom necessary, as the new classes can be defined such that they
realize the existing interfaces.
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— = Comparator MyString
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adaptee

MyStringComparator

compare()

Figure 8-8 Applying the Adapter design pattern for sorting Strings in an Array (UML class diagram).
See also source code in Figure 8-9.

/* Existing target interface */
interface Comparator {
int compare(Object ol, Object 02);
/:-“___ :.“/
}
/* Existing client */
class Array {
static void sort(Object [] a, Comparator c);
/:-“___ :.“/
}
/* Existing adaptee class */
class MyString extends String {
boolean equals(Object 0);
boolean greaterThan(MyString s);
VA4
}
/* New adapter class */
class MyStringComparator implements Comparator {
/E L/
int compare(Object ol, Object 02) {
int result;
if (((String)ol).greaterThan(o2)) {
result = 1
} else 1if (((String)ol).equals(02)) {
result = 0;
} else {
result = -1;
}

return result;

Figure 8-9 Adapter design pattern example (Java). The static sort() method on Arrays takes two
arguments, an arrays of Objects to be sorted and a Comparator defining the relative order of the elements.
To sort an array of MyStrings, we need to define a comparator called MyStringComparator with the proper
interface. MyStringComparator is an Adapter.
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Inheritance and delegation in the Adapter pattern

The Adapter pattern uses specification inheritance between the ClientInterface and the
Adapter. The Adapter in turn delegates to the LegacyClass implementor class to realize the
operations declared in ClientInterface. On the one hand, this enables all client code that
already uses the ClientInterface to work with instances of Adapter transparently and without
modification of the client. On the other hand, the same Adapter can be used for subtypes of the
LegacyClass.

Note that the Bridge and the Adapter patterns are similar in purpose and structure. Both
decouple an interface from an implementation, and both use a specification inheritance
relationship and a delegation relationship. They differ in the context in which they are used and
in the order in which delegation and inheritance occur. The Adapter pattern uses inheritance first
and then delegation, whereas the Bridge pattern uses delegation first and then inheritance. The
Adapter pattern is applied when the interface (i.e., ClientInterface) and the implementation
(i.e., LegacyClass) already exist and cannot be modified. When developing new code, the
Bridge pattern is a better choice as it provides more extensibility.

8.4.3 Encapsulating Context with the Strategy Pattern

Consider a mobile application running on a wearable computer that uses different networks
protocols depending on the location of the user: assume, for example, a car mechanic using the
wearable computer to access repair manuals and maintenance records for the vehicle under
repair. The wearable computer should operate in the shop with access to a local wireless network
as well as on the roadside using a third-generation mobile phone network, such as UMTS. When
updating or configuring the mobile application, a system administrator should be able to use the
wearable computer with access to a wired network such as Ethernet. This means that the mobile
application needs to deal with different types of networks as it switches between networks
dynamically, based on factors such as location and network costs. Assume that during the
system design of this application, we identify the dynamic switching between wired and
wireless networks as a critical design goal. Furthermore we want to be able to deal with future
network protocols without having to recompile the application.

To achieve both of these goals, we apply the Strategy design pattern (Appendix A.9,
[Gamma et al., 1994]). The system model and implementation, respectively, are shown in
Figures 8-10 and 8-11. The Strategy class is realized by NetworkInterface, which provides
the common interface to all networks; the Context class is realized by a NetworkConnection
object, which represents a point-to-point connection between the wearable and a remote host.
The Client is the mobile application. The PoTicy is the LocationManager, which monitors the
current location of the wearable and the availability of networks, and configures the
NetworkConnection objects with the appropriate NetworkInterfaces. When the
LocationManager object invokes the setNetworkInterface() method, the NetworkConnection
object shuts down the current NetworkInterface and initializes the new NetworkInterface
transparently from the rest of the application.
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Application
Ny NetworkConnection NetworkInterface
- send() open()
- receive() close()
- setNetworkInterface() send()
LocationManager receive()
Ethernet WavelLAN UMTS
open() open() open()
close() close() close()
send() send() send()
receive() receive() receive()

Figure 8-10 Applying the Strategy pattern for encapsulating multiple implementations of a
NetworkInterface (UML class diagram). The LocationManager implementing a specific policy
configures NetworkConnection with a concrete NetworkInterface (i.e., the mechanism) based on the
current location. The Application uses the NetworkConnection independently of concrete
NetworkInterfaces. See corresponding Java code in Figure 8-11.

Inheritance and delegation in the Strategy pattern

The class diagrams for the Bridge and the Strategy patterns (see Figures 8-7 and 8-10) are
almost identical. The key difference is in the creator of the concrete implementation classes: In
the Bridge pattern, the class Abstraction creates and initializes the ConcreteImplementations.
In the Strategy pattern, however, the Context is not aware of the ConcreteStrategies. Instead,
a client creates the ConcreteStrategy objects and configures the Context. Moreover,
ConcreteImplementations in the Bridge pattern are usually created at initialization time, while
ConcreteStrategies in the Strategy pattern are usually created and substituted several times
during run time.

8.4.4 Encapsulating Platforms with the Abstract Factory Pattern

Consider an application for an intelligent house: the application receives events from sensors
distributed throughout the house (e.g., light bulb on, light bulb off, window open, window
closed, inside and outside temperature, weather forecasts), identifies predefined patterns, and
issues commands for actuators (e.g., turn air-conditioning on, store statistics on energy
consumption, close garage door, trigger theft alarm). Although several manufacturers provide
the hardware to build such applications (e.g., EIB, Zumtobel’s Luxmate), interoperability in this
domain is currently poor, preventing the mix and match of devices from different manufacturers,
and thus, making it difficult to develop a single software solution for all manufacturers.
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/** The NetworkConnection object represents a single abstract connection
* used by the Client. This is the Context object in Strategy pattern. */
public class NetworkConnection {
private String destination;
private NetworkInterface intf;
private StringBuffer queue;

public NetworkConnect(String destination, NetworkInterface intf) {
this.destination = destination;
this.intf = intf;
this.intf.open(destination);
this.queue = new StringBuffer();
}
public void send(byte msg[]) {
// queue the message to be send in case the network is not ready.
queue.concat(msg);
if (intf.isReady()) {
intf.send(queue);
queue.setlLength(0);
}

public byte [] receive() {
return intf.receive();
}
public void setNetworkInterface(NetworkInterface newIntf) {
intf.close(Q);
newIntf.open(destination);
intf = newIntf;
}
}
/** The LocationManager decides on which NetworkInterface to use based on
* availability and cost. */
public class LocationManager {
private NetworkInterface networkIntf;
private NetworkConnection networkConn;

VATr4

// This method is invoked by the event handler when the Tocation
// may have changed
public void doLocation() {
if (isEthernetAvailable()) {
networkIntf = new EthernetNetwork();
} else 1if (isWaveLANAvailable()) {
networkIntf = new WavelLANNetwork();
} else if (isUMTSAvailable()) {
networkIntf = new UMTSNetwork();
} else {
networkIntf = new QueueNetwork();
}

networkConn.setNetworkInterface(networkIntf);

Figure 8-11 Applying the Strategy design pattern for encapsulating multiple implementation of a
NetworkInterface (Java). This implementation is simplified and does not take into account exceptions.
See corresponding UML class diagram in Figure 8-10.
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We use the Abstract Factory design pattern (Appendix A.1) to solve this problem. In
our intelligent house, each manufacturer provides temperature sensors, electric blinds that report
if they are forced in, and intelligent light bulbs that report if they have burned out. As shown in
Figure 8-12, these generic objects are called AbstractProducts (e.g., LightBulb, B1ind), and
their concrete realizations are called ConcreteProducts (e.g., EIBLightBulb,
ZumtobelLightBulb, EIBBlind, ZumtobelBlind). One factory for each manufacturer (e.g.,
ZumtobelFactory, EIBFactory) provides methods for creating the ConcreteProducts (e.g.,
createLightBulb(), createB1ind()). The Client classes (e.g., a TheftApplication) access
only the interfaces provided by the AbstractFactory and the AbstractProducts, thereby
shielding the Client classes completely from the manufacturer of the underlying products.

TheftApplication - — — — —=>{ HouseFactory
T T
| createBulb()
| | createB1lind()
X A
| | - — - EIBFactory | — — — 5 -+ LuxmateFactory - — 4
| r— - |
I createBulb() createBulbQ)
| | | createBlind() | | createBlind() |
I I I
| V |
L— LightBulb BTind |
I

[
[
[
v LV

EIBBulb LuxmateBulb EIBBulb LuxmateBulb

Figure 8-12 Applying the Abstract Factory design pattern to different intelligent house platforms (UML
class diagram, dependencies represent «call» relationships).

Inheritance and delegation in the Abstract Factory pattern

The Abstract Factory pattern uses specification inheritance to decouple the interface of a
product from its realization. However, since products of the same platform usually depend on
each other and access the concrete product classes, products of different platforms cannot be
substituted transparently. For example, EIBBulbs are incompatible with LuxmateBulbs and
should not be mixed within the same intelligent house system. To ensure that a consistent set of
products is created, the Client can only create products by using a ConcreteFactory, which
delegates the creation operations to the respective products. By using specification inheritance to
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decouple ConcreteFactories from their interface, product families from different
manufacturers can be substituted transparently from the client.

8.4.5 Encapsulating Control Flow with the Command Pattern

In interactive systems and in transaction systems, it is often desirable to execute, undo, or store
user requests without knowing the content of the request. For example, consider the case of
matches in the ARENA tournament management system. We want to record individual moves in
matches so that these moves can be replayed by a spectator at a later date. However, we also
want ARENA to support a broad spectrum of games, so we do not want the classes responsible for
recording and replaying moves to depend on any specific game.

We can apply the Command design pattern (Appendix A.4, [Gamma et al., 1994]) to
this effect. The key to decoupling game moves from their handling is to represent game moves
as command objects that inherit from an abstract class called Move in Figure 8-13. The Move
class declares operations for executing, undoing, and storing commands, whereas
ConcreteCommands classes (i.e., TicTacToeMove and ChessMove in ARENA) implement specific
commands. The classes responsible for recording and replaying games only access the GameMove
abstract class interface, thus making the system extensible to new Games.

Match Ko>———— Move
pl a%/() o execute()
replay A

«binds»

— — 7 TicTacToeMove

GameBoard =

— 1
| execute()

L — — — 4 ChessMove

execute()

Figure 8-13 Applying the Command design pattern to Matches in ARENA (UML class diagram).

Inheritance and delegation in the Command pattern

The Command design pattern uses specification inheritance between the Command class
and ConcreteCommands, enabling new commands to be added independently from the Invoker.
Delegation is used between ConcreteCommands and Receivers, and between Invoker and
Command, enabling ConcreteCommands to be dynamically created, executed, and stored. The
Command pattern is often used in a Model/View/Controller software architecture, where
Receivers are model objects, Invoker and Commands are controller objects, and Clients
creating Commands are view objects.
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8.4.6 Encapsulating Hierarchies with the Composite Design Pattern

User interface toolkits, such as Swing and Cocoa, provide the application developer with a range
of classes as building blocks. Each class implements a specialized behavior, such as inputting
text, selecting and deselecting a check box, pushing a button, or pulling down a menu. The user
interface design can aggregate these components into Windows to build application-specific
interfaces. For example, a preferences dialog may include a number of on-off check boxes for
enabling different features in the application.

As windows become more complex and include many different user interface objects,
their layout (i.e., moving and resizing each component so that the window forms a coherent
whole) becomes increasingly unmanageable. Consequently, modern toolkits enable the
developer to organize the user interface objects into hierarchies of aggregate nodes, called
“panels,” that can be manipulated the same way as the concrete user interface objects. For
example, our preferences dialog can include a top panel for the title of the dialog and
instructions for the user, a center panel containing the checkboxes and their labels, and a bottom
panel for the ‘ok’ and ‘cancel’ button. Each panel is responsible for the layout of its subpanels,
called “children,” and the overall dialog only has to deal with the three panels (Figures 8-14 and
8-15).

Top panel General

::] Display small navigation buttons {maximize Folders and Views lists)
@ Show toolbars
Main panel @Shnw ToolTips

@ Use relative dates in lists (Today, Yesterday)

Measurement units for printing: | Inches 'y

Button panel

" Cancel f ok _‘

Figure 8-14 Anatomy of a preference dialog. Aggregates, called “panels,” are used for grouping user
interface objects that need to be resized and moved together.

Swing addresses this problem with the Composite design pattern (Appendix A.5,
[Gamma et al., 1994]) as depicted in Figure 8-16. An abstract class called Component is the roof
of all user interface objects, including Checkboxes, Buttons, and Labels. Composite, also a
subclass of Component, is a special user interface object representing aggregates including the
Panels we mentioned above. Note that Windows and Applets (the root of the instance hierarchy)
are also Composite classes that have additional behavior for dealing with the window manager
and the browser, respectively.
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prefs:Window

9%

|
| top:Panel

| | main:Panel | | buttons:Panel |
| title:Label | | cl:Checkbox | | ok :Button |
| c2:Checkbox | | cancel:Button |

| c3:Checkbox |

| c4:Checkbox |

Figure 8-15 UML object diagram for the user interface objects of Figure 8-14.

Component *
move ()
resize()
| | |
| Label || Button | | Checkbox | Composite
move ()
resize()
/\
| Window | | Panel |
| Applet |

Figure 8-16 Applying the Composite design pattern to user interface widgets (UML class diagram). The
Swing Component hierarchy is a Composite in which leaf widgets (e.g., Checkbox, Button, Label)
specialize the Component interface, and aggregates (e.g., Panel, Window) specialize the Composi te abstract
class. Moving or resizing a Composite impacts all of its children.
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8.4.7 Heuristics for Selecting Design Patterns

Identifying the correct design pattern for a given problem is difficult unless you already have
some experience in using design patterns. Pattern catalogs are large and varied, and one cannot
expect developers to read them completely. As design patterns address a specific design goal or
a specific nonfunctional requirement, another technique is to use key phrases in the
Requirements Analysis Document (RAD) and the System Design Document (SDD) to select
candidate patterns. This is similar to the Abbott’s natural language technique described in
Chapter 5, Analysis. The heuristics box below provides example key phrases for the patterns
covered in this chapter:

Natural language heuristics for selecting design patterns

Design patterns address specific design goals and nonfunctional requirements. Similar to Abbott’s
heuristics described in Chapter 5, Analysis, key phrases can be used to identify candidate design
patterns. Below are examples for the patterns covered in this chapter.

Phrase Design Pattern

¢ “Manufacturer independence” Abstract Factory
¢ “Platform independence”

e “Must comply with existing interface” Adapter
e “Must reuse existing legacy component”

e “Must support future protocols” Bridge

¢ “All commands should be undoable” Command
e “All transactions should be logged”

e “Must support aggregate structures” Composite
e “Must allow for hierarchies of variable depth
and width”
¢ “Policy and mechanisms should be Strategy
decoupled”.

e “Must allow different algorithms to be
interchanged at runtime.”

8.4.8 Identifying and Adjusting Application Frameworks

Application frameworks

An application framework is a reusable partial application that can be specialized to
produce custom applications [Johnson & Foote, 1988]. In contrast to class libraries,
frameworks are targeted to particular technologies, such as data processing or cellular
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communications, or to application domains, such as user interfaces or real-time avionics. The
key benefits of application frameworks are reusability and extensibility. Framework reusability
leverages the application domain knowledge and the prior effort of experienced developers to
avoid recreation and revalidation of recurring solutions. An application framework enhances
extensibility by providing hook methods, which are overwritten by the application to extend the
application framework. Hook methods systematically decouple the interfaces and behaviors of
an application domain from the variations required by an application in a particular context.
Framework extensibility is essential to ensure timely customization of new application services
and features.

Frameworks can be classified by their position in the software development process.

¢ Infrastructure frameworks aim to simplify the software development process.
Examples include frameworks for operating systems [Campbell & Islam, 1993],
debuggers [Bruegge et al., 1993], communication tasks [Schmidt, 1997], user interface
design [Weinand et al., 1988], and Java Swing [JFC, 2009]. System infrastructure
frameworks are used internally within a software project and are usually not delivered
to a client.

¢ Middleware frameworks are used to integrate existing distributed applications and
components. Common examples include Microsoft’s MFC and DCOM, Java RMI,
WebObjects [Wilson & Ostrem, 1999], WebSphere [IBM], WebLogic Enterprise
Application [BEA], implementations of CORBA [OMG, 2008], and transactional
databases.

¢ Enterprise application frameworks are application specific and focus on domains
such as telecommunications, avionics, environmental modeling, manufacturing,
financial engineering [Birrer, 1993], and enterprise business activities [JavaEE, 2009].

Infrastructure and middleware frameworks are essential to create rapidly high-quality
software systems, but they are usually not requested by external customers. Enterprise
frameworks, however, support the development of end-user applications. As a result, buying
infrastructure and middleware frameworks is more cost effective than building them [Fayad &
Hamu, 1997].

Frameworks can also be classified by the techniques used to extend them.

¢ Whitebox frameworks rely on inheritance and dynamic binding for extensibility.
Existing functionality is extended by subclassing framework base classes and
overriding predefined hook methods using patterns such as the template method pattern
[Gamma et al., 1994].

¢ Blackbox frameworks support extensibility by defining interfaces for components that
can be plugged into the framework. Existing functionality is reused by defining
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components that conform to a particular interface and integrating these components
with the framework using delegation.

Whitebox frameworks require intimate knowledge of the framework’s internal structure.
Whitebox frameworks produce systems that are tightly coupled to the specific details of the
framework’s inheritance hierarchies, and thus changes in the framework can require the
recompilation of the application. Blackbox frameworks are easier to use than whitebox
frameworks because they rely on delegation instead of inheritance. However, blackbox
frameworks are more difficult to develop because they require the definition of interfaces and
hooks that anticipate a wide range of potential use cases. Moreover, it is easier to extend and
reconfigure blackbox frameworks dynamically, as they emphasize dynamic object relationships
rather than static class relationships. [Johnson & Foote, 1988].

Frameworks, class libraries, and design patterns

Frameworks are closely related to design patterns, class libraries, and components.

Design patterns versus frameworks. The main difference between frameworks and patterns
is that frameworks focus on reuse of concrete designs, algorithms, and implementations in a
particular programming language. In contrast, patterns focus on reuse of abstract designs and
small collections of cooperating classes. Frameworks focus on a particular application domain,
whereas design patterns can be viewed more as building blocks of frameworks.

Class libraries versus frameworks. Classes in a framework cooperate to provide a reusable
architectural skeleton for a family of related applications. In contrast, class libraries are less
domain specific and provide a smaller scope of reuse. For instance, class library components,
such as classes for strings, complex numbers, arrays, and bitsets, can be used across many
application domains. Class libraries are typically passive; that is, they do not implement or
constrain the control flow. Frameworks, however, are active; that is, they control the flow of
control within an application. In practice, developers often use frameworks and class libraries in
the same system. For instance, frameworks use class libraries, such as foundation classes,
internally to simplify the development of the framework. Similarly, application-specific code
invoked by framework event handlers uses class libraries to perform basic tasks, such as string
processing, file management, and numerical analysis.

Components versus frameworks. Components are self-contained instances of classes that
are plugged together to form complete applications. In terms of reuse, a component is a
blackbox that defines a cohesive set of operations that can be used solely with knowledge of the
syntax and semantics of its interface. Compared with frameworks, components are less tightly
coupled and can even be reused on the binary code level. That is, applications can reuse
components without having to subclass from existing base classes. The advantage is that
applications do not always have to be recompiled when components change. The relationship
between frameworks and components is not predetermined. On the one hand, frameworks can be



Reuse Activities: Selecting Design Patterns and Components 335

used to develop components, where the component interface provides a facade pattern for the
internal class structure of the framework. On the other hand, components can be plugged into
blackbox frameworks. In general, frameworks are used to simplify the development of
infrastructure and middleware software, whereas components are used to simplify the
development of end-user application software.

A framework example

WebObjects is a set of frameworks for developing interactive Web applications by
accessing existing data from relational databases. WebObjects consists of two infrastructure
frameworks. The WebObjects framework handles the interaction between Web browsers and
Web servers. The Enterprise Object Framework (EOF) handles the interaction between Web
servers and relational databases. The EOF supports database adapters that allow applications to
connect to database management systems from particular vendors. For example, the EOF
provides database adapters for Informix, Oracle, and Sybase servers and ODBC-compliant
adapters. In the following discussion, we concentrate on the WebObjects framework. More
information on the EOF can be found in [Wilson & Ostrem, 1999].

=]

WebBrowser

WebServer @ WebObjectsApplication E
WOAdaptor I WORequest
StaticHTML
WORequest Template EOF

v

RelationalDatabase

=]

Figure 8-17 An example of dynamic site with WebObjects (UML component diagram).

Figure 8-17 shows an example of a dynamic publishing site built with WebObjects. The
WebBrowser originates an HTTP request containing a URL, which is sent to the WebServer. If
the WebServer detects that the request is to a static HTML page, it passes it on the StaticHTML
object, which selects and sends the page back to the WebBrowser as a response. The WebBrowser
then renders it for the user. If the WebServer detects that the request requires a dynamic HTML
page, it passes the request to a WebObjects WOAdaptor. The WOAdaptor packages the incoming
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HTML request and forwards it to the WebObjectsApplication object. Based on Templates
defined by the developer and relevant data retrieved from the RelationalDatabase, the
WebObjectsApplication then generates an HTML response page, which is passed back through
the WOAdaptor to the WebServer. The WebServer then sends the page to the WebBrowser, which
renders it for the user.

A key abstraction provided by the WebObjects framework is an extension of the HTTP
protocol to manage state. HTTP is a stateless request-response protocol; that is, a response is
formulated for each request, but no state is maintained between successive requests. In many
Web-based applications, however, state must be kept between requests. For example in ARENA,
Players should not identify themselves for each move they play. Moreover, Players must be
able to continue playing in the same Match even if their WebBrowser is restarted. Several
techniques have been proposed to keep track of state information in Web applications, including
dynamically generated URLs, cookies, and hidden HTML fields. WebObjects provides the
classes shown in Figure 8-18 to achieve the same purpose.

WOAdaptor
WORequest WebServer WOSessionStore
WOAppTication
WOSession * WOComponent * DynamicElement

Figure 8-18 WebObject’s State Management Classes. The HTTP protocol is inherently stateless. The
State Management Classes enable information between individual requests to be maintained.

The WOAppTication class represents the application running on the WebServer waiting for
requests from the associated WebBrowser. A cycle of the request-response loop begins whenever
the WOAdaptor receives an incoming HTTP request. The WOAdaptor packages this request in a
WORequest object and forwards it to the application object of class WOApp1ication. Requests are
always triggered by a URL submitted by the WebBrowser. The class W0Session encapsulates the
state of an individual session, allowing it to track different users, even within a single
application. A WOSession consists of one or more WOComponents, which represent a reusable
Web page or portion of a Web page for display within an individual session. WOComponents may
contain DynamicElements. When an application accesses the database, one or more of the
DynamicETements of a component are filled with information retrieved from the database. The
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WOSessionStore provides persistency for WOSession objects: it stores sessions in the server and
restores them by the application upon request.

The essence of building a WebObjects application is to refine the classes WOAppT1ication,
WOSession, and WOComponent and to intercept the flow of requests sent and received between
them. Inherited methods from these classes are overridden when the developer needs to extend
the default behavior. The earliest control point for refining objects of type WOApplication is
when they are constructed. The last point of control is when the application object terminates.
By adding code to the application object constructor or overriding the WOApplication
terminate() method, the developer can customize the behavior of the WebObjects application
as desired.

8.5 Managing Reuse

Historically, software development started as a craft, in which each application was custom
made according to the wishes and needs of a single customer. After all, software development
represented only a fraction of the cost of hardware, and computing solutions were affordable
only to few. With the price of hardware dropping and computing power increasing exponentially,
the number of customers and the range of applications has broadened dramatically. Conversely,
software costs increased as applications became more complex. This trend reached the point
where software represented the largest cost in any computing solution, putting tremendous
economic pressure on the project manager to reduce the cost of software. With no silver bullet in
sight, systematic reuse of code, designs, and processes became an attractive solution. Reuse,
whether design patterns, frameworks, or components, has many technical and managerial
advantages:

e Lower development effort. When reusing a solution or a component, many standard
errors are avoided. Moreover, in the case of design patterns, the resulting system is
more easily extended and more resilient to typical changes. This results in less
development effort and reduces the need for human resources, which can be redirected
to testing the software to ensure better quality.

e Lower risk. When reusing repetitively the same design pattern or component, the
typical problems that will be encountered are known and can be anticipated. Moreover,
the time needed to adapt the design pattern or to glue the component is also known,
resulting in a more predictable development process and fewer risks.

* Widespread use of standard terms. The reuse of a standard set of design patterns and
components fosters the use of a standard vocabulary. For example, terms such as
Adapter, Bridge, Command, or Facade denote precise concepts that all developers
become familiar with. This reduces the number of different terms and solutions to
common problems and reduces misunderstandings among developers.

* Increased reliability. Reuse by itself does not increase reliability or reduce the need for
testing (see the Ariane 501 incident in Section 3.1 as an illustrative example).
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Components and pattern solutions that worked in one context can exhibit unexpected
failures in other contexts. However, a culture of reuse in a software organization can
increase reliability for all of the above reasons: reduced development time can lead to
an increased testing effort, repetitive use of components can lead to a knowledge base
of typical problems to be anticipated, and use of standard terms reduces
communication failures.

Unfortunately, reuse does not occur spontaneously within a development organization.
The main challenges include

e NIH (Not Invented Here) syndrome. Since software engineering education (at least until
recently) emphasizes mostly the design of new solutions, developers often distrust the
reuse of existing solutions, especially when the customization of the solution under
consideration is limited or constrained. In such situations, developers believe that they
can develop a completely new solution that is better adapted to their specific problem
(which is usually true) in less time than what they need to understand the reused
solution (which is usually not true). Moreover, the advantages of reuse are visible only
in the longer term, while the gratification of developing a new implementation is
instantaneous.

e Process support. The processes associated with identifying, reusing, and customizing
an existing solution are different than those involved in creating a brand new solution.
The first set of activities requires painstakingly sifting through a large and evolving
corpus of knowledge and carefully evaluating the findings. The second set of activities
requires creativity and a good understanding of the problem. Most software
engineering tools and methods are better adapted to creative activities than to reuse. For
example, there are currently many catalogs of design patterns, but no systematic
method for novice developers to identify quickly the appropriate pattern that should be
used in a given situation.

e Training. Given the lack of knowledge support tools for reuse, training is the single
most effective method in establishing a reuse culture. Consequently, the burden of
educating developers to specific reusable solutions and components falls on the
development organization.

In the following sections, we examine how we can document reuse and assign roles to
address the above issues.

8.5.1 Documenting Reuse

Reuse activities involve two types of documentation: the documentation of the template solution
being reused and the documentation of the system that is reusing the solution.
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The documentation of a reusable solutions (e.g., the design pattern, a framework, or a
component) includes not only a description of the solution, but also a description of the class of
problems it addresses, the trade-offs faced by the developer, alternative implementations, and
examples of use. This documentation is typically difficult to produce, as the author of the
reusable solution may not be able to anticipate all the problems it can be used for. Moreover,
such documentation is usually generic and abstract and must be illustrated by concrete examples
for novice developers to fully understand the parameters of the solution. Consequently,
documentation of a reusable solution is usually not ideal. However, developers can
incrementally improve this documentation each time they reuse a solution by adding the
following:

* Reference to a system using the solution. Minimally, the documentation of the reusable
solution should include references to each use. If defects are discovered in the reused
solution, these defects can be systematically corrected in all occurrences of reuse.

e Example of use. Examples are essential for developers to understand the strengths and
limitation of the reused solution. Each occurrence of reuse constitutes an example.
Developers should include a brief summary illustrating the problems being solved and
the adopted solution.

» Alternative solutions considered. As we saw in this chapter, many design patterns are
similar. However, selecting the wrong pattern can lead to more problems than
developing a custom solution. In the documentation of the example, developers should
indicate which other candidate solutions they discarded and why.

e Encountered trade-offs. Reuse, especially in the case of frameworks and components,
often entails making a compromise and selecting a less than optimal solution for some
criteria. For example, one component may offer an interface that is extensible, and
another may deliver better response time.

The documentation of the system under construction should minimally include references
to all the reused solutions. For example, design patterns are not immediately identifiable in the
code, as the classes involved usually have names different from names used in the standard
pattern. Many patterns draw their benefits from the decoupling of certain classes (e.g., the bridge
client from the bridge implementations), so such classes should remain decoupled during future
changes to the system. Similarly, explicitly documenting which classes use which components
makes it easier to adapt the client classes to newer versions of the reused components.
Consequently, developers can further increase of the benefits of reuse by documenting the links
between reused solutions and their code, in addition to the standard object design
documentation, which we discuss in Chapter 9, Object Design: Specifying Interfaces.

A contributing factor for the high cost of change late in the process is the loss of design
context. Developers forget quickly the reasons behind designing complicated workarounds or
complex data structures during early phases of the process. When changing code late in the
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process, the probability of introducing errors into the system is high. Hence, the reason for
recording trade-offs, examples, alternatives, and other decision making information is also to
reduce the cost of change. In Chapter 12, Rationale Management, we describe more techniques
for systematically capturing such decision-making information.

8.5.2 Assigning Responsibilities

Individual developers assigned to subsystems will not spontaneously turn to design patterns and
components unless they have experience with these topics. To foster a reuse culture, an
organization needs to make the incentives of reuse as high as possible for the individual
developer. This includes access to expert developers who can provide advice and information,
and specific components or patterns, training, and emphasis on reuse during design reviews and
code inspections. The availability of knowledge lowers the frustration experienced when
experiencing the learning curve associated with a component. The explicit review of pattern
usage (or lack thereof) increases the organizational incentive for investing time into looking for
ready solutions.

Below are the main roles involved in reuse:

e Component expert. The component expert is familiar with using a specific
component. The component expert is a developer and usually has received third-party
training in the use of the component.

* Pattern expert. The pattern expert is the analog of the component expert for a family
of design patterns. However, pattern experts are usually self-made and acquire their
knowledge from experience.

¢ Technical writer. The technical writer must be aware of reuse and document
dependencies between components, design patterns, and the system, as discussed in the
previous section. This may require the technical writer to become familiar with the
solutions typically reused by the organization and with their associated terms.

¢ Configuration manager. In addition to tracking configurations and versions of
individual subsystems, the configuration manager must also be aware of the versions of
the components that are used. While newer versions of the components may be used,
their introduction requires tests to be repeated and changes related to the upgrade
documented.

The technical means of achieving reuse (e.g., inheritance, delegation, design patterns,
application frameworks) have been available to software engineers for nearly two decades. The
success factors associated with reuse are actually not technical, but managerial. Only an
organization that provides the tools for selecting and improving reusable solutions and the
culture to encourage their use can reap the benefits of design and code reuse.
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8.6 ARENA Case Study

In this section, we apply three design patterns to the object design of ARENA. As specified during
requirements analysis, we anticipate ARENA to support many different types of games. Hence, in
this section, we focus on the classes related to Games, Matches, and their respective boundary
objects. In particular, we focus on the following design patterns:

e Abstract Factory design pattern (Section 8.6.1). We shield the Tournament and League
objects from Game specifics by turning the Game abstract interface into an
AbstractFactory. This way, only concrete Products need to be supplied for a new
concrete Game.

* Command design pattern (Section 8.6.2). We shield the objects related to playing and
replaying Matches by encapsulating concrete Moves for each Game.

e Observer design pattern (Section 8.6.3). We standardize the interactions between
Match and Move entity objects with MatchView objects across all Games with a
subscriber/publisher paradigm.

In this section, we only focus on Games that involve a sequence of Moves performed by
Players who take turns. We do not consider Games that involve simultaneous or concurrent
actions at this point.

8.6.1 Applying the Abstract Factory Design Pattern

Achieving game independence in ARENA is not as straightforward as it initially appears. In the
analysis model (see Figure 8-19), we define an abstract Game interface to shield the Tournament
and League objects from the specifics of each game. However, supporting a specific Game

/—<>{ Arena |

| LeagueOwner |

| Statistics League |—| Game |

Tournament |

| Player Q | TicTacToe |
| Move Match |

| Chess |
| Result

Figure 8-19 ARENA analysis objects related to Game independence (UML class diagram).
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involves the tight collaboration of several objects representing the rules of Game, the state of a
Match under progress, specific Moves played by the different contenders, and the Result of the
Match. At the end of a Match, the Results are accumulated in Tournament and League-wide
Statistics. We need to define a Game framework within ARENA that shields the Tournament and
League objects from all the Game specifics, while supporting standard interactions among
specialized Game, Match, Move, Result, and Statistics objects.

As several specialized objects need to collaborate, we first select the Abstract Factory
design pattern to address the game independence design issue (see Figure 8-20). The abstract
Game interface is an abstract factory that provides methods for creating Matches and
Statistics. Each concrete Game (e.g., TicTacToe and Chess) realizes the abstract Game
interface and provides implementations for the Match and Statistics objects. For example, the
TicTacToe Game implementation returns TTTMatches and TTTStats objects when the
createMatch() and the createStatistics() methods are invoked. The concrete Match objects
(e.g., TTTMatch and ChessMatch) track the current state of the Match and enforce the Game rules.
Each concrete Game also provides a concrete Statistics object for accumulating average
statistics (e.g., average Match length, average number of Moves, number of wins and losses per
player, as well as Game specific Statistics). The League and the Tournament objects each use a
concrete Statistics object to accumulate statistics for the League and the Tournament scope,
respectively. Because the League and Tournament objects only access the abstract Game, Match,
Statistics interfaces, the League and Tournaments work transparently for all Games that
comply with this framework.

8.6.2 Applying the Command Design Pattern

Although Spectators can watch Matches as they occur, we anticipate that many Matches will
be viewed asynchronously, after the fact. Hence, we need to store the sequence of moves in each
Match, so that it can be replayed at a later time.

As described in Section 8.4.5, we apply the Command design pattern and represent each
move as a Command object. The abstract Move object (corresponding to the Command object in the
design pattern) provides the interface to the League and Tournament objects to manipulate Moves
independently from the concrete Games and Matches. The concrete Moves are created by and
stored in a queue in the concrete Match object (Figure 8-21).

To deal with concurrent Spectators replaying the same Match, we need to refine this
solution further. For each request to replay an archived Match, ARENA creates a new
ReplayedMatch that includes its own GameBoard to hold the current state of the replayed Match
and feeds it the Move objects of the archived Match, one at the time. This enables the same Match
to be replayed by many different Spectators independently.

8.6.3 Applying the Observer Design Pattern

ARENA supports multi-player games, such as TicTacToe and Chess. Each Player accesses a
Match in progress through a client application running on his local machine. Consequently,
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Figure 8-20 Applying the Abstract Factory design pattern to Games (UML class diagram).
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Figure 8-21 Applying the Command design pattern to Matches and ReplayedMatches in ARENA (UML

class diagram).

potentially many views of the same Match in progress must be kept consistent. To address this

problem, we use a distributed version of the Observer design pattern (Figure 8-22), in which

the Observers are the boundary objects in each client, the Subjects are the GameBoard objects

that maintain the current state of each Match. References between Subjects and Observers are

remote object references provided by Java RMI. In addition to maintaining consistency among

different views of the same Match, this enables us to use the same pattern for ReplayedMatches.
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Subject observers Observer
1
subscribe(subscriber) update()
unsubscribe(subscriber)
notify() ZT&
GameBoard = — — MatchView
state gameBoard
getState() update()
playMove ()

Figure 8-22 Applying the Observer design pattern to maintain consistency across MatchViews (UML
class diagram).

8.6.4

In this section, we applied three different patterns to address the problem of decoupling ARENA
from specific Games. In this short example, we learned that

Lessons Learned

* Design patterns mesh and overlap. For example, the Match class participates in two
patterns. It is an AbstractProduct in the Abstract Factory and an Invoker in the
Command pattern.

o Selecting the right pattern is not trivial. There are many published catalogs of design
patterns. Unless a developer is familiar with them and has used them in the past, it is
difficult to assess which pattern to apply in which context. This emphasizes the
importance of documenting patterns with examples, which can then be used by
developers to assess whether a specific pattern is applicable to their problem.

e Design patterns must be refined. Patterns are template solutions, and most often must
be adapted to the problem at hand. When refining a pattern, the use of specification
inheritance and delegation must be examined carefully so that the extensibility
advantages provided by the pattern are not destroyed.

8.7 Further Readings

Inheritance has introduced a wide range of design challenges for the developer. Although it
provides a powerful mechanism for designing reusable components and for existing classes, it
also enables developers to create complex control structures that are difficult to understand and
test, resulting in brittle systems. Ever since it was introduced in programming languages,
researchers have attempted to provide ways of distinguishing “good” uses of inheritance from
“bad” uses and come up with a generalized set of design principles.
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Marvin Minsky is credited with inventing inheritance in Frames, a framework for
representing knowledge in artificial intelligence [Minsky, 1975]. Inheritance was later refined
and incorporated into early object-oriented programming languages such as Smalltalk [Goldberg
& Kay, 1976]. Rumbaugh and his colleagues were the first to introduce inheritance into a
modeling language called OMT [Rumbaugh et al., 1991], which has greatly influenced UML.

The Liskov Substitution Principle [Liskov, 1988] introduced a formal definition of
subtyping, essentially differentiating specification inheritance from implementation inheritance.
Although simple to understand, it is difficult to apply as a design principle.

In Object-Oriented Software Construction [Meyer, 1997], initially published in 1989,
Bertrand Meyer formulated the open-closed principle, stating that abstract classes should be
open for extension but closed to modification. Object-Oriented Analysis and Design [Martin &
Odell, 1992] further developed these design principles.

The publication of Design Patterns [Gamma et al., 1994], however, opened up a different
approach to reuse, by offering template solutions to problems that occur in almost every design.
By combining, meshing, and overlapping individual patterns, a developer could address many
extensibility and reusability issues by applying robust solutions. The pattern concept for
encoding knowledge for reuse became so successful and popular that other authors applied it to
other development activities, such as software architecture [Buschmann et al., 1996] and
analysis [Fowler, 1997].

8.8 Exercises

8-1 Consider the ARENA object design model. For each of the following objects, indicate if it
is an application object or a solution object:

League

LeagueStore

LeagueXMLStoreImplementor

Match

MatchView

Move

ChessMove

8-2 Indicate which occurrences of the following inheritance relationships are specification
inheritance and which are implementation inheritance:
¢ A Rectangle class inherits from a Polygon class.
¢ A Set class inherits from a BinaryTree class.

* A Set class inherits from a Bag class (a Bag is defined as an unordered collection).
¢ A Player class inherits from a User class.
* A Window class inherits from a Polygon class.

8-3 Consider an existing game of bridge written in Java. We are interested in integrating
this bridge game into ARENA. Which design pattern would you use? Draw a UML class
diagram relating the ARENA objects with some of the classes you would expect to find in
the bridge game.
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8-4

8-6

8-7

8-8
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Consider a workflow system supporting software developers. The system enables
managers to model the process the developers should follow in terms of activities and
work products. The manager can assign specific processes to each developer and set
deadlines for the delivery of each work product. The system supports several types of
work products, including formatted text, picture, and URLs. The manager, while
editing the workflow, can dynamically set the type of each work product at run time.
Assuming one of your design goals is to design the system so that more work product
types can be added in the future, which design pattern would you use to represent work
products?

Consider a system that includes a database client and two redundant database servers.
Both database servers are identical: the first acts as a main server, the second acts as a
hot back-up in case the main server fails. The database client accesses the servers
through a single component called a “gateway,” hence hiding from the client which
server is currently being used. A separate policy object called a “watchdog” monitors
the requests and responses of the main server and, depending on the responses, tells the
gateway whether to switch over to the back-up server. What do you call this design
pattern? Draw a UML class diagram to justify your choice.

In Section 8.4.1, we used a Bridge pattern to decouple the implementation of the ARENA
LeagueStore subsystem from its interface, enabling us to provide different
implementations for the purpose of testing. Ideally, we would apply the Bridge pattern
to each subsystem in our system design to facilitate testing. Unfortunately, this is not
always possible. Give an example of a subsystem where the Bridge pattern cannot be
used.

Consider the following design goals. Indicate the candidate pattern(s) you would
consider to satisfy each goal:

* Given a legacy banking application, encapsulate the existing business logic
component.

e Given a chess program, enable future developers to substitute the planning
algorithm that decides on the next move with a better one.

e Given a chess program, enable a monitoring component to switch planning
algorithms at runtime, based on the opposing player’s style and response time.

* Given a simulation of a mouse solving a maze, enable the path evaluation
component to evaluate different paths independently of the types of moves
considered by the mouse.

Consider an application that must select dynamically an encryption algorithm based on
security requirements and computing time constraints. Which design pattern would you
select? Draw a UML class diagram depicting the classes in the pattern and justify your
choice.
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Object Design:
Specifying Interfaces

If you have a procedure with 10 parameters, you probably
missed some.
—Alan Perlis, Epigrams in Programming

During object design, we identify and refine solution objects to realize the subsystems
defined during system design. During this activity, our understanding of each object deepens: we
specify the type signatures and the visibility of each of the operations, and, finally, we describe
the conditions under which an operation can be invoked and those under which the operation
raises an exception. As the focus of system design was on identifying large chunks of work that
could be assigned to individual teams or developers, the focus of object design is on specifying
the boundaries between objects. At this stage in the project, a large number of developers
concurrently refines and changes many objects and their interfaces. The pressure to deliver is
increasing and the opportunity to introduce new, complex faults into the design is still there. The
focus of interface specification is for developers to communicate clearly and precisely about
increasingly lower-level details of the system.

The interface specification activities of object design include

* identifying missing attributes and operations
* specifying type signatures and visibility
¢ specifying invariants

¢ specifying preconditions and postconditions.

In this chapter, we provide an overview of the concepts of interface specification. We
introduce OCL (Object Constraint Language) as a language for specifying invariants,
preconditions, and postconditions. We discuss heuristics and stylistic guidelines for writing
readable constraints. Finally, we examine the issues related to documenting and managing
interface specifications.

349
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9.1 Introduction: A Railroad Example

Stuttgart: Evolving a streetcar into a light rail system

Until 1976, the main public mass transportation system in Stuttgart was a streetcar system. The system
was extensive and used by many passengers. However, streetcars could only hold a rather limited
amount of passengers and shared streets with cars. With car traffic continually increasing, the city of
Stuttgart opted to convert the streetcar system into a more efficient off-street light rail system. The
larger gauge of light rail cars would allow larger cars with more capacity than streetcars. Moreover, the
construction of dedicated rails would allow light rail cars to move at faster speeds. And because light
rail speed is independent of the street traffic, schedules could be predictable even during rush hour.

The conversion was initiated in 1976. However, given the extensive reach of the streetcar network and
the number of lines to convert, the city took an evolutionary approach. The streetcar lines were
converted one at the time, operating both types of rolling stock during the transition period. This
evolutionary approach faced many challenges that arose from incompatibilities between light rail cars
and streetcars.

* Gauge. The light rail system used a standard gauge (1450 mm), and the streetcar system used a
meter gauge (1000 mm). As several stations needed to accommodate several lines, the tracks had to
be fitted with three rails instead of the usual two, so that both types of cars could use the same track.
In addition to more rails, this resulted in more complex switches.
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(light rail train)
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o Station platforms. Streetcars were designed for passengers who entered the cars from the street level.
Light rail cars were designed for passengers who enter from a raised platform. For stations that
accommodated both types of rolling stock, platforms were raised on one end and low on the other
end. Because each part of the platform must be at least as long as its respective trains, all platforms
became much longer.
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» Signaling. Streetcars observed signals that were similar to traffic lights observed by cars: traffic
lights open and close on a periodic basis, mostly independent of the current traffic situation. Light
rail signaling, however, is similar to freight train signaling, in which trains are dispatched from a
central location and track circuits monitor the location of each train. Consequently, the signaling for
the light rail had to be compatible with street car rolling stock.

Given the length of the transition period, addressing the challenges introduced by the dual gauge system
enabled the city to avoid interruptions in the transport system and meet the rising passenger demand.
The project was successfully completed in December 2007 when the last street car line was retired.
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This example illustrates the concept of interface: a streetcar, like a software object,
provides services to clients and makes certain assumptions about its environment. For rail tracks,
the interface of the streetcar is the wheels. If the distance between the wheels of the street car is
increased, the rails must be adjusted accordingly. For passengers, the interface to the streetcar is
the door. If the door of the street car is higher, the passengers need a higher platform to enter the
street car. For the signaling system, the interface is the driver who monitors the traffic signals. If
a new signaling system is introduced, the driver needs to be retrained. If any attribute of these
interfaces changes (e.g., distance between the wheels, height of the door, signaling equipment),
the street car cannot provide its services until the interfacing system is adapted. The same
applies to software development: objects interact with other objects through interfaces that
include a set of operations, each accepting a set of parameters and producing a result, and a set
of assumptions about the behavior of each operation. If the operations or the assumptions
change, the object cannot accomplish its work and provide the advertised services. In this
chapter, we discuss the object design activities related to interface specification.

Section 9.2 provides an overview of interface specification. Section 9.3 defines the main
interface specification concepts, including type signatures, constraints, and contracts, and
provide an introduction into UML’s Object Constraint Language. Section 9.4 describes in more
detail the activities of interface specification using the ARENA system as an example. Section 9.5
discusses management issues related to interface specification, and object design in general,
including documenting object interfaces and assigning responsibilities.

9.2 An Overview of Interface Specification

At this point in system development, we have made many decisions about the system and
produced a wealth of models:

e The analysis object model describes the entity, boundary, and control objects that are
visible to the user. The analysis object model includes attributes and operations for each
object.

o Subsystem decomposition describes how these objects are partitioned into cohesive
pieces that are realized by different teams of developers. Each subsystem includes high-
level service descriptions that indicate which functionality it provides to the others.

* Hardware/software mapping identifies the components that make up the virtual
machine on which we build solution objects. This may include classes and APIs
defined by existing components.

* Boundary use cases describe, from the user’s point of view, administrative and
exceptional cases that the system handles.

e Design patterns selected during object design reuse describe partial object design
models addressing specific design issues.
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All these models, however, reflect only a partial view of the system. Many puzzle pieces
are still missing and many others are yet to be refined. The goal of object design is to produce an
object design model that integrates all of the above information into a coherent and precise
whole. The goal of interface specification, the focus of this chapter, is to describe the interface of
each object precisely enough so that objects realized by individual developers fit together with
minimal integration issues. To this end, interface specification includes the following activities:

o Identify missing attributes and operations. During this activity, we examine each
subsystem service and each analysis object. We identify missing operations and
attributes that are needed to realize the subsystem service. We refine the current object
design model and augment it with these operations.

o Specify visibility and signatures. During this activity, we decide which operations are
available to other objects and subsystems, and which are used only within a subsystem.
We also specify the return type of each operation as well as the number and type of its
parameters. This goal of this activity is to reduce coupling among subsystems and
provide a small and simple interface that can be understood easily by a single
developer.

e Specify contracts. During this activity, we describe in terms of constraints the behavior
of the operations provided by each object. In particular, for each operation, we describe
the conditions that must be met before the operation is invoked and a specification of
the result after the operation returns.

The large number of objects and developers, the high rate of change, and the concurrent
number of decisions made during object design make object design much more complex than
analysis or system design. This represents a management challenge, as many important
decisions tend to be resolved independently and are not communicated to the rest of the project.
Object design requires much information to be made available among the developers so that
decisions can be made consistent with decisions made by other developers and consistent with
design goals. The Object Design Document, a live document describing the specification of each
class, supports this information exchange.

9.3 Interface Specification Concepts

In this section, we present the principal concepts of interface specification:

¢ Class Implementor, Class Extender, and Class User (Section 9.3.1)

¢ Types, Signatures, and Visibility (Section 9.3.2)

¢ Contracts: Invariants, Preconditions, and Postconditions (Section 9.3.3)
* Object Constraint Language (Section 9.3.4)

¢ OCL Collections: Sets, Bags, and Sequences (Section 9.3.5)

¢ OCL Qualifiers: forA11 and exists (Section 9.3.6).
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9.3.1 Class Implementor, Class Extender, and Class User

So far, we have treated all developers as equal. Now that we are delving into the details of object
design and implementation, we need to differentiate developers based on their point of view.
While all use the interface specification to communicate about the class of interest, they view the
specifications from radically different point of views (see also Figure 9-1):

¢ The class implementor is responsible for realizing the class under consideration. Class
implementors design the internal data structures and implement the code for each
public operation. For them, the interface specification is a work assignment.

* The class user invokes the operations provided by the class under consideration during
the realization of another class, called the client class. For class users, the interface
specification discloses the boundary of the class in terms of the services it provides and
the assumptions it makes about the client class.

¢ The class extender develops specializations of the class under consideration. Like
class implementors, class extenders may invoke operations provided by the class of
interest, the class extenders focus on specialized versions of the same services. For
them, the interface specification both a specifies the current behavior of the class and
any constraints on the services provided by the specialized class.

U

Class User Call Class
Developer Class Implementor Realize Class

Class Extender Refine Class

Figure 9-1 The Class Implementor, the Class Extender, and the Class User role (UML use case
diagram).

For example, consider the ARENA Game abstract class (Figure 9-2). The developer
responsible for realizing the Game class, including operations that apply to all Games, is a class
implementor. The League and Tournament classes invoke operations provided by the Game
interface to organize and start Matches. Developers responsible for League and Tournament are
class users of Game. The TicTacToe and Chess classes are concrete Games that provide
specialized extensions to the Game class. Developers responsible for those classes are class
extenders of Game.
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| League I Game
1 2
* | |
| Tournament TicTacToe Chess

Figure 9-2 ARENA Game abstract class with user classes and extender classes.

9.3.2 Types, Signatures, and Visibility

During analysis, we identified attributes and operations without necessarily specifying their
types or their parameters. During object design, we refine the analysis and system design models
by completing type and visibility information. The type of an attribute specifies the range of
values the attribute can take and the operations that can be applied to the attribute. For example,
consider the attribute maxNumPlayers of the Tournament class in ARENA (Figure 9-3).
maxNumPlayers represent the maximum number of Players who can be accepted in a given
Tournament. Its type is int, denoting that it is an integer number. The type of the
maxNumPlayers attribute also defines the operations that can be applied to this attribute: we can
compare, add, subtract, or multiply other integers to maxNumPTlayers.

Operation parameters and return values are typed in the same way as attributes are. The type
constrains the range of values the parameter or the return value can take. Given an operation, the
tuple made out of the types of its parameters and the type of the return value is called the signature
of the operation. For example, the acceptPlayer () operation of Tournament takes one parameter
of type Player and does not have a return value. The signature for acceptPlayer() is then
acceptPlayer(Player):void. Similarly, the getMaxNumPlayers() operation of Tournament
takes no parameters and returns an int. The signature of getMaxNumPlayers() is then
getMaxNumPTayers(void) :int.

The class implementor, the class user, and the class extender all access the operations and
attributes of the class under consideration. However, these developers have different needs and
are usually not allowed to access all operations of the class. For example, a class implementor
accesses the internal data structures of the class that the class user cannot see. The class extender
accesses only selected internal structures of superclasses. The visibility of an attribute or an
operation is a mechanism for specifying whether the attribute or operation can be used by other
classes or not. UML defines four levels of visibility:

* A private attribute can be accessed only by the class in which it is defined. Similarly, a
private operation can be invoked only by the class in which it is defined. Private
attributes and operations cannot be accessed by subclasses or calling classes. Private
operations and attributes are intended for the class implementor only.
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* A protected attribute or operation can be accessed by the class in which it is defined
and by any descendant of that class. Protected operations and attributes cannot be
accessed by any other class. Protected operations and attributes are intended for the
class extender.

e A public attribute or operation can be accessed by any class. The set of public
operations and attributes constitute the public interface of the class and is intended for
the class user.

¢ An attribute or an operation with visibility package can be accessed by any class in the
nearest enclosing package. This visibility enables a set of related classes (for example,
forming a subsystem) to share a set of attributes or operations without having to make
them public to the entire system.

Visibility is denoted in UML by prefixing the name of the attribute or the operation with a
character symbol: — for private, # for protected, + for public, or ~ for package. For example, in
Figure 9-3, we specify that the maxNumPlayers attribute of Tournament is private, whereas all
the class operations are public.

Tournament

-maxNumPlayers:int

+getMaxNumPTayers():int
+getPlayers():List
+acceptPlayer(p:Player)
+removePlayer(p:Player)
+isPlayerAccepted(p:Player) :boolean

public class Tournament {
private int maxNumPlayers;
/* Other fields omitted */

public Tournament(League 1, int maxNumPlayers)
public int getMaxNumPlayers() {..};

public List getPlayers() {..};

public void acceptPlayer(Player p) {.};

public void removePlayer(Player p) {.};

public boolean isPlayerAccepted(Player p) {..};

/* Other methods omitted */

Figure 9-3  Declaration for the Tournament class (UML class model and Java excerpts).

Type information alone is often not sufficient to specify the range of legitimate values of
an attribute. In the Tournament example, the int type allows maxNumPlayers to take negative
values, which does not make sense in the application domain. We address this issue with
contracts.
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9.3.3 Contracts: Invariants, Preconditions, and Postconditions

Contracts are constraints on a class that enable class users, implementors, and extenders to
share the same assumptions about the class [Meyer, 1997]. A contract specifies constraints that
the class user must meet before using the class as well as constraints that are ensured by the class
implementor and the class extender when used. Contracts include three types of constraints:

* Aninvariant is a predicate that is always true for all instances of a class. Invariants are
constraints associated with classes or interfaces. Invariants are used to specify
consistency constraints among class attributes.

¢ A precondition is a predicate that must be true before an operation is invoked.
Preconditions are associated with a specific operation. Preconditions are used to
specify constraints that a class user must meet before calling the operation.

* A postcondition is a predicate that must be true after an operation is invoked.
Postconditions are associated with a specific operation. Postconditions are used to
specify constraints that the class implementor and the class extender must ensure after
the invocation of the operation.

For example, consider the Java interface for the Tournament from Figure 9-3. This class
provides an acceptPlayer() method to add a Player in the Tournament, a removePlayer()
method to withdraw a Player from the Tournament (e.g., because the player cancelled his
application), and a getMaxNumPlayers () method to get the maximum number of P1ayers who
can participate in this Tournament.

An example of an invariant for the Tournament class is that the maximum number of
Players in the Tournament should be positive. If a Tournament is created with a maxNumPlayers
that is zero, the acceptPlayer() method will always violate its contract and the Tournament
will never start. Using a boolean expression, in which t is a Tournament, we can express this
invariant as

t.getMaxNumPlayers() > 0O

An example of a precondition for the acceptPlayer() method is that the Player to be
added has not yet already been accepted in the Tournament and that the Tournament has not yet
reached its maximum number of Players. Using a boolean expression, in which t is a
Tournament and p is a PTayer, we express this invariant as

It.isPlayerAccepted(p) and t.getNumPlayers() < t.getMaxNumPlayers()
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An example of a postcondition for the acceptPTlayer() method is that the current number
of Players must be exactly one more than the number of Players before the invocation of
acceptPlayer (). We can express this postcondition as

t.getNumPlayers_afterAccept = t.getNumPlayers_beforeAccept + 1

where numPlayers_afterAccept and numPlayers_afterAccept are the current and number of
Players before and after acceptPlayer(), respectively.

We use invariants, preconditions, and postconditions to specify special or exceptional
cases unambiguously. It is also possible to use constraints to completely specify the behavior of
an operation. Such a use of constraints, called “constraint-based specification,” however, is
difficult and can be more complicated than implementing the operation itself. In this book, we
do not describe pure constraint-based specifications. Instead, we focus on specifying operations
using both constraints and natural language and emphasizing boundary cases for the purpose of
better communication among developers.

9.3.4 Object Constraint Language

A constraint can be expressed in natural language or in a formal language such as Object
Constraint Language (OCL) [OMG, 2006]. OCL is a language that allows constraints to be
formally specified on single model elements (e.g., attributes, operations, classes) or groups of
model elements (e.g., associations and participating classes). In the next two sections, we
introduce the basic syntax of OCL. For a complete tutorial on OCL, we refer to [Warmer &
Kleppe, 2003].

A constraint is expressed as a boolean expression returning the value True or False. A
constraint can be depicted as a note attached to the constrained UML element by a dependency
relationship. Figure 9-4 depicts a class diagram of Tournament example of the previous section
using UML and OCL.

«invariant» «precondition» AN
getMaxNumPlayers() > 0 , 7 getNumPlayers() <
* getMaxNumPlayers()

* Tournament ,/
_ «postcondition»
-maxNumPlayers:int / P isPlayerAccepted(p)
«precondition» +getNumPlayers () :int -7
lisP Accepted . . -
isPlayerAccepted(p) S +getMaxNumPlayers():int / - «postcondition»
«precondition» +acceptPlayer(p:Player) * e lisPlayerAccepted(p)
isPlayerAccepted(p) — [+removePlayer(p:Player) - - ~
+isPlayerAccepted(p:Player) :boolean

Figure 9-4 Examples of invariants, preconditions, and postconditions in OCL attached as notes to the
UML model (UML class diagram).
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Attaching OCL expressions to diagrams can lead to clutter. For this reason, OCL
expressions can be alternatively expressed in a textual form. For example, the invariant for the
Tournament class requiring the attribute maxNumPlayers to be positive is written as follows:

context Tournament inv:
self.getMaxNumPlayers() > 0

The context keyword indicates the entity to which the expression applies. This is
followed by one of the keywords inv, pre, and post, which correspond to the UML stereotypes
«invariant», «precondition», and «postcondition», respectively. Then follows the actual
OCL expression. OCL’s syntax is similar to object-oriented languages such as C++ or Java.
However, OCL is not a procedural language and thus cannot be used to denote control flow.
Operations can be used in OCL expressions only if they do not have any side effects.

For invariants, the context for the expression is the class associated with the invariant. The
keyword self (e.g., se1f.numElements) denotes all instances of the class.! Attributes and
operations are accessed using the dot notation (e.g., self.maxNumPlayers accesses
maxNumPlayers in the current context). The self keyword can be omitted if there is no
ambiguity.

For preconditions and postconditions, the context of the OCL expression is an operation.
The parameters passed to the operation can be used as variables in the expression. For example,
consider the following precondition on the acceptPlayer () operation in Tournament:

context Tournament::acceptPlayer(p:Player) pre:
lisPlayerAccepted(p)

The variable p in the constraint !isPlayerAccepted(p) refers to the parameter p passed to
the acceptPlayer(p) operation. As this is a precondition, the constraint must be True before the
execution of the acceptPlayer(p) operation. Hence, the constraint reads in English:
“acceptPlayer(p) assumes that p has not yet been accepted in the Tournament”. We can write
several preconditions for the same operation. If there are more than one precondition for a given
operation, all preconditions must be True before the operation can be invoked. For example, we
can also state that the Tournament must not yet have reached the maximum number of Players
before invoking acceptPlayer():

context Tournament::acceptPlayer(p:Player) pre:
getNumPTlayers() < getMaxNumPlayers()

1. Note that OCL uses the keyword sef to represent the same concept as the Java and C++ keyword this.
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Post conditions are written in the same way as preconditions, except for the keyword post
indicating that the constraint is evaluated after the operation returns. For example, the following
postcondition on acceptPlayer(p) states that the P1ayer p should be known to the Tournament
after acceptPlayer() returns:

context Tournament::acceptPlayer(p:Player) post:
isPlayerAccepted(p)

For postconditions, we often need to refer to the value of an attribute before and after the
execution of the operation. For this purpose, the suffix @pre denotes the value of self or an
attribute before the execution of the operation. For example, if we want to state that the number
of Players in the Tournament increases by one with the invocation of acceptPlayer(), we need
to refer to the value of getNumPlayers () before and after the invocation of acceptPlayer(). We
can write the following postcondition:

context Tournament::acceptPlayer(p:Player) post:
getNumPlayers() = self@pre.getNumPlayers() + 1

@pre.getNumPlayers() denotes the value returned by getNumPlayers() before invoking
acceptPlayer(), and getNumPlayers() denotes the value returned by the same operation after
invoking acceptPlayer (). Similar to preconditions, if there is more than one postcondition for a
given operation, all postconditions must be satisfied after the operation completes.

We can therefore write the contract for the removePlayer() operation with the same
approach:

context Tournament::removePlayer(p:Player) pre:
isPTayerAccepted(p)

context Tournament::removePlayer(p:Player) post:
lisPlayerAccepted(p)

context Tournament::removePlayer(p:Player) post:
getNumPlayers() = self@pre.getNumPlayers() - 1

The creators and users of OCL constraints are developers during object design and during
implementation. In Java programs, tools such as iContract [Kramer, 1998] enable developers to
document constraints in the source code using Javadoc style tags, so that constraints are more
readily accessed and updated. Figure 9-5 depicts the Java code corresponding to the constraints
introduced so far.
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/** A Tournament is a series of Matches among a set of Players

* which ends with a single winner. The Game and TournamentStyle of a
* Tournament 1is determined by the League in which the Tournament is
* played.

public class Tournament {

/**% The maximum number of players is positive at all times.
* @invariant maxNumPlayers > 0
"/

private int maxNumPlayers;

/** The players List contains references to Players who are
* are registered with the Tournament.
*/

private List players;
/* Constructors omitted */

/** Returns the current number of players in the tournament.
>‘:/
public int getNumPlayers() {..}

/*%* Returns the maximum number of players in the tournament.
"/
public int getMaxNumPlayers() {..}

/** The acceptPlayer() operation assumes that the specified player
* has not been accepted in the Tournament yet.
* @re !isPlayerAccepted(p)
* @pre getNumPlayers() < maxNumPlayers
* @ost isPlayerAccepted(p)
* @ost getNumPlayers() = self@re.getNumPlayers() + 1
"/
public void acceptPlayer (Player p) {..}

/** The removePlayer() operation assumes that the specified player
* is currently in the Tournament.
* @re isPlayerAccepted(p)
* @post !isPlayerAccepted(p)
* @post getNumPlayers() = self@re.getNumPlayers() - 1
"/
public void removePlayer(Player p) {..}

/* Other methods omitted */

Figure 9-5 Method declarations for the Tournament class annotated with preconditions, postconditions,
and invariants (Java, constraints using Javadoc style tags).
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9.3.5 OCL Collections: Sets, Bags, and Sequences

In general, constraints involve an arbitrary number of classes and attributes. Consider the class
model of Figure 9-6 representing the associations among the League, Tournament, and Player
classes. Let’s assume we want to refine the model with the following constraints:

1. A Tournament’s planned duration must be under one week.

2. Players can be accepted in a Tournament only if they are already registered with the
corresponding League.

3. The number of active Players in a League are those that have taken part in at least one
Tournament of the League.

League

+start:Date
+end:Date

+getActivePlayers():Set

{ordered}
*| +tournaments

Tournament

+start:Date
+end:Date

+acceptPlayer(p:Player)

* | +tournaments

%

+players

+players Player

+name:String
+email:String

Figure 9-6 Associations among League, Tournament, and Player classes in ARENA.

To better understand these constraints, let’s examine them for a specific group of instances
(see Figure 9-7). The tttExpert:League includes four Players, alice, bob, marc, and joe, and
two Tournaments, a winter:Tournament and a xmas:Tournament. alice and bob are competing
in the winter:Tournament while bob, marc, and joe are competing in the xmas:Tournament.
The chessNovice:League currently only includes one Player, zoe, and no Tournaments. Now,
let’s review the above constraints in terms of the instances of Figure 9-7:

1. The winter:Tournament lasts two days, the xmas:Tournament three days, both under a
week.
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2. All Players of the winter:Tournament and the xmas:Tournament are associated with
tttExpert:League. The Player zoe, however, is not part of the tttExpert:League
and does not take part in either Tournament.

3. tttExpert:League has four active Players, whereas the chessNovice:League has
none, because zoe does not take part in any Tournament.

At first sight, these constraints vary quite a bit: for example, the first constraint involves
attributes of a single class (Tournament.start and Tournament.end); the second one involves
three classes (i.e., Player, Tournament, League) and their associations; the third involves a set of
Matches within a single Tournament. In all cases, we start with the class of interest and navigate
to one or more classes in the model.

In general, we distinguish three cases of navigation (Figure 9-8):

e Local attribute. The constraint involves an attribute that is local to the class of interest
(e.g., duration of a Tournament in constraint 1),

* Directly related class. The expression involves the navigation of a single association to
a directly related class (e.g., P1ayers of a Tournament, League of a Tournament).

e Indirectly related class. The constraint involves the navigation of a series of
associations to an indirectly related class (e.g., the Players of all Tournaments of a

League).
tttExpert:League chessNovice:League
winter:Tournament xmas:Tournament
start=Dec 21 start=Dec 23
end=Dec 22 end=Dec 25

N ?

—| alice:Player |

I bob:Player |

I marc:Player

I joe:Player |

| zoe:Player

Figure 9-7 Example with two Leagues, two Tournaments, and five PTayers (UML object diagram).



Interface Specification Concepts 363

1. Local attribute 2. Directly related class 3. Indirectly related class
Tournament | League | | League |
start:Date *
end:Date
* *
| Player | | Tournament |
| PTayer |

Figure 9-8 There are only three basic types of navigation. Any OCL constraint can be built using a
combination of these three types.

All constraints can be built using a combination of these three basic cases of navigation.
Once we know how to deal with these three cases of navigation, we can build any constraint. We
already know how to deal with the first type of constraint with the dot notation, as we saw in the
previous section. For example, we can write constraint 1 as follows:

context Tournament dinv:
self.end - self.start <= 7

In the second constraint, however, the expression league.players can actually refer to
many objects, since the players association is a many-to-many association. To deal with this
situation, OCL provides additional data types called collections. There are three types of
collections:

¢ OCL sets are used when navigating a single association. For example, navigating the
players association of the winter:Tournament yields the set {alice, bob}.
Navigating the players association from the tttExpert:League yields the set {alice,
bob, marc, joe}. Note, however, that navigating an association of multiplicity 1
yields directly an object, not a set. For example, navigating the 1eague association from
winter:Tournament yields tttExpert:League (as opposed to {tttExpert:League}).

¢ OCL sequences are used when navigating a single ordered association. For example,
the association between League and Tournament is ordered. Hence, navigating the
tournaments association from tttExpert:League Yyields [winter:Tournament,
xmas : Tournament] with the index of winter:Tournament and xmas:Tournament being
1 and 2, respectively.
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¢ OCL bags are multisets: they can contain the same object multiple times. Bags are
used to accumulate the objects when accessing indirectly related objects. For example,
when determining which Players are active in the tttExpert:League, we first
navigate the tournaments association of tttExpert, then the players association from
winter:Tournament, and finally the players association from xmas:Tournament,
yielding the bag {alice, bob, bob, marc, joe}. The bag resulting from navigating
the same associations from chessNovice:League results in the empty bag, as there are
no Tournaments in the chesslLeague. In cases where the number of occurrences of each
object in the bag is undesired, the bag can be converted to a set.

OCL provides many operations for accessing collections. The most often used are

* sijze, which returns the number of elements in the collection

¢ dncludes(object), which returns True if object is in the collection

* select(expression), which returns a collection that contains only the elements of the
original collection for which expression is True

¢ union(collection), which returns a collection containing elements from both the
original collection and the collection specified as parameter

* iJntersection(collection), which returns a collection that contains only the
elements that are part of both the original collection and the collection specified as
parameter

e asSet(collection), which returns a set containing each element of the collection.

To distinguish between attributes in classes from collections, OCL uses the dot notation for
accessing attributes and the -> operator for accessing collections. For example, constraint 2 (on
page 361) can be expressed with an includes operation as follows:

context Tournament::acceptPlayer(p:Player) pre:
Teague.players->includes(p)

The context is the operation acceptPlayer() in the Tournament class. To get to the
Players class, we need to navigate first via the association between Tournament and League,
and then via the association between League and Player. We refer to the 1eague class by using
the role name attached to the association, or if no name is available, we use the name of the
related class with the first letter in lowercase. The next association we navigate is the players
association on the League, which results in a set because of the “many” multiplicity of the
association. We use the OCL includes () operation on this set to test if the P1ayer p is known
to the League.

Navigating a series of at least two associations with one-to-many or many-to-many
multiplicity results in a bag. For example, in the context of a League, the expression
tournaments.players contains the concatenation of all players of the Tournaments related to
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the current League. As a result of this concatenation, elements can appear several times. To
remove the duplicates in this bag, for example, when counting the number of Players in a
League that have taken part in a Tournament, we can convert the bag into a set using the OCL
asSet operation. Consequently, we can write constraint 3 (on page 361) as follows:

context League::getActivePlayers:Set post:
result = tournaments.players->asSet()

9.3.6 OCL Quantifiers: forA11 and exists

So far, we presented examples of constraints using common OCL collection operations such as
includes, union, or asSet. Two additional operations on collections enable us to iterate over
collections and test expressions on each element:

e forAll(variable|expression) is True if expression is True for all elements in the
collection.

* exists(variable|expression) is True if there exists at least one element in the
collection for which expression is True.

For example, to ensure that all Matches in a Tournament occur within the Tournament’s
time frame, we can repetitively test the start dates of all matches against the Tournament using
forA11(). Consequently, we write this const