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Foreword

Over ten years ago, I read about a software engineering course taught by Bernd Bruegge at
Carnegie-Mellon University. In software engineering courses at many other universities, small
groups of 3 or 4 students were assigned several toy problems during a semester with deadlines of
less than a month. On such small projects, one strong programmer can carry the whole team by
brute force. It isn’t necessary to learn communication skills, use modeling tools, or deal with the
ambiguities of actual problems. Students come away unprepared for the complexities of real-
world development. In Bruegge’s course, the entire class worked on a single, semester-long
project to produce a query-oriented navigation system for the city of Pittsburgh. They had to
build on the interactive mapping system produced by the previous semester’s class. The clients
were managers for the county planning department and port authority. The geographic and bus
schedule data had misspellings, inaccuracies, and incompatible formats. The students produced
an accepted system of over 27,000 lines of code. What a difference from the toy projects taught
at many other places! Students came away from the course with an appreciation of the need for
strategy, organization, and tools to deal with the complexity and messiness of the real world.
They learned software engineering the only way one learns any craft—by practicing it on
realistic cases.

This book is a reflection of that pragmatic philosophy of software development as an
engineering discipline. The authors adopt a point of view—an object-oriented approach using
UML—that makes the many facets of software engineering approachable to students. They
cover both the modeling techniques and the human communications skills needed to achieve
success. They also include several chapters on managing change, a topic that appears in every
real project but which is often neglected in texts. Readers of this book will gain a solid
appreciation of the rich scope and complexity of software engineering.
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I particularly enjoyed the many illuminating anecdotes selected from a wide range of
fields. These provide lively examples of problems large and small that illustrate the subtleties
and traps that engineers must confront. Any book that makes relevant examples of Polynesian
navigation, the tangled history of the text of Tolkien’s Lord of the Rings, and grandmother’s
recipe for trimming hams is not only useful but also fun to read.

Jim Rumbaugh



vii

Preface

The K2 towers at 8,611 meters in the Karakorum range of the western Himalayas. It is the
second highest peak of the world and is considered the most difficult 8000er to climb. An
expedition to the K2 typically lasts several months in the summer, when the weather is most
favorable. Even in summer, snowstorms are frequent. An expedition requires thousands of
pounds of equipment, including climbing gear, severe weather protection gear, tents, food,
communication equipment, and pay and shoes for hundreds of porters. Planning such an
expedition takes a significant amount of time in the life of a climber and requires dozens of
participants in supporting roles. Once on site, many unexpected events, such as avalanches,
porter strikes, or equipment failures, will force the climbers to adapt, find new solutions, or
retreat. The success rate for expeditions to the K2 is currently less than 40%.

The United States National Airspace System (NAS) monitors and controls air traffic in the
United States. The NAS includes more than 18,300 airports, 21 air route traffic control centers,
and over 460 control towers. These add up to more than 34,000 pieces of equipment, including
radar systems, communication switches, radios, computer systems, and displays. The current
infrastructure is aging rapidly. The computers supporting the 21 air route traffic control centers,
for example, are IBM 3083 mainframes that date back to the early 1980s. In 1996, the United
States government initiated a program to modernize the NAS infrastructure, including
improvements such as satellite navigation, digital controller/pilot communications, and a higher
degree of automation in controlling the air routes, deciding the order in which aircraft land, and
controlling ground traffic as aircraft move from and to the runways. Such a complex
infrastructure, however, can only be modernized incrementally. Consequently, while new
components offering new functionality are introduced, older components still need to be
supported. For example, during the transition period, a controller will have to be able to use both
analog and digital voice channels to communicate with pilots. Finally, the modernization of the
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NAS coincides with a dramatic increase in global air traffic, predicted to double within the next
10–15 years. The previous modernizing effort of the NAS, called the Advanced Automation
System (AAS), was suspended in 1994 because of software-related problems, after missing its
initial deadline by several years and exceeding its budget by several billions of dollars.

Both of the above examples discuss complex systems in which external conditions can
trigger unexpected changes. Complexity puts the problem beyond the control of any single
individual. Change forces participants to move away from well-known solutions and to invent
new ones. In both examples, several participants need to cooperate and develop new techniques
to address these challenges. Failure to do so results in failure to reach the goal.

This book is about conquering complex and changing software systems.

The theme

The application domain (mountain expedition planning, air traffic control, financial
systems, word processing) usually includes many concepts that software developers are not
familiar with. The solution domain (user interface toolkits, wireless communication, middleware,
database management systems, transaction processing systems, wearable computers) is often
immature and provides developers with many competing implementation technologies.
Consequently, the system and the development project are complex, involving many different
components, tools, methods, and people.

As developers learn more about the application domain from their users, they update the
requirements of the system. As developers learn more about emerging technologies or about the
limitations of current technologies, they adapt the system design and implementation. As quality
control finds defects in the system and users request new features, developers modify the system
and its associated work products. The result is continuous change.

Complexity and change represent challenges that make it impossible for any single
person to control the system and its evolution. If controlled improperly, complexity and change
defeat the solution before its release, even if the goal is in sight. Too many mistakes in the
interpretation of the application domain make the solution useless for the users, forcing a
retreat from the route or the market. Immature or incompatible implementation technologies
result in poor reliability and delays. Failure to handle change introduces new defects in the
system and degrades performance beyond usability.

This book reflects more than 10 years of building systems and of teaching software
engineering project courses. We have observed that students are taught programming and
software engineering techniques in isolation, often using small problems as examples. As a
result, they are able to solve well-defined problems efficiently, but are overwhelmed by the
complexity of their first real development experience, when many different techniques and tools
need to be used and different people need to collaborate. Reacting to this state of affairs, the
typical undergraduate curriculum now often includes a software engineering project course,
organized as a single development project. 
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The tools: UML, Java, and Design Patterns

We wrote this book with a project course in mind. The book can be used, however, in other
situations as well, such as short and intensive workshops or short-term R&D projects. We use
examples from real systems and examine the interaction among state-of-the art techniques, such
as UML (Unified Modeling Language), Java-based technologies, design patterns, design
rationale, configuration management, and quality control. Moreover, we discuss project
management related issues that are related to these techniques and their impact on complexity
and change. 

The principles

We teach software engineering following five principles:

Practical experience. We believe that software engineering education must be linked with
practical experience. Students can understand complexity only by working with a complex
system—that is, a system that no single student can completely understand. 

Problem solving. We believe that software engineering education must be based on problem
solving. Consequently, there are no right or wrong solutions, only solutions that are better or
worse relative to stated criteria. Although we survey existing solutions to real problems and
encourage their reuse, we also encourage criticism and the improvement of standard solutions.

Limited resources. If we have sufficient time and resources, we could perhaps build the ideal
system. There are several problems with such a situation. First, it is not realistic. Second, even if
we had sufficient resources, if the original problem rapidly changes during the development, we
would eventually deliver a system solving the wrong problem. As a result, we assume that our
problem-solving process is limited in terms of resources. Moreover, the acute awareness of
scarce resources encourages a component-based approach and reuse of knowledge, design, and
code. In other words, we support an engineering approach to software development.

Interdisciplinarity. Software engineering is an interdisciplinary field. It requires contributions
from areas spanning electrical and computer engineering, computer science, business
administration, graphic design, industrial design, architecture, theater, and writing. Software
engineering is an applied field. When trying to understand and model the application domain,
developers interact regularly with others, including users and clients, some of whom know little
about software development. This requires viewing and approaching the system from multiple
perspectives and terminologies. 

Communication. Even if developers built software for developers only, they would still need
to communicate among themselves. As developers, we cannot afford the luxury of being able to
communicate only with our peers. We need to communicate alternatives, articulate solutions,
negotiate trade-offs, and review and criticize others’ work. A large number of failures in
software engineering projects can be traced to the communication of inaccurate information or
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to missing information. We must learn to communicate with all project participants, including,
most importantly, the client and the end users.

These five principles are the basis for this book. They encourage and enable the reader to
address complex and changing problems with practical and state-of-the-art solutions.

The book

This book is based on object-oriented techniques applied to software engineering. It is
neither a general software engineering book that surveys all available methods nor a
programming book about algorithms and data structures. Instead, we focus on a limited set of
techniques and explain their application in a reasonably complex environment, such as a multi-
team development project that includes 20 to 60 participants. Consequently, the book also
reflects our biases, our strengths, and our weaknesses. We hope, nevertheless, that all readers
will find something they can use. The book is structured into 16 chapters organized into three
parts, which can be taught as a semester-long course.

Part I, Getting Started, includes three chapters. In this part, we focus on the basic skills
necessary for a developer to function in a software engineering context.

• In Chapter 1, Introduction to Software Engineering, we describe the difference between
programming and software engineering, the current challenges in our discipline, and
basic definitions of concepts we use throughout the book. 

• In Chapter 2, Modeling with UML, we describe the basic elements of a modeling
language, UML, used in object-oriented techniques. We present modeling as a
technique for dealing with complexity. This chapter teaches the reader how to read and
understand UML diagrams. Subsequent chapters teach the reader how to build UML
diagrams to model various aspects of the system. We use UML throughout the book to
model a variety of artifacts, from software systems to processes and work products. 

• In Chapter 3, Project Organization and Communication, we introduce basic concepts
of project organization and communication. Developers and managers spend more than
half of their time communicating with others, either face-to-face or via E-mail,
groupware, video conference, or written documents. Whereas modeling deals with
complexity, communication deals with change. We describe project organizations and
discuss what constitutes effective communication.

In Part II, Dealing with Complexity, we focus on methods and technologies that enable
developers to specify, design, and implement complex systems.

• In Chapter 4, Requirements Elicitation, and Chapter 5, Analysis, we describe the
definition of the system from the users’ point of view. During requirements elicitation,
developers determine the functionality users need and a usable way of delivering it.
During analysis, developers formalize this knowledge and ensure its completeness and



Preface xi

consistency. We focus on how UML is used to deal with application domain
complexity.

• In Chapter 6, System Design: Decomposing the System, and Chapter 7, System Design:
Addressing Design Goals, we describe the definition of the system from the
developers’ point of view. During this phase, developers define the architecture of the
system in terms of design goals and a subsystem decomposition. They address global
issues, such as the mapping of the system onto hardware, the storage of persistent data,
and global control flow. We focus on how developers can use architectural styles,
components, and UML to deal with solution domain complexity.

• In Chapter 9, Object Design: Specifying Interfaces, Chapter 9, Object Design:
Specifying Interfaces, and Chapter 10, Mapping Models to Code, we describe the
detailed modeling and construction activities related to the solution domain. During
this phase, developers identify and adapt design patterns and frameworks to realize
specific subsystems. They refine and specify precisely the interfaces of classes using
constraint languages such as UML’s Object Constraint Language. Finally, they map the
detailed object design model to source code and database schema.

• In Chapter 11, Testing, we describe the validation of system behavior against the
system models. Testing detects faults in the system, including those introduced during
changes to the system or its requirements. Testing activities include unit testing,
integration testing, and system testing. We describe several testing techniques, such as
whitebox, blackbox, path testing, state-based testing, and inspections, and discuss their
application to object-oriented systems.

In Part III, Managing Change, we focus on methods and technologies that support the
control, assessment, and implementation of changes throughout the development of a system.

• In Chapter 12, Rationale Management, we describe the capture of design decisions and
their justifications. The models developed during requirements elicitation, analysis, and
system design help us deal with complexity by providing different perspectives on what
the system should be doing and how it should do it. To be able to deal with change, we
need also to know why the system is the way it is. Capturing design decisions,
considered alternatives, and their argumentation enables us to access the rationale of
the system.

• In Chapter 13, Configuration Management, we describe techniques for modeling the
project history. Configuration management complements rationale in helping us deal
with change. Version management records the evolution of the system. Release
management ensures consistency and quality across the components of a release.
Change management ensures that modifications to the system are consistent with
project goals.

• In Chapter 14, Project Management, we describe techniques for initiating a software
development project, tracking its progress, and dealing with risks and unplanned



xii Preface

events. We focus on organizations, roles, and management activities that allow a large
number of participants to collaborate and deliver a high-quality system within planned
constraints.

• In Chapter 15, Software Life Cycle, we describe software life cycles, such as Boehm’s
Spiral Model and the Unified Software Development Process, that provide an abstract
model of development activities. In this chapter, we also describe the Capability
Maturity Model, which is used for assessing the maturity of organizations.

• In Chapter 16, Methodologies: Putting It All Together, we describe methodologies and
heuristics for applying the material covered in the other chapters to concrete situations.
No matter how thorough the requirements elicitation or detailed the planning, projects
of any realistic size encounter unexpected events and changes. Dealing with uncertainty
makes real projects and systems look very different from projects and systems
examined in textbooks. In this chapter, we describe several different methodologies,
discuss issues that need to be addressed in every project, and present three case studies
of actual projects.

The topics above are strongly interrelated. To emphasize their relationships, we selected
an iterative approach. Each chapter consists of five sections. In the first section, we introduce the
issues relevant to the topic with an illustrative example. In the second section, we describe
briefly the activities of the topic. In the third section, we explain the basic concepts of the topic
with simple examples. In the fourth section, we detail the technical activities with examples
from real systems. Finally, we describe management activities and discuss typical trade-offs. In
Chapters 4–10, we present a running case study of a complex multi-user game management
system called ARENA. By repeating and elaborating on the same concepts in increasingly
complex examples, we hope to provide the reader with an operational knowledge of object-
oriented software engineering.

The courses

Building a large, complex system can be compared with climbing a big mountain. It is
good to have a route description, but the route can never be completely mapped out, as new
crevasses may open anytime. Even though we map out our software engineering knowledge in
this book, changes will occur and methods that we believe in now may be out of date soon. 

How can we teach students to cope with such rapidly changing conditions? For us, the
most important thing to pass on to a student is not only knowledge of the map, but also the
ability to negotiate the terrain. Although it is wise to study the description of a route, there is no
substitute for the experience of actually traveling the route. 

We wrote this book for a semester-long software engineering project course for senior or
graduate students. We assume that students have experience with a programming language such
as C, C++, C#, or Java. We expect that students have the necessary problem-solving skills to
attack technical problems, but we do not expect that they have been exposed to the complex or
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changing situations typical of system development. This book can also be used for other types of
courses, such as short, intensive professional courses. 

Project and senior-level courses. A project course should include all the chapters of the
book, roughly in the order presented. An instructor may consider teaching more advanced
project management concepts from Chapter 14, Project Management, early in the course so that
students become familiar with planning and controlling.

Introductory-level course. An introductory course with homework should focus on the first
three sections of each chapter. The fourth section and the case study can be used as material for
homework and can simulate the building of a minisystem using paper for UML diagrams,
documents, and code.

Short technical course. The book can also be used for a short, intensive course geared
toward professionals. A technical course focusing on UML and object-oriented methods could
use the chapter sequence 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, covering all development phases from
requirements elicitation to testing. An advanced course would also include Chapter 12,
Rationale Management, and Chapter 13, Configuration Management.

Short management course. The book can also be used for a short, intensive course geared
toward managers. A management course focusing on managerial aspects such as
communication, risk management, rationale, maturity models, and UML could use the chapter
sequence 1, 2, 3, 14, 15, 16, 12, 13.

Changes since the second edition

This edition started as an upgrade of our book to UML 2 and to the latest advances in agile
methods. In the process, we also added new material about system design and testing. We thank
Tracy Dunkelberger, our publisher, for her patience. We made the following changes:

• Comprehensive upgrade to the latest UML and OCL standards. We revised most
diagrams in the book to take advantage of the latest advances of UML and OCL. In
particular, we use component diagrams with ball-and-socket notation during system
and object design. 

• Expanded material on agile methods. In the second edition, we introduced coverage of
the XP methodology in Chapter 16. In this edition, we extended the material on agile
methods to Scrum and Rugby and consequently adapted the material on testing,
configuration management, and project management in Chapters 11, 13, and 14.

• New material on continuous integration. A practice of agile methods, used in other
contexts as well, is the continuous integration of software changes into main production
trunk. While this practice allows integration problems to be identified, and thus
resolved, much earlier, its realization presents initially many challenges. We present
this new material in Chapter 13, Software Configuration Management.
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• New material on U2TP and automated testing. In our teaching, we found the extensions
of the UML 2 Testing Profile facilitate the discussion of testing concepts, in particular,
the distinction between the testing system and the system under test. This also allowed
us to extend the material on testing to automated testing and automatic test generation.

• Improvements of the case study and examples throughout. Since the last edition, we
received a lot of feedback about the case study and the examples in this book. We are
grateful of this feedback and consequently implemented many suggestions, too
numerous to enumerate here in detail.

Typographical conventions

We use the following conventions throughout the book:

• A new term appears in bold when defined the first time. 
• Book titles, chapter titles, and emphasized terms appear in italics.
• The names of systems and of modeling elements (e.g., class, attribute, operation, state,

variable) appear in monospaced font.
• The names of abstract classes appear in italics monospaced font.
• Object names appear underlined in figures.
• URLs appear in underlined roman.
• Source code appears in monospaced font, with reserved keywords in bold and

comments in italics.

Production notes

This book was written and composed using Adobe Framemaker. The final print images
were generated as PDF files using Adobe Acrobat Distiller.

About the authors

Dr. Bernd Bruegge has been studying and teaching Software Engineering at Carnegie
Mellon University for 20 years, where he received his masters and doctorate degrees. He
received his Diplom from the University of Hamburg. He is now a university professor of
Computer Science with a chair for Applied Software Engineering at the Technische Universität
München and an adjunct faculty member of Carnegie Mellon University. He has taught
object-oriented software engineering project courses on the text materials and website described
in this book for 15 years. He won the Herbert A. Simon Excellence in Teaching Award at
Carnegie Mellon University in 1995. Bruegge is also an international consultant and has used
the techniques in this book to design and implement many real systems, including an
engineering feedback system for DaimlerChrysler, an environmental modeling system for the
U.S. Environmental Protection Agency, and an accident management system for a municipal
police department, to name just a few.
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Dr. Allen Dutoit works in the aerospace industry in the area of avionics software
development. He received his M.S. and Ph.D. from Carnegie Mellon University and his Diplôme
d’Ingénieur from the Swiss Federal Institute of Technology in Lausanne. He has taught software
engineering project courses with Professor Bruegge since 1993, both at Carnegie Mellon
University and the Technische Universität München, where they used and refined the methods
described in this book. Dutoit’s research covered several areas of software engineering and
object-oriented systems, including requirements engineering, rationale management, distributed
development, and prototype-based systems. He was previously affiliated with the Software
Engineering Institute and the Institute for Complex Engineered Systems at Carnegie Mellon
University.

Opener Pictures

The pictures at the beginning of each chapter are from an Alpine-style ascent of the West
Rib of Denali (6,193 m) made by one of the authors before starting to work on this book. During
this trip, the analogy between software development and mountaineering became more than
obvious. The pictures chronicle the climb, showing our expedition car on the Alaskan Canadian
Highway, a view of Mt. Robson with the Kain Face (Chapter 1), a view of Denali from the plane
(Chapters 2 and 4), the beginning of the West Rib (Chapter 3), a look 1000 meters down from
the top of the West Rib showing our foot tracks on the East Kahiltna Glacier (Chapter 5), Mt.
Foraker from Camp 5 (Chapter 6), a beautiful but difficult edge around 5,000m (Chapter 7), the
Base Camp of the normal route where we reused the remains of an igloo (Chapter 8), the landing
area for Doug Geeting’s plane (Chapter 9), a bivouac place at the top of the West Rib named
“Hotel Crux,” because one cannot dig an area big enough for a tent (Chapter 10), crossing the
Bergschrund (Chapter 11), a fresh avalanche area (Chapter 12), Denali with the Cassin Ridge
(Chapter 13), plans for different routes to the summit (Chapter 14), a “horizontal” sunrise at the
start of the Cassin Ridge (Chapter 15), and the summit of Denali (Chapter 16). 

The cover picture shows the summit of K2.
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1
Introduction to 
Software Engineering
The amateur software engineer is always in search of magic, 
some sensational method or tool whose application promises to 
render software development trivial. It is the mark of the 
professional software engineer to know that no such panacea 
exists.

—Grady Booch, in Object-Oriented Analysis and Design

The term software engineering was coined in 1968 as a response to the desolate state of the
art of developing quality software on time and within budget. Software developers were not able
to set concrete objectives, predict the resources necessary to attain those objectives, and manage
the customers’ expectations. More often than not, the moon was promised, a lunar rover built,
and a pair of square wheels delivered. 

The emphasis in software engineering is on both words, software and engineering.   An
engineer is able to build a high-quality product using off-the-shelf components and integrating
them under time and budget constraints. The engineer is often faced with ill-defined problems
and partial solutions, and has to rely on empirical methods to evaluate solutions. Engineers
working in such application domains as passenger aircraft design and bridge construction have
successfully met similar challenges. Software engineers have not been as successful. 

The problem of building and delivering complex software systems on time has been
actively investigated and researched. Everything has been blamed, from the customer (“What do
you mean I can’t get the moon for $50?”) to the “soft” in software (“If I could add that one last
feature ...”) to the youth of this discipline. What is the problem?

Complexity and change

Useful software systems are complex. To remain useful they need to evolve with the end users’
need and the target environment. In this book, we describe object-oriented techniques for
conquering complex and changing software systems. In this chapter, we provide a motivation for
object-oriented techniques and define the basic concepts used throughout this book.
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1.1 Introduction: Software Engineering Failures
Consider the following examples [Neumann, 1995]:

Year 1900 bug

In 1992, Mary from Winona, Minnesota, received an invitation to attend a kindergarten. Mary
was 104 at the time.

Leap-year bug

A supermarket was fined $1000 for having meat around 1 day too long, on February 29, 1988.
The computer program printing the expiration date on the meat labels did not take into account
that 1988 was a leap year.

Interface misuse

On April 10, 1990, in London, an underground train left the station without its driver. The driver
had taped the button that started the train, relying on the system that prevented the train from
moving when doors were open. The train operator had left his train to close a door which was
stuck. When the door was finally shut, the train simply left.

Security

CERT (Computer Emergency Response Team) at the Software Engineering Institute is a
government-funded organization for assisting the community in dealing with security incidents,
vulnerabilities, and security know-how. The number of security incidents reported to CERT from
the United States increased from 252 incidents in 1990 to 21,756 in 2000, and more than 40,000
incidents were reported in 2001.

Late and over budget

In 1995, bugs in the automated luggage system of the new Denver International Airport caused
suitcases to be chewed up. The airport opened 16 months late, $3.2 billion over budget, with a
mostly manual luggage system.

Late and over budget (2)

In 2002, the Swanick Air Traffic Control system covers all the enroute air traffic over England
and Wales. The system was delivered substantially over budget (cost £623 million, originally
planned at £350 million) and 6 years late. Two major upgrades of the system were delivered after
training of the traffic controllers had started.

On-time delivery

After 18 months of development, a $200-million system was delivered to a health insurance
company in Wisconsin in 1984. However, the system did not work correctly: $60 million in
overpayments were issued. The system took 3 years to fix.

Unnecessary complexity

The C-17 cargo plane by McDonnell Douglas ran $500 million over budget because of problems
with its avionics software. The C-17 included 19 onboard computers, 80 microprocessors, and 6
different programming languages.
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Each of the failures described above resulted from a software-related problem. In some cases,
developers did not anticipate seldom-occurring situations (a person living more than 100 years,
leap years impacting expiration dates). In other cases, developers did not anticipate the user
actively misusing the system (taping down a button, exploiting security holes in network
software). In yet other cases, system failures resulted from management failures (late and over-
budget delivery, on-time delivery of an incorrect system, unnecessary complexity).

Software systems are complex creations. They perform many functions; they are built to
achieve many different, and often conflicting, objectives. They comprise many components;
many of their components are custom made and complex themselves. Many participants from
different disciplines take part in the development of these components. The development process
and the software life cycle often spans many years. Finally, complex systems are difficult to
understand completely by any single person. Many systems are so hard to understand, even
during their development phase, that they are never finished: these are called vaporware.

Software development projects are subject to constant change. Because requirements are
complex, they need to be updated when errors are discovered and when the developers have a
better understanding of the application. If the project lasts many years, the staff turn-around is
high, requiring constant training. The time between technological changes is often shorter than
the duration of the project. The widespread assumptions of a software project manager that all
changes have been dealt with and that the requirements can be frozen will lead to the
deployment of an irrelevant system.

In the next section, we present a high-level view of software engineering. We describe
software engineering from the perspective of science, engineering, and knowledge acquisition
and formalization. In Section 1.3, we describe in more detail the main terms and concepts we
use in this book. In Section 1.4, we provide an overview of the development activities of
software engineering. In Section 1.5, we provide an overview of the managerial activities of
software engineering.

1.2 What Is Software Engineering?

Software engineering is a modeling activity. Software engineers deal with complexity through
modeling, by focusing at any one time on only the relevant details and ignoring everything else.
In the course of development, software engineers build many different models of the system and
of the application domain. 

Software engineering is a problem-solving activity. Models are used to search for an
acceptable solution. This search is driven by experimentation. Software engineers do not have
infinite resources and are constrained by budget and deadlines. Given the lack of a fundamental
theory, they often have to rely on empirical methods to evaluate the benefits of different
alternatives.

Software engineering is a knowledge acquisition activity. In modeling the application and
solution domain, software engineers collect data, organize it into information, and formalize it
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into knowledge. Knowledge acquisition is not sequential, as a single piece of additional data can
invalidate complete models.

Software engineering is a rationale-driven activity. When acquiring knowledge and
making decisions about the system or its application domain, software engineers also need to
capture the context in which decisions were made and the rationale behind these decisions.
Rationale information, represented as a set of issue models, enables software engineers to
understand the implication of a proposed change when revisiting a decision.

In this section, we describe in more detail software engineering from the perspectives of
modeling, problem solving, knowledge acquisition, and rationale. For each of these activities,
software engineers have to work under people, time, and budget constraints. In addition, we
assume that change can occur at any time.

1.2.1 Modeling

The purpose of science is to describe and understand complex systems, such as a system of
atoms, a society of human beings, or a solar system. Traditionally, a distinction is made between
natural sciences and social sciences to distinguish between two major types of systems. The
purpose of natural sciences is to understand nature and its subsystems. Natural sciences include,
for example, biology, chemistry, physics, and paleontology. The purpose of the social sciences is
to understand human beings. Social sciences include psychology and sociology.

There is another type of system that we call an artificial system. Examples of artificial
systems include the space shuttle, airline reservation systems, and stock trading systems. Herbert
Simon coined the term sciences of the artificial to describe the sciences that deal with artificial
systems [Simon, 1970]. Whereas natural and social sciences have been around for centuries, the
sciences of the artificial are recent. Computer science, for example, the science of understanding
computer systems, is a child of the twentieth century. 

Many methods that have been successfully applied in the natural sciences and humanities
can be applied to the sciences of the artificial as well. By looking at the other sciences, we can
learn quite a bit. One of the basic methods of science is modeling. A model is an abstract
representation of a system that enables us to answer questions about the system. Models are
useful when dealing with systems that are too large, too small, too complicated, or too expensive
to experience firsthand. Models also allow us to visualize and understand systems that either no
longer exist or that are only claimed to exist.

Fossil biologists unearth a few bones and teeth preserved from some dinosaur that no one
has ever seen. From the bone fragments, they reconstruct a model of the animal, following rules
of anatomy. The more bones they find, the clearer their idea of how the pieces fit together and
the higher the confidence that their model matches the original dinosaur. If they find a sufficient
number of bones, teeth, and claws, they can almost be sure that their model reflects reality
accurately, and they can guess the missing parts. Legs, for example, usually come in pairs. If the
left leg is found, but the right leg is missing, the fossil biologists have a fairly good idea what the
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missing leg should look like and where it fits in the model. This is an example of a model of a

system that no longer exists.

Today’s high-energy physicists are in a position similar to that of a fossil biologist who has

found most of the bones. Physicists are building a model of matter and energy and how they fit

together at the most basic, subatomic level. Many years of experiments with particle accelerators

have given high-energy physicists enough confidence that their models reflect reality and that

the remaining pieces that are not yet found will fit into the so-called standard model. This is an

example of a model for a system that is claimed to exist.

Both system modelers, fossil biologists and high-energy physicists, deal with two types of

entities: the real-world system, observed in terms of a set of phenomena, and the application

domain model, represented as a set of interdependent concepts. The system in the real world is a

dinosaur or subatomic particles. The application domain model is a description of those aspects

of the real-world system that are relevant to the problem under consideration. 

Software engineers face similar challenges as fossil biologists and high-energy physicists.

First, software engineers need to understand the environment in which the system has to operate.

For a train traffic control system, software engineers need to know train signaling procedures.

For a stock trading system, software engineers need to know trading rules. The software

engineer does not need to become a fully certified train dispatcher or a stock broker; they only

need to learn the application domain concepts that are relevant to the system. In other terms,

they need to build a model of the application domain.

Second, software engineers need to understand the systems they could build, to evaluate

different solutions and trade-offs. Most systems are too complex to be understood by any one

person, and most systems are expensive to build. To address these challenges, software

engineers describe important aspects of the alternative systems they investigate. In other terms,

they need to build a model of the solution domain.

Object-oriented methods combine the application domain and solution domain modeling

activities into one. The application domain is first modeled as a set of objects and relationships.

This model is then used by the system to represent the real-world concepts it manipulates. A

train traffic control system includes train objects representing the trains it monitors. A stock

trading system includes transaction objects representing the buying and selling of commodities.

Then, solution domain concepts are also modeled as objects. The set of lines used to depict a

train or a financial transaction are objects that are part of the solution domain. The idea of

object-oriented methods is that the solution domain model is a transformation of the application

domain model. Developing software translates into the activities necessary to identify and

describe a system as a set of models that addresses the end user’s problem. We describe in more

detail modeling and the concepts of objects in Chapter 2, Modeling with UML.
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1.2.2 Problem Solving

Engineering is a problem-solving activity. Engineers search for an appropriate solution, often
by trial and error, evaluating alternatives empirically, with limited resources and incomplete
knowledge. In its simplest form, the engineering method includes five steps:

1. Formulate the problem.
2. Analyze the problem.
3. Search for solutions.
4. Decide on the appropriate solution.
5. Specify the solution.

Software engineering is an engineering activity. It is not algorithmic. It requires experi-
mentation, the reuse of pattern solutions, and the incremental evolution of the system toward a
solution that is acceptable to the client.

Object-oriented software development typically includes six development activities:
requirements elicitation, analysis, system design, object design, implementation, and testing.
During requirements elicitation and analysis, software engineers formulate the problem with the
client and build the application domain model. Requirements elicitation and analysis correspond
to steps 1 and 2 of the engineering method. During system design, software engineers analyze
the problem, break it down into smaller pieces, and select general strategies for designing the
system. During object design, they select detail solutions for each piece and decide on the most
appropriate solution. System design and object design result in the solution domain model.
System and object design correspond to steps 3 and 4 of the engineering method. During
implementation, software engineers realize the system by translating the solution domain model
into an executable representation. Implementation corresponds to step 5 of the engineering
method. What makes software engineering different from problem solving in other sciences is
that change occurs in the application and the solution domain while the problem is being solved. 

Software development also includes activities whose purpose is to evaluate the
appropriateness of the respective models. During the analysis review, the application domain
model is compared with the client’s reality, which in turn might change as a result of modeling.
During the design review, the solution domain model is evaluated against project goals. During
testing, the system is validated against the solution domain model, which might be changed by
the introduction of new technologies. During project management, managers compare their
model of the development process (i.e., the project schedule and budget) against reality (i.e., the
delivered work products and expended resources).

1.2.3 Knowledge Acquisition

A common mistake that software engineers and managers make is to assume that the acquisition
of knowledge needed to develop a system is linear. This mistake is not made by software
managers alone; it can be found in other areas as well. In the 17th century, a book was published
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that offered to teach all the German poems by pouring them into the student’s head in 6 hours
with a funnel.1 The idea of using a funnel for learning is based on the widespread assumption
that our mind is a bucket that is initially empty and can be filled in a linear fashion. Material
enters through our senses, accumulates, and is digested. Popper calls this linear acquisition
model for knowledge “the bucket theory of the mind.” Among the many other things that are
wrong with this theory (described in [Popper, 1992]) is the assumption that knowledge is
conceived as consisting of things that can fill a bucket; that is, the fuller the bucket, the more we
know. 

Knowledge acquisition is a nonlinear process. The addition of a new piece of information
may invalidate all the knowledge we have acquired for the understanding of a system. Even if
we had already documented this understanding in documents and code (“The system is 90%
coded, we will be done next week”), we must be mentally prepared to start from scratch. This
has important implications on the set of activities and their interactions we define to develop the
software system. The equivalent of the bucket theory of the mind is the sequential waterfall
model for software development, in which all steps of the engineering method are accomplished
sequentially.

There are several software processes that deal with this problem by avoiding the sequential
dependencies inherent in the waterfall model. Risk-based development attempts to anticipate
surprises late in a project by identifying the high-risk components. Issue-based development
attempts to remove the linearity altogether. Any development activity—analysis, system design,
object design, implementation, testing, or delivery—can influence any other activity. In issue-
based development, all these activities are executed in parallel. The difficulty with nonsequential
development models, however, is that they are difficult to manage.

1.2.4 Rationale

When describing the acquisition or evolution of knowledge, we are even less well equipped than
when describing the knowledge of an existing system. How does a mathematician derive a
proof? Mathematical textbooks are full of proofs, but rarely provide hints about the proof
derivation. This is because mathematicians do not think this background is important. Once the
axioms and the rules of deduction have been stated, the proof is timeless.

For software engineers, the situation is different. Assumptions that developers make about
a system change constantly. Even though the application domain models eventually stabilize
once developers acquire an adequate understanding of the problem, the solution domain models
are in constant flux. Design and implementation faults discovered during testing and usability
problems discovered during user evaluation trigger changes to the solution models. Changes can
also be caused by new technology. The availability of a long-life battery and of high-bandwidth
wireless communication, for example, can trigger revisions to the concept of a portable terminal.

1. G. P. Harsdoerfer (1607–1658), “Poetischer Trichter, die teutsche Dicht- und Reimkunst, ohn Behuf der lateinischen 
Sprache, in 6 Stunden einzugießen,” Nuernberg, 1630. 
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Change introduced by new technology often allows the formulation of new functional or

nonfunctional requirements. A typical task of software engineers is to change a currently

operational software system to incorporate this new enabling technology. To change the system,

it is not enough to understand its current components and behavior. It is also necessary to

capture and understand the context in which each design decision was made. This additional

knowledge is called the rationale of the system.

Capturing and accessing the rationale of a system is not trivial. First, for every decision

made, several alternatives may have been considered, evaluated, and argued. Consequently,

rationale represents a much larger amount of information than do the solution models. Second,

rationale information is often not explicit. Developers make many decisions based on their

experience and their intuition, without explicitly evaluating different alternatives. When asked to

explain a decision, developers may have to spend a substantial amount of time recovering its

rationale. In order to deal with changing systems, however, software engineers must address the

challenges of capturing and accessing rationale.

1.3 Software Engineering Concepts

So far, we have presented a high-level view of software engineering from the perspectives of

modeling, problem solving, knowledge acquisition, and rationale. In this section, we describe

the main terms and concepts we use throughout the book.2 A Project, whose purpose is to

develop a software system, is composed of a number of Activities. Each Activity is in turn

composed of a number of Tasks. A Task consumes Resources and produces a WorkProduct. A

WorkProduct can be either a System, a Model, or a Document. Resources are either

Participants, Time, or Equipment. A graphical representation of these concepts is shown in

Figure 1-1. Each rectangle represents a concept. The lines among the rectangles represent

different relationships between the concepts. For example, the diamond shape indicates

aggregation: a Project includes a number of Activities, which includes a number of Tasks.

The triangle shape indicates a generalization relationship; Participants, Time, and Equipment

are specific kinds of Resources. Figure 1-1 is represented in the Unified Modeling Language

(UML) notation. We use UML throughout the book to represent models of software and other

systems. Intuitively, you should be able to understand this diagram without full knowledge of the

UML semantics. Similarly, you can also use UML diagrams when interacting with a client or a

user, even though they may not have any knowledge of UML. We describe the semantics of

these diagrams in detail in Chapter 2, Modeling with UML.

2. As much as possible, we follow the definitions of the IEEE standards on Software Engineering [IEEE Std. 610.12-
1990].
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1.3.1 Participants and Roles

Developing a software system requires the collaboration of many people with different
backgrounds and interests. The client orders and pays for the system. The developers construct
the system. The project manager plans and budgets the project and coordinates the developers
and the client. The end users are supported by the system. We refer to all the persons involved in
the project as participants. We refer to a set of responsibilities in the project or the system as a
role. A role is associated with a set of tasks and is assigned to a participant. The same
participant can fill multiple roles.

Consider a TicketDistributor system:

Treating the development of this TicketDistributor as a software engineering project,
Table 1-1 provides examples of roles for this example.

Figure 1-1 Software engineering concepts depicted as a UML class diagram [OMG, 2009].

TicketDistributor is a machine that distributes tickets for trains. Travelers have the option of
selecting a ticket for a single trip or for multiple trips, or selecting a time card for a day or a week. The
TicketDistributor computes the price of the requested ticket based on the area in which the trip will
take place and whether the traveler is a child or an adult. The TicketDistributor must be able to
handle several exceptions, such as travelers who do not complete the transaction, travelers who attempt
to pay with large bills, and resource outages, such as running out of tickets, change, or power.
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1.3.2 Systems and Models

We use the term system as a collection of interconnected parts. Modeling is a way to deal with
complexity by ignoring irrelevant details. We use the term model to refer to any abstraction of
the system. A TicketDistributor for an underground train is a system. Blueprints for the
TicketDistributor, schematics of its electrical wiring, and object models of its software are
models of the TicketDistributor. Note that a development project is itself a system that can be
modeled. The project schedule, its budget, and its planned deadlines are models of the
development project.

Table 1-1  Examples of roles in software engineering for the TicketDistributor project.

Role Responsibilities Examples

Client The client is responsible for providing the high-
level requirements on the system and for defining 
the scope of the project (delivery date, budget, 
quality criteria).

Train company that 
contracts the 
TicketDistributor.

User The user is responsible for providing domain 
knowledge about current user tasks. Note that the 
client and the user are usually filled by different 
persons.

Travelers

Manager A manager is responsible for the work 
organization. This includes hiring staff, assigning 
them tasks, monitoring their progress, providing 
for their training, and generally managing the 
resources provided by the client for a successful 
delivery.

Alice (boss)

Human Factors 
Specialist

A human factors specialist is responsible for the 
usability of the system.

Zoe (Human Computer 
Interaction specialist)

Developer A developer is responsible for the construction of 
the system, including specification, design, 
implementation, and testing. In large projects, the 
developer role is further specialized.

John (analyst), Marc 
(programmer), & Zoe 
(tester)a

Technical Writer The technical writer is responsible for the 
documentation delivered to the client. A technical 
writer interviews developers, managers, and users 
to understand the system.

John

a. As TicketDistributor is a small project, Zoe fills both the human factor specialist and the tester roles, 
and John fills the analyst and the technical writer roles.
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1.3.3 Work Products

A work product is an artifact that is produced during the development, such as a document or a
piece of software for other developers or for the client. We refer to a work product for the
project’s internal consumption as an internal work product. We refer to a work product that
must be delivered to a client as a deliverable. Deliverables are generally defined prior to the
start of the project and specified by a contract binding the developers with the client. Table 1-2
describes examples of work products for the TicketDistributor example.

1.3.4 Activities, Tasks, and Resources

An activity is a set of tasks that is performed toward a specific purpose. For example,
requirements elicitation is an activity whose purpose is to define with the client what the system
will do. Delivery is an activity whose purpose is to install the system at an operational location.
Management is an activity whose purpose is to monitor and control the project such that it meets
its goals (e.g., deadline, quality, budget). Activities can be composed of other activities. The
delivery activity includes a software installation activity and an operator training activity.
Activities are also sometimes called phases.

Table 1-2  Examples of work products for the TicketDistributor project.

Work product Type Description

Specification Deliverable The specification describes the system from the user’s point of
view. It is used as a contractual document between the project
and the client. The TicketDistributor specification
describes in detail how the system should appear to the traveler.

Operation 
manual

Deliverable The operation manual for the TicketDistributor is used by
the staff of the train company responsible for installing and
configuring the TicketDistributor. Such a manual describes,
for example, how to change the price of tickets and the
structure of the network into zones.

Status report Internal work 
product

A status report describes at a given time the tasks that have
been completed and the tasks that are still in progress. The
status report is produced for the manager, Alice, and is usually
not seen by the train company.

Test manual Internal work 
product

The test plans and results are produced by the tester, Zoe. These
documents track the known defects in the prototype
TicketDistributor and their state of repair. These documents
are usually not shared with the client.
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A task represents an atomic unit of work that can be managed: A manager assigns it to a
developer, the developer carries it out, and the manager monitors the progress and completion of
the task. Tasks consume resources, result in work products, and depend on work products
produced by other tasks.

Resources are assets that are used to accomplish work. Resources include time,
equipment, and labor. When planning a project, a manager breaks down the work into tasks and
assigns them to resources.

Table 1-3 describes examples of activities, tasks, and resources in software engineering.

1.3.5 Functional and Nonfunctional Requirements

Requirements specify a set of features that the system must have. A functional requirement is a
specification of a function that the system must support, whereas a nonfunctional requirement
is a constraint on the operation of the system that is not related directly to a function of the
system.

For example, The user must be able to purchase tickets and The user must be able to
access tariff information are functional requirements. The user must be provided feedback in less
than one second and The colors used in the interface should be consistent with the company

Table 1-3  Examples of activities, tasks, and resources for the TicketDistributor project.

Example Type Description

Requirements elicitation Activity The requirements elicitation activity includes
obtaining and validating requirements and domain
knowledge from the client and the users. The
requirements elicitation activity produces the
specification work product (Table 1-2).

Develop “Out of Change” 
test case for 
TicketDistributor

Task This task, assigned to Zoe (the tester) focuses on
verifying the behavior of the ticket distributor
when it runs out of money and cannot give the
correct change back to the user. This activity
includes specifying the environment of the test, the
sequence of inputs to be entered, and the expected
outputs.

Review “Access Online 
Help” use case for usability

Task This task, assigned to John (the human factors
specialist) focuses on detecting usability issues in
accessing the online help features of the system.

Tariff Database Resource The tariff database includes an example of tariff
structure with a train network plan. This example
is a resource provided by the client for
requirements and testing.
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colors are nonfunctional requirements. Other nonfunctional requirements may include using
specific hardware platform for the system, security requirements, how the system should deal
with failures and faults, and how to provide backward compatibility with an old system that the
client is unwilling to retire. 

1.3.6 Notations, Methods, and Methodologies

A notation is a graphical or textual set of rules for representing a model. The Roman alphabet is
a notation for representing words. UML (Unified Modeling Language [OMG, 2009]), the
notation we use throughout this book, is a notation for representing object-oriented models. The
use of notations in software engineering is common and predates object-oriented concepts. Data
flow diagrams [De Marco, 1978] is a notation for representing systems in terms of data sources,
data sinks, and data transformations. Z [Spivey, 1989] is a notation for representing systems
based on set theory.

A method is a repeatable technique that specifies the steps involved in solving a specific
problem. A recipe is a method for cooking a specific dish. A sorting algorithm is a method for
ordering elements of a list. Rationale management is a method for justifying change.
Configuration management is a method for tracking change.

A methodology is a collection of methods for solving a class of problems and specifies
how and when each method should be used. A seafood cookbook with a collection of recipes is
a methodology for preparing seafood if it also contains advice on how ingredients should be
used and what to do if not all ingredients are available. Royce’s methodology [Royce, 1998], the
Object Modeling Technique (OMT [Rumbaugh et al., 1991]), the Booch methodology [Booch,
1994], and Catalysis [D’Souza & Wills, 1999] are object-oriented methodologies for developing
software.

Software development methodologies decompose the process into activities. OMT
provides methods for three activities: Analysis, which focuses on formalizing the system
requirements into an object model, System Design, which focuses on strategic decisions, and
Object Design, which transforms the analysis model into an object model that can be
implemented. The OMT methodology assumes that requirements have already been defined and
does not provide methods for eliciting requirements. The Unified Software Development
Process also includes an Analysis activity and treats System Design and Object Design as a
single activity called Design. The Unified Process, unlike OMT, includes a Requirements
Capture activity for eliciting and modeling requirements. Catalysis, while using the same
notations as the Unified Process, focuses more on reuse of design and code using patterns and
frameworks. All of these methodologies focus on dealing with complex systems.

In this book, we present a methodology for developing complex and changing systems.
During the course of our teaching and research ([Bruegge, 1992], [Bruegge & Coyne, 1993],
[Bruegge & Coyne, 1994], [Coyne et al., 1995]), we have adapted and refined methods from a
variety of sources. For activities modeling the application domain, such as requirements
elicitation and analysis, we describe methods similar to those of OOSE [Jacobson et al., 1992].
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For solution domain modeling activities, such as system design and object design, we describe
object-oriented activities similar to those of OMT. For change-related activities, we focus on
rationale management, which originated from design rationale research [Moran & Carroll,
1996], and configuration management, which originated from the maintenance of large systems
[Babich, 1986].

1.4 Software Engineering Development Activities

In this section, we give an overview of the technical activities associated with object-oriented
software engineering. Development activities deal with the complexity by constructing and
validating models of the application domain or the system. Development activities include

• Requirements Elicitation (Section 1.4.1)
• Analysis (Section 1.4.2)
• System Design (Section 1.4.3)
• Object Design (Section 1.4.4) 
• Implementation (Section 1.4.5)
• Testing (Section 1.4.6).

Figure 1-2 depicts an overview of the relationship among these activities and their
products. In Section 1.5, we give an overview of the managerial activities associated with
software engineering. In Chapter 14, Project Management, and in Chapter 15, Software Life
Cycle, we discuss in more detail the modeling, planning, and software engineering activities.

1.4.1 Requirements Elicitation

During requirements elicitation, the client and developers define the purpose of the system.
The result of this activity is a description of the system in terms of actors and use cases. Actors
represent the external entities that interact with the system. Actors include roles such as end
users, other computers the system needs to deal with (e.g., a central bank computer, a network),
and the environment (e.g., a chemical process). Use cases are general sequences of events that
describe all the possible actions between an actor and the system for a given piece of
functionality. Figure 1-3 depicts a use case for the TicketDistributor example we discussed
previously. We describe requirements elicitation, including use cases and nonfunctional
requirements, in detail in Chapter 4, Requirements Elicitation.

1.4.2 Analysis

During analysis, developers aim to produce a model of the system that is correct, complete,
consistent, and unambiguous. Developers transform the use cases produced during requirements
elicitation into an object model that completely describes the system. During this activity,
developers discover ambiguities and inconsistencies in the use case model that they resolve with
the client. The result of analysis is a system model annotated with attributes, operations, and
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Figure 1-2 An overview of object-oriented software engineering development activities and their
products. This diagram depicts only logical dependencies among work products. Object-oriented software
engineering is iterative; that is, activities can occur in parallel and more than once.
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associations. The system model can be described in terms of its structure and its dynamic
interoperation. Figure 1-4 depicts an example of dynamic model for the TicketDistributor.
Figure 1-5 depicts an example of object model for the TicketDistributor.

Use case name PurchaseOneWayTicket

Participating actor Initiated by Traveler

Flow of events 1. The Traveler selects the zone in which the destination station is located.
2. The TicketDistributor displays the price of the ticket.
3. The Traveler inserts an amount of money that is at least as much as the 

price of the ticket.
4. The TicketDistributor issues the specified ticket to the Traveler and 

returns any change.

Entry condition The Traveler stands in front of the TicketDistributor, which may be
located at the station of origin or at another station.

Exit condition The Traveler holds a valid ticket and any excess change.

Quality requirements If the transaction is not completed after one minute of inactivity, the
TicketDistributor returns all inserted change. 

Figure 1-3 An example of use case, PurchaseOneWayTicket.

Figure 1-4 A dynamic model for the TicketDistributor (UML sequence diagram). This diagram
depicts the interactions between the actor and the system during the PurchaseOneWayTicket use case and
the objects that participate in the use case.
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We describe analysis, including object models, in detail in Chapter 5, Analysis. We
describe in detail the UML notation for representing models in Chapter 2, Modeling with UML.

1.4.3 System Design

During system design, developers define the design goals of the project and decompose the
system into smaller subsystems that can be realized by individual teams. Developers also select
strategies for building the system, such as the hardware/software platform on which the system
will run, the persistent data management strategy, the global control flow, the access control
policy, and the handling of boundary conditions. The result of system design is a clear
description of each of these strategies, a subsystem decomposition, and a deployment diagram
representing the hardware/software mapping of the system. Whereas both analysis and system
design produce models of the system under construction, only analysis deals with entities that
the client can understand. System design deals with a much more refined model that includes
many entities that are beyond the comprehension (and interest) of the client. Figure 1-6 depicts
an example of system decomposition for the TicketDistributor. We describe system design
and its related concepts in detail in Chapter 6, System Design: Decomposing the System, and in
Chapter 7, System Design: Addressing Design Goals.

1.4.4 Object Design

During object design, developers define solution domain objects to bridge the gap between the
analysis model and the hardware/software platform defined during system design. This includes
precisely describing object and subsystem interfaces, selecting off-the-shelf components,
restructuring the object model to attain design goals such as extensibility or understandability,
and optimizing the object model for performance. The result of the object design activity is a
detailed object model annotated with constraints and precise descriptions for each element. We
describe object design and its related concepts in detail in Chapter 8, Object Design: Reusing
Pattern Solutions, and Chapter 9, Object Design: Specifying Interfaces.

Figure 1-5 An object model for the TicketDistributor (UML class diagram). In the
PurchaseOneWayTicket use case, a Traveler initiates a transaction that will result in a Ticket. A Ticket
is valid only for a specified Zone. During the Transaction, the system tracks the Balance due by counting
the Coins and Bills inserted.
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Transaction Zone
results into valid for

amount paid
Balance
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1.4.5 Implementation

During implementation, developers translate the solution domain model into source code. This
includes implementing the attributes and methods of each object and integrating all the objects
such that they function as a single system. The implementation activity spans the gap between
the detailed object design model and a complete set of source code files that can be compiled.
We describe the mapping of UML models to code in Chapter 10, Mapping Models to Code. We
assume the reader is already familiar with programming concepts and knows how to program
data structures and algorithms using an object-oriented language such as Java or C++.

1.4.6 Testing

During testing, developers find differences between the system and its models by executing the
system (or parts of it) with sample input data sets. During unit testing, developers compare the
object design model with each object and subsystem. During integration testing, combinations
of subsystems are integrated together and compared with the system design model. During
system testing, typical and exception cases are run through the system and compared with the
requirements model. The goal of testing is to discover as many faults as possible such that they
can be repaired before the delivery of the system. The planning of test phases occurs in parallel
to the other development activities: System tests are planned during requirements elicitation and
analysis, integration tests are planned during system design, and unit tests are planned during
object design. We describe these issues in more detail in Chapter 11, Testing.

Figure 1-6 A subsystem decomposition for the TicketDistributor (UML class diagram, packages
represent subsystems, dashed lines represent dependencies). The TravelerInterface subsystem is
responsible for collecting input from the Traveler and providing feedback (e.g., display ticket price,
returning change). The LocalTariff subsystem computes the price of different tickets based on a local
database. The CentralTariff subsystem, located on a central computer, maintains a reference copy of the
tariff database. An Updater subsystem is responsible for updating the local databases at each
TicketDistributor through a network when ticket prices change.

TravelerInterface Updater

LocalTariff CentralTariff
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1.5 Managing Software Development

In this section, we briefly describe the activities involved in managing a software engineering
project. Management activities focus on planning the project, monitoring its status, tracking
changes, and coordinating resources such that a high-quality product is delivered on time and
within budget. Management activities not only involve managers, but also most of the other
project participants as well. Management activities include

• Communication (Section 1.5.1)
• Rationale Management (Section 1.5.2)
• Software Configuration Management (Section 1.5.3)
• Project Management (Section 1.5.4)
• Software Life Cycle (Section 1.5.5).

Software maintenance, which we do not cover in this book, includes the development
activities that occur after the delivery of the system to the client. Traditionally, software
maintenance has been distinguished from the other development activities as it is highly change
driven and is performed by a different team than the original development team. As modern
software engineering projects become more change driven, the distinction between construction
activities and maintenance activities is blurred. Many of the activities described in this book
can carry on to maintenance, including object design, implementation, testing, rationale
management, and software configuration management.

1.5.1 Communication

Communication is the most critical and time-consuming activity in software engineering.
Misunderstandings and omissions often lead to faults and delays that are expensive to correct
later in the development. Communication includes the exchange of models and documents about
the system and its application domain, reporting the status of work products, providing feedback
on the quality of work products, raising and negotiating issues, and communicating decisions.
Communication is made difficult by the diversity of participants’ backgrounds, by their
geographic distribution, and by the volume, complexity, and evolution of the information
exchanged. 

To deal with communication issues, project participants have many tools available. The
most effective one is conventions: When participants agree on notations for representing
information, on tools for manipulating information, and on procedures for raising and resolving
issues, they already have eliminated substantial sources of misunderstanding. Examples of
notations include UML diagrams, templates for writing documents and meeting minutes, and
identification schemes for naming software components. Examples of tools include Computer
Aided Software Engineering (CASE) tools for maintaining models, word processors for
generating documents, and interchange formats for publishing information. Examples of
procedures include meeting procedures for organizing, conducting, and capturing a meeting,
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review procedures for reviewing documents and providing feedback, and inspection procedures
for detecting defects in models or source code. The selected conventions do not need to be the
best available; they only need to be shared and agreed on by everybody. We describe
communication issues in detail in Chapter 3, Project Organization and Communication.

1.5.2 Rationale Management

Rationale is the justification of decisions. Given a decision, its rationale includes the problem
that it addresses, the alternatives that developers considered, the criteria that developers used to
evaluate the alternatives, the debate developers went through to achieve consensus, and the
decision. Rationale is the most important information developers need when changing the
system. If a criterion changes, developers can reevaluate all decisions that depend on this
criterion. If a new alternative becomes available, it can be compared with all the other
alternatives that were already evaluated. If a decision is questioned, they can recover its rationale
to justify it.

Unfortunately, rationale is also the most complex information developers deal with during
development, and thus, the most difficult to update and maintain. To deal with this challenge,
developers capture rationale during meetings and on-line discussions, represent rationale with
issue models, and access rationale during changes. We describe these issues in detail in
Chapter 12, Rationale Management.

1.5.3 Software Configuration Management

Software configuration management is the process that monitors and controls changes in work
products. Change pervades software development. Requirements change as the client requests
new features and as developers improve their understanding of the application domain. The
hardware/software platform on which the system is built changes as new technology becomes
available. The system changes as faults are discovered during testing and are repaired. Software
configuration management used to be in the realm of maintenance, when improvements are
incrementally introduced in the system. In modern development processes, however, changes
occur much earlier than maintenance does. Thus, changes during development can be dealt with
using configuration management at all stages.

Configuration management enables developers to track changes. The system is
represented as a number of configuration items that are independently revised. For each
configuration item, its evolution is tracked as a series of versions. Selecting versions enables
developers to roll back to a well-defined state of the system when a change fails.

Configuration management also enables developers to control change. After a baseline has
been defined, any change needs to be assessed and approved before being implemented. This
enables management to ensure that the system is evolving according to project goals and that the
number of problems introduced into the system is limited. We describe these issues in detail in
Chapter 13, Configuration Management.
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1.5.4 Project Management

Project management does not produce any artifact of its own. Instead, project management
includes the oversight activities that ensure the delivery of a high-quality system on time and
within budget. This includes planning and budgeting the project during negotiations with the
client, hiring developers and organizing them into teams, monitoring the status of the project,
and intervening when deviations occur. Most project management activities are beyond the
scope of this book. We describe, however, the project management activities that are visible to
the developers and techniques that make the development–management communication more
effective. We describe these issues in detail in Chapter 14, Project Management.

1.5.5 Software Life Cycle

In this chapter, we describe software engineering as a modeling activity. Developers build
models of the application and solution domains to deal with their complexity. By ignoring
irrelevant details and focusing only on what is relevant to a specific issue, developers can more
effectively resolve issues and answer questions. The process of developing software can also be
viewed as a complex system with inputs, outputs, activities, and resources. It is not surprising,
then, that the same modeling techniques applied to software artifacts are used for modeling
software processes. A general model of the software development process is called a software
life cycle. We describe software life cycles in Chapter 15, Software Life Cycle.

1.5.6 Putting It All Together

After reading Chapters 1–15 in this book, you will have an overview of the current state-of-the-
art methods in object-oriented software engineering, which you can view as a thick cookbook of
recipes. In practice, however, a cookbook is rarely enough for the novice to cook a complete
meal. Moreover, not all ingredients are always available, and the cook has to improvise to bridge
the gaps. 

Chapter 14, Project Management, focuses on planning and controlling projects.
Chapter 15, Software Life Cycle, focuses on modeling, improving, and repeating software life
cycle processes. Both chapters, because they focus on techniques and models, take an optimistic
view of project execution. In Chapter 16, Methodologies: Putting It All Together, we examine
what happens outside of textbook situations. We provide methodologies and heuristics for
adapting the building blocks presented in the other chapter to specific situations. In particular,
we describe several agile and heavier methodologies.

1.6 ARENA Case Study
In each chapter, we introduce concepts and activities using increasingly complex examples,
starting with toy examples from the classroom and moving to actual examples from project
courses or from real systems. Moreover, to put the activities of each chapter in the context of the
overall software engineering project, we also use a single, comprehensive case study throughout
the book, describing the development of a system called ARENA.
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ARENA is a multi-user, Web-based system for organizing and conducting tournaments.
ARENA is game independent in the sense that organizers can adapt a new game to the ARENA game
interface, upload it to the ARENA server, and immediately announce and conduct tournaments
with players and spectators located anywhere on the Internet. Organizers can also define new
tournament styles, describing how players are mapped to a set of matches and how to compute
an overall ranking of players by adding up their victories and losses (hence, figuring out who
won the tournament). To recoup their operational costs, organizers can also invite potential
sponsors to display advertisement banners during games. 

In the section entitled “ARENA Case Study” located at the end of each chapter, we discuss
issues, design decisions, and trade-offs specific to the chapter in the context of ARENA. We also
relate these issues to the parts of the case study presented in previous chapters, thereby
emphasizing inter-chapter dependencies. For example:

• In Chapter 4, Requirements Elicitation, we describe how developers write an initial set
of use cases based on information provided by a client. We define in more detail how
tournaments should be organized and announced, and how players apply for new
tournaments. In the process, we generate more questions for the client and uncover
ambiguities and missing information about the system.

• In Chapter 5, Analysis, we describe how an object model and a behavior model are
constructed from the use case model. We also examine how the development of these
models leads to more refinements in the use case model and in the discovery of
additional requirements. For example, we define more formally the concept of
exclusive sponsorship, describe the workflow associated with deciding on the
sponsorship of a tournament, and consolidate the object model.

• In Chapter 7, System Design: Addressing Design Goals, we select a client server
architecture and a framework for realizing the system, and address issues such as data
storage and access control. We examine different mechanisms for authenticating users
on the Web, identify the persistent objects we need to store (e.g., game state,
tournament results, player profiles), and decompose ARENA into smaller subsystems that
can be handled by single programmers.

• In Chapter 8, Object Design: Reusing Pattern Solutions, and in Chapter 9, Object
Design: Specifying Interfaces, we identify additional solution domain objects to fill the
gap between the system design and the implementation. We reuse template solutions by
selecting design patterns for addressing specific issues. For example, a strategy pattern
is used to encapsulate different tournament styles.

• In Chapter 10, Mapping Models to Code, we translate the UML models we built so far
into Java code, and reexamine the object design as new optimization issues are
discovered. In this chapter, we illustrate the tight iteration between object design and
implementation.
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The work products associated with the ARENA system, along with a demonstration, are available
from http://wwwbruegge.in.tum.de/OOSE/WebHome.

1.7 Further Reading

The fundamental issues associated with software engineering are not new and have been written
about for several decades.

In the Mythical Man Month [Brooks, 1995], first published in 1975, Frederick Brooks
reflects on his experience with developing an operating system for the IBM 360 mainframe, a
multi-million dollar, multi-year project that went over budget and schedule. Since then, different
techniques, tools, and methods have enabled software engineers to tackle more complex and
challenging problems, only to experience failures that are more expensive and more spectacular.
Many basic lessons of this landmark book are still applicable today.

In Computer-Related Risks [Neumann, 1995], Peter Neumann relates a collection of
computer-related failures, examine roots causes and effects of these failures, and discusses what
might be done to avoid them. Computer-Related Risks is a sobering account that should be read
by any software engineer who dreams of building and mastering complex systems.

Objective Knowledge: An Evolutionary Approach [Popper, 1992] is an essay about
knowledge construction. Karl Popper breaks from traditional knowledge theories dating back to
Aristotle and proposes that scientific knowledge, once stated in a human language, becomes a
separate entity that grows through selection. As software engineering is a collaborative
knowledge-gathering and construction activity, Popper’s book can be useful to stimulate critical
thinking and provide a different perspective on the field.

In this book, we focus on object-oriented software engineering and target senior-level
software engineering project courses. Consequently, we leave out several historical and
management topics that are traditionally included in software engineering books, such as
software metrics, cost estimation, and formal methods. An overview of these topics can be found
in more general software engineering textbooks, such as Software Engineering [Sommerville,
2006] and Software Engineering: A Practitioner’s Approach [Pressman, 2009].

1.8 Exercises

1-1 What is the purpose of modeling?

1-2 A programming language is a notation for representing algorithms and data structures.
List two advantages and two disadvantages of using a programming language as the
sole notation throughout the development process.

1-3 Consider a task you are not familiar with, such as designing a zero-emissions car. How
would you attack the problem?

1-4 What is meant by “knowledge acquisition is not sequential”? Provide a concrete
example of knowledge acquisition that illustrates this.

1-5 Hypothesize a rationale for the following design decisions:

http://wwwbruegge.in.tum.de/OOSE/WebHome
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• “The TicketDistributor will be at most one and a half meters tall.”

• “The TicketDistributor will include two redundant computer systems.”

• “The TicketDistributor interface will consist of a touch screen for displaying
instructions and accessing commands and a single button for aborting transactions.”

1-6 Specify which of these statements are functional requirements and which are
nonfunctional requirements:

• “The TicketDistributor must enable a traveler to buy weekly passes.”

• “The TicketDistributor must be written in Java.”

• “The TicketDistributor must be easy to use.”

• “The TicketDistributor must always be available.”

• “The TicketDistributor must provide a phone number to call when it fails.”

1-7 Specify which of these decisions were made during requirements or system design:

• “The TicketDistributor is composed of a user interface subsystem, a subsystem
for computing tariff, and a network subsystem for managing communication with
the central computer.”

• “The TicketDistributor hardware uses PowerPC processor chips.”

• “The TicketDistributor provides the traveler with online help.”

1-8 In the following description, explain when the term account is used as an application
domain concept and when as a solution domain concept: 

“Assume you are developing an online system for managing bank accounts for
mobile customers. A major design issue is how to provide access to the accounts
when the customer cannot establish an online connection. One proposal is that
accounts are made available on the mobile computer, even if the server is not up. In
this case, the accounts show the amounts from the last connected session.”

1-9 What is the difference between a task and an activity?

1-10 A passenger aircraft is composed of several millions of parts and requires thousands of
persons to assemble. A four-lane highway bridge is another example of complexity.
The first version of Word for Windows, a word processor released by Microsoft in
1989, required 55 person-years, resulted into 249,000 lines of source code, and was
delivered 4 years late. Aircraft and highway bridges are usually delivered on time and
within budget, whereas software is often not. Discuss what are, in your opinion, the
differences between developing an aircraft, a bridge, and a word processor that would
cause this situation.
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2
Modeling with UML

Every mechanic is familiar with the problem of the part you 
can’t buy because you can’t find it because the 
manufacturer considers it a part of something else.

—Robert Pirsig, in Zen and the Art of Motorcycle 
Maintenance

Notations enable us to articulate complex ideas succinctly and precisely. In projects
involving many participants, often of different technical and cultural backgrounds, accuracy and
clarity are critical as the cost of miscommunication increases rapidly. 

For a notation to enable accurate communication, it must come with a well-defined
semantics, it must be well suited for representing a given aspect of a system, and it must be well
understood among project participants. In the latter lies the strength of standards and
conventions: when a notation is used by a large number of participants, there is little room for
misinterpretation and ambiguity. Conversely, when many dialects of a notation exists, or when a
very specialized notation is used, the notation users are prone to misunderstandings as each user
imposes its own interpretation. We selected UML (Unified Modeling Language, [OMG, 2009])
as a primary notation for this book because it provides a spectrum of notations for representing
different aspects of a system and has been accepted as a standard notation in the industry.

In this chapter, we first describe the concepts of modeling in general and object-oriented
modeling in particular. We then describe five fundamental notations of UML that we use
throughout the book: use case diagrams, class diagrams, interaction diagrams, state machine
diagrams, and activity diagrams. For each of these notations, we describe its basic semantics and
provide examples. We revisit these notations in detail in later chapters as we describe the
activities that use them. Specialized notations that we use in only one chapter are introduced
later, such as UML deployment diagrams in Chapter 6, System Design: Decomposing the
System, and PERT charts in Chapter 14, Project Management.
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2.1 Introduction

UML is a notation that resulted from the unification of OMT (Object Modeling Technique
[Rumbaugh et al., 1991]), Booch [Booch, 1994], and OOSE (Object-Oriented Software
Engineering [Jacobson et al., 1992]). UML has also been influenced by other object-oriented
notations, such as those introduced by Mellor and Shlaer [Mellor & Shlaer, 1998], Coad and
Yourdon [Coad et al., 1995], Wirfs-Brock [Wirfs-Brock et al., 1990], and Martin and Odell
[Martin & Odell, 1992]. 

The goal of UML is to provide a standard notation that can be used by all object-oriented
methods and to select and integrate the best elements of precursor notations. For example, UML
includes the use case diagrams introduced by OOSE and uses many features of the OMT class
diagrams. UML also includes new concepts that were not present in other major methods at the
time, such as extension mechanisms and a constraint language. UML has been designed for a
broad range of applications. Hence, it provides constructs for a broad range of systems and
activities (e.g., distributed systems, analysis, system design, deployment). System development
focuses on three different models of the system (see Figure 1-2):

• The functional model, represented in UML with use case diagrams, describes the
functionality of the system from the user’s point of view.

• The object model, represented in UML with class diagrams, describes the structure of
the system in terms of objects, attributes, associations, and operations. During
requirements and analysis, the object model starts as the analysis object model and
describes the application concepts relevant to the system. During system design, the
object model is refined into the system design object model and includes descriptions of
the subsystem interfaces. During object design, the object model is refined into the
object design model and includes detailed descriptions of solution objects.

• The dynamic model, represented in UML with interaction diagrams, state machine
diagrams, and activity diagrams, describes the internal behavior of the system.
Interaction diagrams describe behavior as a sequence of messages exchanged among a
set of objects, whereas state machine diagrams describe behavior in terms of states of
an individual object and the possible transitions between states. Activity diagrams
describe behavior in terms control and data flows.

In this chapter, we describe UML diagrams for representing these models. Introducing
these notations represents an interesting challenge: understanding the purpose of a notation
requires some familiarity with the activities that use it. However, it is necessary to understand
the notation before describing the activities. To address this issue, we introduce UML iteratively.
In the next section, we first provide an overview of the five basic notations of UML. In
Section 2.3, we introduce the fundamental ideas of modeling. In Section 2.4, we revisit the five
basic notations of UML in light of modeling concepts. In subsequent chapters, we discuss these
notations in even greater detail when we introduce the activities that use them.
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2.2 An Overview of UML

In this section, we briefly introduce five UML notations:

• Use Case Diagrams (Section 2.2.1)

• Class Diagrams (Section 2.2.2)

• Interaction Diagrams (Section 2.2.3)

• State Machine Diagrams (Section 2.2.4)

• Activity Diagrams (Section 2.2.5).

2.2.1 Use Case Diagrams

Use cases are used during requirements elicitation and analysis to represent the functionality of
the system. Use cases focus on the behavior of the system from an external point of view. A use
case describes a function provided by the system that yields a visible result for an actor. An actor
describes any entity that interacts with the system (e.g., a user, another system, the system’s
physical environment). The identification of actors and use cases results in the definition of the
boundary of the system, that is, in differentiating the tasks accomplished by the system and the
tasks accomplished by its environment. The actors are outside the boundary of the system,
whereas the use cases are inside the boundary of the system.

For example, Figure 2-1 depicts a use case diagram for a simple watch. The WatchUser
actor may either consult the time on their watch (with the ReadTime use case) or set the time
(with the SetTime use case). However, only the WatchRepairPerson actor can change the
battery of the watch (with the ChangeBattery use case). 

Figure 2-1 A UML use case diagram describing the functionality of a simple watch. The WatchUser actor
may either consult the time on her watch (with the ReadTime use case) or set the time (with the SetTime use
case). However, only the WatchRepairPerson actor can change the battery of the watch (with the
ChangeBattery use case). Actors are represented with stick figures, use cases with ovals, and the boundary
of the system with a box enclosing the use cases.

WatchUser WatchRepairPerson

ReadTime

SetTime

ChangeBattery

SimpleWatch
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2.2.2 Class Diagrams

Class diagrams are used to describe the structure of the system. Classes are abstractions that
specify the common structure and behavior of a set of objects. Objects are instances of classes
that are created, modified, and destroyed during the execution of the system. An object has state
that includes the values of its attributes and its links with other objects. 

Class diagrams describe the system in terms of objects, classes, attributes, operations, and
their associations. For example, Figure 2-2 is a class diagram describing the elements of all the
watches of the SimpleWatch class. These watch objects all have an association to an object of the
PushButton class, an object of the Display class, an object of the Time class, and an object of
the Battery class. The numbers on the ends of associations denote the number of links each
SimpleWatch object can have with an object of a given class. For example, a SimpleWatch has
exactly two PushButtons, one Display, two Batteries, and one Time. Similarly, all
PushButton, Display, Time, and Battery objects are associated with exactly one SimpleWatch
object.

At the analysis level, associations represent existence relationships. For example, a
SimpleWatch requires the correct number of PushButtons, Displays, Batteries, and Time. In
this example, the association is symmetrical: PushButton cannot perform its function without a
SimpleWatch. UML also allows for one-directional relationships, which we describe in
Section 2.4.2. At the implementation level, associations are realized as references (i.e., pointers)
to objects.

2.2.3 Interaction Diagrams

Interaction diagrams are used to formalize the dynamic behavior of the system and to visualize
the communication among objects. They are useful for identifying additional objects that
participate in the use cases. We call objects involved in a use case participating objects. An
interaction diagram represents the interactions that take place among these objects. For example,
Figure 2-3 is a special form of interaction diagram, called a sequence diagram, for the SetTime
use case of our simple watch. The left-most column represents the WatchUser actor who initiates
the use case. Labeled arrows represent stimuli that an actor or an object sends to other objects. In
this case, the WatchUser presses button 1 twice and button 2 once to set her watch a minute
ahead. The SetTime use case terminates when the WatchUser presses both buttons
simultaneously.

Figure 2-2 A UML class diagram describing the elements of a simple watch.
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2.2.4 State Machine Diagrams

State machine diagrams describe the dynamic behavior of an individual object as a number of
states and transitions between these states. A state represents a particular set of values for an
object. Given a state, a transition represents a future state the object can move to and the
conditions associated with the change of state. For example, Figure 2-4 is a state machine
diagram for the Watch. A small black circle initiates that BlinkHours is the initial state. A circle
surrounding a small black circle indicates that StopBlinking is a final state. Note that this
diagram represents different information than the sequence diagram of Figure 2-3. The sequence
diagram focuses on the messages exchanged between objects as a result of external events
created by actors. The state machine diagram focuses on the transitions between states as a result
of external events for an individual object.

2.2.5 Activity Diagrams

An activity diagram describes the behavior of a system in terms of activities. Activities are
modeling elements that represent the execution of a set of operations. The execution of an
activity can be triggered by the completion of other activities, by the availability of objects, or by
external events. Activity diagrams are similar to flowchart diagrams in that they can be used to
represent control flow (i.e., the order in which operations occur) and data flow (i.e., the objects
that are exchanged among operations). For example, Figure 2-5 is an activity diagram
representing activities related to managing an Incident. Rounded rectangles represent
activities; arrows between activities represent control flow; thick bars represent the

Figure 2-3 A UML sequence diagram for the Watch. The left-most column represents the timeline of the
WatchUser actor who initiates the use case. The other columns represent the timeline of the objects that
participate in this use case. Object names are underlined to denote that they are instances (as opposed to
classes). Labeled arrows are stimuli that an actor or an object sends to other objects.

:Watch :Time:Display

pressButton1() blinkHours()

blinkMinutes()

pressButton2() incrementMinutes()
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pressButtons1And2() commitNewTime()

stopBlinking()

pressButton1()
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synchronization of the control flow. The activity diagram of Figure 2-5 depicts that the
AllocateResources, CoordinateResources, and DocumentIncident can be initiated only after
the OpenIncident activity has been completed. Similarly, the ArchiveIncident activity can be
initiated only after the completion of AllocateResources, Coordinate–Resources, and
DocumentIncident. These latter three activities, however, can occur concurrently. 

This concludes our first walkthrough of the five basic notations of UML. Now, we go into
more detail: In Section 2.3, we introduce basic modeling concepts, including the definition of

Figure 2-4 A UML state machine diagram for SetTime use case of the Watch.

Figure 2-5 An example of a UML activity diagram. Activity diagrams represent behavior in terms of
activities and their precedence constraints. The completion of an activity triggers an outgoing transition,
which in turn may initiate another activity.
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systems, models, types, and instances, abstraction, and falsification. In Sections 2.4.1–2.4.5, we
describe in detail use case diagrams, class diagrams, sequence diagrams, state machine
diagrams, and activity diagrams. We illustrate their use with a simple example. Section 2.4.6
describes miscellaneous constructs, such as packages and notes, that are used in all types of
diagrams. We use these five notations throughout the book to describe software systems, work
products, activities, and organizations. By the consistent and systematic use of a small set of
notations, we hope to provide the reader with an operational knowledge of UML.

2.3 Modeling Concepts

In this section, we describe the basic concepts of modeling. We first define the terms system,
model, and view, and discuss the purpose of modeling. We explain their relationship to
programming languages and terms such as data types, classes, instances, and objects. Finally,
we describe how object-oriented modeling focuses on building an abstraction of the system
environment as a basis for the system model.

2.3.1 Systems, Models, and Views

A system is an organized set of communicating parts. We focus here on engineered systems,
which are designed for a specific purpose, as opposed to natural systems, such as a planetary
system, whose ultimate purpose we may not know. A car, composed of four wheels, a chassis, a
body, and an engine, is designed to transport people. A watch, composed of a battery, a circuit,
wheels, and hands, is designed to measure time. A payroll system, composed of a mainframe
computer, printers, disks, software, and the payroll staff, is designed to issue salary checks for
employees of a company. Parts of a system can in turn be considered as simpler systems called
subsystems. The engine of a car, composed of cylinders, pistons, an injection module, and many
other parts, is a subsystem of the car. Similarly, the integrated circuit of a watch and the
mainframe computer of the payroll system are subsystems. This subsystem decomposition can
be recursively applied to subsystems. Objects represent the end of this recursion, when each
piece is simple enough that we can fully comprehend it without further decomposition.

Many systems are made of numerous subsystems interconnected in complicated ways,
often so complex that no single developer can manage its entirety. Modeling is a means for
dealing with this complexity. Complex systems are generally described by more than one model,
each focusing on a different aspect or level of accuracy. Modeling means constructing an
abstraction of a system that focuses on interesting aspects and ignores irrelevant details. What is
interesting or irrelevant varies with the task at hand. For example, assume we want to build an
airplane. Even with the help of field experts, we cannot build an airplane from scratch and hope
that it will function correctly on its maiden flight. Instead, we first build a scale model of the air
frame to test its aerodynamic properties. In this scale model, we only need to represent the
exterior surface of the airplane. We can ignore details such as the instrument panel or the engine.
In order to train pilots for this new airplane, we also build a flight simulator. The flight simulator
needs to accurately represent the layout and behavior of flight instruments. In this case, however,
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details about the exterior of the plane can be ignored. Both the flight simulator and the scale
model are much less complex than the airplane they represent. Modeling allows us to deal with
complexity through a divide-and-conquer approach: For each type of problem we want to solve
(e.g., testing aerodynamic properties, training pilots), we build a model that only focuses on the
issues relevant to the problem. Generally, modeling focuses on building a model that is simple
enough for a person to grasp completely. A rule of thumb is that each entity should contain at
most 7 ± 2 parts [Miller, 1956].

Modeling also helps us deal with complexity by enabling us to incrementally refine simple
models into more detailed ones that are closer to reality. In software engineering, as in all
engineering disciplines, the model usually precedes the system. During analysis, we first build a
model of the environment and of the common functionality that the system must provide, at a
level that is understandable by the client. Then we refine this model, adding more details about
the forms that the system should display, the layout of the user interface, and the response of the
system to exceptional cases. The set of all models built during development is called the system
model. If we did not use models, but instead started coding the system right away, we would
have to specify all the details of the user interface before the client could provide us with
feedback. Thus we would lose much time and resources when the client then introduces
changes. 

Unfortunately, even a model may become so complex that it is not easily understandable.
We can continue to use the divide-and-conquer method to refine a complex model into simpler
models. A view focuses on a subset of a model to make it understandable (Figure 2-6). For
example, all the blueprints necessary to construct an airplane constitute a model. Excerpts
necessary to explain the functioning of the fuel system constitute the fuel system view. Views
may overlap: a view of the airplane representing the electrical wiring also includes the wiring for
the fuel system.

Figure 2-6 A model is an abstraction describing a subset of a system. A view depicts selected aspects of
a model. Views and models of a single system may overlap each other.
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Notations are graphical or textual rules for representing views. A UML class diagram is a
graphical view of the object model. In wiring diagrams, each connected line represents a
different wire or bundle of wires. In UML class diagrams, a rectangle with a title represents a
class. A line between two rectangles represents a relationship between the two corresponding
classes. Note that different notations can be used to represent the same view (Figure 2-7).

In software engineering, there are many other notations for modeling systems. UML
describes a system in terms of classes, events, states, interactions, and activities. Data flow
diagrams [De Marco, 1978] depict how data is retrieved, processed, and stored. Z Schemes
[Spivey, 1992] represent the system in terms of invariants (conditions that never change) and in
terms of what is true before and after the execution of an operation. Each notation is tailored for
a different problem.

In the next sections, we focus in more detail on the process of modeling.

2.3.2 Data Types, Abstract Data Types, and Instances

A data type is an abstraction in the context of a programming language. A data type has a
unique name that distinguishes it from other data types. It denotes a set of values that are
members of the data type (i.e., the instances of the data type) and defines the structure and the
operations valid in all instances of the data type. Data types are used in typed languages to
ensure that only valid operations are applied to specific instances.

For example, the name int in Java corresponds to all the signed integers between –232 and
232 – 1. The valid operations on this type are all the integer arithmetic operations (e.g., addition,
subtraction, multiplication, division) and all the functions and methods that have parameters of
type int (e.g., mod). The Java run-time environment throws an exception if a floating point
operation is applied to an instance of the int data type (e.g., trunc or floor).

Figure 2-7 Example of describing a model with two different notations. The model includes two classes,
Book and Chapter, with the relationship, Book is composed of Chapters. In UML, classes are depicted
by rectangles and aggregation associations by a line terminated with a diamond. In the Booch notation,
classes are depicted by clouds, and aggregation associations are depicted with a line terminated with a solid
circle.

Book Chapter
composed-of

Book Chapter
N

composed-of

UML

Booch

1 *
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An abstract data type is a data type defined by an implementation-independent
specification. Abstract data types enable developers to reason about a set of instances without
looking at a specific implementation of the abstract data type. Examples of abstract data types
are sets and sequences, which can be mathematically defined. A system may provide different
implementations of the set abstract data type, each optimizing different criteria (e.g., memory
consumption, insertion time). However, a developer using a set only needs to understand its
semantics and need not be aware of the internal representation of the set. For example, the
abstract data type Person may define the operations getName(),1 getSocialSecurityNumber(),
and getAddress(). The fact that the social security number of the person is stored as a number
or as a string is not visible to the rest of the system. Such decisions are called implementation
decisions.

2.3.3 Classes, Abstract Classes, and Objects

A class is an abstraction in object-oriented modeling and in object-oriented programming
languages. Like abstract data types, a class encapsulates both structure and behavior. Unlike
abstract data types, classes can be defined in terms of other classes by using inheritance. Assume
we have a watch that also can function as a calculator. The class CalculatorWatch can then be
seen as a refinement of the class Watch. This type of relationship between a base class and a
refined class is called inheritance. The generalization class (e.g., Watch) is called the
superclass, the specialized class (e.g., CalculatorWatch) is called the subclass. In an
inheritance relationship, the subclass refines the superclass by defining new attributes and
operations. In Figure 2-8, CalculatorWatch defines functionality for performing simple
arithmetic that regular Watches do not have. Superclass and subclass are relative terms. The
same class can be a subclass with respect to one class and a superclass with respect to another
class.

When an inheritance relationship serves only to model shared attributes and operations,
that is, if the generalization is not meant to be instantiated, the resulting class is called an
abstract class. Abstract classes often represent generalized concepts in the application domain,
and their names are italicized. For example, in chemistry, Benzene can be considered a class of
molecules that belongs to the abstract class OrganicCompound (Figure 2-9). OrganicCompound is
a generalization and does not correspond to any one molecule; that is, it does not have any
instances. In Java, Collection is an abstract class providing a generalization for all collection
classes. However, there are no instances of the class Collection. Rather, all collection objects
are instances of one of the subclasses of Collection, such as LinkedList, ArrayList, or
HashMap. Note that not all generalizations are abstract classes. For example, in Figure 2-8 the
Watch class is not an abstract class as it has instances. When modeling software systems,

1. We refer to an operation by its name followed by its arguments in parentheses. If the arguments are not specified, we 
suffix the name of the operation by a pair of empty parentheses. We describe operations in detail in the next section.
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abstract classes sometimes do not correspond to an existing application domain concept, but
rather are introduced to reduce complexity in the model or to promote reuse.

A class defines the operations that can be applied to its instances. Operations of a
superclass can be inherited and applied to the objects of the subclass as well. For example, in
Figure 2-8, the operation SetDate(d), setting the current date of a Watch, is also applicable to
CalculatorWatches. The operation EnterCalcMode(), however, defined in the
CalculatorWatch class, is not applicable in the Watch class.

A class defines the attributes that apply to all its instances. An attribute is a named slot in
the instance where a value is stored. Attributes have a unique name within the class and the type.
Watches have a time and a date attribute. CalculatorWatches have a calculatorState
attribute.

An object is an instance of a class. An object has an identity and stores attribute values.
Each object belongs to exactly one class. In UML, an instance is depicted by a rectangle with its
name underlined. This convention is used throughout UML to distinguish between instances and

Figure 2-8 A UML class diagram depicting two classes, Watch and CalculatorWatch.
CalculatorWatch is a refinement of Watch, providing calculator functionality not found in normal watches.
In a UML class diagram, classes and objects are represented as boxes with three compartments: the first
compartment depicts the name of the class, the second depicts its attributes, the third its operations. The
second and third compartments can be omitted for brevity. An inheritance relationship is displayed by a line
with a triangle. The triangle points to the superclass, and the other end is attached to the subclass.

Figure 2-9 An example of abstract class (UML class diagram). OrganicCompound is never instantiated
and only serves as a generalization class. The names of abstract classes are italicized. 
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classes.2 In Figure 2-10, simpleWatch1291 is an instance of Watch, and calculatorWatch1515
is an instance of CalculatorWatch. Note that, although the operations of Watch are applicable to
calculatorWatch1515, calculatorWatch1515 is not an instance of the class Watch. The
attributes of an object can be visible to other parts of the system in some programming
languages. For example, Java allows the implementor to specify in great detail which attributes
are visible and which are not.

2.3.4 Event Classes, Events, and Messages

Event classes are abstractions representing a kind of event for which the system has a common
response. An event, an instance of an event class, is a relevant occurrence in the system. For
example, an event can be a stimuli from an actor (e.g., “the WatchUser presses the left button”),
a time-out (e.g., “after 2 minutes”), or the sending of a message between two objects. Sending a
message is the mechanism by which the sending object requests the execution of an operation in
the receiving object. The message is composed of a name and a number of arguments. The
receiving object matches the name of the message to one of its operations and passes the
arguments to the operation. Any results are returned to the sender.

For example, in Figure 2-11, the :Watch object computes the current time by getting the
Greenwich time from the :Time object and the time difference from the :TimeZone object by
sending the getTime() and the getTimeDelta() messages, respectively. Note that :Watch
denotes an undesignated object of class Watch.

Events and messages are instances: they represent concrete occurrences in the system.
Event classes are abstractions describing groups of events for which the system has a common
response. In practice, the term “event” can refer to instances or classes. This ambiguity is
resolved by examining the context in which the term is used.

2. Underlined strings are also used for representing Uniform Resource Locators (URLs). To improve readability, we do 
not use an underlined font in the text, but rather, we use the same font to denote instances and classes. In general, this 
ambiguity can be resolved by examining the context. In UML diagrams, however, we always use an underlined font 
to distinguish instances from classes.

Figure 2-10 A UML class diagram depicting instances of two classes. simpleWatch1291 is an instance
of Watch. calculatorWatch1515 is an instance of CalculatorWatch. Although the operations of Watch
are also applicable to calculatorWatch1515, the latter is not an instance of the former. 
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2.3.5 Object-Oriented Modeling

The application domain represents all aspects of the user’s problem. This includes the physical
environment, the users and other people, their work processes, and so on. It is critical for
analysts and developers to understand the application domain for a system to accomplish its
intended task effectively. Note that the application domain changes over time, as work processes
and people change.3

The solution domain is the modeling space of all possible systems. Modeling in the
solution domain represents the system design and object design activities of the development
process. The solution domain model is much richer and more volatile than the application
domain model. This is because the system is usually modeled in much more detail than the
application domain. Emerging technologies (also called technology enablers), deeper
understanding of implementation technology by the developers, and changes in requirements
trigger changes to the solution domain models. Note that the deployment of the system can
change the application domain as users develop new work processes to accommodate the
system.

Object-oriented analysis is concerned with modeling the application domain.
Object-oriented design is concerned with modeling the solution domain. Both modeling
activities use the same representations (i.e., classes and objects). In object-oriented analysis and

Figure 2-11 Examples of message sends (UML sequence diagram). The Watch object sends the
getTime() message to a Time object to query the current Greenwich time. It then sends the
getTimeDelta() message to a TimeZone object to query the difference to add to the Greenwich time. The
dashed arrows represent the replies (i.e., message results that are sent back to the sender).

3. The application domain is sometimes further divided into a user domain and a client domain. The client domain 
includes the issues relevant to the client, such as, operation cost of the system, impact of the system on the rest of the 
organization. The user domain includes the issues relevant to the end user, such as, functionality, ease of learning 
and of use.
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design, the application domain model is also part of the system model. For example, an air

traffic control system has a TrafficController class to represent individual users, their

preferences, and log information. The system also has an Aircraft class to represent

information associated with the tracked aircraft. TrafficController and Aircraft are

application domain concepts that are encoded into the system (Figure 2-12).

Modeling the application domain and the solution domain with a single notation has

advantages and disadvantages. On the one hand, it can be powerful: solution domain classes that

represent application concepts can be traced back to the application domain. Moreover, these

classes can be encapsulated into subsystems independent of other implementation concepts

(e.g., user interface and database technology) and be packaged into a reusable toolkit of domain

classes. On the other hand, using a single notation can introduce confusion because it removes

the distinction between the real world and the model of it. The solution domain is bound to be

simpler and biased toward the solution. To address this issue, we use a single notation and, in

cases of ambiguity, we distinguish between the two domains. In most cases, we are referring to

the model (e.g., “an Aircraft is associated with a FlightPlan” is a statement about the model).

Figure 2-12 The application domain model represents entities of the environment that are relevant to an
air traffic control system (e.g., aircraft, traffic controllers). The system model represents entities that are part
of the system (e.g., map display, flight plan database). Note that in object-oriented analysis and design, the
application domain model is part of the system model. The system model refines the application domain
model to include solution domain concepts, such as SummaryDisplay, MapDisplay, and FightPlan–
Database. (For more details, see Chapter 5, Analysis.)
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Application Domain Model System Model
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2.3.6 Falsification and Prototyping

A model is a simplification of reality in the sense that irrelevant details are ignored. Relevant
details, however, need to be represented. Falsification [Popper, 1992] is the process of
demonstrating that relevant details have been incorrectly represented or not represented at all;
that is, the model does not correspond to the reality it is supposed to represent.

The process of falsification is well known in other sciences: researchers propose different
models of a reality, which are gradually accepted as an increasing amount of data supports the
model, then rejected once a counterexample is found. Near the end of the 18th century, for
example, it was discovered that the orbit of the planet Mercury did not exactly match the orbit
predicted by Newton’s theory of gravity. Later, Einstein’s general theory of relativity predicted a
slightly different orbit that better matched the results. In other words, Newton’s theory was
falsified in favor of Einstein’s. Note, however, that we still use Newton’s theory for practical
applications on Earth, because the differences predicted by both theories are small in these
situations and Newton’s theory is much simpler. In other words, the details ignored by Newton’s
theory are not relevant for the scales we are accustomed to.

We can apply falsification to software system development as well. For example, a
technique for developing a system is prototyping: when designing the user interface, developers
construct a prototype that only simulates the user interface of a system. The prototype is then
presented to potential users for evaluation—that is, falsification—and modified subsequently. In
the first iterations of this process, developers are likely to throw away the initial prototype as a
result of feedback from the users. In other terms, users falsify the initial prototype, a model of
the future system, because it does not accurately represent relevant details.

Note that it is only possible to demonstrate that a model is incorrect. Although in some
cases, it is possible to show mathematically that two models are equivalent, it is not possible to
show that either of them correctly represents reality. For example, formal verification techniques
can enable developers to show that a specific software implementation is consistent with a
formal specification. However, only field testing and extended use can indicate that a system
meets the needs of the client. At any time, system models can be falsified due to changes in the
requirements, in the implementation technology, or in the environment.

2.4 A Deeper View into UML

We now describe in detail the five main UML diagrams we use in this book.

• Use case diagrams represent the functionality of the system from a user’s point of
view. They define the boundaries of the system (Section 2.4.1). 

• Class diagrams represent the static structure of a system in terms of objects, their
attributes, operations, and relationships (Section 2.4.2).

• Interaction diagrams represent the system’s behavior in terms of interactions among a
set of objects. They are used to identify objects in the application and implementation
domains (Section 2.4.3). 
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• State machine diagrams represent the behavior of nontrivial objects (Section 2.4.4).

• Activity diagrams are flow diagrams used to represent the data flow or the control
flow through a system (Section 2.4.5).

2.4.1 Use Case Diagrams

Use cases and actors

Actors are external entities that interact with the system. Examples of actors include a
user role (e.g., a system administrator, a bank customer, a bank teller) or another system (e.g., a
central database, a fabrication line). Actors have unique names and descriptions. 

Use cases describe the behavior of the system as seen from an actor’s point of view.
Behavior described by use cases is also called external behavior. A use case describes a
function provided by the system as a set of events that yields a visible result for the actors.
Actors initiate a use case to access system functionality. The use case can then initiate other use
cases and gather more information from the actors. When actors and use cases exchange
information, they are said to communicate. We will see later that we represent these exchanges
with communication relationships.

For example, in an accident management system, field officers (such as a police officer or
a fire fighter) have access to a wireless computer that enables them to interact with a dispatcher.
The dispatcher in turn can visualize the current status of all its resources, such as police cars or
trucks, on a computer screen and dispatch a resource by issuing commands from a workstation.
In this example, field officer and dispatcher can be modeled as actors. 

Figure 2-13 depicts the actor FieldOfficer who invokes the use case ReportEmergency
to notify the actor Dispatcher of a new emergency. As a response, the Dispatcher invokes the

Figure 2-13 An example of a UML use case diagram for First Responder Interactive Emergency
Navigational Database (FRIEND), an accident management system. Associations between actors and use
cases denote information flows. These associations are bidirectional: they can represent the actor initiating
a use case (FieldOfficer initiates ReportEmergency) or a use case providing information to an actor
(ReportEmergency notifies Dispatcher). The box around the use cases represents the system boundary.

ReportEmergency

FieldOfficer
DispatcherOpenIncident

AllocateResources

FRIEND



A Deeper View into UML 45

OpenIncident use case to create an incident report and initiate the incident handling. The

Dispatcher enters preliminary information from the FieldOfficer in the incident database

(FRIEND) and orders additional units to the scene with the AllocateResources use case.

For the textual description of a use case, we use a template composed of six fields (see

Figure 2-14) adapted from [Constantine & Lockwood, 2001]:

• The name of the use case is unique across the system so that developers (and project

participants) can unambiguously refer to the use case. 

• Participating actors are actors interacting with the use case. 

• Entry conditions describe the conditions that need to be satisfied before the use case is

initiated. 

Use case name ReportEmergency

Participating 
actors

Initiated by FieldOfficer
Communicates with Dispatcher

Flow of events 1. The FieldOfficer activates the “Report Emergency” function of her terminal.

2. FRIEND responds by presenting a form to the FieldOfficer.

3. The FieldOfficer fills out the form by selecting the emergency level, type, 
location, and brief description of the situation. The FieldOfficer also 
describes possible responses to the emergency situation. Once the form is 
completed, the FieldOfficer submits the form.

4. FRIEND receives the form and notifies the Dispatcher.

5. The Dispatcher reviews the submitted information and creates an Incident in 
the database by invoking the OpenIncident use case. The Dispatcher selects a 
response and acknowledges the report.

6. FRIEND displays the acknowledgment and the selected 
response to the FieldOfficer.

Entry condition • The FieldOfficer is logged into FRIEND.

Exit condition • The FieldOfficer has received an acknowledgment and the selected response 
from the Dispatcher, OR 

• The FieldOfficer has received an explanation indicating why the transaction 
could not be processed.

Quality 
requirements

• The FieldOfficer’s report is acknowledged within 30 seconds. 
• The selected response arrives no later than 30 seconds after it is sent by the 

Dispatcher.

Figure 2-14 An example of a use case, ReportEmergency.
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• The flow of events describes the sequence of interactions of the use case, which are to
be numbered for reference. The common case (i.e., cases that are expected by the user)
and the exceptional cases (i.e., cases unexpected by the user, such as errors and unusual
conditions) are described separately in different use cases for clarity. We organize the
steps in the flow of events in two columns, the left column representing steps
accomplished by the actor, the right column representing steps accomplished by the
system. Each pair of actor–system steps represents an interaction.

• Exit conditions describe the conditions satisfied after the completion of the use case.

• Quality requirements are requirements that are not related to the functionality of the
system. These include constraints on the performance of the system, its
implementation, the hardware platforms it runs on, and so on. Quality requirements are
described in detail in Chapter 4, Requirements Elicitation.

Use cases are written in natural language. This enables developers to use them for
communicating with the client and the users, who generally do not have an extensive knowledge
of software engineering notations. The use of natural language also enables participants from
other disciplines to understand the requirements of the system. The use of the natural language
allows developers to capture things, in particular special requirements, that cannot easily be
captured in diagrams. 

Use case diagrams can include four types of relationships: communication, inclusion,
extension, and inheritance. We describe these relationships in detail next.

Communication relationships

Actors and use cases communicate when information is exchanged between them.
Communication relationships are depicted by a solid line between the actor and use case
symbol. In Figure 2-13, the actors FieldOfficer and Dispatcher communicate with the
ReportEmergency use case. Only the actor Dispatcher communicates with the use cases
OpenIncident and AllocateResources. Communication relationships between actors and use
cases can be used to denote access to functionality. In the case of our example, a FieldOfficer
and a Dispatcher are provided with different interfaces to the system and have access to
different functionality.

Include relationships

When describing a complex system, its use case model can become quite complex and can
contain redundancy. We reduce the complexity of the model by identifying commonalities in
different use cases. For example, assume that the Dispatcher can press at any time a key to
access a street map. This can be modeled by a use case ViewMap that is included by the use cases
OpenIncident and AllocateResources (and any other use cases accessible by the Dispatcher).
The resulting model only describes the ViewMap functionality once, thus reducing complexity of
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the overall use case model. Two use cases are related by an include relationship if one of them
includes the second one in its flow of events. In use case diagrams, include relationships are
depicted by a dashed open arrow originating from the including use case (see Figure 2-15).
Include relationships are labeled with the string «include».

We represent include relationships in the textual description of the use case with one of
two ways. If the included use case can be included at any point in the flow of events (e.g., the
ViewMap use case), we indicate the inclusion in the Quality requirements section of the use case
(Figure 2-16). If the included use case is invoked during an event, we indicate the inclusion in
the flow of events.

Extend relationships

Extend relationships are an alternate means for reducing complexity in the use case
model. A use case can extend another use case by adding events. An extend relationship
indicates that an instance of an extended use case may include (under certain conditions) the

Figure 2-15 An example of an «include» relationship (UML use case diagram).

Use case name AllocateResources

Participating actor Initiated by Dispatcher

Flow of events . . .

Entry condition • The Dispatcher opens an Incident.

Exit condition • Additional Resources are assigned to the Incident.
• Resources receives notice about their new assignment.
• FieldOfficer in charge of the Incident receives notice about the new 

Resources.

Quality requirements At any point during the flow of events, this use case can include the ViewMap
use case. The ViewMap use case is initiated when the Dispatcher invokes the
map function. When invoked within this use case, the system scrolls the map
so that location of the current Incident is visible to the Dispatcher.

Figure 2-16 Textual representation of include relationships of Figure 2-15. “Include” in bold for clarity.

OpenIncident

AllocateResources

ViewMap
«include»

«include»
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behavior specified by the extending use case. A typical application of extend relationships is the
specification of exceptional behavior. For example (Figure 2-17), assume that the network
connection between the Dispatcher and the FieldOfficer can be interrupted at any time. (e.g.,
if the FieldOfficer enters a tunnel). The use case ConnectionDown describes the set of events
taken by the system and the actors while the connection is lost. ConnectionDown extends the use
cases OpenIncident and AllocateResources. Separating exceptional behavior from common
behavior enables us to write shorter and more focused use cases. In the textual representation of
a use case, we represent extend relationships as entry conditions of the extending use case. For
example, the extend relationships depicted in Figure 2-17 are represented as an entry condition
of the ConnectionDown use case (Figure 2-18). 

The difference between the include and extend relationships is the location of the
dependency. Assume that we add several new use cases for the actor Dispatcher, such as
UpdateIncident and ReallocateResources. If we modeled the ConnectionDown use case with
include relationships, the authors of UpdateIncident and ReallocateResources use cases need
to know about and include the ConnectionDown use case. If we used extend relationships
instead, only the ConnectionDown use case needs to be modified to extend the additional use
cases. In general exception cases (such as help, errors, and other unexpected conditions) are
modeled with extend relationships. Use cases that describe behavior commonly shared by a
limited set of use cases are modeled with include relationships. 

Figure 2-17 An example of an «extend» relationship (UML use case diagram).

Use case name ConnectionDown

Participating actor Communicates with FieldOfficer and Dispatcher.

Flow of events . . .

Entry condition This use case extends the OpenIncident and the AllocateResources use 
cases. It is initiated by the system whenever the network connection between 
the FieldOfficer and Dispatcher is lost.

Exit condition . . .

Figure 2-18 Textual representation of extend relationships of Figure 2-17. “Extends” in bold for clarity.
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Inheritance relationships

An inheritance relationship is a third mechanism for reducing the complexity of a
model. One use case can specialize another more general one by adding more detail. For
example, FieldOfficers are required to authenticate before they can use FRIEND. During early
stages of requirements elicitation, authentication is modeled as a high-level Authenticate use
case. Later, developers describe the Authenticate use case in more detail and allow for several
different hardware platforms. This refinement activity results in two more use cases:
AuthenticateWithPassword which enables FieldOfficers to login without any specific
hardware, and AuthenticateWithCard which enables FieldOfficers to login using a smart
card. The two new use cases are represented as specializations of the Authenticate use case
(Figure 2-19). In the textual representation, specialized use cases inherit the initiating actor and
the entry and exit conditions from the general use case (Figure 2-20).

Figure 2-19 An example of an inheritance relationship (UML use case diagram). The Authenticate use
case is a high-level use case describing, in general terms, the process of authentication.
AuthenticateWithPassword and AuthenticateWithCard are two specializations of Authenticate.

Use case name AuthenticateWithCard

Participating actor Inherited from Authenticate use case.

Flow of events 1. The FieldOfficer inserts her card into the field terminal.

2. The field terminal acknowledges the card and prompts 
the actor for her personal identification number (PIN).

3. The FieldOfficer enters her PIN with the numeric keypad.

4. The field terminal checks the entered PIN against the PIN 
stored on the card. If the PINs match, the FieldOfficer
is authenticated. Otherwise, the field terminal rejects the 
authentication attempt.

Entry condition Inherited from Authenticate use case.

Exit condition Inherited from Authenticate use case.

Figure 2-20 Textual representation of inheritance relationships of Figure 2-19.
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Note that extend relationships and inheritance relationships are different. In an extend
relationship, each use case describes a different flow of events to accomplish a different task. In
Figure 2-17, the OpenIncident use cases describes the actions that occur when the Dispatcher
creates a new Incident, whereas the ConnectionDown use case describes the actions that occur
during network outages. In Figure 2-19, AuthenticateWithPassword and Authenticate both
describe the same task, each at different abstraction levels.

Scenarios

A use case is an abstraction that describes all possible scenarios involving the described
functionality. A scenario is an instance of a use case describing a concrete set of actions.
Scenarios are used as examples for illustrating common cases; their focus is on
understandability. Use cases are used to describe all possible cases; their focus is on
completeness. We describe a scenario using a template with three fields:

• The name of the scenario enables us to refer to it unambiguously. The name of a
scenario is underlined to indicate that it is an instance.

• The participating actor instances field indicates which actor instances are involved in
this scenario. Actor instances also have underlined names. 

• The flow of events of a scenario describes the sequence of events step by step. 

Note that there is no need for entry or exit conditions in scenarios. Entry and exit
conditions are abstractions that enable developers to describe a range of conditions under which
a use case is invoked. Given that a scenario only describes one specific situation, such conditions
are unnecessary (Figure 2-21). 

2.4.2 Class Diagrams

Classes and objects

Class diagrams describe the structure of the system in terms of classes and objects.
Classes are abstractions that specify the attributes and behavior of a set of objects. A class is a
collection of objects that share a set of attributes that distinguish the objects as members of the
collection. Objects are entities that encapsulate state and behavior. Each object has an identity:
it can be referred individually and is distinguishable from other objects.

In UML, classes and objects are depicted by boxes composed of three compartments. The
top compartment displays the name of the class or object. The center compartment displays its
attributes, and the bottom compartment displays its operations. The attribute and operation
compartments can be omitted for clarity. Object names are underlined to indicate that they are
instances. By convention, class names start with an uppercase letter. Objects in object diagrams
may be given names (followed by their class) for ease of reference. In that case, their name starts
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with a lowercase letter. In the FRIEND example (Figures 2-22 and 2-23), Bob and Alice are field
officers, represented in the system as FieldOfficer objects called bob:FieldOfficer and
alice:FieldOfficer. FieldOfficer is a class describing all FieldOfficer objects, whereas
Bob and Alice are represented by two individual FieldOfficer objects.

In Figure 2-22, the FieldOfficer class has two attributes: a name and a badgeNumber. This
indicates that all FieldOfficer objects have these two attributes. In Figure 2-23, the
bob:FieldOfficer and alice:FieldOfficer objects have specific values for these attributes:
“Bob. D.” and “Alice W.”, respectively. In Figure 2-22, the FieldOfficer.name attribute is of
type String, which indicates that only instances of String can be assigned to the
FieldOfficer.name attribute. The type of an attribute is used to specify the valid range of

Scenario name warehouseOnFire

Participating actor 
instances

bob, alice:FieldOfficer
john:Dispatcher

Flow of events 1. Bob, driving down main street in his patrol car, notices smoke coming out 
of a warehouse. His partner, Alice, activates the “Report Emergency” 
function from her FRIEND laptop. 

2. Alice enters the address of the building, a brief description of its location 
(i.e., northwest corner), and an emergency level. In addition to a fire unit, 
she requests several paramedic units on the scene given that area appears 
to be relatively busy. She confirms her input and waits for an 
acknowledgment.

3. John, the Dispatcher, is alerted to the emergency by a beep of his 
workstation. He reviews the information submitted by Alice and 
acknowledges the report. He allocates a fire unit and two paramedic units 
to the Incident site and sends their estimated arrival time (ETA) to Alice.

4. Alice receives the acknowledgment and the ETA.

Figure 2-21 The warehouseOnFire scenario for the ReportEmergency use case.

Figure 2-22 An example of a UML class diagram: classes that participate in the ReportEmergency use
case. Detailed type information is usually omitted until object design (see Chapter 9, Object Design:
Specifying Interfaces).

EmergencyReport Incident

FieldOfficer

name:String
badgeNumber:Integer

Dispatcher

name:String
badgeNumber:Integer

author
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values the attribute can take. Note that when attribute types are not essential to the definition of
the system, attribute type decisions can be delayed until object design. This allows the
developers to concentrate on the functionality of the system and to minimize the number of
trivial changes when the functionality of the system is revised.

Associations and links

A link represents a connection between two objects. Associations are relationships between
classes and represent groups of links. Each FieldOfficer object also has a list of
EmergencyReports that has been written by the FieldOfficer. In Figure 2-22, the line between the
FieldOfficer class and the EmergencyReport class is an association. In Figure 2-23, the line
between the alice:FieldOfficer object and the report_1291:EmergencyReport object is a link.
This link represents a state that is kept in the system to denote that alice:FieldOfficer generated
report_1291:EmergencyReport.

In UML, associations can be symmetrical (bidirectional) or asymmetrical (unidirectional).
All the associations in Figure 2-22 are symmetrical. Figure 2-24 depicts an example of one-
directional association between Polygon and Point. The navigation arrow at the Point end of
the association indicates that the system only supports navigation from the Polygon to the
Point. In other words, given a specific Polygon, it is possible to query all Points that make up

Figure 2-23 An example of a UML object diagram: objects that participate in warehouseOnFire.

Figure 2-24 Example of a one-directional association. Developers usually omit navigation during analysis
and add navigation information during object design, when they make such decisions (see Chapter 8, Object
Design: Reusing Pattern Solutions, and Chapter 9, Object Design: Specifying Interfaces).

report_1291 incident_1515
bob:FieldOfficer

name = “Bob D.”
badgeNumber = 132

john:Dispatcher

name = “John D.”
badgeNumber = 12alice:FieldOfficer

name = “Alice W.”
badgeNumber = 23

Polygon Point
**
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the Polygon. However, the navigation arrow indicates that given a specific Point, it is not
possible to find which Polygons the Point is part of. UML allows navigation arrows to be
displayed on both ends of an association. By convention, however, an association without arrows
indicates that navigation is supported in both directions.

Association class

Associations are similar to classes, in that they can have attributes and operations attached
to them. Such an association is called an association class and is depicted by a class symbol that
contains the attributes and operations and is connected to the association symbol with a dashed
line. For example, in Figure 2-25, the allocation of FieldOfficers to an Incident is modeled as
an association class with attributes role and notificationTime.

Any association class can be transformed into a class and simple associations as shown in
Figure 2-26. Although this representation is similar to Figure 2-25, the association class
representation is clearer in Figure 2-25: an association cannot exist without the classes it links.
Similarly, the Allocation object cannot exist without a FieldOfficer and an Incident.
Although Figure 2-26 carries the same information, this diagram requires careful examination of
the association multiplicity. We examine such modeling trade-offs in Chapter 5, Analysis.

Figure 2-25 An example of an association class (UML class diagram).

Figure 2-26 Alternative model for Allocation (UML class diagram).
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Roles

Each end of an association can be labeled by a role. In Figure 2-22, the roles of the
association between EmergencyReport and FieldOfficer are author and reportsGenerated.
Labeling the end of associations with roles allows us to distinguish among the multiple
associations originating from a class. Moreover, roles clarify the purpose of the association.

Multiplicity 

Each end of an association can be labeled by a set of integers indicating the number of
links that can legitimately originate from an instance of the class connected to the association
end. This set of integers is called the multiplicity of the association end. In Figure 2-22, the
association end author has a multiplicity of l. This means that all EmergencyReports are
written by exactly one FieldOfficer. In other terms, each EmergencyReport object has exactly
one link to an object of class FieldOfficer. The multiplicity of the association end
reportsGenerated role is “many,” shown as a star. The “many” multiplicity is shorthand for
0..n. This means that any given FieldOfficer may be the author of zero or more
EmergencyReports.

In UML, an association end can have an arbitrary set of integers as a multiplicity. For
example, an association could allow only a prime number of links and thus, would have a
multiplicity 1, 2, 3, 5, 7, 11, 13, and so forth. In practice, however, most of the associations we
encounter belong to one of the following three types (see Figure 2-27):

• A one-to-one association has a multiplicity 1 on each end. A one-to-one association
between two classes (e.g., PoliceOfficer and BadgeNumber) means that exactly one
link exists between instances of each class (e.g., a PoliceOfficer has exactly one
BadgeNumber, and a BadgeNumber denotes exactly one PoliceOfficer).

• A one-to-many association has a multiplicity 1 on one end and 0..n (also represented
by a star) or 1..n on the other. A one-to-many association between two classes (e.g.,
FireUnit and FireTruck) denotes composition (e.g., a FireUnit owns one or more
FireTrucks, a FireTruck is owned exactly by one FireUnit).

• A many-to-many association has a multiplicity 0..n or 1..n on both ends. A many-
to-many association between two classes (e.g., FieldOfficer and IncidentReport)
denotes that an arbitrary number of links can exist between instances of the two classes
(e.g., a FieldOfficer can write many IncidentReports, an IncidentReport can be
written by many FieldOfficers). This is the most complex type of association.

Adding multiplicity to associations increases the amount of information we capture from
the application or the solution domain. Specifying the multiplicity of an association becomes
critical when we determine which use cases are needed to manipulate the application domain
objects. For example, consider a file system made of Directories and Files. A Directory can
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contain any number of FileSystemElements. A FileSystemElement is a concept that denotes
either a Directory or a File. In case of a strictly hierarchical system, a FileSystemElement is
part of exactly one Directory, which we denote with a one-to-many multiplicity (Figure 2-28).

If, however, a File or a Directory can be simultaneously part of more than one
Directory, we need to represent the aggregation of FileSystemElement into Directories as a
many-to-many association (see Figure 2-29).

Figure 2-27 Examples of multiplicity (UML class diagram). The association between PoliceOfficer
and BadgeNumber is one-to-one. The association between FireUnit and FireTruck is one-to-many. The
association between FieldOfficer and IncidentReport is many-to-many.

Figure 2-28 Example of a hierarchical file system. A Directory can contain any number of
FileSystemElements (a FileSystemElement is either a File or a Directory). A given
FileSystemElement, however, is part of exactly one Directory.

Figure 2-29 Example of a nonhierarchical file system. A Directory can contain any number of
FileSystemElements (a FileSystemElement is either a File or a Directory). A given
FileSystemElement can be part of many Directories.
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This discussion may seem to be considering detailed issues that could be left for later
activities in the development process. The difference between a hierarchical file system and a
nonhierarchical one, however, is also in the functionality it offers. If a system allows a given
File to be part of multiple Directories, we need to define a use case describing how a user
adds an existing File to existing Directories (e.g., the Unix link command or the Macintosh
MakeAlias menu item). Moreover, use cases removing a File from a Directory must specify
whether the File is removed from one Directory only or from all Directories that reference
it. Note that a many-to-many association can result in a substantially more complex system.

Aggregation

Associations are used to represent a wide range of connections among a set of objects. In
practice, a special case of association occurs frequently: aggregation. For example, a State
contains many Counties, which in turn contain many Townships. A PoliceStation is
composed of PoliceOfficers. A Directory contains a number of Files. Such relationships
could be modeled using a one-to-many association. Instead, UML provides the concept of an
aggregation, denoted by a simple line with a diamond at the container end of the association (see
Figures 2-28 and 2-30). One-to-many associations and aggregations, although similar, cannot be
used interchangeably: aggregations denote hierarchical aspects of the relationship and can have
either one-to-many or many-to-many multiplicity, whereas one-to-many associations imply a
peer relationship. For example, in Figure 2-30, the PoliceOfficers are part of the
PoliceStation. In Figure 2-22, a FieldOfficer writes zero or many EmergencyReports.
However, the FieldOfficer is not composed EmergencyReports. Consequently, we use an
association in the latter case and an aggregation in the former case.

Qualification

Qualification is a technique for reducing multiplicity by using keys. Associations with a
0..1 or 1 multiplicity are easier to understand than associations with a 0..n or 1..n multiplicity.
Often in the case of a one-to-many association, objects on the “many” side can be distinguished

Figure 2-30 Examples of aggregations (UML class diagram). A State contains many Counties, which
in turn contains many Townships. A PoliceStation has many PoliceOfficers. A file system Directory
contains many Files.
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* *
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from one another using a name. For example, in a hierarchical file system, each file belongs to
exactly one directory. Each file is uniquely identified by a name in the context of a directory.
Many files can have the same name in the context of the file system; however, two files cannot
share the same name within the same directory. Without qualification (see top of Figure 2-31),
the association between Directory and File has a one multiplicity on the Directory side and a
zero-to-many multiplicity on the File side. We reduce the multiplicity on the File side by using
the filename attribute as a key, also called a qualifier (see top of Figure 2-31). The relationship
between Directory and File is called a qualified association.

Reducing multiplicity is always preferable, as the model becomes clearer and fewer cases
have to be taken into account. Developers should examine each association that has a one-to-
many or many-to-many multiplicity to see if a qualifier can be added. Often, these associations
can be qualified with an attribute of the target class (e.g., filename in Figure 2-31).

Inheritance

Inheritance is the relationship between a general class and one or more specialized
classes. Inheritance enables us to describe all the attributes and operations that are common to a
set of classes. For example, FieldOfficer and Dispatcher both have name and badgeNumber
attributes. However, FieldOfficer has an association with EmergencyReport, whereas
Dispatcher has an association with Incident. The common attributes of FieldOfficer and
Dispatcher can be modeled by introducing a PoliceOfficer class that is specialized by the
FieldOfficer and the Dispatcher classes (see Figure 2-32). PoliceOfficer, the
generalization, is called a superclass. FieldOfficer and Dispatcher, the specializations, are
called the subclasses. The subclasses inherit the attributes and operations from their parent
class. Abstract classes (defined in Section 2.3.3) are distinguished from concrete classes by
italicizing the name of abstract classes. In Figure 2-32, PoliceOfficer is an abstract class.
Abstract classes are used in object-oriented modeling to classify related concepts, thus reducing
the overall complexity of the model. 

Figure 2-31 Example of how a qualified association reduces multiplicity (UML class diagram). Adding a
qualifier clarifies the class diagram and increases the conveyed information. In this case, the model
including the qualification denotes that the name of a file is unique within a directory.
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*
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Object behavior is specified by operations. An object requests the execution of an
operation from another object by sending it a message. The message is matched up with a
method defined by the class to which the receiving object belongs or by any of its superclasses.
The methods of a class in an object-oriented programming language are the implementations of
these operations. 

The distinction between operations and methods allows us to distinguish between the
specification of behavior (i.e., an operation) and its implementation (i.e., a set of methods that
are possibly defined in different classes in the inheritance hierarchy). For example, the class
Incident in Figure 2-33 defines an operation, called assignResource(), which, given a
FieldOfficer, creates an association between the receiving Incident and the specified
Resource. The assignResource() operation may also have a side effect such as sending a
notification to the newly assigned Resource. The close() operation of Incident is responsible
for closing the Incident. This includes going over all the resources that have been assigned to
the incident over time and collecting their reports. Although UML distinguishes operations from
methods, in practice, developers usually do not and simply refer to methods.

Figure 2-32 An example of an inheritance (UML class diagram). PoliceOfficer is an abstract class
which defines the common attributes and operations of the FieldOfficer and Dispatcher classes. 

Figure 2-33 Examples of operations provided by the Incident class (UML class diagram).
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Applying class diagrams

Class diagrams are used for describing the structure of a system. During analysis, software
engineers build class diagrams to formalize application domain knowledge. Classes represent
participating objects found in use cases and interaction diagrams, and describe their attributes and
operations. The purpose of analysis models is to describe the scope of the system and discover its
boundaries. For example, using the class diagram pictured in Figure 2-22, an analyst could examine
the multiplicity of the association between FieldOfficer and EmergencyReport (i.e., one
FieldOfficer can write zero or more EmergencyReports, but each EmergencyReport is written
by exactly one FieldOfficer) and ask the user whether this is correct. Can there be more than one
author of an EmergencyReport? Can there be anonymous reports? Depending on the answer from
the user, the analyst would then change the model to reflect the application domain. The
development of analysis models is described in Chapter 5, Analysis.

Analysis models do not focus on implementation. Concepts such as interface details,
network communication, and database storage are not represented. Class diagrams are refined
during system design and object design to include classes representing the solution domain. For
example, the developer adds classes representing databases, user interface windows, adapters
around legacy code, optimizations, and so on. The classes are also grouped into subsystems with
well-defined interfaces. The development of design models is described in Chapter 6, System
Design: Decomposing the System, Chapter 8, Object Design: Reusing Pattern Solutions,
Chapter 9, Object Design: Specifying Interfaces, and Chapter 10, Mapping Models to Code.

2.4.3 Interaction Diagrams

Interaction diagrams describe patterns of communication among a set of interacting objects.
An object interacts with another object by sending messages. The reception of a message by an
object triggers the execution of a method, which in turn may send messages to other objects.
Arguments may be passed along with a message and are bound to the parameters of the
executing method in the receiving object. In UML, interaction diagrams can take one of two
forms: sequence diagrams or communication diagrams.

Sequence diagrams represent the objects participating in the interaction horizontally and
time vertically. For example, consider a watch with two buttons (hereafter called 2Bwatch).
Setting the time on 2Bwatch requires the actor 2BWatchOwner to first press both buttons
simultaneously, after which 2Bwatch enters the set time mode. In the set time mode, 2Bwatch
blinks the number being changed (e.g., the hours, minutes, seconds, day, month, or year).
Initially, when the 2BWatchOwner enters the set time mode, the hours blink. If the actor presses
the first button, the next number blinks (e.g, if the hours are blinking and the actor presses the
first button, the hours stop blinking and the minutes start blinking). If the actor presses the
second button, the blinking number is incremented by one unit. If the blinking number reaches
the end of its range, it is reset to the beginning of its range (e.g., assume the minutes are blinking
and its current value is 59, its new value is set to 0 if the actor presses the second button). The
actor exits the set time mode by pressing both buttons simultaneously. Figure 2-34 depicts a
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sequence diagram for an actor setting his 2Bwatch one minute ahead. Each column represents an
object that participates in the interaction. Messages are shown by solid arrows. Labels on solid
arrows represent message names and may contain arguments. Activations (i.e., executing
methods) are depicted by vertical rectangles. The actor who initiates the interaction is shown in
the left-most column. The messages coming from the actor represent the interactions described
in the use case diagrams. If other actors communicate with the system during the use case, these
actors are represented on the right-hand side and can receive messages. Although for simplicity,
interactions among objects and actors are uniformly represented as messages, the modeler
should keep in mind that interactions between actors and the system are of a different nature
than interactions among objects.

Sequence diagrams can be used to describe either an abstract sequence (i.e., all possible
interactions) or concrete sequences (i.e., one possible interaction, as in Figure 2-34). When
describing all possible interactions, sequence diagrams provide notations for iterations and
conditionals. An iteration is denoted by a combined fragment labeled with the loop operator (see
Figure 2-35). An alternative is denoted by a combined fragment containing a partition for each
alternative. The alternatives are selected by guards on the first message of the partition ([i>0]
and [else] in Figure 2-35). If i is positive, the top alternative of the alt combined fragment is
executed and the op1() message is sent. Otherwise, the bottom alternative is executed and the
op2() message is sent. 

Figure 2-34 Example of a sequence diagram: setting the time on 2Bwatch.
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Communication diagrams depict the same information as sequence diagrams.
Communication diagrams represent the sequence of messages by numbering the interactions.
On one hand, this removes the need for geometrical constraints on the objects and results in a
more compact diagram. On the other hand, the sequence of messages becomes more difficult to
follow. Figure 2-36 depicts the communication diagram that is equivalent to the sequence
diagram of Figure 2-34.

Figure 2-35  Examples of conditions and iterators in sequence diagrams.

Figure 2-36 Example of a communication diagram: setting the time on 2Bwatch. This diagram represents
the same use case as the sequence diagram of Figure 2-34.
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Applying interaction diagrams

Interaction diagrams describe interactions among several objects. One of the main reasons
for constructing an interaction diagram is to uncover the responsibilities of the classes in the
class diagrams and to discover even new classes. In other words, the interaction diagram helps
the developer in deciding which objects require particular operations. Typically, there is an
interaction diagram for every use case with focus on the event flow. The developer identifies the
objects that participate in the use case, and assigns pieces of the use case behavior to the objects
in the form of operations.

The class diagram and the associated interaction diagrams are usually constructed in
tandem after the initial class diagram has been defined. This process often also leads to
refinements in the use case (e.g., correcting ambiguous descriptions, adding missing behavior)
and consequently, the discovery of more objects and more services. We describe in detail the use
of interaction diagrams in Chapter 5, Analysis.

2.4.4 State Machine Diagrams

A UML state machine is a notation for describing the sequence of states an object goes through
in response to external events. UML state machines are extensions of the finite state machine
model. On one hand, state machines provide notation for nesting states and state machines (i.e.,
a state can be described by a state machine). On the other hand, state machines provide notation
for binding transitions with message sends and conditions on objects. UML state machines are
largely based on Harel’s statecharts [Harel, 1987] and have been adapted for use with object
models [Douglass, 1999]. UML state machines can be used to represent any Mealy or Moore
state machine.

A state is a condition satisfied by the attributes of an object. For example, an Incident
object in FRIEND can exist in four states: Active, Inactive, Closed, and Archived (see
Figure 2-37). An active Incident denotes a situation that requires a response (e.g., an ongoing
fire, a traffic accident). An inactive Incident denotes a situation that was handled, but for which
reports are yet to be written (e.g., the fire has been put out, but damage estimates have not yet
been completed). A closed Incident denotes a situation that has been handled and documented.
An archived Incident is a closed Incident whose documentation has been moved to off-site
storage. In this example, we can represent these four states with a single attribute in the
Incident class—a status attribute that can take any of four values: Active, Inactive, Closed,
and Archived. In general, a state can be computed from the values of several attributes. 

A transition represents a change of state triggered by events, conditions, or time. For
example, Figure 2-37 depicts three transitions: from the Active state into the Inactive
state, from the Inactive state to the Closed state, and from the Closed state to the Archived
state. 

A state is depicted by a rounded rectangle. A transition is depicted by an open arrow
connecting two states. States are labeled with their name. A small solid black circle indicates the
initial state. A circle surrounding a small solid black circle indicates a final state.
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Figure 2-38 displays another example, a state machine for the 2Bwatch (for which we
constructed a sequence diagram in Figure 2-34). At the highest level of abstraction, 2Bwatch has
two states, MeasureTime and SetTime. 2Bwatch changes states when the user presses and
releases both buttons simultaneously. During the transition from the SetTime state to the
MeasureTime state, 2Bwatch beeps. This is indicated by the action /beep on the transition. When
2Bwatch is first powered on, it is in the SetTime state. This is modeled by making SetTime the
initial state. When the battery of the watch runs out, the 2Bwatch is permanently out of order.
This is indicated with a final state. In this example, transitions can be triggered by an event (e.g.,
pressBothButtons) or by the passage of time (e.g., after 2 min.).

Figure 2-39 depicts a refined state machine diagram for the 2Bwatch depicted in
Figure 2-38 using actions to denote the behavior within the states. Actions are fundamental units
of processing that can take a set of inputs, produce a set of outputs, and can change the state of
the system. Actions normally take a short amount of time to execute and are not interruptable.

Figure 2-37  A UML state machine diagram for the Incident class.

Figure 2-38 State machine diagram for 2Bwatch set time function.
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For example, an action can be realized by an operation call. Actions can occur in three places in
a state machine:

• when a transition is taken (e.g., beep when the transition between SetTime and
MeasureTime is fired on the pressBothButtons event)

• when a state is entered (e.g., blink hours in the SetTime state in Figure 2-39)
• when a state is exited (e.g., stop blinking in the SetTime state in Figure 2-39).

During a transition, the exit actions of the source state are executed first, then the actions
associated with the transition are executed, then the entry actions of the destination state are
executed. The exit and entry actions are always executed when a state is exited or entered,
respectively. They do not depend on the specific transition that was used to exit or enter the state.

An internal transition is a transition that does not leave the state. Internal transitions are
triggered by events and can have actions associated with them. However, the firing of an internal
transition does not result in the execution of any exit or entry actions. For example, in
Figure 2-39, the SetTime state has two internal transitions, one associated with pressing the left
button and one associated with pressing the right button.

An activity is a coordinated set of actions. A state can be associated an activity that is
executed as long as an object resides in this state. While an action is short and non-interruptable,
an activity can take a substantial amount of time and is interrupted when a transition exiting the

Figure 2-39 Internal transitions associated with the SetTime state (UML state machine diagram).
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state is fired. Activities are associated with state using the do label and are placed inside the state
where they executed. For example, in Figure 2-39, count ticks is an activity associated with
the MeasureTime state

Nested state machines reduce complexity. They can be used instead of internal
transitions. In Figure 2-40, the current number is modeled as a nested state, whereas actions
corresponding to modifying the current number are modeled using internal transitions. Note that
each state could be modeled as a nested state machine. For example, the BlinkHours state
machine would have 24 substates that correspond to the hours in the day; transitions between
these states would correspond to pressing the second button.

Applying state machine diagrams

State machine diagrams are used to represent nontrivial behavior of a subsystem or an
object. Unlike interaction diagrams that focus on the events impacting the behavior of a set of
objects, state machine diagrams make explicit which attribute or set of attributes have an impact
on the behavior of a single object. State machines are used to identify object attributes and to
refine the behavior description of an object, and interaction diagrams are used to identify
participating objects and the services they provide. State machine diagrams can also be used
during system and object design to describe solution domain objects with interesting behavior.
We describe the use of state machine diagrams in detail in Chapter 5, Analysis, and Chapter 6,
System Design: Decomposing the System.

2.4.5 Activity Diagrams

UML activity diagrams represent the sequencing and coordination of lower level behaviors. An
activity diagram denotes how a behavior is realized in terms of one or several sequences of

Figure 2-40 Refined state machine associated with the SetTime state (UML state machine diagram). lB
and rB correspond to pressing the left and right button, respectively.
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activities and the object flows needed for coordinating the activities. Activity diagrams are
hierarchical: an activity is made out of either an action or a graph of subactivities and their
associated object flow. Figure 2-41 is an activity diagram corresponding to the state diagram in
Figure 2-37. Rounded rectangles represent actions and activities. Edges between activities
represent control flow. An activity can be executed only after all predecessor activities
completed. 

Control nodes coordinate control flows in an activity diagram, providing mechanisms for
representing decisions, concurrency, and synchronization. The main control nodes we use are
decisions, fork nodes, and join nodes.

Decisions are branches in the control flow. They denote alternatives based on a condition
of the state of an object or a set of objects. Decisions are depicted by a diamond with one or
more incoming open arrows and two or more outgoing arrows. The outgoing edges are labeled
with the conditions that select a branch in the control flow. The set of all outgoing edges from a
decision represents the set of all possible outcomes. In Figure 2-42, a decision after the
OpenIncident action selects between three branches: If the incident is of high priority and if it is
a fire, the FireChief is notified. If the incident is of high priority and is not a fire, the
PoliceChief is notified. Finally, if neither condition is satisfied, that is, if the Incident is of low
priority, no superior is notified and the resource allocation proceeds.

Fork nodes and join nodes represent concurrency. Fork nodes denote the splitting of the
flow of control into multiple threads, while join nodes denotes the synchronization of multiple
threads and their merging of the flow of control into a single thread. For example, in
Figure 2-43, the actions AllocateResources, Coordinate–Resources, and DocumentIncident
may all occur in parallel. However, they can only be initiated after the OpenIncident action, and
the ArchiveIncident action may only be initiated after all other activities have been completed.

Activities may be grouped into swimlanes (also called activity partitions) to denote the
object or subsystem that implements the actions. Swimlanes are represented as rectangles
enclosing a group of actions. Transitions may cross swimlanes. In Figure 2-44, the Dispatcher
swimlane groups all the actions that are performed by the Dispatcher object. The
FieldOfficer swimlane denotes that the FieldOfficer object is responsible for the
DocumentIncident action.

Figure 2-41 A UML activity diagram for Incident. During the action HandleIncident, the Dispatcher
receives reports and allocates resources. Once the Incident is closed, the Incident moves to the
DocumentIncident activity during which all participating FieldOfficers and Dispatchers document the
Incident. Finally, the ArchiveIncident activity represents the archival of the Incident related
information onto slow access medium.
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Figure 2-42 Example of decision in the OpenIncident process. If the Incident is a fire and is of high
priority, the Dispatcher notifies the FireChief. If it is a high-priority Incident that is not a fire, the
PoliceChief is notified. In all cases, the Dispatcher allocates resources to deal with the Incident.

Figure 2-43 An example of fork and join nodes in a UML activity diagram.

Figure 2-44 An example of swimlanes in a UML activity diagram.
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Applying activity diagrams

Activity diagrams provide a task-centric view of the behavior of a set of objects. They can
be used: for example, to describe sequencing constraints among use cases, sequential activities
among a group of objects, or the tasks of a project. In this book, we use activity diagrams to
describe the activities of software development in Chapter 14, Project Management, and
Chapter 15, Software Life Cycle.

2.4.6 Diagram Organization

Models of complex systems quickly become complex as developers refine them. The complexity
of models can be dealt with by grouping related elements into packages. A package is a
grouping of model elements, such as use cases or classes, defining scopes of understanding.

For example, Figure 2-45 depicts use cases of the FRIEND system, grouped by actors.
Packages are displayed as rectangles with a tab attached to their upper-left corner. Use cases
dealing with incident management (e.g., creating, resource allocation, documentation) are grouped
in the IncidentManagement package. Use cases dealing with incident archive (e.g., archiving an
incident, generating reports from archived incidents) are grouped in the IncidentArchive
package. Use cases dealing with system administration (e.g., adding users, registering end stations)
are grouped in the SysAdministration package. This enables the client and the developers to
organize use cases into related groups and to focus on only a limited set of use cases at a time. 

Figure 2-45 Example of packages: use cases of FRIEND organized by actors (UML use case diagram). 
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Figures 2-46 and 2-47 are examples of class diagrams using packages. Classes from the
ReportEmergency use case are organized according to the site where objects are created.
FieldOfficer and EmergencyReport are part of the FieldStation package, and Dispatcher
and Incident are part of the DispatcherStation. Figure 2-47 displays the packages with the
model elements they contain, and Figure 2-46 displays the same information without the
contents of each package. Figure 2-46 is a higher-level picture of the system and can be used for
discussing system-level issues, whereas Figure 2-47 is a more detailed view that can be used to
discuss the content of specific packages.

Packages are used to deal with complexity in the same way a user organizes files and
subdirectories into directories. However, packages are not necessarily hierarchical: the same
class may appear in more than one package. To reduce inconsistencies, classes (more generally
model elements) are owned by exactly one package, whereas the other packages are said to refer
to the modeling element. Note that packages are organizing constructs, not objects. They have
no associated behavior and cannot send and receive messages.

A note is a comment attached to a diagram. Notes are used by developers for attaching
information to models and model elements. This is an ideal mechanism for recording

Figure 2-46 Example of packages. This figure displays the same packages as Figure 2-45 except that the
details of each packages are suppressed (UML use case diagram).

Figure 2-47 Example of packages. The FieldOfficer and EmergencyReport classes are located in the
FieldStation package, and the Dispatcher and Incident classes are located on the DispatcherStation
package.
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outstanding issues relevant to a model, clarifying a complex point, or recording to-dos or
reminders. Although notes have no semantics per se, they are sometimes used to express
constraints that cannot otherwise be expressed in UML. Figure 2-48 is an example of a note.

2.4.7 Diagram Extensions

The goal of the UML designers was to provide a set of notations to model a broad class of
software systems. They also recognized that a fixed set of notations could not achieve this goal,
because it is impossible to anticipate the needs encountered in all application and solution
domains. For this reason, UML provides a number of extension mechanisms enabling the
modeler to extend the language. In this section, we describe two such mechanisms, stereotypes
and constraints.

A stereotype is an extension mechanism that allows developers to classify model
elements in UML. A stereotype is represented by string enclosed by guillemets (e.g.,
«boundary») and attached to the model element to which it applies, such as a class or an
association. Formally, attaching a stereotype to a model element is semantically equivalent to
creating a new class in the UML meta-model (i.e., the model that represents the constructs of
UML). This enables modelers to create new kinds of building blocks that are needed in their
domain. For example, during analysis, we classify objects into three types: entity, boundary, and
control. Entity, boundary, and control objects have the same structure (i.e., they have attributes,
operations, and associations), but serve different purposes. The base UML language only
includes one type of object. To represent these three types, we use the stereotypes «entity»,
«boundary», and «control» (Figure 2-49). The «entity», «boundary», and «control»

stereotypes are described in Chapter 5, Analysis. Another example is the relationships among
use cases. As we saw in Section 2.4.1, include relationships in use case diagrams are denoted
with a dashed open arrow and the «include» stereotype. 

A constraint is a rule that is attached to a UML model element restricting its semantics.
This allows us to represent phenomena that cannot otherwise be expressed with UML. For
example, in Figure 2-50, an Incident may be associated with one or more EmergencyReports
from the field. However, it is important that the Dispatchers are able to view the reports
chronologically. We represent the chronological ordering of EmergencyReport to Incident with

Figure 2-48 An example of a note. Notes can be attached to a specific element in a diagram.
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the constraint {ordered by time of receipt}. Constraints can be expressed as an informal
string or by using a formal language such as OCL (Object Constraint Language, [OMG, 2009]).
We describe OCL and the use of constraints in Chapter 9, Object Design: Specifying Interfaces.

2.5 Further Readings

The historic roots of modeling notations can be traced back to structured analysis [De Marco,
1978] and structured design [Yourdon & Constantine, 1975], which is based on functional
decomposition. These methods were based data flow diagrams [De Marco, 1978]. Data flow
diagrams are quite important for software engineers who need to maintain legacy systems
designed with structured analysis techniques.

UML came out of the teachings and efforts of many researchers and practitioners, some of
whom we cited earlier in this chapter. The efforts of Booch, Jacobson, and Rumbaugh enabled a
broadly accepted unified notation. Their earlier works [Booch, 1994], [Jacobson et al., 1992],
[Rumbaugh et al., 1991] give much insight into the roots of object-oriented analysis and design
and still provide valuable knowledge about object-oriented modeling.

Because it was designed to address a broad range of systems and concern, UML is a
complex standard. In this chapter, we focused on the basic elements of UML that you need to
understand before proceeding with the next chapters. For further information on UML, refer to
the following books:

UML Distilled [Fowler, 2003] is a brief introduction to UML and illustrated with many
examples. For readers without any knowledge of UML, this book is a useful overview to get into
the notation quickly.

The Unified Modeling Language User Guide [Booch et al., 2005] is a comprehensive
presentation of UML by its principal designers. It covers much more material than UML
Distilled and is more appropriate for the advanced modeler. As the UML User Guide has fewer
examples, UML Distilled is more appropriate for novices.

Figure 2-49 Examples of stereotypes (UML class diagram).

Figure 2-50 An example of constraint (UML class diagram).
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The OMG Unified Modeling Language Superstructure [OMG, 2009] is the official
specification of UML. It is continuously maintained by a revision task force that is responsible
for clarifying ambiguities, correcting errors, and resolving inconsistencies found by the UML
community.

2.6 Exercises

2-1 Consider an ATM system. Identify at least three different actors that interact with this
system.

2-2 Can the system under consideration be represented as an actor? Justify your answer.

2-3 What is the difference between a scenario and a use case? When do you use each
construct?

2-4 Draw a use case diagram for a ticket distributor for a train system. The system includes
two actors: a traveler who purchases different types of tickets, and a central computer
system that maintains a reference database for the tariff. Use cases should include
BuyOneWayTicket, BuyWeeklyCard, BuyMonthlyCard, and UpdateTariff. Also include
the following exceptional cases: TimeOut (i.e., traveler took too long to insert the right
amount), TransactionAborted (i.e., traveler selected the cancel button without
completing the transaction), DistributorOutOfChange, and DistributorOutOfPaper.

2-5 Write the flow of events and specify all fields for the use case UpdateTariff that you
drew in Exercise 2-4. Do not forget to specify any relationships.

2-6 Draw a class diagram representing a book defined by the following statement: “A book
is composed of a number of parts, which in turn are composed of a number of chapters.
Chapters are composed of sections.” Focus only on classes and relationships.

2-7 Add multiplicity to the class diagram you produced in Exercise 2-6.

2-8 Draw an object diagram representing the first part of this book (i.e., Part I, Getting
Started). Make sure that the object diagram you draw is consistent with the class
diagram of Exercise 2-6.

2-9 Extend the class diagram of Exercise 2-6 to include the following attributes:

• a book includes a publisher, publication date, and an ISBN 
• a part includes a title and a number
• a chapter includes a title, a number, and an abstract
• a section includes a title and a number.

2-10 Consider the class diagram of Exercise 2-9. Note that the Part, Chapter, and Section
classes all include title and number attributes. Add an abstract class and an inheritance
relationship to factor out these two attributes into the abstract class.

2-11 Draw a class diagram representing the relationship between parents and children. Take
into account that a person can have both a parent and a child. Annotate associations
with roles and multiplicities.
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2-12 Draw a class diagram for bibliographic references. Use the references in Appendix C,
Bibliography, to test your class diagram. Your class diagram should be as detailed as
possible.

2-13 Draw a sequence diagram for the warehouseOnFire scenario of Figure 2-21. Include
the objects bob, alice, john, FRIEND, and instances of other classes you may need.
Draw only the first five message sends.

2-14 Draw a sequence diagram for the ReportIncident use case of Figure 2-14. Draw only
the first five message sends. Make sure it is consistent with the sequence diagram of
Exercise 2-13.

2-15 Consider the process of ordering a pizza over the phone. Draw an activity diagram
representing each step of the process, from the moment you pick up the phone to the
point where you start eating the pizza. Do not represent any exceptions. Include
activities that others need to perform.

2-16 Add exception handling to the activity diagram you developed in Exercise 2-15.
Consider at least three exceptions (e.g., delivery person wrote down wrong address,
delivery person brings wrong pizza, store out of anchovies).

2-17 Consider the software development activities which we described in Section 1.4 in
Chapter 1, Introduction to Software Engineering. Draw an activity diagram depicting
these activities, assuming they are executed strictly sequentially. Draw a second activity
diagram depicting the same activities occurring incrementally (i.e., one part of the
system is analyzed, designed, implemented, and tested completely before the next part
of the system is developed). Draw a third activity diagram depicting the same activities
occurring concurrently.
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3
Project Organization 
and Communication
Two electrical boxes for a rocket, manufactured by different 
contractors, were connected by a pair of wires. Thanks to a 
thorough preflight check, it was discovered that the wires had 
been reversed. After the rocket crashed, the inquiry board 
revealed that the contractors had indeed corrected the reversed 
wires as instructed.
In fact, both of them had.

Software engineering is a collaborative activity. The development of software brings together
participants from different backgrounds, such as domain experts, analysts, designers,
programmers, managers, technical writers, graphic designers, and users. No single participant
can understand or control all aspects of the system under development, and thus, all participants
depend on others to accomplish their work. Moreover, any change in the system or the
application domain requires participants to update their understanding of the system. These
dependencies make it critical to share information in an accurate and timely manner.

Communication can take many forms depending on the type of activity it is supporting.
Participants communicate their status during regular meetings and record it into meeting
minutes. Participants communicate project status to the client during client reviews. The
communication of requirements and design alternatives is supported by models and their
corresponding documents. Crises and misunderstandings are handled through spontaneous
information exchanges such as telephone calls, messages, hallway conversations, and ad hoc
meetings. As software engineering projects become large, the time each participant must spend
in communication increases, thus decreasing the time spent on technical activities. To address
these issues, the organization of projects into teams and the sharing of information through
formal and informal channels is essential. 

We first describe the basic concepts associated with project organization, such as task,
work product, and deliverable. We then describe the communication mechanisms available to
participants. Finally, we describe the activities associated with project organization and
communication. This chapter is written from the perspective of a project participant (e.g., a
developer) who needs to understand the project organization and communication infrastructure.
The creation of the project organization and communication infrastructure is the task of the
project manager and is the topic of Chapter 14, Project Management.
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3.1 Introduction: A Rocket Example

When realizing a system, developers focus on constructing a system that behaves according to
specifications. When interacting with other project participants, developers focus on
communicating information accurately and efficiently. Even if communication may not appear
to be a creative or challenging activity, it contributes as much to the success of the project as a
good design or efficient implementation, as illustrated by the following example [Lions, 1996].

Ariane 501

June 4, 1996, 30 seconds into lift-off, Ariane 501, the first prototype of the Ariane 5 series, exploded. 
The main navigational computer experienced an arithmetic overflow, shut down, and handed control 
over to its twin backup, as it was designed to do. The backup computer, having experienced the same 
exception a few hundredths of a second earlier, had already shut down. The rocket, without a navigation 
system, took a fatal sharp turn to correct a deviation that had not occurred.

An independent board of inquiry took less than 2 months to document how a software error resulted in
the massive failure. The navigational system of the Ariane 5 design was one of the few components of
Ariane 4 that was reused. It had been flight tested and had not failed for Ariane 4. 

The navigation system is responsible for calculating course corrections from a specified trajectory based
on input from the inertial reference system. An inertial reference system allows a moving vehicle (e.g.,
a rocket) to compute its position solely based on sensor data from accelerometers and gyroscopes, that
is, without reference to the outside world. The inertial system must first be initialized with the starting
coordinates and align its axis with the initial orientation of the rocket. The alignment calculations are
done by the navigation system before launch and need to be continuously updated to take into account
the rotation of the Earth. Alignment calculations are complex and take approximately 45 minutes to
complete. Once the rocket is launched, the alignment data are transferred to the flight navigational
system. By design, the alignment calculations continue for another 50 seconds after the transfer of data
to the navigation system. The decision enables the countdown to be stopped after the transfer of
alignment data takes place but before the engines are ignited without having to restart the alignment
calculations (that is, without having to restart a 45-minute calculation cycle). In the event the launch
succeeds, the alignment module just generates unused data for another 40 seconds after lift-off.

The computer system of Ariane 5 differed from Ariane 4. The electronics were doubled: two inertial
reference systems to compute the position of the rocket, two computers to compare the planned
trajectory with the actual trajectory, and two sets of control electronics to steer the rocket. If any
component would fail, the backup system would take over. 

The alignment system, designed for onground calculations only, used 16-bit words to store horizontal
velocity (more than enough for displacements due to the wind and to the rotation of the earth). Thirty
seconds into flight, the horizontal velocity of Ariane 5 caused an overflow, raised an exception that was
handled by shutting down the onboard computer and handing control to the backup system.

Discussion. The alignment software had not been adequately tested. Although it had been subjected to
thousands of tests, none included an actual trajectory. The navigation system was tested individually.
Tests were specified by the system team and executed by the builders of the navigation system. The
system team did not realize that the alignment module could cause the main processor to shut down,
especially not in flight. The component team and the system team had failed to communicate.
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In this chapter, we discuss organizational and communication issues within a software
project. This topic is not specific to software engineering. Communication is, however,
pervasive throughout a software development project. Communication failure is costly and can
have a high, and sometimes fatal, impact on the project and the quality of the delivered system.

3.2 An Overview of Projects

The techniques and notations we presented in Chapter 2, Modeling with UML, enable project
participants to build models of the system and communicate about them. However, system
models are not the only information needed when communicating in a project. For example,
developers need to know

• Who is responsible for which part of the system?
• Which part of the system is due by when?
• Who should be contacted when a problem with a specific version of a component is

discovered?
• How should a problem be documented?
• What are the quality criteria for evaluating the system?
• In which form should new requirements be communicated to developers?
• Who should be informed of new requirements?
• Who is responsible for talking to the client?

Although these questions can be relatively easy answered when all participants share a
coffee break in the afternoon, the development of large software systems usually does not
succeed with such an ad hoc approach. From a developer’s perspective, a project consists of four
components (Figure 3-1): 

• Work product. This is any item produced by the project, such as a piece of code, a
model, or a document. Work products produced for the client are called deliverables.

• Schedule. This specifies when work on the project should be accomplished.
• Participant. This is any person participating in a project. Sometimes we also call the

participant project member.

Figure 3-1 Model of a project (UML class diagram).
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• Task. This is the work to be performed by a project participant to create a work
product.

Projects can be defined formally or informally. A signed contract between you and a client
requiring the delivery of a software system in three months for one million dollars defines a
project; an informal promise you make to your friend to install a new software release on her
computer by next week defines a project as well. 

Projects come in different types and sizes. Sometimes the characterization of the project
type is by the nature of the deliverable. If the outcome is a software system, the project is usually
called a software project; building a space shuttle system is called a system project. Projects also
come in quite different sizes. Installing a new a space shuttle system, with costs of more than
$10 billion and a duration of 10 to 15 years, is a large project, where as changing the furniture of
your room is a small project. 

From a dynamic point of view, a project can be in any of several phases shown in
Figure 3-2. During the project definition phase, the project manager, a possible client, and a
key project member, the software architect, are involved. The two areas of focus during this
phase are an initial understanding of the software architecture, in particular the subsystem
decomposition, and the project, in particular the schedule, the work to be performed, and the
resources required to do it. This is documented in three documents: the problem statement, the
initial software architecture document, and the initial software project management plan. During
the project start phase, the project manager sets up the project infrastructure, hires participants,
organizes them in teams, defines major milestones, and kicks off the project. 

During the project definition and project start phases, most decisions are made by the
project manager. During the project steady state phase, the participants develop the system.
They report to their team leader, who is responsible for tracking the status of the developers and
identifying problems. The team leaders report the status of their team to the project manager,
who then evaluates the status of the complete project. Team leaders respond to deviations from

Figure 3-2 States in a software project (UML state machine diagram).
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the plan by reallocating tasks to developers or obtaining additional resources from the project
manager. The project manager is responsible for the interaction with the client, obtaining formal
agreement and renegotiating resources and deadlines.

During the project termination phase, the project outcome is delivered to the client and
the project history is collected. Most of the developers’ involvement with the project ends before
this phase. A handful of key developers, the technical writers, and the team leaders are involved
with wrapping up the system for installation and acceptance and collecting the project history
for future use.

Communication within a project occurs through planned and unplanned events. Planned
communication includes:

• problem inspection, during which developers gather information from the problem
statement, the client, and the user about their needs and the application domain

• status meetings, during which teams review their progress

• peer reviews, during which team members identify defects and find solutions in
preliminary work products

• client and project reviews, during which the client or project members review the
quality of a work product, in particular deliverables

• releases, during which project participants make available to the client and end users
versions of the system and its documentation.

Unplanned communication includes:

• requests for clarification, during which participants request specific information from
others about the system, the application domain, or the project

• requests for change, during which participants describe problems encountered in the
system or new features that the system should support

• issue resolution, during which a conflict between different stakeholders is identified,
solutions explored and negotiated, and a resolution agreed upon.

Planned communication helps disseminate information that targeted participants are
expected to use. Unplanned communication helps deal with crises and with unexpected
information needs. All three communication needs must be addressed for project participants to
communicate accurately and efficiently.

When a developer joins a project during the start phase, a problem statement already
exists; project management has already written an initial plan to attack the problem, set up a
project organization, defined planned communication events, and provided an infrastructure for
planned and unplanned communication. Most of the developer’s effort when joining a project is
to understand these documents and join the existing organizational and communication
structures. This is addressed by the following activities:
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• Attend the kick-off meeting. During this activity, the project participants hear from the
client about the problem to be solved and the scope of the system to be developed. This
helps them to get a high-level understanding of the problem, which serves as a basis for
all other activities. 

• Join a team. The project manager has decomposed the project into work for individual
teams. Participants are assigned to a team based on their skills and interests.

• Attend training sessions. Participants who do not have skills for required tasks receive
additional training.

• Join communication infrastructure. Participants join the project communication
infrastructure that supports both planned and unplanned communication events. The
infrastructure includes a collection of mechanisms such as groupware, address books,
phone books, E-mail services, and video conferencing equipment.

• Extend communication infrastructure. Additional bulletin boards and team portals are
established specifically for the project. 

• Attend first team status meeting. During this activity, project participants are taught to
conduct status meetings, record status information, and disseminate it to other members
of the project. 

• Understand the review schedule. The review schedule contains a set of high-level
milestones to communicate project results in the form of reviews to the project manager
and to the client. The objective of project reviews is to inform the project participants of
the other teams’ status and to identify open issues. The objective of client reviews is to
inform the client about the status of the project and to obtain feedback. 

In the following sections, we examine these concepts and activities in detail. In
Section 3.3, we describe a team-based project organization. In Section 3.4, we discuss the
concepts related to project communication. In Section 3.5, we detail the project start activities of
a typical team member. In Section 3.6, we provide references to further reading on this topic. 

In this chapter, we focus on the perspective of a developer joining a software project, so
we do not describe the activities needed to create and manage a project organization and
communication infrastructure. We cover these topics in later chapters. Chapter 12, Rationale
Management, discusses topics related to identifying, negotiating, resolving, and recording
issues. Chapter 13, Configuration Management, discusses topics related to managing versions,
configurations, and releases of documents and system components. In Chapter 14, Project
Management, we revisit project organization and communication issues from the perspective of
the project manager.
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3.3 Project Organization Concepts

In this section, we define the following concepts:

• Project Organizations (Section 3.3.1)

• Roles (Section 3.3.2)

• Tasks and Work Products (Section 3.3.3)

• Schedule (Section 3.3.4).

3.3.1 Project Organizations

An important part of any project organization is to define the relationships among participants
and between them and tasks, schedule, and work products. In a team-based organization
(Figure 3-3), the participants are grouped into teams, where a team is a small set of participants
working on the same activity or task. We distinguish teams from other sets of people, in
particular groups and committees. A group, for example, is a set of people who are assigned a
common task, but they work individually without any need for communication to accomplish
their part of the task. A committee is comprised of people who come together to review and
critique issues and propose actions.

Figure 3-4 shows an instance diagram of an organization for a simple software project
consisting of a management team and three developer teams.

Figure 3-3 A team-based organization consists of organizational units called teams, which consist of
participants or other teams (UML class diagram).

Figure 3-4 Example of a simple project organization (UML instance diagram). Reporting, deciding, and
communicating are all made via the aggregation association of the organization.

Team ParticipantOrganization **

UserInterface Database ControlManagement

Simple Project
:Organization

:Team :Team :Team :Team
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Project participants interact with each other. The three major types of interaction in a
project are: 

• Reporting. This type of interaction is used for reporting status information. For
example, a developer reports to another developer that an API (Application
Programmer Interface) is ready, or a team leader reports to a project manager that an
assigned task has not yet been completed. 

• Decision. This type of interaction is used for propagating decisions. For example, a
team leader decides that a developer has to publish an API, a project manager decides
that a planned delivery must be moved up in time. Another type of decision is the
resolution of an issue.

• Communication. This type of interaction is used for exchanging all the other types of
information needed for decision or status. Communication can take many flavors.
Examples are the exchange of requirements or design models or the creation of an
argument to support a proposal. An invitation to eat lunch is also a communication. 

We call the organization hierarchical if both status and decision information are
unidirectional; that is, decisions are always made at the root of the organization and passed via
the interaction association to the leaves of the organization. Status in hierarchical organizations
is generated at the leaves of the organization and reported to the root via the interaction
association. The structure of the status and decision information flow is often called the
reporting structure of the organization. Figure 3-5 illustrates the reporting structure in a
hierarchical team-based organization.

In hierarchical organizations, such as a military, the reporting structure also accomplishes
the exchange of communication needs. In complex software projects, however, using the
existing reporting structure for communication causes many problems. For example, many
technical decisions need to be made locally by the developers, but depend on information from
developers in other teams. If this information is exchanged via the established reporting

Figure 3-5 Example of reporting structure in a hierarchical organization (UML communication diagram).
Status information is reported to the project manager, and corrective decisions are communicated back to
the teams by the team leaders. The team leaders and the project manager are called the management team.

UserInterface
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communicateDecision()
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structure, the decision-making process can be slowed significantly. Even worse, it often leads to
garbling of the information, given its complexity and volume. 

The solution to this problem is to exchange information via an additional communication
structure that allows participants to communicate directly with each other and in ways different
from the reporting structure. Often the communication is delegated to a developer, called a
liaison, who is responsible for shuttling information back and forth. 

Figure 3-6 depicts an example of an organization with liaisons and additional
communication lines that deviate from the reporting structure. The documentation team, for
example, has a liaison to the user interface team to facilitate information about recent changes
made to the appearance of the system. Teams that do not work directly on a subsystem, but
rather work on a task that crosses the subsystem team organization, are called cross-functional
teams. Examples of cross-functional teams include the documentation team, the architecture
team, and the testing team.

We call this communication structure, and often also the organization itself, liaison based.
Liaisons use non-hierarchical communication lines to talk with the liaisons in cross-functional
teams. In liaison-based communication structures, the responsibility of team leaders is extended
by a new task: not only do they have to make sure that the project manager is aware of the status
of the team, but also that team members have all the information they need from other teams.
This requires the selection of effective communicators as liaisons to ensure that necessary

Figure 3-6 Examples of a liaison-based communication structure (UML object diagram). The team is
composed of five developers. Alice is the team leader, also called the liaison to the management team. John
is the API engineer, also called the liaison to the architecture team. Mary is the liaison to the documentation
team. Chris and Sam are implementors and interact with other teams only informally. 
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communication paths exist. If we allow developers to communicate directly with each other as
well, we call the communication structure (and the organization) peer based.

3.3.2 Roles

A role defines the set of technical and managerial tasks that are expected from a participant or
team. In a team-based organization, we assign tasks to a person or a team via a role. For
example, the role of tester of a subsystem team consists of the tasks to define the test suites for
the subsystem under development, for executing these tests, and for reporting discovered defects
back to the developers. 

In a software project we distinguish between the following four types of roles:
management roles, development roles, cross-functional roles, and consultant roles (Figure 3-7). 

Management roles (e.g., project manager, team leader) are concerned with the
organization and execution of the project within constraints. We describe this type of role in
more detail in Chapter 14, Project Management.

Development roles are concerned with specifying, designing, and constructing
subsystems. These roles include the analyst, the system architect, the object designer, the
implementor, and the tester. Table 3-1 describes examples of development roles in a subsystem
team. We describe development roles in more detail in Chapters 5–11.

Figure 3-7 Types of roles found in a software engineering project (UML class diagram).
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Cross-functional roles are concerned with coordination among teams. Developers filling
these roles are responsible for exchanging information relevant to other teams and negotiating
interface details. The cross-functional role is also called liaison. The liaison is responsible for
disseminating information along the communication structure from one team to another. In some
cases (such as the API engineer), a liaison functions as a representative of a subsystem team and
may be called to resolve inter-team issues. There are four types of liaisons:

• The API engineer is responsible for the interface definition of the assigned subsystem.
The interface has to reflect the functionality already assigned to the subsystem and to
accommodate the needs of the dependent subsystems. When functionality is traded off
with other subsystems, resulting in subsystem changes, the API engineer is responsible
for propagating changes back to the subsystem team.

• The document editor is responsible for integrating documents produced by a team. A
document editor can be seen as a service provider to other teams that depend on a given
subsystem team. A document editor also manages information released internally to the
team, such as the meeting agendas and minutes.

• The configuration manager is responsible for managing different versions of
documents, models, and code produced by a team. For simple configuration

Table 3-1  Examples of roles.

Role Responsibilities

System architect The system architect ensures consistency in design decisions and interface
styles. The system architect ensures the consistency of the design in the
configuration management and testing teams, in particular in the formulation
of the configuration management policy as well as the system integration
strategy. This is mainly an integration role consuming information from each
subsystem team.

Object designer The object designer is responsible for the interface definition of the assigned
subsystem. The interface has to reflect the functionality already assigned to
the subsystem and to accommodate the needs of the dependent subsystems.
When functionality is traded off with other subsystems, resulting in
subsystem changes, the object designer is responsible for propagating
changes back to the subsystem team.

Implementor The implementor is responsible for the coding of a class or a number of
classes associated with the subsystem.

Tester A tester is responsible for evaluating that each subsystem works as specified
by the object designer. Often, development projects have a separate team
responsible only for testing. Separating the roles of implementor and tester
leads to more effective testing.
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management policies (e.g., single hardware platform, single branch), this role may be
assumed by the team leader.

• A tester is responsible for ensuring that each subsystem works as specified by the
designer. Often, development projects have a separate team responsible only for testing.
Separating the roles of designer, implementor, and tester leads to more effective testing.

Consultant roles are concerned with providing temporary support in areas where the
project participants lack expertise. The users and the client act in most projects as consultants on
the application domain. Technical consultants may bring expertise on new technologies or
methods. Non-technical consultants can help to address legal and marketing issues. We
distinguish the following types of consultant roles.

• The client, also called customer, is responsible for the formulation of scenarios and the
requirements. This includes functional and nonfunctional requirements, as well as
constraints. The client is expected to be able to interact with the other developers. 

• The end user is the person who will be using the delivered system. Sometimes the
project does not have access to an end user, or the end user is still unknown. In this
case, the end user is represented by the client or even developer of the system.

• The application domain specialist is responsible for providing domain knowledge
about a specific functional area of the system. Whereas the client has a global view of
the required functionality, the application domain specialist has detailed knowledge of
a specific problem area. 

• The solution domain specialist is responsible for providing knowledge about solutions
to implement the system. This can include the development method, the process,
implementation technology, or the development environment.

3.3.3 Tasks and Work Products

A task is a well-defined work assignment for a role. Groups of related tasks are called activities.
The project manager or team leader assigns a task to a role. The participant who is assigned the
role carries out the task, and the manager monitors its progress and completion. A work
product is a tangible item that results from a task. Examples of work products include an object
model, a class diagram, a piece of source code, a document, or parts of documents. Work
products result from tasks, are subject to deadlines, and feed into other tasks. For example, the
test planning activity for the database subsystem results in a work product including a number of
test suites and their expected results. The test suite is then fed to the testing activity of the given
subsystem (Figure 3-8 and Table 3-2).
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Figure 3-8 Work products for the database subsystem team (UML object diagram). Associations
represent dependencies among work products.

Table 3-2  Description of the internal work products depicted in Figure 3-8. 

Work product Type Description

Persistent 
Objects

Class model This class model describes completely the objects that are
stored by the storage subsystem. For each class, this includes
all the attributes, associations, roles, and multiplicities.

Design objects Class model This class model describes all the objects needed by the storage
subsystem that are not described in the persistent object class
model.

Subsystem Source code This is the source code delivered to the testing team.

Test plan Document This document outlines the test strategy, test criteria, and test
cases that are used to find defects in the storage subsystem.

Testing defects Document This document lists all the defects that have already been found
in the storage subsystem through testing.

Inspection
defects

Document This document lists all the defects that have already been found
in the storage subsystem through peer review, as well as their
planned repairs.

design objects:Class Model

source:Source Code

inspection defects:Document

testing defects:Document

test plan:Document

persistent objects:Class Model

Database Subsystem
Work Products
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Any work product to be delivered to the client is called a deliverable. The software
system and the accompanying documentation usually constitute a set of deliverables. Work
products that are not visible to the client are called internal work products.

The specification of work to be accomplished in completing a task or activity is described
in a work package. A work package includes the task name, the task description, resources
needed to perform the task, dependencies on inputs (work products produced by other tasks) and
outputs (work products produced by the task in question), as well as dependencies on other
tasks. Figure 3-9 depicts the relationships among work packages, activities, tasks, roles, and
work products. Table 3-3 provides examples of work packages. 

Work products are important management artifacts, because we can assess their delivery and
the start of the tasks depending on other work products. The late delivery of a testing suite for a
subsystem, for example, delays the start of its testing. Note, however, that focusing only on timely
delivery is not sufficient: rushing the delivery of test suites meets the project schedule, but can also
mean that critical faults are not discovered in time.

3.3.4 Schedule

A schedule is the mapping of tasks onto time: each task is assigned start and end times. This
allows us to plan the deadlines for individual deliverables. The two most often used
diagrammatic notations for schedules are PERT and Gantt charts [Gantt, 1910]. A Gantt chart
is a compact way to present the schedule of a software project along the time axis. A Gantt chart
is a bar graph on which the horizontal axis represents time and the vertical axis lists the different
tasks to be done. Tasks are represented as bars whose length corresponds to the planned duration
of the task. A schedule for the database subsystem example is represented as a Gantt chart in
Figure 3-10. 

Figure 3-9 Associations among tasks, activities, roles, work products, and work packages (UML class
diagram).
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Table 3-3  Examples of tasks for the realization of the database subsystem. 

Task name
Assigned 
role

Task description Input Output

Database 
subsystem 
requirements 
elicitation

System
architect

Elicits requirements from 
subsystem teams about 
their storage needs, 
including persistent 
objects, their attributes, 
and relationships

Team
liaisons

Database
subsystem API,
persistent object 
analysis model 
(UML class 
diagram)

Database 
subsystem 
design

Object
designer

Designs the database 
subsystem, including the 
possible selection of a 
commercial product

Subsystem
API

Database
subsystem
design (UML 
diagram)

Database 
subsystem 
implementation

Implementor Implements the database 
subsystem

Subsystem
design

Source code

Database 
subsystem 
inspection

Implementor,
Tester,
Object
designer

Conducts a code inspection 
of the database subsystem

Subsystem
source code

List of defects

Database 
subsystem test 
plan

Tester Develops a test suite for 
the database subsystem

Subsystem
API,
subsystem
source code

Tests and test 
plan

Database 
subsystem test

Tester Executes the test suite for 
the database subsystem

Subsystem,
test plan

Test results, list 
of defects

Figure 3-10 An example of schedule for the database subsystem (Gantt chart).



92 Chapter 3  •  Project Organization and Communication

A PERT chart represents a schedule as an acyclic graph of tasks. Figure 3-11 is a PERT
chart for the database subsystem schedule. The planned start and duration of the tasks are used
to compute the critical path, which represents the shortest possible path through the graph. The
length of the critical path corresponds to the shortest possible schedule, assuming sufficient
resources to accomplish, in parallel, tasks that are independent. Moreover, tasks on the critical
path are the most important, as a delay in any of these tasks will result in a delay in the overall
project. The tasks and bars represented in thicker lines belong to the critical path.

3.4 Project Communication Concepts

So far we have talked about the organization of a project. We now turn to communication in a
project. We cover two types of communication that typically occur: planned communication
(Section 3.4.1) and unplanned communication (Section 3.4.2). We then survey tools to support
project communication (Section 3.4.3). Figure 3-12 shows the interplay between project
organization and communication.  

3.4.1 Planned Communication

Planned communication events are scheduled points in time during which participants
exchange information on a specific topic or review a work product. Such events are formalized
and structured to maximize the amount of information communicated and to minimize the time
participants spend on communication. Typical planned communication events include

• Problem presentation
• Client reviews
• Project reviews
• Peer reviews
• Status reviews
• Brainstorming 
• Releases
• Postmortem reviews. 

Figure 3-11 Schedule for the database subsystem (PERT chart). Thick lines denote the critical path.
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We describe these communication events in more detail next.

Problem presentation

The focus of problem presentation is the presentation of the Problem Statement that
describes the problem, the application domain, and the desired functionality of the system. It
also contains nonfunctional requirements such as platform specification or speed constraints.
Figure 3-13 depicts excerpts from an actual problem statement. 

The problem statement does not include a complete specification of the system. It is
merely a preliminary requirements activity that establishes common ground between the client
and the project team. We discuss requirements activities in Chapter 4, Requirements Elicitation,
and Chapter 5, Analysis.

Figure 3-12 Relationships among organizational and communication concepts (UML class diagram).
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OWL PROBLEM STATEMENT

1. Problem domain

A current trend in the building industry is to provide distributed services and control for the individual
occupant as a strategy to correct the overreliance on large centralized systems that characterize office
buildings built in the last 30 years. At the Intelligent Workplace, workers will have more control over
their environmental conditions—adjusting light level and temperature of their workspace, reducing glare,
controlling speed and direction of air flow delivered to workspace. (You can do that in your car—why not
in your office?) An energy-efficient facade will allow fresh air ventilation from operable windows and
incorporate movable shading devices that adjust to minimize glare and maximize natural lighting of the
workspace.

It is desirable to adopt three forms of control in the Intelligent Workplace: responsive, scheduled, and
user driven. Responsive control is when the system reacts to a change in sensor reading by actuating
some components. Scheduled control can be adopted in the presence of predictable data that allows the
components to be directly controlled by a carefully designed schedule. For example, because the position
of the sun is predictable, a schedule for the interior shades of the Intelligent Workplace can be adopted.
Control system should be flexible enough to respond to the needs of the occupants. If they would like to
change the temperature of their local environment, they should be given that opportunity.

In this project, you are asked to build a system called OWL (Object-Oriented Workplace Laboratory) that
attempts to improve the way we deal with buildings.

[. . .]

2. Scenarios

2.1 Building control

The building occupant uses a Web browser to access his Personal Environment Module (PEM). He
adjusts the temperature and airspeed to cool his workspace. The control information is sent to the PEM
equipment. The control actions are logged in the database and the equipment adjusts the heater and the
ventilation of the workspace. The system checks neighboring PEMs to check if cooling this particular
workspace requires other workspaces heating to be increased. 

[. . .]

2.5 Building maintenance

The system monitors the behavior of the controlled devices to detect faults in the system. Faulty light
bulbs and unusual parameter readings are reported to the facilities manager, who then plans inspections
and repairs. The occurrences of device faults are logged and analyzed for trends, enabling the facilities
manager to anticipate faults in the future.

[. . .]

Figure 3-13 Excerpts from the problem statement of OWL [OWL, 1996].
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Client review

The goal of client reviews is for the client to assess the progress of the development and
for the developers to confirm or change the requirements of the system. The client review is used
to manage expectations on both sides and to increase the shared understanding among
participants. The focus of the review is on what the system does and what constraints are
relevant to the client (e.g., performance, platform). In most cases, the review should not focus on
the design or implementation of the system unless they affect the client or the user. Exceptions
include contracts that impose constraints on the development process, such as those related to
safety or regulatory requirements.

A client review is conducted as a formal presentation during which the developers focus
on specific functionality with the client. The review is preceded by the release of a work product,
such as a specification document, an interface mock-up, or an evaluation prototype. At the
outcome of the review, the client provides feedback to the developers. This feedback may consist
of a general approval or a request for detailed changes in functionality or schedule. Figure 3-14
depicts an example of an agenda for a client review. 

Project review

The goals of a project review are for the project manager to assess status and for teams to
review subsystem interfaces. Project reviews can also encourage the exchange of operational
knowledge across teams, such as common problems encountered with tools or the system. The
focus of the review depends on the deliverable under review. For system design, the
decomposition and high-level subsystem interfaces are reviewed. For object design, the object
interfaces are reviewed. For integration and testing, the tests and their results are reviewed.

A project review is typically conducted as a formal presentation during which each team
presents its subsystem to the management or to teams that depend on the subsystem. The review

OWL Client acceptance test agenda

Date: 12/5
Time: 3–4:30 P.M.
Location: Forest Hall
Goal: review of the system by the client and identification of open issues
Overview
• Problem statement
• Design goals
• System architecture
• Demo 1: Remote user interface and control
• Demo 2: Site editor
• Demo 3: 3D Visualization and speech user interface
• Questions and answers
• Review wrap up

Figure 3-14 An example of an agenda for a client review. 
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is usually preceded by the release of a document (e.g., system design document) describing the
aspects of the system under review (e.g., the subsystems interfaces). At the close of the review,
the developers may negotiate changes in the interfaces and changes in schedule.

Peer review

The objective of code inspections and walkthroughs is to increase the quality of a
subsystem through peer review (as opposed to management or client review). During walkthrough,
a developer presents to the other members of her team line-by-line the code she has written. The
other team members challenge any suspicious code and attempt to discover as many errors as
possible. The role of the developer is to facilitate the presentation and answer the team’s questions.
During inspections, the members of the team focus on the compliance of the code with a
predefined list of criteria. (For example, does the code implement the specified algorithm? Does
the code correctly use dependent subsystem interfaces?) During inspections, the team leads the
discussion, and the developer answers questions. The focus of the inspection or walkthrough is on
the code, not on the programmer or the design.

Communication among participants is code based. The actual code is used as a common
frame of reference. Inspections are similar to project reviews in their objective to increase
quality and disseminate operational information. They differ from reviews in their formality,
their limited audience, and their extended duration. Inspections and walkthroughs are widely
used and have been effective at detecting defects early [Fagan, 1976]. We describe walkthroughs
more fully in Chapter 11, Testing.

Status review

Unlike client and project reviews that focus on the system, status reviews focus on tasks.
Status reviews are primarily conducted in a team (e.g., weekly) and occasionally conducted in a
project (e.g., monthly). The objective of status reviews is to detect deviations from the task plan
and to correct them. Status reviews also encourage developers to complete pending tasks. The
review of task status encourages the discussion of open issues and unanticipated problems, and,
thus, encourages informal communication among team members. Often, solutions to common
issues can be shared and operational knowledge disseminated more effectively when discussed
within the scope of a team (as opposed to within the scope of the project).

Status reviews represent an investment in person power. Increasing the effectiveness of
reviews has a global impact on the team performance. Status meetings should have an agenda,
available prior to the meeting, that describes the tasks and issues to be reviewed. This enables
meeting participants to prepare for the meeting and redirect the agenda if an urgent issue arises.
Minutes for each meeting should be taken by a designated participant in order to capture as
much information (mainly status and decisions) as possible. Minutes are made available to the
participants for review as early as possible after the meeting. This encourages the minute taker to
complete the minutes and for team members who missed the meeting to catch up with team
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status. Meeting minutes are subsequently referenced when related tasks are discussed or when
clarification is needed. Moreover, meeting minutes represent a portion of the project history that
can be analyzed after the project is completed.

Brainstorming

The goal of the brainstorming process is to generate a large number of solutions to a
problem, regardless of their merit, then evaluate them. Brainstorming is usually done in face-to-
face meetings, but can also be done via E-mail or groupware. The fundamental idea behind
brainstorming is that ideas, however invalid, proposed by any participant can trigger other ideas
and proposals from other participants. In particularly difficult problems, the solution often
comes from an idea that initially sounded very wrong. Brainstorming encourages thinking
“outside the box.” When many ideas have been generated, begin evaluating them. Brainstorming
also has two beneficial side effects: evaluating proposals within the group will lead to more
explicit evaluation criteria, and the brainstorming process itself has the effect of building
consensus for the chosen solution.

Release

The goal of a release is to make a work product available to other project participants,
often replacing an older version of the artifact. A release can be as simple as a two-line
electronic message (see Figure 3-15), or it can consist of several pieces of information: the new
version of the artifact, a list of changes made since the last release of the artifact, a list of
problems or issues yet to be addressed, and an author.

Releases are used to make a large amount of information available in a controlled manner
by batching, documenting, and reviewing many changes together. Project and client reviews are
typically preceded by a release of one or more deliverables. 

From: Al
Newsgroups: cs413.f96.architecture.discuss
Subject: SDD
Date: Thu, 25 Nov 03:39:12 -0500
Lines: 6
Message-ID: <3299B30.3507@andrew.cmu.edu>
MimeVersion: 1.0
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit

An updated version of the API document for the Notification Subsystem can be found 
here: http: //decaf/~al/FRIEND/notifapi.html

--Al
Notification Group Leader

Figure 3-15 An example of a release announcement.

http://decaf/~al/FRIEND/notifapi.html
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We describe the management of versions of documents, models, and subsystems in
Chapter 13, Configuration Management.

Postmortem review

Postmortem reviews focus on extracting lessons from the development team once the
software is delivered. Postmortem reviews need to be conducted shortly after the end of the
project so that minimal information is lost or distorted by subsequent experience. The end of the
project is usually a good point in time to assess which techniques, methods, and tools have
worked and have been critical to the success (or failure) of the system.

A postmortem can be conducted as a brainstorming session, a structured questionnaire
followed by interviews, or individual reports written by teams (or participants). In all cases, the
areas covered should include the tools, methods, organization, and procedures used by the
project. Figure 3-16 is an example of questions that can be used during a postmortem.

Even if the results of post mortems are not disseminated through the company via formal
channels (e.g., technical reports), they can still be disseminated indirectly to the project
participants. Project participants are frequently reassigned to different projects or functions and
often disseminate the lessons learned from the old project to other parts of the company. Hence,
postmortem reviews are ideal for crystallizing the lessons learned from a recently completed (or
canceled) project.

Question about problems that
occurred

What kinds of communication and negotiation problems have
emerged in the development of the system?

Question eliciting possible
solutions to those problems

Speculate on what kind of information structure is needed for team-
based design in conjunction with a model-based object-oriented
software engineering methodology.

Do you feel the forums provided (Discuss, Issues, Documents,
Announce, etc.) solved this challenge? Identify issues with the
information structure and propose solutions.

Question eliciting other aspects
of the project that were either
perceived as positive or could be
improved

What observations and comments do you have about the project
concerning:
• your expectations at the beginning of the project and how they 

evolved
• the goals of this project
• the use of use cases
• the life cycle used in the project
• the project management (meetings, communication, etc.)
• the documentation process

Open-ended catch-all question In addition to the above questions, please feel free to discuss any
other issues and proposed solutions that you feel are relevant.

Figure 3-16 An example of questions for a postmortem review.
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3.4.2 Unplanned Communication

In an ideal project, all communication takes place during planned communication events. In
practice, however, it is difficult to anticipate all information needs and plan all communications.
Consider the following example:

In the above example, basic information about when Germany and the United States
switched to daylight saving time was not properly shared among the developer sites; a visiting
member accidently stumbled upon this information. Retrospectively, this may appear as a gross
oversight. However, in the heat of the preparation activities, JAMES project participants focused
mostly on their own tasks, in the context of their own site, and did not step back and anticipate
inter-site issues. Generally, issues resulting from a combination of seemingly isolated facts from
different areas of the project are difficult to anticipate since no participants have a global
overview of all the facts. Consequently, a project should be prepared to deal with unexpected
situations, often under pressure. We call the communication resulting from such crises
unplanned communication events. They include

• Requests for clarification

• Requests for changes
• Issue resolution.

We describe unplanned communication events in more detail next.

Request for clarification

Requests for clarification represent the bulk of the communication among developers,
clients, and users. Requests for clarification are unplanned. A participant may request
clarification about any aspect of the system that seems ambiguous. Requests for clarification

Sunday, March 29, 1998. Participants of the JAMES project are frantically preparing for the delivery of 
the system to their client. The client acceptance test is scheduled two days later, at 15:00 CED (Central 
European Daylight saving time). Daylight saving time has just come into effect, removing an hour of 
development. The client acceptance test is to be conducted as a high-bandwidth, three-way video 
conference among the client site in Stuttgart, the German developer site in Munich, and the American 
developer site in Pittsburgh, PA. The American team will participate in the conference starting at 9 A.M.
EDT (Eastern Daylight Time). The agenda has been agreed. Each team has been allocated 12 minutes to 
present the functionality of its subsystem. 

Later that evening. The American developer visiting the German team realizes that Germany has 
switched to daylight saving time one week before the United States. Consequently, the time difference 
between Munich and Pittsburgh is 7 hours, not 6 hours, as originally thought. Hence, the video 
conference will actually take place at 8 A.M. EST (Eastern Standard Time). Less than 48 hours before 
the client acceptance test, the American team realized they were going to miss the deadline by one hour. 
It takes another day until all members of the American team are notified.



100 Chapter 3  •  Project Organization and Communication

may occur during informal meetings, phone calls, E-mail, or any other communication
mechanism available to the project. Situations in which most information needs are handled
through requests for clarifications are symptoms of a defective communication infrastructure.
Such projects often face serious failures downstream resulting from misunderstandings and
missing and misplaced information. Figure 3-17 depicts an example of request for clarification.

Request for change

During a request for change, a participant reports a problem and, in some cases, proposes
solutions. The participant reports a problem with the system itself, its documentation, the
development process, or the project organization. Requests for change are often formalized
when the number of participants and the system size is substantial. Change requests contain a
classification (e.g., severe defect, feature request, comment), a description of the problem, a
description of the context in which it occurs, and any supporting material. Change request forms
have been popularized by defects-tracking software. They can be applied to other aspects of the
project (e.g., task plan, development process, testing procedures). Figure 3-18 depicts an
example of change request form.

Issue resolution

Once problems have been reported and solutions proposed and evaluated, a single solution
must be selected, communicated, and implemented. A flat organization may select a solution
through the brainstorming process. A hierarchical organization or a crisis situation may require a
single individual to select and impose a solution. In all cases, the decision needs to be
documented and communicated to the relevant participants. Documentation of the resolution
allows participants to refer back to the decision later in the project, in case of a
misunderstanding. Effective communication of the decision enables participants to remain
synchronized.

From: Alice
Newsgroups: cs413.architecture.discuss
Subject: SDD
Date: Thu, 10 Oct 23:12:48 -0400
Message-ID: <325DBB30.4380@andrew.cmu.edu>
MimeVersion: 1.0
Content-Type: text/plain; charset=us-ascii

When exactly would you like the System Design Document? There is some confusion over 
the actual deadline: the schedule claims it to be October 22, while the template 
says we have until November 7.
Thanks,

Alice

Figure 3-17 An example of a request for clarification.
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An issue base can serve as a communication mechanism for supporting problem tracking
and issue resolution. The issue base displayed in Figure 3-19 displays a list of messages
exchanged as a result of issue resolutions. The message captions preceded by I: denote issues;

Header information for 
identifying the change

Report number: 1291
Date: 5/3
Author: Dave
Synopsis: The FRIEND client crashes when empty forms
are submitted.

Context information for locating 
the problem

Subsystem: User interface
Version: 3.4.1
Classification:
• missing/incorrect functionality
• convention violation
• bug

• documentation error
Severity:
• severe
• moderate
• annoying

Description of the problem and 
the rationale for change

Description:
Rationale:

Description of desired change Proposed solution:

Figure 3-18 An example of a change request form.

Figure 3-19 An example of an issue base (Domino Lotus Notes database).
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those preceded by P: (for proposal) are suggested solutions; A+ and A- denote arguments for
and against a solution. Finally, once issues are resolved, a single message, called a resolution, is
posted to document the decision that was made on the issue. We describe issue bases and issue
modeling in Chapter 12, Rationale Management.

3.4.3 Communication Mechanisms

A communication mechanism refers to a tool or procedure that can be used to transmit and
receive information and support a communication event. Smoke signals and fax machines are
communication mechanisms. Communication mechanisms are synchronous if they require both
sender and receivers to be available at the same time. Otherwise, communication mechanisms
are called asynchronous. Smoke signals are synchronous, whereas fax machines are
asynchronous.

Both synchronous and asynchronous communication mechanisms can be used to support
planned communication. For example, in Figure 3-20, either smoke signals or a fax machine can
be used for a client review. On the other hand, only asynchronous communication mechanisms can
be used for supporting unplanned communication: reporting a problem with smoke signals may
lead to loss of information if nobody was scheduled to watch the smoke. Note that a single
communication activity can be supported by several communication mechanisms: the
requirements analysis document can be faxed to the client, and the client sends back her comments
using smoke signals. Similarly, the same mechanism can support many communication events: the
fax machine can receive either problem reports or comments from a client review.

Table 3-4 depicts the synchronous communication mechanisms we describe in this section
and the communication events they support. Table 3-5 depicts the asynchronous communication
mechanisms.

Figure 3-20 Examples of mechanisms (UML class diagram). Both planned and unplanned
communication can be supported by asynchronous mechanisms. Unplanned communication, however, can
only be supported by asynchronous mechanisms.

Problem Reporting
:Unplanned Communication

Client Review
:Planned Communication

Smoke Signals
:Synchronous Mechanism

Fax: Asynchronous
 Mechanism

is supported by

is supported by

is supported by
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Table 3-4  Examples of synchronous mechanisms of communication.

Mechanism Supported communication events

Hallway conversations Request for clarification
Request for change

Questionnaires and structured interviews Problem definition
Postmortem review

Meetings (face-to-face, telephone, video) Problem definition
Client review
Project review
Peer review
Status review
Postmortem review
Brainstorming
Issue resolution

Synchronous groupware Client review
Project review
Peer review
Brainstorming
Issue resolution

Table 3-5  Examples of asynchronous mechanisms of communication.

Mechanism Supported communication events

Electronic mail Change request
Brainstorming

Newsgroups Change request
Brainstorming

World Wide Web Release
Asynchronous peer reviews
Change request
Brainstorming

Lotus Notes Release
Asynchronous peer reviews
Change request
Brainstorming
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Hallway conversations

Hallway conversations are unplanned, informal exchanges of information based on
opportunity. Two participants meet by accident and take advantage of the situation to exchange
information. The daylight saving time problem we described before was discovered during such
a hallway conversation. Below is another example:

Hallway conversations represent a substantial part in the overall project communication.
They are cheap and effective for resolving simple problems that are caused by a lack of
coordination between project members. In addition, they are also effective in supporting the
exchange of operational knowledge, such as frequently asked questions about tools, procedures,
or the location of project information. The drawbacks of hallway conversations include their
small audience and lack of history: important information can be lost, and misunderstandings
may occur when the content of the conversation is relayed to other participants. Moreover, no
document, database, or electronic message can be accessed when referring to a decision that was
made and communicated during a hallway conversation. Thus important hallway decisions
should be followed up by an E-mail covering the topic of the conversation for the record.

Questionnaires and structured interviews

The objective of a questionnaire is to elicit information from one or more persons in a
structured manner. Questionnaires are typically used for eliciting domain knowledge from users
and experts, understanding user requirements and priorities. They can also be used for extracting
lessons learned during a postmortem review. Questionnaires can include both multiple-choice
questions and open-ended questions. Questionnaires have the advantage of eliciting reliable
information at minimal cost to the user. Questionnaires can be answered by users independently,
then reviewed and analyzed by the analyst or developer. Clarifications of ambiguous or
incomplete answers are then obtained during a structured interview. The drawback of
questionnaires is that they are difficult to design. However, the consequences of requirements
errors and misunderstandings between the client and the developer often justify their cost.
Subsequently, sufficient information is gathered about the domain and a requirements analysis
document is written, so that most revisions to the systems and additional issues are addressed in
client reviews. [Barone & Switzer, 1995] provides more information about designing
questionnaires and interviews.

Two project participants, Sally and Bob, meet at the coffee machine. Sally, member of the user interface
team, remembers that Bob is a member of the notification team, which is responsible for the
communication between the client subsystems and the server. All morning Sally has been experiencing
random failures when receiving packets from the server. She is not sure if the problem comes from the
server, the communication subsystem, or her code. Bob answers that he was not aware that the server
was being used at this time and that he had been testing a new revision of the communication system,
explaining the behavior that Sally had observed. Bob had bypassed configuration management policy to
save time.
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Meetings

Face-to-face meetings enable a number of participants to share, review, and negotiate
issues and solutions. To date, meetings are the only mechanism that allow effective resolution of
issues and the building of consensus. The drawback of meetings is their cost in resources and the
difficulty in managing them. In order to increase the information transfer and the number of
decisions made during a meeting, roles are assigned to selected participants:

• The facilitator is responsible for organizing the meeting and guiding its execution. The
facilitator writes an agenda describing the objective and the scope of the meeting. The
agenda is generally released before the meeting for preview by its participants. This
allows participants to decide whether the meeting is relevant to them and to allow
preparation of support material for the meeting. 

• The minute taker is responsible for recording the meeting. The minute taker may take
notes on paper or on a laptop computer, organize them after the meeting, and release
them shortly after the meeting for review by the meeting participants. This enables the
participants to reiterate their commitment to the outcome of the meeting. The written
record of the meeting also makes it easier for participants to share information with
members who were not present at the meeting.

• The timekeeper is responsible for keeping track of time and notifying the facilitator if
a discussion consumes more time than is allocated by the agenda.

A meeting agenda consists of at least three sections: a header identifying the planned
meeting location, time, and participants; a list of items participants will report on; and a list of
issues to be discussed and resolved in the meeting. Each information-sharing and discussion
item is also assigned a time that allows the timekeeper to ensure that the meeting ends on time.
Figure 3-21 depicts a meeting agenda. Figure 3-22 depicts a poor one.

A set of meeting minutes consists of three sections that correspond to the sections of the
agenda. In addition, meeting minutes include a section describing the action items resulting from
the meeting; these are items describing actions to be taken by the meeting participants as a
consequence of the meeting. The header section contains the actual meeting location, time, and
participants. The information-sharing item section contains the information that was shared
during the meeting. The decision-item section contains a record of the decisions made and not
made. Figure 3-23 is an example of meeting minutes.

Although meetings conducted in a single location are most efficient, it is possible to
conduct meetings when participants are distributed geographically by using teleconferencing or
video conferencing. This reduces costs at the expense of a lower bandwidth and lower reliability.
A well-structured agenda available prior to the meeting becomes crucial as floor control
becomes difficult with lower audio and visual quality. Also, knowledge of the individual voices
and particularities improves communication among participants.
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Header information identifying 
the meeting and audience

When and Where Role
Date: 1/30 Primary Facilitator: Peter
Start: 4:30 P.M. Timekeeper: Dave
End: 5:30 P.M. Minute Taker: Ed
Room: WH, 3420

Desired outcome of the meeting 1. Objective
Resolve any requirements issues that prevent us from starting 
prototyping.

Action items to be reported on 2. Status [Allocated Time: 15 minutes]
Dave: State of command parsing code

Issues scheduled to be discussed 
(and resolved) during the 
meeting

3. Discussion items [Allocated Time: 35 minutes]
3.1 How to deal with arbitrarily formatted input data sets?
3.2 How to deal with output data?
3.3 Command parsing code (modifiability, backward 

compatibility)

The wrap-up period is the same 
for all meetings

4. Wrap up [Allocated Time: 5 minutes]
4.1 Review and assign new action items
4.2 Meeting critique

Figure 3-21 An example of a meeting agenda.

Open-ended meetings take more 
time than necessary. 

When and Where Role

Date: 1/30 Primary Facilitator: Peter
Start: 4:30 P.M. Timekeeper: Dave
End: open Minute Taker: Ed
Room: WH 3420

This objective is difficult to 
achieve and cannot be verified.

1. Objective
Resolve open issues

Lack of context: what were 
Dave’s action items?

2. Status [Allocated Time: 15 minutes]
Dave: Dave’s action items

Lack of content: what are the 
current issues in each of these 
activities?

3. Discussion items [Allocated Time: 35 minutes]
3.1 Requirements issues
3.2 Design issues
3.3 Implementation issues

4. Wrap up [Allocated Time: 5 minutes]
4.1 Review and assign new action items
4.2 Meeting critique

Figure 3-22 An example of poor meeting agenda.
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When writing a meeting agenda, the facilitator should be as concrete as possible without
adding to the length of the agenda. It is often tempting to develop a generic template agenda and
reuse it systematically without modifications. This has the drawback of taking the substance out
of the meeting process, turning it into a bureaucratic procedure. Figure 3-22 is an example of
contentless agenda. By only modifying the header, this agenda could apply to most subsystem
meetings, and thus, does not convey any new information to the participants.

Header information 
identifying the meeting 
and audience

When and Where Role
Date: 1/30 Primary Facilitator: Peter

Start: 4:30 P.M. Timekeeper: Dave

End: 6:00 P.M. Minute Taker: Ed

Room: WH 3420 Attending: Ed, Dave, Mary, Peter, Alice

Verbatim from agenda 1. Objective
...

Summary of the 
information that was 
exchanged

2. Status
...

Record of issue 
discussion and resolution

3. Discussion
3.1 Command parsing code is a 1200–1300 line if statement. This makes it
fairly hard to add new commands or to modify existing commands without
breaking backward compatibility with existing clients.
Proposals: 1) Restructure the command parsing code by assigning one
object per kind of command. 2) Pass all command arguments by name. The
latter would make it easier to maintain backward compatibility. On the other
hand, this would increase the size of the commands, thus increasing the size
of the command file.
Resolution: Restructure code for now. Revisit this issue if backward
compatibility is really an issue (the calling code might be rewritten anyway).
See AI[1].

...

Discussion of the other issues omitted for brevity

Additions and 
modifications to the task 
plan

4. Wrap up

AI[1] For: Dave.
Revisit command parsing code. Emphasis on modularity. Coordinate with
Bill from the database group (who might assume backward compatibility).

...

Other action items and meeting critique omitted for brevity

...

Figure 3-23 An example of meeting minutes.
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Groupware

Same time, different place groupware are tools that allow distributed users to
collaborate synchronously. For a long time, these tools were only available in the realm of
research [Grudin, 1988], [Borghoff & Schlichter, 2000], but they become more common in the
commercial world with the popularization of Internet chatrooms. Tools such as Netmeeting
[Microsoft] enable a group of participants to collaborate synchronously over a shared
workspace. They provide a meeting metaphor: users “enter” a chat room, which then allows
them to view a graphic or a text under consideration. All users see the same state. Usually only
one can modify it at any one time. Floor control can be anarchic (whoever takes the floor has it)
or sequential (whoever has the floor relinquishes it to the next user).

A weakness of same-time groupware is the difficulty in coordinating users. Typing takes
more time than users are prepared to invest. Written words need to be chosen more carefully,
given that nonverbal information is lost. Moreover, slight glitches in the network connection
may represent enough interference for user coordination to be lost. While video-based Internet
conferencing tools such as Lotus Sametime [Lotus] and increases in network bandwidth promise
to alleviate these problems, synchronous groupware tools have not quite reached a level of
maturity sufficient for everyday use in the workplace.

In all cases, different-place collaboration is still a nontrivial exercise that must be scripted
and planned in advance. Collaborative development of procedures for supporting collaboration
is a challenging task when proximity and nonverbal communication are not available. 

Different time, different place groupware, or simply, asynchronous groupware, has
had more success during the past two decades. In its simplest form, newsgroups enable users to
discuss issues publicly by contributing messages to discussion threads. The World Wide Web
enables the quick access to large repositories of documents acquired from various sources. 

Currently, in any software engineering project including more than a couple of people,
participants use a combination of forums, repositories, calendars, and address books ranging
from free tools for small projects to commercial tools supporting large organizations. A free tool
such as Yahoo Groups [Yahoo] allows a team to set up a place quickly to share photos and files,
plan events, send newsletters, and discuss topics. BSCW (Basic Support for Cooperative Work)
[BSCW] also enables collaboration over the Web and supports document upload, event
notification, and team management. Wiki [Wiki] is another simple but powerful Web-based
collaboration platform. An interesting feature in Wiki is that all the pages are open for anyone to
edit. The system creates cross-reference hyperlinks between web pages automatically.
Commercial tools such as Microsoft’s Sharepoint Team Services [Microsoft] provide groupware
support for Microsoft Office users. Workflow engines such as Lotus Notes [Lotus] provide
replication mechanisms, repository features, and an address book making public organizational
structures. Repetitive procedures can be automated. Formalized activities, such as the
asynchronous review of a document by different stakeholders, can be effectively supported by
sending notices to each participant as the document advances through the review pipeline.
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3.5 Organizational Activities

We now examine the activities of a developer when joining a project organization and its
communication infrastructure. The activities include

• Joining a Team (Section 3.5.1)

• Joining the Communication Infrastructure (Section 3.5.2)

• Attending Team Status Meetings (Section 3.5.3)

• Organizing Client and Project Reviews (Section 3.5.4).

We describe these activities for an example project, focusing on the development of a new
system with multiple teams.

3.5.1 Joining a Team

During the project definition phase, the project manager identified a subsystem team for each
subsystem in the initial decomposition of the software architecture. Additionally, cross-
functional teams (e.g., architecture team, integration team) are formed to support the subsystem
teams. Each team has a team leader who was also already selected during the project definition
phase. An important activity during the project start phase is now the assignments of participants
to teams.

Based on the interests and skills of the team members, the project manager and team
leaders assign them to a team. Each subsystem team also has to nominate a liaison to the cross-
functional teams to facilitate information transfer among teams. Table 3-6 depicts an example of
role assignment to participants for the database team of the OWL project. The project manager and
team leader also determine the training needs for the participants and teams.

3.5.2 Joining the Communication Infrastructure

Two sets of forums are created to support project and team communication, respectively.
Members subscribe to all project forums and to their team’s forums. Project forums include

• Announce. Major events (e.g., review agendas, releases) are announced by management
by posting to this forum. Only management can post announcements to this forum;
project members can post replies and read all documents.

• Discuss. Project-level requests for clarification and requests for change are posted in
this forum. Discussion about the requests (e.g., arguments and alternate solutions) are
posted as replies to the original messages. All project members can post to this forum
and read its documents.

• Issues. Open issues and their current state are posted in this forum. All project members
can post to this forum and read its documents.



110 Chapter 3  •  Project Organization and Communication

• Documents. The latest versions of the project deliverables (e.g., Requirements Analysis
Document, System Design Document) and other internal project documents (e.g.,
Software Project Management Plan) are posted in this forum. Only the documentation
team can post documents to this forum. All project members can post replies (i.e.,
annotations to the documents) and read the documents.

• Equipment list. This forum contains descriptions of equipment and its status (e.g.,
availability, current borrower). Only the equipment manager can post to this forum.

The team forums are similar to the project forums, except that they support team
communication. Team forums include team discussion, team issues, and team documents. Each
project member may read any other team’s forum. Team members can post only to their own
team’s forum. Note that the forums can be created as soon as the subsystem decomposition is
relatively stable. Once forums and group accesses are set up, accounts for individual members
can be created as the project is staffed.

3.5.3 Attending Team Status Meetings

An important part of a software project is the weekly team meeting. It allows all teams to
participate in status reviews, brainstorming, and issue resolution. The weekly team meeting is
organized and captured as described in Section 3.4.1. Particularly important is the first time the
team meets. Few members will know each other socially or professionally. Moreover, few of

Table 3-6  Role assignment, skills, and training needs for the database team of OWL.

Participant Roles Skills Training needs

Alice Team leader Management: team leader
Programming: C
Configuration management

UML
Communication skills

John Architecture liaison
Implementor

Programming: C++
Modeling: UML

Java

Mary Configuration manager
Implementor

Programming: C++, Java
Modeling: Entity relationship
Databases: relational
Configuration management

Object-oriented databases
UML modeling

Chris Implementor Programming: C++, Java
Modeling: Entity relationship
Databases: object-oriented

UML modeling

Sam Facilities management
liaison
Tester

Programming: C++
Testing: whitebox, blackbox

Inspections
Java
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them are familiar with formal meeting roles and procedures. Management takes the opportunity
of the first weekly team meeting to introduce meeting procedures, explain the importance of
these procedures, and motivate team members in their use. Figure 3-24 displays the agenda
posted by the management for the first meeting. 

The goal of the first meeting is to train participants by example. Discussion about the
procedures is encouraged. The meeting and group roles are explained to the participants and
assigned by the team for the rest of the project. The role of facilitator is emphasized in that its
purpose is to increase the efficiency of the meeting, not to impose decisions. Team members are
taught that any meeting participant can take the role of secondary facilitator; that is, any
participant can intervene in the discussion in order to put the meeting back within the scope of
the agenda. Participants are taught keyword phrases for standard situations. For example, “Let
me play the role of secondary facilitator” stands for The scope of the current discussion is
outside the agenda. Let us get back on track. “Can we pop up a level?” stands for The discussion
has delved into a level of detail that is unnecessary for this audience. Actually, most of us are
already lost. More generally, team members are taught that it is easy to waste time during a
meeting, and that the primary goal of any meeting is to communicate efficiently and accurately
so that they can go back to their respective tasks.

Management rotates roles on a regular basis so that all participants have the opportunity to
fill every role. This has the advantage of creating redundant skills in the project team and
increases information sharing. The drawback is that, in the short term, participants will not have
time to mature into their roles and thus will not become highly effective at any given task.
Requiring early role assignment, role rotation, and fixed meeting procedures may introduce
turbulence at the beginning of the project, but represents a healthy investment in the long term.
Everyday meeting and communication skills should be well in place before crisis-driven
communication needs surface during the implementation and code activities.

The teams are responsible for assigning meeting roles and posting them in their respective
team’s Announce forum. One day before the status meeting, the meeting facilitator is required to
post in the team’s Announce forum the initial draft of the agenda, composed of action items
taken from the previous meeting’s minutes and issues taken from the Issues forum. The minute
taker is required to post the minutes within a day of the meeting, as a reply to the corresponding
agenda. Other team members may comment on the agenda and minutes by posting replies. The
facilitator or the minute taker may then amend the corresponding document. 

Meeting roles and procedures are often perceived as overhead. Management is aware of
that perception and invests time in the beginning of the project to illustrate the benefits of the
meeting procedures. In the first weeks of the project, management systematically reviews the
agendas and minutes of the first few weekly meetings, suggests time-saving improvements to the
facilitators (e.g., keeping an active document containing open issues and active action items
from which the agenda can be cut and pasted), and to the minute takers (e.g., focusing on
capturing the action items and unresolved issues first, then focusing on the discussion).



112 Chapter 3  •  Project Organization and Communication

When and Where Role

Date: 1/9 Primary Facilitator: Alice

Start: 4:30 P.M. Timekeeper: Dave

End: 5:30 P.M. Minute Taker: Ed

Building: Wean Hall 

Room: 3420

1. Objective
Become familiar with project management roles for a medium-scale project with a two-level hierarchy.
In particular:
• Understand the difference between a role and a person
• Group roles are assigned to people
• Meeting times are finalized
• First set of action items for next meeting

2. Status and information sharing [Allocated time: 40 minutes]

2.1. How to organize a meeting
Meeting ground rules:
• Active listening
• Active participating
• Punctual attendance
• No one-on-one or side meetings
• Respect the agenda
• Keep time
• Willingness to reach consensus
• Freedom to check process and ground rules

Meeting roles:
• Primary Facilitator 
• Timekeeper
• Minute taker
• Scribe

2.2 Following the agenda

Omitted for brevity

3. Discussion items [Allocated time: 15 minutes]
3.1 Team address book

3.2 Meeting roles assignments

3.3 Group roles assignment

4. Wrap up [Allocated time: 5 minutes]

4.1 Review and assign new action items

4.2 Meeting critique

Figure 3-24 First weekly team meeting agenda.
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3.5.4 Organizing Client and Project Reviews

Client reviews are conducted after the release of the requirements analysis document and after
the delivery of the system. Project reviews are conducted to review the system design
documents, the detailed object design, and the test. A project review may also be conducted
before delivery as a dry run for the client acceptance test. 

Project management schedules all reviews during the planning phase (Table 3-7). 

Management also introduces procedures for organizing reviews:

1. The deliverables being reviewed are released one week1 prior to the review.

2. Shortly after the release, management publishes a draft agenda listing presentation
topics for each team. The initial draft of the agenda is posted in the Announce forum.

3. Candidate presenters reply to the original agendas and refine the presentation topic.
Management modifies the agenda based on the replies.

4. Presenters submit their slides by replying to the agenda and including the slides in the
reply. The management collates the slides before the presentation and updates the
agenda.

The management also assigns the responsibility of minute taker, using the same
procedure, to a project member, who will be briefed on how to take minutes by management.
During the review, the minute taker uses a laptop and carefully records all the questions and

Table 3-7  An example of a review schedule. 

Review Date
Deliverable
(release due 1 week before review)

Client review week 7 Requirements Analysis Document

System design review week 9 System Design Document

Object design review week 13
(2 sessions)

Object Design Document

Internal review week 16 Unit and integration tests

Client acceptance test dry run week 17 All project deliverables

Client acceptance test week 17 All project deliverables

1. This leaves slack time for late documents. Realistically, some deliverables are delivered as late as one day before the 
review. The critical issues here are: (1) Can the deliverable be made available to all review participants? and (2) Do 
they have enough time to review them?
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answers from the audience. Finally, within a day of the review, the minute taker and
management merge their notes and generate a list of action items to be completed as a result of
the review and a list of open issues that could not be resolved during the review. These post-
processed minutes are posted on the Announce forum.

The emphasis on using the communication infrastructure for coordinating the organization
of the review and the submission of slides enables more information to be captured, and thus,
more information is accessible to all participants in the long run.

3.6 Further Readings

Researchers and practitioners have long noted the importance of communication in software
engineering. As projects grow larger and more complex, however, communication becomes
increasingly more critical.

[Curtis et al., 1988] is a landmark paper identifying and classifying communication
problems in software development. In a field study of 17 large government projects, researchers
observe that documentation does not reduce the need for communication, in particular; during
the early phases of the project, when stakeholders define terms, coordinate their representational
conventions, and create informal communication networks. The study also shows that obstacles
to informal communication (e.g., organizational barriers and geographical distance) can lead to
misunderstandings in design conventions and rationale.

[Kraut & Streeter, 1995], another landmark paper in the field, observe that communication
(e.g., meeting, formal specifications, peer reviews) is useful for routine coordination, whereas
informal communication (e.g., hallway conversations, telephone calls, brainstorming) is needed
in the face of uncertainty and unanticipated problems, which are typical of software
development. In their study, they observe that the need for informal communication increases
dramatically as the size and complexity of the software increases.

As face-to-face (or video conference) meetings are still the principal means of
communication among project participants—for communicating status, identifying conflicts,
and resolving issues—meeting skills are required of all software engineers in order to conduct
meetings efficiently and to avoid information loss. However, meeting procedures and meeting
skills are usually not included in standard software engineering curricula. How to make meetings
work [Doyle & Straus, 1982] and Mining Group Gold [Kayser, 1990] (from which we derived
the agenda and minutes templates for this chapter) describe many useful procedures and
heuristics for conducting efficient meetings.

Getting To Yes [Fischer et al., 1991] explains the mechanisms of negotiation and proposes
approaches to avoid deadlocks while addressing the conflicts that prompted the negotiation.
Interviewing: Art and Skill [Barone & Switzer, 1995] provides guidance on how to design a
questionnaire and conduct an interview.

Computer-Supported Collaborative Work [Borghoff & Schlichter, 2000] provides a good
introduction to the discipline and to groupware in general. Moreover, it can serve as a guide for
users and software engineers interested in addressing communication issues with groupware. 
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3.7 Exercises

3-1 What is the difference between a role and a participant?

3-2 Can a role be shared between two or more participants? Why or why not?

3-3 What is the difference between a client and an end user? 

3-4 To which roles would you assign the following tasks?

• Change a subsystem interface to accommodate a new requirement.

• Communicate the subsystem interface change to other teams.

• Change the documentation as a result of the interface change.

• Design a test suite to find defects introduced by the change.

• Ensure that the change is completed on schedule.

3-5 You are responsible for coordinating the development of a system for processing credit
applications for a bank. In what roles would the following project participants be able
to contribute most to the project?

• a bank employee responsible for processing credit applications 

• the manager of the information technology group at the bank, who contracted the
system

• a freelancer who developed similar systems in the past

• a technical writer

• you.

3-6 Draw a UML activity diagram representing the meeting process described in
Section 3.4.1. Focus in particular on the work products generated before and after the
meeting, such as the agenda and the meeting minutes. Use swimlanes to represent
roles.

3-7 What is the difference between a work package and a work product? When is a work
package defined? When is a work product defined? Consider an assignment where two
students collaborate to plan and develop a system for sorting lists of names using two
different sort algorithms. The deliverables for the assignment are the source code, the
system documentation, and a manual for other developers explaining how new sorting
algorithms can be integrated into the code. Give examples of work packages and work
products in this project.

3-8 What is the difference between a cross-functional team and a subsystem team? Provide
examples and justify your choices.

3-9 As many critical communication events are planned (e.g., client reviews, project
reviews, peer reviews), why is there still a need for unplanned communication events
(e.g., request for clarification, request for change, issue resolution)?

3-10 Select at random a working day in your work week. Log all activities that qualify as
communication activities (e.g., taking to friends over coffee, obtaining information
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from a fellow student, providing information, negotiating, advertising, browsing the
web). Which fraction of your working day does communication represent?

3-11 You are a member of the user interface team. You are responsible for designing and
implementing forms that collect information about users of the system (e.g., first name,
last name, address, E-mail address, level of expertise). The information you are
collecting is stored in the database and used by the reporting subsystem. You are not
sure which fields are required information and which are optional. How do you find
out?

3-12 You have been reassigned from the user interface team to the database team due to staff
shortages and replanning. The implementation phase is well underway. In which role
would you be most proficient, given your knowledge of the user interface design and
implementation?

3-13 Assume the development platform is Unix and the documentation team writes on the
Macintosh platform. The client requires the documents to be available on the Windows
platform. Developers produce the design documentation using Adobe FrameMaker.
The documentation team uses Microsoft Word for the user-level documentation. The
client submits corrections on hardcopies and does not need to modify the delivered
documents. How could the information flow between the developers, the technical
writers, and the client be set up (e.g., format, tools, etc.) such that duplication of files is
minimized, while everybody’s tool preferences and platform requirements are still
satisfied?

3-14 Which changes in the organization and communication infrastructure would you
recommend for a successor of the Ariane 5 project as a consequence of the Ariane 501
failure described at the beginning of this chapter?
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4
Requirements 
Elicitation

A common mistake that people make when trying to design 
something completely foolproof is to underestimate the 
ingenuity of complete fools.

—Douglas Adams, in Mostly Harmless

Arequirement is a feature that the system must have or a constraint that it must satisfy to be
accepted by the client. Requirements engineering aims at defining the requirements of the
system under construction. Requirements engineering includes two main activities;
requirements elicitation, which results in the specification of the system that the client
understands, and analysis, which results in an analysis model that the developers can
unambiguously interpret. Requirements elicitation is the more challenging of the two because it
requires the collaboration of several groups of participants with different backgrounds. On the
one hand, the client and the users are experts in their domain and have a general idea of what the
system should do, but they often have little experience in software development. On the other
hand, the developers have experience in building systems, but often have little knowledge of the
everyday environment of the users.

Scenarios and use cases provide tools for bridging this gap. A scenario describes an
example of system use in terms of a series of interactions between the user and the system. A use
case is an abstraction that describes a class of scenarios. Both scenarios and use cases are written
in natural language, a form that is understandable to the user.

In this chapter, we focus on scenario-based requirements elicitation. Developers elicit
requirements by observing and interviewing users. Developers first represent the user’s current
work processes as as-is scenarios, then develop visionary scenarios describing the functionality
to be provided by the future system. The client and users validate the system description by
reviewing the scenarios and by testing small prototypes provided by the developers. As the
definition of the system matures and stabilizes, developers and the client agree on a
requirements specification in the form of functional requirements, nonfunctional requirements,
use cases, and scenarios.
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4.1 Introduction: Usability Examples

Requirements elicitation is about communication among developers, clients, and users to
define a new system. Failure to communicate and understand each others’ domains results in a
system that is difficult to use or that simply fails to support the user’s work. Errors introduced
during requirements elicitation are expensive to correct, as they are usually discovered late in the
process, often as late as delivery. Such errors include missing functionality that the system
should have supported, functionality that was incorrectly specified, user interfaces that are
misleading or unusable, and obsolete functionality. Requirements elicitation methods aim at
improving communication among developers, clients, and users. Developers construct a model
of the application domain by observing users in their environment. Developers select a
representation that is understandable by the clients and users (e.g., scenarios and use cases).
Developers validate the application domain model by constructing simple prototypes of the user
interface and collecting feedback from potential users. An example of a simple prototype is the
layout of a user interface with menu items and buttons. The potential user can manipulate the
menu items and buttons to get a feeling for the usage of the system, but there is no actual
response after buttons are clicked, because the required functionality is not implemented. 

Section 4.2 provides an overview of requirements elicitation and its relationship to the
other development activities. Section 4.3 defines the concepts used in this chapter. Section 4.4
discusses the activities of requirements elicitation. Section 4.5 discusses the management
activities related to requirements elicitation. Section 4.6 discusses the ARENA case study.

Feet or miles?a

During a laser experiment, a laser beam was directed at a mirror on the Space Shuttle Discovery. The
test called for the laser beam to be reflected back toward a mountain top. The user entered the elevation
of the mountain as “10,023,” assuming the units of the input were in feet. The computer interpreted the
number in miles and the laser beam was reflected away from Earth, toward a hypothetical mountain
10,023 miles high.

Decimal point versus thousand separator

In the United States, decimal points are represented by a period (“.”) and thousand separators are
represented by a comma (“,”). In Germany, the decimal point is represented by a comma and the
thousand separator by a period. Assume a user in Germany, aware of both conventions, is viewing an
online catalog with prices listed in dollars. Which convention should be used to avoid confusion?

Standard patterns

In the Emacs text editor, the command <Control-x><Control-c> exits the program. If any files need
to be saved, the editor will ask the user, “Save file myDocument.txt? (y or n)”. If the user answers y, the
editor saves the file prior to exiting. Many users rely on this pattern and systematically type the
sequence <Control-x><Control-c> followed by a “y” when exiting an editor. Other editors, however,
ask when exiting the question: “Are you sure you want to exit? (y or n)”. When users switch from
Emacs to such an editor, they will fail to save their work until they manage to break this pattern.

a. Examples from [Nielsen, 1993] and [Neumann, 1995].
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4.2 An Overview of Requirements Elicitation

Requirements elicitation focuses on describing the purpose of the system. The client, the
developers, and the users identify a problem area and define a system that addresses the
problem. Such a definition is called a requirements specification and serves as a contract
between the client and the developers. The requirements specification is structured and
formalized during analysis (Chapter 5, Analysis) to produce an analysis model (see Figure 4-1).
Both requirements specification and analysis model represent the same information. They differ
only in the language and notation they use; the requirements specification is written in natural
language, whereas the analysis model is usually expressed in a formal or semiformal notation.
The requirements specification supports the communication with the client and users. The
analysis model supports the communication among developers. They are both models of the
system in the sense that they attempt to represent accurately the external aspects of the system.
Given that both models represent the same aspects of the system, requirements elicitation and
analysis occur concurrently and iteratively.

Requirements elicitation and analysis focus only on the user’s view of the system. For
example, the system functionality, the interaction between the user and the system, the errors
that the system can detect and handle, and the environmental conditions in which the system
functions are part of the requirements. The system structure, the implementation technology
selected to build the system, the system design, the development methodology, and other aspects
not directly visible to the user are not part of the requirements.

Figure 4-1 Products of requirements elicitation and analysis (UML activity diagram).
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Requirements elicitation includes the following activities:

• Identifying actors. During this activity, developers identify the different types of users
the future system will support. 

• Identifying scenarios. During this activity, developers observe users and develop a set
of detailed scenarios for typical functionality provided by the future system. Scenarios
are concrete examples of the future system in use. Developers use these scenarios to
communicate with the user and deepen their understanding of the application domain.

• Identifying use cases. Once developers and users agree on a set of scenarios, developers
derive from the scenarios a set of use cases that completely represent the future system.
Whereas scenarios are concrete examples illustrating a single case, use cases are
abstractions describing all possible cases. When describing use cases, developers
determine the scope of the system.

• Refining use cases. During this activity, developers ensure that the requirements
specification is complete by detailing each use case and describing the behavior of the
system in the presence of errors and exceptional conditions. 

• Identifying relationships among use cases. During this activity, developers identify
dependencies among use cases. They also consolidate the use case model by factoring
out common functionality. This ensures that the requirements specification is
consistent. 

• Identifying nonfunctional requirements. During this activity, developers, users, and
clients agree on aspects that are visible to the user, but not directly related to
functionality. These include constraints on the performance of the system, its
documentation, the resources it consumes, its security, and its quality.

During requirements elicitation, developers access many different sources of information,
including client-supplied documents about the application domain, manuals and technical
documentation of legacy systems that the future system will replace, and most important, the
users and clients themselves. Developers interact the most with users and clients during
requirements elicitation. We focus on two methods for eliciting information, making decisions
with users and clients, and managing dependencies among requirements and other artifacts:

• Joint Application Design (JAD) focuses on building consensus among developers,
users, and clients by jointly developing the requirements specification.1

• Traceability focuses on recording, structuring, linking, grouping, and maintaining
dependencies among requirements and between requirements and other work products.

1. Note that the use of the term “design” in JAD is a misnomer: it has nothing to do with our use of the term in the 
subsequent chapters on system and object design. 
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4.3 Requirements Elicitation Concepts

In this section, we describe the main requirements elicitation concepts used in this chapter. In
particular, we describe

• Functional Requirements (Section 4.3.1)
• Nonfunctional Requirements (Section 4.3.2)

• Completeness, Consistency, Clarity, and Correctness (Section 4.3.3)

• Realism, Verifiability, and Traceability (Section 4.3.4)
• Greenfield Engineering, Reengineering, and Interface Engineering (Section 4.3.5).

We describe the requirements elicitation activities in Section 4.4.

4.3.1 Functional Requirements

Functional requirements describe the interactions between the system and its environment
independent of its implementation. The environment includes the user and any other external
system with which the system interacts. For example, Figure 4-2 is an example of functional
requirements for SatWatch, a watch that resets itself without user intervention: 

The above functional requirements focus only on the possible interactions between
SatWatch and its external world (i.e., the watch owner, GPS, and WebifyWatch). The above
description does not focus on any of the implementation details (e.g., processor, language,
display technology).

SatWatch is a wrist watch that displays the time based on its current location. SatWatch uses GPS
satellites (Global Positioning System) to determine its location and internal data structures to convert this
location into a time zone. 

The information stored in SatWatch and its accuracy measuring time is such that the watch owner never
needs to reset the time. SatWatch adjusts the time and date displayed as the watch owner crosses time
zones and political boundaries. For this reason, SatWatch has no buttons or controls available to the user.

SatWatch determines its location using GPS satellites and, as such, suffers from the same limitations as
all other GPS devices (e.g., inability to determine location at certain times of the day in mountainous
regions). During blackout periods, SatWatch assumes that it does not cross a time zone or a political
boundary. SatWatch corrects its time zone as soon as a blackout period ends.

SatWatch has a two-line display showing, on the top line, the time (hour, minute, second, time zone) and
on the bottom line, the date (day, date, month, year). The display technology used is such that the watch
owner can see the time and date even under poor light conditions.

When political boundaries change, the watch owner may upgrade the software of the watch using the
WebifyWatch device (provided with the watch) and a personal computer connected to the Internet. 

Figure 4-2 Functional requirements for SatWatch.
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4.3.2 Nonfunctional Requirements

Nonfunctional requirements describe aspects of the system that are not directly related to the
functional behavior of the system. Nonfunctional requirements include a broad variety of
requirements that apply to many different aspects of the system, from usability to performance.
The FURPS+ model2 used by the Unified Process [Jacobson et al., 1999] provides the following
categories of nonfunctional requirements:

• Usability is the ease with which a user can learn to operate, prepare inputs for, and
interpret outputs of a system or component. Usability requirements include, for
example, conventions adopted by the user interface, the scope of online help, and the
level of user documentation. Often, clients address usability issues by requiring the
developer to follow user interface guidelines on color schemes, logos, and fonts.

• Reliability is the ability of a system or component to perform its required functions
under stated conditions for a specified period of time. Reliability requirements include,
for example, an acceptable mean time to failure and the ability to detect specified faults
or to withstand specified security attacks. More recently, this category is often replaced
by dependability, which is the property of a computer system such that reliance can
justifiably be placed on the service it delivers. Dependability includes reliability,
robustness (the degree to which a system or component can function correctly in the
presence of invalid inputs or stressful environment conditions), and safety (a measure
of the absence of catastrophic consequences to the environment).

• Performance requirements are concerned with quantifiable attributes of the system,
such as response time (how quickly the system reacts to a user input), throughput
(how much work the system can accomplish within a specified amount of time),
availability (the degree to which a system or component is operational and accessible
when required for use), and accuracy.

• Supportability requirements are concerned with the ease of changes to the system
after deployment, including for example, adaptability (the ability to change the system
to deal with additional application domain concepts), maintainability (the ability to
change the system to deal with new technology or to fix defects), and
internationalization (the ability to change the system to deal with additional
international conventions, such as languages, units, and number formats). The ISO
9126 standard on software quality [ISO Std. 9126], similar to the FURPS+ model,
replaces this category with two categories: maintainability and portability (the ease
with which a system or component can be transferred from one hardware or software
environment to another).

2. FURPS+ is an acronym using the first letter of the requirements categories: Functionality, Usability, Reliability, 
Performance, and Supportability. The + indicates the additional subcategories. The FURPS model was originally 
proposed by [Grady, 1992]. The definitions in this section are quoted from [IEEE Std. 610.12-1990].



Requirements Elicitation Concepts 127

The FURPS+ model provides additional categories of requirements typically also included
under the general label of nonfunctional requirements:

• Implementation requirements are constraints on the implementation of the system,
including the use of specific tools, programming languages, or hardware platforms. 

• Interface requirements are constraints imposed by external systems, including legacy
systems and interchange formats.

• Operations requirements are constraints on the administration and management of
the system in the operational setting. 

• Packaging requirements are constraints on the actual delivery of the system (e.g.,
constraints on the installation media for setting up the software).

• Legal requirements are concerned with licensing, regulation, and certification issues.
An example of a legal requirement is that software developed for the U.S. federal
government must comply with Section 508 of the Rehabilitation Act of 1973, requiring
that government information systems must be accessible to people with disabilities.

Nonfunctional requirements that fall into the URPS categories are called quality
requirements of the system. Nonfunctional requirements that fall into the implementation,
interface, operations, packaging, and legal categories are called constraints or pseudo
requirements. Budget and schedule requirements are usually not treated as nonfunctional
requirements, as they constrain attributes of the projects (see Chapter 14, Project Management).
Figure 4-3 depicts the nonfunctional requirements for SatWatch.

Quality requirements for SatWatch

• Any user who knows how to read a digital watch and understands international time zone 
abbreviations should be able to use SatWatch without the user manual. [Usability requirement]

• As the SatWatch has no buttons, no software faults requiring the resetting of the watch should occur. 
[Reliability requirement]

• SatWatch should display the correct time zone within 5 minutes of the end of a GPS blackout period. 
[Performance requirement]

• SatWatch should measure time within 1/100th second over 5 years. [Performance requirement]
• SatWatch should display time correctly in all 24 time zones. [Performance requirement]
• SatWatch should accept upgrades to its onboard via the Webify Watch serial interface. 

[Supportability requirement]

Constraints for SatWatch

• All related software associated with SatWatch, including the onboard software, will be written using 
Java, to comply with current company policy. [Implementation requirement]

• SatWatch complies with the physical, electrical, and software interfaces defined by WebifyWatch 
API 2.0. [Interface requirement]

Figure 4-3 Nonfunctional requirements for SatWatch.
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4.3.3 Completeness, Consistency, Clarity, and Correctness

Requirements are continuously validated with the client and the user. Validation is a critical step
in the development process, given that both the client and the developer depend on the
requirements specification. Requirement validation involves checking that the specification is
complete, consistent, unambiguous, and correct. It is complete if all possible scenarios through
the system are described, including exceptional behavior (i.e., all aspects of the system are
represented in the requirements model). The requirements specification is consistent if it does
not contradict itself. The requirements specification is unambiguous if exactly one system is
defined (i.e., it is not possible to interpret the specification two or more different ways). A
specification is correct if it represents accurately the system that the client needs and that the
developers intend to build (i.e., everything in the requirements model accurately represents an
aspect of the system to the satisfaction of both client and developer). These properties are
illustrated in Table 4-1.

The correctness and completeness of a requirements specification are often difficult to
establish, especially before the system exists. Given that the requirements specification serves as
a contractual basis between the client and the developers, the requirements specification must be

Table 4-1  Specification properties checked during validation. 

Complete—All features of interest are described by requirements.

Example of incompleteness: The SatWatch specification does not specify the boundary behavior when
the user is standing within GPS accuracy limitations of a state’s boundary.

Solution: Add a functional requirement stating that the time depicted by SatWatch should not change
more often than once very 5 minutes.

Consistent—No two requirements of the specification contradict each other.

Example of inconsistency: A watch that does not contain any software faults need not provide an
upgrade mechanism for downloading new versions of the software.

Solution: Revise one of the conflicting requirements from the model (e.g., rephrase the requirement
about the watch not containing any faults, as it is not verifiable anyway).

Unambiguous—A requirement cannot be interpreted in two mutually exclusive ways.

Example of ambiguity: The SatWatch specification refers to time zones and political boundaries. Does
the SatWatch deal with daylight saving time or not?

Solution: Clarify the ambiguous concept to select one of the mutually exclusive phenomena (e.g., add a
requirement that SatWatch should deal with daylight saving time).

Correct—The requirements describe the features of the system and environment of interest to the client
and the developer, but do not describe other unintended features.

Example of fault: There are more than 24 time zones. Several countries and territories (e.g, India) are
half an hour ahead of a neighboring time zone.
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carefully reviewed by both parties. Additionally, parts of the system that present a high risk
should be prototyped or simulated to demonstrate their feasibility or to obtain feedback from the
user. In the case of SatWatch described above, a mock-up of the watch would be built using a
traditional watch and users surveyed to gather their initial impressions. A user may remark that
she wants the watch to be able to display both American and European date formats. 

4.3.4 Realism, Verifiability, and Traceability

Three more desirable properties of a requirements specification are that it be realistic, verifiable,
and traceable. The requirements specification is realistic if the system can be implemented
within constraints. The requirements specification is verifiable if, once the system is built,
repeatable tests can be designed to demonstrate that the system fulfills the requirements
specification. For example, a mean time to failure of a hundred years for SatWatch would be
difficult to verify (assuming it is realistic in the first place). The following requirements are
additional examples of nonverifiable requirements:

• The product shall have a good user interface.—Good is not defined.

• The product shall be error free.—Requires large amount of resources to establish.

• The product shall respond to the user with 1 second for most cases.—“Most cases” is
not defined.

A requirements specification is traceable if each requirement can be traced throughout the
software development to its corresponding system functions, and if each system function can be
traced back to its corresponding set of requirements. Traceability includes also the ability to
track the dependencies among requirements, system functions, and the intermediate design
artifacts, including system components, classes, methods, and object attributes. Traceability is
critical for developing tests and for evaluating changes. When developing tests, traceability
enables a tester to assess the coverage of a test case, that is, to identify which requirements are
tested and which are not. When evaluating changes, traceability enables the analyst and the
developers to identify all components and system functions that the change would impact. 

4.3.5 Greenfield Engineering, Reengineering, and Interface Engineering

Requirements elicitation activities can be classified into three categories, depending on the
source of the requirements. In greenfield engineering, the development starts from scratch—no
prior system exists—so the requirements are extracted from the users and the client. A
greenfield engineering project is triggered by a user need or the creation of a new market.
SatWatch is a greenfield engineering project. 

A reengineering project is the redesign and reimplementation of an existing system
triggered by technology enablers or by business processes [Hammer & Champy, 1993].
Sometimes, the functionality of the new system is extended, but the essential purpose of the
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system remains the same. The requirements of the new system are extracted from an existing
system. 

An interface engineering project is the redesign of the user interface of an existing
system. The legacy system is left untouched except for its interface, which is redesigned and
reimplemented. This type of project is a reengineering project in which the legacy system cannot
be discarded without entailing high costs.

In both reengineering and greenfield engineering, the developers need to gather as much
information as possible from the application domain. This information can be found in
procedures manuals, documentation distributed to new employees, the previous system’s
manual, glossaries, cheat sheets and notes developed by the users, and user and client interviews.
Note that although interviews with users are an invaluable tool, they fail to gather the necessary
information if the relevant questions are not asked. Developers must first gain a solid knowledge
of the application domain before the direct approach can be used.

Next, we describe the activities of requirements elicitation.

4.4 Requirements Elicitation Activities

In this section, we describe the requirements elicitation activities. These map a problem
statement (see Chapter 3, Project Organization and Communication) into a requirements
specification that we represent as a set of actors, scenarios, and use cases (see Chapter 2,
Modeling with UML). We discuss heuristics and methods for eliciting requirements from users
and modeling the system in terms of these concepts. Requirements elicitation activities include

• Identifying Actors (Section 4.4.1)

• Identifying Scenarios (Section 4.4.2)

• Identifying Use Cases (Section 4.4.3)

• Refining Use Cases (Section 4.4.4)

• Identifying Relationships Among Actors and Use Cases (Section 4.4.5)

• Identifying Initial Analysis Objects (Section 4.4.6)

• Identifying Nonfunctional Requirements (Section 4.4.7).

The methods described in this section are adapted from OOSE [Jacobson et al., 1992], the
Unified Software Development Process [Jacobson et al., 1999], and responsibility-driven design
[Wirfs-Brock et al., 1990].

4.4.1 Identifying Actors

Actors represent external entities that interact with the system. An actor can be human or an
external system. In the SatWatch example, the watch owner, the GPS satellites, and the
WebifyWatch serial device are actors (see Figure 4-4). They all exchange information with the
SatWatch. Note, however, that they all have specific interactions with SatWatch: the watch
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owner wears and looks at her watch; the watch monitors the signal from the GPS satellites; the
WebifyWatch downloads new data into the watch. Actors define classes of functionality.

Consider a more complex example, FRIEND, a distributed information system for accident
management [Bruegge et al., 1994]. It includes many actors, such as FieldOfficer, who
represents the police and fire officers who are responding to an incident, and Dispatcher, the
police officer responsible for answering 911 calls and dispatching resources to an incident.
FRIEND supports both actors by keeping track of incidents, resources, and task plans. It also has
access to multiple databases, such as a hazardous materials database and emergency operations
procedures. The FieldOfficer and the Dispatcher actors interact through different interfaces:
FieldOfficers access FRIEND through a mobile personal assistant, Dispatchers access FRIEND
through a workstation (see Figure 4-5).

Actors are role abstractions and do not necessarily directly map to persons. The same
person can fill the role of FieldOfficer or Dispatcher at different times. However, the
functionality they access is substantially different. For that reason, these two roles are modeled
as two different actors.

The first step of requirements elicitation is the identification of actors. This serves both to
define the boundaries of the system and to find all the perspectives from which the developers

Figure 4-4 Actors for the SatWatch system. WatchOwner moves the watch (possibly across time zones)
and consults it to know what time it is. SatWatch interacts with GPS to compute its position. WebifyWatch
upgrades the data contained in the watch to reflect changes in time policy (e.g., changes in daylight savings
time start and end dates).

Figure 4-5 Actors of the FRIEND system. FieldOfficers not only have access to different functionality,
they use different computers to access the system.

WatchOwner

GPS

WebifyWatch

SatWatch

FieldOfficer DispatcherFRIEND
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need to consider the system. When the system is deployed into an existing organization (such as
a company), most actors usually exist before the system is developed: they correspond to roles in
the organization.

During the initial stages of actor identification, it is hard to distinguish actors from objects.
For example, a database subsystem can at times be an actor, while in other cases it can be part of
the system. Note that once the system boundary is defined, there is no trouble distinguishing
between actors and such system components as objects or subsystems. Actors are outside of the
system boundary; they are external. Subsystems and objects are inside the system boundary;
they are internal. Thus, any external software system using the system to be developed is an
actor. When identifying actors, developers can ask the following questions:

In the FRIEND example, these questions lead to a long list of potential actors: fire fighter,
police officer, dispatcher, investigator, mayor, governor, an EPA hazardous material database,
system administrator, and so on. We then need to consolidate this list into a small number of
actors, who are different from the point of view of the usage of the system. For example, a fire
fighter and a police officer may share the same interface to the system, as they are both involved
with a single incident in the field. A dispatcher, on the other hand, manages multiple concurrent
incidents and requires access to a larger amount of information. The mayor and the governor
will not likely interact directly with the system, but will use the services of a trained operator
instead.

Once the actors are identified, the next step in the requirements elicitation activity is to
determine the functionality that will be accessible to each actor. This information can be
extracted using scenarios and formalized using use cases.

4.4.2 Identifying Scenarios

A scenario is “a narrative description of what people do and experience as they try to make use
of computer systems and applications” [Carroll, 1995]. A scenario is a concrete, focused,
informal description of a single feature of the system from the viewpoint of a single actor.
Scenarios cannot (and are not intended to) replace use cases, as they focus on specific instances
and concrete events (as opposed to complete and general descriptions). However, scenarios
enhance requirements elicitation by providing a tool that is understandable to users and clients.

Figure 4-6 is an example of scenario for the FRIEND system, an information system for
incident response. In this scenario, a police officer reports a fire and a Dispatcher initiates the
incident response. Note that this scenario is concrete, in the sense that it describes a single

Questions for identifying actors

• Which user groups are supported by the system to perform their work?
• Which user groups execute the system’s main functions?
• Which user groups perform secondary functions, such as maintenance and administration?
• With what external hardware or software system will the system interact?
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instance. It does not attempt to describe all possible situations in which a fire incident is
reported. In particular, scenarios cannot contain descriptions of decisions. To describe the
outcome of a decision, two scenarios would be needed, one for the “true” path, and another one
for the “false” path.

Scenarios can have many different uses during requirements elicitation and during other
activities of the life cycle. Below is a selected number of scenario types taken from
[Carroll, 1995]:

• As-is scenarios describe a current situation. During reengineering, for example, the
current system is understood by observing users and describing their actions as
scenarios. These scenarios can then be validated for correctness and accuracy with the
users.

• Visionary scenarios describe a future system. Visionary scenarios are used both as a
point in the modeling space by developers as they refine their ideas of the future system
and as a communication medium to elicit requirements from users. Visionary scenarios
can be viewed as an inexpensive prototype.

• Evaluation scenarios describe user tasks against which the system is to be evaluated.
The collaborative development of evaluation scenarios by users and developers also
improves the definition of the functionality tested by these scenarios.

• Training scenarios are tutorials used for introducing new users to the system. These
are step-by-step instructions designed to hand-hold the user through common tasks.

Scenario name warehouseOnFire

Participating actor 
instances

bob, alice:FieldOfficer

john:Dispatcher

Flow of events 1. Bob, driving down main street in his patrol car, notices smoke coming out 
of a warehouse. His partner, Alice, activates the “Report Emergency” 
function from her FRIEND laptop. 

2. Alice enters the address of the building, a brief description of its location 
(i.e., northwest corner), and an emergency level. In addition to a fire unit, 
she requests several paramedic units on the scene, given that the area 
appears to be relatively busy. She confirms her input and waits for an 
acknowledgment.

3. John, the Dispatcher, is alerted to the emergency by a beep of his 
workstation. He reviews the information submitted by Alice and 
acknowledges the report. He allocates a fire unit and two paramedic units 
to the Incident site and sends their estimated arrival time (ETA) to Alice.

4. Alice receives the acknowledgment and the ETA.

Figure 4-6 warehouseOnFire scenario for the ReportEmergency use case.
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In requirements elicitation, developers and users write and refine a series of scenarios in
order to gain a shared understanding of what the system should be. Initially, each scenario may
be high level and incomplete, as the warehouseOnFire scenario is. The following questions can
be used for identifying scenarios. 

Developers use existing documents about the application domain to answer these
questions. These documents include user manuals of previous systems, procedures manuals,
company standards, user notes and cheat sheets, user and client interviews. Developers should
always write scenarios using application domain terms, as opposed to their own terms. As
developers gain further insight into the application domain and the possibilities of the available
technology, they iteratively and incrementally refine scenarios to include increasing amounts of
detail. Drawing user interface mock-ups often helps to find omissions in the specification and to
build a more concrete picture of the system.

In the FRIEND example, we identify four scenarios that span the type of tasks the system is
expected to support:

• warehouseOnFire (Figure 4-6): A fire is detected in a warehouse; two field officers
arrive at the scene and request resources.

• fenderBender: A car accident without casualties occurs on the highway. Police officers
document the incident and manage traffic while the damaged vehicles are towed away.

• catInATree: A cat is stuck in a tree. A fire truck is called to retrieve the cat. Because
the incident is low priority, the fire truck takes time to arrive at the scene. In the
meantime, the impatient cat owner climbs the tree, falls, and breaks a leg, requiring an
ambulance to be dispatched.

• earthQuake: An unprecedented earthquake seriously damages buildings and roads,
spanning multiple incidents and triggering the activation of a statewide emergency
operations plan. The governor is notified. Road damage hampers incident response.

The emphasis for developers during actor identification and scenario identification is to
understand the application domain. This results in a shared understanding of the scope of the
system and of the user work processes to be supported. Once developers have identified and
described actors and scenarios, they formalize scenarios into use cases.

Questions for identifying scenarios

• What are the tasks that the actor wants the system to perform?
• What information does the actor access? Who creates that data? Can it be modified or removed? By 

whom?
• Which external changes does the actor need to inform the system about? How often? When?
• Which events does the system need to inform the actor about? With what latency?
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4.4.3 Identifying Use Cases

A scenario is an instance of a use case; that is, a use case specifies all possible scenarios for a
given piece of functionality. A use case is initiated by an actor. After its initiation, a use case
may interact with other actors, as well. A use case represents a complete flow of events through
the system in the sense that it describes a series of related interactions that result from its
initiation.

Figure 4-7 depicts the use case ReportEmergency of which the scenario warehouseOnFire
(see Figure 4-6) is an instance. The FieldOfficer actor initiates this use case by activating the
“Report Emergency” function of FRIEND. The use case completes when the FieldOfficer actor
receives an acknowledgment that an incident has been created. The steps in the flow of events
are indented to denote who initiates the step. Steps 1 and 3 are initiated by the actor, while steps

Use case name ReportEmergency

Participating
actors

Initiated by FieldOfficer
Communicates with Dispatcher

Flow of events 1. The FieldOfficer activates the “Report Emergency” function of her terminal.

2. FRIEND responds by presenting a form to the FieldOfficer.

3. The FieldOfficer completes the form by selecting the emergency level, type, 
location, and brief description of the situation. The FieldOfficer also 
describes possible responses to the emergency situation. Once the form is 
completed, the FieldOfficer submits the form.

4. FRIEND receives the form and notifies the Dispatcher.

5. The Dispatcher reviews the submitted information and creates an Incident in 
the database by invoking the OpenIncident use case. The Dispatcher selects a 
response and acknowledges the report.

6. FRIEND displays the acknowledgment and the selected 
response to the FieldOfficer.

Entry condition • The FieldOfficer is logged into FRIEND.

Exit conditions • The FieldOfficer has received an acknowledgment and the selected response 
from the Dispatcher, OR 

• The FieldOfficer has received an explanation indicating why the transaction 
could not be processed.

Quality
requirements

• The FieldOfficer’s report is acknowledged within 30 seconds. 
• The selected response arrives no later than 30 seconds after it is sent by the 

Dispatcher.

Figure 4-7 An example of a use case, ReportEmergency. Under ReportEmergency, the left column
denotes actor actions, and the right column denotes system responses.
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2 and 4 are initiated by the system. This use case is general and encompasses a range of
scenarios. For example, the ReportEmergency use case could also apply to the fenderBender
scenario. Use cases can be written at varying levels of detail as in the case of scenarios. 

Generalizing scenarios and identifying the high-level use cases that the system must
support enables developers to define the scope of the system. Initially, developers name use
cases, attach them to the initiating actors, and provide a high-level description of the use case as
in Figure 4-7. The name of a use case should be a verb phrase denoting what the actor is trying
to accomplish. The verb phrase “Report Emergency” indicates that an actor is attempting to
report an emergency to the system (and hence, to the Dispatcher actor). This use case is not
called “Record Emergency” because the name should reflect the perspective of the actor, not the
system. It is also not called “Attempt to Report an Emergency” because the name should reflect
the goal of the use case, not the actual activity.

Attaching use cases to initiating actors enables developers to clarify the roles of the
different users. Often, by focusing on who initiates each use case, developers identify new actors
that have been previously overlooked.

Describing a use case entails specifying four fields. Describing the entry and exit
conditions of a use case enables developers to understand the conditions under which a use case
is invoked and the impact of the use case on the state of the environment and of the system. By
examining the entry and exit conditions of use cases, developers can determine if there may be
missing use cases. For example, if a use case requires that the emergency operations plan dealing
with earthquakes should be activated, the requirements specification should also provide a use
case for activating this plan. Describing the flow of events of a use case enables developers and
clients to discuss the interaction between actors and system. This results in many decisions
about the boundary of the system, that is, about deciding which actions are accomplished by the
actor and which actions are accomplished by the system. Finally, describing the quality
requirements associated with a use case enables developers to elicit nonfunctional requirements
in the context of a specific functionality. In this book, we focus on these four fields to describe
use cases as they describe the most essential aspects of a use case. In practice, many additional
fields can be added to describe an exceptional flow of events, rules, and invariants that the use
case must respect during the flow of events.

Writing use cases is a craft. An analyst learns to write better use cases with experience.
Consequently, different analysts tend to develop different styles, which can make it difficult to
produce a consistent requirements specification. To address the issue of learning how to write
use cases and how to ensure consistency among the use cases of a requirements specification,
analysts adopt a use case writing guide. Figure 4-8 is a simple writing guide adapted from
[Cockburn, 2001] that can be used for novice use case writers. Figure 4-9 provides an example
of a poor use case that violates the writing guideline in several ways. 
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The ReportEmergency use case in Figure 4-7 may be illustrative enough to describe how
FRIEND supports reporting emergencies and to obtain general feedback from the user, but it does
not provide sufficient detail for a requirements specification. Next, we discuss how use cases are
refined and detailed.

Simple Use Case Writing Guide

• Use cases should be named with verb phrases. The name of the use case should indicate what the user 
is trying to accomplish (e.g., ReportEmergency, OpenIncident).

• Actors should be named with noun phrases (e.g., FieldOfficer, Dispatcher, Victim).
• The boundary of the system should be clear. Steps accomplished by the actor and steps accomplished 

by the system should be distinguished (e.g., in Figure 4-7, system actions are indented to the right).
• Use case steps in the flow of events should be phrased in the active voice. This makes it explicit who 

accomplished the step. 
• The causal relationship between successive steps should be clear.
• A use case should describe a complete user transaction (e.g., the ReportEmergency use case 

describes all the steps between initiating the emergency reporting and receiving an acknowledgment).
• Exceptions should be described separately.
• A use case should not describe the user interface of the system. This takes away the focus from the 

actual steps accomplished by the user and is better addressed with visual mock-ups (e.g., the 
ReportEmergency only refers to the “Report Emergency” function, not the menu, the button, nor the 
actual command that corresponds to this function).

• A use case should not exceed two or three pages in length. Otherwise, use include and extend 
relationships to decompose it in smaller use cases, as explained in Section 4.4.5.

Figure 4-8 Example of use case writing guide.

Use case name Accident Bad name: What is the user trying 
to accomplish?

Initiating actor Initiated by FieldOfficer

Flow of events 1. The FieldOfficer reports the accident.

2. An ambulance is dispatched. Causality: Which action caused the 
FieldOfficer to receive an 
acknowledgment?

Passive voice: Who dispatches the 
ambulance?

3. The Dispatcher is notified when the 
ambulance arrives on site.

Incomplete transaction: What does 
the FieldOfficer do after the 
ambulance is dispatched?

Figure 4-9 An example of a poor use case. Violations of the writing guide are indicated in italics in the
right column.
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4.4.4 Refining Use Cases

Figure 4-10 is a refined version of the ReportEmergency use case. It has been extended to
include details about the type of incidents known to FRIEND and detailed interactions indicating
how the Dispatcher acknowledges the FieldOfficer.

The use of scenarios and use cases to define the functionality of the system aims at
creating requirements that are validated by the user early in the development. As the design and

implementation of the system starts, the cost of changing the requirements specification and
adding new unforeseen functionality increases. Although requirements change until late in the
development, developers and users should strive to address most requirements issues early. This
entails many changes and much validation during requirements elicitation. Note that many use

cases are rewritten several times, others substantially refined, and yet others completely

Use case name ReportEmergency

Participating
actors

Initiated by FieldOfficer

Communicates with Dispatcher

Flow of events 1. The FieldOfficer activates the “Report Emergency” function of her terminal.

2. FRIEND responds by presenting a form to the officer. The form 
includes an emergency type menu (general emergency, fire, 
transportation) and location, incident description, resource 
request, and hazardous material fields.

3. The FieldOfficer completes the form by specifying minimally the emergency 
type and description fields. The FieldOfficer may also describe possible 
responses to the emergency situation and request specific resources. Once the 
form is completed, the FieldOfficer submits the form.

4. FRIEND receives the form and notifies the Dispatcher by a 
pop-up dialog.

5. The Dispatcher reviews the submitted information and creates an Incident in 
the database by invoking the OpenIncident use case. All the information 
contained in the FieldOfficer’s form is automatically included in the 
Incident. The Dispatcher selects a response by allocating resources to the 
Incident (with the AllocateResources use case) and acknowledges the 
emergency report by sending a short message to the FieldOfficer.

6. FRIEND displays the acknowledgment and the selected 
response to the FieldOfficer.

Entry condition • ...

Figure 4-10 Refined description for the ReportEmergency use case. Additions emphasized in italics.
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dropped. To save time, much of the exploration work can be done using scenarios and user
interface mock-ups. 

The following heuristics can be used for writing scenarios and use cases:

The focus of this activity is on completeness and correctness. Developers identify
functionality not covered by scenarios, and document it by refining use cases or writing new
ones. Developers describe seldom occurring cases and exception handling as seen by the actors.
Whereas the initial identification of use cases and actors focused on establishing the boundary of
the system, the refinement of use cases yields increasingly more details about the features
provided by the system and the constraints associated with them. In particular, the following
aspects of the use cases, initially ignored, are detailed during refinement:

• The elements that are manipulated by the system are detailed. In Figure 4-10, we added
details about the attributes of the emergency reporting form and the types of incidents. 

• The low-level sequence of interactions between the actor and the system are specified.
In Figure 4-10, we added information about how the Dispatcher generates an
acknowledgment by selecting resources.

• Access rights (which actors can invoke which use cases) are specified.

• Missing exceptions are identified and their handling specified.

• Common functionality among use cases are factored out.

In the next section, we describe how to reorganize actors and use cases with relationships,
which addresses the last three bullets points above.

Heuristics for developing scenarios and use cases

• Use scenarios to communicate with users and to validate functionality.
• First, refine a single scenario to understand the user’s assumptions about the system. The user may 

be familiar with similar systems, in which case, adopting specific user interface conventions would 
make the system more usable.

• Next, define many not-very-detailed scenarios to define the scope of the system. Validate with the 
user.

• Use mock-ups as visual support only; user interface design should occur as a separate task after the 
functionality is sufficiently stable.

• Present the user with multiple and very different alternatives (as opposed to extracting a single 
alternative from the user). Evaluating different alternatives broadens the user’s horizon. Generating 
different alternatives forces developers to “think outside the box.”

• Detail a broad vertical slice when the scope of the system and the user preferences are well 
understood. Validate with the user.
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4.4.5 Identifying Relationships among Actors and Use Cases

Even medium-sized systems have many use cases. Relationships among actors and use cases
enable the developers and users to reduce the complexity of the model and increase its
understandability. We use communication relationships between actors and use cases to describe
the system in layers of functionality. We use extend relationships to separate exceptional and
common flows of events. We use include relationships to reduce redundancy among use cases.

Communication relationships between actors and use cases

Communication relationships between actors and use cases represent the flow of
information during the use case. The actor who initiates the use case should be distinguished
from the other actors with whom the use case communicates. By specifying which actor can
invoke a specific use case, we also implicitly specify which actors cannot invoke the use case.
Similarly, by specifying which actors communicate with a specific use case, we specify which
actors can access specific information and which cannot. Thus, by documenting initiation and
communication relationships among actors and use cases, we specify access control for the
system at a coarse level.

The relationships between actors and use cases are identified when use cases are
identified. Figure 4-11 depicts an example of communication relationships in the case of the
FRIEND system. The «initiate» stereotype denotes the initiation of the use case by an actor, and
the «participate» stereotype denotes that an actor (who did not initiate the use case)
communicates with the use case. 

Extend relationships between use cases

A use case extends another use case if the extended use case may include the behavior of
the extension under certain conditions. In the FRIEND example, assume that the connection
between the FieldOfficer station and the Dispatcher station is broken while the

Figure 4-11 Example of communication relationships among actors and use cases in FRIEND (UML use
case diagram). The FieldOfficer initiates the ReportEmergency use case, and the Dispatcher initiates
the OpenIncident and AllocateResources use cases. FieldOfficers cannot directly open an incident or
allocate resources on their own.

ReportEmergency

FieldOfficer Dispatcher OpenIncident

AllocateResources

«initiate»«initiate»
«participate»

«initiate»



Requirements Elicitation Activities 141

FieldOfficer is filling the form (e.g., the FieldOfficer’s car enters a tunnel). The
FieldOfficer station needs to notify the FieldOfficer that his form was not delivered and
what measures he should take. The ConnectionDown use case is modeled as an extension of
ReportEmergency (see Figure 4-12). The conditions under which the ConnectionDown use case
is initiated are described in ConnectionDown as opposed to ReportEmergency. Separating
exceptional and optional flows of events from the base use case has two advantages. First, the
base use case becomes shorter and easier to understand. Second, the common case is
distinguished from the exceptional case, which enables the developers to treat each type of
functionality differently (e.g., optimize the common case for response time, optimize the
exceptional case for robustness). Both the extended use case and the extensions are complete use
cases of their own. They each must have entry and end conditions and be understandable by the
user as an independent whole.

Include relationships between use cases

Redundancies among use cases can be factored out using include relationships. Assume,
for example, that a Dispatcher needs to consult the city map when opening an incident (e.g., to
assess which areas are at risk during a fire) and when allocating resources (e.g., to find which
resources are closest to the incident). In this case, the ViewMap use case describes the flow of
events required when viewing the city map and is used by both the OpenIncident and the
AllocateResources use cases (Figure 4-13).

Figure 4-12 Example of use of extend relationship (UML use case diagram). ConnectionDown extends
the ReportEmergency use case. The ReportEmergency use case becomes shorter and solely focused on
emergency reporting.

Figure 4-13 Example of include relationships among use cases. ViewMap describes the flow of events for
viewing a city map (e.g., scrolling, zooming, query by street name) and is used by both OpenIncident and
AllocateResources use cases.

ReportEmergency

FieldOfficer

ConnectionDown
«extend»

ViewMap
OpenIncident

AllocateResources

«include»

«include»
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Factoring out shared behavior from use cases has many benefits, including shorter
descriptions and fewer redundancies. Behavior should only be factored out into a separate use
case if it is shared across two or more use cases. Excessive fragmentation of the requirements
specification across a large number of use cases makes the specification confusing to users and
clients.

Extend versus include relationships

Include and extend are similar constructs, and initially it may not be clear to the developer
when to use each one [Jacobson et al., 1992]. The main distinction between these constructs is
the direction of the relationship. For include relationships, the event triggering the target (i.e.,
included) use case is described in the flow of event of the source use case. For extend
relationships, the event triggering the source (i.e., extending) use case is described in the source
use case as a precondition. In other words, for include relationships, every including use case
must specify where the included use case should be invoked. For extend relationships, only the
extending use case specifies which use cases are extended. Hence, a behavior that is strongly
tied to an event and that occurs only in a relatively few use cases should be represented with an
included relationship. These types of behavior usually include common system functions that
can be used in several places (e.g., viewing a map, specifying a filename, selecting an element).
Conversely, a behavior that can happen anytime or whose occurrence can be more easily
specified as an entry condition should be represented with an extend relationship. These types of
behavior include exceptional situations (e.g., invoking the online help, canceling a transaction,
dealing with a network failure).

Figure 4-14 shows the ConnectionDown example described with an include relationship
(left column) and with an extend relationship (right column). In the left column, we need to
insert text in two places in the event flow where the ConnectionDown use case can be invoked.
Also, if additional exceptional situations are described (e.g., a help function on the
FieldOfficer station), the ReportEmergency use case will have to be modified and will become
cluttered with conditions. In the right column, we need to describe only the conditions under
which the exceptional use case is invoked, which can include a large number of use cases (e.g.,
“any use case in which the connection between the FieldOfficer and the Dispatcher is lost”).
Moreover, additional exceptional situations can be added without modifying the base use case
(e.g., ReportEmergency). The ability to extend the system without modifying existing parts is
critical, as it allows us to ensure that the original behavior is left untouched. The distinction
between include and extend is a documentation issue: using the correct type of relationship
reduces dependencies among use cases, reduces redundancy, and lowers the probability of
introducing errors when requirements change. However, the impact on other development
activities is minimal.

In summary, the following heuristics can be used for selecting an extend or an include
relationship.
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In all cases, the purpose of adding include and extend relationships is to reduce or remove

redundancies from the use case model, thus eliminating potential inconsistencies.

4.4.6 Identifying Initial Analysis Objects

One of the first obstacles developers and users encounter when they start collaborating with each

other is differing terminology. Although developers eventually learn the users’ terminology, this

problem is likely to be encountered again when new developers are added to the project.

Misunderstandings result from the same terms being used in different contexts and with different

meanings.

To establish a clear terminology, developers identify the participating objects for each

use case. Developers should identify, name, and describe them unambiguously and collate them

into a glossary.3 Building this glossary constitutes the first step toward analysis, which we

discuss in the next chapter.

The glossary is included in the requirements specification and, later, in the user manuals.

Developers keep the glossary up to date as the requirements specification evolves. The benefits

of the glossary are manyfold: new developers are exposed to a consistent set of definitions, a

single term is used for each concept (instead of a developer term and a user term), and each term

has a precise and clear official meaning.

The identification of participating objects results in the initial analysis object model. The

identification of participating objects during requirements elicitation only constitutes a first step

toward the complete analysis object model. The complete analysis model is usually not used as a

means of communication between users and developers, as users are often unfamiliar with

object-oriented concepts. However, the description of the objects (i.e., the definitions of the

terms in the glossary) and their attributes are visible to the users and reviewed. We describe in

detail the further refinement of the analysis model in Chapter 5, Analysis.

Heuristics for extend and include relationships

• Use extend relationships for exceptional, optional, or seldom-occurring behavior. An example of 
seldom-occurring behavior is the breakdown of a resource (e.g., a fire truck). An example of 
optional behavior is the notification of nearby resources responding to an unrelated incident.

• Use include relationships for behavior that is shared across two or more use cases.
• However, use discretion when applying the above two heuristics and do not overstructure the use 

case model. A few longer use cases (e.g., two pages long) are easier to understand and review than 
many short ones (e.g., ten lines long). 

3. The glossary is also called a “data dictionary” [Rumbaugh et al., 1991].
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ReportEmergency (include relationship) ReportEmergency (extend relationship)

1. ...
2. ...
3. The FieldOfficer completes the form by 

selecting the emergency level, type, location, 
and brief description of the situation. The 
FieldOfficer also describes possible 
responses to the emergency situation. Once the 
form is completed, the FieldOfficer submits 
the form, at which point, the Dispatcher is 
notified.
If the connection with the Dispatcher is 
broken, the ConnectionDown use case is used.

4. If the connection is still alive, the Dispatcher
reviews the submitted information and creates 
an Incident in the database by invoking the 
OpenIncident use case. The Dispatcher
selects a response and acknowledges the 
emergency report.
If the connection is broken, the 
ConnectionDown use case is used.

5. ...

1. ...
2. ...
3. The FieldOfficer completes the form by 

selecting the emergency level, type, location, 
and brief description of the situation. The 
FieldOfficer also describes possible 
responses to the emergency situation. Once the 
form is completed, the FieldOfficer submits 
the form, at which point, the Dispatcher is 
notified.

4. The Dispatcher reviews the submitted 
information and creates an Incident in the 
database by invoking the OpenIncident use 
case. The Dispatcher selects a response and 
acknowledges the emergency report.

5. ...

ConnectionDown (include relationship) ConnectionDown (extend relationship)

1. The FieldOfficer and the Dispatcher are 
notified that the connection is broken. They are 
advised of the possible reasons why such an 
event would occur (e.g., “Is the FieldOfficer
station in a tunnel?”).

2. The situation is logged by the system and 
recovered when the connection is reestablished. 

3. The FieldOfficer and the Dispatcher enter 
in contact through other means and the 
Dispatcher initiates ReportEmergency from
the Dispatcher station.

The ConnectionDown use case extends any use
case in which the communication between the
FieldOfficer and the Dispatcher can be
lost.

1. The FieldOfficer and the Dispatcher are 
notified that the connection is broken. They are 
advised of the possible reasons why such an 
event would occur (e.g., “Is the FieldOfficer
station in a tunnel?”).

2. The situation is logged by the system and 
recovered when the connection is reestablished. 

3. The FieldOfficer and the Dispatcher enter 
in contact through other means and the 
Dispatcher initiates ReportEmergency from
the Dispatcher station.

Figure 4-14 Addition of ConnectionDown exceptional condition to ReportEmergency. An extend
relationship is used for exceptional and optional flow of events because it yields a more modular description.
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Many heuristics have been proposed in the literature for identifying objects. Here are a
selected few:

During requirements elicitation, participating objects are generated for each use case. If
two use cases refer to the same concept, the corresponding object should be the same. If two
objects share the same name and do not correspond to the same concept, one or both concepts
are renamed to acknowledge and emphasize their difference. This consolidation eliminates any
ambiguity in the terminology used. For example, Table 4-2 depicts the initial participating
objects we identified for the ReportEmergency use case.

Heuristics for identifying initial analysis objects

• Terms that developers or users must clarify to understand the use case
• Recurring nouns in the use cases (e.g., Incident)
• Real-world entities that the system must track (e.g., FieldOfficer, Resource)
• Real-world processes that the system must track (e.g., EmergencyOperationsPlan)
• Use cases (e.g., ReportEmergency)
• Data sources or sinks (e.g., Printer)
• Artifacts with which the user interacts (e.g., Station)
• Always use application domain terms.

Table 4-2  Participating objects for the ReportEmergency use case. 

Dispatcher Police officer who manages Incidents. A Dispatcher opens, documents,
and closes incidents in response to EmergencyReports and other
communication with FieldOfficers. Dispatchers are identified by badge
numbers.

EmergencyReport Initial report about an Incident from a FieldOfficer to a Dispatcher.
An EmergencyReport usually triggers the creation of an Incident by the
Dispatcher. An EmergencyReport is composed of an emergency level, a
type (fire, road accident, other), a location, and a description.

FieldOfficer Police or fire officer on duty. A FieldOfficer can be allocated to at most
one Incident at a time. FieldOfficers are identified by badge numbers.

Incident Situation requiring attention from a FieldOfficer. An Incident may be
reported in the system by a FieldOfficer or anybody else external to the
system. An Incident is composed of a description, a response, a status
(open, closed, documented), a location, and a number of FieldOfficers.
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Once participating objects are identified and consolidated, the developers can use them as
a checklist for ensuring that the set of identified use cases is complete. 

4.4.7 Identifying Nonfunctional Requirements

Nonfunctional requirements describe aspects of the system that are not directly related to its
functional behavior. Nonfunctional requirements span a number of issues, from user interface
look and feel to response time requirements to security issues. Nonfunctional requirements are
defined at the same time as functional requirements because they have as much impact on the
development and cost of the system.

For example, consider a mosaic display that an air traffic controller uses to track planes. A
mosaic display system compiles data from a series of radars and databases (hence the term
“mosaic”) into a summary display indicating all aircraft in a certain area, including their
identification, speed, and altitude. The number of aircraft such a system can display constrains
the performance of the air traffic controller and the cost of the system. If the system can only
handle a few aircraft simultaneously, the system cannot be used at busy airports. On the other
hand, a system able to handle a large number of aircraft is more costly and more complex to
build and to test. 

Nonfunctional requirements can impact the work of the user in unexpected ways. To
accurately elicit all the essential nonfunctional requirements, both client and developer must
collaborate so that they identify (minimally) which attributes of the system that are difficult to
realize are critical for the work of the user. In the mosaic display example above, the number of
aircraft that a single mosaic display must be able to handle has implications on the size of the
icons used for displaying aircraft, the features for identifying aircraft and their properties, the
refresh rate of the data, and so on.

The resulting set of nonfunctional requirements typically includes conflicting
requirements. For example, the nonfunctional requirements of the SatWatch (Figure 4-3) call for
an accurate mechanism, so that the time never needs to be reset, and a low unit cost, so that it is
acceptable to the user to replace the watch with a new one when it breaks. These two
nonfunctional requirements conflict as the unit cost of the watch increases with its accuracy. To
deal with such conflicts, the client and the developer prioritize the nonfunctional requirements,
so that they can be addressed consistently during the realization of the system.

Heuristics for cross-checking use cases and participating objects

• Which use cases create this object (i.e., during which use cases are the values of the object attributes 
entered in the system)? 

• Which actors can access this information?
• Which use cases modify and destroy this object (i.e., which use cases edit or remove this information 

from the system)? 
• Which actor can initiate these use cases?
• Is this object needed (i.e., is there at least one use case that depends on this information?)
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Table 4-3  Example questions for eliciting nonfunctional requirements.

 Category Example questions

Usability • What is the level of expertise of the user?
• What user interface standards are familiar to the user?
• What documentation should be provided to the user?

Reliability
(including robustness, 
safety, and security)

• How reliable, available, and robust should the system be?
• Is restarting the system acceptable in the event of a failure?
• How much data can the system loose?
• How should the system handle exceptions?
• Are there safety requirements of the system?
• Are there security requirements of the system?

Performance • How responsive should the system be?
• Are any user tasks time critical?
• How many concurrent users should it support?
• How large is a typical data store for comparable systems?
• What is the worse latency that is acceptable to users?

Supportability
(including
maintainability and 
portability)

• What are the foreseen extensions to the system?
• Who maintains the system?
• Are there plans to port the system to different software or 

hardware environments?

Implementation • Are there constraints on the hardware platform?
• Are constraints imposed by the maintenance team?
• Are constraints imposed by the testing team?

Interface • Should the system interact with any existing systems?
• How are data exported/imported into the system?
• What standards in use by the client should be supported by 

the system?

Operation • Who manages the running system?

Packaging • Who installs the system?
• How many installations are foreseen?
• Are there time constraints on the installation?

Legal • How should the system be licensed?
• Are any liability issues associated with system failures?
• Are any royalties or licensing fees incurred by using specific 

algorithms or components?
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There are unfortunately few systematic methods for eliciting nonfunctional requirements.
In practice, analysts use a taxonomy of nonfunctional requirements (e.g., the FURPS+ scheme
described previously) to generate check lists of questions to help the client and the developers
focus on the nonfunctional aspects of the system. As the actors of the system have already been
identified at this point, this check list can be organized by role and distributed to representative
users. The advantage of such check lists is that they can be reused and expanded for each new
system in a given application domain, thus reducing the number of omissions. Note that such
check lists can also result in the elicitation of additional functional requirements. For example,
when asking questions about the operation of the system, the client and developers may uncover
a number of use cases related with the administration of the system. Table 4-3 depicts example
questions for each of the FURPS+ category. 

Once the client and the developers identify a set of nonfunctional requirements, they can
organize them into refinement and dependency graphs to identify further nonfunctional
requirements and identify conflicts. For more material on this topic, the reader is referred to the
specialized literature (e.g., [Chung et al., 1999]).

4.5 Managing Requirements Elicitation

In the previous section, we described the technical issues of modeling a system in terms of use
cases. Use case modeling by itself, however, does not constitute requirements elicitation. Even
after they become expert use case modelers, developers still need to elicit requirements from the
users and come to an agreement with the client. In this section, we describe methods for eliciting
information from the users and negotiating an agreement with a client. In particular, we
describe:

• Negotiating Specifications with Clients: Joint Application Design (Section 4.5.1)
• Maintaining Traceability (Section 4.5.2)
• Documenting Requirements Elicitation (Section 4.5.3).

4.5.1 Negotiating Specifications with Clients: Joint Application Design

Joint Application Design (JAD) is a requirements method developed at IBM at the end of the
1970s. Its effectiveness lies in that the requirements elicitation work is done in one single
workshop session in which all stakeholders participate. Users, clients, developers, and a trained
session leader sit together in one room to present their viewpoints, listen to other viewpoints,
negotiate, and come to a mutually acceptable solution. The outcome of the workshop, the final
JAD document, is a complete requirements specification document that includes definitions of
data elements, work flows, and interface screens. Because the final document is jointly
developed by the stakeholders (that is, the participants who not only have an interest in the
success of the project, but also can make substantial decisions), the final JAD document
represents an agreement among users, clients, and developers, and thus minimizes requirements
changes later in the development process. JAD is composed of five activities (Figure 4-15):
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Figure 4-15 Activities of JAD (UML activity diagram). The heart of JAD is the Session activity during
which all stakeholders design and agree to a requirements specification. The activities prior to the Session
maximize its efficiency. The production of the final document captures the decisions made during the
Session.
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1. Project definition. During this activity, the JAD facilitator interviews the project
manager and the client to determine the objectives and the scope of the project. The
findings from the interviews are collected in the Management Definition Guide.

2. Research. During this activity, the JAD facilitator interviews present and future users,
gathers information about the application domain, and describes a first set of high-level
use cases. The JAD facilitator also starts a list of problems to be addressed during the
session. The results of this activity are a Session Agenda and a Preliminary
Specification listing work flow and system information.

3. Preparation. During this activity, the JAD facilitator prepares the session. The JAD
facilitator creates a Working Document, which is the first draft of the final document, an
agenda for the session, and any overhead slides or flip charts representing information
gathered during the Research activity. The JAD facilitator also selects a team composed
of the client, the project manager, selected users, and developers. All stakeholders are
represented, and the participants are able to make binding decisions.

4. Session. During this activity, the JAD facilitator guides the team in creating the
requirements specification. A JAD session lasts for 3 to 5 days. The team defines and
agrees on the scenarios, use cases, and user interface mock-ups. All decisions are
documented by a scribe.

5. Final document. The JAD facilitator prepares the Final Document, revising the working
document to include all decisions made during the session. The Final Document
represents a complete specification of the system agreed on during the session. The
Final Document is distributed to the session participants for review. The participants
then attend a 1- to 2-hour meeting to discuss the reviews and finalize the document.

JAD has been used by IBM and other companies. JAD leverages group dynamics to
improve communication among participants and to accelerate consensus. At the end of a JAD
session, developers are more knowledgeable of user needs, and users are more knowledgeable of
development trade-offs. Additional gains result from a reduction of redesign activities
downstream. Because of its reliance on social dynamics, the success of a JAD session often
depends on the qualifications of the JAD facilitator as a meeting facilitator. For a detailed
overview of JAD, the reader is referred to [Wood & Silver, 1989]. 

4.5.2 Maintaining Traceability

Traceability is the ability to follow the life of a requirement. This includes tracing where the
requirements came from (e.g., who originated it, which client need does it address) to which
aspects of the system and the project it affects (e.g., which components realize the requirement,
which test case checks its realization). Traceability enables developers to show that the system is
complete, testers to show that the system complies with its requirements, designers to record the
rationale behind the system, and maintainers to assess the impact of change.
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Consider the SatWatch system we introduced at the beginning of the chapter. Currently,
the specification calls for a two-line display that includes time and date. After the client decides
that the digit size is too small for comfortable reading, developers change the display
requirement to a single-line display combined with a button to switch between time and date.
Traceability would enable us to answer the following questions:

• Who originated the two-line display requirement?
• Did any implicit constraints mandate this requirement?
• Which components must be changed because of the additional button and display?
• Which test cases must be changed?

The simplest approach to maintaining traceability is to use cross-references among
documents, models, and code artifacts. Each individual element (e.g., requirement, component,
class, operation, test case) is identified by a unique number. Dependencies are then documented
manually as a textual cross-reference containing the number of the source element and the
number of the target element. Tool support can be as simple as a spreadsheet or a word
processing tool. This approach is expensive in time and personpower, and it is error prone.
However, for small projects, developers can observe benefits early.

For large-scale projects, specialized database tools enable the partial automation of the
capture, editing, and linking of traceability dependencies at a more detailed level (e.g., DOORS
[Telelogic] or RequisitePro [Rational]). Such tools reduce the cost of maintaining traceability,
but they require the buy-in and training of most stakeholders and impose restrictions on other
tools in the development process.

4.5.3 Documenting Requirements Elicitation

The results of the requirements elicitation and the analysis activities are documented in the
Requirements Analysis Document (RAD). This document completely describes the system in
terms of functional and nonfunctional requirements. The audience for the RAD includes the
client, the users, the project management, the system analysts (i.e., the developers who
participate in the requirements), and the system designers (i.e., the developers who participate in
the system design). The first part of the document, including use cases and nonfunctional
requirements, is written during requirements elicitation. The formalization of the specification in
terms of object models is written during analysis. Figure 4-16 is an example template for a RAD
used in this book. 

The first section of the RAD is an Introduction. Its purpose is to provide a brief overview
of the function of the system and the reasons for its development, its scope, and references to the
development context (e.g., reference to the problem statement written by the client, references to
existing systems, feasibility studies). The introduction also includes the objectives and success
criteria of the project.

The second section, Current system, describes the current state of affairs. If the new
system will replace an existing system, this section describes the functionality and the problems
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of the current system. Otherwise, this section describes how the tasks supported by the new
system are accomplished now. For example, in the case of SatWatch, the user currently resets
her watch whenever she travels across a time zone. Because of the manual nature of this
operation, the user occasionally sets the wrong time and occasionally neglects to reset. In
contrast, the SatWatch will continually ensure accurate time within its lifetime. In the case of
FRIEND, the current system is paper based: dispatchers keep track of resource assignments by
filling out forms. Communication between dispatchers and field officers is by radio. The current
system requires a high documentation and management cost that FRIEND aims to reduce.

The third section, Proposed system, documents the requirements elicitation and the
analysis model of the new system. It is divided into four subsections:

• Overview presents a functional overview of the system. 

Requirements Analysis Document

1. Introduction
1.1 Purpose of the system
1.2 Scope of the system
1.3 Objectives and success criteria of the project
1.4 Definitions, acronyms, and abbreviations
1.5 References
1.6 Overview

2. Current system
3. Proposed system

3.1 Overview
3.2 Functional requirements
3.3 Nonfunctional requirements

3.3.1 Usability
3.3.2 Reliability
3.3.3 Performance
3.3.4 Supportability
3.3.5 Implementation
3.3.6 Interface
3.3.7 Packaging
3.3.8 Legal

3.4 System models
3.4.1 Scenarios
3.4.2 Use case model
3.4.3 Object model
3.4.4 Dynamic model
3.4.5 User interface—navigational paths and screen mock-ups

4. Glossary

Figure 4-16 Outline of the Requirements Analysis Document (RAD). Sections in italics are completed
during analysis (see next chapter).
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• Functional requirements describes the high-level functionality of the system.

• Nonfunctional requirements describes user-level requirements that are not directly
related to functionality. This includes usability, reliability, performance, supportability,
implementation, interface, operational, packaging, and legal requirements.

• System models describes the scenarios, use cases, object model, and dynamic models
for the system. This section contains the complete functional specification, including
mock-ups illustrating the user interface of the system and navigational paths
representing the sequence of screens. The subsections Object model and Dynamic
model are written during the Analysis activity, described in the next chapter.

The RAD should be written after the use case model is stable, that is, when the number of
modifications to the requirements is minimal. The requirements, however, are updated
throughout the development process when specification problems are discovered or when the
scope of the system is changed. The RAD, once published, is baselined and put under
configuration management.4 The revision history section of the RAD will provide a history of
changes include the author responsible for each change, the date of the change, and a brief
description of the change.

4.6 ARENA Case Study

In this section, we apply the concepts and methods described in this chapter to the ARENA system.
We start with the initial problem statement provided by the client, and develop a use case model
and an initial analysis object model. In previous sections, we selected examples for their
illustrative value. In this section, we focus on a realistic example, describe artifacts as they are
created and refined. This enables us to discuss more realistic trade-offs and design decisions and
focus on operational details that are typically not visible in illustrative examples. In this
discussion, “ARENA” denotes the system in general, whereas “arena” denotes a specific
instantiation of the system.

4.6.1 Initial Problem Statement

After an initial meeting with the client, the problem statement is written (Figure 4-17). 

Note that this brief text describes the problem and the requirements at a high level. This is
not typically the stage at which we commit to a budget or a delivery date. First, we start
developing the use case model by identifying actors and scenarios.

4. A baseline is a version of a work product that has been reviewed and formally approved. Configuration 
management is the process of tracking and approving changes to the baseline. We discuss configuration 
management in Chapter 13, Configuration Management.
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ARENA Problem Statement

1. Problem

The popularity of the Internet and the World Wide Web has enabled the creation of a variety of virtual
communities, groups of people sharing common interests, but who have never met each other in person.
Such virtual communities can be short lived (e.g., a group of people meeting in a chat room or playing a
tournament) or long lived (e.g., subscribers to a mailing list). They can include a small group of people or
many thousands.

Many multi-player computer games now include support for the virtual communities that are players of
the given game. Players can receive news about game upgrades, new game maps and characters; they can
announce and organize matches, compare scores and exchange tips. The game company takes advantage
of this infrastructure to generate revenue or to advertise its products.

Currently, however, each game company develops such community support in each individual game.
Each company uses a different infrastructure, different concepts, and provides different levels of support.
This redundancy and inconsistency results in many disadvantages, including a learning curve for players
when joining each new community, for game companies who need to develop the support from scratch,
and for advertisers who need to contact each individual community separately. Moreover, this solution
does not provide much opportunity for cross-fertilization among different communities.

2. Objectives

The objectives of the ARENA project are to:

• provide an infrastructure for operating an arena, including registering new games and players, 
organizing tournaments, and keeping track of the players scores.

• provide a framework for league owners to customize the number and sequence of matches and the 
accumulation of expert rating points.

• provide a framework for game developers for developing new games, or for adapting existing games 
into the ARENA framework.

• provide an infrastructure for advertisers.

3. Functional requirements

ARENA supports five types of users:

• The operator should be able to define new games, define new tournament styles (e.g., knock-out 
tournaments, championships, best of series), define new expert rating formulas, and manage users.

• League owners should be able to define a new league, organize and announce new tournaments 
within a league, conduct a tournament, and declare a winner. 

• Players should be able to register in an arena, apply for a league, play the matches that are assigned to 
the player, or drop out of the tournament. 

• Spectators should be able to monitor any match in progress and check scores and statistics of past 
matches and players. Spectators do not need to register in an arena.

• The advertiser should be able to upload new advertisements, select an advertisement scheme (e.g., 
tournament sponsor, league sponsor), check balance due, and cancel advertisements. 

Figure 4-17 Initial ARENA problem statement.
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4.6.2 Identifying Actors and Scenarios

We identify five actors, one for each type of user in the problem statement (Operator,
LeagueOwner, Player, Spectator, and Advertiser). As the core functionality of the system is to
organize and play tournaments, we first develop an example scenario, organize–

TicTacToeTournament (Figure 4-18) to elicit and explore this functionality in more detail. By
first focusing on a narrow vertical slice of the system, we understand better the client’s
expectation of the system, including the boundary of the system and the kinds of interactions
between the user and the system. Using the organizeTicTacToeTournament scenario of
Figure 4-18, we produce a series of questions for the client depicted in (Figure 4-19). Based on
the answers from the client, we refine the scenario accordingly. 

Note that when asking questions of a client, our primary goal is to understand the client’s
needs and the application domain. Once we understand the domain and produce a first version of
the requirements specification, we can start trading off features and cost with the client and
prioritizing requirements. However, intertwining elicitation and negotiation too early is usually
counterproductive. 

After we refine the first scenario to the point that both we agree with the client on the
system boundary (for that scenario), we focus on the overall scope of the system. This is done by
identifying a number of shorter scenarios for each actor. Initially, these scenarios are not
detailed, but instead, cover a broad range of functionality (Figure 4-20).

When we encounter disagreements or ambiguities, we detail specific scenarios further. In
this example, the scenarios defineKnockOutStyle and installTicTacToeGame would be
refined to a comparable level of detail as the organizeTicTacToeTournament (Figure 4-18).

4. Nonfunctional requirements

• Low operating cost. The operator must be able to install and administer an arena without purchasing 
additional software components and without the help of a full-time system administrator.

• Extensibility. The operator must be able to add new games, new tournament styles, and new expert 
rating formulas. Such additions may require the system to be temporarily shut down and new modules 
(e.g., Java classes) to be added to the system. However, no modifications of the existing system 
should be required.

• Scalability. The system must support the kick-off of many parallel tournaments (e.g., 10), each 
involving up to 64 players and several hundreds of simultaneous spectators.

• Low-bandwidth network. Players should be able to play matches via a 56K analog modem or faster.

5. Target environment

• All users should be able to access any arena with a web browser supporting cookies, Javascript, and 
Java applets. Administration functions (e.g., adding new games, tournament styles, and users) used by 
the operator should not be available through the web. 

• ARENA should run on any Unix operating system (e.g., MacOS X, Linux, Solaris).

Figure 4-17 Continued.
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Typical scenarios, once refined, span several pages of text. We also start to maintain a glossary
of important terms, to ensure consistency in the specification and to ensure that we use the
client’s terms. We quickly realize that the terms Match, Game, Tournament, and League represent
application domain concepts that need to be defined precisely, as these terms could have a
different interpretation in other gaming contexts. To accomplish this, we maintain a working
glossary and revise our definitions as our exploratory work progresses (Table 4-4).

Scenario name organizeTicTacToeTournament

Participating
actor instances

alice:Operator, joe:LeagueOwner, bill:Spectator, mary:Player

Flow of events 1. Joe, a friend of Alice, is a Tic Tac Toe aficionado and volunteers to organize a 
tournament.

2. Alice registers Joe in the arena as a league owner. 
3. Joe first defines a Tic Tac Toe beginners league, in which any players can be 

admitted. This league, dedicated to Tic Tac Toe games, stipulates that tournaments 
played in this league will follow the knockout tournament style and “Winner Takes 
All” formula.

4. Joe schedules the first tournament in the league for 16 players starting the next day. 
5. Joe announces the tournament in a variety of forums over the Web and sends mail to 

other Tic Tac Toe community members. 
6. Bill and Mary receive the E-mail notification. 
7. Mary is interested in playing the tournament and registers. 19 others apply.
8. Joe schedules 16 players for the tournament and rejects the 4 that applied last.
9. The 16 players, including Mary, receive an electronic token for entering the 

tournament and the time of their first match.
10.Other subscribers to the Tic Tac Toe mailing list, including Bill, receive a second 

notice about the Tournament, including the name of the players and the schedule of 
matches.

11.As Joe kicks off the tournament, the players have a limited amount of time to enter 
the match. If a player fails to show up, he loses the game. 

12.Mary plays her first match and wins. She advances in the tournament and is 
scheduled for the next match against another winner of the first round. 

13.After visiting the Tic Tac Toe Tournament’s home page, Bill notices Mary’s victory 
and decides to watch her next match. He selects the match, and sees the sequence of 
moves of each player as they occur. He also sees an advertisement banner at the 
bottom of his browser, advertising other tournaments and tic tac toe products.

14.The tournament continues until the last match, at which point the winner of the 
tournament is declared and his league record is credited with all the points 
associated with the tournament. 

15.Also, the winner of the tournament accumulates expert rating points.
16.Joe can choose to schedule more tournaments in the league, in which case, known 

players are notified about the date and given priority over new players.

Figure 4-18 organizeTicTacToeTournament scenario for ARENA.
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Steps 2, 7: Different actors register with the system. In the first case, the administrator registers Joe as a
league owner; in the second case, a player registers herself with the system.

• Registration of users should follow the same paradigm. Who provides the registration information 
and how is the information reviewed, validated, and accepted?

• Client: Two processes are confused in steps 2 & 7, the registration process, during which new users 
(e.g., a player or a league owner) establish their identity, and the application process, during which 
players indicate they want to take part in a specific tournament. During the registration process, the 
user provides information about themselves (name, nickname, E-mail) and their interests (types of 
games and tournaments they want to be informed about). The information is validated by the 
operator. During the application process, players indicate which tournament they want to participate 
in. This is used by the league owner during match scheduling.

• Since the player information has already been validated by the operator, should the match scheduling 
be completely automated?

• Client: Yes, of course.

Step 5: Joe sends mail to the Tic Tac Toe community members:

• Does ARENA provide the opportunity to users to subscribe to individual mailing lists?
• Client: Yes. There should be mailing lists for announcing new games, new leagues, new tournaments, 

etc.
• Does ARENA store a user profile (e.g., game watched, games played, interests specified by a user 

survey) for the purpose of advertisement?
• Client: Yes, but users should still be able to register without completing a user survey, if they want to. 

They should be encouraged to enter the survey, but this should not prevent them from entering. They 
will be exposed to advertisements anyway.

• Should the profile be used to automatically subscribe to mailing lists?
• Client: No, we think users in our community would prefer having complete control over their mailing 

list subscriptions. Guessing subscriptions would not give them the impression they are in control.

Step 13: Bill browses match statistics and decides to see the next match in real time.

• How are players identified to the spectators? By real name, by E-mail, by nickname?
• Client: This should be left to the user during the registration.
• Can a spectator replay old matches?
• Client: Games should be able to provide this ability, but some games (e.g., real-time, 3D action 

games) may choose not to do so because of resource constraints.
• ARENA should support real-time games?
• Client: Yes, these represent the largest share of our market. In general, ARENA should support as broad 

a range of games as possible.
• ...

Figure 4-19 Questions generated from the scenario of Figure 4-18. Answers from the client emphasized
in italics. The interviewer can ask follow-up questions as new knowledge is accidentally stumbled upon.
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Figure 4-20  High-level scenarios identified for ARENA. Clients and developers initially briefly describe
scenarios. They refine them further to clarify ambiguities or uncover disagreements.

Table 4-4  Working glossary for ARENA. Keeping track of important terms and their definitions ensures 
consistency in the specification and ensures that developers use the language of the client.

Game A Game is a competition among a number of Players that is conducted
according to a set of rules. In ARENA, the term Game refers to a piece of software
that enforces the set of rules, tracks the progress of each Player, and decides the
winner. For example, tic tac toe and chess are Games.

Match A Match is a contest between two or more Players following the rules of a
Game. The outcome of a Match can be a single winner and a set of losers or a tie
(in which their are no winners or losers). Some Games may disallow ties.

Tournament A Tournament is a series of Matches among a set of Players. Tournaments
end with a single winner. The way Players accumulate points and Matches are
scheduled is dictated by the League in which the Tournament is organized. 

League A League represents a community for running Tournaments. A League is
associated with a specific Game and TournamentStyle. Players registered with
the League accumulate points according to the ExpertRating defined in the
League. For example, a novice chess League has a different ExpertRating
formula than an expert League.

TournamentStyle The TournamentStyle defines the number of Matches and their sequence for a
given set of Players. For example, Players face all other Players in the
Tournament exactly once in a round robin TournamentStyle.

installTicTacToeGame
alice:Operator

defineKnockOutStyle

organizeTicTacToeTournament

sponsorTicTacToeBeginnersLeague

joe:LeagueOwner

zoe:Advertiser

bill:Spectator

mary:Player

analyzeTicTacToeTournament
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Once we agree with the client on a general scope of the system, we formalize the
knowledge acquired so far in the form of high-level use cases.

4.6.3 Identifying Use Cases

Generalizing scenarios into use cases enables developers to step back from concrete situations
and consider the general case. Developers can then consolidate related functionality into single
use cases and split unrelated functionality into several use cases.

When inspecting the organizeTicTacToeTournament scenario closely, we realize that it
covers a broad range of functionality initiated by many actors. We anticipate that generalizing
this scenario would result in a use case of several dozen pages long, and attempt to split it into
self-contained and independent use cases initiated by single actors. We first decide to split the
functionality related to user accounts into two use cases, ManageUserAccounts, initiated by the
Operator, and Register, initiated by potential players and league owners (Figure 4-21). We
identify a new actor, Anonymous, representing these potential users who do not yet have an
account. Similarly, we split the functionality with browsing past matches and with managing
user profiles into separate use cases (BrowseTournamentHistory and ManageOwnProfile,
initiated by the Spectator and the Player, respectively). Finally, to further shorten the use case
OrganizeTournament, we split off the functionality for creating new leagues into the
DefineLeague use case, as a LeagueOwner may create many tournaments within the scope of a
single league. Conversely, we anticipate that the installation of new games and new styles
requires similar steps from the Operator. Hence, we consolidate all functionality related to
installing new components into the ManageComponents use case initiated by the Operator.

We capture these decisions by drawing an overview use case diagram and by briefly
describing each use case (Figure 4-21). Note that a use case diagram alone does not describe
much functionality. Instead, it is an index into the many descriptions produced during this phase.

Next, we describe the fields of each high-level use case, including the participating actors,
entry and exit conditions, and a flow of events. Figure 4-22 depicts the high-level
OrganizeTournament use case. 

Note that all steps in this flow of events describe actor actions. High-level use cases focus
primarily on the task accomplished by the actor. The detailed interaction with the system, and
decisions about the boundaries of the system, are initially postponed to the refinement phase.
This enables us to first describe the application domain with use cases, capturing, in particular,
how different actors collaborate to accomplish their goals. 

In Figure 4-22, we describe the sequence of actions that are performed by four actors to
organize a tournament: the LeagueOwner, who facilitates the complete activity, the Advertiser,
to resolve exclusive sponsorship issues, the potential Players who want to participate, and the
Spectators. In the first step, we describe the handling of the sponsorship issue, thus making
clear that any sponsorship issue needs to be resolved before the tournament is advertised and
before the players apply for the tournament. Originally, the sponsorship issue was not described
clearly in the scenarios of Figure 4-20 (which only described the sponsorships of leagues). After
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Register Anonymous users register with an Arena for a Player or a League–
Owner account. User accounts are required before applying for a
tournament or organizing a league. Spectators do not need accounts.

ManageUserAccounts The Operator accepts registrations from LeagueOwners and for
Players, cancels existing accounts, and interacts with users about
extending their accounts.

ManageComponents The Operator installs new games and defines new tournament styles
(generalizes defineKnockOutStyle and installTicTacToeGame).

DefineLeague The LeagueOwner defines a new league (generalizes the first steps of
the scenario organizeTicTacToeTournament).

OrganizeTournament The LeagueOwner creates and announces a new tournament, accepts
player applications, schedules matches, and kicks off the tournament.
During the tournament, players play matches and spectators follow
matches. At the end of the tournament, players are credited with points
(generalizes the scenario organizeTicTacToeTournament).

ManageAdvertisements The Advertiser uploads banners and sponsors league or tournaments
(generalizes sponsorTicTacToeBeginnersLeague).

ManageOwnProfile The Players manage their subscriptions to mailing lists and answer a
marketing survey.

BrowseTournamentHistory Spectators examine tournament statistics and player statistics, and
replay matches that have already been concluded (generalizes the
scenario analyzeTicTacToeTournament).

Figure 4-21  High-level use cases identified for ARENA.
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discussions with the client, we decided to handle also tournament sponsorship, and to handle it
at the beginning of each tournament. On the one hand, this enables new sponsors to be added to
the system, and on the other hand, it allows the sponsor, in exchange, to advertise the tournament
using his or her own resources. Finally, this enables the system to better select advertisement
banners during the application process.

In this high-level use case, we boiled down the essentials of the organize–

TicTacToeTournament scenario into six steps and left the details to the detailed use case. By
describing each high-level use case in this manner, we capture all relationships among actors
that the system must be aware of. This also results in a summary description of the system that is
understandable to any newcomer to the project.

Next, we write the detailed use cases to specify the interactions between the actors and the
system.

4.6.4 Refining Use Cases and Identifying Relationships

Refining use cases enables developers to define precisely the information exchanged among the
actors and between the actors and the system. Refining use cases also enables the discovery of
alternative flows of events and exceptions that the system should handle.

Use case name OrganizeTournament

Participating
actors

Initiated by LeagueOwner
Communicates with Advertiser, Player, and Spectator

Flow of events 1. The LeagueOwner creates a Tournament, solicits sponsorships from 
Advertisers, and announces the Tournament (include use case 
AnnounceTournament).

2. The Players apply for the Tournament (include use case 
ApplyForTournament).

3. The LeagueOwner processes the Player applications and assigns them to 
matches (include use case ProcessApplications).

4. The LeagueOwner kicks off the Tournament (include use case 
KickoffTournament).

5. The Players compete in the matches as scheduled and Spectators view the 
matches (include use case PlayMatch). 

6. The LeagueOwner declares the winner and archives the Tournament (include 
use case ArchiveTournament).

Entry condition • The LeagueOwner is logged into ARENA.

Exit conditions • The LeagueOwner archived a new tournament in the ARENA archive and the 
winner has accumulated new points in the league, OR 

• The LeagueOwner cancelled the tournament and the players’ standing in the 
league is unchanged.

Figure 4-22 An example of a high-level use case, OrganizeTournament.



162 Chapter 4  •  Requirements Elicitation

To keep the case study manageable, we do not show the complete refinement. We start by
identifying one detailed use case for each step of the flow of events in the high-level
OrganizeTournament use case. The resulting use case diagram is shown in Figure 4-23. We then
focus on the use case, AnnounceTournament: Figure 4-24 contains a description of the flow of
events, and Figure 4-25 identifies the exceptions that could occur in AnnounceTournament. The
remaining use cases will be developed similarly. 

All of the use cases in Figure 4-23 are initiated by the LeagueOwner, except that the
ApplyForTournament and PlayMatch are initiated by the Player. The Advertiser participates
in AnnounceTournament and the Spectator participates in AnnounceTournament and PlayMatch
use cases. The Player participates in all use cases that refine OrganizeTournament. To keep the
use case diagram readable, we omitted the «initiate» relationships between the LeagueOwner
and the refined use cases. When using a UML modeling tool, we would include those

Figure 4-23 Detailed use cases refining the OrganizeTournament high-level use case.
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Name AnnounceTournament

Participating
actors

Initiated by LeagueOwner
Communicates with Player, Advertiser, Spectator

Flow of events 1. The LeagueOwner requests the creation of a tournament.

2. The system checks if the LeagueOwner has exceeded the number 
of tournaments in the league or in the arena. If not, the system 
presents the LeagueOwner with a form.

3. The LeagueOwner specifies a name, application start and end dates during which 
Players can apply to the tournament, start and end dates for conducting the 
tournament, and a maximum number of Players.

4. The system asks the LeagueOwner whether an exclusive 
sponsorship should be sought and, if yes, presents a list of 
Advertisers who expressed the desire to be exclusive sponsors.

5. If the LeagueOwner decides to seek an exclusive sponsor, he selects a subset of the 
names of the proposed sponsors.

6. The system notifies the selected sponsors about the upcoming 
tournament and the flat fee for exclusive sponsorships.

7. The system communicates their answers to the LeagueOwner.

8. If there are interested sponsors, the LeagueOwner selects one of them.

9. The system records the name of the exclusive sponsor and charges 
the flat fee for sponsorships to the Advertiser’s account. From 
now on, all advertisement banners associated with the tournament 
are provided by the exclusive sponsor only. 

10.Otherwise, if no sponsors were selected (either because no 
Advertiser was interested or the LeagueOwner did not select 
one), the advertisement banners are selected at random and 
charged to the Advertiser’s account on a per unit basis.

11.Once the sponsorship issue is closed, the system prompts the 
LeagueOwner with a list of groups of Players, Spectators, and 
Advertisers that could be interested in the new tournament.

12.The LeagueOwner selects which groups to notify.

13.The system creates a home page in the arena for the tournament. 
This page is used as an entry point to the tournament (e.g., to 
provide interested Players with a form to apply for the 
tournament, and to interest Spectators in watching matches).

14.On the application start date, the system notifies each interested 
user by sending them a link to the main tournament page. The 
Players can then apply for the tournament with the 
ApplyForTournament use case until the application end date.

Figure 4-24 An example of a detailed use case, AnnounceTournament.
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relationships as well. We start by writing out the flow of events for the AnnounceTournament use
case (Figure 4-24). 

The steps in Figure 4-24 describe in detail the information exchanged between the actor
and the system. Note, however, that we did not describe any details of the user interface (e.g.,
forms, buttons, layout of windows or web pages). It is much easier to design a usable user
interface later, after we know the intent and responsibility of each actor. Hence, the focus on the
refinement phase is to assign (or discover) the detailed intent and responsibilities of each actor.

When describing the steps of the detailed AnnounceTournament use case, we and the client
made more decisions about the boundaries of the system:

• We introduced start and end dates for the application process and for executing the
tournament (Step 3 in Figure 4-24). This enables us to communicate deadlines to all
actors involved to ensure that the tournament happens within a reasonable time frame. 

• We decided that advertisers indicate in their profile whether they are interested in
exclusive sponsorships or not. This enables the LeagueOwner to target Advertisers
more specifically (Step 4 in Figure 4-24).

• We also decided to enable advertisers to commit to sponsorship deals through the
system and automated the accounting of advertisement and the billing. This entails
security and legal requirements on the system, which we document in the “quality
requirements” field of the use case (Step 9 and 10 in Figure 4-24).

Entry
condition

• The LeagueOwner is logged into ARENA.

Exit
conditions

• The sponsorship of the tournament is settled: either a single exclusive Advertiser
paid a flat fee or banners are drawn at random from the common advertising pool of 
the Arena.

• Potential Players received a notice concerning the upcoming tournament and can 
apply for participation.

• Potential Spectators received a notice concerning the upcoming tournament and 
know when the tournament is about to start.

• The tournament home page is available for any to see, hence, other potential 
Spectators can find the tournament home page via web search engines, or by 
browsing the Arena home page.

Quality
requirements

• Offers to and replies from Advertisers require secure authentication, so that 
Advertisers can be billed solely on their replies. 

• Advertisers should be able to cancel sponsorship agreements within a fixed 
period, as required by local laws.

Figure 4-24 Continued.
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Note that these decisions are validated with the client. Different clients and environments
can lead to evaluating trade-offs differently for the same system. For example, the decision about
soliciting Advertisers and obtaining a commitment through the system results in a more
complex and expensive system. An alternative would have been to solicit Advertisers via
E-mail, but obtain their commitment via phone. This would have resulted in a simpler system,
but more work on the part of the LeagueOwner. The client is the person who decides between
such alternatives, understanding, of course, that these decisions have an impact on the cost and
the delivery date of the system.

Next, we identify the exceptions that could occur during the detailed use case. This is done
by reviewing every step in the use case and identifying all the events that could go wrong. We
briefly describe the handling of each exception and depict the exception handling use cases as
extensions of the AnnounceTournament use case (Figure 4-25). 

Note that not all exceptions are equal, and different kinds of exceptions are best addressed
at different stages of development. In Figure 4-25, we identify exceptions caused by resource
constraints (MaxNumberOfTournamentsExceeded), invalid user input (InvalidDate, NameInUse),
or application domain constraints (AdvertiserCreditExceeded, NoMatchingSponsorFound).
Exceptions associated with resource constraints are best handled during system design. Only
during system design will it become clear which resources are limited and how to best share

AdvertiserCreditExceeded The system removes the Advertiser from the list of potential
sponsors.

InvalidDate The system informs the LeagueOwner and prompts for a new date.

MaxNumberOfTournaments 

Exceeded
The AnnounceTournament use case is terminated.

NameInUse The system informs the LeagueOwner and prompts for a new name.

NoMatchingSponsorFound The system skips the exclusive sponsor steps and chooses random
advertisements from the advertisement pool.

Figure 4-25  Exceptions occurring in AnnounceTournament represented as extending use cases. (Note
that AnnounceTournament in this figure is the same as the use case in Figure 4-23).
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them among different users which may, in turn, trigger further requirements activities during
system design to validate with the client the handling of such exceptions. Exceptions associated
with invalid user input are best handled during user interface design, when developers will be
able to decide at which point to check for invalid input, how to display error messages, and how
to prevent invalid inputs in the first place. The third category of exceptions—application domain
constraints—should receive the focus of the client and developer early. These are exceptions that
are usually not obvious to the developer. When missed, they require substantial rework and
changes to the system. A systematic way to elicit those exceptions is to walk through the use
case step by step with the client or a domain expert.

Many exceptional events can be represented either as an exception (e.g.,
AdvertiserCreditExceeded) or as a nonfunctional requirement (e.g., “An Advertiser should
not be able to spend more advertisement money than a fixed limit agreed beforehand with the
Operator during the registration”). The latter representation is more appropriate for global
constraints that apply to several use cases. Conversely, the former is more appropriate for events
that can occur only in one use case (e.g., “NoMatchingSponsorFound”).

Writing each detailed use case, including their exceptions, constitutes the lion’s share of
the requirements elicitation effort. Ideally, developers write every detailed use case and address
all application domain issues before committing to the project and initiating the realization of
the system. In practice, this never happens. For large systems, the developers produce a large
amount of documentation in which it is difficult, if not impossible, to maintain consistency.
Worse, the requirements elicitation activity of large projects should already be financed, as this
phase requires a lot of resources from both the client and the development organization.
Moreover, completeness at an early stage can be counterproductive: use case steps change
during development as new domain facts are discovered. The decision about how many use
cases to detail and how much to leave implicit is as much a question of trust as of economics: the
client and the developers should share a sufficiently good understanding of the system to be
ready to commit to a schedule, a budget, and a process for handling future changes (including
changes in requirements, schedule, and budget).

In ARENA, we focus on specifying in detail the interactions that involve the Advertisers
and the Players, since they have critical roles in generating revenue. Use cases associated with
the administration of the system or the installation of new games or tournament styles are left for
later, since they also include more technical issues that are dependent on the solution domain. 

4.6.5 Identifying Nonfunctional Requirements

Nonfunctional requirements come from a variety of sources during the elicitation. The problem
statement we started with in Figure 4-17 already specified performance and implementation
requirements. When detailing the AnnounceTournament use case, we identified further legal
requirements for billing Advertisers. When reviewing exceptions in the previous section, we
identified a constraint on the amount of money Advertisers can spend. Although we encounter
many nonfunctional requirements while writing use cases and refining them, we cannot ensure
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that we identify all the essential nonfunctional requirements. To ensure completeness, we use the
FURPS+ categories we described in Section 4.3.2 (or any other systematic taxonomy of
nonfunctional requirements) as a checklist for asking questions of the client. Table 4-5 depicts
the nonfunctional requirements we identified in ARENA after detailing the AnnounceTournament
use case. 

Table 4-5  Consolidated nonfunctional requirements for ARENA, after the first version of the detailed 
AnnounceTournament use case.

Category Nonfunctional requirements

Usability • Spectators must be able to access games in progress without prior 
registration and without prior knowledge of the Game.

Reliability • Crashes due to software bugs in game components should interrupt at 
most one Tournament using the Game. The other Tournaments in 
progress should proceed normally.

• When a Tournament is interrupted because of a crash, its LeagueOwner
should be able to restart the Tournament. At most, only the last move of 
each interrupted Match can be lost.

Performance • The system must support the kick-off of many parallel Tournaments
(e.g., 10), each involving up to 64 Players and several hundreds of 
simultaneous Spectators.

• Players should be able to play matches via an analog modem.

Supportability • The Operator must be able to add new Games and new 
TournamentStyles. Such additions may require the system to be 
temporarily shut down and new modules (e.g., Java classes) to be added 
to the system. However, no modifications of the existing system should 
be required.

Implementation • All users should be able to access an Arena with a web browser 
supporting cookies, Javascript, and Java applets. Administration 
functions used by the operator are not available through the web. 

• ARENA should run on any Unix operating system (e.g., MacOS X, Linux, 
Solaris).

Operation • An Advertiser should not be able to spend more advertisement money 
than a fixed limit agreed beforehand with the Operator during the 
registration.

Legal • Offers to and replies from Advertisers require secure authentication, so 
that agreements can be built solely on their replies. 

• Advertisers should be able to cancel sponsorship agreements within a 
fixed period, as required by local laws.



168 Chapter 4  •  Requirements Elicitation

4.6.6 Lessons Learned

In this section, we developed an initial use case and analysis object model based on a problem
statement provided by the client. We used scenarios and questions as elicitation tools to clarify
ambiguous concepts and uncover missing information. We also elicited a number of
nonfunctional requirements. We learned that

• Requirements elicitation involves constant switching between perspectives (e.g., high-
level vs. detailed, client vs. developer, activity vs. entity).

• Requirements elicitation requires a substantial involvement from the client.

• Developers should not assume that they know what the client wants.

• Eliciting nonfunctional requirements forces stakeholders to make and document
trade-offs. 

4.7 Further Readings

The concept of use case was made popular by Ivar Jacobson in his landmark book, Object-
Oriented Software Engineering: A Use Case Approach [Jacobson et al., 1992]. For an account of
the early research on scenario-based requirements and, more generally, on participatory design,
Scenario-Based Design [Carroll, 1995] includes many papers by leading researchers about
scenarios and use cases. This book also describes limitations and pitfalls of scenario-based
requirements and participatory design, which are still valid today.

For specific method guidance, Software for Use [Constantine & Lockwood, 1999]
contains much material on specifying usable systems with use cases, including eliciting
imprecise knowledge from users and clients, a soft topic that is usually not covered in software
engineering text books. Writing Effective Use Cases [Cockburn, 2001] and its accompanying
website http://www.usecases.org provide many practical heuristics for writing use cases
textually (as opposed to just drawing them).

End users play a critical role during requirements elicitation. Norman illustrates this by
using examples from everyday objects such as doors, stoves, and faucets [Norman, 2002]. He
argues that users should not be expected to read a user manual and learn new skills for every
product to which they are exposed. Instead, knowledge about the use of the product, such as
hints indicating in which direction a door opens, should be embedded in its design. He takes
examples from everyday objects, but the same principles are applicable to computer systems and
user interface design.

The world of requirements engineering is much poorer when it comes to dealing with
nonfunctional requirements. The NFR Framework, described in Non-Functional Requirements
in Software Engineering [Chung et al., 1999], is one of the few methods that addresses this topic
systematically and thoroughly.

The RAD template introduced in this chapter is just one example of how to organize a
requirements document. IEEE published the documentation standard IEEE-Std 830-1998 for

http://www.usecases.org
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software requirements specifications [IEEE Std. 830-1998]. The appendix of the standard
contains several sample outlines for the description of specific requirements. 

The examples in this chapter followed a dialectic approach to requirements elicitation, a
process of discussion and negotiation among developers, the client, and the end users. This
approach works well when the client is the end user, or when the client has a sufficiently detailed
knowledge of the application domain. In large systems, such as an air traffic control system, no
single user or client has a complete perspective of the system. In these situations, the dialectic
approach breaks down, as much implicit knowledge about the users’ activities is not
encountered until too late. In the past decade, ethnography, a field method from anthropology,
has gained popularity in requirements engineering. Using this approach, analysts immerse
themselves in the world of users, observe their daily work, and participate in their meetings.
Analysts record their observations from a neutral point of view. The goal of such an approach is
to uncover implicit knowledge. The coherence method, reported in Social analysis in the
requirements engineering process: from ethnography to method [Viller & Sommerville, 1999],
provides a practical example of ethnography applied to requirements engineering. 

Managing traceability beyond requirements is still a research topic, the reader is referred
to the specialized literature [Jarke, 1998].

Finally, Software Requirements & Specifications: A Lexicon of Practice, Principles and
Prejudices [Jackson, 1995] is a concise, incisive, and entertaining piece that provides many
insights into principles and methods of requirements engineering.

4.8 Exercises

4-1 Consider your watch as a system and set the time 2 minutes ahead. Write down each
interaction between you and your watch as a scenario. Record all interactions, includ-
ing any feedback the watch provides you.

4-2 Consider the scenario you wrote in Exercise 4-1. Identify the actor of the scenario.
Next, write the corresponding use case SetTime. Include all cases, and include setting
the time forward and backward, and setting hours, minutes, and seconds.

4-3 Assume the watch system you described in Exercises 4-1 and 4-2 also supports an
alarm feature. Describe setting the alarm time as a self-contained use case named
SetAlarmTime.

4-4 Examine the SetTime and SetAlarmTime use cases you wrote in Exercises 4-2 and 4-3.
Eliminate any redundancy by using an include relationship. Justify why an include
relationship is preferable to an extend relationship in this case.

4-5 Assume the FieldOfficer can invoke a Help feature when filling an
EmergencyReport. The HelpReportEmergency feature provides a detailed description
for each field and specifies which fields are required. Modify the ReportEmergency use
case (described in Figure 4-10) to include this help functionality. Which relationship
should you use to relate the ReportEmergency and HelpReportEmergency?
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4-6 Below are examples of nonfunctional requirements. Specify which of these
requirements are verifiable and which are not:

• “The system must be usable.”

• “The system must provide visual feedback to the user within one second of issuing a
command.”

• “The availability of the system must be above 95 percent.”

• “The user interface of the new system should be similar enough to the old system
that users familiar with the old system can be easily trained to use the new system.”

4-7 The need for developing a complete specification may encourage an analyst to write
detailed and lengthy documents. Which competing quality of specification (see
Table 4-1) may encourage an analyst to keep the specification short?

4-8 Maintaining traceability during requirements and subsequent activities is expensive,
because of the additional information that must be captured and maintained. What are
the benefits of traceability that outweigh this overhead? Which of those benefits are
directly beneficial to the analyst?

4-9 Explain why multiple-choice questionnaires, as a primary means of extracting
information from the user, are not effective for eliciting requirements.

4-10 From your point of view, describe the strengths and weaknesses of users during the
requirements elicitation activity. Describe also the strengths and weaknesses of
developers during the requirements elicitation activity.

4-11 Briefly define the term “menu.” Write your answer on a piece of paper and put it upside
down on the table together with the definitions of four other students. Compare all five
definitions and discuss any substantial difference.

4-12 Write the high-level use case ManageAdvertisement initiated by the Advertiser, and
write detailed use cases refining this high-level use case. Consider features that enable
an Advertiser to upload advertisement banners, to associate keywords with each
banner, to subscribe to notices about new tournaments in specific leagues or games, and
to monitor the charges and payments made on the advertisement account. Make sure
that your use cases are also consistent with the ARENA problem statement provided in
Figure 4-17.

4-13 Considering the AnnounceTournament use case in Figure 4-24, write the event flow,
entry conditions, and exit conditions for the use case ApplyForTournament, initiated by
a Player interested in participating in the newly created tournament. Consider also the
ARENA problem statement provided in Figure 4-17. Write a list of questions for the
client when you encounter any alternative. 

4-14 Write the event flows, entry conditions, and exit conditions for the exceptional use
cases for AnnounceTournament depicted in Figure 4-25. Use include relationships if
necessary to remove redundancy.
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5
Analysis

I am Foo with a name, if I could only remember it.

—A programmer of very little brain

Analysis results in a model of the system that aims to be correct, complete, consistent, and
unambiguous. Developers formalize the requirements specification produced during
requirements elicitation and examine in more detail boundary conditions and exceptional cases.
Developers validate, correct and clarify the requirements specification if any errors or
ambiguities are found. The client and the user are usually involved in this activity when the
requirements specification must be changed and when additional information must be gathered.

In object-oriented analysis, developers build a model describing the application domain.
For example, the analysis model of a watch describes how the watch represents time: Does the
watch know about leap years? Does it know about the day of the week? Does it know about the
phases of the moon? The analysis model is then extended to describe how the actors and the
system interact to manipulate the application domain model: How does the watch owner reset
the time? How does the watch owner reset the day of the week? Developers use the analysis
model, together with nonfunctional requirements, to prepare for the architecture of the system
developed during high-level design (Chapter 6, System Design: Decomposing the System).

In this chapter, we discuss the analysis activities in more detail. We focus on the
identification of objects, their behavior, their relationships, their classification, and their
organization. We describe management issues related to analysis in the context of a multi-team
development project. Finally, we discuss in more detail analysis issues and trade-offs using the
ARENA case study.
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5.1 Introduction: An Optical Illusion

In 1915, Rubin exhibited a drawing similar to Figure 5-1 to illustrate the concept of multi-stable
images. What do you see? Two faces looking at each other? If you focus more closely on the
white area, you can see a vase instead. Once you are able to perceive both shapes individually, it
is easier to switch back and forth between the vase and the faces.

If the drawing in Figure 5-1 had been a requirements specification, which models should
you have constructed? Specifications, like multi-stable images, contain ambiguities caused by
the inaccuracies inherent to natural language and by the assumptions of the specification
authors. For example, a quantity specified without a unit is ambiguous (e.g., the “Feet or Miles?”
example in Section 4.1), a time without time zone is ambiguous (e.g., scheduling a phone call
between different countries). 

Formalization helps identify areas of ambiguity as well as inconsistencies and omissions
in a requirements specification. Once developers identify problems with the specification, they
address them by eliciting more information from the users and the client. Requirements
elicitation and analysis are iterative and incremental activities that occur concurrently.

5.2 An Overview of Analysis

Analysis focuses on producing a model of the system, called the analysis model, which is
correct, complete, consistent, and verifiable. Analysis is different from requirements elicitation
in that developers focus on structuring and formalizing the requirements elicited from users
(Figure 5-2). This formalization leads to new insights and the discovery of errors in the

Figure 5-1 Ambiguity: what do you see?
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requirements. As the analysis model may not be understandable to the users and the client,
developers need to update the requirements specification to reflect insights gained during
analysis, then review the changes with the client and the users. In the end, the requirements,
however large, should be understandable by the client and the users.

There is a natural tendency for users and developers to postpone difficult decisions until
later in the project. A decision may be difficult because of lack of domain knowledge, lack of
technological knowledge, or simply because of disagreements among users and developers.
Postponing decisions enables the project to move on smoothly and avoids confrontation with
reality or peers. Unfortunately, difficult decisions eventually must be made, often at higher cost
when intrinsic problems are discovered during testing, or worse, during user evaluation.
Translating a requirements specification into a formal or semiformal model forces developers to
identify and resolve difficult issues early in the development.

The analysis model is composed of three individual models: the functional model,
represented by use cases and scenarios, the analysis object model, represented by class and
object diagrams, and the dynamic model, represented by state machine and sequence diagrams
(Figure 5-3). In the previous chapter, we described how to elicit requirements from the users and
describe them as use cases and scenarios. In this chapter, we describe how to refine the
functional model and derive the object and the dynamic model. This leads to a more precise and
complete specification as details are added to the analysis model. We conclude the chapter by
describing management activities related to analysis. In the next section, we define the main
concepts of analysis.

Figure 5-2 Products of requirements elicitation and analysis (UML activity diagram).
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5.3 Analysis Concepts

In this section, we describe the main analysis concepts used in this chapter. In particular, we
describe

• Analysis Object Models and Dynamic Models (Section 5.3.1)

• Entity, Boundary, and Control Objects (Section 5.3.2)

• Generalization and Specialization (Section 5.3.3).

5.3.1 Analysis Object Models and Dynamic Models

The analysis model represents the system under development from the user’s point of view. The
analysis object model is a part of the analysis model and focuses on the individual concepts that
are manipulated by the system, their properties and their relationships. The analysis object
model, depicted with UML class diagrams, includes classes, attributes, and operations. The
analysis object model is a visual dictionary of the main concepts visible to the user.

The dynamic model focuses on the behavior of the system. The dynamic model is
depicted with sequence diagrams and with state machines. Sequence diagrams represent the
interactions among a set of objects during a single use case. State machines represent the
behavior of a single object (or a group of very tightly coupled objects). The dynamic model
serves to assign responsibilities to individual classes and, in the process, to identify new classes,
associations, and attributes to be added to the analysis object model.

When working with either the analysis object model or the dynamic model, it is essential
to remember that these models represent user-level concepts, not actual software classes or

Figure 5-3 The analysis model is composed of the functional model, the object model, and the dynamic
model. In UML, the functional model is represented with use case diagrams, the object model with class
diagrams, and the dynamic model with state machine and sequence diagrams.
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components. For example, classes such as Database, Subsystem, SessionManager, Network,
should not appear in the analysis model as the user is completely shielded from those concepts.
Note that most classes in the analysis object model will correspond to one or more software
classes in the source code. However, the software classes will include many more attributes and
associations than their analysis counterparts. Consequently, analysis classes should be viewed as
high-level abstractions that will be realized in much more detail later. Figure 5-4 depicts good
and bad examples of analysis objects for the SatWatch example.

5.3.2 Entity, Boundary, and Control Objects

The analysis object model consists of entity, boundary, and control objects [Jacobson et al.,
1999]. Entity objects represent the persistent information tracked by the system. Boundary
objects represent the interactions between the actors and the system. Control objects are in
charge of realizing use cases. In the 2Bwatch example, Year, Month, and Day are entity objects;
Button and LCDDisplay are boundary objects; ChangeDateControl is a control object that
represents the activity of changing the date by pressing combinations of buttons. 

Modeling the system with entity, boundary, and control objects provides developers with
simple heuristics to distinguish different, but related concepts. For example, the time that is
tracked by a watch has different properties than the display that depicts the time. Differentiating
between boundary and entity objects forces that distinction: The time that is tracked by the
watch is represented by the Time object. The display is represented by the LCDDisplay. This
approach with three object types results in smaller and more specialized objects. The three-
object-type approach also leads to models that are more resilient to change: the interface to the
system (represented by the boundary objects) is more likely to change than its basic
functionality (represented by the entity and control objects). By separating the interface from the
basic functionality, we are able to keep most of a model untouched when, for example, the user
interface changes, but the entity objects do not. 

Figure 5-4 Examples and counterexamples of classes in the analysis object model of SatWatch.
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To distinguish between different types of objects, UML provides the stereotype
mechanism to enable the developer to attach such meta-information to modeling elements. For
example, in Figure 5-5, we attach the «control» stereotype to the ChangeDateControl object.
In addition to stereotypes, we may also use naming conventions for clarity and recommend
distinguishing the three different types of objects on a syntactical basis: control objects may
have the suffix Control appended to their name; boundary objects may be named to clearly
denote an interface feature (e.g., by including the suffix Form, Button, Display, or Boundary);
entity objects usually do not have any suffix appended to their name. Another benefit of this
naming convention is that the type of the class is represented even when the UML stereotype is
not available, for example, when examining only the source code.

5.3.3 Generalization and Specialization

As we saw in Chapter 2, Modeling with UML, inheritance enables us to organize concepts into
hierarchies. At the top of the hierarchy is a general concept (e.g., an Incident, Figure 5-6), and
at the bottom of the hierarchy are the most specialized concepts (e.g., CatInTree,
TrafficAccident, BuildingFire, EarthQuake, ChemicalLeak). There may be any number of
intermediate levels in between, covering more-or-less generalized concepts (e.g.,
LowPriorityIncident, Emergency, Disaster). Such hierarchies allow us to refer to many
concepts precisely. When we use the term Incident, we mean all instances of all types of
Incidents. When we use the term Emergency, we only refer to an Incident that requires an
immediate response.

Generalization is the modeling activity that identifies abstract concepts from lower-level
ones. For example, assume we are reverse-engineering an emergency management system and
discover screens for managing traffic accidents and fires. Noticing common features among
these three concepts, we create an abstract concept called Emergency to describe the common
(and general) features of traffic accidents and fires. 

Specialization is the activity that identifies more specific concepts from a high-level one.
For example, assume that we are building an emergency management system from scratch and
that we are discussing its functionality with the client. The client first introduces us with the

Figure 5-5 Analysis classes for the 2Bwatch example.
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concept of an incident, then describes three types of Incidents: Disasters, which require the
collaboration of several agencies, Emergencies, which require immediate handling but can be
handled by a single agency, and LowPriorityIncidents, that do not need to be handled if
resources are required for other, higher-priority Incidents.

In both cases, generalization and specialization result in the specification of inheritance
relationships between concepts. In some instances, modelers call inheritance relationships
generalization-specialization relationships. In this book, we use the term “inheritance” to
denote the relationship and the terms “generalization” and “specialization” to denote the
activities that find inheritance relationships.

5.4 Analysis Activities: From Use Cases to Objects

In this section, we describe the activities that transform the use cases and scenarios produced
during requirements elicitation into an analysis model. Analysis activities include:

• Identifying Entity Objects (Section 5.4.1)

• Identifying Boundary Objects (Section 5.4.2)

• Identifying Control Objects (Section 5.4.3)

• Mapping Use Cases to Objects with Sequence Diagrams (Section 5.4.4)

• Modeling Interactions among Objects with CRC Cards (Section 5.4.5)

• Identifying Associations (Section 5.4.6)

• Identifying Aggregates (Section 5.4.7)

• Identifying Attributes (Section 5.4.8)

• Modeling State-Dependent Behavior of Individual Objects (Section 5.4.9)

Figure 5-6 An example of a generalization hierarchy (UML class diagram). The top of the hierarchy
represents the most general concept, whereas the bottom nodes represent the most specialized concepts.
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• Modeling Inheritance Relationships (Section 5.4.10)

• Reviewing the Analysis Model (Section 5.4.11).

We illustrate each activity by focusing on the ReportEmergency use case of FRIEND
described in Chapter 4, Requirements Elicitation. These activities are guided by heuristics. The
quality of their outcome depends on the experience of the developer in applying these heuristics
and methods. The methods and heuristics presented in this section are adapted from [De Marco,
1978], [Jacobson et al., 1999], [Rumbaugh et al., 1991], and [Wirfs-Brock et al., 1990].

5.4.1 Identifying Entity Objects

Participating objects (see Section 4.4.6) form the basis of the analysis model. As described in
Chapter 4, Requirements Elicitation, participating objects are found by examining each use case
and identifying candidate objects. Natural language analysis [Abbott, 1983] is an intuitive set of
heuristics for identifying objects, attributes, and associations from a requirements specification.
Abbott’s heuristics maps parts of speech (e.g., nouns, having verbs, being verbs, adjectives) to
model components (e.g., objects, operations, inheritance relationships, classes). Table 5-1
provides examples of such mappings by examining the ReportEmergency use case (Figure 5-7).

Natural language analysis has the advantage of focusing on the users’ terms. However, it
suffers from several limitations. First, the quality of the object model depends highly on the style
of writing of the analyst (e.g., consistency of terms used, verbification of nouns). Natural
language is an imprecise tool, and an object model derived literally from text risks being
imprecise. Developers can address this limitation by rephrasing and clarifying the requirements
specification as they identify and standardize objects and terms. A second limitation of natural

Table 5-1  Abbott’s heuristics for mapping parts of speech to model components [Abbott, 1983].

Part of speech Model component Examples

Proper noun Instance Alice

Common noun Class Field officer

Doing verb Operation Creates, submits, selects

Being verb Inheritance Is a kind of, is one of either

Having verb Aggregation Has, consists of, includes

Modal verb Constraints Must be

Adjective Attribute Incident description
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language analysis is that there are many more nouns than relevant classes. Many nouns
correspond to attributes or synonyms for other nouns. Sorting through all the nouns for a large
requirements specification is a time-consuming activity. In general, Abbott’s heuristics work
well for generating a list of initial candidate objects from short descriptions, such as the flow of
events of a scenario or a use case. The following heuristics can be used in conjunction with
Abbott’s heuristics:

Developers name and briefly describe the objects, their attributes, and their
responsibilities as they are identified. Uniquely naming objects promotes a standard
terminology. For entity objects we recommend always to start with the names used by end users
and application domain specialists. Describing objects, even briefly, allows developers to clarify
the concepts they use and avoid misunderstandings (e.g., using one object for two different but
related concepts). Developers need not, however, spend a lot of time detailing objects or

Use case name ReportEmergency

Entry condition 1. The FieldOfficer activates the “Report Emergency” function of her terminal. 

Flow of events 2. FRIEND responds by presenting a form to the officer. The form includes an 
emergency type menu (general emergency, fire, transportation), a location, 
incident description, resource request, and hazardous material fields.

3. The FieldOfficer completes the form by specifying minimally the emergency 
type and description fields. The FieldOfficer may also describe possible 
responses to the emergency situation and request specific resources. Once the 
form is completed, the FieldOfficer submits the form by pressing the “Send 
Report” button, at which point, the Dispatcher is notified.

4. The Dispatcher reviews the information submitted by the FieldOfficer and 
creates an Incident in the database by invoking the OpenIncident use case. 
All the information contained in the FieldOfficer’s form is automatically 
included in the incident. The Dispatcher selects a response by allocating 
resources to the incident (with the AllocateResources use case) and 
acknowledges the emergency report by sending a FRIENDgram to the 
FieldOfficer.

Exit condition 5. The FieldOfficer receives the acknowledgment and the selected response.

Figure 5-7 An example of use case, ReportEmergency (one-column format).

Heuristics for identifying entity objects

• Terms that developers or users need to clarify in order to understand the use case
• Recurring nouns in the use cases (e.g., Incident)
• Real-world entities that the system needs to track (e.g., FieldOfficer, Dispatcher, Resource)
• Real-world activities that the system needs to track (e.g., EmergencyOperationsPlan)
• Data sources or sinks (e.g., Printer).



182 Chapter 5  •  Analysis

attributes given that the analysis model is still in flux. Developers should document attributes
and responsibilities if they are not obvious; a tentative name and a brief description for each
object is sufficient otherwise. There will be plenty of iterations during which objects can be
revised. However, once the analysis model is stable, the description of each object should be as
detailed as necessary (see Section 5.4.11).

For example, after a first examination of the ReportEmergency use case (Figure 5-7), we
use application domain knowledge and interviews with the users to identify the objects
Dispatcher, EmergencyReport, FieldOfficer, and Incident. Note that the EmergencyReport
object is not mentioned explicitly by name in the ReportEmergency use case. Step 4 of the use
case refers to the emergency report as the “information submitted by the FieldOfficer.” After
review with the client, we discover that this information is usually referred to as the “emergency
report” and decide to name the corresponding object EmergencyReport.

The definition of entity objects leads to the initial analysis model described in Table 5-2.
Note that this model is far from a complete description of the system implementing the
ReportEmergency use case. In the next section, we describe the identification of boundary
objects.

5.4.2 Identifying Boundary Objects

Boundary objects represent the system interface with the actors. In each use case, each actor
interacts with at least one boundary object. The boundary object collects the information from
the actor and translates it into a form that can be used by both entity and control objects.

Boundary objects model the user interface at a coarse level. They do not describe in detail
the visual aspects of the user interface. For example, boundary objects such as “menu item” or
“scroll bar” are too detailed. First, developers can discuss user interface details more easily with

Table 5-2  Entity objects for the ReportEmergency use case.

Dispatcher Police officer who manages Incidents. A Dispatcher opens, documents, and 
closes Incidents in response to Emergency Reports and other communication 
with FieldOfficers. Dispatchers are identified by badge numbers.

EmergencyReport Initial report about an Incident from a FieldOfficer to a Dispatcher. An 
EmergencyReport usually triggers the creation of an Incident by the 
Dispatcher. An EmergencyReport is composed of an emergency level, a type 
(fire, road accident, other), a location, and a description.

FieldOfficer Police or fire officer on duty. A FieldOfficer can be allocated to, at most, one 
Incident at a time. FieldOfficers are identified by badge numbers.

Incident Situation requiring attention from a FieldOfficer. An Incident may be 
reported in the system by a FieldOfficer or anybody else external to the system. 
An Incident is composed of a description, a response, a status (open, closed, 
documented), a location, and a number of FieldOfficers.
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sketches and mock-ups. Second, the design of the user interface continues to evolve as a
consequence of usability tests, even after the functional specification of the system becomes
stable. Updating the analysis model for every user interface change is time consuming and does
not yield any substantial benefit.

We find the boundary objects of Table 5-3 by examining the ReportEmergency use case.

Heuristics for identifying boundary objects

• Identify user interface controls that the user needs to initiate the use case (e.g., 
ReportEmergencyButton).

• Identify forms the users needs to enter data into the system (e.g., EmergencyReportForm).
• Identify notices and messages the system uses to respond to the user (e.g., 

AcknowledgmentNotice).
• When multiple actors are involved in a use case, identify actor terminals (e.g., DispatcherStation)

to refer to the user interface under consideration.
• Do not model the visual aspects of the interface with boundary objects (user mock-ups are better 

suited for that).
• Always use the end user’s terms for describing interfaces; do not use terms from the solution or 

implementation domains.

Table 5-3  Boundary objects for the ReportEmergency use case.

AcknowledgmentNotice Notice used for displaying the Dispatcher’s acknowledgment to the 
FieldOfficer.

DispatcherStation Computer used by the Dispatcher.

ReportEmergencyButton Button used by a FieldOfficer to initiate the ReportEmergency use 
case.

EmergencyReportForm Form used for the input of the ReportEmergency. This form is 
presented to the FieldOfficer on the FieldOfficerStation when
the “Report Emergency” function is selected. The 
EmergencyReportForm contains fields for specifying all attributes of an 
emergency report and a button (or other control) for submitting the 
completed form.

FieldOfficerStation Mobile computer used by the FieldOfficer.

IncidentForm Form used for the creation of Incidents. This form is presented to the 
Dispatcher on the DispatcherStation when the EmergencyReport
is received. The Dispatcher also uses this form to allocate resources 
and to acknowledge the FieldOfficer’s report.
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Note that the IncidentForm is not explicitly mentioned anywhere in the ReportEmergency
use case. We identified this object by observing that the Dispatcher needs an interface to view
the emergency report submitted by the FieldOfficer and to send back an acknowledgment. The
terms used for describing the boundary objects in the analysis model should follow the user
terminology, even if it is tempting to use terms from the implementation domain.

We have made progress toward describing the system. We now have included the interface
between the actor and the system. We are, however, still missing some significant pieces of the
description, such as the order in which the interactions between the actors and the system occur.
In the next section, we describe the identification of control objects.

5.4.3 Identifying Control Objects

Control objects are responsible for coordinating boundary and entity objects. Control objects
usually do not have a concrete counterpart in the real world. Often a close relationship exists
between a use case and a control object; a control object is usually created at the beginning of a
use case and ceases to exist at its end. It is responsible for collecting information from the
boundary objects and dispatching it to entity objects. For example, control objects describe the
behavior associated with the sequencing of forms, undo and history queues, and dispatching
information in a distributed system.

Initially, we model the control flow of the ReportEmergency use case with a control object
for each actor: ReportEmergencyControl for the FieldOfficer and ManageEmergency-Control
for the Dispatcher, respectively (Table 5-4).

The decision to model the control flow of the ReportEmergency use case with two control
objects stems from the knowledge that the FieldOfficerStation and the DispatcherStation
are actually two subsystems communicating over an asynchronous link. This decision could
have been postponed until the system design activity. On the other hand, making this concept
visible in the analysis model allows us to focus on such exception behavior as the loss of
communication between both stations.

In modeling the ReportEmergency use case, we modeled the same functionality by using
entity, boundary, and control objects. By shifting from the event flow perspective to a structural
perspective, we increased the level of detail of the description and selected standard terms to
refer to the main entities of the application domain and the system. In the next section, we

Heuristics for identifying control objects

• Identify one control object per use case. 
• Identify one control object per actor in the use case.
• The life span of a control object should cover the extent of the use case or the extent of a user 

session. If it is difficult to identify the beginning and the end of a control object activation, the 
corresponding use case probably does not have well-defined entry and exit conditions.
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construct a sequence diagram using the ReportEmergency use case and the objects we
discovered to ensure the completeness of our model.

5.4.4 Mapping Use Cases to Objects with Sequence Diagrams

A sequence diagram ties use cases with objects. It shows how the behavior of a use case (or
scenario) is distributed among its participating objects. Sequence diagrams are usually not as
good a medium for communication with the user as use cases are, since sequence diagrams
require more background about the notation. For computer savvy clients, they are intuitive and
can be more precise than use cases. In all cases, however, sequence diagrams represent another
shift in perspective and allow the developers to find missing objects or grey areas in the
requirements specification.

In this section, we model the sequence of interactions among objects needed to realize the
use case. Figures 5-8 through 5-10 are sequence diagrams associated with the ReportEmergency
use case. The columns of a sequence diagram represent the objects that participate in the use
case. The left-most column is the actor who initiates the use case. Horizontal arrows across
columns represent messages, or stimuli, that are sent from one object to the other. Time proceeds
vertically from top to bottom. For example, the first arrow in Figure 5-8 represents the press
message sent by a FieldOfficer to an ReportEmergencyButton. The receipt of a message
triggers the activation of an operation. The activation is represented by a vertical rectangle from
which other messages can originate. The length of the rectangle represents the time the
operation is active. In Figure 5-8, the operation triggered by the press message sends a create
message to the ReportEmergencyControl class. An operation can be thought of as a service that

Table 5-4  Control objects for the ReportEmergency use case.

ReportEmergencyControl Manages the ReportEmergency reporting function on the 
FieldOfficerStation. This object is created when the FieldOfficer
selects the “Report Emergency” button. It then creates an 
EmergencyReportForm and presents it to the FieldOfficer. After 
submitting the form, this object then collects the information from the 
form, creates an EmergencyReport, and forwards it to the Dispatcher.
The control object then waits for an acknowledgment to come back 
from the DispatcherStation. When the acknowledgment is received, 
the ReportEmergencyControl object creates an 
AcknowledgmentNotice and displays it to the FieldOfficer.

ManageEmergencyControl Manages the ReportEmergency reporting function on the 
DispatcherStation. This object is created when an 
EmergencyReport is received. It then creates an IncidentForm and 
displays it to the Dispatcher. Once the Dispatcher has created an 
Incident, allocated Resources, and submitted an acknowledgment, 
ManageEmergencyControl forwards the acknowledgment to the 
FieldOfficerStation.
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the object provides to other objects. Sequence diagrams also depict the lifetime of objects.
Objects that already exist before the first stimuli in the sequence diagram are depicted at the top
of the diagram. Objects that are created during the interaction are depicted with the «create»
message pointing to the object. Instances that are destroyed during the interaction have a cross
indicating when the object ceases to exist. Between the rectangle representing the object and the
cross (or the bottom of the diagram, if the object survives the interaction), a dashed line
represents the time span when the object can receive messages. The object cannot receive
messages below the cross sign. For example, in Figure 5-8 an object of class
ReportEmergencyForm is created when object of ReportEmergencyControl sends the «create»
message and is destroyed once the EmergencyReportForm has been submitted. 

In general, the second column of a sequence diagram represents the boundary object with
which the actor interacts to initiate the use case (e.g., ReportEmergencyButton). The third
column is a control object that manages the rest of the use case (e.g., ReportEmergency–
Control). From then on, the control object creates other boundary objects and may interact with
other control objects as well (e.g., ManageEmergencyControl).

In Figure 5-9, we discover the entity object Acknowledgment that we forgot during our
initial examination of the ReportEmergency use case (in Table 5-2). The Acknowledgment object
is different from an AcknowledgmentNotice: Acknowledgment holds the information associated
with an Acknowledgment and is created before the AcknowledgmentNotice boundary object.
When describing the Acknowledgment object, we also realize that the original ReportEmergency
use case (described in Figure 5-7) is incomplete. It only mentions the existence of an
Acknowledgment and does not describe the information associated with it. In this case,
developers need clarification from the client to define what information is needed in the

Figure 5-8 Sequence diagram for the ReportEmergency use case.
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Acknowledgment. After obtaining such clarification, the Acknowledgment object is added to the
analysis model (Table 5-5), and the ReportEmergency use case is clarified to include the
additional information (Figure 5-11). 

By constructing sequence diagrams, we not only model the order of the interaction among
the objects, we also distribute the behavior of the use case. That is, we assign responsibilities to
each object in the form of a set of operations. These operations can be shared by any use case in
which a given object participates. Note that the definition of an object that is shared across two
or more use cases should be identical; that is, if an operation appears in more than one sequence
diagram, its behavior should be the same. 

Figure 5-9 Sequence diagram for the ReportEmergency use case (continued from Figure 5-8). 

Figure 5-10 Sequence diagram for the ReportEmergency use case (continued from Figure 5-9). 
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Sharing operations across use cases allows developers to remove redundancies in the
requirements specification and to improve its consistency. Note that clarity should always be
given precedence to eliminating redundancy. Fragmenting behavior across many operations
unnecessarily complicates the requirements specification.

In analysis, sequence diagrams are used to help identify new participating objects and
missing behavior. Because sequence diagrams focus on high-level behavior, implementation

Use case name ReportEmergency

Entry condition 1. The FieldOfficer activates the “Report Emergency” function of her 
terminal. 

Flow of events 2. FRIEND responds by presenting a form to the officer. The form includes an 
emergency type menu (general emergency, fire, transportation), a location, 
incident description, resource request, and hazardous material fields.

3. The FieldOfficer completes the form by specifying minimally the 
emergency type and description fields. The FieldOfficer may also 
describe possible responses to the emergency situation and request specific 
resources. Once the form is completed, the FieldOfficer submits the 
form by pressing the “Send Report” button, at which point the Dispatcher
is notified.

4. The Dispatcher reviews the information submitted by the FieldOfficer
and creates an Incident in the database by invoking the OpenIncident
use case. All the information contained in the FieldOfficer’s form is 
automatically included in the Incident. The Dispatcher selects a 
response by allocating resources to the Incident (with the 
AllocateResources use case) and acknowledges the emergency report by 
sending a FRIENDgram to the FieldOfficer. The Acknowledgment

indicates to the FieldOfficer that the EmergencyReport was received, 
an Incident created, and resources allocated to the Incident. The 
Acknowledgment includes the resources (e.g., a fire truck) and their 
estimated arrival time.

Exit condition 5. The FieldOfficer receives the Acknowledgment and the selected 
response.

Figure 5-11 Refined ReportEmergency use case. The discovery and addition of the Acknowledgment
object to the analysis model revealed that the original ReportEmergency use case did not accurately
describe the information associated with Acknowledgments. The refinements are indicated in boldface.

Table 5-5  Acknowledgment object for the ReportEmergency use case. 

Acknowledgment Response of a dispatcher to a FieldOfficer’s EmergencyReport. By 
sending an Acknowledgment, the Dispatcher communicates to the 
FieldOfficer that she has received the EmergencyReport, created an 
Incident, and assigned resources to it. The Acknowledgment contains the 
assigned resources and their estimated arrival time.
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issues such as performance should not be addressed at this point. Given that building interaction
diagrams can be time consuming, developers should focus on problematic or underspecified
functionality first. Drawing interaction diagrams for parts of the system that are simple or well
defined might not look like a good investment of analysis resources, but it should also be done to
avoid overlooking some key decisions.

5.4.5 Modeling Interactions among Objects with CRC Cards

An alternative for identifying interactions among objects are CRC cards [Beck & Cunningham,
1989]. CRC cards (CRC stands for class, responsibilities, and collaborators) were initially
introduced as a tool for teaching object-oriented concepts to novices and to experienced
developers unfamiliar with object-orientation. Each class is represented with an index card
(called the CRC card). The name of the class is depicted on the top, its responsibilities in the left
column, and the names of the classes it needs to accomplish its responsibilities are depicted in
the right column. Figure 5-12 depicts two cards for the ReportEmergencyControl and the
Incident classes.

CRC cards can be used during modeling sessions with teams. Participants, typically a mix
of developers and application domain experts, go through a scenario and identify the classes that
are involved in realizing the scenario. One card per instance is put on the table. Responsibilities

Heuristics for drawing sequence diagrams

• The first column should correspond to the actor who initiated the use case.
• The second column should be a boundary object (that the actor used to initiate the use case).
• The third column should be the control object that manages the rest of the use case.
• Control objects are created by boundary objects initiating use cases.
• Boundary objects are created by control objects.
• Entity objects are accessed by control and boundary objects.
• Entity objects never access boundary or control objects; this makes it easier to share entity objects 

across use cases.

Figure 5-12 Examples of CRC cards for the ReportEmergencyControl and the Incident classes.
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are then assigned to each class as the scenario unfolds and participants negotiate the
responsibilities of each object. The collaborators column is filled as the dependencies with other
cards are identified. Cards are modified or pushed to the side as new alternatives are explored.
Cards are never thrown away, because building blocks for past alternatives can be reused when
new ideas are put on the table.

CRC cards and sequence diagrams are two different representations for supporting the
same type of activity. Sequence diagrams are a better tool for a single modeler or for
documenting a sequence of interactions, because they are more precise and compact. CRC cards
are a better tool for a group of developers refining and iterating over an object structure during a
brainstorming session, because they are easier to create and to modify.

5.4.6 Identifying Associations

Whereas sequence diagrams allow developers to represent interactions among objects over time,
class diagrams allow developers to describe the interdependencies of objects. We described the
UML class diagram notation in Chapter 2, Modeling with UML, and use it throughout the book
to represent various project artifacts (e.g., activities, deliverables). In this section, we discuss the
use of class diagrams for representing associations among objects. In Section 5.4.8, we discuss
the use of class diagrams for representing object attributes.

An association shows a relationship between two or more classes. For example, a
FieldOfficer writes an EmergencyReport (see Figure 5-13). Identifying associations has two
advantages. First, it clarifies the analysis model by making relationships between objects explicit
(e.g., an EmergencyReport can be created by a FieldOfficer or a Dispatcher). Second, it
enables the developer to discover boundary cases associated with links. Boundary cases are
exceptions that must be clarified in the model. For example, it is intuitive to assume that most
EmergencyReports are written by one FieldOfficer. However, should the system support
EmergencyReports written by more than one? Should the system allow for anonymous
EmergencyReports? Those questions should be investigated during analysis by discussing them
with the client or with end users.

Associations have several properties:

• A name to describe the association between the two classes (e.g., Writes in
Figure 5-13). Association names are optional and need not be unique globally.

Figure 5-13 An example of association between the EmergencyReport and the FieldOfficer classes.

FieldOfficer EmergencyReport
1 *writes

author document
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• A role at each end, identifying the function of each class with respect to the
associations (e.g., author is the role played by FieldOfficer in the Writes

association).

• A multiplicity at each end, identifying the possible number of instances (e.g., *
indicates a FieldOfficer may write zero or more EmergencyReports, whereas 1
indicates that each EmergencyReport has exactly one FieldOfficer as author).

Initially, the associations between entity objects are the most important, as they reveal
more information about the application domain. According to Abbott’s heuristics (see
Table 5-1), associations can be identified by examining verbs and verb phrases denoting a state
(e.g., has, is part of, manages, reports to, is triggered by, is contained in, talks to, includes).
Every association should be named, and roles should be assigned to each end.

The object model will initially include too many associations if developers include all
associations identified after examining verb phrases. In Figure 5-14, for example, we identify
two relationships: the first between an Incident and the EmergencyReport that triggered its
creation; the second between the Incident and the reporting FieldOfficer. Given that the
EmergencyReport and FieldOfficer already have an association modeling authorship, the
association between Incident and FieldOfficer is not necessary. Adding unnecessary
associations complicates the model, leading to incomprehensible models and redundant
information.

Most entity objects have an identifying characteristic used by the actors to access them.
FieldOfficers and Dispatchers have a badge number. Incidents and Reports are assigned
numbers and are archived by date. Once the analysis model includes most classes and
associations, the developers should go through each class and check how it is identified by the
actors and in which context. For example, are FieldOfficer badge numbers unique across the
universe? Across a city? A police station? If they are unique across cities, can the FRIEND system
know about FieldOfficers from more than one city? This approach can be formalized by
examining each individual class and identifying the sequence of associations that need to be
traversed to access a specific instance of that class.

Heuristics for identifying associations

• Examine verb phrases.
• Name associations and roles precisely.
• Use qualifiers as often as possible to identify namespaces and key attributes.
• Eliminate any association that can be derived from other associations.
• Do not worry about multiplicity until the set of associations is stable.
• Too many associations make a model unreadable.



192 Chapter 5  •  Analysis

5.4.7 Identifying Aggregates

Aggregations are special types of associations denoting a whole–part relationship. For example,
a FireStation consists of a number of FireFighters, FireEngines, Ambulances, and a
LeadCar. A State is composed of a number of Counties that are, in turn, composed of a number
of Townships (Figure 5-15). An aggregation is shown as a association with a diamond on the
side of the whole part. 

There are two types of aggregation, composition and shared. A solid diamond denotes
composition. A composition aggregation indicates that the existence of the parts depends on
the whole. For example, a County is always part of exactly one State, a Township is always part
of a County. As political boundaries do not change often, a Township will not be part of or
shared with another County (at least, in the life time of the emergency response system). 

A hollow diamond denotes a shared aggregation relationship, indicating the whole and
the part can exist independently. For example, although a FireEngine is part of at most one
FireStation at the time, it can be reassigned to a different FireStation during its life time. 

Figure 5-14 Eliminating redundant association. The receipt of an EmergencyReport triggers the creation
of an Incident by a Dispatcher. Given that the EmergencyReport has an association with the
FieldOfficer that wrote it, it is not necessary to keep an association between FieldOfficer and
Incident.

Figure 5-15 Examples of aggregations and compositions (UML class diagram). A State is composed of
many Counties, which in turn is composed of many Townships. A FireStation includes FireFighters,
FireEngines, Ambulances, and a LeadCar.
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Aggregation associations are used in the analysis model to denote whole–part concepts.
Aggregation associations add information to the analysis model about how containment
concepts in the application domain can be organized in a hierarchy or in a directed graph.
Aggregations are often used in the user interface to help the user browse through many
instances. For example, in Figure 5-15, FRIEND could offer a tree representation for
Dispatchers to find Counties within a State or Townships with a specific County. However, as
with many modeling concepts, it is easy to over-structure the model. If you are not sure that the
association you are describing is a whole–part concept, it is better to model it as a one-to-many
association, and revisit it later when you have a better understanding of the application domain.

5.4.8 Identifying Attributes

Attributes are properties of individual objects. For example, an EmergencyReport, as described
in Table 5-2, has an emergency type, a location, and a description property (see Figure 5-16).
These are entered by a FieldOfficer when she reports an emergency and are subsequently
tracked by the system. When identifying properties of objects, only the attributes relevant to the
system should be considered. For example, each FieldOfficer has a social security number that
is not relevant to the emergency information system. Instead, FieldOfficers are identified by
badge number, which is represented by the badgeNumber property.

Properties that are represented by objects are not attributes. For example, every
EmergencyReport has an author that is represented by an association to the FieldOfficer class.
Developers should identify as many associations as possible before identifying attributes to
avoid confusing attributes and objects. Attributes have:

• A name identifying them within an object. For example, an EmergencyReport may
have a reportType attribute and an emergencyType attribute. The reportType
describes the kind of report being filed (e.g., initial report, request for resource, final
report). The emergencyType describes the type of emergency (e.g., fire, traffic, other).
To avoid confusion, these attributes should not both be called type.

• A brief description.

Figure 5-16 Attributes of the EmergencyReport class.

EmergencyReport
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location:String
description:String
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• A type describing the legal values it can take. For example, the description attribute
of an EmergencyReport is a string. The emergencyType attribute is an enumeration that
can take one of three values: fire, traffic, other. Attribute types are based on
predefined basic types in UML.

Attributes can be identified using Abbott’s heuristics (see Table 5-1). In particular, a noun
phrase followed by a possessive phrase (e.g., the description of an emergency) or an adjective
phrase (e.g., the emergency description) should be examined. In the case of entity objects, any
property that must be stored by the system is a candidate attribute.

Note that attributes represent the least stable part of the object model. Often, attributes are
discovered or added late in the development when the system is evaluated by the users. Unless
the added attributes are associated with additional functionality, the added attributes do not
entail major changes in the object (and system) structure. For these reasons, the developers need
not spend excessive resources in identifying and detailing attributes that represent less important
aspects of the system. These attributes can be added later when the analysis model or the user
interface sketches are validated.

5.4.9 Modeling State-Dependent Behavior of Individual Objects

Sequence diagrams are used to distribute behavior across objects and to identify operations.
Sequence diagrams represent the behavior of the system from the perspective of a single use
case. State machine diagrams represent behavior from the perspective of a single object.
Viewing behavior from the perspective of each object enables the developer to build a more
formal description of the behavior of the object, and consequently, to identify missing use cases.
By focusing on individual states, developers may identify new behavior. For example, by
examining each transition in the state machine diagram that is triggered by a user action, the
developer should be able to identify a flow step in a use case that describes the actor action that
triggers the transition. Note that it is not necessary to build state machines for every class in the
system. Only objects with an extended lifespan and state-dependent behavior are worth
considering. This is almost always the case for control objects, less often for entity objects, and
almost never for boundary objects. 

Heuristics for identifying attributesa

• Examine possessive phrases.
• Represent stored state as an attribute of the entity object.
• Describe each attribute.
• Do not represent an attribute as an object; use an association instead (see Section 5.4.6).
• Do not waste time describing fine details before the object structure is stable.

a. Adapted from [Rumbaugh et al., 1991].
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Figure 5-17 displays a state machine for the Incident class. The examination of this state
machine may help the developer to check if there are use cases for documenting, closing, and
archiving Incidents. By further refining each state, the developer can add detail to the different
user actions that change the state of an incident. For example, during the Active state of an
indicate, FieldOfficers should be able to request new resources, and Dispatchers should be
able to allocate resource to existing incidents.

5.4.10 Modeling Inheritance Relationships between Objects

Generalization is used to eliminate redundancy from the analysis model. If two or more classes
share attributes or behavior, the similarities are consolidated into a superclass. For example,
Dispatchers and FieldOfficers both have a badgeNumber attribute that serves to identify them
within a city. FieldOfficers and Dispatchers are both PoliceOfficers who are assigned
different functions. To model explicitly this similarity, we introduce an abstract PoliceOfficer
class from which the FieldOfficer and Dispatcher classes inherit (see Figure 5-18). 

Figure 5-17 UML state machine for Incident.
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5.4.11 Reviewing the Analysis Model

The analysis model is built incrementally and iteratively. The analysis model is seldom correct
or even complete on the first pass. Several iterations with the client and the user are necessary
before the analysis model converges toward a correct specification usable by the developers for
design and implementation. For example, an omission discovered during analysis will lead to
adding or extending a use case in the requirements specification, which may lead to eliciting
more information from the user. 

Once the number of changes to the model are minimal and the scope of the changes
localized, the analysis model becomes stable. Then the analysis model is reviewed, first by the
developers (i.e., internal reviews), then jointly by the developers and the client. The goal of the
review is to make sure that the requirements specification is correct, complete, consistent, and
unambiguous. Moreover, developers and client also review if the requirements are realistic and
verifiable. Note that developers should be prepared to discover errors downstream and make
changes to the specification. It is, however, a worthwhile investment to catch as many
requirements errors upstream as possible. The review can be facilitated by a checklist or a list of
questions. Below are example questions adapted from [Jacobson et al., 1999] and [Rumbaugh et
al., 1991].

The following questions should be asked to ensure that the model is correct:
• Is the glossary of entity objects understandable by the user?
• Do abstract classes correspond to user-level concepts?
• Are all descriptions in accordance with the users’ definitions?
• Do all entity and boundary objects have meaningful noun phrases as names?
• Do all use cases and control objects have meaningful verb phrases as names?
• Are all error cases described and handled?

The following questions should be asked to ensure that the model is complete:
• For each object: Is it needed by any use case? In which use case is it created? modified?

destroyed? Can it be accessed from a boundary object?

Figure 5-18 An example of inheritance relationship (UML class diagram).
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• For each attribute: When is it set? What is its type? Should it be a qualifier?
• For each association: When is it traversed? Why was the specific multiplicity chosen?

Can associations with one-to-many and many-to-many multiplicities be qualified?
• For each control object: Does it have the necessary associations to access the objects

participating in its corresponding use case?

The following questions should be asked to ensure that the model is consistent:
• Are there multiple classes or use cases with the same name?
• Do entities (e.g., use cases, classes, attributes) with similar names denote similar

concepts?
• Are there objects with similar attributes and associations that are not in the same

generalization hierarchy?

The following questions should be asked to ensure that the system described by the analysis
model is realistic:

• Are there any novel features in the system? Were any studies or prototypes built to
ensure their feasibility?

• Can the performance and reliability requirements be met? Were these requirements
verified by any prototypes running on the selected hardware?

5.4.12 Analysis Summary

The requirements elicitation activity is highly iterative and incremental. Chunks of functionality
are sketched and proposed to the users and the client. The client adds requirements, criticizes
existing functionality, and modifies existing requirements. The developers investigate
nonfunctional requirements through prototyping and technology studies and challenge each
proposed requirement. Initially, requirements elicitation resembles a brainstorming activity. As
the description of the system grows and the requirements become more concrete, developers
need to extend and modify the analysis model in a more orderly manner to manage the
complexity of information. 

Figure 5-19 depicts a typical sequence of the analysis activities. The users, developers, and
client are involved in developing an initial use case model. They identify a number of concepts
and build a glossary of participating objects. These first two activities were discussed in the
previous chapter. The remaining activities were covered in this section. The developers classify
the participating objects into entity, boundary, and control objects (in Define entity objects,
Section 5.4.1, Define boundary objects, Section 5.4.2, and Define control objects,
Section 5.4.3). These activities occur in a tight loop until most of the functionality of the system
has been identified as use cases with names and brief descriptions. Then the developers
construct sequence diagrams to identify any missing objects (Define interactions, Section 5.4.4).
When all entity objects have been named and briefly described, the analysis model should
remain fairly stable as it is refined.
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Define associations (Section 5.4.6), Define attributes (Section 5.4.8) and Define state-
dependent behavior (Section 5.4.9) constitute the refinement of the analysis model. These three
activities occur in a tight loop during which the state of the objects and their associations are
extracted from the sequence diagrams and detailed. The use cases are then modified to account
for any changes in functionality. This phase may lead to the identification of an additional chunk
of functionality in the form of additional use cases. The overall process is then repeated
incrementally for these new use cases.

During Consolidate model (Section 5.4.10), the developers solidify the model by
introducing qualifiers and generalization relationships and suppressing redundancies. During
Review model (Section 5.4.11), the client, users, and developers examine the model for

Figure 5-19 Analysis activities (UML activities diagram). 
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correctness, consistency, completeness, and realism. The project schedule should plan for
multiple reviews to ensure high-quality requirements and to provide opportunities to learn the
requirements activity. However, once the model reaches the point where most modifications are
cosmetic, system design should proceed. There will come a point during requirements where no
more problems can be anticipated without further information from prototyping, usability
studies, technology surveys, or system design. Getting every detail right becomes a wasteful
exercise: some of these details will become irrelevant by the next change. Management should
recognize this point and initiate the next phase in the project.

5.5 Managing Analysis

In this section, we discuss issues related to managing the analysis activities in a multi-team
development project. The primary challenge in managing the requirements in such a project is to
maintain consistency while using so many resources. In the end, the requirements analysis
document should describe a single coherent system understandable to a single person.

We first describe a document template that can be used to document the results of analysis
(Section 5.5.1). Next, we describe the role assignment to analysis (Section 5.5.2). We then
address communication issues during analysis. Next, we address management issues related to
the iterative and incremental nature of requirements (Section 5.5.4).

5.5.1 Documenting Analysis

As we saw in the previous chapter, the requirements elicitation and analysis activities are
documented in the Requirements Analysis Document (RAD, Figure 5-20). RAD Sections 1
through 3.5.2 have already been written during requirements elicitation. During analysis, we
revise these sections as ambiguities and new functionality are discovered. The main effort,
however, focuses on writing the sections documenting the analysis object model (RAD Sections
3.5.3 and 3.5.4).

RAD Section 3.5.3, Object models, documents in detail all the objects we identified, their
attributes, and, when we used sequence diagrams, operations. As each object is described with
textual definitions, relationships among objects are illustrated with class diagrams.

RAD Section 3.5.4, Dynamic models, documents the behavior of the object model in terms
of state machine diagrams and sequence diagrams. Although this information is redundant with
the use case model, dynamic models enable us to represent more precisely complex behaviors,
including use cases involving many actors.

The RAD, once completed and published, will be baselined and put under configuration
management. The revision history section of the RAD will provide a history of changes
including the author responsible for each change, the date of the change, and brief description of
the change.
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5.5.2 Assigning Responsibilities

Analysis requires the participation of a wide range of individuals. The target user provides
application domain knowledge. The client funds the project and coordinates the user side of the
effort. The analyst elicits application domain knowledge and formalizes it. Developers provide
feedback on feasibility and cost. The project manager coordinates the effort on the development
side. For large systems, many users, analysts, and developers may be involved, introducing
additional challenges during for integration and communication requirements of the project.
These challenges can be met by assigning well-defined roles and scopes to individuals. There
are three main types of roles: generation of information, integration, and review.

• The end user is the application domain expert who generates information about the
current system, the environment of the future system, and the tasks it should support.
Each user corresponds to one or more actors and helps identify their associated use
cases.

• The client, an integration role, defines the scope of the system based on user
requirements. Different users may have different views of the system, either because
they will benefit from different parts of the system (e.g., a dispatcher vs. a field officer)
or because the users have different opinions or expectations about the future system.
The client serves as an integrator of application domain information and resolves
inconsistencies in user expectations.

Requirements Analysis Document

1. Introduction
2. Current system
3. Proposed system

3.1 Overview
3.2 Functional requirements
3.3 Nonfunctional requirements
3.4 System models

3.4.1 Scenarios
3.4.2 Use case model
3.4.3 Object model

3.4.3.1 Data dictionary
3.4.3.2 Class diagrams

3.4.4 Dynamic models
3.4.5 User interface—navigational paths and screen mock-ups

4. Glossary

Figure 5-20 Overview outline of the Requirements Analysis Document (RAD). See Figure 4-16 for a
detailed outline.
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• The analyst is the application domain expert who models the current system and
generates information about the future system. Each analyst is initially responsible for
detailing one or more use cases. For a set of use cases, the analysis will identify a
number of objects, their associations, and their attributes using the techniques outlined
in Section 5.4. The analyst is typically a developer with broad application domain
knowledge.

• The architect, an integration role, unifies the use case and object models from a system
point of view. Different analysts may have different styles of modeling and different
views of the parts of the systems for which they are not responsible. Although analysts
work together and will most likely resolve differences as they progress through
analysis, the role of the architect is necessary to provide a system philosophy and to
identify omissions in the requirements.

• The document editor is responsible for the low-level integration of the document and
for the overall format of the document and its index.

• The configuration manager is responsible for maintaining a revision history of the
document as well as traceability information relating the RAD with other documents
(such as the System Design Document; see Chapter 6, System Design: Decomposing
the System).

• The reviewer validates the RAD for correctness, completeness, consistency, and
clarity. Users, clients, developers, or other individuals may become reviewers during
requirements validation. Individuals that have not yet been involved in the development
represent excellent reviewers, because they are more able to identify ambiguities and
areas that need clarification.

The size of the system determines the number of different users and analysts that are
needed to elicit and model the requirements. In all cases, there should be one integrating role on
the client side and one on the development side. In the end, the requirements, however large the
system, should be understandable by a single individual knowledgeable in the application
domain.

5.5.3 Communicating about Analysis

The task of communicating information is most challenging during requirements elicitation and
analysis. Contributing factors include

• Different backgrounds of participants. Users, clients, and developers have different
domains of expertise and use different vocabularies to describe the same concepts.

• Different expectations of stakeholders. Users, clients, and managements have different
objectives when defining the system. Users want a system that supports their current
work processes, with no interference or threat to their current position (e.g., an
improved system often translates into the elimination of current positions). The client



202 Chapter 5  •  Analysis

wants to maximize return on investment. Management wants to deliver the system on
time. Different expectations and different stakes in the project can lead to a reluctance
to share information and to report problems in a timely manner.

• New teams. Requirements elicitation and analysis often marks the beginning of a new
project. This translates into new participants and new team assignments, and, thus, into
a ramp-up period during which team members must learn to work together. 

• Evolving system. When a new system is developed from scratch, terms and concepts
related to the new system are in flux during most of the analysis and the system design.
A term may have a different meaning tomorrow.

No requirements method or communication mechanism can address problems related to
internal politics and information hiding. Conflicting objectives and competition will always be
part of large development projects. A few simple guidelines, however, can help in managing the
complexity of conflicting views of the system:

• Define clear territories. Defining roles as described in Section 5.5.2 is part of this
activity. This also includes the definition of private and public discussion forums. For
example, each team may have a discussion database as described in Chapter 3, Project
Organization and Communication, and discussion with the client is done on a separate
client database. The client should not have access to the internal database. Similarly,
developers should not interfere with client/user internal politics.

• Define clear objectives and success criteria. The codefinition of clear, measurable, and
verifiable objectives and success criteria by both the client and the developers
facilitates the resolution of conflicts. Note that defining a clear and verifiable objective
is a nontrivial task, given that it is easier to leave objectives open-ended. The objectives
and the success criteria of the project should be documented in Section 1.3 of the RAD.

• Brainstorm. Putting all the stakeholders in the same room and to quickly generate
solutions and definitions can remove many barriers in communication. Conducting
reviews as a reciprocal activity (i.e., reviewing deliverables from both the client and the
developers during the same session) has a similar effect.

Brainstorming, and more generally the cooperative development of requirements, can lead
to the definition of shared, ad hoc notations for supporting the communication. Storyboards,
user interface sketches, and high-level dataflow diagrams often appear spontaneously. As the
information about the application domain and the new system accrue, it is critical that a precise
and structured notation be used. In UML, developers employ use cases and scenarios for
communicating with the client and the users, and use object diagrams, sequence diagrams, and
state machines to communicate with other developers (see Sections 4.4 and 5.4). Moreover, the
latest release of the requirements should be available to all participants. Maintaining a live
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online version of the requirements analysis document with an up-to-date change history
facilitates the timely propagation of changes across the project.

5.5.4 Iterating over the Analysis Model

Analysis occurs iteratively and incrementally, often in parallel with other development activities
such as system design and implementation. Note, however, that the unrestricted modification
and extension of the analysis model can only result in chaos, especially when a large number of
participants are involved. Iterations and increments must be carefully managed and requests for
changes tracked once the requirements are baselined. The requirements activity can be viewed
as several steps (brainstorming, solidification, maturity) converging toward a stable model.

Brainstorming

Before any other development activity is initiated, requirements is a brainstorming
process. Everything—concepts and the terms used to refer to them—changes. The objective of a
brainstorming process is to generate as many ideas as possible without necessarily organizing
them. During this stage, iterations are rapid and far reaching.

Solidification

Once the client and the developers converge on a common idea, define the boundaries of
the system, and agree on a set of standard terms, solidification starts. Functionality is organized
into groups of use cases with their corresponding interfaces. Groups of functionality are
allocated to different teams that are responsible for detailing their corresponding use cases.
During this stage, iterations are rapid but localized.

Maturity

Changes at the higher level are still possible but more difficult, and thus, are made more
carefully. Each team is responsible for the use cases and object models related to the
functionality they have been assigned. A cross-functional team, the architecture team, made of
representatives of each team, is responsible for ensuring the integration of the requirements (e.g.,
naming).

Once the client signs off on the requirements, modification to the analysis model should
address omissions and errors. Developers, in particular the architecture team, need to ensure that
the consistency of the model is not compromised. The requirements model is under
configuration management and changes should be propagated to existing design models.
Iterations are slow and often localized.

The number of features and functions of a system will always increase with time. Each
change, however, can threaten the integrity of the system. The risk of introducing more problems
with late changes results from the loss of information in the project. The dependencies across
functions are not all captured; many assumptions may be implicit and forgotten by the time the
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change is made. Often the change responds to a problem, in which case there is a lot of pressure
to implement it, resulting in only a superficial examination of the consequence of the change.
When new features and functions are added to the system, they should be challenged with the
following questions: Were they requested by the client? Are they necessary, or are they
embellishments? Should they be part of a separate, focused utility program instead of part of the
base system? Are the changes core requirements or optional features? What is the impact of the
changes to existing functions in terms of consistency, interface, reliability? 

When changes are necessary, the client and developer define the scope of the change and
its desired outcome and change the analysis model. Given that a complete analysis model exists
for the system, specifying new functionality is easier (although implementing it is more
difficult).

5.5.5 Client Sign-Off

The client sign-off represents the acceptance of the analysis model (as documented by the
requirements analysis document) by the client. The client and the developers converge on a
single idea and agree about the functions and features that the system will have. In addition, they
agree on:

• a list of priorities

• a revision process

• a list of criteria that will be used to accept or reject the system

• a schedule and a budget.

Prioritizing system functions allows the developers to understand better the client’s
expectations. In its simplest form, it allows developers to separate bells and whistles from
essential features. It also allows developers to deliver the system in incremental chunks:
essential functions are delivered first, additional chunks are delivered depending on the
evaluation of the previous chunk. Even if the system is to be delivered as a single, complete
package, prioritizing functions enables the client to communicate clearly what is important to
her and where the emphasis of the development should be. Figure 5-21 provides an example of a
priority scheme.

Each function shall be assigned one of the following priorities

• High priority—A high-priority feature must be demonstrated successfully during client acceptance.
• Medium priority—A medium-priority feature must be taken into account in the system design and 

the object design. It will be implemented and demonstrated in the second iteration of the system 
development.

• Low priority—A low-priority feature illustrates how the system can be extended in the longer term.

Figure 5-21 An example of a priority scheme for requirements.
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After the client sign off, the requirements are baselined and are used for refining the cost
estimate of the project. Requirements continue to change after the sign-off, but these changes are
subject to a more formal revision process. The requirements change, whether because of errors,
omissions, changes in the operating environment, changes in the application domain, or changes
in technology. Defining a revision process up front encourages changes to be communicated
across the project and reduces the number of surprises in the later stages. Note that a change
process need not be bureaucratic or require excessive overhead. It can be as simple as naming a
person responsible for receiving change requests, approving changes, and tracking their
implementation. Figure 5-22 depicts a more complex example in which changes are designed

Figure 5-22 An example of a revision process (UML activity diagram).
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and reviewed by the client before they are implemented in the system. In all cases,
acknowledging that requirements cannot be frozen (but only baselined) will benefit the project.

The list of acceptance criteria is revised prior to sign-off. The requirements elicitation and
analysis activity clarifies many aspects of the system, including the nonfunctional requirements
with which the system should comply and the relative importance of each function. By restating
the acceptance criteria at sign-off, the client ensures that the developers are updated about any
changes in client expectations.

The budget and schedule are revisited after the analysis model becomes stable. We
describe in Chapter 14, Project Management, issues related to cost estimation.

Whether the client sign-off is a contractual agreement or whether the project is already
governed by a prior contract, it is an important milestone in the project. It represents the
convergence of client and developer on a single set of functional definitions of the system and a
single set of expectations. The acceptance of the requirements analysis document is more critical
than any other document, given that many activities depend on the analysis model. 

5.6 ARENA Case Study

In this section, we apply the concepts and methods described in this chapter to the ARENA system.
We start with the use case model and the glossary developed in the previous chapter. We identify
participating entity, boundary, and control objects, and refine them by adding attributes and
associations to the analysis object model. Finally, we identify inheritance relationships and
consolidate the analysis object model. In this section, we focus primarily on the
AnnounceTournament use case. 

5.6.1 Identifying Entity Objects

Entity objects represent concepts in the application domain that are tracked by the system. We
use the glossary produced during elicitation as a starting point for identifying entity objects in
ARENA. We identify additional entity objects and their attributes by applying Abbott’s heuristics
on the use cases. We initially focus only on noun phrases that denote concepts of the application
domain. Figure 5-23 depicts the AnnounceTournament use case with the first occurrence of noun
phrases we identified in bold.

Note that we identify entity objects corresponding to actors in the use case model. Actors
are concepts in the application domain and are relevant to the system (e.g., for access control or
for documenting responsibilities or authorship). In ARENA, each legitimate LeagueOwner is
represented with an object that is used to store data specific to that LeagueOwner, such as her
contact information, the leagues that she manages, and so on.

Note, also, that not all noun phrases we identified correspond to classes. For example,
name of a tournament is a noun phrase referring to an attribute of the Tournament class. List
of Advertisers is an association, in this case, between the League class and the Advertiser
class. We can use a few simple heuristics to distinguish between noun phrases that correspond to
objects, attributes, and associations:
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Name AnnounceTournament

Flow of events 1. The LeagueOwner requests the creation of a tournament.

2. The system checks if the LeagueOwner has exceeded the number of 
tournaments in the league or in the arena. If not, the system presents 
the LeagueOwner with a form.

3. The LeagueOwner specifies a name, application start and end dates during 
which Players can apply to the tournament, start and end dates for conducting 
the tournament, and a maximum number of Players.

4. The system asks the LeagueOwner whether an exclusive sponsorship 
should be sought and, if yes, presents a list of Advertisers who 
expressed the desire to be exclusive sponsors.

5. If the LeagueOwner decides to seek an exclusive sponsor, he selects a subset of the 
names of the proposed sponsors.

6. The system notifies the selected sponsors about the upcoming tournament 
and the flat fee for exclusive sponsorships.

7. The system communicates their answers to the LeagueOwner.

8. If there are interested sponsors, the LeagueOwner selects one of them.

9. The system records the name of the exclusive sponsor and charges the flat 
fee for sponsorships to the Advertiser’s account. From now on, all 
advertisement banners associated with the tournament are provided 
by the exclusive sponsor only. 

10.If no sponsors were selected (either because no Advertisers were 
interested or the LeagueOwner did not select any), the advertisement 
banners are selected at random and charged to each Advertiser’s 
account on a per unit basis.

11.Once the sponsorship issues is closed, the system prompts the 
LeagueOwner with a list of groups of Players, Spectators, and 
Advertisers that could be interested in the new tournament.

12.The LeagueOwner selects which groups to notify.

13.The system creates a home page in the arena for the tournament. This 
page is used as an entry point to the tournament (e.g., to provide 
interested Players with a form to apply for the tournament, and to 
interest Spectators into watching matches).

14.At the application start date, the system notifies each interested 
user by sending them a link to the main tournament page. The Players
can then apply for the tournament with the ApplyForTournament use 
case until the application end date.

Figure 5-23 Applying Abbott’s heuristics for identifying entity objects in the AnnounceTournament use
case. The first occurrence of a noun phrase is emphasized in bold.
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• Attributes are properties. Attributes represent a single property of an object. They
represent a partial aspect of an object and are incomplete. For example, the name of an
Advertiser is an attribute that identifies an Advertiser. However, it does not include
other relevant information about the Advertiser (e.g., her current account balance, the
type of banners she advertises, etc.) that are represented by other attributes or
associations of the Advertiser class.

• Attributes have simple types. Attributes are properties that often have types such as a
number (e.g., maximum number of Tournaments), string (e.g., the name of an
Advertiser), dates (e.g., the application start and end date of a Tournament).
Properties such as an address, a social security number, and a vehicle identification
number are also usually considered as simple types (and hence represented as
attributes) because users treat those as simple, atomic concepts. Complex concepts are
represented as objects that are related to other objects with associations. For example,
an Account is an object that is related to the corresponding Advertiser and can include
a balance, a history of transactions, a credit limit, and other similar properties. 

• Nouns referring to collections are associations, often with implicit ends. Lists, groups,
tables, and sets are represented by associations. For example, ARENA prompts the
LeagueOwner with a list of Advertisers that are potentially interested in exclusive
sponsorships. This concept can be represented with an association between the Arena
class and the Advertiser class, denoting which Advertisers are interested in
exclusive sponsorships. Often, the association end is implicit. For example, when
sponsorship issues are closed, ARENA prompts the LeagueOwner with a list of groups of
Players, Spectators, and Advertisers. We identify a new class, InterestGroup,
representing collections of users interested in new events about a league or a game.
Then, we identify an association between the Arena class and the InterestGroup class
(corresponding to the word “list”) representing all InterestGroups. Then, we identify
an association between the InterestGroup class and the Player, Spectator, and
Advertisers classes (corresponding to the word “group”). Finally, we identify
additional associations originating from the InterestGroup class to other classes
representing the interest of the users in the InterestGroup (i.e., League, Game).

Table 5-6 lists the entity objects, their attributes, and their associations that we identified
so far from the AnnounceTournament use case. We attach the attributes and associations to their
relevant classes and write definitions for new classes. Writing definitions has several purposes.
First, a name is not specific enough for all stakeholders to share the same understanding about
the concept. For example, terms such as Game and Match can be interchanged in many contexts.
In ARENA, however, they refer to distinct concepts (i.e., a Game represents a set of rules enforced
by a piece of software, a Match represent a competition among a set of Players). Second,
objects identified during analysis correspond also to terms in the glossary we started during
elicitation. Stakeholders use the glossary throughout development to resolve ambiguities and
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establish a standard terminology. Writing short definitions as classes are identified is the best
way to prevent ambiguities and misunderstandings. Postponing the writing of definitions results
in loss of information and in incomplete definitions.

Table 5-6  Entity objects participating in the AnnounceTournament use case identified from noun 
phrases in the use case. “(?)” denote areas of uncertainty that lead to the questions in Figure 5-24. 

Entity Object Attributes & Associations Definition

Account • balance
• history of charges (?)
• history of payments (?)

An Account represents the amount currently 
owed by an Advertiser, a history of charges, 
and payments. 

Advertiser • name
• leagues of interest for 

exclusive sponsorships (?)
• sponsored tournaments
• account

Actor interested in displaying advertisement 
banners during the Matches.

Advertisement • associated game (?) Image provided by an Advertiser for display 
during matches.

Arena • max number of tournaments
• flat fee for sponsorships (?)
• leagues (implied)
• interest groups (implied)

An instantiation of the ARENA system.

Game A Game is a competition among a number of 
Players that is conducted according to a set 
of rules. In ARENA, the term Game refers to a 
piece of software that enforces the set of rules, 
tracks the progress of each Player, and 
decides the winner.

InterestGroup • list of players, spectators, or 
advertisers

• games and leagues of 
interests (implied)

InterestGroups are lists of users in the 
ARENA which share an interest (e.g, for a game 
or a league). InterestGroups are used as 
mailing lists for notifying potential actors of 
new events.

League • max number of tournament
• game

A League represents a community for running 
Tournaments. A League is associated with a 
specific Game and TournamentStyle.
Players registered with the League
accumulate points according to the 
ExpertRating of the League.
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The identification of entity objects and their related attributes usually triggers additional
questions for the client. For example, when we identify implicit attributes and associations, we
should double-check with the client to confirm whether our intuition was correct. In other cases,
the ends of an association are ambiguous. We collect all the questions generated by the
identification of objects and go back to the client (or the domain expert). Figure 5-24 depicts the
questions we have after identifying entity objects participating in the AnnounceTournament use
case.

Table 5-6  Continued.

Entity Object Attributes & Associations Definition

LeagueOwner • name (implied) The actor creating a League and responsible 
for organizing Tournaments within the 
League.

Match • tournament
• players

A Match is a contest between two or more 
Players within the scope of a Game. The 
outcome of a Match can be a single winner and 
a set of losers or a tie (in which their are no 
winners or losers). Some TournamentStyles
may disallow ties.

Player • name (implied)

Tournament • name
• application start date
• application end date
• play start date
• play end date
• max number of players
• exclusive sponsor

A Tournament is a series of Matches among a 
set of Players. Tournaments end with a 
single winner. The way Players accumulate 
points and Matches are scheduled is dictated 
by the League in which the Tournament is 
organized. 

Questions for the ARENA client

• What information should be recorded in the advertisers’ accounts? For example, should a complete 
log of the display of each advertisement banner be recorded?

• Do advertisers express the interest for exclusive sponsorships for specific leagues or for the complete 
arena?

• Should advertisement banners be associated to games (to enable a more intelligent selection of 
banners when there is no exclusive sponsorship)?

• Does the flat fee for exclusive sponsorship vary across leagues or tournaments?

Figure 5-24 Questions triggered by the identification of entity objects.
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5.6.2 Identifying Boundary Objects

Boundary objects represent the interface between the system and the actors. They are identified
from the use cases and usually represent the user interface at a coarse level. Do not represent
layout information or user interface details such as menus and buttons. User interface mock-ups
are much better suited for this type of information. Instead, boundary objects represent concepts
such as windows, forms, or hardware artifacts such as workstations. This enables stakeholders to
visualize where functionality is available in the system.

Abbott’s heuristics do not identify many boundary objects, as they are often left implicit
initially. Instead, we scan the AnnounceTournament use case (Figure 5-23) and identify where
information is exchanged between the actors and the system. We focus both on forms in which
actors provide information to the system (e.g., the form used by the LeagueOwner to create a
Tournament) and on notices in which the system provides information to the actors (e.g., a
notice received by Advertisers requesting sponsorship). As with other objects, we briefly
define each class as we identify it. Table 5-7 depicts the boundary objects we identified for
AnnounceTournament with their definitions. Figure 5-25 depicts our additional questions.

Note that AnnounceTournament is a relatively complex use case involving several actors.
This yields a relatively large number boundary objects. In practice, a use case can have as few as
a single boundary object to represent the interface between the initiating actor and the system. In
all cases, however, each use case should have at least one participating boundary object
(possibly shared with other use cases).

Table 5-7  Boundary objects participating in the AnnounceTournament use case.

Boundary Object Definition

TournamentForm Form used by the LeagueOwner to specify the properties
of a Tournament during creation or editing.

RequestSponsorshipForm Form used by the LeagueOwner to request sponsorships
from interested Advertisers.

SponsorshipRequest Notice received by Advertisers requesting sponsorship.

SponsorshipReply Notice received by LeagueOwner indicating whether an
Advertiser wants the exclusive sponsorship of the
tournament.

SelectExclusiveSponsorForm Form used by the LeagueOwner to close the sponsorship
issue.

NotifyInterestGroupsForm Form used by the LeagueOwner to notify interested users.

InterestGroupNotice Notice received by interested users about the creation of a
new Tournament.
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5.6.3 Identifying Control Objects

Control objects represent the coordination among boundary and entity objects. In the common
case, a single control object is created at the beginning of the use case and accumulates all the
information needed to complete the use case. The control object is then destroyed with the
completion of the use case.

In AnnounceTournament, we identify a single control object called
AnnounceTournamentControl, which is responsible for sending and collecting notices to
Advertisers, checking resource availability, and, finally, notifying interested users. Note that,
in the general case, several control objects could participate in the same use case, if, for
example, there are alternate flows of events to be coordinated, multiple workstations operating
asynchronously, or if some control information survives the completion of the use case.

5.6.4 Modeling Interactions Among Objects

We have identified a number of entity, boundary, and control objects participating in the
AnnounceTournament use case. Along the way, we also identified some of their attributes and
associations. We represent these objects in a sequence diagram, depicting the interactions that
occur during the use case to identify additional associations and attributes.

In the sequence diagram, we arrange the objects we identified along the top row. We place
left-most the initiating actor (i.e., LeagueOwner), followed by the boundary object responsible
for initiating the use case (i.e., TournamentForm), followed by the main control object (i.e.,
AnnounceTournamentControl), and the entity objects (i.e., Arena, League, and Tournament).
Any other participating actors and their corresponding boundary objects are on the right of the
diagram. We split the sequence diagram associated with AnnounceTournament into three figures
for space reasons. Figure 5-26 depicts the sequence of interactions leading to the creation of a
tournament. Figure 5-27 depicts the workflow for requesting and selecting an exclusive sponsor.
Figure 5-28 focuses on the notification of interest groups.

The sequence diagram in Figure 5-26 is straightforward. The LeagueOwner requests the
creation of the tournament and specifies its initial parameter (e.g., name, maximum number of
players). The AnnounceTournamentControl instance is created and, if resources allow, a
Tournament entity instance is created.

The sequence diagram in Figure 5-27 is more interesting as it leads to the identification of
additional associations and attributes. When requesting sponsorships, the control object must

More questions for the ARENA client

• What should we do about sponsors who do not answer?
• How should we advertise a new tournament if there are no relevant interest groups?
• How should users be notified (e.g., E-mail, cell phone, ARENA notice box)?

Figure 5-25 Questions triggered by the identification of boundary objects. 
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first obtain a list of interested sponsors. It requests it from the Arena class, which maintains the
list of interested sponsors. This entails that the Arena class maintains at all times the list of all
Advertisers, so that it can return this list to the AnnounceTournamentControl object (or control
objects for other use cases that require the list of all Advertisers). To notify an Advertiser, we
also may need contact information, such as E-mail address, or we may need to create a mailbox
for notices within ARENA. Consequently, we add an contact attribute to the Advertiser class,
which initially stores the E-mail address of the Advertiser until further devices are supported.
Anticipating similar needs for other actors, we also add contact attributes to the LeagueOwner
and Player classes.

When constructing the sequence diagram for notifying interest groups (Figure 5-28), we
realize that the use case does not specify how the selected sponsor is notified. Consequently, we
add a step in the use case to notify all sponsors who replied about the sponsorship decisions
before interest groups are notified. This requires the identification of a new boundary object,
SponsorNotice. The rest of the interaction does not yield any new discovery, as we already
anticipated the need for the InterestGroup and the InterestGroupNotice classes.

5.6.5 Reviewing and Consolidating the Analysis Model

Now that we have identified most participating objects, their associations, and their attributes,
we draw UML class diagrams documenting the results of our analysis so far. As we have
identified many objects, we use several class diagrams to depict the analysis object model. We

Figure 5-26 UML sequence diagram for AnnounceTournament, tournament creation workflow.
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Figure 5-27 UML sequence diagram for AnnounceTournament use case, sponsorship workflow.

Figure 5-28 UML sequence diagram for AnnounceTournament use case, interest group workflow.
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use these class diagrams as a visual index into the glossary we developed. Although we should
not expect the client or the users to be able to review class diagrams, we can use class diagrams
for generating more questions for interviews with the client.

We first focus on the entity objects, since these need to be carefully reviewed by the client
as they represent application domain concepts (Figure 5-29). Note that we use the Arena class as
a root object in the system; the Arena class represents a specific instantiation. For example,
given an instantiation, it is possible to get a list of all InterestGroups, Advertisers,
LeagueOwners, Games, and TournamentStyles by querying the Arena class. Moreover, note that
objects are not shared among instantiations. For example, LeagueOwners belong to exactly one
instantiation of the system. If a user is a LeagueOwner in several ARENA instantiations of the
system, she holds a LeagueOwner account in each instantiation. We make these type of choices
during analysis based on our interpretation of the problem statement, based on our experience,
and based on resources available to build in the system. In all cases, these decisions need to be
reviewed and confirmed by the client. 

Next, we draw a class diagram depicting the inheritance hierarchies (Figure 5-30).
Although UML allows inheritance relationships and associations to coexist in the same diagram,
it is good practice during analysis to draw two separate diagrams to depict each type of

Figure 5-29 Entity objects identified after analyzing the AnnounceTournament use case.
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relationship. First, the UML symbols used to denote each type are similar and easily confused.
Second, analysts usually focus on inheritance and associations at different times. We will see
later, in Chapters 6 through 10, that this is not the case during system design and object design,
where it is often necessary to consider both relationships to understand how different classes are
related. 

Figure 5-30 shows three inheritance hierarchies. First, we identified an abstract class User
through generalization. This enables us to treat common attributes of various users in a more
general fashion, including contact information and registration procedures. Note that in the
problem statement and in the use cases, we already used the term “user,” so we are simply
formalizing a concept that was already in use. We identified two other inheritance hierarchies,
Game and TournamentStyle, identified through specialization to provide examples for both
concepts and to provide traceability to the problem statement. The TicTacToe and the Chess
classes are concrete specializations of Game that embody rules for the games called “tic tac toe”
and “chess,” respectively. The KnockOutStyle and the RoundRobinStyle classes are concrete
specializations of the TournamentStyle that provide algorithms for assigning Players to knock-
out tournaments (in which players need to win to remain in the tournament) and round robin
tournaments (in which each player plays all other players exactly once), respectively. 

Finally, we draw a class diagram that depicts the associations among the boundary,
control, and selected entity objects associated with the use case (Figure 5-31). To generate this
diagram from the sequence diagrams, we draw the equivalent communication diagram, with the
control object to the left, the boundary objects in the center, and the entity objects on the right.
We then replace the iterations with associations, where necessary, so that the objects in the
workflow can carry send messages to objects depicted in the sequence diagrams. We then add
navigation to the associations to denote the direction of the dependencies: control and boundary

Figure 5-30 Inheritance hierarchy among entity objects of the AnnounceTournament use case.
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objects usually know about each other, but entity objects do not depend on any control or
boundary objects.

Whereas the class diagram in Figure 5-29 focused primarily on the relationships among
application domain concepts, the class diagram of Figure 5-31 focuses on the concepts
associated with workflow of the use case at a coarse level. The control object acts as the glue
among boundary and entity objects, since it represents the coordination and the sequencing
among the forms and notices. As indicated in the sequence diagrams in Figures 5-26 through
5-28, the control object also creates several of the boundary objects. The class diagram in
Figure 5-31 provides a summary of the objects participating in the use case and the associations
traversed during the use case. However, the sequence diagrams provide the complete sequencing
information of the workflow. 

5.6.6 Lessons Learned

In this section, we developed the part of the analysis object model relevant to the
AnnounceTournament use case of ARENA. We started by identifying entity objects using Abbott’s
heuristics, then identified boundary and control objects, and used sequence diagrams to find
additional associations, attributes, and objects. Finally, we consolidated the object model and
depicted it with a series of class diagrams. We learned that:

Figure 5-31 Associations among boundary, control, and selected entity objects participating in the
AnnounceTournament use case.
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• Identifying objects, their attributes and associations, takes many iterations, often with
the client.

• Object identification uses many sources, including the problem statement, use case
model, the glossary, and the event flows of the use cases.

• A nontrivial use case can require many sequence diagrams and several class diagrams.
It is unrealistic to represent all discovered objects in a single diagram. Instead, each
diagram serves a specific purpose—for example, depicting associations among entity
objects, or depicting associations among participating objects in one use case.

• Key deliverables, such as the glossary, should be kept up to date as the analysis model
is revised. Others, such as sequence diagrams, can be redone later if necessary.
Maintaining consistency at all times, however, is unrealistic.

• There are many different ways to model the same application domain or the same
system, based on the personal style and experience of the analyst. This calls for
developing style guides and conventions within a project, so that all analysts can
communicate effectively.

5.7 Further Readings

The classification of analysis objects into entity, boundary, and control objects has been made
popular by the Objectory method [Jacobson et al., 1992]. These concepts originated from the
model/view/controller (MVC) paradigm used in the Smalltalk-80 environment and also found
their way into the Java Swing user interface framework [JFC, 2009].

CRC cards were introduced by Beck and Cunningham for teaching object-oriented
thinking to novices and experienced developers in an OOPSLA paper entitled A Laboratory For
Teaching Object-Oriented Thinking [Beck & Cunningham, 1989]. CRC cards are used
extensively in the responsibility-driven design method from Wirfs-Brock [Wirfs-Brock et al.,
1990].

Object-oriented analysis and design has evolved from many different sets of heuristics and
terminologies. Modeling, like programming, is a craft, and requires much experience and
willingness to make mistakes (hence the importance of client and user feedback). Object-
Oriented Modeling and Design [Rumbaugh et al., 1991] provides an excellent guide to novices
for class modeling. A more recent book, Applying UML and Patterns [Larman, 2005], provides
a comprehensive treatment of object-oriented analysis and design, including use case modeling
and reusing design patterns. For dynamic modeling with state machines, Doing Hard Time:
Using Object Oriented Programming and Software Patterns in Real Time Applications
[Douglass, 1999] provides detailed information and modeling heuristics on the topic.
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5.8 Exercises

5-1 Consider a file system with a graphical user interface, such as Macintosh’s Finder,
Microsoft’s Windows Explorer, or Linux’s KDE. The following objects were identified
from a use case describing how to copy a file from a floppy disk to a hard disk: File,
Icon, TrashCan, Folder, Disk, Pointer. Specify which are entity objects, which are
boundary objects, and which are control objects.

5-2 Assuming the same file system as before, consider a scenario consisting of selecting a
File on a floppy, dragging it to Folder and releasing the mouse. Identify and define at
least one control object associated with this scenario.

5-3 Arrange the objects listed in Exercises 5-1 and 5-2 horizontally on a sequence diagram,
the boundary objects to the left, then the control object you identified, and finally, the
entity objects. Draw the sequence of interactions resulting from dropping the file into a
folder. For now, ignore the exceptional cases.

5-4 Examining the sequence diagram you produced in Exercise 5-3, identify the
associations between these objects.

5-5 Identify the attributes of each object that are relevant to this scenario (copying a file
from a floppy disk to a hard disk). Also consider the exception cases “There is already
a file with that name in the folder” and “There is no more space on disk.”

5-6 Consider the object model in Figure 5-32 (adapted from [Jackson, 1995]):

Given your knowledge of the Gregorian calendar, list all the problems with this model.
Modify it to correct each of them.

5-7 Consider the object model of Figure 5-32. Using association multiplicity only, can you
modify the model such that a developer unfamiliar with the Gregorian calendar could
deduce the number of days in each month? Identify additional classes if necessary.

Figure 5-32 A naive model of the Gregorian calendar (UML class diagram).
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5-8 Consider a traffic light system at a four-way crossroads (two roads intersecting at right
angles). Assume the simplest algorithm for cycling through the lights (e.g., all traffic on
one road is allowed to go through the crossroad, while the other traffic is stopped).
Identify the states of this system and draw a state machine describing them. Remember
that each individual traffic light has three states (green, yellow, and red).

5-9 From the sequence diagram Figure 2-34, draw the corresponding class diagram. Hint:
Start with the participating objects in the sequence diagram.

5-10 Consider the addition of a nonfunctional requirement stipulating that the effort needed
by Advertisers to obtain exclusive sponsorships should be minimized. Change the
AnnounceTournament (Figure 5-23) and the ManageAdvertisements use case (solution
of Exercise 4-12) so that the Advertiser can specify preferences in her profile so that
exclusive sponsorships can be decided automatically by the system.

5-11 Identify and write definitions for any additional entity, boundary, and control objects
participating in the AnnounceTournament use case that were introduced by realizing the
change specified in Exercise 5-10. 

5-12 Update the class diagrams of Figure 5-29 and Figure 5-31 to include the new objects
you identified in Exercise 5-11.

5-13 Draw a state machine describing the behavior of the AnnounceTournamentControl
object based on the sequence diagrams of Figures 5-26 through 5-28. Treat the sending
and receiving of each notice as an event that triggers a change of state.
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6
System Design:
Decomposing the 
System
There are two ways of constructing a software design: 
One way is to make it so simple that there are obviously 
no deficiencies, and the other way is to make it so 
complicated that there are no obvious deficiencies.

—C.A.R. Hoare, in The Emperor’s Old Clothes

System design is the transformation of an analysis model into a system design model. During
system design, developers define the design goals of the project and decompose the system into
smaller subsystems that can be realized by individual teams. Developers also select strategies for
building the system, such as the hardware/software strategy, the persistent data management
strategy, the global control flow, the access control policy, and the handling of boundary
conditions. The result of system design is a model that includes a subsystem decomposition and
a clear description of each of these strategies.

System design is not algorithmic. Developers have to make trade-offs among many design
goals that often conflict with each other. They also cannot anticipate all design issues that they
will face because they do not yet have a clear picture of the solution domain. System design is
decomposed into several activities, each addressing part of the overall problem of decomposing
the system:

• Identify design goals. Developers identify and prioritize the qualities of the system that
they should optimize.

• Design the initial subsystem decomposition. Developers decompose the system into
smaller parts based on the use case and analysis models. Developers use standard
architectural styles as a starting point during this activity.

• Refine the subsystem decomposition to address the design goals. The initial
decomposition usually does not satisfy all design goals. Developers refine it until all
goals are satisfied.

In this chapter, we focus on the first two activities. In the next chapter, we refine the
system decomposition and provide an in-depth example with the ARENA case study. 
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6.1 Introduction: A Floor Plan Example

System design, object design, and implementation constitute the construction of the system.
During these three activities, developers bridge the gap between the requirements specification,
produced during requirements elicitation and analysis, and the system that is delivered to the
users. System design is the first step in this process and focuses on decomposing the system into
manageable parts. During requirements elicitation and analysis, we concentrated on the purpose
and the functionality of the system. During system design, we focus on the processes, data
structures, and software and hardware components necessary to implement it. The challenge of
system design is that many conflicting criteria and constraints must be met when decomposing
the system. 

Consider, for example, the task of designing a residential house. After agreeing with the
client on the number of rooms and floors, the size of the living area, and the location of the
house, the architect must design the floor plan, that is, where the walls, doors, and windows
should be located. He must do so according to a number of functional requirements: the kitchen
should be close to the dining room and the garage, the bathroom should be close to the
bedrooms, and so on. The architect can also rely on a number of standards when establishing the
dimensions of each room and the location of the door: kitchen cabinets come in fixed increments
and beds come in standard sizes. Note, however, that the architect does not need to know the
exact contents of each room and the layout of the furniture; on the contrary, these decisions
should be delayed and left to the client.

Figure 6-1 shows three successive revisions to a floor plan for a residential house. We set
out to satisfy the following constraints:

1. This house should have two bedrooms, a study, a kitchen, and a living room area. 

2. The overall distance the occupants walk every day should be minimized.

3. The use of daylight should be maximized.

To satisfy the above constraints, we assume that most of the walking will be done between
the entrance door and the kitchen, when groceries are unloaded from the car, and between the
kitchen and the living/dining area, when dishes are carried before and after the meals. The next
walking path to minimize is the path from the bedrooms to the bathrooms. We assume that the
occupants of the house will spend most of their time in the living/dining area and in the master
bedroom. 

In the first version of our floor plan (at the top of Figure 6-1), we find that the dining room
is too far from the kitchen. To address this problem, we exchange it with bedroom 2 (see gray
arrows in Figure 6-1). This also has the advantage of moving the living room to the south wall of
the house. In the second revision, we find that the kitchen and the stairs are too far from the
entrance door. To address this problem, we move the entrance door to the north wall. This allows
us to reorient bedroom 2 and move the bathroom closer to both bedrooms. The living area is
increased, and we satisfied all original constraints.
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Figure 6-1 Example of floor plan design. Three successive versions show how we minimize walking
distance and take advantage of sunlight.
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At this point, we can position the doors and the windows of each room to meet localized
requirements. Once this is done, we have completed the design without detailed knowledge of
the layout of each individual room. Plans for plumbing, electrical lines, and heating ducts can
proceed.

The design of a floor plan in architecture is similar to system design in software
engineering (Table 6-1). The whole is divided into simpler components and interfaces, while
taking into account nonfunctional and functional requirements. System design impacts
implementation activities and results in costly rework if changed later. The design of individual
components is delayed until later. 

Section 6.2 provides a bird’s-eye view of system design and its relationship to analysis.
Section 6.3 describes the concept of subsystems and subsystem decomposition. Section 6.4
describes system design activities and uses an example to illustrate how these building blocks
can be used together.

6.2 An Overview of System Design

Analysis results in the requirements model described by the following products:

• a set of nonfunctional requirements and constraints, such as maximum response time,
minimum throughput, reliability, operating system platform, and so on

• a use case model, describing the system functionality from the actors’ point of view

• an object model, describing the entities manipulated by the system

• a sequence diagram for each use case, showing the sequence of interactions among
objects participating in the use case.

The analysis model describes the system completely from the actors’ point of view and
serves as the basis of communication between the client and the developers. The analysis model,
however, does not contain information about the internal structure of the system, its hardware

Table 6-1  Mapping of architectural and software engineering concepts.

Architectural concept Software engineering concept

Components Rooms Subsystems

Interfaces Doors Services

Nonfunctional requirements Living area Response time

Functional requirements Residential house Use cases

Costly rework Moving walls Change of subsystem interfaces
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configuration, or more generally, how the system should be realized. System design is the first
step in this direction. System design results in the following products:

• design goals, describing the qualities of the system that developers should optimize

• software architecture, describing the subsystem decomposition in terms of subsystem
responsibilities, dependencies among subsystems, subsystem mapping to hardware,
and major policy decisions such as control flow, access control, and data storage 

• boundary use cases, describing the system configuration, startup, shutdown, and
exception handling issues.

The design goals are derived from the nonfunctional requirements. Design goals guide the
decisions to be made by the developers when trade-offs are needed. The subsystem
decomposition constitutes the bulk of system design. Developers divide the system into
manageable pieces to deal with complexity: each subsystem is assigned to a team and realized
independently. For this to be possible, developers need to address system-wide issues when
decomposing the system. In this chapter, we describe the concept of subsystem decomposition
and discuss examples of generic system decompositions called “architectural styles.” In the next
chapter, we describe how the system decomposition is refined to meet specific design goals.
Figure 6-2 depicts the relationship of system design with other software engineering activities.

Figure 6-2 The activities of system design (UML activity diagram).
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6.3 System Design Concepts

In this section, we describe subsystem decompositions and their properties in more detail. First,
we define the concept of subsystem and its relationship to classes (Section 6.3.1). Next, we look
at the interface of subsystems (Section 6.3.2): subsystems provide services to other subsystems.
A service is a set of related operations that share a common purpose. During system design, we
define the subsystems in terms of the services they provide. Later, during object design, we
define the subsystem interface in terms of the operations it provides. Next, we look at two
properties of subsystems, coupling and cohesion (Section 6.3.3). Coupling measures the
dependencies between two subsystems, whereas cohesion measures the dependencies among
classes within a subsystem. Ideal subsystem decomposition should minimize coupling and
maximize cohesion. Then, we look at layering and partitioning, two techniques for relating
subsystems to each other (Section 6.3.4). Layering allows a system to be organized as a
hierarchy of subsystems, each providing higher-level services to the subsystem above it by using
lower-level services from the subsystems below it. Partitioning organizes subsystems as peers
that mutually provide different services to each other. In Section 6.3.5, we describe a number of
typical software architectures that are found in practice. 

6.3.1 Subsystems and Classes

In Chapter 2, Modeling with UML, we introduced the distinction between application domain
and solution domain. In order to reduce the complexity of the application domain, we identified
smaller parts called “classes” and organized them into packages. Similarly, to reduce the
complexity of the solution domain, we decompose a system into simpler parts, called
“subsystems,” which are made of a number of solution domain classes. A subsystem is a
replaceable part of the system with well-defined interfaces that encapsulates the state and
behavior of its contained classes. A subsystem typically corresponds to the amount of work that
a single developer or a single development team can tackle. By decomposing the system into
relatively independent subsystems, concurrent teams can work on individual subsystems with
minimal communication overhead. In the case of complex subsystems, we recursively apply this
principle and decompose a subsystem into simpler subsystems (see Figure 6-3).

Figure 6-3 Subsystem decomposition (UML class diagram).
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For example, the accident management system we previously described can be
decomposed into a DispatcherInterface subsystem, realizing the user interface for the
Dispatcher; a FieldOfficerInterface subsystem, realizing the user interface for the
FieldOfficer; an IncidentManagement subsystem, responsible for the creation, modification,
and storage of Incidents; a ResourceManagement subsystem, responsible for tracking available
Resources (e.g., FireTrucks and Ambulances); a MapManagement for depicting Maps and
Locations; and a Notification subsystem, implementing the communication between
FieldOfficer terminals and Dispatcher stations. 

This subsystem decomposition is depicted in Figure 6-4 using UML components.
Components are depicted as rectangles with the component icon in the upper right corner.
Dependencies among components can be depicted with dashed stick arrows. In UML,
components can represent both logical and physical components. A logical component
corresponds to a subsystem that has no explicit run-time equivalent, for example, individual
business components that are composed together into a single run-time application logic layer. A
physical component corresponds to a subsystem that as an explicit run-time equivalent, for
example, a database server. 

Several programming languages (e.g., Java and Modula-2) provide constructs for
modeling subsystems (packages in Java, modules in Modula-2). In other languages, such as C or
C++, subsystems are not explicitly modeled, so developers use conventions for grouping classes
(e.g., a subsystem can be represented as a directory containing all the files that implement the
subsystem). Whether or not subsystems are explicitly represented in the programming language,

Figure 6-4 Subsystem decomposition for an accident management system (UML component diagram).
Subsystems are shown as UML components. Dashed arrows indicate dependencies between subsystems.
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developers need to document carefully the subsystem decomposition as subsystems are usually
realized by different teams.

6.3.2 Services and Subsystem Interfaces

A subsystem is characterized by the services it provides to other subsystems. A service is a set
of related operations that share a common purpose. A subsystem providing a notification
service, for example, defines operations to send notices, look up notification channels, and
subscribe and unsubscribe to a channel. The set of operations of a subsystem that are available to
other subsystems form the subsystem interface. The subsystem interface includes the name of
the operations, their parameters, their types, and their return values. System design focuses on
defining the services provided by each subsystem, that is, enumerating the operations, their
parameters, and their high-level behavior. Object design will focus on the application
programmer interface (API), which refines and extends the subsystem interfaces. The API also
includes the type of the parameters and the return value of each operation.

Provided and required interfaces can be depicted in UML with assembly connectors, also
called ball-and-socket connectors. The provided interface is shown as a ball icon (also called
lollipop) with its name next to it. A required interface is shown as a socket icon. The dependency
between two subsystems is shown by connecting the corresponding ball and socket in the
component diagram.

Figure 6-5 depicts the dependencies among the FieldOfficerInterface,
DispatchterInterface and ResourceManagement subsystems. The FieldOfficerInterface
requires the ResourceUpdateService to update the status and location of the FieldOfficer.
The DispatcherInterface requires the ResourceAllocationService to identify available
resources and allocating them to new Incidents. The ResourceManagement subsystem provides
both services. Note that we use the ball-and-socket notation when the subsystem decomposition
is already fairly stable and that our focus has shifted from the identification of subsystems to the
definition of services. During the early stages of system design, we may not have such a clear
understanding of the allocation of functionality to subsystems, in which case we use the
dependency notation (dashed arrows) of Figure 6-4

The definition of a subsystem in terms of the services it provides helps us focus on its
interface as opposed to its implementation. When writing a subsystem interface, one should
strive to minimize the amount of information provided about the implementation. For example, a
subsystem interface should not refer to internal data structures, such as linked lists, arrays, or
hash tables. This allows us to minimize the impact of change when we revise the implementation
of a subsystem. More generally, we want to minimize the impact of change by minimizing the
dependencies among subsystems.

6.3.3 Coupling and Cohesion

Coupling is the number of dependencies between two subsystems. If two subsystems are
loosely coupled, they are relatively independent, so modifications to one of the subsystems will
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have little impact on the other. If two subsystems are strongly coupled, modifications to one
subsystem is likely to have impact on the other. A desirable property of a subsystem
decomposition is that subsystems are as loosely coupled as reasonable. This minimizes the
impact that errors or future changes in one subsystem have on other subsystems.

Consider, for example, the emergency response system depicted in Figure 6-4. During
system design, we decide to store all persistent data (i.e., all data that outlive a single execution
of the system) in a relational database. This leads to an additional subsystem called Database
(Figure 6-6). Initially, we design the interface of the database subsystem so that subsystems that
need to store data simply issue commands in the native query language of the database, such as
SQL. For example, the IncidentManagement subsystem issues SQL queries to store and retrieve
records representing Incidents in the database. This leads to a situation with a high coupling
among the Database subsystem and the three client subsystems (i.e., IncidentManagement,
ResourceManagement, and MapManagement) that need to store and retrieve data, as any change in
the way the data is stored will require changes in the client subsystems. For example, if we
change database vendors we will have to change the subsystems to use a different dialect of the
query language. To reduce the coupling among these four subsystems, we decide to create a new
subsystem, called Storage, which shields the Database from the other subsystems. In this
alternative, the three client subsystems use services provided by the Storage subsystem, which
is then responsible for issuing queries in SQL to the Database subsystem. If we decide to change
database vendors or to use a different storage mechanism (e.g., flat files), we only need to
change the Storage subsystem. Hence, the overall coupling of the subsystem decomposition has
been decreased.

Note that reducing coupling is not an end in itself. In the example above, reducing the
coupling resulted in additional complexity. By reducing coupling, developers can introduce
many unnecessary layers of abstraction that consume development time and processing time.
High coupling is an issue only if it is likely that any subsystem changes.

Cohesion is the number of dependencies within a subsystem. If a subsystem contains
many objects that are related to each other and perform similar tasks, its cohesion is high. If a

Figure 6-5 Services provided by the ResourceManagement subsystem (UML component diagram, ball-
and-socket notation depicting provided and required interfaces).
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Alternative 1: Direct access to the Database subsystem

Alternative 2: Indirect access to the Database through a Storage subsystem

Figure 6-6  Example of reducing the coupling of subsystems (UML component diagram, subsystems
FieldOfficerInterface, DispatcherInterface, and Notification omitted for clarity). Alternative 1
depicts a situation where all subsystems access the database directly, making them vulnerable to changes in
the interface of the Database subsystem. Alternative 2 shields the database with an additional subsystem
(Storage). In this situation, only one subsystem will need to change if there are changes in the interface of
the Database subsystem. The assumption behind this design change is that the Storage subsystem has a
more stable interface than the Database subsystem.

MapManagement

ResourceManagement

IncidentManagement

Database

ResourceManagement

MapManagement

IncidentManagement

Database

Storage



System Design Concepts 233

subsystem contains a number of unrelated objects, its cohesion is low. A desirable property of a
subsystem decomposition is that it leads to subsystems with high cohesion.

For example, consider a decision tracking system for recording design problems,
discussions, alternative evaluations, decisions, and their implementation in terms of tasks
(Figure 6-7). DesignProblem and Option represent the exploration of the design space: we
formulate the system in terms of a number of DesignProblems and document each Option they
explore. The Criterion class represents the qualities in which we are interested. Once we
assessed the explored Options against desirable Criteria, we implement Decisions in terms of
Tasks. Tasks are recursively decomposed into Subtasks small enough to be assigned to
individual developers. We call atomic tasks ActionItems.

The decision tracking system is small enough that we could lump all these classes into one
subsystem called DecisionSubsystem (see Figure 6-7). However, we observe that the class
model can be partitioned into two subgraphs. One, called the RationaleSubsystem, contains the
classes DesignProblem, Option, Criterion, and Decision. The other, called the
PlanningSubsystem, contains Task, Subtask, and ActionItem (see Figure 6-8). Both
subsystems have a higher cohesion than the original DecisionSubsystem. This enables us to
reuse each part independently, as other subsystems need only the planning part or the rationale
part. Moreover, the resulting subsystems are smaller than the original subsystem, enabling us to

Figure 6-7 Decision tracking system (UML component diagram). The DecisionSubsystem has a low
cohesion: The classes Criterion, Option, and DesignProblem have no relationships with Subtask,
ActionItem, and Task.
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assign each of them to a single developer. The coupling between the subsystems is relatively
low, with only one association between the two subsystems.

In general, there is a trade-off between cohesion and coupling. We can often increase
cohesion by decomposing the system into smaller subsystems. However, this also increases
coupling as the number of interfaces increases. A good heuristic is that developers can deal with
7 ± 2 concepts at any one level of abstraction. If there are more than nine subsystems at any
given level of abstraction, or if a subsystem provides more than nine services, you should
consider revising the decomposition. By the same token, the number of layers should not be
more than 7 ± 2. In fact, good systems design can often be accomplished with just three layers. 

Figure 6-8 Alternative subsystem decomposition for the decision tracking system of Figure 6-7 (UML
component diagram, ball-and-socket notation). The cohesion of the RationaleSubsystem and the
PlanningSubsystem is higher than the cohesion of the original DecisionSubsystem. The
RationaleSubsystem and PlanningSubsystem subsystems are also simpler. However, we introduced an
interface for realizing the relationship between Task and Decision.
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6.3.4 Layers and Partitions

A hierarchical decomposition of a system yields an ordered set of layers. A layer is a grouping
of subsystems providing related services, possibly realized using services from another layer.
Layers are ordered in that each layer can depend only on lower level layers and has no
knowledge of the layers above it. The layer that does not depend on any other layer is called the
bottom layer, and the layer that is not used by any other is called the top layer (Figure 6-9). In a
closed architecture, each layer can access only the layer immediately below it. In an open
architecture,1 a layer can also access layers at deeper levels.

An example of a closed architecture is the Reference Model of Open Systems
Interconnection (in short, the OSI model), which is composed of seven layers [Day &
Zimmermann, 1983]. Each layer is responsible for performing a well-defined function. In
addition, each layer provides its services by using services of the layer below (Figure 6-10). 

The Physical layer represents the hardware interface to the network. It is responsible for
transmitting bits over a communication channel. The DataLink layer is responsible for
transmitting data frames without error using the services of the Physical layer. The Network
layer is responsible for transmitting and routing packets within a network. The Transport layer
is responsible for ensuring that the data are reliably transmitted from end to end. The Transport
layer is the interface Unix programmers see when transmitting information over TCP/IP sockets
between two processes. The Session layer is responsible for initializing and authenticating a
connection. The Presentation layer performs data transformation services, such as byte
swapping and encryption. The Application layer is the system you are designing (unless you
are building an operating system or protocol stack). The Application layer can also consist of
layered subsystems. 

Figure 6-9 Subsystem decomposition of a system into three layers (UML object diagram, layers depicted
as packages). A subset from a layered decomposition that includes at least one subsystem from each layer
is called a vertical slice. For example, the subsystems A, B, and E constitute a vertical slice, whereas the
subsystems D and G do not. 

1. In the software engineering community, the term open usually means non-proprietary. We use the term open 
architecture as defined by [Rumbaugh et al., 1991], not to imply non-proprietary architecture.
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Until recently, only the four bottom layers of the OSI model were well standardized. Unix

and many desktop operating systems, for example, provide interfaces to TCP/IP that

implemented the Transport, Network, and Datalink layers. The application developer still

needed to fill the gap between the Transport layer and the Application layer. With the growing

number of distributed applications, this gap motivated the development of middleware such as

CORBA [OMG, 2008] and Java RMI [RMI, 2009]. CORBA and Java RMI allow us to access

remote objects transparently by sending messages to them as messages are sent to local objects,

effectively implementing the Presentation and Session layers (see Figure 6-11).

An example of an open architecture is the Swing user interface toolkit for Java [JFC,

2009]. The lowest layer is provided by the operating system or by a windowing system, such as

X11, and provides basic window management. AWT is an abstract window interface provided by

Java to shield applications from specific window platforms. Swing is a library of user interface

objects that provides a wide range of facilities, from buttons to geometry management. An

Application usually accesses only the Swing interface. However, the Application layer may

Figure 6-10 An example of closed architecture: the OSI model (UML component diagram). The OSI
model decomposes network services into seven layers, each responsible for a different level of abstraction.
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bypass the Swing layer and directly access AWT. In general, the openness of the architecture
allows developers to bypass the higher layers to address performance bottlenecks (Figure 6-12). 

Closed, layered architectures have desirable properties: they lead to low coupling between
subsystems, and subsystems can be integrated and tested incrementally. Each level, however,
introduces a speed and storage overhead that may make it difficult to meet nonfunctional
requirements. Also, adding functionality to the system in later revisions may prove difficult,
especially when the additions were not anticipated. In practice, a system is rarely decomposed
into more than three to five layers.

Another approach to dealing with complexity is to partition the system into peer
subsystems, each responsible for a different class of services. For example, an onboard system
for a car could be decomposed into a travel service that provides real-time directions to the
driver, an individual preferences service that remembers a driver’s seat position and favorite
radio station, and vehicle service that tracks the car’s gas consumption, repairs, and scheduled
maintenance. Each subsystem depends loosely on the others, but can often operate in isolation.

Figure 6-11 An example of closed architecture (UML component diagram). CORBA enables the access
of objects implemented in different languages on different hosts. CORBA effectively implements the
Presentation and Session layers of the OSI stack.
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In general, a subsystem decomposition is the result of both partitioning and layering. We
first partition the system into top-level subsystems, which are responsible for specific
functionality or run on a specific hardware node. Each of the resulting subsystems are, if
complexity justifies it, decomposed into lower- and lower-level layers until they are simple
enough to be implemented by a single developer. Each subsystem adds a certain processing
overhead because of its interface with other systems. Excessive partitioning or layering can
increase complexity.

6.3.5 Architectural Styles

As the complexity of systems increases, the specification of system decomposition is critical. It
is difficult to modify or correct weak decomposition once development has started, as most
subsystem interfaces would have to change. In recognition of the importance of this problem,
the concept of software architecture has emerged. A software architecture includes system
decomposition, global control flow, handling of boundary conditions, and intersubsystem
communication protocols [Shaw & Garlan, 1996]. 

In this section, we describe several architectural styles that can be used as a basis for the
architecture of different systems. This is by no means a systematic or thorough exposition of the
subject. Rather, we aim to provide a few representative examples and refer the reader to the
literature for more details. 

Figure 6-12 An example of open architecture: the Swing user interface library on an X11 platform (UML
component diagram). X11 provides low-level drawing facilities. AWT is the low-level interface provided by
Java to shield programmers from the window system. Swing provides a large number of sophisticated user
interface objects. Some Applications often bypass the Swing layer.
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Repository

In the repository architectural style (see Figure 6-13), subsystems access and modify a
single data structure called the central repository. Subsystems are relatively independent and

interact only through the repository. Control flow can be dictated either by the central repository

(e.g., triggers on the data invoke peripheral systems) or by the subsystems (e.g., independent
flow of control and synchronization through locks in the repository).

Repositories are typically used for database management systems, such as a payroll

system or a bank system. The central location of the data makes it easier to deal with

concurrency and integrity issues between subsystems. Compilers and software development
environments also follow a repository architectural style (Figure 6-14). The different subsystems

of a compiler access and update a central parse tree and a symbol table. Debuggers and syntax

editors access the symbol table as well.

The repository subsystem can also be used for implementing the global control flow. In

the compiler example of Figure 6-14, each individual tool (e.g., the compiler, the debugger, and

the editor) is invoked by the user. The repository only ensures that concurrent accesses are

serialized. Conversely, the repository can be used to invoke the subsystems based on the state of
the central data structure. These systems are called “blackboard systems.” The HEARSAY II

speech understanding system [Erman et al., 1980], one of the first blackboard systems, invoked

tools based on the current state of the blackboard. 

Repositories are well suited for applications with constantly changing, complex data-

processing tasks. Once a central repository is well defined, we can easily add new services in the

form of additional subsystems. The main disadvantage of repository systems is that the central
repository can quickly become a bottleneck, both from a performance aspect and a modifiability

aspect. The coupling between each subsystem and the repository is high, thus making it difficult

to change the repository without having an impact on all subsystems.

Figure 6-13 Repository architectural style (UML component diagram). Every Subsystem depends only
on a central data structure called the Repository. The Repository has no knowledge of the other
Subsystems.
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Model/View/Controller

In the Model/View/Controller (MVC) architectural style (Figure 6-15), subsystems are
classified into three different types: model subsystems maintain domain knowledge, view
subsystems display it to the user, and controller subsystems manage the sequence of
interactions with the user. The model subsystems are developed such that they do not depend on
any view or controller subsystem. Changes in their state are propagated to the view subsystem
via a subscribe/notify protocol. The MVC is a special case of the repository where Model
implements the central data structure and control objects dictate the control flow.

Figure 6-14 An instance of the repository architectural style (UML component diagram). A Compiler
incrementally generates a ParseTree and a SymbolTable that can be used by SourceLevelDebuggers and
SyntaxEditors.

Figure 6-15 Model/View/Controller architectural style (UML class diagram). The Controller gathers
input from the user and sends messages to the Model. The Model maintains the central data structure. The
Views display the Model and are notified (via a subscribe/notify protocol) whenever the Model is changed.
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For example, Figures 6-16 and 6-17 illustrate the sequence of events that occur in an MVC
architectural style. Figure 6-16 displays two views of a file system. The bottom window lists the
content of the Comp-Based Software Engineering folder, including the file
9DesignPatterns2.ppt. The top window displays information about this file. The name of the
file 9DesignPatterns2.ppt appears in three places: in both windows and in the title of the top
window. Assume now that we change the name of the file to 9DesignPatterns.ppt. Figure 6-17
shows the sequence of events: 

1. The InfoView and the FolderView both subscribe for changes to the File models they
display (when they are created).

2. The user types the new name of the file.

3. The Controller, the object responsible for interacting with the user during file name
changes, sends a request to the Model.

4. The Model changes the file name and notifies all subscribers of the change.

5. Both InfoView and FolderView are updated, so the user sees a consistent change.

Figure 6-16 An example of MVC architectural style. The “model” is the filename
9DesignPAtterns2.ppt. One “view” is a window titled CBSE, which displays the contents of a folder
containing the file 9DesignPatterns2.ppt. The other “view” is window called 9DesignPatterns2.ppt
Info, which displays information related to the file. If the file name is changed, both views are updated by
the “controller.”
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The subscription and notification functionality associated with this sequence of events is
usually realized with an Observer design pattern (see Section A.7). The Observer design
pattern allows the Model and the View objects to be further decoupled by removing direct
dependencies from the Model to the View. For more details, the reader is referred to [Gamma et
al., 1994] and to Section A.7. 

The rationale between the separation of Model, View, and Controller is that user
interfaces, i.e., the View and the Controller, are much more often subject to change than is
domain knowledge, i.e., the Model. Moreover, by removing any dependency from the Model on
the View with the subscription/notification protocol, changes in the views (user interfaces) do
not have any effect on the model subsystems. In the example of Figure 6-16, we could add a
Unix-style shell view of the file system without having to modify the file system. We described a
similar decomposition in Chapter 5, Analysis, when we identified entity, boundary, and control
objects. This decomposition is also motivated by the same considerations about change.

MVC is well suited for interactive systems, especially when multiple views of the same
model are needed. MVC can be used for maintaining consistency across distributed data;
however it introduces the same performance bottleneck as for other repository styles.

Client/server

In the client/server architectural style (Figure 6-18), a subsystem, the server, provides
services to instances of other subsystems called the clients, which are responsible for interacting
with the user. The request for a service is usually done via a remote procedure call mechanism or
a common object broker (e.g., CORBA, Java RMI, or HTTP). Control flow in the clients and the
servers is independent except for synchronization to manage requests or to receive results.

Figure 6-17 Sequence of events in the Model/View/Control architectural style (UML communication
diagram).

:Controller

:InfoView

:Model

2:enterNewFileName(file,newName)
3:setName(newName)

:FolderView
1:subscribeToFileEvents(file)
5:getName()

4:notifySubscribedViews(file)

1:subscribeToFileEvents(file)
5:getName()

4:notifySubscribedViews(file)



System Design Concepts 243

An information system with a central database is an example of a client/server
architectural style. The clients are responsible for receiving inputs from the user, performing
range checks, and initiating database transactions when all necessary data are collected. The
server is then responsible for performing the transaction and guaranteeing the integrity of the
data. In this case, a client/server architectural style is a special case of the repository
architectural style in which the central data structure is managed by a process. Client/server
systems, however, are not restricted to a single server. On the World Wide Web, a single client
can easily access data from thousands of different servers (Figure 6-19).

Client/server architectural styles are well suited for distributed systems that manage large
amounts of data.

Peer-to-peer

A peer-to-peer architectural style (see Figure 6-20) is a generalization of the client/
server architectural style in which subsystems can act both as client or as servers, in the sense
that each subsystem can request and provide services. The control flow within each subsystem is
independent from the others except for synchronizations on requests.

An example of a peer-to-peer architectural style is a database that both accepts requests
from the application and notifies to the application whenever certain data are changed

Figure 6-18 Client/server architectural style (UML component diagram). Clients request services from
one or more Servers. The Server has no knowledge of the Client. The client/server architectural style is
a specialization of the repository architectural style.

Figure 6-19 The Web as an instance of the client/server architectural style (UML deployment diagram). 
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(Figure 6-21). Peer-to-peer systems are more difficult to design than client/server systems
because they introduce the possibility of deadlocks and complicate the control flow.

Callbacks are operations that are temporary and customized for a specific purpose. For
example, a DBUser peer in Figure 6-21 can tell the DBMS peer which operation to invoke upon a
change notification. The DBUser then uses the callback operation specified by each DBUser for
notification when a change occurs. Peer-to-peer systems in which a “server” peer invokes
“client” peers only through callbacks are often referred to as client/server systems, even though
this is inaccurate since the “server” can also initiate the control flow.

Three-tier

The three-tier architectural style organizes subsystems into three layers (Figure 6-22):

• The interface layer includes all boundary objects that deal with the user, including
windows, forms, web pages, and so on.

• The application logic layer includes all control and entity objects, realizing the
processing, rule checking, and notification required by the application.

• The storage layer realizes the storage, retrieval, and query of persistent objects.

Figure 6-20 Peer-to-peer architectural style (UML class diagram). Peers can request services from and
provide services to other peers.

Figure 6-21 An example of peer-to-peer architectural style (UML communication diagram). The database
server can both process requests from and send notifications to applications.
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The three-tier architectural style was initially described in the 1970s for information

systems. The storage layer, an analog to the Repository subsystem in the repository

architectural style, can be shared by several different applications operating on the same data. In

turn, the separation between the interface layer and the application logic layer enables the

development or modification of different user interfaces for the same application logic.

Four-tier

The four-tier architectural style is a three-tier architecture in which the Interface layer is

decomposed into a Presentation Client layer and a Presentation Server layer

(Figure 6-23). The Presentation Client layer is located on the user machines, whereas the

Presentation Server layer can be located on one or more servers. The four-tier architecture

enables a wide range of different presentation clients in the application, while reusing some of

the presentation objects across clients. For example, a banking information system can include a

host of different clients, such as a Web browser interface for home users, an Automated Teller

Machine, and an application client for bank employees. Forms shared by all three clients can

then be defined and processed in the Presentation Server layer, thus removing redundancy

across clients.

Pipe and filter

In the pipe and filter architectural style (Figure 6-24), subsystems process data received

from a set of inputs and send results to other subsystems via a set of outputs. The subsystems are

called “filters,” and the associations between the subsystems are called “pipes.” Each filter

knows only the content and the format of the data received on the input pipes, not the filters that

Figure 6-22 Three-tier architectural style (UML component diagram). Objects are organized into three
layers realizing the user interface, the processing, and the storage.
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produced them. Each filter is executed concurrently, and synchronization is accomplished via

the pipes. The pipe and filter architectural style is modifiable: filters can be substituted for others

or reconfigured to achieve a different purpose. 

The best known example of a pipe and filter architectural style is the Unix shell [Ritchie &

Thompson, 1974]. Most filters are written such that they read their input and write their results

on standard pipes. This enables a Unix user to combine them in many different ways.

Figure 6-25 shows an example made of four filters. The output of ps (process status) is fed into

grep (search for a pattern) to remove all the processes that are not owned by a specific user. The

output of grep (i.e., the processes owned by the user) is then sorted by sort and sent to more,

which is a filter that displays its input to a terminal, one screen at a time. 

Pipe and filter styles are suited for systems that apply transformations to streams of data

without intervention by users. They are not suited for systems that require more complex

interactions between components, such as an information management system or an interactive

system.

Figure 6-23 Four-tier architectural style (UML component diagram). The Interface layer of the three-
tier style is split into two layers to enable more variability on the user interface style.

Figure 6-24 Pipe and filter architectural style (UML class diagram). A Filter can have many inputs and
outputs. A Pipe connects one of the outputs of a Filter to one of the inputs of another Filter.
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6.4 System Design Activities: From Objects to Subsystems

System design consists of transforming the analysis model into the design model that takes into
account the nonfunctional requirements described in the requirements analysis document. We
illustrate these activities with an example, MyTrip, a route planning system for car drivers. We
start with the analysis model from MyTrip; then we describe the identification of design goals
(Section 6.4.2) and the design of an initial system decomposition (Section 6.4.3). 

6.4.1 Starting Point: Analysis Model for a Route Planning System

Using MyTrip, a driver can plan a trip from a home computer by contacting a trip-planning
service on the Web (PlanTrip in Figure 6-26). The trip is saved for later retrieval on the server.
The trip-planning service must support more than one driver. 

The driver then goes to the car and starts the trip, while the onboard computer gives
directions based on trip information from the planning service and her current position indicated
by an onboard GPS system (ExecuteTrip in Figure 6-27).

We perform the analysis for the MyTrip system following the techniques outlined in
Chapter 5, Analysis, and obtain the model in Figure 6-28.

Figure 6-25 Unix command line as an instance of the pipe and filter style (UML activity diagram).

Use case name PlanTrip

Flow of events 1. The Driver activates her computer and logs into the trip-planning Web service.
2. The Driver enters constraints for a trip as a sequence of destinations.
3. Based on a database of maps, the planning service computes the shortest way of 

visiting the destinations in the order specified. The result is a sequence of 
segments binding a series of crossings and a list of directions.

4. The Driver can revise the trip by adding or removing destinations. 
5. The Driver saves the planned trip by name in the planning service database for 

later retrieval.

Figure 6-26 PlanTrip use case of the MyTrip system.

% ps auxwww | grep dutoit | sort | more

ps grep sort more

dutoit   19737  0.2  1.6 1908 1500 pts/6    O 15:24:36  0:00 -tcsh
dutoit   19858  0.2  0.7  816  580 pts/6    S 15:38:46  0:00 grep dutoit
dutoit   19859  0.2  0.6  812  540 pts/6    O 15:38:47  0:00 sort
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Use case name ExecuteTrip

Flow of events 1. The Driver starts her car and logs into the onboard route assistant.
2. Upon successful login, the Driver specifies the planning service and the name of 

the trip to be executed.
3. The onboard route assistant obtains the list of destinations, directions, segments, 

and crossings from the planning service. 
4. Given the current position, the route assistant provides the driver with the next set 

of directions.
5. The Driver arrives to destination and shuts down the route assistant.

Figure 6-27 ExecuteTrip use case of the MyTrip system.

Crossing A Crossing is a geographical point where several Segments meet.

Destination A Destination represents a location where the driver wishes to go. 

Direction Given a Crossing and an adjacent Segment, a Direction describes in natural
language how to steer the car onto the given Segment.

Location A Location is the position of the car as known by the onboard GPS system or
the number of turns of the wheels.

PlanningService A PlanningService is a Web server that can supply a trip, linking a number
of destinations in the form of a sequence of Crossings and Segments.

RouteAssistant A RouteAssistant gives Directions to the driver, given the current
Location and upcoming Crossing.

Segment A Segment represents the road between two Crossings.

Trip A Trip is a sequence of Directions between two Destinations.

Figure 6-28  Analysis model for the MyTrip route planning and execution. 

Trip

Location

PlanningService

Segment

Crossing

RouteAssistant

Direction

Destination



System Design Activities: From Objects to Subsystems 249

In addition, during requirements elicitation, our client specified the following
nonfunctional requirements for MyTrip:

6.4.2 Identifying Design Goals

The definition of design goals is the first step of system design. It identifies the qualities that our
system should focus on. Many design goals can be inferred from the nonfunctional requirements
or from the application domain. Others will have to be elicited from the client. It is, however,
necessary to state them explicitly such that every important design decision can be made
consistently following the same set of criteria.

For example, in the light of the nonfunctional requirements for MyTrip described in
Section 6.4.1, we identify reliability and fault tolerance to connectivity loss as design goals. We
then identify security as a design goal, as numerous drivers will have access to the same trip
planning server. We add modifiability as a design goal, as we want to provide the ability for
drivers to select a trip planning service of their choice. The following box summarizes the design
goals we identified.

In general, we can select design goals from a long list of highly desirable qualities. Tables
6-2 through 6-6 list a number of possible design criteria. These criteria are organized into five
groups: performance, dependability, cost, maintenance, and end user criteria. Performance,
dependability, and end user criteria are usually specified in the requirements or inferred from the
application domain. Cost and maintenance criteria are dictated by the customer and the supplier.

Nonfunctional requirements for MyTrip

1. MyTrip is in contact with the PlanningService via a wireless modem. Assume that the wireless 
modem functions properly at the initial destination.

2. Once the trip has been started, MyTrip should give correct directions even if modem fails to maintain 
a connection with the PlanningService.

3. MyTrip should minimize connection time to reduce operation costs.
4. Replanning is possible only if the connection to the PlanningService is possible.
5. The PlanningService can support at least 50 different drivers and 1,000 trips.

Design goals for MyTrip

• Reliability: MyTrip should be reliable [generalization of nonfunctional requirement 2].
• Fault Tolerance: MyTrip should be fault tolerant to loss of connectivity with the routing service 

[rephrased nonfunctional requirement 2].
• Security: MyTrip should be secure, i.e., not allow other drivers or nonauthorized users to access a 

driver’s trips [deduced from application domain].
• Modifiability: MyTrip should be modifiable to use different routing services [anticipation of change 

by developers].
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Performance criteria (Table 6-2) include the speed and space requirements imposed on
the system. Should the system be responsive, or should it accomplish a maximum number of
tasks? Is memory space available for speed optimizations, or should memory be used sparingly?

Dependability criteria (Table 6-3) determine how much effort should be expended in
minimizing system crashes and their consequences. How often can the system crash? How
available to the user should the system be? Should the system tolerate errors and failures? Are
security risks associated with the system environment? Are safety issues associated with system
crashes?

Cost criteria (Table 6-4) include the cost to develop the system, to deploy it, and to
administer it. Note that cost criteria not only include design considerations but managerial ones,
as well. When the system is replacing an older one, the cost of ensuring backward compatibility
or transitioning to the new system has to be taken into account. There are also trade-offs between
different types of costs such as development cost, end user training cost, transition costs, and
maintenance costs. Maintaining backward compatibility with a previous system can add to the
development cost while reducing the transition cost.

Table 6-2  Performance criteria.

Design criterion Definition

Response time How soon is a user request acknowledged after the request has been issued?

Throughput How many tasks can the system accomplish in a fixed period of time?

Memory How much space is required for the system to run?

Table 6-3  Dependability criteria.

Design criterion Definition

Robustness Ability to survive invalid user input

Reliability Difference between specified and observed behavior

Availability Percentage of time that system can be used to accomplish normal tasks

Fault tolerance Ability to operate under erroneous conditions

Security Ability to withstand malicious attacks

Safety Ability to avoid endangering human lives, even in the presence of errors and
failures
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Maintenance criteria (Table 6-5) determine how difficult it is to change the system after
deployment. How easily can new functionality be added? How easily can existing functions be
revised? Can the system be adapted to a different application domain? How much effort will be
required to port the system to a different platform? These criteria are harder to optimize and plan
for, as it is seldom clear how successful the project will be and how long the system will be
operational.

End user criteria (Table 6-6) include qualities that are desirable from a users’ point of
view, but have not yet been covered under the performance and dependability criteria. Is the
software difficult to use and to learn? Can the users accomplish needed tasks on the system?
Often these criteria do not receive much attention, especially when the client contracting the
system is different from its users.

Table 6-4  Cost criteria.

Design criterion Definition

Development cost Cost of developing the initial system 

Deployment cost Cost of installing the system and training the users 

Upgrade cost Cost of translating data from the previous system. This criteria results
in backward compatibility requirements 

Maintenance cost Cost required for bug fixes and enhancements to the system 

Administration cost Cost required to administer the system 

Table 6-5  Maintenance criteria.

Design criterion Definition

Extensibility How easy is it to add functionality or new classes to the system?

Modifiability How easy is it to change the functionality of the system?

Adaptability How easy is it to port the system to different application domains?

Portability How easy is it to port the system to different platforms?

Readability How easy is it to understand the system from reading the code?

Traceability of requirements How easy is it to map the code to specific requirements?
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When defining design goals, only a small subset of these criteria can be simultaneously
taken into account. It is, for example, unrealistic to develop software that is safe, secure, and
cheap. Typically, developers need to prioritize design goals and trade them off against each other
as well as against managerial goals as the project runs behind schedule or over budget. Table 6-7
lists several possible trade-offs. 

Managerial goals can be traded off against technical goals (e.g., delivery time vs.
functionality). Once we have a clear idea of the design goals, we can proceed to design an initial
subsystem decomposition.

Table 6-6  End user criteria.

Design criterion Definition

Utility How well does the system support the work of the user?

Usability How easy is it for the user to use the system?

Table 6-7  Examples of design goal trade-offs. 

Trade-off Rationale

Space vs. speed If the software does not meet response time or throughput requirements,
more memory can be expended to speed up the software (e.g., caching,
more redundancy). If the software does not meet memory space
constraints, data can be compressed at the cost of speed.

Delivery time vs. 
functionality

If development runs behind schedule, a project manager can deliver less
functionality than specified on time, or deliver the full functionality at a
later time. Contract software usually puts more emphasis on functionality,
whereas off-the-shelf software projects put more emphasis on delivery
date.

Delivery time vs. quality If testing runs behind schedule, a project manager can deliver the software
on time with known bugs (and possibly provide a later patch to fix any
serious bugs), or deliver the software later with fewer bugs.

Delivery time vs. 
staffing

If development runs behind schedule, a project manager can add resources
to the project to increase productivity. In most cases, this option is only
available early in the project: adding resources usually decreases
productivity while new personnel are trained or brought up to date. Note
that adding resources will also raise the cost of development.
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6.4.3 Identifying Subsystems

Finding subsystems during system design is similar to finding objects during analysis. For
example, some of the object identification techniques we described in Chapter 5, Analysis, such
as Abbotts’s heuristics, are applicable to subsystem identification. Moreover, subsystem
decomposition is constantly revised whenever new issues are addressed: several subsystems are
merged into one subsystem, a complex subsystem is split into parts, and some subsystems are
added to address new functionality. The first iterations over subsystem decomposition can
introduce drastic changes in the system design model. These are often best handled through
brainstorming.

The initial subsystem decomposition should be derived from the functional requirements.
For example, in the MyTrip system, we identify two major groups of objects: those that are
involved during the PlanTrip use case and those that are involved during the ExecuteTrip use
case. The Trip, Direction, Crossing, Segment, and Destination classes are shared between
both use cases. This set of classes is tightly coupled as it is used as a whole to represent a Trip.
We decide to assign them with PlanningService to the PlanningSubsystem, and the remainder
of the classes are assigned to the RoutingSubsystem (Figure 6-29). This leads to only one
association crossing subsystem boundaries. Note that this subsystem decomposition is a
repository in which the PlanningSubsystem is responsible for the central data structure.

Another heuristic for subsystem identification is to keep functionally related objects
together. A starting point is to assign the participating objects that have been identified in each
use case to the subsystems. Some group of objects, as the Trip group in MyTrip, are shared and
used for communicating information from one subsystem to another. We can either create a new
subsystem to accommodate them or assign them to the subsystem that creates these objects.

Encapsulating subsystems with the Facade design pattern

Subsystem decomposition reduces the complexity of the solution domain by minimizing
coupling among subsystems. The Facade design pattern (see Appendix A.6 and [Gamma et al.,
1994]) allows us to further reduce dependencies between classes by encapsulating a subsystem
with a simple, unified interface. For example, in Figure 6-30, the Compiler class is a façade
hiding the classes CodeGenerator, Optimizer, ParseNode, Parser, and Lexer. The façade
provides access only to the public services offered by the subsystem and hides all other details,
effectively reducing coupling between subsystems. 

Heuristics for grouping objects into subsystems

• Assign objects identified in one use case into the same subsystem.
• Create a dedicated subsystem for objects used for moving data among subsystems.
• Minimize the number of associations crossing subsystem boundaries.
• All objects in the same subsystem should be functionally related.
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PlanningSubsystem The PlanningSubsystem is responsible for constructing a Trip connecting a 
sequence of Destinations. The PlanningSubsystem is also responsible for 
responding to replan requests from RoutingSubsystem.

RoutingSubsystem The RoutingSubsystem is responsible for downloading a Trip from the 
PlanningService and executing it by giving Directions to the driver based 
on its Location.

Figure 6-29 Initial subsystem decomposition for MyTrip (UML class diagram).

Figure 6-30 An example of the Facade design pattern (UML class diagram).
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Subsystems identified during the initial subsystem decomposition often result from
grouping several functionally related classes. These subsystems are good candidates for the
Facade design pattern and should be encapsulated under one class.

6.5 Further Readings

Historically, the discipline of software architecture originated with Dijkstra and Parnas. They
pointed out that the structure of a piece of software is as critical as its ability to compute correct
results. Dijkstra introduced the concept of a layered architecture and discussed its application to
the design of the operating system T.H.E. [Dijkstra, 1968]. Parnas introduced the concept of
information hiding and discussed the criteria that should be used when decomposing a system
[Parnas, 1972].

The Structured Design method [Yourdon & Constantine, 1979] introduced the concepts of
cohesion and coupling metrics to design a software architecture.

Although the need and advantages for software architectures have been well understood
since then, the field of software architecture has continued to evolve for several decades. The
main barriers so far have been a lack of common language to describe architectures and a lack of
analysis methods for comparing architectures and predicting whether they can meet the
specified requirements of the system.

Software Architecture: Perspectives on an Emerging Discipline [Shaw & Garlan, 1996]
and Pattern-Oriented Software Architecture [Buschmann et al., 1996] are the first widely cited
systematic efforts to provide a catalog of architectures. Shaw and Garlan introduced the concept
of architectural styles; Buschmann et al. used architectural patterns as a description language. 

In the 1990s, more case studies in product line engineering provided concrete examples of
the benefits of reusing of software architectures, not only from a technical point of view (design
decisions about structure and components are reused), but also from a management point of
view (team organizations and methods of communication are reused). The Software Engineering
Institute at Carnegie Mellon University has collected, maintained, and developed extensive
material on software architecture and product lines. For example, Software Architecture in
Practice [Bass et al., 2003] and Evaluating Software Architectures [Clements et al., 2002]
describe methods and case studies for selecting and evaluating software architecture. 

Also relevant to software architecture is Applied Software Architecture [Hofmeister,
2000], which focuses on practical industrial applications of software architecture.

6.6 Exercises

6-1 Decomposing a system into subsystems reduces the complexity developers have to deal
with by simplifying the parts and increasing their coherence. Decomposing a system
into simpler parts usually increases a different kind of complexity: simpler parts also
means more parts and more interfaces. If cohesion is the guiding principle driving
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developers to decompose a system into small parts, which competing principle drives
them to keep the total number of parts small?

6-2 In Section 6.4.2, we classified design goals into five categories: performance,
dependability, cost, maintenance, and end user. Assign one or more categories to each
of the following goals:

• Users must be given feedback within one second after they issue any command.

• The TicketDistributor must be able to issue train tickets, even in the event of a
network failure.

• The housing of the TicketDistributor must allow for new buttons to be installed
in case the number of fares increases.

• The AutomatedTellerMachine must withstand brute force attacks (i.e., users
attempting to discover a identification number by systematic trial).

6-3 You are developing a system that stores its data on a Unix file system. You anticipate
that you will port future versions of the system to other operating systems that provide
different file systems. Propose a subsystem decomposition that anticipates this change.

6-4 Older compilers were designed according to a pipe and filter architecture, in which
each stage would transform its input into an intermediate representation passed to the
next stage. Modern development environments, including compilers integrated into
interactive development environments with syntactical text editors and source-level
debuggers, use a repository architecture. Identify the design goals that may have
triggered the shift from pipe and filter to repository architecture.

6-5 Consider the model/view/control example depicted in Figures 6-17 and 6-16

a. Redraw the communication diagram of Figure 6-17 as a sequence diagram.

b. Discuss how the MVC architecture helps or hurts the following design goals:

• Extensibility (e.g., the addition of new types of views)

• Response time (e.g., the time between a user input and the time all views have
been updated)

• Modifiability (e.g., the addition of new attributes in the model)

• Access control (i.e., the ability to ensure that only legitimate users can access
specific parts of the model).

6-6 List design goals that would be difficult to meet when using a closed architecture with
many layers, such as the OSI example depicted in Figure 6-11.

6-7 In many architectures, such as the three- and four-tier architectures (Figures 6-22 and
6-23), the storage of persistent objects is handled by a dedicated layer. In your opinion,
which design goals have lead to this decision?
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7
System Design:
Addressing Design 
Goals

Good, fast, cheap. Pick any two.
—Old software engineering aphorism

During system design, we identify design goals, decompose the system into subsystems, and
refine the subsystem decomposition until all design goals are addressed. In the previous chapter,
we described the concepts of design goals and system decomposition. In this chapter, we
introduce the system design activities that address the design goals. In particular, we examine

• Selection of off-the-shelf and legacy components. Off-the-shelf or legacy components
realize specific subsystems more economically. The initial subsystem decomposition is
adjusted to accommodate them.

• Mapping of subsystem to hardware. When the system is deployed on several nodes,
additional subsystems are required for addressing reliability or performance issues.

• Design of a persistent data management infrastructure. Managing the states that
outlives a single execution of the system has an impact on overall system performance
and leads to the identification of one or more storage subsystems.

• Specification of an access control policy. Shared objects are protected so that user
access to them is controlled. Access control impacts how objects are distributed within
subsystems.

• Design of the global control flow. Determining the sequence of operations impacts the
interface of the subsystems. 

• Handling of boundary conditions. Once all subsystems have been identified, developers
decide on the order in which individual components are started and shutdown.

We then describe the management issues related to system design, such as documentation,
responsibilities, and communication. We conclude this chapter by discussing in more detail
system design issues and trade-offs using the ARENA case study.
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7.1 Introduction: A Redundancy Example

The example above illustrates how architectural decisions were made during the design of
a complex computer system. While some decisions are historical, most are driven by design
goals and nonfunctional requirements. Addressing design goals for software systems entails
different approaches than a hardware system such as the space shuttle. However, the impact is
similar: one design goal is examined at the time, influencing the system decomposition and
resulting in the change of the subsystem decomposition or its interfaces. By the end of system
design, all design goals should have been addressed. Section 7.2 provides a bird’s-eye view of

Redundancy in the Space Shuttle computer system

Unlike previous spacecraft, the space shuttle was designed to be autonomous. Space shuttle missions
would be longer and crews larger than on Apollo or Gemini missions. It was also expected that multiple
missions would be in space at the same time. Hence, the space shuttle would need to tolerate several
failures before aborting the mission, and its design included many redundant features, including a fault-
tolerant computer system responsible for guidance, navigation, and altitude control.

Using redundancy in spacecraft computer systems was not new. The Saturn rocket that launched the
Apollo spacecraft used triple modular redundancy for the guidance system; that is, each of the
components in the computer was tripled. The failure of a single component was detected when it
produced a different output than the other two. A voting component would compare these outputs at all
times and mask single failures. This type of computer was expensive to manufacture and could only
address local single failures. It would not have survived a massive failure, such as the explosion on
Apollo 13. 

The Skylab space station took a different approach. The computer systems were completely duplicated
and located at different ends of the station. When one computer failed, the other would be switched on
to take over. Whereas a slow switch-over was acceptable for a space station (i.e., the space station could
loose some altitude before safety became an issue), it would not be acceptable for the space shuttle,
whose computer system was responsible for high-frequency tasks such as guidance during take-off and
landing.

Hence, the space shuttle needed a computer system that was duplicated at the system level, as in the
Skylab, but that functioned simultaneously so that switch-over could happen in a short time, as in the
Saturn rocket. The initial requirements by NASA were that the Shuttle should be able to experience two
consecutive failures before the mission was aborted. This lead to a system design with five identical
computers running the same software. If two individual computers failed, the last three would constitute
a triple redundancy system for landing. If a third computer failed during the decent, the last two would
be enough to ensure a safe landing.

Due to cost consideration, NASA later decided to lower its requirement to one failure before mission
abort. However, since the procurement for the five computers was already completed and the five
computers had been factored into the design, the fifth computer evolved into a back-up system. While
the quadruple redundancy protects against hardware failures, it does not increase reliability against
software faults, as all four main computers run the same software. The back-up system, however, runs a
simpler version of the software that is only able to guide the shuttle during take-off and landing.
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the activities of system design for addressing design goals. Section 7.3 describes the concept of
UML deployment diagram. Section 7.4 describes system design activities and uses an example
to illustrate how these building blocks can be used together. Section 7.5 describes management
issues related to system design. Section 7.6 discusses these concepts in more detail with the
ARENA case study.

7.2 An Overview of System Design Activities

Design goals guide the decisions to be made by the developers especially when trade-offs are
needed. Developers divide the system into manageable pieces to deal with complexity: each
subsystem is assigned to a team and realized independently. In order for this to be possible,
though, developers need to address system-wide issues when decomposing the system. In
particular, they need to address the following issues:

• Hardware/software mapping: What is the hardware configuration of the system?
Which node is responsible for which functionality? How is communication between
nodes realized? Which services are realized using existing software components? How
are these components encapsulated? Addressing hardware/software mapping issues
often leads to the definition of additional subsystems dedicated to moving data from
one node to another, dealing with concurrency, and reliability issues. Off-the-shelf
components enable developers to realize complex services more economically. User
interface packages and database management systems are prime examples of off-the-
shelf components. Components, however, should be encapsulated to minimize
dependency on a particular component; a competing vendor may offer a better product
in the future, and you want the option to switch.

• Data management: Which data should be persistent? Where should persistent data be
stored? How are they accessed? Persistent data represents a bottleneck in the system on
many different fronts: most functionality in system is concerned with creating or
manipulating persistent data. For this reason, access to the data should be fast and
reliable. If retrieving data is slow, the whole system will be slow. If data corruption is
likely, complete system failure is likely. These issues must be addressed consistently at
the system level. Often, this leads to the selection of a database management system
and of an additional subsystem dedicated to the management of persistent data.

• Access control: Who can access which data? Can access control change dynamically?
How is access control specified and realized? Access control and security are system-
wide issues. The access control must be consistent across the system; in other words,
the policy used to specify who can and cannot access certain data should be the same
across all subsystems.

• Control flow: How does the system sequence operations? Is the system event driven?
Can it handle more than one user interaction at a time? The choice of control flow has
an impact on the interfaces of subsystems. If an event-driven control flow is selected,
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subsystems will provide event handlers. If threads are selected, subsystems must
guarantee mutual exclusion in critical sections. 

• Boundary conditions: How is the system initialized and shut down? How are
exceptional cases handled? System initialization and shutdown often represent much of
the complexity of a system, especially in a distributed environment. Initialization,
shutdown, and exception handling have an impact on the interface of all subsystems.

Figure 7-1 depicts the activities of system design. Each activity addresses one of the issues
we described above. Addressing any one of these issues can lead to changes in subsystem
decomposition and raising new issues. As you will see in this chapter, system design is a highly
iterative activity that likely results in the identification of new subsystems, the modification of
existing subsystems, and system-wide revisions that impact all subsystems.

7.3 Concepts: UML Deployment Diagrams

UML deployment diagrams are used to depict the relationship among run-time components
and nodes. Components are self-contained entities that provide services to other components or
actors. A Web server, for example, is a component that provides services to Web browsers. A
Web browser such as Safari is a component that provides services to a user. A node is a physical
device or an execution environment in which components are executed. A system is composed

Figure 7-1 The activities of system design (UML activity diagram).
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of interacting run-time components that can be distributed among several nodes. Furthermore a
node can contain another node, for example, a device can contain an execution environment.

In UML deployment diagrams, nodes are represented by boxes containing component
icons. Nodes can be stereotyped to denote physical devices or execution environments.
Communication paths between nodes are represented by solid lines. The protocol used by two
nodes to communicate can be indicated with a stereotype on the communication path. Figure 7-2
depicts an example of a deployment diagram with two Web browsers accessing a Web server.
The Web server in turns accesses a database server. We can see from the diagram that the Web
browsers do not directly access the database at any time.

The deployment diagram in Figure 7-2 focuses on the allocation of components to nodes
and provides a high-level view of each component. Components can be refined to include
information about the interfaces they provide and the classes they contain. Figure 7-3 illustrates
the WebServer component and its containing classes.

Figure 7-2 A UML deployment diagram representing the allocation of components to different nodes.
Web browsers on PCs and Macs can access a WebServer that provides information from a Database.

Figure 7-3 Refined view of the WebServer component (UML component diagram). WebServer provides
an http interface and requires a jdbc interface. The http interface is realized by the HttpService class. 
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7.4 System Design Activities: Addressing Design Goals

In this section, we describe the activities needed to ensure that subsystem decomposition
addresses all the nonfunctional requirements and can account for any constraints during the
implementation phase. In Section 6.4, we identified a set of design goals and designed an initial
subsystem decomposition for MyTrip. Here, we refine the subsystem decomposition by

• Mapping Subsystems to Processors and Components (Section 7.4.1)
• Identifying and Storing Persistent Data (Section 7.4.2)
• Providing Access Control (Section 7.4.3)
• Designing the Global Control Flow (Section 7.4.4)
• Identifying Services (Section 7.4.5)
• Identifying Boundary Conditions (Section 7.4.6)
• Reviewing the System Design Model (Section 7.4.7).

7.4.1 Mapping Subsystems to Processors and Components

Selecting a hardware configuration and a platform 

Many systems run on more than one computer and depend on access to an intranet or to
the Internet. The use of multiple computers can address high-performance needs and
interconnect multiple distributed users. Consequently, we need to examine carefully the
allocation of subsystems to computers and the design of the infrastructure for supporting
communication between subsystems. These computers are modeled as nodes in UML
deployment diagrams. Because the hardware mapping activity has significant impact on the
performance and complexity of the system, we perform it early in system design.

Selecting a hardware configuration also includes selecting a virtual machine onto which
the system should be built. The virtual machine includes the operating system and any software
components that are needed, such as a database management system or a communication
package. The selection of a virtual machine reduces the distance between the system and the
hardware platform on which it will run. The more functionality the components provide, the less
development work is involved. The selection of the virtual machine, however, may be
constrained by a client who acquires hardware before the start of the project. The selection of a
virtual machine may also be constrained by cost considerations: it can be difficult to estimate
whether building a component costs more than buying it.

In MyTrip, we deduce from the requirements that PlanningSubsystem and
RoutingSubsystem run on two different nodes: the former is a Web-based service on an Internet
host, the latter runs on the onboard computer. Figure 7-4 illustrates the hardware allocation for
MyTrip with two devices called :OnBoardComputer and :WebHost, and an execution
environment called :Apache.

We select a Unix machine as the virtual machine for the :WebServer, and the Web
browsers Safari and Internet Explorer as the virtual machines for the :OnBoardComputer.
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Allocating objects and subsystems to nodes

Once the hardware configuration has been defined and the virtual machines selected,
objects and subsystems are assigned to nodes. This often triggers the identification of new
objects and subsystems for transporting data among the nodes.

In the MyTrip system, both RoutingSubsystem and PlanningSubsystem share the objects
Trip, Destination, Crossing, Segment, and Direction. Instances of these classes need to
communicate via a wireless modem using some communication protocol. We create a new
subsystem to support this communication: CommunicationSubsystem, a subsystem located on
both nodes for managing the communication between them. 

We also notice that only segments constituting the planned trip are stored in
RoutingSubsystem. Adjacent segments not part of the trip are stored only in the
PlanningSubsystem. To take this into account, we need objects in the RoutingSubsystem that
can act as surrogates to Segments and Trips in the PlanningSubsystem. An object that acts on
the behalf of another one is called a “proxy.” We therefore create two new classes,
SegmentProxy and TripProxy, and make them part of the RoutingSubsystem. These proxies are
examples of the Proxy design pattern (see Appendix A.8 and [Gamma et al., 1994]).

In case of replanning by the driver, this class will transparently request the
CommunicationSubsystem to retrieve the information associated with its corresponding
Segments on the PlanningSubsystem. Finally, the CommunicationSubsystem is used for
transferring a complete trip from PlanningSubsystem to RouteAssistant. The revised design
model and the additional class descriptions are depicted in Figure 7-5.

In general, allocating subsystems to hardware nodes enables us to distribute functionality
and processing power where it is most needed. Unfortunately, it also introduces issues related to
storing, transferring, replicating, and synchronizing data among subsystems. For this reason,
developers also select the components they will use for developing the system.

Figure 7-4 Allocation of MyTrip subsystems to devices and execution environments (UML deployment
diagram). RoutingSubsystem runs on the OnBoardComputer; PlanningSubsystem runs on an Apache
server.
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7.4.2 Identifying and Storing Persistent Data

Persistent data outlive a single execution of the system. For example, at the end of the day, an
author saves his work into a file on a word processor. The file can then be reopened later. The
word processor need not run for the file to exist. Similarly, information related to employees,
their employment status, and their paychecks live in a database management system. This allows
all the programs that operate on employee data to do so consistently. Moreover, storing data in a
database enables the system to perform complex queries on a large data set (e.g., the records of
several thousand employees).

Where and how data is stored in the system affects system decomposition. In some cases,
for example, in a repository architectural style (see Section 6.3.5), a subsystem can be
completely dedicated to the storage of data. The selection of a specific database management
system can also have implications on the overall control strategy and concurrency management.

For example, in MyTrip, we decide to store the current Trip in a file on a removable disk
to allow the recovery of the Trip in case the driver shuts off the car before reaching the final

CommunicationSubsystem The CommunicationSubsystem is responsible for transporting objects
from the PlanningSubsystem to the RoutingSubsystem.

Connection A Connection represents an active link between the Planning–
Subsystem and the RoutingSubsystem. A Connection object handles
exceptional cases associated with loss of network services.

Message A Message represents a Trip and its related Destinations, Segments,
Crossings, and Directions, encoded for transport.

Figure 7-5  Revised design model for MyTrip (UML component diagram). 
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Destination. Using a file is the simplest and most efficient solution in this case, given that the
RoutingSubsystem will only store complete Trips to the file before shutdown and load the file
at start-up. In the PlanningSubsystem, however, the Trips will be stored in a database. This
subsystem can then be used to manage all Trips for many drivers, as well as the maps needed to
generate the Trips. Using a database for this subsystem allows us to perform complex queries
on these data. We add the TripFileStoreSubsystem and the MapDBStoreSubsystem subsystems
to MyTrip to reflect these decisions, as illustrated in Figure 7-6.

Identifying persistent objects

First, we identify which data must be persistent. The entity objects identified during
analysis are obvious candidates for persistency. In MyTrip, Trips and their related classes
(Crossing, Destination, PlanningService, and Segment) must be stored. Note that not all
entity objects must be persistent. For example, Location and Direction are constantly
recomputed as the car moves. Persistent objects are not limited to entity objects, however. In a
multi-user system, information related to users (e.g., Drivers) is persistent, as well as some
attributes of the boundary objects (e.g., window positions, user interface preferences, state of
long-running control objects). In general, we can identify persistent objects by examining all the
classes that must survive system shutdown, either in case of a controlled shutdown or an
unexpected crash. The system will then restore these long-lived objects by retrieving their

TripFileStoreSubsystem The TripFileStoreSubsystem is responsible for storing trips in files
on the onboard computer. Because this functionality is only used for
storing trips when the car shuts down, this subsystem only supports the
fast storage and loading of whole trips.

MapDBStoreSubsystem The MapDBStoreSubsystem is responsible for storing maps and trips in
a database for the PlanningSubsystem. This subsystem supports
multiple concurrent Drivers and planning agents.

Figure 7-6  Subsystem decomposition of MyTrip after deciding on the issue of data stores (UML
component diagram).
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attributes from storage during system initialization or on demand as the persistent objects are
needed.

Selecting a storage management strategy

Once all persistent objects are identified, we need to decide how these objects should be
stored. The decision for storage management is more complex and is usually dictated by
nonfunctional requirements: Should the objects be retrieved quickly? Must the system perform
complex queries to retrieve these objects? Do objects require a lot of memory or disk space? In
general, there are currently three options for storage management:

• Flat files. Files are the storage abstractions provided by operating systems. The
application stores its data as a sequence of bytes and defines how and when data should
be retrieved. The file abstraction is relatively low level and enables the application to
perform a variety of size and speed optimizations. Files, however, require the
application to take care of many issues, such as concurrent access and loss of data in
case of system crash.

• Relational database. A relational database provides data abstraction at a higher level
than flat files. Data are stored in tables that comply with a predefined type called a
schema. Each column in the table represents an attribute. Each row represents a data
item as a tuple of attribute values. Several tuples in different tables are used to represent
the attributes of an individual object. Mapping complex object models to a relational
schema is challenging. Specialized methods, such as [Blaha & Premerlani, 1998],
provide a systematic way of performing this mapping. Relational databases also
provide services for concurrency management, access control, and crash recovery.
Relational databases have been used for a while and are a mature technology. Although
scalable and ideal for large data sets, they are relatively slow for small data sets and for
unstructured data (e.g., images, natural language text).

• Object-oriented database. An object-oriented database provides services similar to a
relational database. Unlike a relational database, it stores data as objects and
associations. In addition to providing a higher level of abstraction (and thus reducing
the need to translate between objects and storage entities), object-oriented databases
provide developers with inheritance and abstract data types. Object-oriented databases
significantly reduce the time for the initial development of the storage subsystem.
However, they are slower than relational databases for typical queries and are more
difficult to tune. 

Figure 7-7 summarizes trade-offs when selecting a storage management system. Note that
within a complex system, hybrid solutions mixing flat files and a database management system
can be used for different sets of persistent objects. In Chapter 10, Mapping Models to Code, we
examine how persistent objects are mapped into database tables and flat files. 
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7.4.3 Providing Access Control 

In multi-user systems, different actors have access to different functionality and data. For
example, an everyday actor may only access the data it creates, whereas a system administrator
actor may have unlimited access to system data and to other users’ data. During analysis, we
modeled these distinctions by associating different use cases to different actors. During system
design, we model access by determining which objects are shared among actors, and by defining
how actors can control access. Depending on the security requirements of the system, we also
define how actors are authenticated to the system (i.e., how actors prove to the system who they
are) and how selected data in the system should be encrypted. 

For example, in MyTrip, storing maps and Trips for many drivers in the same database
introduces security issues. We must ensure that Trips are sent only to the driver who created
them. This is consistent with the security design goal we defined in Section 6.4.2 for MyTrip.
Consequently, we model a driver with the Driver class and associate it with the Trip class. The
PlanningSubsystem also becomes responsible for authenticating Drivers before sending Trips.
Finally, we decide to encrypt the communication traffic between the RoutingSubsystem and the
PlanningSubsystem. This will be done by the CommunicationSubsystem. The descriptions for
the Driver class and the revised descriptions for the PlanningSubsystem and the
CommunicationSubsystem are displayed in Table 7-1. The revisions to the design model are
indicated in italics.

Trade-off between flat files, relational databases, and object-oriented databases

When should you choose flat files?

• Voluminous data (e.g., images)
• Temporary data (e.g., core file)
• Low information density (e.g., archival files, history logs)

When should you choose a relational or an object-oriented database?

• Concurrent accesses
• Access at finer levels of detail
• Multiple platforms or applications for the same data

When should you choose a relational database?

• Complex queries over attributes
• Large data set

When should you choose an object-oriented database?

• Extensive use of associations to retrieve data
• Medium-sized data set
• Irregular associations among objects

Figure 7-7 Trade-off between files and databases for storage management.
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Defining access control for a multi-user system is usually more complex than in MyTrip.
In general, we need to define for each actor which operations they can access on each shared
object. For example, a bank teller may post credits and debits up to a predefined amount. If the
transaction exceeds the predefined amount, a manager must approve the transaction. Managers
can examine the branch statistics; but cannot access the statistics of other branches. Analysts can
access information across all branches of the corporation, but cannot post transactions on
individual accounts. We model access on classes with an access matrix. The rows of the matrix
represent the actors of the system. The columns represent classes whose access we control. An
entry (class, actor) in the access matrix is called an access right and lists the operations
(e.g., postSmallDebit(), postLargeDebit(), examineGlobalStats()) that can be executed on
instances of the class by the actor. Table 7-2 depicts the access matrix for our bank.

We can represent the access matrix using one of three different approaches: global access
table, access control list, and capabilities.

• A global access table represents explicitly every cell in the matrix as a (actor,class,
operation) tuple. Determining if an actor has access to a specific object requires
looking up the corresponding tuple. If no such tuple is found, access is denied.

• An access control list associates a list of (actor,operation) pairs with each class to
be accessed. Empty cells are discarded. Every time an object is accessed, its access list
is checked for the corresponding actor and operation. An example of an access control
list is the guest list for a party. A butler checks the arriving guests by comparing their
names against names on the guest list. If there is a match, the guests can enter;
otherwise, they are turned away.

Table 7-1   Revisions to the design model stemming from the decision to authenticate Drivers and 
encrypt communication traffic. The text added to the model is in italics.

Communication

Subsystem
The CommunicationSubsystem is responsible for transporting Trips from the 
PlanningSubsystem to the RoutingSubsystem. The CommunicationSubsystem
uses the Driver associated with the Trip being transported for selecting a key and 
encrypting the communication traffic.

Planning

Subsystem
The PlanningSubsystem is responsible for constructing a Trip connecting a 
sequence of Destinations. The PlanningSubsystem is also responsible for 
responding to replan requests from RoutingSubsystem. Prior to processing any 
requests, the PlanningSubsystem authenticates the Driver from the 
RoutingSubsystem. The authenticated Driver is used to determine which Trips
can be sent to the corresponding RoutingSubsystem.

Driver A Driver represents an authenticated user. It is used by the 
CommunicationSubsystem to remember keys associated with a user and by the 
PlanningSubsystem to associate Trips with users.
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• A capability associates a (class,operation) pair with an actor. A capability allows
an actor access to an object of the class described in the capability. Denying a capability
is equivalent to denying access. An example of a capability is an invitation card for a
party. In this case, the butler checks if the arriving guests hold an invitation for the
party. If the invitation is valid, the guests are admitted; otherwise, they are turned away.
No other checks are necessary.

The representation of the access matrix is also a performance issue. Global access tables
require a lot of space. Access control lists make it faster to answer the question, “Who has access
to this object?”, whereas capability lists make it faster to answer the question, “Which objects
has this actor access to?” 

Each row in the global access matrix represents a different access view of the classes listed
in the columns. All of these access views should be consistent. Usually, however, access views
are implemented by defining a subclass for each different type of (actor,operation) tuple. For
example, in our banking system, we would implement an AccountViewedByTeller and
AccountViewedByManager class as subclasses of Account. Only the appropriate classes are
available to the corresponding actor. For example, the Analyst client software would not include
an Account class, because the Analyst has no access to any operation in this class. This reduces
the risk that an error in the system results in the possibility of unauthorized access.

Often, the number of actors and the number of protected objects are too large for either the
capability or the access control list representations. In such cases, rules can be used as a compact
representation of the global access matrix. For example, firewalls protect services located on
Intranet Hosts from other hosts on the Internet. Based on the source host and port, destination
host and port, and packet size, the firewall allows or denies packets to reach their destination. 

Table 7-2  Access matrix for a banking system. Tellers can perform small transactions and inquire 
balances. Managers can perform larger transactions and access branch statistics in addition to the 
operations accessible to the Tellers. Analysts can access statistics for all branches, but cannot perform 
operations at the account level.

Objects
Actors

Corporation LocalBranch Account

Teller postSmallDebit()
postSmallCredit()
examineBalance()

Manager examineBranchStats() postSmallDebit()
postSmallCredit()
postLargeDebit()
postLargeCredit()
examineBalance()
examineHistory()

Analyst examineGlobalStats() examineBranchStats()
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As there are potentially many different combinations of source and destination hosts and
ports, firewall access is specified in terms of a list of rules. For a given packet, the list is searched
sequentially until a matching rule is found. The action of the matching rule then dictates whether
the current packet should be filtered or not. For completeness, the last rule of the list matches
any packet and has a deny action, thus filtering out packets that do not match any of the other
rules. Table 7-3 depicts an example list of rules for the firewall depicted in Figure 7-8. The first
two rules allow any host (located in the internet or in the intranet) to access the http service on
the Web Server and to deliver mail to the Mail Server. The next two rules allow Intranet hosts
to update the pages of the Web Server and to retrieve mail from the Mail Server. Consequently,
since these are the last two rules that allow packets through, all Internet hosts are denied access
to modify web pages on the Web Server, read mail from the Mail Server, or any other service on
any of the Intranet hosts. For readability and robustness purposes, these can also have been
specified with deny rules (rows 5–7 in Table 7-3).

When the number of actors and objects is large, a rule-based representation is more
compact than either access control lists or capabilities. Moreover, a small set of rules is more
readable, and hence, more easily proofed by a human reader, which is a critical aspect when
setting up a secure environment. 

An access matrix only represents static access control. This means that access rights can
be modeled as attributes of the objects of the system. In the bank information system example,

Figure 7-8 Packet filtering firewall: a filter, located at the router, allows or denies individual packets
based on header information, such as source and destination.

Intranet host

Firewall

Web Server

Internet host

Internet

Mail Server



System Design Activities: Addressing Design Goals 273

consider a broker actor who is assigned a set of portfolios. By policy, a broker cannot access
portfolios managed by another broker. In this case, we need to model access rights dynamically
in the system, and, hence, this type of access is called dynamic access control. For example,
Figure 7-9 shows how this access can be implemented with a protection Proxy design pattern
(Appendix A.8, [Gamma et al., 1994]). For each Portfolio, we create a PortfolioProxy to
protect the Portfolio and check for access. An Access association between a legitimate Broker
and a PortfolioProxy indicates which Portfolio the Broker has access to. To access a
Portfolio, the Broker sends a message to the corresponding PortfolioProxy. The
PortfolioProxy first checks if the invoking Broker has the appropriate association with the
PortfolioProxy. If access is granted, the PortfolioProxy delegates the message to the
Portfolio. Otherwise, the operation fails.

In both static and dynamic access control, we assume that we know the actor: either the
user behind the keyboard or the calling subsystem. This process of verifying the association
between the identity of the user or subsystem and the system is called authentication. A widely
used authentication mechanism, for example, is for the user to specify a user name, known by
everybody, and a corresponding password, only known to the system and stored in an access
control list. The system protects its users’ passwords by encrypting them before storing or
transmitting them. If only a single user knows this user name–password combination, then we
can assume that the user behind the keyboard is legitimate. Although password authentication
can be made secure with current technology, it suffers from many usability disadvantages: users
choose passwords that are easy to remember and, thus, easy to guess. They also tend to write
their password on notes that they keep close to their monitor, and thus, visible to many other
users, authorized or not. Fortunately, other, more secure authentication mechanisms are

Table 7-3  Simplified example of packet filtering rules for firewall of Figure 7-8.

Source Host Destination Host Destination Port Action

anya Web Server http allow

any Mail Server smtp allow

Intranet host Web Server rsync allow

Intranet host Mail Server pop allow

Internet host Web Server rsync deny

Internet host Mail Server pop deny

Internet host Intranet host any deny

any any any deny

a. any means any one of Intranet host, Internet host, Web Server, or Mail Server.
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available. For example, a smart card can be used in conjunction with a password: an intruder
would need both the smart card and the password to gain access to the system. Better, we can
use a biometric sensor for analyzing patterns of blood vessels in a person’s fingers or eyes. An
intruder would then need the physical presence of the legitimate user to gain access to the
system, which is much more difficult than just stealing a smart card. 

In an environment where resources are shared among multiple users, authentication is
usually not sufficient. In the case of a network, for example, it is relatively easy for an intruder to
find tools to snoop the network traffic, including packets generated by other users (see
Figure 7-10). Worse, protocols such as TCP/IP were not designed with security in mind: an
intruder can forge packets such that they appear as if they were coming from legitimate users. 

Encryption is used to prevent such unauthorized access. Using an encryption algorithm,
we can translate a message, called “plaintext,” into an encrypted message, called a “ciphertext,”
such that even if intercepted, it cannot be understood. Only the receiver has sufficient knowledge
to correctly decrypt the message, that is, to reverse the original process. The encryption process
is parameterized by a “key,” such that the method of encryption and decryption can be switched
quickly in case the intruder manages to obtain sufficient knowledge to decrypt the message.

Secure authentication and encryption are fundamentally difficult problems. You should
always select one or more off-the-shelf algorithms or packages instead of designing your own
(unless you are in the business of building such packages). Many such packages are based on
public standards that are widely reviewed by academia and the industry, thus ensuring a
relatively high level of reliability and security. 

Once authentication and encryption are provided, application-specific access control can
be more easily implemented on top of these building blocks. In all cases, addressing security

Figure 7-9 Dynamic access implemented with a protection Proxy. The Access association class contains
a set of operations that a Broker can use to access a Portfolio. Every operation in the PortfolioProxy
first checks with the isAccessible() operation if the invoking Broker has legitimate access. Once access
has been granted, PortfolioProxy delegates the operation to the actual Portfolio object. One Access
association can be used to control access to many Portfolios.
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issues is a difficult topic. When addressing these issues, developers should record their

assumptions and describe the intruder scenarios they are considering. When several alternatives

are explored, developers should state the design problems they are attempting to solve and

record the results of the evaluation. We describe in the next chapter how to do this systematically

using issue modeling. 

7.4.4 Designing the Global Control Flow

Control flow is the sequencing of actions in a system. In object-oriented systems, sequencing

actions includes deciding which operations should be executed and in which order. These

decisions are based on external events generated by an actor or on the passage of time.

Control flow is a design problem. During analysis control flow is not an issue, because we

assume that all objects are running simultaneously executing operations any time they need to.

During system design, we need to take into account that not every object has the luxury of

running on its own processor. There are three possible control flow mechanisms:

• Procedure-driven control. Operations wait for input whenever they need data from an

actor. This kind of control flow is mostly used in legacy systems and systems written in

procedural languages. It introduces difficulties when used with object-oriented

languages. As the sequencing of operations is distributed among a large set of objects,

it becomes increasingly difficult to determine the order of inputs by looking at the code

(Figure 7-11).

Figure 7-10 Passive attack. Given current technology, a passive intruder can listen to all network traffic.
To prevent this kind of attack, encryption makes the information in transit difficult to understand.
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• Event-driven control. A main loop waits for an external event. Whenever an event

becomes available, it is dispatched to the appropriate object, based on information

associated with the event. This kind of control flow has the advantage of leading to a

simpler structure and to centralizing all input in the main loop. However, it makes the

implementation of multi-step sequences more difficult to implement (Figure 7-12).

• Threads. Threads are the concurrent variation of procedure-driven control: The system

can create an arbitrary number of threads, each responding to a different event. If a

thread needs additional data, it waits for input from a specific actor. This kind of

control flow is the most intuitive of the three mechanisms. However, debugging

threaded software requires good tools: preemptive thread schedulers introduce

nondeterminism and, thus, make testing harder (Figure 7-13).

Stream in, out;
String userid, passwd;

/* Initialization omitted */
out.println(“Login:”);
in.readln(userid);
out.println(“Password:”);
in.readln(passwd);
if (!security.check(userid, passwd)) {

out.println(“Login failed.”);
system.exit(-1);

}
/* ...*/

Figure 7-11 An example of procedure driven control (Java). The code prints out messages and waits for
input from the user.

Iterator subscribers, eventStream;
Subscriber subscriber;
Event event;
EventStream eventStream;
/* ... */
while (eventStream.hasNext()) {

event = eventStream.next();
subscribers = dispatchInfo.getSubscribers(event);
while (subscribers.hasNext()) {

subscriber = subscribers.next()) {
subscriber.process(event);

}
}
/* ... */

Figure 7-12 An example of main loop for event-driven control (Java). An event is taken from an
eventStream and sent to objects interested in it.
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Procedure-driven control is useful for testing subsystems. A driver makes specific calls to
methods offered by the subsystem. For the control flow of the final system, though, procedure-
driven control should be avoided. 

The trade-off between event-driven control and threads is more complicated. Event-driven
control is more mature than threads. Modern languages have only recently started to provide
support for thread programming. As more debugging tools become available and experience is
accumulated, developing thread-based systems will become easier. Also, many user interface
packages supply the infrastructure for dispatching events and impose this kind of control flow on
the design. Although threads are more intuitive, they currently introduce many problems during
debugging and testing. Until more mature tools and infrastructures are available for developing
with threads, event-driven control flow is preferred.

Once a control flow mechanism is selected, we can realize it with a set of one or more
control objects. The role of control objects is to record external events, store temporary states
about them, and issue the right sequence of operation calls on the boundary and entity objects
associated with the external event. Localizing control flow decisions for a use case in a single
object not only results in more understandable code, but it also makes the system more resilient
to changes in control flow implementation.

7.4.5 Identifying Services

Until this point, we have examined the key system design decisions that impact the subsystem
decomposition. We have now identified the main subsystems and we have a rough idea of how to
allocate responsibilities to each subsystem. In this activity, we refine the subsystem
decomposition by identifying the services provided by each subsystems. We review each
dependency between subsystems and define an interface for each service we identified (depicted
in UML by a lollipop). In this activity, we name the identified services. During object design, we
specify each service precisely in terms of operations, parameters, and constraints (see Chapter 9,
Object Design: Specifying Interfaces).

Thread thread;
Event event;
EventHandler eventHandler;
boolean done;
/* ...*/
while (!done) {

event = eventStream.getNextEvent();
eventHandler = new EventHandler(event)
thread = new Thread(eventHandler);
thread.start();

}
/* ...*/

Figure 7-13 An example of event processing with threads (Java). eventHandler is an object dedicated to
handling event. It implements the run() operation, which is invoked when thread is started.
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By focusing on dependencies between subsystems, we refine the subsystem
responsibilities, we find omissions in our decomposition, and we validate the current software
architecture. By focusing on services (as opposed to attributes or operations), we remain at the
architectural abstraction level, allowing us to reassign responsibilities between subsystems,
without changing many modeling elements.

For example, let us focus on the interfaces of the CommunicationSubsystem of MyTrip.
The responsibility of the CommunicationSubsystem is to transport trips from the
PlanningSubsystem to the RoutingSubsystem. The RoutingSubsystem initiates the connection,
as the PlanningSubsystem is a server that is always available, while the RoutingSubsystem runs
only while the car is powered. This asymmetry leads us to define three interfaces (Figure 7-14):

• ConnectionManager allows a subsystem to register with the CommunicationSubsystem,
to authenticate, find other nodes, and initiate and close connections.

• TripRequester allows a subsystem to request a list of available trips and download
selected trips. 

• TripProvider allows a subsystem to provide a list of trips that are available for the
specified car driver and respond to specific trip requests.  

While we have not yet specified any operations of the CommunicationSubsystem, naming
services provides us with enough detail for identifying missing functionality and discussing
design trade-offs. For example:

Figure 7-14 Refining the subsystem decompositions by identifying subsystem services (UML component
diagram). The CommunicationSubsystem provides three services for managing connections, uploading
trips, and downloading trips.
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• Should the RoutingSubsystem be able to provide data (e.g., average speed on current
trip leg, location of traffic jam) back to the PlanningSubsystem in a future use case? 

• Should the CommunicationSubsystem only deal with entire trips or should provide the
ability to send trips in multiple packages?

These questions lead us to further design decisions. We add service to the
CommunicationSubsystem for returning real-time data to the PlanningSubsystem. We can
structure the interface of the CommunicationSubsystem so that we could support either
downloading policy.

Note that, by convention, we use noun phrases to name services (e.g., TripRequester), as
they correspond to an interface including both attributes and operations. Operations provided by
the interface are named with verb phrases starting with a lower case (e.g, requestTrip()).
Attributes defined by the interface are named with noun phrases starting with a lower case (e.g.,
connectionStatus).

Once we reviewed the dependencies among subsystems and identified corresponding
services, we have a concrete understanding of the subsystem responsibilities for the steady state.
We are now ready to examine boundary cases.

7.4.6 Identifying Boundary Conditions

In previous sections, we dealt with designing and refining the system decomposition. We now
have a better idea of how to decompose the system, how to distribute use cases among
subsystems, where to store data, and how to achieve access control and ensure security. We still
need to examine the boundary conditions of the system—that is, to decide how the system is
started, initialized, and shut down—and we need to define how we deal with major failures such
as data corruption and network outages, whether they are caused by a software error or a power
outage. Uses cases dealing with these conditions are called boundary use cases.

For example, we now have a good idea of how MyTrip should work in steady state. We
have, however, not yet addressed how MyTrip is initialized. For example, how are maps loaded
into the PlanningService? How is MyTrip installed in the car? How does MyTrip know which
PlanningService to connect to? How are drivers added to the PlanningService? We quickly
discover use cases that have not been specified. 

It is common that boundary use cases are not specified during analysis or that they are
treated separately from the common use cases. For example, many system administration
functions can be inferred from the everyday user requirements (registering and deleting users,
managing access control), whereas, many other functions are consequences of design decisions
(cache sizes, location of database server, location of backup server) and not of requirement
decisions. In general, we identify boundary use cases by examining each subsystem and each
persistent object:
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• Configuration. For each persistent object, we examine in which use cases it is created
or destroyed (or archived). For objects that are not created or destroyed in any of the
common use cases (e.g., Maps in the MyTrip system), we add a use case invoked by a
system administrator (e.g., ManageMaps in the MyTrip system).

• Start-up and shutdown. For each component (e.g., a WebServer), we add three use
cases to start, shutdown, and configure the component. Note that a single use case can
manage several tightly coupled components.

• Exception handling. For each type of component failure (e.g., network outage), we
decide how the system should react (e.g., inform users of the failure). We document
each of these decisions with an exceptional use case that extends the relevant common
uses cases identified during requirements elicitation. Note that, when tolerating the
effects of a failure, the handling of an exceptional condition can lead to changing the
system design instead of adding an exceptional use case. For example, the
RouteAssistant can completely download the Trip onto the car before the start of the
trip.

In general, an exception is an event or error that occurs during the execution of the
system. Exceptions are caused by three different sources:

• A hardware failure. Hardware ages and fails. A hard disk crash can lead to the
permanent loss of data. The failure of a network link, for example, can momentarily
disconnect two nodes of the system.

• Changes in the operating environment. The environment also affects the way a system
works. A wireless mobile system can loose connectivity if it is out of range of a
transmitter. A power outage can bring down the system, unless it is fitted with back-up
batteries.

• A software fault. An error can occur because the system or one of its components
contains a design error. Although writing bug-free software is difficult, individual
subsystems can anticipate errors from other subsystems and protect against them.

Exception handling is the mechanism by which a system treats an exception. In the case
of a user error, the system should display a meaningful error message to the user so that she can
correct her input. In the case of a network link failure, the system should save its temporary state
so that it can recover when the network comes back on line.

For example, consider a wireless navigation system in a car that retrieves on-demand
traffic information from a central computer. When the car enters a tunnel, the transfer of
information will be interrupted in the physical network layer. The network layer will raise an
exception (e.g., “socket unexpectedly closed”) and forward it to the upper layer. The upper layer
has the option of forwarding the exception to a higher layer or of tolerating the exception (e.g.,
wait for a short time and attempt to retrieve the data again, operate with older traffic data). When
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identifying boundary conditions, developers examine each component failure and decide how to

handle it. They can design components to tolerate the failure or write boundary use cases to

specify how the user will experience the failure. Note that during system design, we only

examine failures at the level of components. In Chapter 9, Object Design: Specifying Interfaces,

we will examine how to handle exceptions at the object level.

Developing reliable systems is a difficult topic. Often, trading off some functionality can

make system design easier. In MyTrip, we assumed that the connection is always possible at the

source destination and that replanning could be affected by communication problems along the

trip.

For example (Figure 7-15), we now modify the analysis model for MyTrip to include the

boundary use cases. In particular, we add three use cases: ManageDrivers, to add, remove, and

edit drivers; ManageMaps, to add, remove, and update maps used to generate trips; and

ManageServer, to perform routine configuration, start-up, and shutdown. StartServer, part of

ManageServer, is provided as an example in Figure 7-16. 

In this case, revising the use case model by adding three use cases does not affect

subsystem decomposition. We added, however, new use cases to existing subsystems: The

MapDBStoreSubsystem should be able to detect whether or not it was properly shut down and

should be able to perform consistency checks and repair corrupted data, as necessary. We revise

the description of MapDBStoreSubsystem (Figure 7-17).

Figure 7-15 Administration use cases for MyTrip (UML use case diagram). ManageDrivers is invoked to
add, remove, modify, or read data about drivers (e.g., user name and password, usage log, encryption key
generation). ManageMaps is invoked to add, remove, or update maps that are used to generate trips.
ManageServer includes all the functions necessary to start up and shutdown the server.

PlanningService

ManageDrivers

ManageMaps

ManageServer

Administrator

StartServer

ShutdownServer

ConfigureServer

«include»

«include»

«include»



282 Chapter 7  •  System Design: Addressing Design Goals

7.4.7 Reviewing System Design

Like analysis, system design is an evolutionary and iterative activity. Unlike analysis, there is no
external agent, such as the client, to review the successive iterations and ensure better quality.
This quality improvement activity is still necessary, and project managers and developers need
to organize a review process to substitute for it. Several alternatives exist, such as using the
developers who were not involved in system design to act as independent reviewers, or to use
developers from another project to act as a peer review. These review processes work only if the
reviewers have an incentive to discover and report problems.

In addition to meeting the design goals that were identified during system design, we need
to ensure that the system design model is correct, complete, consistent, realistic, and readable.
The system design model is correct if the analysis model can be mapped to the system design
model. You should ask the following questions to determine if the system design is correct:

• Can every subsystem be traced back to a use case or a nonfunctional requirement?

• Can every use case be mapped to a set of subsystems?

• Can every design goal be traced back to a nonfunctional requirement?

Use case name StartServer

Entry condition 1. The PlanningServiceAdministrator logs into the server machine.

Flow of events 2. Upon successful login, the PlanningServiceAdministrator executes 
the startPlanningService command.

3. If the PlanningService was previously shutdown normally, the server 
reads the list of legitimate Drivers and the index of active Trips and 
Maps. If the PlanningService had crashed, it notifies the 
PlanningServiceAdministrator and performs a consistency check on 
the MapDBStore.

Exit condition 4. The PlanningService is available and waits for connections from 
RoutingAssistants.

Figure 7-16 StartServer use case of the MyTrip system.

MapDBStoreSubsystem The MapDBStoreSubsystem is responsible for storing Maps and Trips in a
database for the PlanningSubsystem. This subsystem supports multiple
concurrent Drivers and planning agents. When starting up, the
MapDBStoreSubsystem detects if it was properly shut down. If not, it
performs a consistent check on Maps and Trips and repairs corrupted
data if necessary.

Figure 7-17 Revised description for MapDBStoreSubsystem based on the additional StartServer use
case of Figure 7-16. (Changes indicated in italics.)
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• Is every nonfunctional requirement addressed in the system design model?
• Does each actor have an access policy?
• Is every access policy consistent with the nonfunctional security requirement?

The model is complete if every requirement and every system design issue has been addressed.
You should ask the following questions to determine if the system design is complete:

• Have the boundary conditions been handled?
• Was there a walkthrough of the use cases to identify missing functionality in the system

design?
• Have all use cases been examined and assigned a control object?
• Have all aspects of system design (i.e., hardware allocation, persistent storage, access

control, legacy code, boundary conditions) been addressed?
• Do all subsystems have definitions?

The model is consistent if it does not contain any contradictions. You should ask the following
questions to determine if a system design is consistent:

• Are conflicting design goals prioritized?
• Does any design goal violate a nonfunctional requirement?
• Are there multiple subsystems or classes with the same name?
• Are collections of objects exchanged among subsystems in a consistent manner?

The model is realistic if the corresponding system can be implemented. You ask the following
questions to determine if a system design is realistic:

• Are any new technologies or components included in the system? Was the
appropriateness or robustness of these technologies or components evaluated? How?

• Have performance and reliability requirements been reviewed in the context of
subsystem decomposition?

• Have concurrency issues (e.g., contention, deadlocks) been addressed?

The model is readable if developers not involved in the system design can understand the
model. You should ask the following questions to ensure that the system design is readable:

• Are subsystem names understandable?
• Do entities (e.g., subsystems, classes) with similar names denote similar concepts?
• Are all entities described at the same level of detail?

In many projects, you will find that system design and implementation overlap quite a bit.
For example, you may build prototypes of selected subsystems before the architecture is stable
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in order to evaluate new technologies. This leads to many partial reviews instead of an
encompassing review followed by a client sign-off, as for analysis. Although this process yields
greater flexibility, it also requires developers to track open issues more carefully. Many difficult
issues tend to be resolved late not because they are difficult, but because they fell through the
cracks of the process.

7.5 Managing System Design

In this section, we discuss issues related to managing the system design activities. As in
analysis, the primary challenge in managing the system design is to maintain consistency while
using as many resources as possible. In the end, the software architecture and the system
interfaces should describe a single cohesive system understandable by a single person.

We first describe a document template that can be used to document the results of system
design (Section 7.5.1). Next, we describe the role assignment during system design
(Section 7.5.2) and address communication issues during system design (Section 7.5.3). Next,
we address management issues related to the iterative nature of system design (Section 7.5.4).

7.5.1 Documenting System Design

System design is documented in the System Design Document (SDD). It describes design goals
set by the project, subsystem decomposition (with UML class diagrams), hardware/software
mapping (with UML deployment diagrams), data management, access control, control flow
mechanisms, and boundary conditions. The SDD is used to define interfaces between teams of
developers and serve as a reference when architecture-level decisions need to be revisited. The
audience for the SDD includes the project management, the system architects (i.e., the
developers who participate in the system design), and the developers who design and implement
each subsystem. Figure 7-18 is an example template for a SDD.

The first section of the SDD is an Introduction. Its purpose is to provide a brief overview
of the software architecture and the design goals. It also provides references to other documents
and traceability information (e.g., related requirements analysis document, references to existing
systems, constraints impacting the software architecture).

The second section, Current software architecture, describes the architecture of the system
being replaced. If there is no previous system, this section can be replaced by a survey of current
architectures for similar systems. The purpose of this section is to make explicit the background
information that system architects used, their assumptions, and common issues the new system
will address.

The third section, Proposed system architecture, documents the system design model of
the new system. It is divided into seven subsections:

• Overview presents a bird’s-eye view of the software architecture and briefly describes
the assignment of functionality to each subsystem.
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• Subsystem decomposition describes the decomposition into subsystems and the
responsibilities of each. This is the main product of system design.

• Hardware/software mapping describes how subsystems are assigned to hardware and
off-the-shelf components. It also lists the issues introduced by multiple nodes and
software reuse.

• Persistent data management describes the persistent data stored by the system and the
data management infrastructure required for it. This section typically includes the
description of data schemes, the selection of a database, and the description of the
encapsulation of the database.

• Access control and security describes the user model of the system in terms of an
access matrix. This section also describes security issues, such as the selection of an
authentication mechanism, the use of encryption, and the management of keys.

• Global software control describes how the global software control is implemented. In
particular, this section should describe how requests are initiated and how subsystems
synchronize. This section should list and address synchronization and concurrency
issues.

• Boundary conditions describes the start-up, shutdown, and error behavior of the
system. (If new use cases are discovered for system administration, these should be
included in the requirements analysis document, not in this section.)

System Design Document

1. Introduction
1.1 Purpose of the system
1.2 Design goals
1.3 Definitions, acronyms, and abbreviations
1.4 References
1.5 Overview

2. Current software architecture
3. Proposed software architecture

3.1 Overview
3.2 Subsystem decomposition
3.3 Hardware/software mapping
3.4 Persistent data management
3.5 Access control and security
3.6 Global software control
3.7 Boundary conditions

4. Subsystem services
Glossary

Figure 7-18 Example outline for the System Design Document (SDD).
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The fourth section, Subsystem services, describes the services provided by each
subsystem. Although this section is usually empty or incomplete in the first versions of the SDD,
this section serves as a reference for teams for the boundaries between their subsystems. The
interface of each subsystem is derived from this section and detailed in the Object Design
Document.

The SDD is written after the initial system decomposition is done; that is, system
architects should not wait until all system design decisions are made before publishing the
document. The SDD, moreover, is updated throughout the process when design decisions are
made or problems are discovered. The SDD, once published, is baselined and put under
configuration management. The revision history section of the SDD provides a history of
changes as a list of changes, including author responsible for the change, date of change, and
brief description of the change.

7.5.2 Assigning Responsibilities

Unlike analysis, system design is the realm of developers. The client and the end user fade into
the background. Note, however, that many activities in system design trigger revisions to the
analysis model. The client and the user are brought back into the process for such revisions.
System design in complex systems is centered around the architecture team. This is a
cross-functional team made up of architects who define the subsystem decomposition and
selected developers who will implement the subsystem. It is critical that system design include
people who are exposed to the consequences of system design decisions. The architecture team
starts work as soon as the analysis model is stable and continues to function until the end of the
integration phase. This creates an incentive for the architecture team to anticipate problems
encountered during integration. Below are the main roles of system design:

• The architect takes the main role in system design. The architect ensures consistency
in design decisions and interface styles. The architect ensures the consistency of the
design in the configuration management and testing teams, in particular in the
formulation of the configuration management policy and the system integration
strategy. This is mainly an integration role consuming information from each
subsystem team. The architect is the leader of the cross-functional architecture team. 

• Architecture liaisons are the members of the architecture team. They are
representatives from the subsystem teams. They convey information from and to their
teams and negotiate interface changes. During system design, they focus on the
subsystem services; during the implementation phase, they focus on the consistency of
the APIs. 

• The document editor, configuration manager, and reviewer roles are the same as for
analysis (see Section 5.5.2).
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The number of subsystems determines the size of the architecture team. For complex
systems, an architecture team is introduced for each level of abstraction. In all cases, there
should be one integrating role on the team to ensure consistency and the understandability of the
architecture by a single individual.

7.5.3 Communicating about System Design

Communication during system design should be less challenging than during analysis: the
functionality of the system has been defined, project participants have similar backgrounds and
by now should know each other better. Communication is still difficult, due to new sources of
complexity:

• Size. The number of issues to be dealt with increases as developers start designing. The
number of items that developers manipulate increases: each piece of functionality
requires many operations on many objects. Moreover, developers investigate, often
concurrently, multiple designs and multiple implementation technologies. 

• Change. The subsystem decomposition and the interfaces of the subsystems are in
constant flux. Terms used by developers to name different parts of the system evolve
constantly. If the change is rapid, developers may not be discussing the same version of
the subsystem, which can lead to much confusion.

• Level of abstraction. Discussions about requirements can be made concrete by using
interface mock-ups and analogies with existing systems. Discussions about
implementation become concrete when integration and test results are available.
System design discussions are seldom concrete, as consequences of design decisions
are felt only later, during implementation and testing.

• Reluctance to confront problems. The level of abstraction of most discussions can also
make it easy to delay the resolution of difficult issues. A typical resolution of control
issues is often, “Let us revisit this issue during implementation.” Whereas it is usually
desirable to delay certain design decisions, such as the internal data structures and
algorithms used by each subsystem, any decision that has an impact on the system
decomposition and the subsystem interfaces should not be delayed. 

• Conflicting goals and criteria. Individual developers often optimize different criteria.
A developer experienced in user interface design will be biased toward optimizing
response time. A developer experienced in databases might optimize throughput. These
conflicting goals, especially when implicit, result in developers pulling the system
decomposition in different directions and lead to inconsistencies.

The same techniques we discussed in analysis (see Section 5.5.3) can be applied during
system design:
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• Identify and prioritize the design goals for the system and make them explicit (see
Section 6.4.2). If the developers concerned with system design have input in this
process, they will have an easier time committing to these design goals. Design goals
also provide an objective framework against which decisions can be evaluated.

• Make the current version of the system decomposition available to all concerned. A
live document distributed via the Internet is one way to achieve rapid distribution.
Using a configuration management tool to maintain the system design documents helps
developers in identifying recent changes.

• Maintain an up-to-date glossary. As in analysis, defining terms explicitly reduces
misunderstandings. When identifying and modeling subsystems, provide definitions in
addition to names. A UML diagram with only subsystem names is not sufficient for
supporting effective communication. A brief and substantial definition should
accompany every subsystem and class name.

• Confront design problems. Delaying design decisions can be beneficial when more
information is needed before committing to the design decision. This approach,
however, can prevent the confrontation of difficult design problems. Before tabling an
issue, several possible alternatives should be explored and described, and the delay
justified. This ensures that issues can be delayed without serious impact on the system
decomposition.

• Iterate. Selected excursions into the implementation phase can improve the system
design. For example, new features in a vendor-supplied component can be evaluated by
implementing a vertical prototype (see Section 7.5.4) for the functionality most likely
to benefit from the feature.

Finally, no matter how much effort is expended on system design, the system
decomposition and the subsystem interfaces will almost certainly change during
implementation. As new information about implementation technologies becomes available,
developers have a clearer understanding of the system, and design alternatives are discovered.
Developers should anticipate change and reserve some time to update the SDD before system
integration.

7.5.4 Iterating over the System Design

As in the case of requirements, system design occurs through successive iteration and change.
Change, however, should be controlled to prevent chaos, especially in complex projects
including many participants. We distinguish three types of iterations during system design. First,
major decisions early in system design affect subsystem decomposition as each of the different
activities of system design is initiated. Second, revisions to the interfaces of the subsystems
occur when evaluation prototypes are created to evaluate specific issues. Third, errors and
oversights that are discovered late trigger changes to the subsystem interfaces and sometimes to
the system decomposition itself.
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The first set of iterations is best handled in brainstorming sessions (either face-to-face or
electronic). Definitions are still in flux, developers do not have yet a grasp of the whole system,
and communication should be maximized at the expense of formality or procedure. Often in
team-based projects, the initial system decomposition is designed before the analysis is
complete. Decomposing the system early allows the responsibility of different subsystems to be
assigned to different teams. Change and exploration should be encouraged, if only to broaden
the developers’ shared understanding or to generate supporting evidence for the current design.
For this reason, a bureaucratic formal change process should not be used during this phase.

The second set of iterations aims at solving difficult and focused issues, such as the choice
of a specific vendor or technology. The subsystem decomposition is stable (ideally, it should be
independent of vendors and technology), and most of these explorations aim at identifying
whether a specific package is appropriate for the system. During this period, developers can also
create a vertical prototype1 for a critical use case to test the appropriateness of the
decomposition. This enables control flow issues to be discovered and addressed early. Again, a
formal change process is not necessary. A list of pending issues and their status can help
developers quickly propagate the results of a technology investigation.

The third set of iterations remedies design problems discovered late in the process.
Although developers would much rather avoid these iterations, as they tend to be costly and
introduce many new bugs in the system, they should anticipate changes late in development.
Anticipating late iterations includes documenting dependencies among subsystems, the design
rationale for subsystem interfaces, and any workaround that is likely to fail in case of change.
Change should be carefully managed, and a change process similar to the one tracking
requirements changes should be put in place.

We can achieve the progressive stabilization of subsystem decomposition by using the
concept of a design window. To encourage change while controlling it, critical issues are left
open only during a specified time. For example, the hardware/software platform on which the
system is targeted should be resolved early in the project so that purchasing decisions for the
hardware can be done in time for development. Internal data structures and algorithms, however,
can be left open until after integration, allowing developers to revise them based on performance
testing. Once the design window is closed, the issue must be resolved and can only be reopened
in a subsequent iteration.

With the pace of technology innovation quickening, many changes can be anticipated
when a dedicated part of the organization is responsible for technology management.
Technology managers scan new technologies, evaluate them, and accumulate knowledge that is
used during the selection of components. Often, change happens so fast that companies are not
aware of which technologies they themselves provide.

1. A vertical prototype completely implements a restricted functionality, for example, all the interface, control, and 
entity objects for one use case. A horizontal prototype partially implements a broad range of functionality, for 
example, only the interface objects for a number of use cases.
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7.6 ARENA Case Study

In this section, we apply the concepts and methods described in this chapter to the ARENA system.
We start with identifying the design goals for ARENA and design an initial subsystem
decomposition. We then select a software and hardware platform and define the persistent stores,
access control, and global control flow. Finally, we look at the boundary conditions of ARENA.

7.6.1 Identifying Design Goals 

Design goals are qualities that enable us to prioritize the development of the system. Design
goals originate from the nonfunctional requirements specified during requirements elicitation
and from technical and management goals specified by the project.

In ARENA, the main client is the ArenaOperator, who provides the resources for setting up
an Arena for a particular community. ArenaOperators are themselves Players who may have
system administration or even programming skills. The advertisement features allow them to
recoup some of their costs. Moreover, we anticipate that ArenaOperators will form a
community and that the integration of new games into ARENA and improvements to ARENA will be
mostly contributed by ArenaOperators. However, advertisement is not the main purpose of
ARENA. From these observations and from the ARENA problem statement (Figure 4-17), we
identify the following design goals:

• Low operating cost. To minimize the need for advertisement, the cost of running the
system (e.g., hardware resources, network resources, administration costs, etc.) should
be minimized. This also leads us to select free or open-source components. This design
goal is a refinement of the nonfunctional requirement “low operating cost” of the ARENA
problem statement (Figure 4-17). 

• High availability. The value of an Arena increases with the number of players available
for playing tournaments. Unexpected crashes and interruptions in tournaments will
create a lot of frustration for the players and discourage them from attending other
tournaments. This design goal is not explicitly stated in the problem statement or the
requirements, but is necessary if an Arena is to attract and keep a sufficiently large
number of players.

• Scalability in terms of number of players and concurrent tournaments. The response
time of the Arena may not degrade dramatically with the number of Players. When
needed, an ArenaOperator should have the option of increasing the capacity of an
Arena by adding hardware nodes. This design goal is a refinement of the nonfunctional
requirement “scalability” in the ARENA problem statement (Figure 4-17).

• Ease of adding new games. Some games, such as chess, are timeless. However, the
computer game industry evolves with different fashions and hardware improvements.
Consequently, to keep an Arena active, it should be relatively easy to adapt and install
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new games. This design goal is a refinement of the nonfunctional requirement
“extensibility” in the ARENA problem statement (Figure 4-17).

• Documentation for open source development. The organization and documentation of
the ARENA game framework should then make it easier for new developers to contribute
features to the code. This includes source code documentation that supports low-level
changes and improvements, as well as a good architecture-level documentation that
supports the addition of new features. This design goal originated from the developers
and management of ARENA (as opposed to the client). Note that such design goals may
require additional interaction with the client, as they might interfere with implicit client
goals that have not yet been made explicit.

7.6.2 Identifying Subsystems

We first identify subsystems from the functional requirements of ARENA and from the analysis
model. The purpose of this activity is to divide the system in self-contained components that can
be managed by individuals. As we address other design issues, such as access control and
persistency management, we will refine or modify this initial subsystem decomposition.

We first distinguish two main parts of the ARENA subsystem: the game organization part of
the system, which is responsible for coordinating Users when organizing an Arena, a League, or
a Tournament, and the game playing part, in which Players conduct individual Matches in the
scope of a Tournament.

For the game organization part, we select a three-tier architectural style (Figure 7-19) in
which an ArenaClient subsystem provides a front end for users to initiate all organization-
related use cases (e.g., AnnounceTournament, ApplyForTournament, RegisterPlayer). The
ArenaServer subsystem is responsible for access control and concurrency control, and delegates
to nested subsystems for the application logic. Different subsystems are dedicated to the user
management of users, advertisements, tournaments, and games. The bottom tier is realized by
the ArenaStorage subsystem, responsible for storing any persistent objects, except for those
representing Match states.

For the game playing part, the client server architecture may not be sufficient for
synchronous games in which the action of one player can trigger events for another player
within a relatively short time. Synchronous behavior could be simulated with polling; however,
because of scalability and responsiveness goals, we select a peer-to-peer architecture in which
MatchFrontEndPeer subsystems provide the user interface and a GamePeer maintains the state of
the matches currently under way and enforces the game rules. MatchFrontEndPeers may also
communicate directly with each other for real-time games. To achieve the game independence
design goal, ARENA provides a framework for both the MatchFrontEndPeer and the GamePeer,
while the bulk of the game logic is provided by customized game-dependent components.
Adding a game consists of developing adapters for existing games or ARENA-compliant
components for new games. The TournamentManagement subsystem uses the GameManagement
subsystem to initiate a GamePeer and to collect the results of the individual Matches. The
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MatchFrontEndPeer uses the AdvertisementManagement subsystem to retrieve
Advertisements (Figure 7-20). Note that for turn-based games, a client server architectural
style would be sufficient, as the response time for such games is less critical. The selection of the
peer-to-peer style does not prevent specific games from following a client server style. 

7.6.3 Mapping Subsystems to Processors and Components

Mapping subsystems to processors and components enables us to identify potential concurrency
among subsystems and to address performance and reliability goals. 

ARENA is inherently a distributed system, as users sit in front of different machines,
possibly several time zones apart. However, we distinguish only between two types of nodes: the
UserMachine to provide a user interface and the ServerMachines to run the application logic
and storage and, more generally, to provide the ARENA services. ArenaClient and the
MatchFrontEndPeer subsystems run on the UserMachine. In an installation of ARENA with few

Figure 7-19 ARENA subsystem decomposition, game organization part (UML component diagram, layers
shown as UML packages).
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players, all other subsystems can be collocated onto a single ServerMachine. However, to
ensure scalability, we identify an additional subsystem dedicated to send advertisement banners
to the browser, and assign the AdvertisementServer, the GamePeer, the ArenaStorage, and the
ArenaServer subsystems to different processes that can run on different ServerMachines. The
ArenaServer component includes the nested, TournamentManagement, UserManagement, and
GameManagement subsystems (Figure 7-21). 

For the realization of the game organization part of ARENA, we select the Java EE
framework. Java EE is a collection of interfaces and standards developed by Sun Microsystems
and community efforts for developing portable web-based information systems in Java. The

Figure 7-20 ARENA subsystem decomposition, game playing part (UML component diagram).

Figure 7-21 ARENA hardware/software mapping (UML deployment diagram). Note that each run-time
component may support several subsystems.
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advantage of this standard is that it is implemented by several open-source and commercial
products, thus enabling an ArenaOperator to trade off scale (e.g., number of players,
tournaments, and leagues) for set-up cost (e.g., licensing and run-time costs). Also, in their
simplest form, open-source components of this framework are easy to install and require little
prior administration knowledge.

Consequently, the ArenaClient is a Web browser and the ArenaServer and the other
game organization subsystems are accessed through a Web server. To realize the ArenaServer
and related subsystems, we select Java Servlets and Java Server Pages (JSP), components of
Java EE, as the main technology for implementing the boundary objects. Servlets are classes that
are located on the ServerMachine. Servlets receive, process, and respond to requests from a Web
browser by generating an HTML page. JSPs provide a compact way of specifying servlets using
a language similar to HTML. A preprocessor then generates a servlet from a JSP. We use JSPs to
realize the boundary and control objects of ARENA. JSPs in turn invoke methods on entity objects
and storage objects, which are also realized using the Java Foundation classes.

Having identified the subsystems, the concurrency, and the hardware/software mapping,
we now turn our attention to persistency management.

7.6.4 Identifying and Storing Persistent Data

Identifying persistent objects

ARENA deals with two sets of objects that must be stored. The first set includes the objects
that are created and accessed by the game organization subsystems (e.g., Tournament, Game,
Match, Player) and that need to be persistent to track the progress of Leagues, Matches,
Tournaments, and their Players. The second set includes the objects that are created and
accessed by the GamePeer and the MatchFrontEndPeer during Matches, which are used to replay
matches for Spectators and to resume Matches that were interrupted by system crashes. The
first set of objects is well defined and will probably not change much during the lifetime of
ARENA. The second set of objects are specific to each Game and are defined by the Game
developers. Hence, we decide to manage the first set of persistent objects with the ArenaStorage
subsystem of ARENA and let game developers decide how to manage the state of the Matches in
game-specific components. The persistent objects of each Game will then only be accessed
through a generic Game interface implemented by each individual Game.

Selecting a storage strategy

Selecting a persistent storage strategy during system design enables us to deal with other
issues related to storage management, such as concurrency control and crash recovery. For
example, many database management systems allow concurrent queries and provide transaction
mechanisms to ensure data integrity. 
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Our highest priority design goal in ARENA is to minimize operating costs, so we first
consider using flat files for storage. Such a system can be installed easily, since there is no
database management system to configure or to manage. However, a system based solely on flat
files would not scale to large installations with dozens of games and thousands of players.

To accommodate both goals, we select a mixed strategy. The storage subsystem will
provide an abstract interface that enables both a flat file and a relational database
implementation. When installing an Arena the first time, the ArenaOperator selects which
implementation fits the goals best. The ArenaOperator will not be able to switch strategies at
run time, but will be able to convert persistent objects from flat files to the database and back
during system reconfiguration. This will increase the development cost of ARENA, but provide
more flexibility to the ArenaOperator. To reduce development risks, the initial prototype of
ARENA will only use flat files. A second prototype will use a database-independent API (e.g.,
JDBC [JDBC, 2009]) to store persistent objects in a relational database, thus enabling
ArenaOperators to use different relational products. 

Game developers will address game storage issues individually. Given the sequential
nature of game data, we anticipate games to use flat files for storage as well.

7.6.5 Providing Access Control

As ARENA is a multi-user system, different actors are allowed to view different sets of objects and
invoke different types of operations on them. To succinctly document access rights, we draw an
access control matrix (Table 7-4) depicting the allowed operations on the entity objects for each
actor. In summary, ArenaOperator can create Users and Leagues, LeagueOwners can create
Tournaments and Matches. Advertisers can upload and remove advertisements as well as
apply for sponsorship of Leagues or Tournaments. Note that the LeagueOwner makes the final
sponsorship decision, as documented in the analysis. Players can subscribe to a League (to
receive announcements), apply for a Tournament, and play Matches they have been scheduled
for. Finally, Spectators can view player statistics, view League and Tournament schedules, and
subscribe to receive notifications and view Matches.

Note that most of the access control information is already available in the use case model.
The access control matrix, however, presents a more detailed and compact view, thus enabling a
client to review access control more easily and a developer to implement it correctly.

Spectators are actors that are not authenticated to the system. All other actors must first
authenticate before they can modify any object in the system. We select a user name/password
mechanism for initiating sessions. We then use access control lists on each object (e.g., Leagues,
Tournaments, and Matches) to check the access privileges of the user. A Session object per
authenticated user tracks currently logged in users. 
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7.6.6 Designing the Global Control Flow

As described in Section 7.4.4, there are three types of control flow paradigms: procedure-driven,
event-driven, or threaded control flow paradigm. The selection of one paradigm over another
depends on response time and throughput requirements on the system and development
complexity. Moreover, in a system with multiple components, it is possible to select different
control paradigms for different components. 

In Sections 7.6.3 and 7.6.4, when selecting components for the interface and storage
subsystems of ARENA, we effectively restricted the alternatives for control flow mechanisms for
the game organization part. The WebServer waits for requests from the WebBrowser. Upon the
receipt of a request, the WebServer processes it and dispatches it to the appropriate servlet or
JSP, thus resulting in an event-based control flow. The WebServer allocates a new thread for
each request, allowing the parallel handling of requests. This results in a more responsive system
by enabling the WebServer to respond to individual WebBrowser requests before other requests
have been completely processed, and can increase throughput by enabling the processing of one
request while another is waiting for the database to respond. The drawback of threads is the
higher complexity of the system resulting from synchronizing parallel threads. To ensure a
robust design with respect to concurrency, we define the following strategy for dealing with
concurrent accesses to shared data:

Table 7-4  Access matrix for main ARENA objects.

Objects

Actors
Arena User League Tournament Match

ArenaOperator «create»
createUser

«create»
deactivate

«create»
archive

LeagueOwner
getStats
getInfo

archive
setSponsor

«create»
archive
setSponsor

«create»
end

Advertiser uploadAds
removeAds

apply for
sponsorship

apply for
sponsorship

Player

apply for
LeagueOwner

setInfo view
subscribe

apply for
tournament
view
subscribe

play
end

Spectator

apply for
Player
apply for
Advertiser

getStats view
subscribe

view
subscribe

subscribe
replay
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• Boundary objects should not define any fields. Instead, boundary objects hold
temporary data associated with the current request in local variables. As boundary
objects are shared among threads, this prevents concurrency hazards at that level.

• Control objects should not be shared among threads. Instead, there should be at most
one control object associated with each session, and users should not be able to issue
concurrent requests involving the same control object within the same session. This
should especially be enforced when control objects survive the processing of a single
request.

• Entity objects should not provide direct access to their fields. Instead, all changes and
accesses to the object state should be done through dedicated methods. Moreover, these
methods should only access the fields of the receiver object (i.e., this), and not of other
instances of the same class. If classes are realized as abstract data types (see
Section 2.3.2), all fields should already be private.

• Methods for accessing state in entity objects should be synchronized. That is, the
synchronized mechanism provided by Java should be used so that only one thread at a
time can be active in the access method.

• Nested calls to synchronized methods should be avoided. Developers of synchronized
methods should investigate if a nested method call can result in calling another
synchronized method. This could lead to deadlocks and should be avoided. If such
nested calls cannot be avoided, developers should either reallocate class behavior
among methods to avoid such nested calls, or impose a strict ordering of synchronized
method calls.

• Redundant state should be time-stamped. The state of an object can occasionally be
duplicated. One example of duplication is when the state of an object is stored in a Web
form in the WebBrowser and in storage subsystem. To detect situations in which
concurrent changes to the same object can lead to a conflict, a time-stamp should be
added to the duplicated data to represent the last modification time.

For the game part of ARENA, the MatchFrontEndPeer and the GamePeer run in separate
processes. These processes are started by the GameManagement subsystem as required by
Tournament schedules and Player attendance. The internal control flow of the
MatchFrontEndPeer and the GamePeer can be event driven or threaded, depending on the needs
of the specific game.

7.6.7 Identifying Services

We have now defined a subsytem decomposition and decided on the control flow paradgms for
each run-time component and for the system as a whole. We are now ready to identify services
provided by each subsystem.
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In this example, we focus on the dependencies among ArenaServer, UserManagement,
AdvertisementManagement, and TournamentManagement, in the context of the Organize-
Tournament use case (Figure 4-24).

We first notice that all requests handled by the ArenaServer must be authorized according
to the access control policy defined in Section 7.6.5. This leads us to define an Authentication
service to check a user’s credentials upon login, and an Authorization service to check if the
request is allowed for the role of the requesting user. We assign both services to
UserManagement.

During the first steps in the OrganizeTournament use case, the LeagueOwner creates a
Tournament in the context of a League. TournamentManagement therefore needs to provide
services for creating and getting information about Tournaments and Leagues. These services
are trivial but are needed for every class in the analysis model. To denote that the
TournamentManagement subsystem owns the Tournament and League classes, we define the
Tournament and League services. In practice, these types of services are left implicit in the
model to avoid overcrowding, as they add little information. 

In the next steps, the LeagueOwner invites Advertisers to sponsor the new Tournament.
We add the Sponsorship service to AdvertisementManagement, allowing the LeagueOwner to
invite Advertisers and Advertisers to respond. Defining both sets of actions in the same
service allows us to keep all operations related to sponsorship in one place.

When the LeagueOwner selects Advertisers to sponsor a Tournament, we are presented
with the option of defining a new service either in AdvertisementManagement or in
TournamentManagement, as each subsystem owns an end of the Advertiser-Tournament
association. We decide to assign the responsibility to track the state of the OrganizeTournament
activity to TournamentManagement, as the use case centers on the definition of Tournaments. In
analysis terms, TournamentManagement owns the control object associated with
OrganizeTournament. Consequently, we add a SponsorSelection service to the
TournamentManagement subsystem.

In the next steps of OrganizeTournament, the LeagueOwner advertises the Tournament and
interested Players apply and are selected. We are faced with the question of allocating the
Player service to the UserManagement or the TournamentManagement subsystem. We decide to
assign Player to the TournamentManagement, as Player is strongly connected with League and
Tournament. As accepting Players in Tournaments goes beyond simply creating Players and
getting information about them, we define a PlayerAcceptance service to support this step. 

Figure 7-22 depicts the services identified so far. We observe two trends during the above
discussion:

• When trading off services between two subsystems, functionality tends to aggregate in
the subsystem where the control object corresponding to the use case is defined. While
this results in subsystem with high coherence, we need to be careful that the resulting
complexity of the subsystem is not too high. 



ARENA Case Study 299

• Defining services based on steps in a use case tend to result in fine grained services.
While this allows us to validate the subsystem decomposition, it may result in many
interfaces that each define a single operation. This is a sign that we are moving too
quickly towards object design. During a second pass, we may choose to consolidate
several related services into single services to keep the design at the architectural level
of abstraction and the subsystem decomposition understandable. Naming services with
noun phrases that denote a collection of operations also helps us in avoiding this
pittfall.

7.6.8 Identifying Boundary Conditions

During this activity, we review the design decisions we made so far and identify additional
administrator use cases. We first examine the life time of the persistent objects of ARENA, the life
time of each run-time component, and the types of system failures.

Configuration use cases

The handling of most persistent objects is already described in the use cases developed
during analysis (Figure 4-21) and in the access control matrix (Table 7-4). For example,
ArenaOperators create and deactivate Users. LeagueOwners create and archive Leagues and
Tournaments. Players initiate and end Matches. Advertisers manage Advertisement

Banners. However, the handling of the Arena and Game objects has not been described in the use
case model so far, as these objects have been refined during system design. Arena is created with
the installation of the system. Games are created and destroyed whenever Games are added or
deleted from the system. Hence, we identify two additional use cases invoked by the

Figure 7-22 ARENA subsystem decomposition, game organization part with services identified (UML
component diagram, ball-and-socket notation, dependencies omitted for clarity).

TournamentManagement

ArenaServer

AdvertisementManagement

Authentication

Authorization

Sponsorship

Advertiser

Player TournamentLeague

UserManagement

SponsorSelection

PlayerAcceptance
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ArenaOperator, InstallArena and ManageGames. Moreover, we decided, when discussing

persistent storage (Section 7.6.4), that an ArenaOperator could convert the persistent objects

between a flat file representation and a database representation. This results in an additional

configuration use case, ConvertPersistentStorage (Table 7-5).

Start-up and shutdown use cases

As depicted in the UML deployment diagram in Figure 7-21, ARENA includes five run-time

components: the WebBrowser, the ArenaServer (which includes the subsystems

UserManagement, GameManagement, TournamentManagement, Notification, and Arena–

Storage), the MatchFrontEndPeer, the GamePeer, and for the second prototype, the

DatabaseServer. The WebBrowser and the DatabaseServer are off-the-shelf components and

are started and shut down individually. The MatchFrontEndPeer and the GamePeer are started

and shut down by the WebBrowser and the ArenaServer, respectively. The start-up and shutdown

of ArenaServer is currently not described in the use case model. Hence, we identify two

additional use cases invoked by the ArenaOperator (Table 7-6).

Table 7-5   Additional ARENA boundary use cases identified when reviewing persistent objects.

InstallArena The ArenaOperator creates an Arena, gives it a name, selects a persistent storage
subsystem (either flat file or database), and configures resource parameters (e.g.,
maximum number of concurrent tournaments, file path for storage).

ManageGames The ArenaOperator installs or removes a Game, including custom code for the
GamePeer and MatchFrontEndPeer. The list of Games is updated for the next time
a LeagueOwner creates a League.

Convert

Persistent

Storage

When the ArenaServer is shut down, the ArenaOperator can convert the
persistent storage from a flat file storage to a database storage or from a database
storage to a flat file storage.

Table 7-6   Additional ARENA boundary use cases identified when reviewing runtime components.

StartArenaServer The ArenaOperator starts the ArenaServer. If the server was not
cleanly shut down, this use case invokes the Check Data Integrity
use case described in the next section. As soon as the initialization of
the server is complete, LeagueOwners, Players, Spectators, and
Advertisers can initiate any of their use cases.

ShutDownArenaServer The ArenaOperator stops the ArenaServer. The server terminates
any ongoing Matches and stores any cached data.
MatchFrontEndPeers and GamePeers are shut down. Once this use
case is completed, the LeagueOwners, Players, Spectators, and
Advertisers cannot access or modify the Arena.
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Exception use cases

ARENA can experience four major classes of system failures:

• A network failure in which one or more connections among MatchFrontEndPeers and

GamePeers are interrupted

• A host or a component failure in which one or more MatchFrontEndPeers or

GamePeers are unexpectedly terminated

• A network failure in which one or more connections between a WebBrowser and the

ArenaServer are interrupted

• A server failure in which the ArenaServer is unexpectedly terminated.

We decide to handle the first two classes of exceptions in the custom Game components.

We will provide generic methods for MatchFrontEndPeers and GamePeers to re-establish

connection after a network failure or to restore the state of Matches after a crash. However, the

handling of the exception itself depends on the type of game. For example, a real-time

simulation game will not tolerate network failures and should be interrupted or restarted,

whereas a board game can tolerate short interruptions transparently from its Players. Hence, we

leave the flexibility to the game developers to decide how to handle those exceptions.

We handle network failures interrupting connections between the WebBrowser and the

ArenaServer by notifying the user of the network failure, similar to current WebBrowsers. We

expect the actors to retry later, at the cost of loosing the data that was already entered in a form.

Consequently, we will design forms in such a way that little data can be lost in any one failure.

We decide to handle the last type of failure by a use case for checking the integrity of the

persistent data after an unexpected termination of the ArenaServer (see Table 7-7). This use

case can be invoked automatically by the system upon start-up (see StartArenaServer in

Table 7-6) or manually by the ArenaOperator. We also identify an additional use case to restart

interrupted GamePeers and notify relevant players.

Table 7-7   Additional ARENA boundary use cases identified when reviewing persistent objects.

CheckDataIntegrity ARENA checks the integrity of the persistent data. For file-based
storage, this may include checking if the last logged transactions were
saved to disk. For database storage, this may include invoking tools
providing by the database system to re-index the tables.

RestartGamePeers ARENA starts any interrupted Matches and notifies any running
MatchFrontEndPeer that GamePeer is back on-line.
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7.6.9 Lessons Learned

In this section, we examined the system design issues for the ARENA system. We identified and
prioritized design goals, we decomposed the system into subsystems, we mapped the
subsystems to components and platforms, we selected a persistent data storage strategy, we
described the access control mechanisms for the system, we examined control flow issues, and
we identified use cases for handling boundary cases. We learned that

• Most system design issues are interrelated. For example, selecting a component for
boundary or storage objects has implications on the global control flow of the system.

• Some system design issues have different solutions in different parts of the system. For
example, we dealt with issues related to architecture, control flow, crash recovery, and
storage issues differently for the organization part than for the game playing part of
ARENA.

• Some system design issues can be postponed until the object design phase (e.g.,
decisions about GamePeers) or to a later release (e.g., storage implementation).

• In all cases, design goals serve to prioritize and evaluate different design alternatives.

7.7 Further Readings

Meeting multiple, conflicting design goals is a difficult task that can only be accomplished with
experience and practice. Here are a few books related to the material presented in this chapter.

Software Architecture in Practice [Bass et al., 2003] and Evaluating Software
Architectures [Clements et al., 2002] focus on general methods for evaluating architectures
given a set of design goals. Both books also include case studies from the state of the art.

Object-Oriented Modeling and Design for Database Applications [Blaha & Premerlani,
1998] describes methods for realizing database applications, taking into consideration design
goals such as performance, extensibility, and modifiability.

Reliable Computer Systems: Design and Evaluation [Siewiorek & Swarz, 1992] is the
reference book for reliable system design. It includes a broad survey of techniques and methods
for achieving reliability as well as a substantial number of case studies for industry projects.

Safeware: System Safety and Computers [Leveson, 1995] surveys a large number of cases
of computer failures and draws several conclusions. It then surveys current approaches to safety
and emphasizes the need for comprehensive methods in the design of systems. 

Service-Oriented Architectures [Erl, 2005] provides an introduction and tutorial for
designing service-oriented web platform. The goal of SOA architectures is to structure the
application around business processes, making it easier to evolve or combine services offered to
the end user.
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7.8 Exercises

7-1 Consider a system that includes a Web server and two database servers. Both database
servers are identical: the first acts as a main server, and the second acts as a redundant
back-up in case the first one fails. Users use Web browsers to access data through the
Web server. They also have the option of using a proprietary client that accesses the
databases directly. Draw a UML deployment diagram representing the hardware/soft-
ware mapping of this system.

7-2 Consider a legacy, fax-based, problem-reporting system for an aircraft manufacturer.
You are part of a reengineering project replacing the core of the system with a
computer-based system that includes a database and a notification system. The client
requires the fax to remain an entry point for problem reports. You propose an E-mail
entry point. Describe a subsystem decomposition that would allow both interfaces.
Note that such systems are used to process many problem reports per day (e.g., 2000
faxes per day).

7-3 You are designing the access control policies for a Web-based retail store. Customers
access the store via the Web, browse product information, input their address and
payment information, and purchase products. Suppliers can add new products, update
product information, and receive orders.The store owner sets the retail prices, makes
tailored offers to customers based on their purchasing profiles, and provides marketing
services. You have to deal with three actors: StoreAdministrator, Supplier, and
Customer. Design an access control policy for all three actors. Customers can be
created via the Web, whereas Suppliers are created by the StoreAdministrator.

7-4 Select a control flow mechanism you find most appropriate for each of the following
systems. Because multiple choices are possible in most cases, justify your choices.

• a Web server designed to sustain high loads

• a graphical user interface for a word processor

• a real-time embedded system (e.g., a guidance system on a satellite launcher).

7-5 Why can you not describe boundary use cases during requirements elicitation or
analysis?

7-6 You are designing a caching subsystem that temporarily stores data retrieved over the
network (e.g., web pages) into a faster access storage (e.g., the hard disk). Due to a
change in requirements, you define an additional service in your subsystem for
configuring cache parameters (e.g., the maximum amount of hard disk the cache can
use). Which project participants do you notify?
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8
Object Design:
Reusing Pattern 
Solutions
Cheating rule: You cheat if you do not acknowledge the 
contribution made by others.

—15-413, Software Engineering, 
Carnegie Mellon University

During analysis, we describe the purpose of the system. This results in the identification of
application objects. During system design, we describe the system in terms of its architecture,
such as its subsystem decomposition, global control flow, and persistency management. During
system design, we also define the hardware/software platform on which we build the system.
This allows the selection of off-the-shelf components that provide a higher level of abstraction
than the hardware. During object design, we close the gap between the application objects and
the off-the-shelf components by identifying additional solution objects and refining existing
objects. Object design includes

• reuse, during which we identify off-the-shelf components and design patterns to make
use of existing solutions

• service specification, during which we precisely describe each class interface

• object model restructuring, during which we transform the object design model to
improve its understandability and extensibility

• object model optimization, during which we transform the object design model to
address performance criteria such as response time or memory utilization.

Object design, like system design, is not algorithmic. The identification of existing
patterns and components is central to the problem-solving process. We discuss these building
blocks and the activities related to them. In this chapter, we provide an overview of object design
and focus on reuse, that is the selection of components and the application of design patterns. In
the next chapter, we focus on service specification. In Chapter 10, Mapping Models to Code, we
focus on the object model restructuring and optimization activities.
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8.1 Introduction: Bloopers

Consider the following examples from the movie industry:

Movies are systems that contain (often many) bugs when delivered to the client. It is
surprising, considering their cost of production, that any obvious mistakes should remain in the
final product. Movies, however, are more complex than they seem.

Many factors conspire to introduce mistakes in a movie: movies require the cooperation of
many different people; scenes are shot out of sequence; some scenes are reshot out of schedule;
details, such as props and costumes, are changed during production; the pressure of the release
date is high during the editing process, when all the pieces are integrated together. When a scene
is shot, the state of every object and actor in the scene should be consistent with the scenes
preceding and following it. This can include the pose of each actor, the condition of his or her
clothes, jewelry, makeup, and hair, the content of their glasses, and so on. When different
segments are combined into a single scene, an editor, called the “continuity editor,” ensures that
such details were restored correctly. When changes occur, such as the addition or removal of a
prop, the change must not interfere with other scenes. 

Software systems, like movies, are complex, subject to continuous change and integrated
under time pressure. During object design, developers close the gap between the application
objects identified during analysis and the hardware/software platform selected during system
design. Developers identify and build custom solution objects whose purpose is to realize any
remaining functionality and to bridge the gap between application objects and the selected
hardware/software platform. During object design, developers realize custom objects in a way

Speed (1994)

Harry, an LAPD cop, is taken hostage by Howard, a mad bomber. Jack, Harry’s partner, shoots Harry in
the leg to slow down Howard’s advance. Harry is shot in the right leg. Throughout the movie, Harry
limps on the left leg. 

Star Wars Trilogy (1977, 1980, & 1983)

At the end of episode V, The Empire Strikes Back (1980), Han Solo is captured and frozen into carbonite
for delivery to Jabba. At the beginning of episode VI, The Return of the Jedi (1983), the frozen Han
Solo is recovered by his friends and thawed back to life. When being frozen, Solo is wearing a jacket.
When thawed, he is wearing a white shirt.

Titanic (1997)

Jack, a drifter, is teaching Rose, a high-society lady, to spit. He demonstrates by example and
encourages Rose to practice as well. During the lesson, Rose’s mother arrives impromptu. As Jack starts
to turn to face Rose’s mother, there is no spit on his face. As he completes his turn, he has spit on his
chin.

The budgets for Speed, The Empire Strikes Back, The Return of the Jedi, and Titanic were 30, 18, 32.5,
and 200 millions dollars, respectively.
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similar to the shooting of movie scenes. They are implemented out of sequence, by different
developers, and change several times before they reach their final form. Often, the caller of an
operation has only an informal specification of the operation and makes assumptions about its
side effects and its boundary cases. This results in mismatches between caller and callee,
missing behavior, or incorrect behavior. To address these issues, developers construct precise
specifications of the classes, attributes, and operations in terms of constraints. Similarly,
developers adjust and reuse off-the-shelf components that have been annotated with interface
specifications. Finally, developers restructure and optimize the object design model to address
design goals such as maintainability, extensibility, efficiency, response time, or timely delivery.

Section 8.2 provides an overview of object design. Section 8.3 defines the main object
design concepts, such as constraints used to specify interfaces. Section 8.4 describes in more
detail the activities of object design. Section 8.5 discusses management issues related with
object design. We do not describe activities such as implementing algorithms and data structures
or using specific programming languages. First, we assume the reader already has experience in
those areas. Second, these activities become less critical as more and more off-the-shelf
components become available.

8.2 An Overview of Object Design

Conceptually, software system development fills the gap between a given problem and an
existing machine. The activities of system development incrementally close this gap by
identifying and defining objects that realize part of the system (Figure 8-1).

Analysis reduces the gap between the problem and the machine by identifying objects
representing problem-specific concepts. During analysis the system is described in terms of
external behavior such as its functionality (use case model), the application domain concepts it
manipulates (object model), its behavior in terms of interactions (dynamic model), and its
nonfunctional requirements.

System design reduces the gap between the problem and the machine in two ways. First,
system design results in a virtual machine that provides a higher level of abstraction than the
machine. This is done by selecting off-the-shelf components for standard services such as
middleware, user interface toolkits, application frameworks, and class libraries. Second, system
design identifies off-the-shelf components for application domain objects such as reusable class
libraries of banking objects.

After several iterations of analysis and system design, the developers are usually left with
a puzzle that has a few pieces missing. These pieces are found during object design. This
includes identifying new solution objects, adjusting off-the-shelf components, and precisely
specifying each subsystem interface and class. The object design model can then be partitioned
into sets of classes that can be implemented by individual developers.



310 Chapter 8  •  Object Design: Reusing Pattern Solutions

Object design includes four groups of activities (see Figure 8-2):

• Reuse. Off-the-shelf components identified during system design are used to help in the
realization of each subsystem. Class libraries and additional components are selected
for basic data structures and services. Design patterns are selected for solving common
problems and for protecting specific classes from future change. Often, components
and design patterns need to be adapted before they can be used. This is done by
wrapping custom objects around them or by refining them using inheritance. During all
these activities, the developers are faced with the same buy-versus-build trade-offs they
encountered during system design. 

• Interface specification. During this activity, the subsystem services identified during
system design are specified in terms of class interfaces, including operations,
arguments, type signatures, and exceptions. Additional operations and objects needed
to transfer data among subsystems are also identified. The result of service
specification is a complete interface specification for each subsystem. The subsystem

Figure 8-1 Object design closes the gap between application objects identified during requirements and
off-the-shelf components selected during system design (stylized UML class diagram).
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service specification is often called subsystem API (Application Programmer
Interface). 

• Restructuring. Restructuring activities manipulate the system model to increase code
reuse or meet other design goals. Each restructuring activity can be seen as a graph
transformation on subsets of a particular model. Typical activities include transforming
N-ary associations into binary associations, implementing binary associations as
references, merging two similar classes from two different subsystems into a single
class, collapsing classes with no significant behavior into attributes, splitting complex
classes into simpler ones, and/or rearranging classes and operations to increase the
inheritance and packaging. During restructuring, we address design goals such as
maintainability, readability, and understandability of the system model.

• Optimization. Optimization activities address performance requirements of the system
model. This includes changing algorithms to respond to speed or memory
requirements, reducing multiplicities in associations to speed up queries, adding
redundant associations for efficiency, rearranging execution orders, adding derived
attributes to improve the access time to objects, and opening up the architecture, that is,
adding access to lower layers because of performance requirements.

Object design is not sequential. Although each group of activities described above
addresses a specific object design issue, they usually occur concurrently. A specific off-the-shelf
component may constrain the number of types of exceptions mentioned in the specification of an
operation and thus may impact the subsystem interface. The selection of a component may
reduce the implementation work while introducing new “glue” objects, which also need to be
specified. Finally, restructuring and optimizing may reduce the number of components to be
implemented by increasing the amount of reuse in the system. 

Usually, interface specification and reuse activities occur first, yielding an object design
model that is then checked against the use cases that exercise the specific subsystem.
Restructuring and optimization activities occur next, once the object design model for the
subsystem is relatively stable. Focusing on interfaces, components, and design patterns results in
an object design model that is much easier to modify. Focusing on optimizations first tends to
produce object design models that are rigid and difficult to modify. However, as depicted in
Figure 8-2, activities of object design occur iteratively.

Given the variety and breadth of activities in object design, we divided this material into
three different chapters. This chapter focuses on activities related to reuse, in particular,
components and design patterns. In the next chapter, Chapter 9, Object Design: Specifying
Interfaces, we examine the activities related to interface specification, in particular, UML’s
Object Constraint Language and its use for specifying invariants, preconditions, and post
conditions. In Chapter 10, Mapping Models to Code, we examine the activities related to
restructuring and optimization.
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Figure 8-2 Activities of object design (UML activity diagram).
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8.3 Reuse Concepts: Solution Objects, Inheritance, and Design Patterns

In this section, we present the object design concepts related to reuse:

• Application Objects and Solution Objects (Section 8.3.1)
• Specification Inheritance and Implementation Inheritance (Section 8.3.2)
• Delegation (Section 8.3.3)
• The Liskov Substitution Principle (Section 8.3.4)
• Delegation and Inheritance in Design Patterns (Section 8.3.5).

8.3.1 Application Objects and Solution Objects 

As we saw in Chapter 2, Modeling with UML, class diagrams can be used to model both the
application domain and the solution domain. Application objects, also called “domain objects,”
represent concepts of the domain that are relevant to the system. Solution objects represent
components that do not have a counterpart in the application domain, such as persistent data
stores, user interface objects, or middleware.

During analysis, we identify entity objects and their relationships, attributes, and
operations. Most entity objects are application objects that are independent of any specific
system. During analysis, we also identify solution objects that are visible to the user, such as
boundary and control objects representing forms and transactions defined by the system. During
system design, we identify more solution objects in terms of software and hardware platforms.
During object design, we refine and detail both application and solution objects and identify
additional solution objects needed to bridge the object design gap.

8.3.2 Specification Inheritance and Implementation Inheritance

During analysis, we use inheritance to classify objects into taxonomies. This allows us to
differentiate the common behavior of the general case, that is, the superclass (also called the
“base class”), from the behavior that is specific to specialized objects, that is, the subclasses
(also called the “derived classes”). The focus of generalization (i.e., identifying a common
superclass from a number of existing classes) and specialization (i.e., identifying new subclasses
given an existing superclass) is to organize analysis objects into an understandable hierarchy.
Readers of the analysis model can start from the abstract concepts, grasp the core functionality
of the system, and make their way down to concrete concepts and review specialized behavior.
For example, when examining the analysis model for the FRIEND emergency response system
described in Chapter 4, Requirements Elicitation, we first focus on understanding how the
system deals with Incidents in general, and then move to the differences in handling Traffic
Accidents or Fires.

The focus of inheritance during object design is to reduce redundancy and enhance
extensibility. By factoring all redundant behavior into a single superclass, we reduce the risk of
introducing inconsistencies during changes (e.g., when repairing a defect) since we have to
make changes only once for all subclasses. By providing abstract classes and interfaces that are
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used by the application, we can write new specialized behavior by writing new subclasses that
comply with the abstract interfaces. For example, we can write an application manipulating
images in terms of an abstract Image class, which defines all the operations that all Images
should support, and a series of specialized classes for each image format supported by the
application (e.g., GIFImage, JPEGImage). When we need to extend the application to a new
format, we only need to add a new specialized class. 

Although inheritance can make an analysis model more understandable and an object
design model more modifiable or extensible, these benefits do not occur automatically. On the
contrary, inheritance is such a powerful mechanism that novice developers often produce code
that is more obfuscated and more brittle than if they had not used inheritance in the first place. 

Consider the following example: Assume for a moment that Java does not provide a set
abstraction and that we needed to write our own. We decide to reuse the java.util.Hashtable
class to implement a set abstraction that we call MySet. Inserting an element in MySet is
equivalent to checking if the corresponding key exists in the table and creating an entry if
necessary. Checking if an element is in MySet is equivalent to checking if an entry is associated
with the corresponding key (see Figure 8-3, left column).

Such an implementation of a set allows us to reuse code and provides us with the desired
behavior. It also provides us, however, with unwanted behavior. For example, Hashtable
implements the containsKey() operation to check if the specified object exists as a key in the
Hashtable and the containsValue() operation to check if the specified object exists as an entry.
containsKey() is inherited by MySet, but containsValue() is overwritten. Given our
implementation, the operation containsValue() invoked on a MySet object has the same
behavior as containsKey(), which is counterintuitive. Worse, a developer could use both
containsKey() and containsValue(), which would make it difficult to change the internal
representation of MySet in the future. For example, if we decided to implement MySet as a List
instead of a Hashtable, all invocations to containsKey() would become invalid. To address this
issue, we could overwrite all operations inherited from Hashtable that should not be used on
MySet with methods throwing exceptions. However, this would lead to a MySet class that is
difficult to understand and reuse. 

Inheritance yields its benefits by decoupling the classes using a superclass from the
specialized subclasses. In doing so, however, it introduces a strong coupling along the
inheritance hierarchy between the superclass and the subclass. Whereas this is acceptable when
the inheritance hierarchy represents a taxonomy (e.g., it is acceptable for Image and GIFImage to
be tightly coupled), it introduces unwanted coupling in the other cases. In our example, two
previously unrelated concepts, Hashtable and Set, become tightly coupled as a result of
subclassing, introducing many issues when Hashtable is modified or when a Set is used by a
class as a specialized Hashtable. The fundamental problem in this example is that, although
Hashtable provides behavior that we would like to reuse in implementing Set, because that
would save us time, there is no taxonomy in which the Set concept is related to the Hashtable
concept.
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The use of inheritance for the sole purpose of reusing code is called implementation
inheritance. With implementation inheritance, developers reuse code quickly by subclassing an
existing class and refining its behavior. A Set implemented by inheriting from a Hashtable is an
example of implementation inheritance. Conversely, the classification of concepts into type
hierarchies is called specification inheritance (also called “interface inheritance”). The UML
class model of Figure 8-4 summarizes the four different types of inheritance we discussed in this
section.

/* Implementation of MySet using 
inheritance */
class MySet extends Hashtable {

/* Constructor omitted */
MySet() {
}

void put(Object element) {
if (!containsKey(element)){

put(element, this);
}

}
boolean containsValue(Object 

element){
return containsKey(element);

}
/* Other methods omitted */

}

/* Implementation of MySet using 
delegation */
class MySet {

private Hashtable table;
MySet() {

table = Hashtable();
}
void put(Object element) {

if (!containsValue(element)){
table.put(element,this);

}
}
boolean containsValue(Object 

element) {
return

(table.containsKey(element));
}
/* Other methods omitted */

}

Figure 8-3 An example of implementation inheritance. The left column depicts a questionable
implementation of MySet using implementation inheritance. The right column depicts an improved
implementation using delegation (UML class diagram and Java).
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8.3.3 Delegation

Delegation is the alternative to implementation inheritance that should be used when reuse is
desired. A class is said to delegate to another class if it implements an operation by resending a
message to another class. Delegation makes explicit the dependencies between the reused class
and the new class. The right column of Figure 8-3 shows an implementation of MySet using
delegation instead of implementation inheritance. The only significant change is the private field
table and its initialization in the MySet() constructor. This addresses both problems we
mentioned before: 

• Extensibility. The MySet on the right column does not include the containsKey()
method in its interface and the new field table is private. Hence, we can change the
internal representation of MySet to another class (e.g., a List) without impacting any
clients of MySet.

• Subtyping. MySet does not inherit from Hashtable and, hence, cannot be substituted for
a Hashtable in any of the client code. Consequently, any code previously using
Hashtables still behaves the same way.

Delegation is a preferable mechanism to implementation inheritance as it does not interfere with
existing components and leads to more robust code. Note that specification inheritance is
preferable to delegation in subtyping situations as it leads to a more extensible design. 

Figure 8-4 Inheritance meta-model (UML class diagram). In object-oriented analysis and design,
inheritance is used for achieving several goals, in particular modeling taxonomies and reusing behavior from
abstract classes. When modeling taxonomies, the inheritance relationships can be identified either during
specializations (when specialized classes are identified after general ones) or during generalizations (when
general classes are abstracted out of a number of specialized ones). When using inheritance for reuse,
specification inheritance represents subtyping relationships, and implementation inheritance represents
reuse among conceptually unrelated classes.

Inheritance

Inheritance

Specification ImplementationInheritance detected
Inheritance Inheritance
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8.3.4 The Liskov Substitution Principle

The Liskov Substitution Principle [Liskov, 1988] provides a formal definition for specification
inheritance. It essentially states that, if a client code uses the methods provided by a superclass,
then developers should be able to add new subclasses without having to change the client code.
For example, in the left column of Figure 8-3, this means that, if a client uses a Hashtable, the
client should not have to be modified when we substitute the Hashtable for any of its subclasses,
for example MySet. Clearly, this is not the case, so the relationship between MySet and
Hashtable is not a specification inheritance relationship. Below is the formal definition of the
Liskov Substitution Principle:

8.3.5 Delegation and Inheritance in Design Patterns

In general, when to use delegation or inheritance is not always clear and requires some
experience and judgement on the part of the developer. Inheritance and delegation, used in
different combinations, can solve a wide range of problems: decoupling abstract interfaces from
their implementation, wrapping around legacy code, and/or decoupling classes that specify a
policy from classes that provide mechanism. 

In object-oriented development, design patterns are template solutions that developers
have refined over time to solve a range of recurring problems [Gamma et al., 1994]. A design
pattern has four elements:

1. A name that uniquely identifies the pattern from other patterns.

2. A problem description that describes the situations in which the pattern can be used.
Problems addressed by design patterns are usually the realization of modifiability and
extensibility design goals and nonfunctional requirements.

3. A solution stated as a set of collaborating classes and interfaces.

4. A set of consequences that describes the trade-offs and alternatives to be considered
with respect to the design goals being addressed.

Liskov Substitution Principle

If an object of type S can be substituted in all the places where an object of type T is expected, then S is
a subtype of T.

Interpretation

In object design, the Liskov Substitution Principle means that if all classes are subtypes of their
superclasses, all inheritance relationships are specification inheritance relationships. In other words, a
method written in terms of a superclass T must be able to use instances of any subclass of T without
knowing whether the instances are of a subclass. Consequently, new subclasses of T can be added
without modifying the methods of T, hence leading to an extensible system. An inheritance relationship
that complies with the Liskov Substitution Principle is called strict inheritance.
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For example, we can restate the problem of writing a set class of Figure 8-3 as
implementing a new class (i.e., MySet) that complies with an existing interface (i.e., the Java Set
interface) reusing the behavior provided by an existing class (i.e., the Hashtable class). Both the
Set interface and the Hashtable class are already provided and neither can be modified. The
Adapter design pattern (Figure 8-5; Appendix A.2) is a template solution for such problems.

The Adapter pattern works as follows: An Adapter class implements each method
declared in the ClientInterface in terms of requests to the LegacyClass. Any conversion of
data structures or adjustment of behaviors is done in the Adapter class so that Adapter behaves
as expected by the Client. The Adapter pattern enables reuse since neither the
ClientInterface nor the LegacyClass need to be modified. The Adapter pattern also
encourages extensibility, as the same Adapter class can be used for any subtypes of the
LegacyClass, as subtypes can be substituted for their supertype, according to the Liskov
Substitution Principle. By applying the Adapter pattern to our Set problem (Figure 8-6), we end
up with the same delegation relationship between MySet and Hashtable as in Figure 8-3.

Note that the Adapter pattern uses both inheritance and delegation. When studying design
patterns, you will notice that many patterns use a mix of inheritance and delegation and therefore
look similar. However, the same mechanisms are used in subtly different ways. To clarify the
differences, we use the following terms to denote different classes participating in the pattern:

• The client class accesses the pattern. In the class diagram of the Adapter pattern
(Figure 8-5), this class is simply called Client. Client classes can be either existing
classes of a class library or new classes of the system under development.

• The pattern interface is the part of the pattern that is visible to the client class. Often,
the pattern interface is realized by an abstract class or an interface. In the Adapter
pattern, this class is called ClientInterface.

• The implementor class provides the lower-level behavior of the pattern. In the Adapter
pattern, the LegacyClass and the Adapter are implementor classes. In many patterns, a
number of collaborating implementor classes are needed to realize the pattern behavior.

• The extender class specializes an implementor class to provide a different
implementation or an extended behavior of the pattern. In the Adapter pattern, the
subtypes of LegacyClass are extender classes. Note that, often, extender classes
represent future classes that developers anticipate.

Since developers have strived to evolve and refine design patterns for maximizing reuse
and flexibility, they are usually not solutions that programmers would initially think of. As
design patterns capture a great deal of knowledge (e.g., by documenting the context and trade-
offs involved in applying a pattern), they also constitute a source of guidance about when to use
inheritance and delegation.

In the next section, we examine the use of design patterns and frameworks for solving a
range of common object design problems.
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Name Adapter Design Pattern

Problem description Convert the interface of a legacy class into a different interface expected by the
client, so that the client and the legacy class can work together without changes.

Solution An Adapter class implements the ClientInterface expected by the client.
The Adapter delegates requests from the client to the LegacyClass and
performs any necessary conversion.

Consequences • Client and LegacyClass work together without modification of neither 
Client nor LegacyClass.

• Adapter works with LegacyClass and all of its subclasses.
• A new Adapter needs to be written for each specialization (e.g., subclass) of 

ClientInterface.

Figure 8-5 An example of design pattern, Adapter (adapted from [Gamma et al., 1994]).

Figure 8-6 Applying the Adapter design pattern to the Set problem of Figure 8-3 (UML class diagram).
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8.4 Reuse Activities: Selecting Design Patterns and Components

System design and object design introduce a strange paradox in the development process. On the
one hand, during system design, we construct solid walls between subsystems to manage
complexity by breaking the system into smaller pieces and to prevent changes in one subsystem
from affecting other subsystems. On the other hand, during object design, we want the software
to be modifiable and extensible to minimize the cost of future changes. These are conflicting
goals: we want to define a stable architecture to deal with complexity, but we also want to allow
flexibility to deal with change later in the development process. This conflict can be solved by
anticipating change and designing for it, as sources of later changes tend to be the same for
many systems: 

• New vendor or new technology. Commercial components used to build the system are
often replaced by equivalent ones from a different vendor. This change is common and
generally difficult to cope with. The software marketplace is dynamic, and vendors
might go out of business before your project is completed.

• New implementation. When subsystems are integrated and tested together, the overall
system response time is, more often than not, above performance requirements. System
performance is difficult to predict and should not be optimized before integration.
Developers should focus on the subsystem services first. This triggers the need for
more efficient data structures and algorithms—often under time constraints.

• New views. Testing the software with real users uncovers many usability problems.
These often translate into the need to create additional views on the same data.

• New complexity of the application domain. The deployment of a system triggers ideas
of new generalizations: a bank information system for one branch may lead to the idea
of a multi-branch information system. The application domain itself might also
increase in complexity: previously, flight numbers were associated with one plane, and
one plane only, but with air carrier alliances, one plane can now have a different flight
number from each carrier.

• Errors. Many requirements errors are discovered when real users start using the system.

The use of delegation and inheritance in conjunction with abstract classes decouples the
interface of a subsystem from its actual implementation. In this section, we provide selected
examples of design patterns that can deal with the type of changes mentioned above.

After identifying a design pattern for each type of anticipated change (Table 8-1), we
discuss the pattern in the context of an actual situation and, in each case, discuss how inheritance
and delegation are used as building blocks to achieve modifiability and extensibility.
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8.4.1 Encapsulating Data Stores with the Bridge Pattern

Consider the problem of incrementally developing, testing, and integrating subsystems realized
by different developers. Subsystems may be completed at different times, delaying the
integration of all subsystems until the last one is completed. To avoid this delay, projects often
use a stub implementation in place of a specific subsystem so that the integration tests can start
even before the subsystems are completed. In other situations, several implementations of the
same subsystem are realized, such as a reference implementation that realizes the specified
functionality with the most basic algorithms, or an optimized implementation that delivers better
performance at the cost of additional complexity. In short, a solution is needed for dynamically
substituting multiple realizations of the same interface for different uses. 

This problem can be addressed with the Bridge design pattern (Appendix A.3, [Gamma
et al., 1994]). For example, consider the storage of Leagues in ARENA. In the early stages of the

Table 8-1  Selected design patterns and the changes they anticipate.

Design Pattern Anticipated Change References

Bridge New vendor, new technology, new implementation. This pattern
decouples the interface of a class from its implementation. It serves
the same purpose as the Adapter pattern except that the developer
is not constrained by an existing component.

Section 8.4.1
Appendix A.3

Adapter New vendor, new technology, new implementation. This pattern
encapsulates a piece of legacy code that was not designed to work
with the system. It also limits the impact of substituting the piece
of legacy code for a different component.

Section 8.4.2
Appendix A.2

Strategy New vendor, new technology, new implementation. This pattern
decouples an algorithm from its implementation(s). It serves the
same purpose as the Adapter and Bridge patterns, except that the
encapsulated unit is a behavior.

Section 8.4.3
Appendix A.9

Abstract 
Factory 

New vendor, new technology. Encapsulates the creation of families
of related objects. This shields the client from the creation process
and prevents the use of objects from different (incompatible)
families. 

Section 8.4.4
Appendix A.1

Command New functionality. This patterns decouples the objects responsible
for command processing from the commands themselves. This
pattern protects these objects from changes due to new
functionality.

Section 8.4.5
Appendix A.4

Composite New complexity of application domain. This pattern encapsulates
hierarchies by providing a common superclass for aggregate and
leaf nodes. New types of leaves can be added without modifying
existing code.

Section 8.4.6
Appendix A.5
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project, we are interested in a rudimentary storage subsystem based on object serialization for
the purpose of debugging and testing the core use cases of the TournamentManagement
subsystem. The entity objects will be subject to many changes, and we do not know yet what
performance bottlenecks will be encountered during storage. Consequently, an efficient storage
subsystem should not be the focus of the first prototype. As discussed during the system design
of ARENA (Section 7.6.4), however, we anticipate that both a file-based implementation and a
relational database implementation of the storage subsystem should be provided, in the first and
second iteration of the system, respectively. In addition, a set of stubs should be provided to
allow early integration testing even before the file-based implementation is ready. To solve this
problem, we apply the Bridge pattern shown in Figure 8-7. The LeagueStore is the interface
class to the pattern, and provides all high-level functionality associated with storage. The
LeagueStoreImplementor is an abstract interface that provides the common interface for the
three implementations, namely the StubStoreImplementor for the stubs, the
XMLStoreImplementor for the file-based implementation, and the JDBCStoreImplementor for
the relational database implementation.

Note that even if most LeagueStoreImplementors provide similar services, using a
Bridge abstraction reduces performance. The design goals we defined at the beginning of system
design (Section 6.4.2) help us decide about performance and modifiability trade-offs. 

Inheritance and delegation in the Bridge pattern

The Bridge pattern interface is realized by the Abstraction class, and its behavior by the
selected ConcreteImplementor class. The design pattern can be extended by providing new
RefinedAbstraction or ConcreteImplementor classes. This pattern is a classic example of
combining specification inheritance and delegation to achieve both reuse and flexibility.

On the one hand, specification inheritance is used between the abstract Implementor
interface and the classes ConcreteImplementors. As a result, each ConcreteImplementor can

Figure 8-7 Applying the Bridge design pattern for abstracting database vendors (UML class diagram).
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be substituted transparently at runtime, from the Abstraction class and RefinedAbstraction
classes. This also ensures that, when adding a new ConcreteImplementor, developers will strive
to provide the same behavior as all other ConcreteImplementors.

On the other hand, Abstraction and Implementor are decoupled using delegation. This
enables the distribution of different behavior in each of the side of the bridge. For example, the
LeagueStore class in Figure 8-7 provides the high-level behavior for storing Leagues, whereas
the concrete LeagueStoreImplementor provides specific lower-level functionality that differs in
its realization from one storage approach to the other. Since LeagueStore and
LeagueStoreImplementor provide different behaviors, they cannot be treated as subtypes
according to the Liskov Substitution Principle.

8.4.2 Encapsulating Legacy Components with the Adapter Pattern

As the complexity of systems increases and the time to market shortens, the cost of software
development significantly exceeds the cost of hardware. Hence, developers have a strong
incentive to reuse code from previous projects or to use off-the-shelf components. Interactive
systems, for example, are now rarely built from scratch; they are developed with user interface
toolkits that provide a wide range of dialogs, windows, buttons, or other standard interface
objects. Interface engineering projects focus on reimplementing only part of an existing system.
For example, corporate information systems, costly to design and build, must be updated to new
client hardware. Often, only the client side of the system is upgraded with new technology; the
back end of the system left untouched. Whether dealing with off-the-shelf component or legacy
code, developers have to deal with code they cannot modify and which usually was not designed
for their system. 

We deal with existing components by encapsulating them. This approach has the
advantage of decoupling the system from the encapsulated component, thus minimizing the
impact of existing software on the new design. This can be done using an Adapter pattern. 

The Adapter design pattern (Appendix A.2, [Gamma et al., 1994]) converts the interface
of a component into an interface that the client expects. This interface is called the
ClientInterface in Figure 8-5. An Adapter class provides the glue between ClientInterface
and LegacyClass. For example, assume the client is the static sort() method of the Java Array
class (Figures 8-8 and 8-9). This method expects two arguments a, an Array of objects, and c, a
Comparator object, which provides a compare() method to define the relative order between
elements. Assume we are interested in sorting strings of the class MyString, which defines the
greaterThan() and an equals() methods. To sort an Array of MyStrings, we need to define a
new comparator, MyStringComparator, which provides a compare() method using
greaterThan() and equals(). MyStringComparator is an Adapter class.1

1. When designing a new system, adaptors are seldom necessary, as the new classes can be defined such that they 
realize the existing interfaces.
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Figure 8-8 Applying the Adapter design pattern for sorting Strings in an Array (UML class diagram).
See also source code in Figure 8-9.

/* Existing target interface */
interface Comparator {

int compare(Object o1, Object o2);
/* ... */

}
/* Existing client */
class Array {

static void sort(Object [] a, Comparator c);
/* ... */

}
/* Existing adaptee class */
class MyString extends String {

boolean equals(Object o);
boolean greaterThan(MyString s);
/* ... */

}
/* New adapter class */
class MyStringComparator implements Comparator {

/* ... */
int compare(Object o1, Object o2) {

int result;
if (((String)o1).greaterThan(o2)) {

result = 1
} else if (((String)o1).equals(o2)) {

result = 0;
} else {

result = -1;
}
return result;

}
}

Figure 8-9 Adapter design pattern example (Java). The static sort() method on Arrays takes two
arguments, an arrays of Objects to be sorted and a Comparator defining the relative order of the elements.
To sort an array of MyStrings, we need to define a comparator called MyStringComparator with the proper
interface. MyStringComparator is an Adapter.
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Inheritance and delegation in the Adapter pattern

The Adapter pattern uses specification inheritance between the ClientInterface and the
Adapter. The Adapter in turn delegates to the LegacyClass implementor class to realize the
operations declared in ClientInterface. On the one hand, this enables all client code that
already uses the ClientInterface to work with instances of Adapter transparently and without
modification of the client. On the other hand, the same Adapter can be used for subtypes of the
LegacyClass.

Note that the Bridge and the Adapter patterns are similar in purpose and structure. Both
decouple an interface from an implementation, and both use a specification inheritance
relationship and a delegation relationship. They differ in the context in which they are used and
in the order in which delegation and inheritance occur. The Adapter pattern uses inheritance first
and then delegation, whereas the Bridge pattern uses delegation first and then inheritance. The
Adapter pattern is applied when the interface (i.e., ClientInterface) and the implementation
(i.e., LegacyClass) already exist and cannot be modified. When developing new code, the
Bridge pattern is a better choice as it provides more extensibility.

8.4.3 Encapsulating Context with the Strategy Pattern

Consider a mobile application running on a wearable computer that uses different networks
protocols depending on the location of the user: assume, for example, a car mechanic using the
wearable computer to access repair manuals and maintenance records for the vehicle under
repair. The wearable computer should operate in the shop with access to a local wireless network
as well as on the roadside using a third-generation mobile phone network, such as UMTS. When
updating or configuring the mobile application, a system administrator should be able to use the
wearable computer with access to a wired network such as Ethernet. This means that the mobile
application needs to deal with different types of networks as it switches between networks
dynamically, based on factors such as location and network costs. Assume that during the
system design of this application, we identify the dynamic switching between wired and
wireless networks as a critical design goal. Furthermore we want to be able to deal with future
network protocols without having to recompile the application. 

To achieve both of these goals, we apply the Strategy design pattern (Appendix A.9,
[Gamma et al., 1994]). The system model and implementation, respectively, are shown in
Figures 8-10 and 8-11. The Strategy class is realized by NetworkInterface, which provides
the common interface to all networks; the Context class is realized by a NetworkConnection
object, which represents a point-to-point connection between the wearable and a remote host.
The Client is the mobile application. The Policy is the LocationManager, which monitors the
current location of the wearable and the availability of networks, and configures the
NetworkConnection objects with the appropriate NetworkInterfaces. When the
LocationManager object invokes the setNetworkInterface() method, the NetworkConnection
object shuts down the current NetworkInterface and initializes the new NetworkInterface
transparently from the rest of the application. 
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Inheritance and delegation in the Strategy pattern

The class diagrams for the Bridge and the Strategy patterns (see Figures 8-7 and 8-10) are
almost identical. The key difference is in the creator of the concrete implementation classes: In
the Bridge pattern, the class Abstraction creates and initializes the ConcreteImplementations.
In the Strategy pattern, however, the Context is not aware of the ConcreteStrategies. Instead,
a client creates the ConcreteStrategy objects and configures the Context. Moreover,
ConcreteImplementations in the Bridge pattern are usually created at initialization time, while
ConcreteStrategies in the Strategy pattern are usually created and substituted several times
during run time.

8.4.4 Encapsulating Platforms with the Abstract Factory Pattern

Consider an application for an intelligent house: the application receives events from sensors
distributed throughout the house (e.g., light bulb on, light bulb off, window open, window
closed, inside and outside temperature, weather forecasts), identifies predefined patterns, and
issues commands for actuators (e.g., turn air-conditioning on, store statistics on energy
consumption, close garage door, trigger theft alarm). Although several manufacturers provide
the hardware to build such applications (e.g., EIB, Zumtobel’s Luxmate), interoperability in this
domain is currently poor, preventing the mix and match of devices from different manufacturers,
and thus, making it difficult to develop a single software solution for all manufacturers.

Figure 8-10 Applying the Strategy pattern for encapsulating multiple implementations of a
NetworkInterface (UML class diagram). The LocationManager implementing a specific policy
configures NetworkConnection with a concrete NetworkInterface (i.e., the mechanism) based on the
current location. The Application uses the NetworkConnection independently of concrete
NetworkInterfaces. See corresponding Java code in Figure 8-11.
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/** The NetworkConnection object represents a single abstract connection
* used by the Client. This is the Context object in Strategy pattern. */
public class NetworkConnection {

private String destination;
private NetworkInterface intf;
private StringBuffer queue;

public NetworkConnect(String destination, NetworkInterface intf) {
this.destination = destination;
this.intf = intf;
this.intf.open(destination);
this.queue = new StringBuffer();

}
public void send(byte msg[]) {

// queue the message to be send in case the network is not ready.
queue.concat(msg);
if (intf.isReady()) {

intf.send(queue);
queue.setLength(0);

}
}
public byte [] receive() {

return intf.receive();
}
public void setNetworkInterface(NetworkInterface newIntf) {

intf.close();
newIntf.open(destination);
intf = newIntf;

}
}
/** The LocationManager decides on which NetworkInterface to use based on
* availability and cost. */
public class LocationManager {

private NetworkInterface networkIntf;
private NetworkConnection networkConn;

/* ... */

// This method is invoked by the event handler when the location 
// may have changed
public void doLocation() {

if (isEthernetAvailable()) {
networkIntf = new EthernetNetwork();

} else if (isWaveLANAvailable()) {
networkIntf = new WaveLANNetwork();

} else if (isUMTSAvailable()) {
networkIntf = new UMTSNetwork();

} else {
networkIntf = new QueueNetwork();

}
networkConn.setNetworkInterface(networkIntf);

}
}

Figure 8-11 Applying the Strategy design pattern for encapsulating multiple implementation of a
NetworkInterface (Java). This implementation is simplified and does not take into account exceptions.
See corresponding UML class diagram in Figure 8-10.
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We use the Abstract Factory design pattern (Appendix A.1) to solve this problem. In
our intelligent house, each manufacturer provides temperature sensors, electric blinds that report
if they are forced in, and intelligent light bulbs that report if they have burned out. As shown in
Figure 8-12, these generic objects are called AbstractProducts (e.g., LightBulb, Blind), and
their concrete realizations are called ConcreteProducts (e.g., EIBLightBulb,
ZumtobelLightBulb, EIBBlind, ZumtobelBlind). One factory for each manufacturer (e.g.,
ZumtobelFactory, EIBFactory) provides methods for creating the ConcreteProducts (e.g.,
createLightBulb(), createBlind()). The Client classes (e.g., a TheftApplication) access
only the interfaces provided by the AbstractFactory and the AbstractProducts, thereby
shielding the Client classes completely from the manufacturer of the underlying products. 

Inheritance and delegation in the Abstract Factory pattern

The Abstract Factory pattern uses specification inheritance to decouple the interface of a
product from its realization. However, since products of the same platform usually depend on
each other and access the concrete product classes, products of different platforms cannot be
substituted transparently. For example, EIBBulbs are incompatible with LuxmateBulbs and
should not be mixed within the same intelligent house system. To ensure that a consistent set of
products is created, the Client can only create products by using a ConcreteFactory, which
delegates the creation operations to the respective products. By using specification inheritance to

Figure 8-12 Applying the Abstract Factory design pattern to different intelligent house platforms (UML
class diagram, dependencies represent «call» relationships).
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decouple ConcreteFactories from their interface, product families from different
manufacturers can be substituted transparently from the client.

8.4.5 Encapsulating Control Flow with the Command Pattern

In interactive systems and in transaction systems, it is often desirable to execute, undo, or store
user requests without knowing the content of the request. For example, consider the case of
matches in the ARENA tournament management system. We want to record individual moves in
matches so that these moves can be replayed by a spectator at a later date. However, we also
want ARENA to support a broad spectrum of games, so we do not want the classes responsible for
recording and replaying moves to depend on any specific game. 

We can apply the Command design pattern (Appendix A.4, [Gamma et al., 1994]) to
this effect. The key to decoupling game moves from their handling is to represent game moves
as command objects that inherit from an abstract class called Move in Figure 8-13. The Move
class declares operations for executing, undoing, and storing commands, whereas
ConcreteCommands classes (i.e., TicTacToeMove and ChessMove in ARENA) implement specific
commands. The classes responsible for recording and replaying games only access the GameMove
abstract class interface, thus making the system extensible to new Games.

Inheritance and delegation in the Command pattern

The Command design pattern uses specification inheritance between the Command class
and ConcreteCommands, enabling new commands to be added independently from the Invoker.
Delegation is used between ConcreteCommands and Receivers, and between Invoker and
Command, enabling ConcreteCommands to be dynamically created, executed, and stored. The
Command pattern is often used in a Model/View/Controller software architecture, where
Receivers are model objects, Invoker and Commands are controller objects, and Clients
creating Commands are view objects.

Figure 8-13 Applying the Command design pattern to Matches in ARENA (UML class diagram). 
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8.4.6 Encapsulating Hierarchies with the Composite Design Pattern

User interface toolkits, such as Swing and Cocoa, provide the application developer with a range
of classes as building blocks. Each class implements a specialized behavior, such as inputting
text, selecting and deselecting a check box, pushing a button, or pulling down a menu. The user
interface design can aggregate these components into Windows to build application-specific
interfaces. For example, a preferences dialog may include a number of on-off check boxes for
enabling different features in the application.

As windows become more complex and include many different user interface objects,
their layout (i.e., moving and resizing each component so that the window forms a coherent
whole) becomes increasingly unmanageable. Consequently, modern toolkits enable the
developer to organize the user interface objects into hierarchies of aggregate nodes, called
“panels,” that can be manipulated the same way as the concrete user interface objects. For
example, our preferences dialog can include a top panel for the title of the dialog and
instructions for the user, a center panel containing the checkboxes and their labels, and a bottom
panel for the ‘ok’ and ‘cancel’ button. Each panel is responsible for the layout of its subpanels,
called “children,” and the overall dialog only has to deal with the three panels (Figures 8-14 and
8-15).

Swing addresses this problem with the Composite design pattern (Appendix A.5,
[Gamma et al., 1994]) as depicted in Figure 8-16. An abstract class called Component is the roof
of all user interface objects, including Checkboxes, Buttons, and Labels. Composite, also a
subclass of Component, is a special user interface object representing aggregates including the
Panels we mentioned above. Note that Windows and Applets (the root of the instance hierarchy)
are also Composite classes that have additional behavior for dealing with the window manager
and the browser, respectively.

Figure 8-14 Anatomy of a preference dialog. Aggregates, called “panels,” are used for grouping user
interface objects that need to be resized and moved together.
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Figure 8-15 UML object diagram for the user interface objects of Figure 8-14.

Figure 8-16 Applying the Composite design pattern to user interface widgets (UML class diagram). The
Swing Component hierarchy is a Composite in which leaf widgets (e.g., Checkbox, Button, Label)
specialize the Component interface, and aggregates (e.g., Panel, Window) specialize the Composite abstract
class. Moving or resizing a Composite impacts all of its children.
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8.4.7 Heuristics for Selecting Design Patterns

Identifying the correct design pattern for a given problem is difficult unless you already have
some experience in using design patterns. Pattern catalogs are large and varied, and one cannot
expect developers to read them completely. As design patterns address a specific design goal or
a specific nonfunctional requirement, another technique is to use key phrases in the
Requirements Analysis Document (RAD) and the System Design Document (SDD) to select
candidate patterns. This is similar to the Abbott’s natural language technique described in
Chapter 5, Analysis. The heuristics box below provides example key phrases for the patterns
covered in this chapter:

8.4.8 Identifying and Adjusting Application Frameworks

Application frameworks

An application framework is a reusable partial application that can be specialized to
produce custom applications [Johnson & Foote, 1988]. In contrast to class libraries,
frameworks are targeted to particular technologies, such as data processing or cellular

Natural language heuristics for selecting design patterns

Design patterns address specific design goals and nonfunctional requirements. Similar to Abbott’s
heuristics described in Chapter 5, Analysis, key phrases can be used to identify candidate design
patterns. Below are examples for the patterns covered in this chapter.

Phrase Design Pattern

• “Manufacturer independence”
• “Platform independence”

Abstract Factory

• “Must comply with existing interface”
• “Must reuse existing legacy component”

Adapter

• “Must support future protocols” Bridge

• “All commands should be undoable”
• “All transactions should be logged”

Command

• “Must support aggregate structures”
• “Must allow for hierarchies of variable depth 

and width” 

Composite

• “Policy and mechanisms should be 
decoupled”.

• “Must allow different algorithms to be 
interchanged at runtime.”

Strategy
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communications, or to application domains, such as user interfaces or real-time avionics. The
key benefits of application frameworks are reusability and extensibility. Framework reusability
leverages the application domain knowledge and the prior effort of experienced developers to
avoid recreation and revalidation of recurring solutions. An application framework enhances
extensibility by providing hook methods, which are overwritten by the application to extend the
application framework. Hook methods systematically decouple the interfaces and behaviors of
an application domain from the variations required by an application in a particular context.
Framework extensibility is essential to ensure timely customization of new application services
and features.

Frameworks can be classified by their position in the software development process.

• Infrastructure frameworks aim to simplify the software development process.
Examples include frameworks for operating systems [Campbell & Islam, 1993],
debuggers [Bruegge et al., 1993], communication tasks [Schmidt, 1997], user interface
design [Weinand et al., 1988], and Java Swing [JFC, 2009]. System infrastructure
frameworks are used internally within a software project and are usually not delivered
to a client. 

• Middleware frameworks are used to integrate existing distributed applications and
components. Common examples include Microsoft’s MFC and DCOM, Java RMI,
WebObjects [Wilson & Ostrem, 1999], WebSphere [IBM], WebLogic Enterprise
Application [BEA], implementations of CORBA [OMG, 2008], and transactional
databases. 

• Enterprise application frameworks are application specific and focus on domains
such as telecommunications, avionics, environmental modeling, manufacturing,
financial engineering [Birrer, 1993], and enterprise business activities [JavaEE, 2009]. 

Infrastructure and middleware frameworks are essential to create rapidly high-quality
software systems, but they are usually not requested by external customers. Enterprise
frameworks, however, support the development of end-user applications. As a result, buying
infrastructure and middleware frameworks is more cost effective than building them [Fayad &
Hamu, 1997].

Frameworks can also be classified by the techniques used to extend them. 

• Whitebox frameworks rely on inheritance and dynamic binding for extensibility.
Existing functionality is extended by subclassing framework base classes and
overriding predefined hook methods using patterns such as the template method pattern
[Gamma et al., 1994]. 

• Blackbox frameworks support extensibility by defining interfaces for components that
can be plugged into the framework. Existing functionality is reused by defining
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components that conform to a particular interface and integrating these components
with the framework using delegation. 

Whitebox frameworks require intimate knowledge of the framework’s internal structure.
Whitebox frameworks produce systems that are tightly coupled to the specific details of the
framework’s inheritance hierarchies, and thus changes in the framework can require the
recompilation of the application. Blackbox frameworks are easier to use than whitebox
frameworks because they rely on delegation instead of inheritance. However, blackbox
frameworks are more difficult to develop because they require the definition of interfaces and
hooks that anticipate a wide range of potential use cases. Moreover, it is easier to extend and
reconfigure blackbox frameworks dynamically, as they emphasize dynamic object relationships
rather than static class relationships. [Johnson & Foote, 1988].

Frameworks, class libraries, and design patterns

Frameworks are closely related to design patterns, class libraries, and components.

Design patterns versus frameworks. The main difference between frameworks and patterns
is that frameworks focus on reuse of concrete designs, algorithms, and implementations in a
particular programming language. In contrast, patterns focus on reuse of abstract designs and
small collections of cooperating classes. Frameworks focus on a particular application domain,
whereas design patterns can be viewed more as building blocks of frameworks.

Class libraries versus frameworks. Classes in a framework cooperate to provide a reusable
architectural skeleton for a family of related applications. In contrast, class libraries are less
domain specific and provide a smaller scope of reuse. For instance, class library components,
such as classes for strings, complex numbers, arrays, and bitsets, can be used across many
application domains. Class libraries are typically passive; that is, they do not implement or
constrain the control flow. Frameworks, however, are active; that is, they control the flow of
control within an application. In practice, developers often use frameworks and class libraries in
the same system. For instance, frameworks use class libraries, such as foundation classes,
internally to simplify the development of the framework. Similarly, application-specific code
invoked by framework event handlers uses class libraries to perform basic tasks, such as string
processing, file management, and numerical analysis. 

Components versus frameworks. Components are self-contained instances of classes that
are plugged together to form complete applications. In terms of reuse, a component is a
blackbox that defines a cohesive set of operations that can be used solely with knowledge of the
syntax and semantics of its interface. Compared with frameworks, components are less tightly
coupled and can even be reused on the binary code level. That is, applications can reuse
components without having to subclass from existing base classes. The advantage is that
applications do not always have to be recompiled when components change. The relationship
between frameworks and components is not predetermined. On the one hand, frameworks can be
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used to develop components, where the component interface provides a facade pattern for the
internal class structure of the framework. On the other hand, components can be plugged into
blackbox frameworks. In general, frameworks are used to simplify the development of
infrastructure and middleware software, whereas components are used to simplify the
development of end-user application software.

A framework example

WebObjects is a set of frameworks for developing interactive Web applications by
accessing existing data from relational databases. WebObjects consists of two infrastructure
frameworks. The WebObjects framework handles the interaction between Web browsers and
Web servers. The Enterprise Object Framework (EOF) handles the interaction between Web
servers and relational databases. The EOF supports database adapters that allow applications to
connect to database management systems from particular vendors. For example, the EOF
provides database adapters for Informix, Oracle, and Sybase servers and ODBC-compliant
adapters. In the following discussion, we concentrate on the WebObjects framework. More
information on the EOF can be found in [Wilson & Ostrem, 1999].

Figure 8-17 shows an example of a dynamic publishing site built with WebObjects. The
WebBrowser originates an HTTP request containing a URL, which is sent to the WebServer. If
the WebServer detects that the request is to a static HTML page, it passes it on the StaticHTML
object, which selects and sends the page back to the WebBrowser as a response. The WebBrowser
then renders it for the user. If the WebServer detects that the request requires a dynamic HTML
page, it passes the request to a WebObjects WOAdaptor. The WOAdaptor packages the incoming

Figure 8-17 An example of dynamic site with WebObjects (UML component diagram).
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HTML request and forwards it to the WebObjectsApplication object. Based on Templates
defined by the developer and relevant data retrieved from the RelationalDatabase, the
WebObjectsApplication then generates an HTML response page, which is passed back through
the WOAdaptor to the WebServer. The WebServer then sends the page to the WebBrowser, which
renders it for the user.

A key abstraction provided by the WebObjects framework is an extension of the HTTP
protocol to manage state. HTTP is a stateless request-response protocol; that is, a response is
formulated for each request, but no state is maintained between successive requests. In many
Web-based applications, however, state must be kept between requests. For example in ARENA,
Players should not identify themselves for each move they play. Moreover, Players must be
able to continue playing in the same Match even if their WebBrowser is restarted. Several
techniques have been proposed to keep track of state information in Web applications, including
dynamically generated URLs, cookies, and hidden HTML fields. WebObjects provides the
classes shown in Figure 8-18 to achieve the same purpose. 

The WOApplication class represents the application running on the WebServer waiting for
requests from the associated WebBrowser. A cycle of the request-response loop begins whenever
the WOAdaptor receives an incoming HTTP request. The WOAdaptor packages this request in a
WORequest object and forwards it to the application object of class WOApplication. Requests are
always triggered by a URL submitted by the WebBrowser. The class WOSession encapsulates the
state of an individual session, allowing it to track different users, even within a single
application. A WOSession consists of one or more WOComponents, which represent a reusable
Web page or portion of a Web page for display within an individual session. WOComponents may
contain DynamicElements. When an application accesses the database, one or more of the
DynamicElements of a component are filled with information retrieved from the database. The

Figure 8-18 WebObject’s State Management Classes. The HTTP protocol is inherently stateless. The
State Management Classes enable information between individual requests to be maintained. 
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WOSessionStore provides persistency for WOSession objects: it stores sessions in the server and
restores them by the application upon request. 

The essence of building a WebObjects application is to refine the classes WOApplication,
WOSession, and WOComponent and to intercept the flow of requests sent and received between
them.   Inherited methods from these classes are overridden when the developer needs to extend
the default behavior. The earliest control point for refining objects of type WOApplication is
when they are constructed. The last point of control is when the application object terminates.
By adding code to the application object constructor or overriding the WOApplication
terminate() method, the developer can customize the behavior of the WebObjects application
as desired.

8.5 Managing Reuse

Historically, software development started as a craft, in which each application was custom
made according to the wishes and needs of a single customer. After all, software development
represented only a fraction of the cost of hardware, and computing solutions were affordable
only to few. With the price of hardware dropping and computing power increasing exponentially,
the number of customers and the range of applications has broadened dramatically. Conversely,
software costs increased as applications became more complex. This trend reached the point
where software represented the largest cost in any computing solution, putting tremendous
economic pressure on the project manager to reduce the cost of software. With no silver bullet in
sight, systematic reuse of code, designs, and processes became an attractive solution. Reuse,
whether design patterns, frameworks, or components, has many technical and managerial
advantages:

• Lower development effort. When reusing a solution or a component, many standard
errors are avoided. Moreover, in the case of design patterns, the resulting system is
more easily extended and more resilient to typical changes. This results in less
development effort and reduces the need for human resources, which can be redirected
to testing the software to ensure better quality.

• Lower risk. When reusing repetitively the same design pattern or component, the
typical problems that will be encountered are known and can be anticipated. Moreover,
the time needed to adapt the design pattern or to glue the component is also known,
resulting in a more predictable development process and fewer risks.

• Widespread use of standard terms. The reuse of a standard set of design patterns and
components fosters the use of a standard vocabulary. For example, terms such as
Adapter, Bridge, Command, or Facade denote precise concepts that all developers
become familiar with. This reduces the number of different terms and solutions to
common problems and reduces misunderstandings among developers.

• Increased reliability. Reuse by itself does not increase reliability or reduce the need for
testing (see the Ariane 501 incident in Section 3.1 as an illustrative example).
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Components and pattern solutions that worked in one context can exhibit unexpected
failures in other contexts. However, a culture of reuse in a software organization can
increase reliability for all of the above reasons: reduced development time can lead to
an increased testing effort, repetitive use of components can lead to a knowledge base
of typical problems to be anticipated, and use of standard terms reduces
communication failures.

Unfortunately, reuse does not occur spontaneously within a development organization.
The main challenges include

• NIH (Not Invented Here) syndrome. Since software engineering education (at least until
recently) emphasizes mostly the design of new solutions, developers often distrust the
reuse of existing solutions, especially when the customization of the solution under
consideration is limited or constrained. In such situations, developers believe that they
can develop a completely new solution that is better adapted to their specific problem
(which is usually true) in less time than what they need to understand the reused
solution (which is usually not true). Moreover, the advantages of reuse are visible only
in the longer term, while the gratification of developing a new implementation is
instantaneous.

• Process support. The processes associated with identifying, reusing, and customizing
an existing solution are different than those involved in creating a brand new solution.
The first set of activities requires painstakingly sifting through a large and evolving
corpus of knowledge and carefully evaluating the findings. The second set of activities
requires creativity and a good understanding of the problem. Most software
engineering tools and methods are better adapted to creative activities than to reuse. For
example, there are currently many catalogs of design patterns, but no systematic
method for novice developers to identify quickly the appropriate pattern that should be
used in a given situation.

• Training. Given the lack of knowledge support tools for reuse, training is the single
most effective method in establishing a reuse culture. Consequently, the burden of
educating developers to specific reusable solutions and components falls on the
development organization. 

In the following sections, we examine how we can document reuse and assign roles to
address the above issues.

8.5.1 Documenting Reuse

Reuse activities involve two types of documentation: the documentation of the template solution
being reused and the documentation of the system that is reusing the solution.
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The documentation of a reusable solutions (e.g., the design pattern, a framework, or a
component) includes not only a description of the solution, but also a description of the class of
problems it addresses, the trade-offs faced by the developer, alternative implementations, and
examples of use. This documentation is typically difficult to produce, as the author of the
reusable solution may not be able to anticipate all the problems it can be used for. Moreover,
such documentation is usually generic and abstract and must be illustrated by concrete examples
for novice developers to fully understand the parameters of the solution. Consequently,
documentation of a reusable solution is usually not ideal. However, developers can
incrementally improve this documentation each time they reuse a solution by adding the
following:

• Reference to a system using the solution. Minimally, the documentation of the reusable
solution should include references to each use. If defects are discovered in the reused
solution, these defects can be systematically corrected in all occurrences of reuse.

• Example of use. Examples are essential for developers to understand the strengths and
limitation of the reused solution. Each occurrence of reuse constitutes an example.
Developers should include a brief summary illustrating the problems being solved and
the adopted solution.

• Alternative solutions considered. As we saw in this chapter, many design patterns are
similar. However, selecting the wrong pattern can lead to more problems than
developing a custom solution. In the documentation of the example, developers should
indicate which other candidate solutions they discarded and why.

• Encountered trade-offs. Reuse, especially in the case of frameworks and components,
often entails making a compromise and selecting a less than optimal solution for some
criteria. For example, one component may offer an interface that is extensible, and
another may deliver better response time. 

The documentation of the system under construction should minimally include references
to all the reused solutions. For example, design patterns are not immediately identifiable in the
code, as the classes involved usually have names different from names used in the standard
pattern. Many patterns draw their benefits from the decoupling of certain classes (e.g., the bridge
client from the bridge implementations), so such classes should remain decoupled during future
changes to the system. Similarly, explicitly documenting which classes use which components
makes it easier to adapt the client classes to newer versions of the reused components.
Consequently, developers can further increase of the benefits of reuse by documenting the links
between reused solutions and their code, in addition to the standard object design
documentation, which we discuss in Chapter 9, Object Design: Specifying Interfaces.

A contributing factor for the high cost of change late in the process is the loss of design
context. Developers forget quickly the reasons behind designing complicated workarounds or
complex data structures during early phases of the process. When changing code late in the
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process, the probability of introducing errors into the system is high. Hence, the reason for
recording trade-offs, examples, alternatives, and other decision making information is also to
reduce the cost of change. In Chapter 12, Rationale Management, we describe more techniques
for systematically capturing such decision-making information.

8.5.2 Assigning Responsibilities

Individual developers assigned to subsystems will not spontaneously turn to design patterns and
components unless they have experience with these topics. To foster a reuse culture, an
organization needs to make the incentives of reuse as high as possible for the individual
developer. This includes access to expert developers who can provide advice and information,
and specific components or patterns, training, and emphasis on reuse during design reviews and
code inspections. The availability of knowledge lowers the frustration experienced when
experiencing the learning curve associated with a component. The explicit review of pattern
usage (or lack thereof) increases the organizational incentive for investing time into looking for
ready solutions.

Below are the main roles involved in reuse:

• Component expert. The component expert is familiar with using a specific
component. The component expert is a developer and usually has received third-party
training in the use of the component.

• Pattern expert. The pattern expert is the analog of the component expert for a family
of design patterns. However, pattern experts are usually self-made and acquire their
knowledge from experience.

• Technical writer. The technical writer must be aware of reuse and document
dependencies between components, design patterns, and the system, as discussed in the
previous section. This may require the technical writer to become familiar with the
solutions typically reused by the organization and with their associated terms.

• Configuration manager. In addition to tracking configurations and versions of
individual subsystems, the configuration manager must also be aware of the versions of
the components that are used. While newer versions of the components may be used,
their introduction requires tests to be repeated and changes related to the upgrade
documented.

The technical means of achieving reuse (e.g., inheritance, delegation, design patterns,
application frameworks) have been available to software engineers for nearly two decades. The
success factors associated with reuse are actually not technical, but managerial. Only an
organization that provides the tools for selecting and improving reusable solutions and the
culture to encourage their use can reap the benefits of design and code reuse.



ARENA Case Study 341

8.6 ARENA Case Study

In this section, we apply three design patterns to the object design of ARENA. As specified during
requirements analysis, we anticipate ARENA to support many different types of games. Hence, in
this section, we focus on the classes related to Games, Matches, and their respective boundary
objects. In particular, we focus on the following design patterns:

• Abstract Factory design pattern (Section 8.6.1). We shield the Tournament and League
objects from Game specifics by turning the Game abstract interface into an
AbstractFactory. This way, only concrete Products need to be supplied for a new
concrete Game.

• Command design pattern (Section 8.6.2). We shield the objects related to playing and
replaying Matches by encapsulating concrete Moves for each Game.

• Observer design pattern (Section 8.6.3). We standardize the interactions between
Match and Move entity objects with MatchView objects across all Games with a
subscriber/publisher paradigm.

In this section, we only focus on Games that involve a sequence of Moves performed by
Players who take turns. We do not consider Games that involve simultaneous or concurrent
actions at this point.

8.6.1 Applying the Abstract Factory Design Pattern

Achieving game independence in ARENA is not as straightforward as it initially appears. In the
analysis model (see Figure 8-19), we define an abstract Game interface to shield the Tournament
and League objects from the specifics of each game. However, supporting a specific Game

Figure 8-19 ARENA analysis objects related to Game independence (UML class diagram).
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involves the tight collaboration of several objects representing the rules of Game, the state of a
Match under progress, specific Moves played by the different contenders, and the Result of the
Match. At the end of a Match, the Results are accumulated in Tournament and League-wide
Statistics. We need to define a Game framework within ARENA that shields the Tournament and
League objects from all the Game specifics, while supporting standard interactions among
specialized Game, Match, Move, Result, and Statistics objects. 

As several specialized objects need to collaborate, we first select the Abstract Factory
design pattern to address the game independence design issue (see Figure 8-20). The abstract
Game interface is an abstract factory that provides methods for creating Matches and
Statistics. Each concrete Game (e.g., TicTacToe and Chess) realizes the abstract Game
interface and provides implementations for the Match and Statistics objects. For example, the
TicTacToe Game implementation returns TTTMatches and TTTStats objects when the
createMatch() and the createStatistics() methods are invoked. The concrete Match objects
(e.g., TTTMatch and ChessMatch) track the current state of the Match and enforce the Game rules.
Each concrete Game also provides a concrete Statistics object for accumulating average
statistics (e.g., average Match length, average number of Moves, number of wins and losses per
player, as well as Game specific Statistics). The League and the Tournament objects each use a
concrete Statistics object to accumulate statistics for the League and the Tournament scope,
respectively. Because the League and Tournament objects only access the abstract Game, Match,
Statistics interfaces, the League and Tournaments work transparently for all Games that
comply with this framework.

8.6.2 Applying the Command Design Pattern

Although Spectators can watch Matches as they occur, we anticipate that many Matches will
be viewed asynchronously, after the fact. Hence, we need to store the sequence of moves in each
Match, so that it can be replayed at a later time.

As described in Section 8.4.5, we apply the Command design pattern and represent each
move as a Command object. The abstract Move object (corresponding to the Command object in the
design pattern) provides the interface to the League and Tournament objects to manipulate Moves
independently from the concrete Games and Matches. The concrete Moves are created by and
stored in a queue in the concrete Match object (Figure 8-21).

To deal with concurrent Spectators replaying the same Match, we need to refine this
solution further. For each request to replay an archived Match, ARENA creates a new
ReplayedMatch that includes its own GameBoard to hold the current state of the replayed Match
and feeds it the Move objects of the archived Match, one at the time. This enables the same Match
to be replayed by many different Spectators independently.

8.6.3 Applying the Observer Design Pattern

ARENA supports multi-player games, such as TicTacToe and Chess. Each Player accesses a
Match in progress through a client application running on his local machine. Consequently,
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potentially many views of the same Match in progress must be kept consistent. To address this

problem, we use a distributed version of the Observer design pattern (Figure 8-22), in which

the Observers are the boundary objects in each client, the Subjects are the GameBoard objects

that maintain the current state of each Match. References between Subjects and Observers are

remote object references provided by Java RMI. In addition to maintaining consistency among

different views of the same Match, this enables us to use the same pattern for ReplayedMatches.

Figure 8-20 Applying the Abstract Factory design pattern to Games (UML class diagram).

Figure 8-21 Applying the Command design pattern to Matches and ReplayedMatches in ARENA (UML
class diagram). 
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8.6.4 Lessons Learned

In this section, we applied three different patterns to address the problem of decoupling ARENA
from specific Games. In this short example, we learned that

• Design patterns mesh and overlap. For example, the Match class participates in two
patterns. It is an AbstractProduct in the Abstract Factory and an Invoker in the
Command pattern.

• Selecting the right pattern is not trivial. There are many published catalogs of design
patterns. Unless a developer is familiar with them and has used them in the past, it is
difficult to assess which pattern to apply in which context. This emphasizes the
importance of documenting patterns with examples, which can then be used by
developers to assess whether a specific pattern is applicable to their problem.

• Design patterns must be refined. Patterns are template solutions, and most often must
be adapted to the problem at hand. When refining a pattern, the use of specification
inheritance and delegation must be examined carefully so that the extensibility
advantages provided by the pattern are not destroyed.

8.7 Further Readings

Inheritance has introduced a wide range of design challenges for the developer. Although it
provides a powerful mechanism for designing reusable components and for existing classes, it
also enables developers to create complex control structures that are difficult to understand and
test, resulting in brittle systems. Ever since it was introduced in programming languages,
researchers have attempted to provide ways of distinguishing “good” uses of inheritance from
“bad” uses and come up with a generalized set of design principles. 

Figure 8-22 Applying the Observer design pattern to maintain consistency across MatchViews (UML
class diagram).
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Marvin Minsky is credited with inventing inheritance in Frames, a framework for
representing knowledge in artificial intelligence [Minsky, 1975]. Inheritance was later refined
and incorporated into early object-oriented programming languages such as Smalltalk [Goldberg
& Kay, 1976]. Rumbaugh and his colleagues were the first to introduce inheritance into a
modeling language called OMT [Rumbaugh et al., 1991], which has greatly influenced UML. 

The Liskov Substitution Principle [Liskov, 1988] introduced a formal definition of
subtyping, essentially differentiating specification inheritance from implementation inheritance.
Although simple to understand, it is difficult to apply as a design principle. 

In Object-Oriented Software Construction [Meyer, 1997], initially published in 1989,
Bertrand Meyer formulated the open-closed principle, stating that abstract classes should be
open for extension but closed to modification. Object-Oriented Analysis and Design [Martin &
Odell, 1992] further developed these design principles.

The publication of Design Patterns [Gamma et al., 1994], however, opened up a different
approach to reuse, by offering template solutions to problems that occur in almost every design.
By combining, meshing, and overlapping individual patterns, a developer could address many
extensibility and reusability issues by applying robust solutions. The pattern concept for
encoding knowledge for reuse became so successful and popular that other authors applied it to
other development activities, such as software architecture [Buschmann et al., 1996] and
analysis [Fowler, 1997].

8.8 Exercises

8-1 Consider the ARENA object design model. For each of the following objects, indicate if it
is an application object or a solution object:
• League
• LeagueStore
• LeagueXMLStoreImplementor
• Match
• MatchView
• Move
• ChessMove

8-2 Indicate which occurrences of the following inheritance relationships are specification
inheritance and which are implementation inheritance:

• A Rectangle class inherits from a Polygon class.
• A Set class inherits from a BinaryTree class.
• A Set class inherits from a Bag class (a Bag is defined as an unordered collection).
• A Player class inherits from a User class.
• A Window class inherits from a Polygon class.

8-3 Consider an existing game of bridge written in Java. We are interested in integrating
this bridge game into ARENA. Which design pattern would you use? Draw a UML class
diagram relating the ARENA objects with some of the classes you would expect to find in
the bridge game.
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8-4 Consider a workflow system supporting software developers. The system enables
managers to model the process the developers should follow in terms of activities and
work products. The manager can assign specific processes to each developer and set
deadlines for the delivery of each work product. The system supports several types of
work products, including formatted text, picture, and URLs. The manager, while
editing the workflow, can dynamically set the type of each work product at run time.
Assuming one of your design goals is to design the system so that more work product
types can be added in the future, which design pattern would you use to represent work
products?

8-5 Consider a system that includes a database client and two redundant database servers.
Both database servers are identical: the first acts as a main server, the second acts as a
hot back-up in case the main server fails. The database client accesses the servers
through a single component called a “gateway,” hence hiding from the client which
server is currently being used. A separate policy object called a “watchdog” monitors
the requests and responses of the main server and, depending on the responses, tells the
gateway whether to switch over to the back-up server. What do you call this design
pattern? Draw a UML class diagram to justify your choice.

8-6 In Section 8.4.1, we used a Bridge pattern to decouple the implementation of the ARENA
LeagueStore subsystem from its interface, enabling us to provide different
implementations for the purpose of testing. Ideally, we would apply the Bridge pattern
to each subsystem in our system design to facilitate testing. Unfortunately, this is not
always possible. Give an example of a subsystem where the Bridge pattern cannot be
used.

8-7 Consider the following design goals. Indicate the candidate pattern(s) you would
consider to satisfy each goal:

• Given a legacy banking application, encapsulate the existing business logic
component.

• Given a chess program, enable future developers to substitute the planning
algorithm that decides on the next move with a better one.

• Given a chess program, enable a monitoring component to switch planning
algorithms at runtime, based on the opposing player’s style and response time.

• Given a simulation of a mouse solving a maze, enable the path evaluation
component to evaluate different paths independently of the types of moves
considered by the mouse.

8-8 Consider an application that must select dynamically an encryption algorithm based on
security requirements and computing time constraints. Which design pattern would you
select? Draw a UML class diagram depicting the classes in the pattern and justify your
choice.
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\ 9
Object Design:
Specifying Interfaces

If you have a procedure with 10 parameters, you probably 
missed some.

—Alan Perlis, Epigrams in Programming

During object design, we identify and refine solution objects to realize the subsystems
defined during system design. During this activity, our understanding of each object deepens: we
specify the type signatures and the visibility of each of the operations, and, finally, we describe
the conditions under which an operation can be invoked and those under which the operation
raises an exception. As the focus of system design was on identifying large chunks of work that
could be assigned to individual teams or developers, the focus of object design is on specifying
the boundaries between objects. At this stage in the project, a large number of developers
concurrently refines and changes many objects and their interfaces. The pressure to deliver is
increasing and the opportunity to introduce new, complex faults into the design is still there. The
focus of interface specification is for developers to communicate clearly and precisely about
increasingly lower-level details of the system.

The interface specification activities of object design include

• identifying missing attributes and operations

• specifying type signatures and visibility

• specifying invariants

• specifying preconditions and postconditions.

In this chapter, we provide an overview of the concepts of interface specification. We
introduce OCL (Object Constraint Language) as a language for specifying invariants,
preconditions, and postconditions. We discuss heuristics and stylistic guidelines for writing
readable constraints. Finally, we examine the issues related to documenting and managing
interface specifications.
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9.1 Introduction: A Railroad Example

Stuttgart: Evolving a streetcar into a light rail system

Until 1976, the main public mass transportation system in Stuttgart was a streetcar system. The system
was extensive and used by many passengers. However, streetcars could only hold a rather limited
amount of passengers and shared streets with cars. With car traffic continually increasing, the city of
Stuttgart opted to convert the streetcar system into a more efficient off-street light rail system. The
larger gauge of light rail cars would allow larger cars with more capacity than streetcars. Moreover, the
construction of dedicated rails would allow light rail cars to move at faster speeds. And because light
rail speed is independent of the street traffic, schedules could be predictable even during rush hour.

The conversion was initiated in 1976. However, given the extensive reach of the streetcar network and
the number of lines to convert, the city took an evolutionary approach. The streetcar lines were
converted one at the time, operating both types of rolling stock during the transition period. This
evolutionary approach faced many challenges that arose from incompatibilities between light rail cars
and streetcars.

• Gauge. The light rail system used a standard gauge (1450 mm), and the streetcar system used a 
meter gauge (1000 mm). As several stations needed to accommodate several lines, the tracks had to 
be fitted with three rails instead of the usual two, so that both types of cars could use the same track. 
In addition to more rails, this resulted in more complex switches.

• Station platforms. Streetcars were designed for passengers who entered the cars from the street level. 
Light rail cars were designed for passengers who enter from a raised platform. For stations that 
accommodated both types of rolling stock, platforms were raised on one end and low on the other 
end. Because each part of the platform must be at least as long as its respective trains, all platforms 
became much longer.

• Signaling. Streetcars observed signals that were similar to traffic lights observed by cars: traffic 
lights open and close on a periodic basis, mostly independent of the current traffic situation. Light 
rail signaling, however, is similar to freight train signaling, in which trains are dispatched from a 
central location and track circuits monitor the location of each train. Consequently, the signaling for 
the light rail had to be compatible with street car rolling stock.

Given the length of the transition period, addressing the challenges introduced by the dual gauge system
enabled the city to avoid interruptions in the transport system and meet the rising passenger demand.
The project was successfully completed in December 2007 when the last street car line was retired.

Standard gaugeOne meter gauge

(light rail train)(streetcar)

Light rail trainStreetcar
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This example illustrates the concept of interface: a streetcar, like a software object,
provides services to clients and makes certain assumptions about its environment. For rail tracks,
the interface of the streetcar is the wheels. If the distance between the wheels of the street car is
increased, the rails must be adjusted accordingly. For passengers, the interface to the streetcar is
the door. If the door of the street car is higher, the passengers need a higher platform to enter the
street car. For the signaling system, the interface is the driver who monitors the traffic signals. If
a new signaling system is introduced, the driver needs to be retrained. If any attribute of these
interfaces changes (e.g., distance between the wheels, height of the door, signaling equipment),
the street car cannot provide its services until the interfacing system is adapted. The same
applies to software development: objects interact with other objects through interfaces that
include a set of operations, each accepting a set of parameters and producing a result, and a set
of assumptions about the behavior of each operation. If the operations or the assumptions
change, the object cannot accomplish its work and provide the advertised services. In this
chapter, we discuss the object design activities related to interface specification.

Section 9.2 provides an overview of interface specification. Section 9.3 defines the main
interface specification concepts, including type signatures, constraints, and contracts, and
provide an introduction into UML’s Object Constraint Language. Section 9.4 describes in more
detail the activities of interface specification using the ARENA system as an example. Section 9.5
discusses management issues related to interface specification, and object design in general,
including documenting object interfaces and assigning responsibilities.

9.2 An Overview of Interface Specification

At this point in system development, we have made many decisions about the system and
produced a wealth of models:

• The analysis object model describes the entity, boundary, and control objects that are
visible to the user. The analysis object model includes attributes and operations for each
object.

• Subsystem decomposition describes how these objects are partitioned into cohesive
pieces that are realized by different teams of developers. Each subsystem includes high-
level service descriptions that indicate which functionality it provides to the others. 

• Hardware/software mapping identifies the components that make up the virtual
machine on which we build solution objects. This may include classes and APIs
defined by existing components.

• Boundary use cases describe, from the user’s point of view, administrative and
exceptional cases that the system handles. 

• Design patterns selected during object design reuse describe partial object design
models addressing specific design issues.
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All these models, however, reflect only a partial view of the system. Many puzzle pieces
are still missing and many others are yet to be refined. The goal of object design is to produce an
object design model that integrates all of the above information into a coherent and precise
whole. The goal of interface specification, the focus of this chapter, is to describe the interface of
each object precisely enough so that objects realized by individual developers fit together with
minimal integration issues. To this end, interface specification includes the following activities:

• Identify missing attributes and operations. During this activity, we examine each
subsystem service and each analysis object. We identify missing operations and
attributes that are needed to realize the subsystem service. We refine the current object
design model and augment it with these operations.

• Specify visibility and signatures. During this activity, we decide which operations are
available to other objects and subsystems, and which are used only within a subsystem.
We also specify the return type of each operation as well as the number and type of its
parameters. This goal of this activity is to reduce coupling among subsystems and
provide a small and simple interface that can be understood easily by a single
developer. 

• Specify contracts. During this activity, we describe in terms of constraints the behavior
of the operations provided by each object. In particular, for each operation, we describe
the conditions that must be met before the operation is invoked and a specification of
the result after the operation returns.

The large number of objects and developers, the high rate of change, and the concurrent
number of decisions made during object design make object design much more complex than
analysis or system design. This represents a management challenge, as many important
decisions tend to be resolved independently and are not communicated to the rest of the project.
Object design requires much information to be made available among the developers so that
decisions can be made consistent with decisions made by other developers and consistent with
design goals. The Object Design Document, a live document describing the specification of each
class, supports this information exchange.

9.3 Interface Specification Concepts

In this section, we present the principal concepts of interface specification:

• Class Implementor, Class Extender, and Class User (Section 9.3.1)
• Types, Signatures, and Visibility (Section 9.3.2)
• Contracts: Invariants, Preconditions, and Postconditions (Section 9.3.3)
• Object Constraint Language (Section 9.3.4)
• OCL Collections: Sets, Bags, and Sequences (Section 9.3.5)
• OCL Qualifiers: forAll and exists (Section 9.3.6).
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9.3.1 Class Implementor, Class Extender, and Class User

So far, we have treated all developers as equal. Now that we are delving into the details of object
design and implementation, we need to differentiate developers based on their point of view.
While all use the interface specification to communicate about the class of interest, they view the
specifications from radically different point of views (see also Figure 9-1):

• The class implementor is responsible for realizing the class under consideration. Class
implementors design the internal data structures and implement the code for each
public operation. For them, the interface specification is a work assignment.

• The class user invokes the operations provided by the class under consideration during
the realization of another class, called the client class. For class users, the interface
specification discloses the boundary of the class in terms of the services it provides and
the assumptions it makes about the client class.

• The class extender develops specializations of the class under consideration. Like
class implementors, class extenders may invoke operations provided by the class of
interest, the class extenders focus on specialized versions of the same services. For
them, the interface specification both a specifies the current behavior of the class and
any constraints on the services provided by the specialized class.

For example, consider the ARENA Game abstract class (Figure 9-2). The developer
responsible for realizing the Game class, including operations that apply to all Games, is a class
implementor. The League and Tournament classes invoke operations provided by the Game
interface to organize and start Matches. Developers responsible for League and Tournament are
class users of Game. The TicTacToe and Chess classes are concrete Games that provide
specialized extensions to the Game class. Developers responsible for those classes are class
extenders of Game.

Figure 9-1 The Class Implementor, the Class Extender, and the Class User role (UML use case
diagram).
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9.3.2 Types, Signatures, and Visibility

During analysis, we identified attributes and operations without necessarily specifying their
types or their parameters. During object design, we refine the analysis and system design models
by completing type and visibility information. The type of an attribute specifies the range of
values the attribute can take and the operations that can be applied to the attribute. For example,
consider the attribute maxNumPlayers of the Tournament class in ARENA (Figure 9-3).
maxNumPlayers represent the maximum number of Players who can be accepted in a given
Tournament. Its type is int, denoting that it is an integer number. The type of the
maxNumPlayers attribute also defines the operations that can be applied to this attribute: we can
compare, add, subtract, or multiply other integers to maxNumPlayers.

Operation parameters and return values are typed in the same way as attributes are. The type
constrains the range of values the parameter or the return value can take. Given an operation, the
tuple made out of the types of its parameters and the type of the return value is called the signature
of the operation. For example, the acceptPlayer() operation of Tournament takes one parameter
of type Player and does not have a return value. The signature for acceptPlayer() is then
acceptPlayer(Player):void. Similarly, the getMaxNumPlayers() operation of Tournament
takes no parameters and returns an int. The signature of getMaxNumPlayers() is then
getMaxNumPlayers(void):int.

The class implementor, the class user, and the class extender all access the operations and
attributes of the class under consideration. However, these developers have different needs and
are usually not allowed to access all operations of the class. For example, a class implementor
accesses the internal data structures of the class that the class user cannot see. The class extender
accesses only selected internal structures of superclasses. The visibility of an attribute or an
operation is a mechanism for specifying whether the attribute or operation can be used by other
classes or not. UML defines four levels of visibility:

• A private attribute can be accessed only by the class in which it is defined. Similarly, a
private operation can be invoked only by the class in which it is defined. Private
attributes and operations cannot be accessed by subclasses or calling classes. Private
operations and attributes are intended for the class implementor only.

Figure 9-2 ARENA Game abstract class with user classes and extender classes.
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• A protected attribute or operation can be accessed by the class in which it is defined
and by any descendant of that class. Protected operations and attributes cannot be
accessed by any other class. Protected operations and attributes are intended for the
class extender.

• A public attribute or operation can be accessed by any class. The set of public
operations and attributes constitute the public interface of the class and is intended for
the class user. 

• An attribute or an operation with visibility package can be accessed by any class in the
nearest enclosing package. This visibility enables a set of related classes (for example,
forming a subsystem) to share a set of attributes or operations without having to make
them public to the entire system.

Visibility is denoted in UML by prefixing the name of the attribute or the operation with a
character symbol: – for private, # for protected, + for public, or ~ for package. For example, in
Figure 9-3, we specify that the maxNumPlayers attribute of Tournament is private, whereas all
the class operations are public.

Type information alone is often not sufficient to specify the range of legitimate values of
an attribute. In the Tournament example, the int type allows maxNumPlayers to take negative
values, which does not make sense in the application domain. We address this issue with
contracts.

public class Tournament {
private int maxNumPlayers;
/* Other fields omitted */

public Tournament(League l, int maxNumPlayers)
public int getMaxNumPlayers() {…};
public List getPlayers() {…};
public void acceptPlayer(Player p) {…};
public void removePlayer(Player p) {…};
public boolean isPlayerAccepted(Player p) {…};

/* Other methods omitted */
}

Figure 9-3  Declaration for the Tournament class (UML class model and Java excerpts).

Tournament

+acceptPlayer(p:Player)
+removePlayer(p:Player)

+getMaxNumPlayers():int
+getPlayers():List

-maxNumPlayers:int

+isPlayerAccepted(p:Player):boolean
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9.3.3 Contracts: Invariants, Preconditions, and Postconditions

Contracts are constraints on a class that enable class users, implementors, and extenders to
share the same assumptions about the class [Meyer, 1997]. A contract specifies constraints that
the class user must meet before using the class as well as constraints that are ensured by the class
implementor and the class extender when used. Contracts include three types of constraints:

• An invariant is a predicate that is always true for all instances of a class. Invariants are
constraints associated with classes or interfaces. Invariants are used to specify
consistency constraints among class attributes.

• A precondition is a predicate that must be true before an operation is invoked.
Preconditions are associated with a specific operation. Preconditions are used to
specify constraints that a class user must meet before calling the operation. 

• A postcondition is a predicate that must be true after an operation is invoked.
Postconditions are associated with a specific operation. Postconditions are used to
specify constraints that the class implementor and the class extender must ensure after
the invocation of the operation.

For example, consider the Java interface for the Tournament from Figure 9-3. This class
provides an acceptPlayer() method to add a Player in the Tournament, a removePlayer()
method to withdraw a Player from the Tournament (e.g., because the player cancelled his
application), and a getMaxNumPlayers() method to get the maximum number of Players who
can participate in this Tournament.

An example of an invariant for the Tournament class is that the maximum number of
Players in the Tournament should be positive. If a Tournament is created with a maxNumPlayers
that is zero, the acceptPlayer() method will always violate its contract and the Tournament
will never start. Using a boolean expression, in which t is a Tournament, we can express this
invariant as

t.getMaxNumPlayers() > 0

An example of a precondition for the acceptPlayer() method is that the Player to be
added has not yet already been accepted in the Tournament and that the Tournament has not yet
reached its maximum number of Players. Using a boolean expression, in which t is a
Tournament and p is a Player, we express this invariant as

 !t.isPlayerAccepted(p) and t.getNumPlayers() < t.getMaxNumPlayers()
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An example of a postcondition for the acceptPlayer() method is that the current number
of Players must be exactly one more than the number of Players before the invocation of
acceptPlayer(). We can express this postcondition as

 t.getNumPlayers_afterAccept = t.getNumPlayers_beforeAccept + 1

where numPlayers_afterAccept and numPlayers_afterAccept are the current and number of
Players before and after acceptPlayer(), respectively.

We use invariants, preconditions, and postconditions to specify special or exceptional
cases unambiguously. It is also possible to use constraints to completely specify the behavior of
an operation. Such a use of constraints, called “constraint-based specification,” however, is
difficult and can be more complicated than implementing the operation itself. In this book, we
do not describe pure constraint-based specifications. Instead, we focus on specifying operations
using both constraints and natural language and emphasizing boundary cases for the purpose of
better communication among developers.

9.3.4 Object Constraint Language

A constraint can be expressed in natural language or in a formal language such as Object
Constraint Language (OCL) [OMG, 2006]. OCL is a language that allows constraints to be
formally specified on single model elements (e.g., attributes, operations, classes) or groups of
model elements (e.g., associations and participating classes). In the next two sections, we
introduce the basic syntax of OCL. For a complete tutorial on OCL, we refer to [Warmer &
Kleppe, 2003].

A constraint is expressed as a boolean expression returning the value True or False. A
constraint can be depicted as a note attached to the constrained UML element by a dependency
relationship. Figure 9-4 depicts a class diagram of Tournament example of the previous section
using UML and OCL.

Figure 9-4 Examples of invariants, preconditions, and postconditions in OCL attached as notes to the
UML model (UML class diagram).
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Attaching OCL expressions to diagrams can lead to clutter. For this reason, OCL
expressions can be alternatively expressed in a textual form. For example, the invariant for the
Tournament class requiring the attribute maxNumPlayers to be positive is written as follows:

The context keyword indicates the entity to which the expression applies. This is
followed by one of the keywords inv, pre, and post, which correspond to the UML stereotypes
«invariant», «precondition», and «postcondition», respectively. Then follows the actual
OCL expression. OCL’s syntax is similar to object-oriented languages such as C++ or Java.
However, OCL is not a procedural language and thus cannot be used to denote control flow.
Operations can be used in OCL expressions only if they do not have any side effects.

For invariants, the context for the expression is the class associated with the invariant. The
keyword self (e.g., self.numElements) denotes all instances of the class.1 Attributes and
operations are accessed using the dot notation (e.g., self.maxNumPlayers accesses
maxNumPlayers in the current context). The self keyword can be omitted if there is no
ambiguity.

For preconditions and postconditions, the context of the OCL expression is an operation.
The parameters passed to the operation can be used as variables in the expression. For example,
consider the following precondition on the acceptPlayer() operation in Tournament:

The variable p in the constraint !isPlayerAccepted(p) refers to the parameter p passed to
the acceptPlayer(p) operation. As this is a precondition, the constraint must be True before the
execution of the acceptPlayer(p) operation. Hence, the constraint reads in English:
“acceptPlayer(p) assumes that p has not yet been accepted in the Tournament”. We can write
several preconditions for the same operation. If there are more than one precondition for a given
operation, all preconditions must be True before the operation can be invoked. For example, we
can also state that the Tournament must not yet have reached the maximum number of Players
before invoking acceptPlayer():

context Tournament inv:
self.getMaxNumPlayers() > 0

1. Note that OCL uses the keyword self to represent the same concept as the Java and C++ keyword this.

context Tournament::acceptPlayer(p:Player) pre:
!isPlayerAccepted(p)

context Tournament::acceptPlayer(p:Player) pre:
getNumPlayers() < getMaxNumPlayers()
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Post conditions are written in the same way as preconditions, except for the keyword post
indicating that the constraint is evaluated after the operation returns. For example, the following
postcondition on acceptPlayer(p) states that the Player p should be known to the Tournament
after acceptPlayer() returns:

For postconditions, we often need to refer to the value of an attribute before and after the
execution of the operation. For this purpose, the suffix @pre denotes the value of self or an
attribute before the execution of the operation. For example, if we want to state that the number
of Players in the Tournament increases by one with the invocation of acceptPlayer(), we need
to refer to the value of getNumPlayers() before and after the invocation of acceptPlayer(). We
can write the following postcondition: 

@pre.getNumPlayers() denotes the value returned by getNumPlayers() before invoking
acceptPlayer(), and getNumPlayers() denotes the value returned by the same operation after
invoking acceptPlayer(). Similar to preconditions, if there is more than one postcondition for a
given operation, all postconditions must be satisfied after the operation completes.

We can therefore write the contract for the removePlayer() operation with the same
approach:

The creators and users of OCL constraints are developers during object design and during
implementation. In Java programs, tools such as iContract [Kramer, 1998] enable developers to
document constraints in the source code using Javadoc style tags, so that constraints are more
readily accessed and updated. Figure 9-5 depicts the Java code corresponding to the constraints
introduced so far.

context Tournament::acceptPlayer(p:Player) post:
isPlayerAccepted(p)

context Tournament::acceptPlayer(p:Player) post:
getNumPlayers() = self@pre.getNumPlayers() + 1

context Tournament::removePlayer(p:Player) pre:
isPlayerAccepted(p)

context Tournament::removePlayer(p:Player) post:
!isPlayerAccepted(p)

context Tournament::removePlayer(p:Player) post:
getNumPlayers() = self@pre.getNumPlayers() - 1
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/** A Tournament is a series of Matches among a set of Players
* which ends with a single winner. The Game and TournamentStyle of a
* Tournament is determined by the League in which the Tournament is 
* played.
*/
public class Tournament {

/** The maximum number of players is positive at all times.
* @invariant maxNumPlayers > 0
*/
private int maxNumPlayers;

/** The players List contains references to Players who are 
* are registered with the Tournament.
*/
private List players;

/* Constructors omitted */

/** Returns the current number of players in the tournament.
*/
public int getNumPlayers() {…}

/** Returns the maximum number of players in the tournament.
*/
public int getMaxNumPlayers() {…}

/** The acceptPlayer() operation assumes that the specified player
* has not been accepted in the Tournament yet.
* @pre !isPlayerAccepted(p)
* @pre getNumPlayers() < maxNumPlayers
* @post isPlayerAccepted(p)
* @post getNumPlayers() = self@pre.getNumPlayers() + 1
*/
public void acceptPlayer (Player p) {…}

/** The removePlayer() operation assumes that the specified player
 * is currently in the Tournament.
* @pre isPlayerAccepted(p)
* @post !isPlayerAccepted(p)
* @post getNumPlayers() = self@pre.getNumPlayers() - 1
*/
public void removePlayer(Player p) {…}

/* Other methods omitted */
}

Figure 9-5  Method declarations for the Tournament class annotated with preconditions, postconditions,
and invariants (Java, constraints using Javadoc style tags).



Interface Specification Concepts 361

9.3.5 OCL Collections: Sets, Bags, and Sequences

In general, constraints involve an arbitrary number of classes and attributes. Consider the class
model of Figure 9-6 representing the associations among the League, Tournament, and Player
classes. Let’s assume we want to refine the model with the following constraints:

1. A Tournament’s planned duration must be under one week.
2. Players can be accepted in a Tournament only if they are already registered with the

corresponding League.
3. The number of active Players in a League are those that have taken part in at least one

Tournament of the League.

To better understand these constraints, let’s examine them for a specific group of instances
(see Figure 9-7). The tttExpert:League includes four Players, alice, bob, marc, and joe, and
two Tournaments, a winter:Tournament and a xmas:Tournament. alice and bob are competing
in the winter:Tournament while bob, marc, and joe are competing in the xmas:Tournament.
The chessNovice:League currently only includes one Player, zoe, and no Tournaments. Now,
let’s review the above constraints in terms of the instances of Figure 9-7:

1. The winter:Tournament lasts two days, the xmas:Tournament three days, both under a
week.

Figure 9-6 Associations among League, Tournament, and Player classes in ARENA.

Tournament

+players

* +tournaments

{ordered}

+start:Date
+end:Date
+acceptPlayer(p:Player)

*
League

+start:Date
+end:Date
+getActivePlayers():Set

* Player

+name:String
+email:String

* +players

+tournaments*



362 Chapter 9  •  Object Design: Specifying Interfaces

2. All Players of the winter:Tournament and the xmas:Tournament are associated with
tttExpert:League. The Player zoe, however, is not part of the tttExpert:League
and does not take part in either Tournament.

3. tttExpert:League has four active Players, whereas the chessNovice:League has
none, because zoe does not take part in any Tournament.

At first sight, these constraints vary quite a bit: for example, the first constraint involves
attributes of a single class (Tournament.start and Tournament.end); the second one involves
three classes (i.e., Player, Tournament, League) and their associations; the third involves a set of
Matches within a single Tournament. In all cases, we start with the class of interest and navigate
to one or more classes in the model.

In general, we distinguish three cases of navigation (Figure 9-8):

• Local attribute. The constraint involves an attribute that is local to the class of interest
(e.g., duration of a Tournament in constraint 1),

• Directly related class. The expression involves the navigation of a single association to
a directly related class (e.g., Players of a Tournament, League of a Tournament).

• Indirectly related class. The constraint involves the navigation of a series of
associations to an indirectly related class (e.g., the Players of all Tournaments of a
League).

Figure 9-7 Example with two Leagues, two Tournaments, and five Players (UML object diagram).
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All constraints can be built using a combination of these three basic cases of navigation.
Once we know how to deal with these three cases of navigation, we can build any constraint. We
already know how to deal with the first type of constraint with the dot notation, as we saw in the
previous section. For example, we can write constraint 1 as follows:

In the second constraint, however, the expression league.players can actually refer to
many objects, since the players association is a many-to-many association. To deal with this
situation, OCL provides additional data types called collections. There are three types of
collections:

• OCL sets are used when navigating a single association. For example, navigating the
players association of the winter:Tournament yields the set {alice, bob}.
Navigating the players association from the tttExpert:League yields the set {alice,
bob, marc, joe}. Note, however, that navigating an association of multiplicity 1
yields directly an object, not a set. For example, navigating the league association from
winter:Tournament yields tttExpert:League (as opposed to {tttExpert:League}).

• OCL sequences are used when navigating a single ordered association. For example,
the association between League and Tournament is ordered. Hence, navigating the
tournaments association from tttExpert:League yields [winter:Tournament,
xmas:Tournament] with the index of winter:Tournament and xmas:Tournament being
1 and 2, respectively.

Figure 9-8 There are only three basic types of navigation. Any OCL constraint can be built using a
combination of these three types.
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• OCL bags are multisets: they can contain the same object multiple times. Bags are
used to accumulate the objects when accessing indirectly related objects. For example,
when determining which Players are active in the tttExpert:League, we first
navigate the tournaments association of tttExpert, then the players association from
winter:Tournament, and finally the players association from xmas:Tournament,
yielding the bag {alice, bob, bob, marc, joe}. The bag resulting from navigating
the same associations from chessNovice:League results in the empty bag, as there are
no Tournaments in the chessLeague. In cases where the number of occurrences of each
object in the bag is undesired, the bag can be converted to a set.

OCL provides many operations for accessing collections. The most often used are

• size, which returns the number of elements in the collection
• includes(object), which returns True if object is in the collection
• select(expression), which returns a collection that contains only the elements of the

original collection for which expression is True
• union(collection), which returns a collection containing elements from both the

original collection and the collection specified as parameter
• intersection(collection), which returns a collection that contains only the

elements that are part of both the original collection and the collection specified as
parameter

• asSet(collection), which returns a set containing each element of the collection.

To distinguish between attributes in classes from collections, OCL uses the dot notation for
accessing attributes and the -> operator for accessing collections. For example, constraint 2 (on
page 361) can be expressed with an includes operation as follows:

The context is the operation acceptPlayer() in the Tournament class. To get to the
Players class, we need to navigate first via the association between Tournament and League,
and then via the association between League and Player. We refer to the league class by using
the role name attached to the association, or if no name is available, we use the name of the
related class with the first letter in lowercase. The next association we navigate is the players
association on the League, which results in a set because of the “many” multiplicity of the
association. We use the OCL includes() operation on this set to test if the Player p is known
to the League.

Navigating a series of at least two associations with one-to-many or many-to-many
multiplicity results in a bag. For example, in the context of a League, the expression
tournaments.players contains the concatenation of all players of the Tournaments related to

context Tournament::acceptPlayer(p:Player) pre:
league.players->includes(p)
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the current League. As a result of this concatenation, elements can appear several times. To
remove the duplicates in this bag, for example, when counting the number of Players in a
League that have taken part in a Tournament, we can convert the bag into a set using the OCL
asSet operation. Consequently, we can write constraint 3 (on page 361) as follows:

9.3.6 OCL Quantifiers: forAll and exists

So far, we presented examples of constraints using common OCL collection operations such as
includes, union, or asSet. Two additional operations on collections enable us to iterate over
collections and test expressions on each element:

• forAll(variable|expression) is True if expression is True for all elements in the
collection.

• exists(variable|expression) is True if there exists at least one element in the
collection for which expression is True.

For example, to ensure that all Matches in a Tournament occur within the Tournament’s
time frame, we can repetitively test the start dates of all matches against the Tournament using
forAll(). Consequently, we write this constraint as follows:

The OCL exists() operation is similar to forAll(), except that the expressions evaluated
on each element are ORed, that is, only one element needs to satisfy the expression for the
exists() operation to return True. For example, to ensure that each Tournament conducts at
least one Match on the first day of the Tournament, we can write:

9.4 Interface Specification Activities

Interface specification includes the following activities:

• Identifying Missing Attributes and Operations (Section 9.4.1)
• Specifying Type Signatures and Visibility (Section 9.4.2)
• Specifying Preconditions and Postconditions (Section 9.4.3)
• Specifying Invariants (Section 9.4.4)

context League::getActivePlayers:Set post:
result = tournaments.players->asSet()

context Tournament inv:
matches->forAll(m:Match | m.start.after(start) and m.end.before(end))

context Tournament inv:
matches->exists(m:Match | m.start.equals(start))
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• Inheriting Contracts (Section 9.4.5).

To illustrate these activities, we use the ARENA object design model resulting from the
AnnounceTournament use case (Section 5.6). During analysis, we identified several boundary,
control, and entity classes: The TournamentForm class is responsible for generating and
processing all user interface forms, and the TournamentControl class is responsible for
coordinating all transactions between the TournamentForm and the entity classes Tournament,
Player, and Match. Figure 9-9 depicts the attributes, operations, and associations among these
classes that have been identified during analysis. First, we resolve any remaining requirements
issues and identify missing attributes and operations.

9.4.1 Identifying Missing Attributes and Operations

During this step, we examine the service description of the subsystem and identify missing
attributes and operations. During analysis, we may have missed many attributes because we

Figure 9-9 Analysis objects of ARENA identified during the analysis of AnnounceTournament use case
(UML class diagram). Only selected information is shown for brevity. 
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focused on the functionality of the system: we described the functionality of the system
primarily with the use case model (as opposed to operations in the object model). We focused on
the application domain when constructing the object model and therefore ignored details related
to the system that are independent of the application domain.

During the object design of ARENA, we soon realize that the number of concurrent
tournaments and matches is the main consumer of server resources and constitutes a bottleneck.
Consequently, we focus on possible misuse of the system in which players attempt to play
several matches concurrently. When reviewing these issues with the client, we agree that such
player behavior does not improve advertising income (i.e., advertisement banners sent
simultaneously to the same client machine do not increase advertisement fees) nor match
playing quality (i.e., a player involved in concurrent matches is distracted and makes mistakes).
Hence, we decide to add checks during the ApplyForTournament use case to prevent such
situations. However, we do not want to penalize players who play many tournaments
sequentially, as we anticipate that such return players improve both match playing quality and
advertisement revenue.

To prevent a player from applying to two different tournaments that will be conducted at
the same time, we draw a sequence diagram representing the control and data flow needed
(Figure 9-10). Drawing this diagram leads us to the identification of an additional operation,
isPlayerOverbooked(), that checks if the start and end dates of the Tournament of interest
overlap with those of other Tournaments into which the Player has already been accepted.

Figure 9-10 A sequence diagram for the applyForTournament() operation (UML sequence diagram).
This sequence diagram leads to the identification of a new operation, isPlayerOverbooked() to ensure that
players are not assigned to Tournaments that take place simultaneously.
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Since isPlayerOverbooked() enforces a policy that we recently identified with the
organizing of Tournaments, we attach this operation with the TournamentControl class, as
opposed to the Player class or the Tournament class. This results in an entity object model that
is simpler and modifiable. For example, other definitions of player commitments (e.g., a player
can only play one tournament per week) or policies involving other objects (e.g., matches
involving young players must occur before a certain time of the day) can be added or substituted
in the TournamentControl class without changes to the entity classes.

At this point, we have identified an additional operation related to the
ApplyForTournament use case. Note that the object design model will still be subject to change,
as we review other subsystems and use cases. Next, we specify the interface of each of the
classes using types, signatures, visibility, and contracts.

9.4.2 Specifying Types, Signatures, and Visibility

During this step, we specify the types of the attributes, the signatures of the operations, and the
visibility of attributes and operations. Specifying types refines the object design model in two
ways. First, we add detail to the model by specifying the range of each attribute. For example, by
determining the type of the start and end date of a Tournament, we make decisions about the
granularity of the time tracked by the application. By selecting a representation of time
including days, hours, minutes, and seconds, we enable LeagueOwners to conduct several
Tournaments per day. Second, we map classes and attributes of the object model to built-in types
provided by the development environment. For example, by selecting String to represent the
name attributes of Leagues and Tournaments, we can use all the operations provided by the
String class to manipulate name values.

We also consider the relationship between the classes we identified and the classes from
existing components. For example, a number of classes implementing collections are provided
in the java.util package. The List interface provides a way to access an ordered collection of
objects independent from the underlying data structure. The Map interface provides a table
mapping from unique keys to arbitrary entries. We select the List interface for returning
collections of objects, such as the Tournaments to which a Player has been accepted. We select
the Map interface for returning mappings of objects, for example, Player to Scores.

Finally, we determine the visibility of each attribute and operation during this step. By
doing so, we determine which attributes should be accessible only indirectly via the class’s
operations, and which attributes are public and can be modified by any other class. Similarly, the
visibility of operations allows us to distinguish between operations that are part of the class
interface and those that are utility methods that can only be accessed by the class. In the case of
abstract classes and classes that are intended to be refined, we also define protected attributes
and methods for the use of subclasses only. Figure 9-11 depicts the refinement of the object
model depicted in Figure 9-9 after types, signatures, and visibility have been assigned.
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Once we have specified the types of each attribute, the signature of each operation, and its
visibility, we focus on specifying the behavior and boundary cases of each class by using
contracts.

9.4.3 Specifying Pre- and Postconditions

During this step, we define contracts for each public operation of each class. We already said
that a contract is an agreement between the class user and the class implementor. The
preconditions of an operation describe the part of the contract that the class user must respect.
The postconditions describe what the class implementor guarantees in the event the class user
fulfilled her part of the contract. When refining a class, class extenders inherit the contract from
the original class implementor.

For example, in Section 9.4.1, we identified the operation isPlayerOverbooked() on the
TournamentControl class, which checks if a Player’s existing commitments would prevent him
from taking part in the current Tournament. As a class implementor, we want to make sure that
the class user checks Players that have not yet been accepted into the Tournament. If this is the

Figure 9-11 Adding type information to the object model of ARENA (UML class diagram). Only selected
information is shown for brevity. 
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case, we only need to check if the current Tournament overlaps any that the Player is already
taking part in. We express this with the following contract:

Preconditions and postconditions can also be used to specify dependencies among
operations in the same class. Consider, for example, the operations on the TournamentControl
class. Given a new Tournament, these operations must be invoked in a specific order. We cannot
resolve the sponsorship of a Tournament without knowing which sponsors are interested. Also,
we cannot advertise the Tournament before we resolve the sponsorship issue. For
TournamentControl, we can simply write preconditions and postconditions that examine the
state of the associations of the Tournament class. To state that sponsors cannot be selected before
there are interested advertisers, we write the following:

To ensure that TournamentControl.selectSponsors() is invoked only once, we add the
following precondition:

Finally, to specify how TournamentControl.selectSponsors() sets the advertisers
association, we add the following postcondition:

Below is the complete set of OCL constraints specifying the order of selectSponsors(),
advertiseTournament(), and acceptPlayer().

/* isPlayerOverbooked assumes that the Player is not yet part of the
* Tournament of interest. */
context TournamentControl::isPlayerOverbooked(p) pre:

not p.tournaments->includes(self.tournament)

/* A player cannot take part in two tournaments whose dates overlap. */
context TournamentControl::isPlayerOverbooked(p) post:

result = p.tournaments->exists(t| t.overlaps(self.tournament))

context TournamentControl::selectSponsors(advertisers) pre:
interestedSponsors->notEmpty()

context TournamentControl::selectSponsors(advertisers) pre:
tournament.sponsors->isEmpty()

context TournamentControl::selectSponsors(advertisers) post:
tournament.sponsors.equals(advertisers)
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9.4.4 Specifying Invariants

Once you master the syntax and the concepts behind a constraint language such as OCL, writing
contracts for individual operations is relatively simple. The concept of a contract between the
class user and the class implementor is intuitive (e.g., “this is what I can do if you ensure these
conditions”) and focuses on a relatively short increment in time (i.e., the execution of a single
operation). However, grasping the essence of a class from operation-specific contracts is
difficult; much information is distributed throughout many constraints in many operations, so
identifying general properties of the class is difficult. Hence, the need for invariants.

Invariants are much more difficult to write than preconditions and postconditions, but they
provide an overview of the essential properties of the class. Invariants constitute a permanent
contract that extends and overwrites the operation-specific contracts. The activity of identifying
invariants is similar to that of finding abstract classes during analysis (Section 5.4.10). A few are
obvious and can be written from the start. Others can be identified by extracting common
properties from operation-specific contracts.

/* Pre-and postconditions for ordering operations on TournamentControl */
context TournamentControl::selectSponsors(advertisers) pre:

interestedSponsors->notEmpty() and
tournament.sponsors->isEmpty()

context TournamentControl::selectSponsors(advertisers) post:
tournament.sponsors.equals(advertisers)

context TournamentControl::advertiseTournament() pre:
tournament.sponsors->isEmpty() and

not tournament.advertised
context TournamentControl::advertiseTournament() post:

tournament.advertised

context TournamentControl::acceptPlayer(p) pre:
tournament.advertised and

interestedPlayers->includes(p) and
not isPlayerOverbooked(p)

context TournamentControl::acceptPlayer(p) post:
tournament.players->includes(p)

TournamentControl

+selectSponsors(advertisers)
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+acceptPlayer(p)
+announceTournament()
+isPlayerOverbooked():boolean
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An example of an obvious invariant is that all Matches of a Tournament must occur within
the time frame of the Tournament:

An example of an invariant that is not so obvious, but can be identified by examining the
contracts of the TournamentControl class, is that no Player can take part in two or more
Tournaments that overlap. Although this property can be inferred by examining
TournamentControl.isPlayerOverbooked() operation, we can write this concisely as an
invariant. Since it is a policy decision, we attach this invariant to the TournamentControl class,
as opposed to the Player or the Tournament class.

When specified on several associations, constraints usually become complex and difficult
to understand, especially when nested forAll statements are used. For example, consider an
invariant stating that all Matches in a Tournament must involve only Players that are accepted
in the Tournament:

This constraint involves three collections: players, p.tournaments, and t.matches. We
can simplify this expression by using a bag created while navigating a series of associations:

In general, reducing the number of operations and nesting levels in a constraint makes it
much more understandable.

context Tournament inv:
matches->forAll(m|

m.start.after(start) and m.start.before(end))

context TournamentControl inv:
tournament.players->forAll(p|

p.tournaments->forAll(t|
t <> tournament implies not t.overlap(tournament)))

/* A match can only involve players who are accepted in the tournament */
context Match inv:

players->forAll(p|
p.tournaments->exists(t| 

t.matches->includes(self)))

context Match inv:
players.tournaments.matches.includes(self)

Player
players

*
Tournament

Match
matches

*

*
tournaments

players *
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As illustrated by these examples, it is relatively easy to generate a large number of

constraints for each class. This does not guarantee readability. In fact, writing readable and

correct constraints is difficult. Remember that the reason for writing invariants is to clarify the

assumptions made by the class implementor to the class user. Consequently, when writing

constraints, the class implementor should focus on simple, short constraints that describe

boundary cases that may not otherwise be obvious. Figure 9-12 lists several heuristics to make

constraints more readable.

Invariants, preconditions, and postconditions specify the semantics of each operation by

making explicit what must be true before and after an operation is executed. Hence, contracts

provide clear documentation to the user. As we see in the next section, contracts are also useful

for the class extender.

Heuristics for writing readable constraints

Focus on the lifetime of a class. Constraints that are specific to operations or that hold only when the
object is in certain states are better expressed as pre- and postconditions. For example:

• “Different players have different E-mail addresses” is an invariant. 
• “A player can apply to only one tournament at a time” is a precondition of the 

TournamentForm.applyForTournament() operation.

Identify special values for each attribute. Zero and null values, attributes that have unique values within a
certain scope, and attributes that depend on other attributes are often sources of misunderstandings and
errors. For example:

• Matches involve at least one player.
• Completed matches have exactly one winner.

Identify special cases for associations. Identify, in particular, any special case that cannot be specified
with multiplicity alone. For example:

• tournament.players is a subset of tournament.league.players

Identify ordering among operations. For example, see TournamentControl in Section 9.4.3. 

Use helper methods to compute complex conditions. This yields shorter and more understandable
constraints and code that can be more easily tested. For example:

• Tournament.overlaps(t:Tournament) to check if two tournament overlap in time.

Avoid constraints that involve many association traversals. This often increases the coupling among sets
of unrelated classes, which is not desirable. For example:

• When specifying that the duration of a match should be under a maximum limit set by the game, we 
could be tempted to write match.tournament.league.game.maxMatchDuration.
Instead, consider adding a Match.getGame() method, which would simplify the expression to 
match.getGame().maxMatchDuration.

Figure 9-12 Heuristics for writing readable constraints.
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9.4.5 Inheriting Contracts

In a polymorphic language, a class can be substituted by any of its descendents. That is, a class
user invoking operations on a class could be invoking instead a subclass. Hence, the class user
expects that a contract that holds for the superclass still holds for the subclass. We call this
contract inheritance.

For example, in ARENA, consider the inheritance hierarchy between User, LeagueOwner,
Player, Spectator, and Advertiser (Figure 9-13). The User class has an invariant stating that
the email address should be not null so that each user can be notified. If at some point in our
design, we decide that Spectators do not really need an E-mail address, then this contract will
be broken and classes invoking the User.notify() method may break. Consequently, either
Spectators should be taken out of the User hierarchy (i.e., Spectator does not fulfill the User
contract) or the invariant should be revised (i.e., the terms of the contract should be
reformulated). 

Contracts are inherited in the following manner:

• Preconditions. A method of subclass is allowed to weaken the preconditions of the
method it overrides. In other words, an overwritten method can handle more cases than
its superclass. For example, consider a concrete TournamentStyle class,
SimpleKnockOutStyle, that can deal with any number of Players that is a power of 2.
We can express this with a precondition on the planMatches() operation that restricts
the number of Players to a power of 2. A ComplexKnockOutStyle class refining the
SimpleKnockOutStyle could weaken this precondition by planning Tournaments for
any number of Players.

• Postconditions. Methods must ensure the same postconditions as their ancestors or
stricter ones. Assume you are implementing a Set by inheriting from a List (this is a
case of implementation inheritance and questionable practice, as we discussed in
Section 8.3.2). The postcondition of List.add() is that the size of the List increases
by one. The Set.add() method, in this case, could not comply with this invariant, since

Figure 9-13 A simple example of contract inheritance: An invariant specified in a superclass must hold
for all of its subclasses (UML class diagram with OCL constraint).

User

Player AdvertiserLeagueOwner Spectator

notify()

email:String

«invariant»
email <> null
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adding an element to a set does not necessarily increase the size of the set. Hence, Set
should not be implemented as a subclass of List.

• Invariants. A subclass must respect all invariants of its superclasses. However, a
subclass can strengthen the inherited invariants. For example, List inherits from
Collection. Collection has an invariant specifying that its size cannot be negative.
Consequently, List must respect this invariant and cannot have a negative size.
However, List adds a new invariant that stipulates that its elements are ordered.

Contract inheritance is particularly useful when specifying abstract classes or interfaces
that are meant to be refined by class extenders. By precisely documenting the boundary between
the client class and an interface, it is possible for class extenders to implement new refined
extender classes without being familiar with the invoking source code. Contract inheritance is
also a consequence of Liskov’s Substitution Principle (Section 8.3.4), since extender classes
must be able to substitute transparently for an ancestor.

9.5 Managing Object Design
In this section, we discuss management issues related to object design. There are two primary
management challenges during object design:

• Increased communication complexity. The number of participants involved during this
phase of development increases dramatically. The object design models and code are
the result of the collaboration of many people. Management needs to ensure that
decisions among these developers are made consistently with project goals.

• Consistency with prior decisions and documents. Developers often do not appreciate
completely the consequences of analysis and system design decisions before object
design. When detailing and refining the object design model, developers may question
some of these decisions and reevaluate them. The management challenge is to maintain
a record of these revised decisions and to make sure all documents reflect the current
state of development.

We discuss these challenges in Section 9.5.1, where we focus on the Object Design
Document, its development and maintenance, and its relationship with other documents, and in
Section 9.5.2, where we describe the roles and responsibilities associated with object design.

9.5.1 Documenting Object Design

Object design is documented in the Object Design Document (ODD). It describes object
design trade-offs made by developers, guidelines they followed for subsystem interfaces, the
decomposition of subsystems into packages and classes, and the class interfaces. The ODD is
used to exchange interface information among teams and as a reference during testing. The
audience for the ODD includes system architects (i.e., the developers who participate in the
system design), developers who implement each subsystem, and testers. 
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There are three main approaches to documenting object design:

• Self-contained ODD generated from model. The first approach is to document the
object design model the same way we documented the analysis model or the system
design model: we write and maintain a UML model and generate the document
automatically. This document would duplicate any application objects identified during
analysis. The disadvantages of this solution include redundancy with the Requirements
Analysis Document (RAD) and a high level of effort for maintaining consistency with
the RAD. Moreover, the ODD duplicates information in the source code and requires a
high level of effort whenever the code changes. This often leads to an RAD and an
ODD that are inaccurate or out of date.

• ODD as extension of the RAD. The second approach is to treat the object design model
as an extension of the analysis model. In other terms, the object design is considered as
the set of application objects augmented with solution objects. The advantage of this
solution is that maintaining consistency between the RAD and the ODD becomes much
easier as a result of the reduction in redundancy. The disadvantages of this solution
include polluting the RAD with information that is irrelevant to the client and the user.
Moreover, object design is rarely as simple as identifying additional solution objects.
Often, application objects are changed or transformed to accommodate design goals or
efficiency concerns.

• ODD embedded into source code. The third approach is to embed the ODD into the
source code. As in the first approach, we represent the ODD using a modeling tool (see
Figure 9-14). Once the ODD becomes stable, we use the modeling tool to generate
class stubs. We describe each class interface using tagged comments that distinguish
source code comments from object design descriptions. We can then generate the ODD
using a tool that parses the source code and extracts the relevant information (e.g.,
Javadoc [Javadoc, 2009a]). Once the object design model is documented in the code,
we abandon the initial object design model. The advantage of this approach is that the
consistency between the object design model and the source code is much easier to
maintain: when changes are made to the source code, the tagged comments are updated
and the ODD regenerated. In this section, we focus only on this approach.

The fundamental issue is one of maintaining consistency among two models and the
source code. Ideally, we want to maintain the analysis model, the object design model, and the
source code using a single tool. Objects would then be described once, and consistency among
documentation, stubs, and code would be maintained automatically.

Presently, however, UML modeling tools provide facilities for generating a document
from a model or class stubs from a model. For example, the glossary of the RAD can be
generated from the analysis model by collating the description fields attached to each class.
(Figure 9-14). The class stub generation facility, called forward engineering, can be used in the
self-contained ODD approach to generate the class interfaces and stubs for each method. 
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Some modeling tools provide facilities for reverse engineering, that is, recreating a UML
model from source code. Such facilities are useful for creating object models from legacy code.
They require substantial hand processing, however, because the tool cannot recreate
bidirectional associations based on reference attributes only. 

Tool support currently falls short when maintaining two-way dependencies, in particular
between the analysis model and the source code. Some tools, such as Rationale Rose [Rational,
2002] and Together Control Center [TogetherSoft, 2002], realize this functionality by

Figure 9-14 Embedded ODD approach. Class stubs are generated from the object design model. The
object design model is then documented as tagged comments in the source code. The initial object design
model is abandoned and the ODD is generated from the source code instead using a tool such as Javadoc
(UML activity diagram).
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embedding information about associations and other UML constructs in source code comments.
Even though this allows the tool to recover syntactic changes from the source code, developers
must still update model descriptions to reflect the changes. Because developers need different
tools to change the source code and the model, the model often falls behind. 

Until modeling tools provide better support for maintaining consistency between object
models and source code, we find that generating the ODD from source code and focusing the
RAD on the application domain is the most practical. It reduces the amount of redundant
information to be maintained, and it locates the object design information where it is the most
accessible, that is, in the source code. The consistency between the source code and the analysis
model must still be maintained manually. This task is easier, however, because fewer code
changes affect the analysis model than affect the object design model.

Figure 9-15 is an example template for a generated ODD. 

The first section of the ODD is an introduction to the document. It describes the general
trade-offs made by developers (e.g., buy vs. build, memory space vs. response time), guidelines
and conventions (e.g., naming conventions, boundary cases, exception handling mechanisms),
and an overview of the document.

Interface documentation guidelines and coding conventions are the single most important
factor that can improve communication between developers during object design. These include
a list of rules that developers should use when designing and naming interfaces. These are
examples of such conventions:

• Classes are named with singular nouns.

• Methods are named with verb phrases, fields, and parameters with noun phrases.

• Error status is returned via an exception, not a return value.

• Collections and containers have an iterator() method returning an Iterator.

• Iterators returned by iterator() methods are robust to element removals.

Object Design Document

1. Introduction
1.1 Object design trade-offs
1.2 Interface documentation guidelines
1.3 Definitions, acronyms, and abbreviations
1.4 References

2. Packages
3. Class interfaces

Glossary

Figure 9-15 Outline of the Object Design Document.
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Such conventions help developers design interfaces consistently, even if many developers
contribute to the interface specification. Moreover, making these conventions explicit before
object design makes it easier for developers to follow them. In general, these conventions should
not evolve during the project. An example of coding convention for Java are the Sun Java
Coding Conventions [Sun, 2009].

The second section of the ODD, Packages, describes the decomposition of subsystems
into packages and the file organization of the code. This includes an overview of each package,
its dependencies with other packages, and its expected usage.

The third section, Class interfaces, describes the classes and their public interfaces. This
includes an overview of each class, its dependencies with other classes and packages, its public
attributes, operations, and the exceptions they can raise.

The initial version of the ODD can be written soon after the subsystem decomposition is
stable. The ODD is updated every time new interfaces become available or existing ones are
revised. Even if the subsystem is not yet functional, having a source code interface enables
developers to more easily code dependent subsystems and communicate unambiguously. At this
stage, developers usually discover missing parameters and new boundary cases. The
development of the ODD is different from other documents, as more participants are involved
and as the document is revised more frequently. To accommodate a high rate of change and
many developers, the latter two sections can be generated by a tool from source code comments.

In Java, this can be done with Javadoc, a tool that generates Web pages from source code
comments. Developers annotate interfaces and class declarations with tagged comments. For
example, Figure 9-16 depicts the interface specification for the Tournament class of the ARENA
example. The header comment in the file describes the purpose of the Tournament class, its
authors, its current version, and cross references to related classes. The @see tags are used by
Javadoc to create cross references between classes. Following the header comment is the class
and the method declarations. Each method comment contains a brief description of the purpose
of the method, its parameters, and its return result. When using constraints, we also include
preconditions and postconditions in the method header. The first sentence of the comment and
the tagged comments are extracted and formatted by Javadoc. Keeping material for the ODD
with the source code enables the developers to maintain consistency more easily and rapidly.

For any system of useful size, the ODD represents a large amount of information that can
translate to several hundreds or thousands of pages of documentation. Moreover, the ODD
evolves rapidly during object design and integration, as developers understand better other
subsystem’s needs and find faults with their specifications. For these reasons, all versions of the
ODD should be made available electronically, for example, as a set of Web pages. Moreover,
different components of the ODD should be put under configuration management and
synchronized with their corresponding source code files. We describe configuration
management issues in more detail in Chapter 13, Configuration Management.

Note that generating an ODD from source code is not a substitute for object design.
Although experienced developers may be able to hold an object design in their head and
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document it solely using source code or Javadoc comments, this approach is not advisable in
general. The object design and specification activities should precede coding and focus on the
class interfaces. Once the interfaces are stable, developers generate stubs (possibly with a CASE

/** A Tournament is a series of Matches among a set of Players
* which ends with a single winner. The Game and TournamentStyle of a
* TournamentStyle is determined by the League in which the Tournament is 
* played.
*
* The Tournament starts empty, a number of Players are accepted in
* the Tournament, the Tournament is planned, and finally,
* the Matches are played.
*
* Invariants:
* The maximum number of players is positive at all times.
* @invariant getMaxNumPlayers > 0
* The number of players is always less or equal than the max number.
* @invariant getPlayers().size() < getMaxNumPlayers()
* The initial attributes of the Tournament are not null.
* @invariant getLeague() != null and getName() != null
*/
public class Tournament {

/* Fields omitted */

/** Public constructor. A Tournament starts with a league, a name,
* and a maximum number of players. These attributes cannot be changed.
*/
public Tournament(League league, String name, int maxNumPlayers) {…}

/** Returns a list of the current Players
*/
public List getPlayers() {…}

/** This operation accepts a new Player in the Tournament.
* @pre !isPlayerAccepted(p)
* @pre getPlayers().size() < getMaxNumPlayers()
* @post isPlayerAccepted(p)
* @post getPlayers().size() = self@pre.getPlayers().size() + 1
*/
public void acceptPlayer (Player p) {…}

/** The removePlayer() operation assumes that the specified player
* is currently in the Tournament.
* @pre isPlayerAccepted(p)
* @post !isPlayerAccepted(p)
* @post getPlayers().size() = self@pre.getPlayers().size() - 1
*/
public void removePlayer(Player p) {…}

Figure 9-16  Javadoc comments associated with the Tournament class (Java, constraints using Javadoc
style tags).
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tool) and realize the implementation of the specification. As the specification is carried over to
the source code, it can be corrected there when changes are made by developers. However,
writing a specification after the implementation is complete is bound to result in complex
designs and incomplete specifications.

9.5.2 Assigning Responsibilities

Object design is characterized by a large number of participants accessing and modifying a large
amount of information. To ensure that changes to interfaces are documented and communicated
in an orderly manner, several roles collaborate to control, communicate, and implement changes.
These include the members of the architecture team who are responsible for system design and
subsystem interfaces, liaisons who are responsible for interteam communication, and
configuration managers who are responsible for tracking change. 

Below is an example of how roles can be assigned during object design. As in other
activities, the same participant can be assigned more than one role.

• The core architect develops coding guidelines and conventions before object design
starts. As for many conventions, the actual set of conventions is not as important as the
commitment of all architects and developers to use the conventions. The core architect
is also responsible for ensuring consistency with prior decisions documented in the
System Design Document (SDD) and Requirements Analysis Document (RAD).

• The architecture liaisons document the public subsystem interfaces for which they are
responsible. This leads to a first draft of the ODD, which is used by developers.
Architecture liaisons also negotiate changes to public interfaces. Often, the issue is not
of consensus, but of communication: developers depending on the interface may
welcome the change if they are notified first. The architecture liaisons and the core
architect form the architecture team.

• The object designers refine and detail the interface specification of the class or
subsystem they implement.

• The configuration manager of a subsystem releases changes to the interfaces and the
ODD once they become available. The configuration manager also keeps track of the
relationship between source code and ODD revisions.

• Technical writers from the documentation team clean up the final version of the ODD.
They ensure that the document is consistent from a structural and content point of view.
They also check for compliance with the guidelines.

As in system design, the architecture team is the integrating force of object design. The
architecture team ensures that changes are consistent with project goals. The documentation
team, including the technical writers, ensures that the changes are consistent with guidelines and
conventions.
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9.5.3 Using Contracts During Requirements Analysis

Some requirements analysis approaches advocate the use of constraints much earlier, for
example, during the definition of the entity objects. In principle, OCL can be used in
requirements analysis as well as in object design. In general, developers consider specific project
needs before deciding on a specific approach or level of formalism to be used when
documenting operations. Examine the following trade-offs before deciding if and when to use
constraints for which purpose:

• Communication among stakeholders. During software development, models support
communication among stakeholders. Different models are used for different types of
stakeholders. On the one hand, a use case or a user interface mock-up is much easier for
a client to understand than an OCL constraint. On the other hand, an OCL constraint is
much more precise statement for the class user.

• Level of detail and rate of change. Attaching constraints to an analysis model requires a
much deeper understanding of the requirements. When this information is available,
either from the user, the client, or general domain knowledge, this results in a more
complete analysis model. When this information is not available, however, clients and
developers may be forced to make decisions too early in the process, increasing the rate
of change (and consequently, development cost) later in the development.

• Level of detail and elicitation effort. Similarly, eliciting detailed information from a
user during analysis may require much more effort than eliciting this information later
in the process, when early versions of the user interface are available and specific issues
can be demonstrated. However, this approach assumes that modifying the components
under consideration is relatively cheap and does not have a serious impact on the rest of
the system. This is the case for user interface layout issues and dialog considerations.

• Testing requirements. During testing, we compare the actual behavior of the system or a
class with the specified behavior. For automated tests or for stringent testing
requirements (found, for example, in application domains such as traffic control,
medicine, or pharmaceuticals), this requires a precise specification to test against. In
this case, constraints help a lot if they are specified as early as possible. We discuss
testing in detail in Chapter 11, Testing.

9.6 ARENA Case Study

In this section, we apply the concepts and methods described in this chapter to a more extensive
example from the ARENA system. We focus on the classes surrounding TournamentStyle, which
is responsible for creating a set of Matches, assigning Players from the Tournaments, and
deciding on start and end dates for each Match. Specifying contracts for these classes is
particularly critical, as TournamentStyle provides an open interface for other developers to
create new TournamentStyles. Hence, the boundary between TournamentStyle and the rest of
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ARENA should be sufficiently clear so that developers can write new TournamentStyles without
having to understand the ARENA source code.

First, we identify any missing operations or classes. Next, we specify contracts for the
abstract classes related to TournamentStyle. Finally, we show how these contracts can be
strengthened when writing a new TournamentStyle (e.g., KnockOutStyle).

9.6.1 Identifying Missing Operations in TournamentStyle and Round

From the ARENA analysis model, we know that the responsibility of the TournamentStyle class is
to map a list of Players participating in a Tournament onto a series of Matches. Examples of
concrete TournamentStyles are the KnockOutStyle, in which only winners can move to the
next Match, and the RoundRobinStyle, in which each Player competes against all of the other
Players exactly once.

During this activity, we focus on the Application Programmer Interface (API) of
TournamentStyle that a Tournament invokes to generate the series of Matches. First, we observe
that TournamentStyles generate series of Matches that can be played in parallel (e.g., the first
round of a championship) and series of Matches that have precedence constraints (e.g., both
semifinals of a knock-out tournament must be completed before the final can start). We also
observe that not all Matches will be assigned with Players from the start. In the KnockOutStyle,
for example, it is only as Matches are won that subsequent Matches are assigned. This leads us
to the following set of requirements:

• Schedule representation. We need to represent the graph of Matches to be played in the
Tournament in such a way that all TournamentStyles can be represented.

• Incremental planning. We need to define a set of methods on TournamentStyle that
enables Matches to be incrementally planned as the Tournament progresses.

• Game independence. The graph of Matches and the planning needs to be independent
from the Game. In particular, the Match class that is part of the Game abstract factory
should not be constrained by the above requirements.

This leads us to represent the graph of Matches with a new class, Round (Figure 9-17). A
Round corresponds to a set of Matches that can be held concurrently. Hence, a schedule for a
Tournament is simply a list of Rounds. Next, we define a TournamentStyle.planRounds()
operation, returning a list of Rounds, that is responsible for creating all the Matches in the
Tournament and organizing them into a sequence of Rounds. TournamentStyle.planRounds()
also assigns Players to Matches of the first Round (and possibly to other Rounds as well). Then,
we define a Round.plan() operation class that is responsible for incrementally assigning
Players to Matches of the next Round, if necessary. To enable class extenders to define new
styles, TournamentStyle and Round are abstract classes that are refined for each style. For
example, the KnockOutStyle class extends TournamentStyle, while KnockOutRound extends
Round. The Tournament class only accesses the abstract classes, hence decoupling it from the
concrete style that was selected for the League.
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We now specify the contracts of the TournamentStyle and Round abstract classes.

9.6.2 Specifying the TournamentStyle and Round Contracts

The TournamentStyle abstract class creates a list of Rounds for a given Tournament, and the
Tournament stores the Rounds. Hence, the TournamentStyle does not have any state and,
consequently, TournamentStyle does not have any invariants.

The TournamentStyle.planRounds() operation has one parameter, the Tournament being
planned. A general precondition is that Tournaments can only be planned once. Hence,
TournamentStyle.planRounds() only accepts Tournaments that do not include any Rounds yet.
A more specific precondition is that concrete TournamentStyles may require a specific number
of Players. For example, the KnockOutStyle requires a number of Players that is a power of 2.
Since the number of Players required by different TournamentStyles can vary, we address this
issue by adding an operation to the TournamentStyle class that returns the set of legal numbers
of Players. Note that this set will be bounded by the maximum number of Players per
Tournament allowed in the Arena.

Figure 9-17 New Round class and changes in the TournamentStyle, Tournament, and Round APIs (UML
class diagram). Thick lines indicate changes.
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Another approach would be to express the number of Players expected by
TournamentStyles as a precondition in the subclasses. KnockOutStyle.planRounds(), for
example, can have a precondition stating that the number of Players should be a power of 2.
While associating such specific preconditions with concrete classes is a good idea, we also need
to ensure that the preconditions associated with the superclass are at least as strict as those
associated with the subclasses, as explained in Section 9.4.5. Otherwise, we would violate the
Liskov Substitution Principle. In concrete terms, it would mean that a class extender writing a
subclass of TournamentStyle could introduce constraints that the Arena system would violate,
and consequently crash the system, while respecting all existing contracts.

There are relatively few post conditions on the TournamentStyle.planRounds()

operation, since, by design, we do not want to restrict the possible concrete TournamentStyles.
First, we ensure that each Player is assigned to at least one Match after the initial invocation of
planRounds(). Second, we ensure that Matches in different Rounds do not overlap, as it is
possible for the same Player to take part in more than one Round. To express this second
constraint, we add the getStartDate() and getEndDate() operations to the Round class that
compute the start of the earliest Match in the Round and the latest end of a Match, respectively.

To make it easier to write the above constraint, we added a helper operation,
Player.getMatches(t:Tournament), to retrieve all the Matches in which a Player takes part
within the scope of one Tournament. As the Round class is part of the TournamentStyle API, we
also need to specify the contract of the Round class. A Round is essentially a list of Matches that
can occur concurrently. Consequently, a given Player can take part in at most one Match per
Round. We specify this with an invariant:

/* Only tournaments without rounds and with the right number of players
* can be planned.*/
context TournamentStyle::planRounds(t:Tournament) pre:

t <> null and t.rounds = null and legalNumPlayers(t.players->size)

/* All players are assigned to at least one match */
context TournamentStyle::planRounds(t:Tournament) post:
t.getPlayers()->forAll(p|

p.getMatches(tournament)->notEmpty()

context TournamentStyle::planRounds(t:Tournament) post:
result->forAll(r1,r2| r1<>r2 implies

r1.getEndDate().before(r2.getStartDate()) or
r1.getStartDate().after(r2.getEndDate())

/* A player cannot be assigned to more than one match per round */
context Round inv:
matches->forAll(m1:Match|

m1.players->forAll(p:Player|
p.matches->forAll(m2:Match| m1 <> m2 implies m1.round <> m2.round)))
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Note that the above invariant is still valid if no Players have been assigned to a Match yet.

Next, we focus on the planning status of the Round. A Round can have one of three states: 

• Initially, a Round is not planned. It only contains Matches that may or may not have
Players assigned.

• Its status becomes planned if the plan() operation manages to assign Players to all
Matches.

• Its status becomes completed when all of its Matches have been played and have
winners.

This leads to adding two methods, Round.isPlanned() and Round.isCompleted(), to
make it easier for a Round to decide when to assign Players to Matches and for Tournaments to
decide when a Round can be started. We represent the above as three OCL constraints
(Figure 9-18) relating the status of the Round with the status of its Matches.

As we see in the next section, some TournamentStyles require that the Round be planned
only when the previous Round is completed.

9.6.3 Specifying the KnockOutStyle and KnockOutRound Contracts

Subclasses inherit the contracts of their ancestors (Section 9.4.5). The KnockOutStyle and the
KnockOutRound concrete classes inherit the contracts of TournamentStyle and Round,
respectively. However, subclasses can strengthen the invariants and postconditions of the
inherited contract and weaken its preconditions. This enables us to specify the refinement of the
subclass more precisely and to document in detail how its behavior from other refinements
differs from other subclasses (e.g., RoundRobinStyle).

/* Invoking plan() on a Round whose previous Round is completed results
* in a planned Round. */
context Round.plan() post:

@pre.getPreviousRound().isCompleted() implies isPlanned()

/* A round is planned if all matches have players assigned to them. */
context Round.isPlanned() post:

result implies
matches->forAll(m|

m.players->size = tournament.league.game.numPlayersPerMatch)

/* A round is completed if all of its matches are completed. */
context Round.isCompleted() post:

result implies
matches->forAll(m| m.winner <> null)

Figure 9-18 Contracts of the Round class.
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First, we define the return value of the operation KnockOutStyle.legalNumPlayers()
with a postcondition (Figure 9-19). The number of Players can be any power of 2 between 1
and the maximum number of Players in the Tournament. Next, we define the number of
Matches in each Round: the final Round has exactly one Match, and all other Rounds have exactly
twice as many Matches as the next Round. Next, we add a constraint stating that Players can be
part of a Round only if it is the first Round or if they won all other Matches in previous Rounds.
Finally, we strengthen the post condition of KnockOut.plan() by requiring that the previous
Round be completed before the current Round can be planned.

9.6.4 Lessons Learned

In the previous sections, we wrote contracts for the TournamentStyle, Round, KnockOutStyle,
and KnockOutRound classes. In doing so, we learned that

• Identifying missing operations and writing contracts are overlapping activities.
Writing contracts forces us to look carefully at each object, and might result in finding
new behaviors and boundary cases. In our example, we identified a new class, Round,

/* The number of players should be a power of 2. */
context KnockOutStyle::legalNumPlayers(n:int) post:

result = (floor(log(n)/log(2)) = (log(n)/log(2)))

/* The number of matches in a round is 1 for the last round. Otherwise,
* the number of matches in a round is exactly twice the number of matches
* in the subsequent round.
*/
context KnockOutStyle::planRounds(t:Tournament) post:

result->forAll(index:Integer|
if (index = result->size) then

result->at(index).matches->size = 1
else 

result->at(index).matches->size =
(2*result->at(index+1).matches->size))

endif)

/* A player can play in a round only if it is the first round or if it is the
* winner of a previous round.
*/
context KnockOutRound inv:

previousRound = null or
matches.players->forAll(p|

round.previousRound.matches->exists(m| m.winner = p))

/* If the previous round is not completed, this round cannot be planned. */
context KnockOutRound::plan() post:

not self@pre.getPreviousRound().isCompleted() implies not isPlanned()

Figure 9-19 Refining contracts of the Round class.
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for modeling the relationship between Matches in a Tournament. While this concept is
from the application domain, refining the definition of TournamentStyle leads to its
identification.

• Writing contracts leads to additional helper operations for inspecting objects.
Although the relevant object state is accessible by examining attributes and navigating
relevant associations, writing simple contracts encourages us to add helper methods for
examining state. This results in simpler constraints and classes that are more easily
testable (see Chapter 11, Testing).

• Writing contracts leads to better abstractions. When inheriting contracts, only
preconditions can be weakened. Postconditions and invariants can only be
strengthened. Consequently, when writing contracts for abstract classes, we add
abstract operations for describing properties of the concrete classes. For example, the
TournamentStyle.legalNumPlayers() operation enables us to get around the problem
that some of the concrete TournamentStyles may have constraints on the number of
Players. In the end, adding such methods results in a better defined meta-model of the
concrete classes.

Writing contracts leads to a specification of the legal parameter values. The next step is to define
the behavior of the operation when the caller does not respect the contract. We examine the role
of exceptions in Chapter 10, Mapping Models to Code.

9.7 Further Readings

Historically, the first languages that combined constraints with object orientation were ThingLab
[Borning, 1981], Kaleidoscope [Freeman-Benson, 1990], and Eiffel [Meyer, 1997].

The term Design by Contract is credited to Bertrand Meyer, who, in Object-Oriented

Software Construction, provides detailed methodological guidance for writing contracts and
language constructs in the Eiffel language to specify contracts and handle contract violations
[Meyer, 1997]. The programming language CLU also examined the use of constraints for
specifying interfaces in abstract data types [Liskov & Guttag, 1986]. The notion of assertion
came from the work on program correctness by Floyd [Floyd, 1967], Hoare [Hoare, 1969], and
Dijkstra [Dijkstra, 1976].

The iContract tool [Kramer, 1998] introduced design by contract to the Java community
by providing simple Javadoc comments for specifying constraints that are then checked during
run-time. Recently, the design by contract for Java community has grown including many open
source projects, such as Contract4J [Contract4J] and jContractor [jContractor].
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9.8 Exercises

9-1 Consider the List interface in the java.util package for ordered collections of
objects. Write preconditions and post conditions in OCL for the following operations:

• int size() returns the number of elements in the list.

• void add(Object e) adds an object at the end of the list.

• void remove(Object e) removes an object from the end of the list.

• boolean contains(Object e) returns true if the object is contained in the list.

• Object get(int idx) returns the object located at index idx, 0 being the index of
the first object in the list.

9-2 Consider the Set interface in the java.util package. Write preconditions and post
conditions in OCL for the following operations:

• int size() returns the number of elements in the set.

• void add(Object e) adds an object to the set. If the object is already in the set,
does nothing.

• void remove(Object e) removes an object from the set

• boolean contains(Object e) returns true if the object is contained in the set.

9-3 Consider the Collection interface in the java.util package, which is the ancestor of
both List and Set. Write preconditions and postconditions for the operations below
and modify the constraints you wrote in exercises 9-1 and 9-2, knowing that contracts
are inherited. Make sure you comply with the Liskov Substitution Principle.

• int size() returns the number of elements in the collection.

• void add(Object e) adds an object to the collection.

• void remove(Object e) removes an object from the collection.

• boolean contains(Object e) returns true if the object is in the collection.

9-4 Consider a Rectangle class and a Square class that inherits from the Rectangle class:

• Write post conditions for the Rectangle.setWidth(w:int) and the
Rectangle.setHeight(h:int) operations in terms of the
Rectangle.getWidth():int and the Rectangle.getHeight():int operations. 

• Write an invariant for the Square class stating that the width and height of a Square
should always be the same.

• Consider the rules for inheriting contracts described in Section 9.4.5 in the context
of the Square.setWidth() and Square.setHeight() operations of the Square
class. Are all rules met? Why not? What should change in the model?

9-5 Consider a sorted list. Write an invariant in OCL denoting that the elements of the list
are sorted.

9-6 Consider a sorted binary tree data structure for storing integers. Write invariants in
OCL denoting that
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• All nodes in the left subtree of any node contain integers that are less than or equal
to the current node, or the subtree is empty.

• All nodes in the right subtree of any node contain integers that are greater than the
current tree, or the subtree is empty.

• The tree is balanced.

9-7 Consider a simple intersection with two crossing roads and four traffic lights. Assume a
simple algorithm for switching lights, so that the traffic on one road can proceed while
the traffic on the other road is stopped. Model each traffic light as an instance of a
TrafficLight class with a state attribute that can be either red, yellow, or green.
Write invariants in OCL on the state attribute of the TrafficLight class that
guarantee that the traffic cannot proceed on both roads simultaneously. Add
associations to the model to navigate the system, if necessary. Note that OCL
constraints are written on classes (as opposed to instances).

9-8 After reading Sections 9.6.2 and 9.6.3, write constraints for a RoundRobinStyle class
and a RoundRobinRound class, implementing the TournamentStyle and the Round
interfaces, respectively. Assume that RoundRobinStyle plans a series of Rounds so that
each Player is paired with the other Players exactly once in the Tournament. Note that
the number of Rounds depends on whether the number of Players in the Tournament is
odd or even, and that a given Player cannot play more than once in a given Round.
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10
Mapping Models to 
Code

The major difference between a thing that might go wrong 
and a thing that cannot possibly go wrong is that when a 
thing that cannot possibly go wrong goes wrong it usually 
turns out to be impossible to get at or repair. 

—Douglas Adams, in Mostly Harmless

If the design pattern selection and the specification of class interfaces were done carefully,
most design issues should now be resolved. We could implement a system that realizes the use
cases specified during requirements elicitation and system design. However, as developers start
putting together the individual subsystems developed in this way, they are confronted with many
integration problems. Different developers have probably handled contract violations differently.
Undocumented parameters may have been added to the API to address a requirement change.
Additional attributes have possibly been added to the object model, but are not handled by the
persistent management system, possibly because of a miscommunication. As the delivery
pressure increases, addressing these problems results in additional improvised code changes and
workarounds that eventually yield to the degradation of the system. The resulting code would
have little resemblance to our original design and would be difficult to understand. 

In this chapter, we describe a selection of transformations to illustrate a disciplined
approach to implementation to avoid such a system degradation. These include

• optimizing the class model
• mapping associations to collections
• mapping operation contracts to exceptions
• mapping the class model to a storage schema.

We use Java and Java-based technologies in this chapter. The techniques we describe,
however, are also applicable to other object-oriented programming languages.
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10.1 Introduction: A Book Example

The Lord of the Rings by J.R.R. Tolkien was first published in the U.K. in 1954 and in the U.S. in 1955.a

Tolkien, a professor of English and a distinguished linguist, invented several languages and carefully
constructed many imaginary names of places and characters for the universe of The Lord of the Rings.
However, when the book was first published, it contained many typesetting and printing errors and well-
intended corrections. For example, to Tolkien’s horror, occurrences of dwarves and elven were
systematically replaced by dwarfs and elfin. Then, in 1965, Ace Books published an unauthorized
edition, believing that the copyright on the book did not apply in the United States. Tolkien started to
work on a revision of the text so that a new authorized edition would compete against the Ace Books
edition. Ballantine Books published the revised manuscript as a paperback in the U.S. in October 1965.
Tolkien produced a first set of corrections that were implemented in the second printing of the
paperback. Soon after, he produced a second set of corrections, which were implemented in the third
and fourth printing of the paperback. These corrections were not always inserted correctly, resulting in
more errors in the text.

In the U.K., Allen & Unwin published the revised manuscript as a hardcover edition in October 1966.
However, the revised manuscript for the appendix of The Lord of the Rings, which Ballantine Books
used to set the paperback edition, was lost and could not be used by Allen & Unwin. Instead, Allen &
Unwin used an early copy of the Ballantine edition to set the appendix. Unfortunately, the copy did not
include the second set of corrections, and, worse, many more errors were introduced during typesetting.

During the summer of 1966, Tolkien further revised the text. In June 1966, he was informed that this
latest set of revisions was too late to be included into the Allen & Unwin edition. Consequently, by the
end of 1966, there existed several widely different and inconsistent versions of The Lord of the Rings,
none of which completely reflected Tolkien’s intention.

a. Source: “Note on The Text” by Douglas A. Anderson, in [Tolkien, 1995].

1965 Manuscript

 Ballantine Paper Back
1st Printing

 Allen & Unwin Hard Cover
1st Printing

 Ballantine
3rd Printing

 Ballantine
4th Printing

1st Corrections 2nd Corrections

 Ballantine
2nd Printing

(Jun. 1966) (Aug. 1966)(Oct. 1965)

(Oct. 1966)

1966 Manuscript
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The publication of a book, such as The Lord of the Rings, requires a number of
transformation steps from manuscript to the final printed book. The author first produces a typed
manuscript and sends it to a publisher. The manuscript is then revised and copy edited before
being finally typeset. The typesetting process requires the retyping of the manuscript, resulting
in mistakes, such as misspellings and well-intended corrections. Finally, during the printing
process, other mistakes occur, such as wrong ordering or orientation of printed pages. 

Although many steps of the publishing process are now automated, mistakes still creep in,
introduced by the author, the publisher, or the printer, resulting in a series of corrections that can
introduce new errors. Although the processes involved are relatively simple (retyping a
manuscript is intellectually not very challenging), the sheer volume and repetitiveness of the
work makes it difficult to accomplish without errors (the six books of The Lord of the Rings total
more than one thousand pages).

Working on an object design model similarly involves many transformations that are error
prone. For example, developers perform local transformations to the object model to improve its
modularity and performance. Developers transform the associations of the object model into
collections of object references, because programming languages do not support the concept of
association. Many programming languages also do not support contracts, so developers need to
transform the contract specification of operations into code for detecting and handling contract
violations. Developers revise the interface specification of an object to accommodate new
requirements from the client. These transformations are not as intellectually challenging as other
activities in the development process, such as analysis or system design, but they have a
repetitive and mechanical aspect and are made difficult by the scale of the work involved.
Moreover, they are accomplished mostly manually, as they require some amount of human
judgement.

In each of these transformations, small errors usually creep in, resulting in bugs and test
failures. We now focus on a set of techniques and example transformations to reduce the number
of such errors.

10.2 An Overview of Mapping

A transformation aims at improving one aspect of the model (e.g., its modularity) while
preserving all of its other properties (e.g., its functionality). Hence, a transformation is usually
localized, affects a small number of classes, attributes, and operations, and is executed in a series
of small steps. These transformations occur during numerous object design and implementation
activities. We focus in detail on the following activities:

• Optimization (Section 10.4.1). This activity addresses the performance requirements of
the system model. This includes reducing the multiplicities of associations to speed up
queries, adding redundant associations for efficiency, and adding derived attributes to
improve the access time to objects.
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• Realizing associations (Section 10.4.2). During this activity, we map associations to
source code constructs, such as references and collections of references.

• Mapping contracts to exceptions (Section 10.4.3). During this activity, we describe the
behavior of operations when contracts are broken. This includes raising exceptions
when violations are detected and handling exceptions in higher level layers of the
system.

• Mapping class models to a storage schema (Section 10.4.4). During system design, we
selected a persistent storage strategy, such as a database management system, a set of
flat files, or a combination of both. During this activity, we map the class model to a
storage schema, such as a relational database schema.

10.3 Mapping Concepts
We distinguish four types of transformations (Figure 10-1):

• Model transformations operate on object models (Section 10.3.1). An example is the
conversion of a simple attribute (e.g., an address represented as a string) to a class (e.g.,
a class with street address, zip code, city, state, and country attributes).

• Refactorings are transformations that operate on source code (Section 10.3.2). They are
similar to object model transformations in that they improve a single aspect of the
system without changing its functionality. They differ in that they manipulate the
source code. 

• Forward engineering produces a source code template that corresponds to an object
model (Section 10.3.3). Many modeling constructs, such as attribute and association
specifications, can be mechanically mapped to source code constructs supported by the
selected programming language (e.g., class and field declarations in Java), while the
bodies and additional private methods are added by developers.

• Reverse engineering produces a model that corresponds to source code
(Section 10.3.4). This transformation is used when the design of the system has been
lost and must be recovered from the source code. Although several CASE tools support

Figure 10-1 The four types of transformations described in this chapter: model transformations,
refactorings, forward engineering, and reverse engineering.

Source code spaceModel space

Model
transformation

Refactoring
Forward engineering

Reverse engineering
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reverse engineering, much human interaction is involved for recreating an accurate
model, as the code does not include all information needed to recover the model
unambiguously.

10.3.1 Model Transformation

A model transformation is applied to an object model and results in another object model
[Blaha & Premerlani, 1998]. The purpose of object model transformation is to simplify or
optimize the original model, bringing it into closer compliance with all requirements in the
specification. A transformation may add, remove, or rename classes, operations, associations, or
attributes. A transformation can also add information to the model or remove information from
it.

In Chapter 5, Analysis, we used transformations to organize objects into inheritance
hierarchies and eliminate redundancy from the analysis model. For example, the transformation
in Figure 10-2 takes a class model with a number of classes that contain the same attribute and
removes the redundancy. The Player, Advertiser, and LeagueOwner in ARENA all have an email
address attribute. We create a superclass User and move the email attribute to the superclass.

In principle, the development process can be thought as a series of model transformations,
starting with the analysis model and ending with the object design model, adding solution
domain details along the way. Although applying a model transformation is a fairly mechanical
activity, identifying which transformation to apply to which set of classes requires judgement
and experience.

Figure 10-2 An example of an object model transformation. A redundant attribute can be eliminated by
creating a superclass.

Player

Object design model before transformation

Object design model after transformation

AdvertiserLeagueOwner

User

+email:Address

Advertiser

+email:Address

Player

+email:Address

LeagueOwner

+email:Address
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10.3.2 Refactoring

A refactoring is a transformation of the source code that improves its readability or
modifiability without changing the behavior of the system [Fowler, 2000]. Refactoring aims at
improving the design of a working system by focusing on a specific field or method of a class.
To ensure that the refactoring does not change the behavior of the system, the refactoring is done
in small incremental steps that are interleaved with tests. The existence of a test driver for each
class allows developers to confidently change the code and encourages them to change the
interface of the class as little as possible during the refactoring.

For example, the object model transformation of Figure 10-2 corresponds to a sequence of
three refactorings. The first one, Pull Up Field, moves the email field from the subclasses to the
superclass User. The second one, Pull Up Constructor Body, moves the initialization code from
the subclasses to the superclass. The third and final one, Pull Up Method, moves the methods
manipulating the email field from the subclasses to the superclass. Let’s examine these three
refactorings in detail.

Pull Up Field relocates the email field using the following steps (Figure 10-3):

1. Inspect Player, LeagueOwner, and Advertiser to ensure that the email field is
equivalent. Rename equivalent fields to email if necessary.

2. Create public class User.

3. Set parent of Player, LeagueOwner, and Advertiser to User.

4. Add a protected field email to class User.

5. Remove fields email from Player, LeagueOwner, and Advertiser.

6. Compile and test.

Before refactoring

public class Player {
private String email;
//...

}
public class LeagueOwner {

private String eMail;
//...

}
public class Advertiser {

private String email_address;
//...

}

After refactoring

public class User {
protected String email;

}
public class Player extends User {

//...
}
public class LeagueOwner extends User 
{

//...
}
public class Advertiser extends User {

//...
}

Figure 10-3 Applying the Pull Up Field refactoring.
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Then, we apply the Pull Up Constructor Body refactoring to move the initialization code
for email using the following steps (Figure 10-4):

1. Add the constructor User(Address email) to class User.

2. Assign the field email in the constructor with the value passed in the parameter.

3. Add the call super(email) to the Player class constructor.

4. Compile and test.

5. Repeat steps 1–4 for the classes LeagueOwner and Advertiser.

At this point, the field email and its corresponding initialization code are in the User class.
Now, we examine if methods using the email field can be moved from the subclasses to the User
class. To achieve this, we apply the Pull Up Method refactoring:

1. Examine the methods of Player that use the email field. Note that Player.notify()
uses email and that it does not use any fields or operations that are specific to Player.

2. Copy the Player.notify() method to the User class and recompile.

3. Remove the Player.notify() method.

Before refactoring

public class User {
private String email;

}

public class Player extends User {
public Player(String email) {

this.email = email;
//...

}
}
public class LeagueOwner extends User
{

public LeagueOwner(String email) {
this.email = email;
//...

}
}
public class Advertiser extends User {

public Advertiser(String email) {
this.email = email;

//...
}

}

After refactoring

public class User {
public User(String email) {

this.email = email;
}

}
public class Player extends User {

public Player(String email) {
super(email);

//...
}

}
public class LeagueOwner extends User 
{

public LeagueOwner(String email) {
super(email);

//...
}

}
public class Advertiser extends User {

public Advertiser(String email) {
super(email);

//...
}

}

Figure 10-4 Applying the Pull Up Constructor Body refactoring.
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4. Compile and test.
5. Repeat for LeagueOwner and Advertiser.

Applying these three refactorings effectively transforms the ARENA source code in the same
way the object model transformation of Figure 10-2 transformed the ARENA object design model.
Note that the refactorings include many more steps than its corresponding object model
transformation and interleave testing with changes. This is because the source code includes
many more details, so it provides many more opportunities for introducing errors. In the next
section, we discuss general principles for avoiding transformation errors.

10.3.3 Forward Engineering

Forward engineering is applied to a set of model elements and results in a set of corresponding
source code statements, such as a class declaration, a Java expression, or a database schema. The
purpose of forward engineering is to maintain a strong correspondence between the object
design model and the code, and to reduce the number of errors introduced during
implementation, thereby decreasing implementation effort.

For example, Figure 10-5 depicts a particular forward engineering transformation applied
to the classes User and LeagueOwner. First, each UML class is mapped to a Java class. Next, the

public class User {
private String email;
public String getEmail() {

return email;
}
public void setEmail(String 

value){
email = value;

}
public void notify(String msg) {

// ....
}
/* Other methods omitted */

}

public class LeagueOwner extends User 
{

private int maxNumLeagues;
public int getMaxNumLeagues() {

return maxNumLeagues;
}
public void setMaxNumLeagues

(int value) {
maxNumLeagues = value;

}
/* Other methods omitted */

}

Figure 10-5 Realization of the User and LeagueOwner classes (UML class diagram and Java excerpts). In
this transformation, the public visibility of email and maxNumLeagues denotes that the methods for getting
and setting their values are public. The actual fields representing these attributes are private.

User LeagueOwner

+maxNumLeagues:int

Object design model before transformation

Source code after transformation

+email:String
+notify(msg:String)
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UML generalization relationship is mapped to an extends statement in the LeagueOwner class.
Finally, each attribute in the UML model is mapped to a private field in the Java classes and to
two public methods for setting and getting the value of the field. Developers can then refine the
result of the transformation with additional behavior, for example, to check that the new value of
maxNumLeagues is a positive integer.

Note that, except for the names of the attributes and methods, the code resulting from this
transformation is always the same. This makes it easier for developers to recognize
transformations in the source code, which encourages them to comply with naming conventions.
Moreover, since developers use one consistent approach for realizing classes, they introduce
fewer errors.

10.3.4 Reverse Engineering

Reverse engineering is applied to a set of source code elements and results in a set of model
elements. The purpose of this type of transformation is to recreate the model for an existing
system, either because the model was lost or never created, or because it became out of sync
with the source code. Reverse engineering is essentially an inverse transformation of forward
engineering. Reverse engineering creates a UML class for each class declaration statement, adds
an attribute for each field, and adds an operation for each method. However, because forward
engineering can lose information (e.g., associations are turned into collections of references),
reverse engineering does not necessarily recreate the same model. Although many CASE tools
support reverse engineering, CASE tools provide, at best, an approximation that the developer
can use to rediscover the original model. 

10.3.5 Transformation Principles

A transformation aims at improving the design of the system with respect to some criterion. We
discussed four types of transformations so far: model transformations, refactorings, forward
engineering, and reverse engineering. A model transformation improves the compliance of the
object design model with a design goal. A refactoring improves the readability or the
modifiability of the source code. Forward engineering improves the consistency of the source
code with respect to the object design model. Reverse engineering tries to discover the design
behind the source code. 

However, by trying to improve one aspect of the system, the developer runs the risk of
introducing errors that will be difficult to detect and repair. To avoid introducing new errors, all
transformations should follow these principles:

• Each transformation must address a single criteria. A transformation should improve
the system with respect to only one design goal. One transformation can aim to
improve response time. Another transformation can aim to improve coherence.
However, a transformation should not optimize multiple criteria. If you find yourself
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trying to deal with several criteria at once, you most likely introduce errors by making
the source code too complex.

• Each transformation must be local. A transformation should change only a few
methods or a few classes at once. Transformations often target the implementation of a
method, in which case the callers are not affected. If a transformation changes an
interface (e.g., adding a parameter to a method), then the client classes should be
changed one at the time (e.g., the older method should be kept around for background
compatibility testing). If you find yourself changing many subsystems at once, you are
performing an architectural change, not an object model transformation.

• Each transformation must be applied in isolation to other changes. To further localize
changes, transformations should be applied one at the time. If you are improving the
performance of a method, you should not add new functionality. If you are adding new
functionality, you should not optimize existing code. This enables you to focus on a
limited set of issues and reduces the opportunities for errors.

• Each transformation must be followed by a validation step. Even though
transformations have a mechanical aspect, they are applied by humans. After
completing a transformation and before initiating the next one, validate the changes. If
you applied an object model transformation, update the sequence diagrams in which
the classes under consideration are involved. Review the use cases related to the
sequence diagrams to ensure that the correct functionality is provided. If you applied a
refactoring, run the test cases relevant to the classes under consideration. If you added
new control statements or dealt with new boundary cases, write new tests to exercise
the new source code. It is always easier to find and repair a bug shortly after it was
introduced than later.

10.4 Mapping Activities
In this section, we present transformations that occur frequently to illustrate the principles we
described in the previous section. We focus on transformations during the following activities:

• Optimizing the Object Design Model (Section 10.4.1)
• Mapping Associations to Collections (Section 10.4.2)
• Mapping Contracts to Exceptions (Section 10.4.3)
• Mapping Object Models to a Persistent Storage Schema (Section 10.4.4).

10.4.1 Optimizing the Object Design Model

The direct translation of an analysis model into source code is often inefficient. The analysis
model focuses on the functionality of the system and does not take into account system design
decisions. During object design, we transform the object model to meet the design goals
identified during system design, such as minimization of response time, execution time, or
memory resources. For example, in the case of a Web browser, it might be clearer to represent



Mapping Activities 403

HTML documents as aggregates of text and images. However, if we decided during system
design to display documents as they are retrieved, we may introduce a proxy object to represent
placeholders for images that have not yet been retrieved.

In this section, we describe four simple but common optimizations: adding associations to
optimize access paths, collapsing objects into attributes, delaying expensive computations, and
caching the results of expensive computations.

When applying optimizations, developers must strike a balance between efficiency and
clarity. Optimizations increase the efficiency of the system but also the complexity of the
models, making it more difficult to understand the system.

Optimizing access paths

Common sources of inefficiency are the repeated traversal of multiple associations, the
traversal of associations with “many” multiplicity, and the misplacement of attributes
[Rumbaugh et al., 1991]. 

Repeated association traversals. To identify inefficient access paths, you should identify
operations that are invoked often and examine, with the help of a sequence diagram, the subset
of these operations that requires multiple association traversal. Frequent operations should not
require many traversals, but should have a direct connection between the querying object and the
queried object. If that direct connection is missing, you should add an association between these
two objects. In interface and reengineering projects, estimates for the frequency of access paths
can be derived from the legacy system. In greenfield engineering projects, the frequency of
access paths is more difficult to estimate. In this case, redundant associations should not be
added before a dynamic analysis of the full system—for example, during system testing—has
determined which associations participate in performance bottlenecks.

“Many” associations. For associations with “many” multiplicity, you should try to decrease
the search time by reducing the “many” to “one.” This can be done with a qualified association
(Section 2.4.2). If it is not possible to reduce the multiplicity of the association, you should
consider ordering or indexing the objects on the “many” side to decrease access time.

Misplaced attributes. Another source of inefficient system performance is excessive
modeling. During analysis many classes are identified that turn out to have no interesting
behavior. If most attributes are only involved in set() and get() operations, you should
reconsider folding these attributes into the calling class. After folding several attributes, some
classes may not be needed anymore and can simply removed from the model.

The systematic examination of the object model using the above questions should lead to a
model with selected redundant associations, with fewer inefficient many-to-many associations,
and with fewer classes.
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Collapsing objects: Turning objects into attributes

After the object model is restructured and optimized a couple of times, some of its classes
may have few attributes or behaviors left. Such classes, when associated only with one other
class, can be collapsed into an attribute, thus reducing the overall complexity of the model.

Consider, for example, a model that includes Persons identified by a SocialSecurity
object. During analysis, two classes may have been identified. Each Person is associated with a
SocialSecurity class, which stores a unique social security number identifying the Person.
Now, assume that the use cases do not require any behavior for the SocialSecurity object and
that no other classes have associations with the SocialSecurity class. In this case, the
SocialSecurity class should be collapsed into an attribute of Person (see Figure 10-6).

The decision of collapsing classes is not always obvious. In the case of a social security
system, the SocialSecurity class may have much more behavior, such as specialized routines
for generating new numbers based on birth dates and the location of the original application. In
general, developers should delay collapsing decisions until the beginning of the implementation,
when responsibilities for each class are clear. Often, this occurs after substantial coding has
occurred, in which case it may be necessary to refactor the code.

The refactoring equivalent to the model transformation of Figure 10-6 is Inline Class
refactoring [Fowler, 2000]:

1. Declare the public fields and methods of the source class (e.g., SocialSecurity) in the
absorbing class (e.g., Person).

2. Change all references to the source class to the absorbing class.

3. Change the name of the source class to another name, so that the compiler catches any
dangling references.

4. Compile and test.

5. Delete the source class.

Figure 10-6 Collapsing an object without interesting behavior into an attribute (UML class diagram).

Person SocialSecurity

number:String

Person

SSN:String

Object design model before transformation

Object design model after transformation
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Delaying expensive computations

Often, specific objects are expensive to create. However, their creation can often be
delayed until their actual content is needed. For example, consider an object representing an
image stored as a file (e.g., an ARENA AdvertisementBanner). Loading all the pixels that
constitute the image from the file is expensive. However, the image data need not be loaded until
the image is displayed. We can realize such an optimization using a Proxy design pattern
[Gamma et al., 1994]. An ImageProxy object takes the place of the Image and provides the same
interface as the Image object (Figure 10-7). Simple operations such as width() and height()
are handled by ImageProxy. When Image needs to be drawn, however, ImageProxy loads the
data from disk and creates a RealImage object. If the client does not invokes the paint()
operation, the RealImage object is not created, thus saving substantial computation time. The
calling classes only access the ImageProxy and the RealImage through the Image interface. 

Caching the result of expensive computations

Some methods are called many times, but their results are based on values that do not
change or change only infrequently. Reducing the number of computations required by these
methods substantially improve overall response time. In such cases, the result of the
computation should be cached as a private attribute. Consider, for example, the

Figure 10-7 Delaying expensive computations to transform the object design model using a Proxy design
pattern (UML class diagram). 
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LeagueBoundary.getStatistics() operation, which displays the statistics relevant to all
Players and Tournaments in a League. These statistics change only when a Match is completed,
so it is not necessary to recompute the statistics every time a User wishes to see them. Instead,
the statistics for a League can be cached in a temporary data structure, which is invalidated the
next time a Match is completed. Note that this approach includes a time-space trade-off: we
improve the average response time for the getStatistics() operation, but we consume
memory space by storing redundant information.

10.4.2 Mapping Associations to Collections

Associations are UML concepts that denote collections of bidirectional links between two or
more objects. Object-oriented programming languages, however, do not provide the concept of
association. Instead, they provide references, in which one object stores a handle to another
object, and collections, in which references to several objects can be stored and possibly
ordered. References are unidirectional and take place between two objects. During object
design, we realize associations in terms of references, taking into account the multiplicity of the
associations and their direction.

Note that many UML modeling tools accomplish the transformation of associations into
references mechanically. However, even with a tool that accomplishes this transformation, it is
nevertheless critical that you understand its rationale, as you have to deal with the generated
code.

Unidirectional one-to-one associations. The simplest association is a unidirectional one-to-one
association. For example (Figure 10-8), in ARENA, an Advertiser has a one-to-one association
with an Account object that tracks all the charges accrued from displaying
AdvertisementBanners. This association is unidirectional, as the Advertiser calls the operations
of the Account object, but the Account never invokes operations of the Advertiser. In this case,
we map this association to code using a reference from the Advertiser to the Account. That is, we
add a field to Advertiser named account of type Account.

Creating the association between Advertiser and Account translates to setting the
account field to refer to the correct Account object. Because each Advertiser object is
associated with exactly one Account, a null value for the account attribute can only occur when
a Advertiser object is being created. Otherwise, a null account is considered an error. Since
the reference to the Account object does not change over time, we make the account field private
and add a public Advertiser.getAccount() method. This prevents callers from accidentally
modifying the account field.

Bidirectional one-to-one associations. The direction of an association often changes during
the development of the system. Unidirectional associations are simple to realize. Bidirectional
associations are more complex and introduce mutual dependencies among classes. Assume that
we modify the Account class so that the display name of the Account is computed from the
name of the Advertiser. In this case, an Account needs to access its corresponding Advertiser
object. Consequently, the association between these two objects must be bidirectional
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(Figure 10-9). We add an owner attribute to Account in the Java source code, but this is not
sufficient: by adding a second attribute to realize the association, we introduce redundancy into
the model. We need to ensure that if a given Account has a reference to a specific Advertiser,
the Advertiser has a reference to that same Account. In this case, as the Account object is
created by the Advertiser constructor, we add a parameter to the Account constructor to
initialize the owner field to the correct value. Thus, the initial values for both fields are specified

public class Advertiser {
private Account account;
public Advertiser() {

account = new Account();
}
public Account getAccount() {

return account;
}

}

Figure 10-8 Realization of a unidirectional, one-to-one association (UML class diagram and Java).

public class Advertiser {
/* The account field is initialized
* in the constructor and never
* modified. */
private Account account;

public Advertiser() {
account = new Account(this);

}
public Account getAccount() {

return account;
}

}

public class Account {
/* The owner field is initialized
* during the constructor and
* never modified. */
private Advertiser owner;

public Account(Advertiser owner) {
this.owner = owner;

}
public Advertiser getOwner() {

return owner;
}

}

Figure 10-9 Realization of a bidirectional one-to-one association (UML class diagram and Java excerpts).

AccountAdvertiser
11

Object design model before transformation

Source code after transformation

AccountAdvertiser
11

Object design model before transformation

Source code after transformation
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in the same statement in the Advertiser constructor. Moreover, we make the owner field of
Account private and add a public method to get its value. Since neither the Advertiser class nor
the Account class modifies the field anywhere else, this ensures that both reference attributes
remain consistent. Note that this assumption is not enforceable with the programming language
constraints. The developer needs to document this assumption by writing a one-line comment
immediately before the account and owner fields. 

In Figure 10-9, both the Account and the Advertiser classes must be recompiled and
tested whenever we change either class. With a unidirectional association from the Advertiser
class to the Account class, the Account class would not be affected by changes to the
Advertiser class. Bidirectional associations, however, are usually necessary in the case of
classes that need to work together closely. The choice between unidirectional or bidirectional
associations is a trade-off to be evaluated in each specific context. To make the trade-off easier,
we can systematically make all attributes private and provide corresponding getAttribute()
and setAttribute() operations to access the reference. This minimizes changes to APIs when
changing a unidirectional association to bidirectional or vice versa.

One-to-many associations. One-to-many associations cannot be realized using a single
reference or a pair of references. Instead, we realize the “many” part using a collection of
references. For example, assume that an Advertiser can have several Accounts to track the
expenses accrued by AdvertisementBanners for different products. In this case, the Advertiser
object has a one-to-many association with the Account class (Figure 10-10). Because Accounts
have no specific order and because an Account can be part of an Advertiser at most once, we

public class Advertiser {
private Set accounts;
public Advertiser() {

accounts = new HashSet();
}
public void addAccount(Account a) {

accounts.add(a);
a.setOwner(this);

}
public void removeAccount

(Account a) {
accounts.remove(a);
a.setOwner(null);

}
}

public class Account {
private Advertiser owner;
public void setOwner

(Advertiser newOwner) {
if (owner != newOwner) {

Advertiser old = owner;
owner = newOwner;
if (newOwner != null)
newOwner.addAccount(this);

if (old != null)
old.removeAccount(this);

}
}

}

Figure 10-10 Realization of a bidirectional, one-to-many association (UML class diagram and Java).

Advertiser Account
1 *

Object design model before transformation

Source code after transformation
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use a set of references, called accounts, to model the “many” part of the association. Moreover,
we decide to realize this association as a bidirectional association, and so add the addAccount(),
removeAccount(), and setOwner() methods to the Advertiser and Account classes to update
the accounts and owner fields. 

As in the one-to-one example, the association must be initialized when Advertiser and
Account objects are created. However, since an Advertiser can have a varying number of
Accounts, the Advertiser object does not invoke the Account constructor. Instead, a control
object for creating and archiving Accounts is responsible for invoking the constructor. 

Note that the collection on the “many” side of the association depends on the constraints on
the association. For example, if the Accounts of an Advertiser must be ordered, we need to use a
List instead of a Set. To minimize changes to the interface when association constraints change,
we can set the return type of the getAccounts() method to Collection, a common superclass of
List and Set.

Many-to-many associations. In this case, both end classes have fields that are collections of
references and operations to keep these collections consistent. For example, the Tournament
class of ARENA has an ordered many-to-many association with the Player class. This association
is realized by using a List attribute in each class, which is modified by the operations
addPlayer(), removePlayer(), addTournament(), and removeTournament() (Figure 10-11).
We already identified acceptPlayer() and removePlayer() operations in the object design
model (see Figure 9-11). We rename acceptPlayer() to addPlayer() to maintain consistency
with the code generated for other associations.

public class Tournament {
private List players;
public Tournament() {

players = new ArrayList();
}
public void addPlayer(Player p) {

if (!players.contains(p)) {
players.add(p);
p.addTournament(this);

}
}

}

public class Player {
private List tournaments;
public Player() {

tournaments = new ArrayList();
}
public void addTournament

(Tournament t) {
if (!tournaments.contains(t)) {

tournaments.add(t);
t.addPlayer(this);

}
}

}

Figure 10-11 Realization of a bidirectional, many-to-many association (UML class diagram and Java).

Tournament Player* *

Object design model before transformation

Source code after transformation
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As in the previous example, these operations ensure that both Lists are consistent. In the

event the association between Tournament and Player should be unidirectional, we could then

remove the tournaments attribute and its related methods, in which case a unidirectional many-

to-many association or a unidirectional one-to-many association are very similar and difficult to

distinguish at the object interface level. 

Qualified associations. As we saw in Chapter 2, Modeling with UML, qualified associations

are used to reduce the multiplicity of one “many” side in a one-to-many or a many-to-many

association. The qualifier of the association is an attribute of the class on the “many” side of the

association, such as a name that is unique within the context of the association, but not

necessarily globally unique. For example, consider the association between League and Player

(Figure 10-12). It is originally a many-to-many association (a League involves many Players, a

Player can take part in many Leagues). To make it easier to identify Players within a League,

Players can choose a short nickname that must be unique within the League. However, the

Player can choose different nicknames in different Leagues, and the nicknames do not need to

be unique globally within an Arena.

public class League {
private Map players;

public void addPlayer
(String nickName, Player p) {

if (!players.containsKey(nickName)) 
{

players.put(nickName, p);
p.addLeague(nickName, this);

}
}

}

public class Player {
private Map leagues;

public void addLeague
(String nickName, League l) {

if (!leagues.containsKey(l)) {
leagues.put(l, nickName);
l.addPlayer(nickName, this);

}
}

}

Figure 10-12 Realization of a bidirectional qualified association (UML class diagram; arrow denotes the
successive transformations).
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Qualified associations are realized differently from the way one-to-many and many-to-
many associations are realized. The main difference is that we use a Map object to represent the
qualified end, as opposed to a List or a Set, and we pass the qualifier as a parameter in the
operations to access the other end of the association. To continue our example, consider the
association between League and Player. We realize this qualified association by creating a
private players attribute in League and a leagues attribute in Player. The players attribute is
a Map indexed by the nickname of the Player within the League. Because the nickname is stored
in the Map, a specific Player can have different nicknames across Leagues. The players
attribute is modified with the operations addPlayer() and removePlayer(). A specific Player
is accessed with the getPlayer() with a specific nickName, which reduces the need for iterating
through the Map to find a specific Player. The other end of the association is realized with a Set,
as before. 

Associations classes. In UML, we use an association class to hold the attributes and operations
of an association. For example, we can represent the Statistics for a Player within a
Tournament as an association class, which holds statistics counters for each Player/Tournament
combination (Figure 10-13). To realize such an association, we first transform the association
class into a separate object and a number of binary associations. Then we can use the techniques
discussed earlier to convert each binary association to a set of reference attributes. In

Figure 10-13 Transformation of an association class into an object and two binary associations (UML
class diagram).
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Section 10.6, we revisit this case and describe additional mappings for realizing association
classes.

Once associations have been mapped to fields and methods, the public interface of classes is
relatively complete and should change only as a result of new requirements, discovered bugs, or
refactoring.

10.4.3 Mapping Contracts to Exceptions

Object-oriented languages that include constraints, such as Eiffel, can automatically check
contracts and raise exceptions when a contract is violated. This enables a class user to detect
bugs associated with incorrect assumptions about the used class. In particular, this is useful
when developers reuse a set of classes to discover boundary cases. Raising exceptions when
postconditions are violated enables class implementors to catch bugs early, to identify precisely
the operation in which the violation occurred, and to correct the offending code.

Unfortunately, many object-oriented languages, including Java, do not provide built-in
support for contracts. However, we can use their exception mechanisms as building blocks for
signaling and handling contract violations. In Java, we raise an exception with the throw
keyword followed by an exception object. The exception object provides a place holder for
storing information about the exception, usually an error message and a backtrace representing
the call stack of the throw. The effect of throwing an exception interrupts the control flow and
unwinds the call stack until a matching catch statement is found. The catch statement is
followed by a parameter, which is bound to the exception object, and an exception handling
block. If the exception object is of the same type of the parameter (or a subclass thereof), the
catch statement matches and the exception handling block is executed.

For example, in Figure 10-14, let us assume that the acceptPlayer() operation of
TournamentControl is invoked with a player who is already part of the Tournament. In this
case, TournamentControl.addPlayer() throws an exception of type KnownPlayer, which is
caught by the caller, TournamentForm.addPlayer(), which forwards the exception to the
ErrorConsole class, and then proceeds with the next Player. The ErrorConsole boundary
object then displays a list of error messages to the user.

A simple mapping would be to treat each operation in the contract individually and to add
code within the method body to check the preconditions, postconditions, and invariants relevant
to the operation:

• Checking preconditions. Preconditions should be checked at the beginning of the
method, before any processing is done. There should be a test that checks if the
precondition is true and raises an exception otherwise. Each precondition corresponds
to a different exception, so that the client class can not only detect that a violation
occurred, but also identify which parameter is at fault.

• Checking postconditions. Postconditions should be checked at the end of the method,
after all the work has been accomplished and the state changes are finalized. Each
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postcondition corresponds to a Boolean expression in an if statement that raises an
exception if the contract is violated. If more than one postcondition is not satisfied,
only the first detection is reported. 

• Checking invariants. When treating each operation contract individually, invariants are
checked at the same time as postconditions.

• Dealing with inheritance. The checking code for preconditions and postconditions
should be encapsulated into separate methods that can be called from subclasses.

A systematic application of the above rules to the Tournament.addPlayer() contract
yields the code in Figure 10-15.

If we mapped every contract following the above steps, we would ensure that all
preconditions, postconditions, and invariants are checked for every method invocation, and that
violations are detected within one method invocation. While this approach results in a robust
system (assuming the checking code is correct), it is not realistic:

public class TournamentControl {
private Tournament tournament;
public void addPlayer(Player p) throws KnownPlayerException {

if (tournament.isPlayerAccepted(p)) {
throw new KnownPlayerException(p);

}
//... Normal addPlayer behavior

}
}
public class TournamentForm {

private TournamentControl control;
private List players;
public void processPlayerApplications() {

// Go through all the players who applied for this tournament
for (Iterator i = players.iterator(); i.hasNext();) {

try {
// Delegate to the control object.
control.acceptPlayer((Player)i.next());

} catch (KnownPlayerException e) {
// If an exception was caught, log it to the console, and 
// proceed to the next player.
ErrorConsole.log(e.getMessage());

}
}

}
}

Figure 10-14 Example of exception handling in Java. TournamentForm catches exceptions raised by
Tournament and TournamentControl and logs them into an error console for display to the user.
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public class Tournament {
//...

private List players;

public void addPlayer(Player p)
throws KnownPlayer, TooManyPlayers, UnknownPlayer,

IllegalNumPlayers, IllegalMaxNumPlayers
{

// check precondition!isPlayerAccepted(p)
if (isPlayerAccepted(p)) {

throw new KnownPlayer(p);
}
// check precondition getNumPlayers() < maxNumPlayers
if (getNumPlayers() == getMaxNumPlayers()) {

throw new TooManyPlayers(getNumPlayers());
}
// save values for postconditions
int pre_getNumPlayers = getNumPlayers();

// accomplish the real work
players.add(p);
p.addTournament(this);

// check post condition isPlayerAccepted(p)
if (!isPlayerAccepted(p)) {

throw new UnknownPlayer(p);
}
// check post condition getNumPlayers() = @pre.getNumPlayers() + 1
if (getNumPlayers() != pre_getNumPlayers + 1) {

throw new IllegalNumPlayers(getNumPlayers());
}
// check invariant maxNumPlayers > 0
if (getMaxNumPlayers() <= 0) {

throw new IllegalMaxNumPlayers(getMaxNumPlayers());
}

}
//...

}

Figure 10-15 A complete implementation of the Tournament.addPlayer() contract.
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• Coding effort. In many cases, the code required for checking preconditions and

postconditions is longer and more complex than the code accomplishing the real work.

This results in increased effort that could be better spent in testing or code clean-up.

• Increased opportunities for defects. Checking code can also include errors, increasing

testing effort. Worse, if the same developer writes the method and the checking code, it

is highly probable that bugs in the checking code mask bugs in the actual method,

thereby reducing the value of the checking code.

• Obfuscated code. Checking code is usually more complex than its corresponding

constraint and difficult to modify when constraints change. This leads to the insertion

of many more bugs during changes, defeating the original purpose of the contract.

• Performances drawback. Checking systematically all contracts can significantly slow

down the code, sometimes by an order of magnitude. Although correctness is always a

design goal, response time and throughput design goals would not be met.

Hence, unless we have a tool for generating checking code automatically, such as

iContract [Kramer, 1998], we need to adopt a pragmatic approach and evaluate the above trade-

offs in the project context. Remember that contracts support communication among developers,

consequently, exception handling of contract violations should focus on interfaces between

developers. Below are heuristics to evaluate these trade-offs: 

In all cases, the checking code should be documented with comments describing the

constraints checked, both in English and in OCL. In addition to making the code more readable,

this makes it easier to modify the checking code correctly when a constraint changes.

Heuristics for mapping contracts to exceptions

• Omit checking code for postconditions and invariants. Checking code is usually redundant with the 
code accomplishing the functionality of the class, and is written by the developer of the method. It is 
not likely to detect many bugs unless it is written by a separate tester. 

• Focus on subsystem interfaces and omit the checking code associated with private and protected 
methods. System boundaries do not change as often as internal interfaces and represent a boundary 
between different developers. 

• Focus on contracts for components with the longest life, that is, on code most likely to be reused and 
to survive successive releases. Entity objects usually fulfill these criteria, whereas boundary objects 
associated with the user interface do not.

• Reuse constraint checking code. Many operations have similar preconditions. Encapsulate constraint 
checking code into methods so that they can be easily invoked and so that they share the same 
exception classes.
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10.4.4 Mapping Object Models to a Persistent Storage Schema

So far, we have treated persistent objects like all other objects. However, object-oriented
programming languages do not usually provide an efficient way to store persistent objects. In
this case, we need to map persistent objects to a data structure that can be stored by the persistent
data management system decided during system design, in most cases, either a database or a set
of files. For object-oriented databases, no transformations need be done, since there is a one-to-
one mapping between classes in the object model and classes in the object-oriented database.
However, for relational databases and flat files, we need to map the object model to a storage
schema and provide an infrastructure for converting from and to persistent storage. In this
section, we look at the steps involved in mapping an object model to a relational database using
Java and database schemas. 

A schema is a description of the data, that is, a meta-model for data [Date, 2004]. In
UML, class diagrams are used to describe the set of valid instances that can be created by the
source code. Similarly, in relational databases, the database schema describes the valid set of
data records that can be stored in the database. Relational databases store both the schema and
the data. Relational databases store persistent data in the form of tables (also called relations in
the database literature). A table is structured in columns, each of which represents an attribute.
For example, in Figure 10-16, the User table has three columns, firstName, login, and email.
The rows of the table represent data records, with each cell in the table representing the value of
the attribute for the data record in that row. In Figure 10-16, the User table contains three data
records each representing the attributes of specific users Alice, John, and Bob. 

A primary key of a table is a set of attributes whose values uniquely identify the data
records in a table. The primary key is used to refer unambiguously to a specific data record when
inserting, updating, or removing it. For example, in Figure 10-16, the login attribute represents
a unique user name within an Arena. Hence, the login attribute can be used as a primary key.
Note, however, the email attribute is also unique across all users in the table. Hence, the email
attribute could also be used as a primary key. Sets of attributes that could be used as a primary

Figure 10-16 An example of a relational table, with three attributes and three data records. 
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key are called candidate keys. Only the actual candidate key that is used in the application to
identify data records is the primary key.

A foreign key is an attribute (or a set of attributes) that references the primary key of
another table. A foreign key links a data record in one table with one or more data records in
another table. In Figure 10-17, the table League includes the foreign key owner that references
the login attribute in the User table in Figure 10-16. Alice is the owner of the tictactoeNovice
and tictactoeExpert leagues and John is the owner of the chessNovice league.

Mapping classes and attributes

When mapping the persistent objects to relational schemata, we focus first on the classes
and their attributes. We map each class to a table with the same name. For each attribute, we add
a column in the table with the name of the attribute in the class. Each data record in the table
corresponds to an instance of the class. By keeping the names in the object model and the
relational schema consistent, we provide traceability between both representations and make
future changes easier.

When mapping attributes, we need to select a data type for the database column. For
primitive types, the correspondence between the programming language type and the database
type is usually trivial (e.g., the Java Date type maps to the datetime type in SQL). However, for
other types, such as String, the mapping is more complex. The type text in SQL requires a
specified maximum size. For example, when mapping the ARENA User class, we could arbitrarily
limit the length of first names to 25 characters, enabling us to use a column of type text[25].
Note that we have to ensure that users’ first names comply with this new constraint by adding
preconditions and checking code in the entity and boundary objects.

Next, we focus on the primary key. There are two options when selecting a primary key for
the table. The first option is to identify a set of class attributes that uniquely identifies the object.
The second option is to add a unique identifier attribute that we generate.

Figure 10-17 An example of a foreign key. The owner attribute in the League table refers to the primary
key of the User table in Figure 10-16.
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For example, in Figure 10-16, we use the login name of the user as a primary key.
Although this approach is intuitive, it has several drawbacks. If the value of the login attribute
changes, we need to update all tables in which the user login name occurs as a foreign key. Also,
selecting attributes from the application domain can make it difficult to change the database
schema when the application domain changes. For example, in the future, we could use a single
table to store users from different Arenas. As login names are unique only within a single Arena,
we would need to add the name of the Arena in the primary key. 

The second option is to use an arbitrarily unique identifier (id) attribute as a primary key.
We generate the id attribute for each object and can guarantee that it is unique and will not
change. Some database management systems provide features for automatically generating ids.
This results in a more robust schema and primary and foreign keys that consist of one column.

For example, let us focus on the User class in ARENA (Figure 10-18). We map it to a User
table with four columns: id, firstName, login, and email. The type of the id column is a long
integer that we increment every time we create a new object.

Mapping associations

After having mapped the classes to relational tables, we now turn to the mapping of
associations. The mapping of associations to a database schema depends on the multiplicity of
the association. One-to-one and one-to-many associations are implemented as a so-called
buried association [Blaha & Premerlani, 1998], using a foreign key. Many-to-many
associations are implemented as a separate table.

Buried associations. Associations with multiplicity one can be implemented using a foreign
key. For one-to-many associations, we add a foreign key to the table representing the class on the
“many” end. For all other associations, we can select either class at the end of the association.
For example (Figure 10-19), consider the one-to-many association between LeagueOwner and

Figure 10-18 Forward engineering of the User class to a database table.
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League. We map this association by adding a owner column to the League table referring to the
primary key of the LeagueOwner table. The value of the owner column is the value of the id (i.e.,
the primary key) of the corresponding league. If there are multiple Leagues owned by the same
LeagueOwner, multiple data records of the League table have the id of the owner as value for this
column. For associations with a multiplicity of zero or one, a null value indicates that there are
no associations for the data record of interest.

Separate table. Many-to-many associations are implemented using a separate two-column
table with foreign keys for both classes of the association. We call this the association table.
Each row in the association table corresponds to a link between two instances. For example, we
map the many-to-many Tournament/Player association to an association table with two
columns: one for the id of the Tournaments, the other for the id of the Players. If a player is
part of multiple tournaments, each player/tournament association will have a separate data
record. Similarly, if a tournament includes multiple players, each player will have a separate data
record. The association table in Figure 10-20 contains two links representing the membership of
“alice” and “john” in the “novice” Tournament.

Figure 10-19  Mapping of the LeagueOwner/League association as a buried association.

Figure 10-20  Mapping of the Tournament/Player association as a separate table.
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Note that a one-to-one and one-to-many association could be realized with an association
table instead of a buried association. Using a separate table to realize all associations results in a
database schema that is modifiable. For example, if we change the multiplicity of a one-to-many
association to a many-to-many association, we do not need to change the database schema. Of
course, this increases the overall number of tables in the schema and the time to traverse the
association. In general, we need to evaluate this trade-off in the context of the application,
examining whether the multiplicity of the association is likely to change or if response time is a
critical design goal.

Mapping inheritance relationships

Relational databases do not directly support inheritance, but there are two main options for
mapping an inheritance relationship to a database schema. In the first option, called vertical
mapping, similar to a one-to-one association, each class is represented by a table and uses a
foreign key to link the subclass tables to the superclass table. In the second option, called
horizontal mapping, the attributes of the superclass are pushed down into the subclasses,
essentially duplicating columns in the tables corresponding to subclasses.

Vertical mapping. Given an inheritance relationship, we map the superclass and subclasses to
individual tables. The superclass table includes a column for each attribute defined in the
superclass. The superclass includes an additional column denoting the subclass that corresponds
to the data record. The subclass tables include a column for each attribute defined in the
superclass. All tables share the same primary key, that is, the identifier of the object. Data
records in the superclass and subclass tables with the same primary key value refer to the same
object.

For example, in Figure 10-21, the classes User, LeagueOwner, and Player are each
mapped to a table with columns for the attributes of the classes. The User table includes an
additional column, role, which denotes the class of the data record. The three tables share the
same primary key, that is, if data records have the same id value in each table, they correspond
to the same object. The User Zoe, for example, is a LeagueOwner, who can lead at most 12
Leagues. Zoe’s name is stored in the User table; the maximum number of leagues is stored in the
LeagueOwner table. Similarly, the User John is a Player who has 126 credits (i.e., the number of
Matches that John can play before renewing his membership). John’s name is stored in the User
table; his number of credits is stored in the Player table. 

In general, to retrieve an object from the database, we need to examine first the data record
in the superclass table. This record includes the attribute values for the superclass (e.g., “zoe”,
the name of the user) and the subclass of the instance. We use the same object id (e.g., “56”) to
query the subclass indicated by the role attribute (i.e., “LeagueOwner”), and retrieve the
remainder of the attribute values (e.g., “maxNumLeagues = 12”). In case of several levels of
inheritance, we repeat the same procedure and reconstruct the object with individual queries to
each table.
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Horizontal mapping. Another way to realize inheritance is to push the attributes of the
superclass down into the subclasses, effectively removing the need for a superclass table. In this
case, each subclass table duplicates the columns of the superclass.

For example, in the case of the User inheritance hierarchy, we create a table for
LeagueOwners and a table for Players (Figure 10-22). Each table includes a column for its own
attributes and for the attributes of the User class. In this case, we need a single query to retrieve
all attribute values for a single object.

The trade-off between using a separate table for superclasses and duplicating columns in
the subclass tables is between modifiability and response time. If we use a separate table, we can
add attributes to the superclass simply by adding a column to the superclass table. When adding
a subclass, we add a table for the subclass with a column for each attribute in the subclass. If we
duplicate columns, modifying the database schema is more complex and error prone. The
advantage of duplicating columns is that individual objects are not fragmented across a number
of tables, which results in faster queries. For deep inheritance hierarchies, this can represent a
significant performance difference.

In general, we need to examine the likelihood of changes against the performance
requirements in the specific context of the application. 

Figure 10-21  Realizing the User inheritance hierarchy with a separate table.
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10.5 Managing Implementation

10.5.1 Documenting Transformations

Transformations enable us to improve specific aspects of the object design model and to convert
it into source code. By providing systematic recipes for recurring situations, transformations
enable us to reduce the amount of effort and the overall number of errors in the source code.
However, to retain this benefit throughout the lifetime of the system, we need to document the
application of transformations so that they can be consistently reapplied in the event of changes
to the object design model or the source code. 

Reverse engineering attempts to alleviate this problem by allowing us to reconstruct the
object design model from the source code. If we could maintain a one-to-one mapping between
the source code and the object design mode, we would not need any documentation: the tools at
hand would automatically apply selected transformations and mirror changes in the source code
and the object design model. However, most useful transformations, including those described in
this chapter, are not one-to-one mappings. As a result, information is lost in the process of
applying the transformation. For example:

• Association multiplicity and collections. Unidirectional one-to-many associations and
many-to-many associations map to the same source code. A CASE tool that reverse-
engineers the corresponding source code usually selects the least restrictive case (i.e., a
many-to-many association). In general, information about association multiplicity is
distributed in several places in the source code, including checking code in the
boundary objects.

Figure 10-22  Realizing the User inheritance hierarchy by duplicating columns.

id

Player

User

LeagueOwner table Player table

56

maxNumLeagues ...

12

id

79

credits ...

126

LeagueOwner

maxNumLeagues credits

name

name

zoe

name

john



Managing Implementation 423

• Association multiplicity and buried associations. One-to-many associations and one-to-
one associations implemented as a buried association in a database schema suffer from
the same problem. Worse, when all associations are realized as separate tables, all
information about association multiplicity is lost.

• Postconditions and invariants. When mapping contracts to exception-handling code
(Section 10.4.3), we generate checking code only for preconditions. Postconditions and
invariants are not mapped to source code. The object specification and the system
become quickly inconsistent when postconditions or invariants are changed, but not
documented.

These challenges boil down to finding conventions and mechanisms to keep the object design
model, the source code, and the documentation consistent with each other. There is no single
answer, but the following principles reduce consistency problems when applied systematically:

• For a given transformation, use the same tool. If you are using a modeling tool to map
associations to code, use the same tool when you change association multiplicities.
Modern modeling tools generate markers as source code comments to enable the
repetitive generation of code from the same model. However, this mapping can easily
break when developers use interchangeably a text editor or the modeling tool to change
associations. Similarly, if you generate constraint-checking code with a tool, regenerate
the checking code when the constraint is changed.

• Keep the contracts in the source code, not in the object design model. Contracts
describe the behavior of methods and restrictions on parameters and attributes.
Developers change the behavior of an object by modifying the body of a method, not by
modifying the object design model. By keeping the constraint specifications as source
code comments, they are more likely to be updated when the code changes.

• Use the same names for the same objects. When mapping an association to source code
or a class to a database schema, use the same names on both sides of the
transformation. If the name is changed in the model, change it in the source code. By
using the same names, you provide traceability among the models and make it easier
for developers to identify both ends of the transformation. This also emphasizes the
importance of identifying the right names for classes during analysis, before any
transformations are applied, to minimize the effort associated with renaming.

• Make transformations explicit. When transformations are applied by hand, it is critical
that the transformation is made explicit in some form so that all developers can apply
the transformation the same way. For example, transformations for mapping
associations to collections should be documented in a coding conventions guide so that,
when two developers apply the same transformation, they produce the same code. This
also makes it easier for developers to identify transformations in the source code. As
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usual, the commitment of developers to use standard conventions is more important
than the actual conventions.

10.5.2 Assigning Responsibilities

Several roles collaborate to select, apply, and document transformations and the conversion of
the object design model into source code:

• The core architect selects the transformations to be systematically applied. For
example, if it is critical that the database schema is modifiable, the core architect
decides that all associations should be implemented as separate tables. 

• The architecture liaison is responsible for documenting the contracts associated with
subsystem interfaces. When such contracts change, the architecture liaison is
responsible for notifying all class users. 

• The developer is responsible for following the conventions set by the core architect and
actually applying the transformations and converting the object design model into
source code. Developers are responsible for maintaining up-to-date the source code
comments with the rest of the models.

Identifying and applying transformations the first time is relatively trivial. The key
challenge is in reapplying transformations after a change occurs. Hence, when assigning
responsibilities, each role should understand who should be notified in the event of changes.

10.6 ARENA Case Study

We now apply the concepts and methods described in this chapter to a more extensive example
from the ARENA system. We focus on the classes surrounding Statistics, which is responsible
for tracking general and game-specific statistics for each Game, Player, Tournament, and
League. The challenge in designing and realizing the associations among these classes is to find
a reusable solution for many types of statistics, present and future, so that as little code as
possible must be written when new Games or TournamentStyles are introduced.

First, we describe in detail the Statistics class. Next, we map the associations between
the Statistics object and the other objects to collections. Next, we map the contracts of the
Statistics class to exceptions. Finally, we design a database schema for these classes and
associations.

10.6.1 ARENA Statistics

A Statistics instance is responsible for tracking a number of running counters within the
context of a Game and for a number of scopes. For example, a Spectator should be able to view
the Statistics associated with a specific Player within the scope of a single Tournament (e.g.,
the average number of moves per Match by player John in the winter Tic Tac Toe tournament) or
within the more general scope of a League (e.g., the average number of moves per match by
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player John in the Tic Tac Toe novice league). Similarly, a Spectator should also be able to
view average statistics over all Players in a League. The scope of a statistic are, from most
general to most specific:

• All Matches in a Game

• All Matches in a League

• All Matches in a League played by a specific Player

• All Matches in a Tournament

• All Matches in a Tournament played by a specific Player.

Earlier (see Section 8.6.1), we addressed the issue of Game independence by defining
Statistics as a product in an Abstract Factory pattern. For each new Game added to ARENA,
developers are asked to refine the Statistics interface. For Games that do not need specialized
Statistics, we provide a default implementation of the Statistics interface called
DefaultStatistics. ARENA does not access the concrete Game and Statistics classes, thereby
ensuring Game independence (Figure 10-23).

Our design goal is to keep the Statistics interface simple so that it can be easily
specialized for different Games. In other words, the concrete Statistics class for a specific Game
should only have to define the formulae for computing the Game-specific Statistics. Scopes

Figure 10-23 Statistics as a product in the Game Abstract Factory (UML class diagram).
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should be handled by ARENA. Moreover, response time in ARENA has a higher priority than
memory consumption. 

This leads us, during object design, to the decision of computing all Statistics
incrementally as each Match completes. We organize the individual counters we compute into
Statistics objects, each representing a scope. Hence, there is a Statistics object for each
Game, League, Tournament, and for each combination of Player/Game, Player/League, and
Player/Tournament.

For example, let us assume that Player John takes part in the two Tournaments, t1 and t2,
in the Tic Tac Toe novice League. He then moves on to the expert Tic Tac Toe League and takes
part in one more Tournament, t3. Let us further assume that the Tic Tac Toe Statistics object
tracks his win ratio, the ratio of the number of the Games he has won over all the Games he has
played. Under these circumstances, six Statistics objects track John’s win ratio:

• Three Statistics objects track John’s win ratio for the Tournaments t1, t2, and t3.

• Two Statistics objects tracks John’s win ratio over all his Tournaments within the
novice and the expert Leagues, respectively.

• One for the Tic Tac Toe Game, tracking John’s lifetime win ratio.

In UML, we can represent compactly this complex set of interactions with an N-ary
association Statistics class relating the Player, the Game, the League, and the Tournament
classes (Figure 10-24). For any given Statistics association, only one of Game, League, or
Tournament is involved in the association, denoting whether the Statistics is value for all
Leagues in a specific Game, for a single League, or for a single Tournament, respectively.

10.6.2 Mapping Associations to Collections

We map the N-ary Statistics association to a Statistics Java class, whose sole purpose is to
hold the values of the counters, and a singleton StatisticsVault, responsible for tracking the

Figure 10-24 N-ary association class Statistics relating League, Tournament, and Player (UML class
diagram).

Tournament

0..10..10..1

1 *

1

LeagueGame Player

Statistics

0..1

1



ARENA Case Study 427

links between the Statistics objects and the relevant Game, League, Tournament, and Player
instances (Figure 10-25). We add operations to StatisticsVault for retrieving a specific
Statistics given a scope. If the Statistics object of interest does not exist, the
StatisticsVault creates it using the corresponding Game.createStatistics() method.
Internally, the StatisticsVault uses a private HashMap to store the relationship between the
combination of Player, Game, League, and Tournament and the corresponding Statistics
object.

SimpleStatisticsVault depicted in Figure 10-25 is a direct mapping of the N-ary
association of Figure 10-24. SimpleStatisticsVault does not accomplish any other task
beyond maintaining the state of the association. TournamentControl invokes methods of
SimpleStatisticsVault to retrieve the needed Statistics objects, and then invokes the
Statistics.update() method as Matches complete. StatisticsView (a boundary object
displaying statistics to the user) retrieves the needed Statistics based on the user selection and
invokes the Statistics.getStat() method to retrieve the individual values of the counters. In
both cases, two steps are needed, one to retrieve the correct Statistics object, the other to
invoke the method that does the actual work. 

Ideally, we would like to avoid this situation and design an interface that enables
TournamentControl and StatisticsView to invoke only one method. This would simplify the
method calls related to Statistics in both objects. It would also centralize the scope look-up
logic into a single object, making future changes easier. To accomplish this, we refine the
SimpleStatisticsVault into a Facade design pattern (see Figure 6-30). We merge the
getStatisticsObject() methods with the methods offered by the Statistics object; that is,
we provide an update() method for TournamentControl and a set of getStat() methods for

Figure 10-25 SimpleStatisticsVault object realizing the N-ary association of Figure 10-24.
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StatisticsView. This results in a slightly more complex interface (Figure 10-26). However, the
interface is still within 7 ± 2 methods, and all handling of Statistics objects is now
centralized.

If we decide to add different scopes (e.g., match statistics), we will only need to add a
method to StatisticsVault. Moreover, TournamentControl and StatisticsView are now
completely decoupled from the individual Statistics objects, giving us the option of changing
the way Statistics are stored, for example, by computing them on the fly or by caching them
with a Proxy design pattern (Figure 10-7).

The role of the Statistics object is reduced to tracking counters (basically, name/value
pairs). None of the classes Statistics, Player, Tournament, or League store data about the
N-ary association. Consequently, when writing a specialized Statistics object for a new Game,
the class extender need only focus on the formula for computing a statistic given a Match and a
Player.

10.6.3 Mapping Contracts to Exceptions

Because we introduced a new interface, the StatisticsVault facade, in the ARENA object design
model, we need to write its contract and relate it to the contracts of the existing classes. First, we
focus on the constraints associated with the Statistics class and propagate them to the
StatisticsVault class. The Statistcs.getStat() method assumes that the name passed in
parameter is that of a statistic known by this type of object. Hence, we add one such constraint
for each getStat() method in the StatisticsVault:

Figure 10-26 StatisticsVault as a Facade shielding the control and boundary objects from the
Statistics storage and computation (UML class diagram).
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Similarly, we add constraints to the StatisticsVault.update() method to reflect the
constraint on the Statistics.update() method. In this case, we only need to ensure that the
match is not null and has been completed.

Next, we need to examine the remaining parameters of the StatisticsVault methods and
document any additional preconditions. We stipulate that the player parameter can be null
(denoting the Statistics object for all players), but parameters specifying a game, league, and
tournament cannot be null, because a null value, in this case, does not correspond to an
application domain concept (e.g., no statistics are valid across all Games). In addition, if a player
is specified, she must be related to the scope object (e.g., a player does not have statistics for a
tournament in which she did not play). 

Finally, we map the above constraints to exceptions and checking code. For constraints
that we propagated from the Statistics object, we simply forward the exceptions we receive
from Statistics and omit the checking code. The UnknownStatistic is raised by
Statistics.getStat() and forwarded by StatisticsVault.getStat() methods. The
InvalidMatch and MatchNotCompleted exceptions are raised by Statistics.update() and
forwarded by StatisticsVault.update() method. For the other constraints, we define a new
exception, InvalidScope, for the cases where the game, league, or tournament parameters are
null or are not related to the specified player. Finally, we add checking code at the beginning of
the StatisticsVault.getStat() methods to check for null references and raise the
InvalidScope exception, if needed. Figure 10-27 depicts the public interface of the
StatisticsVault class. 

context StatisticsVault::getStat(name,game,player) pre:
getStatNames()->includes(name)

context StatisticsVault::getStat(name,league,player) pre:
getStatNames()->includes(name)

context StatisticsVault::getStat(name,tournament,player) pre:
getStatNames()->includes(name)

context StatisticsVault::update(match) pre:
match <> null and match.isCompleted()

context StatisticsVault::getStat(name,game,player) pre:
game <> null and

player <> null implies player.leagues.game->includes(game)
context StatisticsVault::getStat(name,league,player) pre:

league <> null and
player <> null implies league.players->includes(player)

context StatisticsVault::getStat(name,tournament,player) pre:
tournament <> null and

player <> null implies tournament.players->includes(player)
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Note that, with the InvalidScope exception, we decided to cover three preconditions with
one exception. This results in similar method declarations for all three getStat() methods,
thereby making it easier for the calling class to handle violations of all three preconditions with
the same handling code. In general, a set of overloaded methods should have similar interfaces
since they implement the same operation for the different types of parameters.

10.6.4 Mapping the Object Model to a Database Schema

In the past two subsections, we transformed the N-ary Statistics association class
(Figure 10-24) into a set of Java classes and operations. In this section, we start with the same
object model and map it into a set of tables. As Statistics is an N-ary association class, we
cannot use buried keys. We first map the association to a separate table, containing a foreign key
for each of the association ends (Game, League, Tournament, Player). We then note that any
given Statistic includes only one link to either a Game, a League, or a Tournament.
Consequently, we can collapse the columns for Game, League, and Tournament into a single
column denoting the id of the scope object and a column denoting the type of object
(scopetype, Figure 10-28). We decide to encode the type of scope as a long value to save on
storage space and on retrieval speed. The mapping between the long values and the actual class
is done in the storage subsystem. This decision is a local optimization and does not affect the
interface of the StatisticsVault. The id of the Statistics object is the primary key of the
table.

As each Statistic has a variable number of name/value pairs, we use a separate table for
the counter values, including one column for the name of the counter, one for the value, and a
foreign key into the Statistics table (i.e., the Statistics id). The primary key for the
StatisticsCounter table is the Statistics id and the counter name.

public class StatisticsVault {
public void update(Match m)

throws InvalidMatch, MatchNotCompleted {...}

public List getStatNames() {...}

public double getStat(String name, Game g, Player p)
throws UnknownStatistic, InvalidScope {...}

public double getStat(String name, League l, Player p)
throws UnknownStatistic, InvalidScope {...}

public double getStat(String name, Tournament t, Player p)
throws UnknownStatistic, InvalidScope {...}

}

Figure 10-27 Public interface of the StatisticsVault class (Java).
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Note that when designing the database schema for the Statistics association, we started
with the object design model, not the Java classes that we generated in the previous section.
There are several reasons for starting with the object design model:

• The object design model represents a view of the application domain and is less likely
to change than the source code.

• When starting from the object design model, the database schema uses names that
come from the application domain (e.g., Statistics) instead of names that denote
solution objects (e.g., StatisticsVault). This provides better and more direct
traceability to the requirements.

• The transformation of the N-ary association into Java classes focused only on runtime
concerns, not on data storage concerns.

10.6.5 Lessons Learned

In the previous section, we mapped the Statistics N-ary association class to source code and
to a database schema. In doing so, we learned that

• Applying one transformation leads to new opportunities for other transformations. By
converting the N-ary Statistics association into a separate object, we defined a
facade shielding control and boundary objects from the details of the Statistics
representation.

• Introducing new interfaces results in forwarding existing exceptions. When introducing
a new interface, we need to make sure exceptions are not masked. When we introduced

Figure 10-28 Database schema for the Statistics N-ary association of Figure 10-24.
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a facade in this example, we simply forwarded the lower-level exceptions
(UnknownStatistic) to the Client class. 

• Database schema is based on the object design model, not on the source code. In
general, we need to ensure that the analysis concepts are visible in the implementation,
providing traceability back to the requirements. Naming classes, attributes, methods,
and tables in terms of names used during analysis is critical in maintaining conceptual
integrity.

10.7 Further Readings

The history of refactoring can be traced back to program transformation. Many program
transformation systems have focused on improving the performance of programs or on
generating programs from formal specifications. Specification and Transformation of Programs
[Partsch, 1990] provides a comprehensive treatment of this topic.

Although program transformation systems are becoming mature and reaching the
marketplace, few tools exist for supporting the transformation of object models. Object-Oriented
Modeling and Design [Rumbaugh et al., 1991] first introduced the concept of object model
transformations. Later, Object-Oriented Modeling and Design for Database Applications [Blaha
& Premerlani, 1998] introduced the concept of transformations of object models to relational
database schemas.

Refactoring, made popular by Martin Fowler in Refactoring: Improving The Design Of
Existing Code [Fowler, 2000] is essentially a variation of program transformation applied to
object-oriented programs. Refactorings are applied manually and interleaved with unit tests.
Refactoring is one of the cornerstones of Extreme Programming [Beck & Andres, 2005]. 

10.8 Exercises

10-1 In Web pages, tables consist of rows, which in turn consist of cells. The actual width
and height of each cell is computed based in part on its content (e.g., the amount of text
in the cell, the size of an image in the cell), and the height of a row is the maximum of
the heights of all cells in the row. Consequently, the final layout of a table in a Web
page can only be computed once the content of each cell has been retrieved from the
Internet. Using the proxy pattern described in Figure 10-7, describe an object model
and an algorithm that would enable a Web browser to start displaying a table before the
size of all cells is known, possibly redrawing the table as the content of each cell is
downloaded.

10-2 Apply the appropriate transformations described in Section 10.4.2 to the associations
of Figure 10-29. Assume that all associations are bidirectional and that they can change
during the lifetime of each object. Write the source code needed to manage the
associations, including class, field, and method declarations, method bodies, and
visibility. 
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10-3 Apply the appropriate transformations described in Section 10.4.2 to the associations
of Figure 10-30. Assume that all associations are bidirectional, but that the aggregation
associations do not change after each object has been created. In other words, the
creator of each class must be modified so that aggregations are initialized during the
creation of each object. Write the source code needed to manage the associations,
including class, field, and method declarations, method bodies, and visibility.

10-4 Figure 10-15 depicts the checking code for the addPlayer() method of Tournament.
Write the checking code for the other constraints associated with Tournament depicted
in Figure 9-16. 

10-5 Write checking code for the contracts of TournamentStyle and Round described in
Section 9.6.2. Write checking code for preconditions, postconditions, and invariants.

10-6 Design a relational database schema for the object model of Figure 10-30. Assume
Leagues, Tournaments, Players, and Rounds have a name attribute and a unique
identifier. Additionally, Tournaments and Rounds have start and end date attributes.
When different transformations are available, explain the trade-off involved.

10-7 Draw a class diagram representing the application domain facts below, and map it to a
relational schema.

• A project involves a number of participants.
• Participants can take part in a project either as project manager, team leader, or

developer. 

Figure 10-29 Associations among Messages, Folders, Mailboxes, and Views in a hypothetical E-mail
client (UML class diagram).

Figure 10-30 Associations among League, Tournament, Round, and Player (UML class diagram).
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• Within a project, each developer and team leader is part of at least one team.

• A participant can take part in many projects, possibly in different roles. For
example, a participant can be a developer in project A, a team leader in project B,
and a project manager in project C. However, the role of a participant within a
project does not change.

10-8 There are two general approaches for mapping an association to a set of collections. In
Section 10.6.2, we map the N-ary association Statistics to two classes, a simple
Statistics class to store the attributes of the association, and a StatisticsVault
class to store the state of the links among the association links. In Section 10.4.2, we
described an alternative approach where the association links are stored in one or both
classes at the ends of the association. In the event associations were stored in both
classes, we added mutually recursive methods to ensure that both data structures
remained consistent. Use this second approach to map the N-ary Statistics
association to Collections. Discuss the trade-offs you encounter and the relative
advantages of each approach. 
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11
Testing

The software is done.
We are just trying to get it to work.

—Statement made in a Joint STARS E-8A FSD 
Executive Program Review

Testing is the process of finding differences between the expected behavior specified by

system models and the observed behavior of the implemented system. Unit testing finds

differences between a specification of an object and its realization as a component. Structural

testing finds differences between the system design model and a subset of integrated

subsystems. Functional testing finds differences between the use case model and the system.

Finally, performance testing finds differences between nonfunctional requirements and actual

system performance. When differences are found, developers identify the defect causing the

observed failure and modify the system to correct it. In other cases, the system model is

identified as the cause of the difference, and the system model is updated to reflect the system.

From a modeling point of view, testing is the attempt to show that the implementation of

the system is inconsistent with the system models. The goal of testing is to design tests that

exercise defects in the system and to reveal problems. This activity is contrary to all other

activities we described in previous chapters: analysis, design, implementation, communication,

and negotiation are constructive activities. Testing, however, is aimed at breaking the system.

Consequently, testing is usually accomplished by developers that were not involved with the

construction of the system.

In this chapter, we first emphasize the importance of testing. We provide a bird’s-eye view

of the testing activities, we describe in more detail the concepts of fault, erroneous state, failure,

and test, and then we describe the testing activities that result in the plan, design, and execution

of tests. We introduce UML profiles as an extension mechanism to describe model-based testing.

We conclude this chapter by discussing management issues related to testing.
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11.1 Introduction: Testing The Space Shuttle

Testing is the process of analyzing a system or system component to detect the differences
between specified (required) and observed (existing) behavior. Unfortunately, it is impossible to
completely test a nontrivial system. First, testing is not decidable. Second, testing must be
performed under time and budget constraints. As a result, systems are often deployed without
being completely tested, leading to faults discovered by end users. 

The first launch of the Space Shuttle Columbia in 1981, for example, was canceled
because of a problem that was not detected during development. The problem was traced to a
change made by a programmer two years earlier, who erroneously reset a delay factor from 50 to
80 milliseconds. This added a probability of 1/67 that any space shuttle launch would fail.
Unfortunately, in spite of thousands of hours of testing after the change was made, the fault was
not discovered during the testing phase. During the actual launch, the fault caused a
synchronization problem with the shuttle’s five on-board computers that led to the decision to
abort the launch. The following is an excerpt of an article by Richard Feynman that describes the
challenges of testing the Space Shuttle.

In a total of about 250,000 seconds of operation, the engines have failed seriously perhaps 16 times.
Engineering pays close attention to these failings and tries to remedy them as quickly as possible. It
does this by test studies on special rigs experimentally designed for the flaws in question, by careful
inspection of the engine for suggestive clues (like cracks), and by considerable study and analysis. . . .

The usual way that such engines are tested (for military or civilian aircraft) may be called the
component system, or bottom-up test. First it is necessary to thoroughly understand the properties and
limitations of the materials to be used (for turbine blades, for example), and tests are begun in
experimental rigs to determine those. With this knowledge larger component parts (such as bearings)
are designed and tested individually. As deficiencies and design errors are noted they are corrected and
verified with further testing. Since one tests only one component at a time, these tests and modifications
are not overly expensive. Finally one works up to the final design of the entire engine, to the necessary
specifications. There is a good chance, by this time that the engine will generally succeed, or that any
failures are easily isolated and analyzed because the failure modes, limitations of materials, etc., are so
well understood. There is a very good chance that the modifications to the engine to get around the final
difficulties are not very hard to make, for most of the serious problems have already been discovered
and dealt with in the earlier, less expensive, stages of the process.

The Space Shuttle Main Engine was handled in a different manner, top down, we might say. The engine
was designed and put together all at once with relatively little detailed preliminary study of the material
and components. Then when troubles are found in the bearings, turbine blades, coolant pipes, etc., it is
more expensive and difficult to discover the causes and make changes. For example, cracks have been
found in the turbine blades of the high-pressure oxygen turbopump. Are they caused by flaws in the
material, the effect of the oxygen atmosphere on the properties of the material, the thermal stresses of
start-up or shutdown, the vibration and stresses of steady running, or mainly at some resonance at
certain speeds, etc.? How long can we run from crack initiation to crack failure, and how does this
depend on power level? Using the completed engine as a test bed to resolve such questions is extremely
expensive. One does not wish to lose an entire engine in order to find out where and how failure occurs.
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Feynman’s article1 gives us an idea of the problems associated with testing complex
systems. Even though the space shuttle is an extremely complex hardware and software system,
the testing challenges are the same for any complex system. 

Testing is often viewed as a job that can be done by beginners. Managers would assign the
new members to the testing team, because the experienced people detested testing or are needed
for the more important jobs of analysis and design. Unfortunately, such an attitude leads to many
problems. To test a system effectively, a tester must have a detailed understanding of the whole
system, ranging from the requirements to system design decisions and implementation issues. A
tester must also be knowledgeable of testing techniques and apply these techniques effectively
and efficiently to meet time, budget, and quality constraints. 

Section 11.2 takes a bird’s-eye view of testing. Section 11.3 defines in more detail the
model elements related to testing, including faults, their manifestation, and their relationship to
testing. Section 11.4 describes the testing activities found in the development process, including
unit testing, which focuses on finding faults in a single component, and integration and system
testing, which focus on finding faults in combination of components and in the complete system,
respectively. We also discuss testing activities that focus on nonfunctional requirements, such as
usability, performance, and stress tests. Section 11.4 concludes with the activities of field testing
and installation testing. Section 11.5 discusses management issues related to testing. 

Yet, an accurate knowledge of this information is essential to acquire a confidence in the engine
reliability in use. Without detailed understanding, confidence can not be attained. A further
disadvantage of the top-down method is that, if an understanding of a fault is obtained, a simple fix,
such as a new shape for the turbine housing, may be impossible to implement without a redesign of the
entire engine.

The Space Shuttle Main Engine is a very remarkable machine. It has a greater ratio of thrust to weight
than any previous engine. It is built at the edge of, or outside of, previous engineering experience.
Therefore, as expected, many different kinds of flaws and difficulties have turned up. Because,
unfortunately, it was built in the top-down manner, they are difficult to find and fix. The design aim of a
lifetime of 55 missions’ equivalent firings (27,000 seconds of operation, either in a mission of 500
seconds, or on a test stand) has not been obtained. The engine now requires very frequent maintenance
and replacement of important parts, such as turbopumps, bearings, sheet metal housings, etc. The high-
pressure fuel turbopump had to be replaced every three or four mission equivalents (although that may
have been fixed, now) and the high-pressure oxygen turbopump every five or six. This is at most ten
percent of the original specification. 

1.  Feynman [Feynman, 1988] wrote this article while he was a member of the Presidential Commission investigating 
the explosion of the Space Shuttle Challenger in January 1985. The cause of the accident was traced to an erosion of 
the O-rings in the solid rocket boosters. In addition to the testing problems of the main shuttle engine and the solid 
rocket boosters, the article mentions the phenomenon of gradually changing critical testing acceptance criteria and 
problems resulting from miscommunication between management and developers typically found in hierarchical 
organizations.
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11.2 An Overview of Testing
Reliability is a measure of success with which the observed behavior of a system conforms to
the specification of its behavior. Software reliability is the probability that a software system
will not cause system failure for a specified time under specified conditions [IEEE Std. 982.2-
1988]. Failure is any deviation of the observed behavior from the specified behavior. An
erroneous state (also called an error) means the system is in a state such that further processing
by the system will lead to a failure, which then causes the system to deviate from its intended
behavior. A fault, also called “defect” or “bug,” is the mechanical or algorithmic cause of an
erroneous state. The goal of testing is to maximize the number of discovered faults, which then
allows developers to correct them and increase the reliability of the system.

We define testing as the systematic attempt to find faults in a planned way in the
implemented software. Contrast this definition with another common one: “testing is the process
of demonstrating that faults are not present.” The distinction between these two definitions is
important. Our definition does not mean that we simply demonstrate that the program does what
it is intended to do. The explicit goal of testing is to demonstrate the presence of faults and non-
optimal behavior. Our definition implies that the developers are willing to dismantle things.
Moreover, for the most part, demonstrating that faults are not present is not possible in systems
of any realistic size.

Most activities of the development process are constructive: during analysis, design, and
implementation, objects and relationships are identified, refined, and mapped onto a computer
environment. Testing requires a different thinking, in that developers try to detect faults in the
system, that is, differences between the reality of the system and the requirements. Many
developers find this difficult to do. One reason is the way we use the word “success” during
testing. Many project managers call a test case “successful” if it does not find a fault; that is,
they use the second definition of testing during development. However, because “successful”
denotes an achievement, and “unsuccessful” means something undesirable, these words should
not be used in this fashion during testing.

In this chapter, we treat testing as an activity based on the falsification of system models,
which is based on Popper’s falsification of scientific theories [Popper, 1992]. According to
Popper, when testing a scientific hypothesis, the goal is to design experiments that falsify the
underlying theory. If the experiments are unable to break the theory, our confidence in the theory
is strengthened and the theory is adopted (until it is eventually falsified). Similarly, in software
testing, the goal is to identify faults in the software system (to falsify the theory). If none of the
tests have been able to falsify software system behavior with respect to the requirements, it is
ready for delivery. In other words, a software system is released when the falsification attempts
(tests) show a certain level of confidence that the software system does what it is supposed to do.

There are many techniques for increasing the reliability of a software system: 

• Fault avoidance techniques try to detect faults statically, that is, without relying on the
execution of any of the system models, in particular the code model. Fault avoidance
tries to prevent the insertion of faults into the system before it is released. Fault
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avoidance includes development methodologies, configuration management, and
verification.

• Fault detection techniques, such as debugging and testing, are uncontrolled and
controlled experiments, respectively, used during the development process to identify
erroneous states and find the underlying faults before releasing the system. Fault
detection techniques assist in finding faults in systems, but do not try to recover from
the failures caused by them. In general, fault detection techniques are applied during
development, but in some cases they are also used after the release of the system. The
blackboxes in an airplane to log the last few minutes of a flight is an example of a fault
detection technique. 

• Fault tolerance techniques assume that a system can be released with faults and that
system failures can be dealt with by recovering from them at runtime. For example,
modular redundant systems assign more than one component with the same task, then
compare the results from the redundant components. The space shuttle has five onboard
computers running two different pieces of software to accomplish the same task. 

In this chapter, we focus on fault detection techniques, including reviews and testing. A
review is the manual inspection of parts or all aspects of the system without actually executing
the system. There are two types of reviews: walkthrough and inspection. In a code
walkthrough, the developer informally presents the API (Application Programmer Interface),
the code, and associated documentation of the component to the review team. The review team
makes comments on the mapping of the analysis and object design to the code using use cases
and scenarios from the analysis phase. An inspection is similar to a walkthrough, but the
presentation of the component is formal. In fact, in a code inspection, the developer is not
allowed to present the artifacts (models, code, and documentation). This is done by the review
team, which is responsible for checking the interface and code of the component against the
requirements. It also checks the algorithms for efficiency with respect to the nonfunctional
requirements. Finally, it checks comments about the code and compares them with the code
itself to find inaccurate and incomplete comments. The developer is only present in case the
review needs clarifications about the definition and use of data structures or algorithms. Code
reviews have proven to be effective at detecting faults. In some experiments, up to 85 percent of
all identified faults were found in code reviews [Fagan, 1976], [Jones, 1977], [Porter et al.,
1997]. 

Debugging assumes that faults can be found by starting from an unplanned failure. The
developer moves the system through a succession of states, ultimately arriving at and identifying
the erroneous state. Once this state has been identified, the algorithmic or mechanical fault
causing this state must be determined. There are two types of debugging: The goal of correctness
debugging is to find any deviation between observed and specified functional requirements.
Performance debugging addresses the deviation between observed and specified nonfunctional
requirements, such as response time.

INSY
Highlight
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Testing is a fault detection technique that tries to create failures or erroneous states in a
planned way. This allows the developer to detect failures in the system before it is released to the
customer. Note that this definition of testing implies that a successful test is a test that identifies
faults. We will use this definition throughout the development phases. Another often-used
definition of testing is that “it demonstrates that faults are not present.” We will use this
definition only after the development of the system when we try to demonstrate that the
delivered system fulfills the functional and nonfunctional requirements. 

If we used this second definition all the time, we would tend to select test data that have a
low probability of causing the program to fail. If, on the other hand, the goal is to demonstrate
that a program has faults, we tend to look for test data with a higher probability of finding faults.
The characteristic of a good test model is that it contains test cases that identify faults. Tests
should include a broad range of input values, including invalid inputs and boundary cases,
otherwise, faults may not be detected. Unfortunately, such an approach requires extremely
lengthy testing times for even small systems. 

Figure 11-1 depicts an overview of testing activities: 

• Test planning allocates resources and schedules the testing. This activity should occur
early in the development phase so that sufficient time and skill is dedicated to testing.
For example, developers can design test cases as soon as the models they validate
become stable.

• Usability testing tries to find faults in the user interface design of the system. Often,
systems fail to accomplish their intended purpose simply because their users are
confused by the user interface and unwillingly introduce erroneous data. 

• Unit testing tries to find faults in participating objects and/or subsystems with respect
to the use cases from the use case model.

• Integration testing is the activity of finding faults by testing individual components in
combination. Structural testing is the culmination of integration testing involving all
components of the system. Integration tests and structural tests exploit knowledge from
the SDD (System Design Document) using an integration strategy described in the Test
Plan (TP).

• System testing tests all the components together, seen as a single system to identify
faults with respect to the scenarios from the problem statement and the requirements
and design goals identified in the analysis and system design, respectively: 

• Functional testing tests the requirements from the RAD and the user manual. 

• Performance testing checks the nonfunctional requirements and additional design
goals from the SDD. Functional and performance testing are done by developers. 

• Acceptance testing and installation testing check the system against the project
agreement and is done by the client, if necessary, with help by the developers.
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Figure 11-1 Testing activities and their related work products (UML activity diagram). Swimlanes
indicate who executes the test.
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11.3 Testing Concepts

In this section, we present the model elements used during testing (Figure 11-2):

• A test component is a part of the system that can be isolated for testing. A component
can be an object, a group of objects, or one or more subsystems.

• A fault, also called bug or defect, is a design or coding mistake that may cause
abnormal component behavior. 

• An erroneous state is a manifestation of a fault during the execution of the system. An
erroneous state is caused by one or more faults and can lead to a failure.

• A failure is a deviation between the specification and the actual behavior. A failure is
triggered by one or more erroneous states. Not all erroneous states trigger a failure.2

• A test case is a set of inputs and expected results that exercises a test component with
the purpose of causing failures and detecting faults. 

• A test stub is a partial implementation of components on which the tested component
depends. A test driver is a partial implementation of a component that depends on the
test component. Test stubs and drivers enable components to be isolated from the rest
of the system for testing.

2. Note that, outside the testing community, developers often do not distinguish between faults, failures, and erroneous 
states, and instead, refer to all three concepts as “errors.”

Figure 11-2 Model elements used during testing (UML class diagram).
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• A correction is a change to a component. The purpose of a correction is to repair a
fault. Note that a correction can introduce new faults.

11.3.1 Faults, Erroneous States, and Failures

With the initial understanding of the terms from the definitions in Section 11.3, let’s take a look
at Figure 11-3. What do you see? Figure 11-3 shows a pair of tracks that are not aligned with
each other. If we envision a train running over the tracks, it would crash (fail). However, the
figure actually does not present a failure, nor an erroneous state, nor a fault. It does not show a
failure, because the expected behavior has not been specified, nor is there any observed
behavior. Figure 11-3 also does not show an erroneous state, because that would mean that the
system is in a state that further processing will lead to a failure. We only see tracks here; no
moving train is shown. To speak about erroneous state, failure, or fault, we need to compare the
desired behavior (described in the use case in the RAD) with the observed behavior (described
by the test case). Assume that we have a use case with a train moving from the upper left track to
the lower right track (Figure 11-4).

Figure 11-3 An example of a fault. The desired behavior is that the train remain on the tracks.

Use case name DriveTrain

Participating actor TrainOperator

Entry condition TrainOperator pushes the “StartTrain” button at the control panel.

Flow of events 1. The train starts moving on track 1.
2. The train transitions to track 2.

Exit condition The train is running on track 2.

Figure 11-4 Use case DriveTrain specifying the expected behavior of the train.
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We can then proceed to derive a test case that moves the train from the state described in
the entry condition of the use case to a state where it will crash, namely when it is leaving the
upper track (Figure 11-5).

In other words, when executing this test case, we can demonstrate that the system contains
a fault. Note that the current state shown in Figure 11-6 is erroneous, but does not show a failure. 

The misalignment of the tracks can be a result of bad communication between the
development teams (each track had to be positioned by one team) or because of a wrong
implementation of the specification by one of the teams (Figure 11-7). Both of these are
examples of algorithmic faults. You are probably already familiar with many other algorithmic
faults that are introduced during the implementation phase. For example, “Exiting a loop too
soon,” “exiting a loop too late,” “testing for the wrong condition,” “forgetting to initialize a
variable” are all implementation-specific algorithmic faults. Algorithmic faults can also occur
during analysis and system design. Stress and overload problems, for example, are object design
specific algorithmic faults that lead to failure when data structures are filled beyond their
specified capacity. Throughput and performance failures are possible when a system does not
perform at the speed specified by the nonfunctional requirements.

Test-case identifier DriveTrain

Test location http://www12.in.tum.de/TrainSystem/test-cases/test1

Feature to be tested Continuous operation of engine for 5 seconds

Feature Pass/Fail Criteria The test passes if the train drives for 5 seconds and covers the length of
at least two tracks.

Means of control 1. The StartTrain() method is called via a test driver StartTrain
(contained in the same directory as the DriveTrain test).

Data 2. Direction of trip and duration are read from a input file 
http://www12.in.tum.de/TrainSystem/test-cases/input.

3. If debug is set to TRUE, then the test case will output the system 
messages “Enter Track n, Exit Track n” for each n, where n is the 
number of the current track.

Test Procedure The test is started by double-clicking the test case at the specified
location. The test will run without further intervention until
completion. The test should take no more than 7 seconds. 

Special requirements The test stub Engine is needed for the test execution.

Figure 11-5 Test case DriveTrain for the use case described in Figure 11-4.

http://www12.in.tum.de/TrainSystem/test-cases/test1
http://www12.in.tum.de/TrainSystem/test-cases/input
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Even if the tracks are implemented according to the specification in the RAD, they could
still end up misaligned during daily operation, for example, if an earthquake happens that moves
the underlying soil (Figure 11-8).

Figure 11-6  An example of an erroneous state.

Figure 11-7  A fault can have an algorithmic cause.
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A fault in the virtual machine of a software system is another example of a mechanical
fault: even if the developers have implemented correctly, that is, they have mapped the object
model correctly onto the code, the observed behavior can still deviate from the specified
behavior. In concurrent engineering projects, for example, where hardware is developed in
parallel with software, we cannot always make the assumption that the virtual machine executes
as specified. Other examples of mechanical faults are power failures. Note the relativity of the
terms “fault” and “failure” with respect to a particular system component: the failure in one
system component (the power system) is the mechanical fault that can lead to failure in another
system component (the software system). 

11.3.2 Test Cases

A test case is a set of input data and expected results that exercises a component with the
purpose of causing failures and detecting faults. A test case has five attributes: name, location,
input, oracle, and log (Table 11-1). The name of the test case allows the tester to distinguish
between different test cases. A heuristic for naming test cases is to derive the name from the
requirement it is testing or from the component being tested. For example, if you are testing a
use case Deposit(), you might want to call the test case Test_Deposit. If a test case involves
two components A and B, a good name would be Test_AB. The location attribute describes
where the test case can be found. It should be either the path name or the URL to the executable
of the test program and its inputs.

Figure 11-8 A fault can have a mechanical cause, such as an earthquake.
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Input describes the set of input data or commands to be entered by the actor of the test
case (which can be the tester or a test driver). The expected behavior of the test case is the
sequence of output data or commands that a correct execution of the test should yield. The
expected behavior is described by the oracle attribute. The log is a set of time-stamped
correlations of the observed behavior with the expected behavior for various test runs. 

Once test cases are identified and described, relationships among test cases are identified.
Aggregation and the precede associations are used to describe the relationships between the test
cases. Aggregation is used when a test case can be decomposed into a set of subtests. Two test
cases are related via the precede association when one test case must precede another test case.

Figure 11-9 shows a test model where TestA must precede TestB and TestC. For example,
TestA consists of TestA1 and TestA2, meaning that once TestA1 and TestA2 are tested, TestA is
tested; there is no separate test for TestA. A good test model has as few associations as possible,
because tests that are not associated with each other can be executed independently from each
other. This allows a tester to speed up testing, if the necessary testing resources are available. In
Figure 11-9, TestB and TestC can be tested in parallel, because there is no relation between
them.  

Table 11-1  Attributes of the class TestCase.

Attributes Description

name Name of test case

location Full path name of executable

input Input data or commands

oracle Expected test results against which the output of the test is compared

log Output produced by the test

Figure 11-9 Test model with test cases. TestA consists of two tests, TestA1 and TestA2. TestB and TestC
can be tested independently, but only after TestA has been performed.

testA:TestCase

testA1:TestCase

testA2:TestCase

testB:TestCase testC:TestCase

precedes precedes
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Test cases are classified into blackbox tests and whitebox tests, depending on which aspect
of the system model is tested. Blackbox tests focus on the input/output behavior of the
component. Blackbox tests do not deal with the internal aspects of the component, nor with the
behavior or the structure of the components. Whitebox tests focus on the internal structure of
the component. A whitebox test makes sure that, independently from the particular input/output
behavior, every state in the dynamic model of the object and every interaction among the objects
is tested. As a result, whitebox testing goes beyond blackbox testing. In fact, most of the
whitebox tests require input data that could not be derived from a description of the functional
requirements alone. Unit testing combines both testing techniques: blackbox testing to test the
functionality of the component, and whitebox testing to test structural and dynamic aspects of
the component. 

11.3.3 Test Stubs and Drivers

Executing test cases on single components or combinations of components requires the tested
component to be isolated from the rest of the system. Test drivers and test stubs are used to
substitute for missing parts of the system. A test driver simulates the part of the system that
calls the component under test. A test driver passes the test inputs identified in the test case
analysis to the component and displays the results.

A test stub simulates a component that is called by the tested component. The test stub
must provide the same API as the method of the simulated component and must return a value
compliant with the return result type of the method’s type signature. Note that the interface of all
components must be baselined. If the interface of a component changes, the corresponding test
drivers and stubs must change as well. 

The implementation of test stubs is a nontrivial task. It is not sufficient to write a test stub
that simply prints a message stating that the test stub was called. In most situations, when
component A calls component B, A is expecting B to perform some work, which is then
returned as a set of result parameters. If the test stub does not simulate this behavior, A will fail,
not because of a fault in A, but because the test stub does not simulate B correctly. 

Even providing a return value is not always sufficient. For example, if a test stub always
returns the same value, it might not return the value expected by the calling component in a
particular scenario. This can produce confusing results and even lead to the failure of the calling
component, even though it is correctly implemented. Often, there is a trade-off between
implementing accurate test stubs and substituting the test stubs by the actual component. For
many components, drivers and stubs are often written after the component is completed, and for
components that are behind schedule, stubs are often not written at all.

To ensure that stubs and drivers are developed and available when needed, several
development methods stipulate that drivers be developed for every component. This results in
lower effort because it provides developers the opportunity to find problems with the interface
specification of the component under test before it is completely implemented.
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11.3.4 Corrections

Once tests have been executed and failures have been detected, developers change the
component to eliminate the suspected faults. A correction is a change to a component whose
purpose is to repair a fault. Corrections can range from a simple modification to a single
component, to a complete redesign of a data structure or a subsystem. In all cases, the likelihood
that the developer introduces new faults into the revised component is high. Several techniques
can be used to minimize the occurrence of such faults:

• Problem tracking includes the documentation of each failure, erroneous state, and fault
detected, its correction, and the revisions of the components involved in the change.
Together with configuration management, problem tracking enables developers to
narrow the search for new faults. We describe problem tracking in more detail in
Chapter 13, Configuration Management.

• Regression testing includes the reexecution of all prior tests after a change. This
ensures that functionality which worked before the correction has not been affected.
Regression testing is important in object-oriented methods, which call for an iterative
development process. This requires testing to be initiated earlier and for test suites to be
maintained after each iteration. Regression testing unfortunately is costly, especially
when part of the tests is not automated. We describe regression testing in more detail in
Section 11.4.4.

• Rationale maintenance includes the documentation of the rationale for the change and
its relationship with the rationale of the revised component. Rationale maintenance
enables developers to avoid introducing new faults by inspecting the assumptions that
were used to build the component. We describe rationale maintenance in Chapter 12,
Rationale Management.

Next, let us describe in more detail the testing activities that lead to the creation of test
cases, their execution, and the development of corrections.

11.4 Testing Activities

In this section, we describe the technical activities of testing. These include

• Component inspection, which finds faults in an individual component through the
manual inspection of its source code (Section 11.4.1)

• Usability testing, which finds differences between what the system does and the users’
expectation of what it should do (Section 11.4.2)

• Unit testing, which finds faults by isolating an individual component using test stubs
and drivers and by exercising the component using test cases (Section 11.4.3)

• Integration testing, which finds faults by integrating several components together
(Section 11.4.4)
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• System testing, which focuses on the complete system, its functional and
nonfunctional requirements, and its target environment (Section 11.4.5).

11.4.1 Component Inspection

Inspections find faults in a component by reviewing its source code in a formal meeting.
Inspections can be conducted before or after the unit test. The first structured inspection process
was Michael Fagan’s inspection method [Fagan, 1976]. The inspection is conducted by a team of
developers, including the author of the component, a moderator who facilitates the process, and
one or more reviewers who find faults in the component. Fagan’s inspection method consists of
five steps:

• Overview. The author of the component briefly presents the purpose and scope of the
component and the goals of the inspection.

• Preparation. The reviewers become familiar with the implementation of the
component.

• Inspection meeting. A reader paraphrases the source code of the component, and the
inspection team raises issues with the component. A moderator keeps the meeting on
track.

• Rework. The author revises the component.

• Follow-up. The moderator checks the quality of the rework and may determine the
component that needs to be reinspected.

The critical steps in this process are the preparation phase and the inspection meeting.
During the preparation phase, the reviewers become familiar with the source code; they do not
yet focus on finding faults. During the inspection meeting, the reader paraphrases the source
code, that is, he reads each source code statement and explains what the statement should do.
The reviewers then raise issues if they think there is a fault. Most of the time is spent debating
whether or not a fault is present, but solutions to repair the fault are not explored at this point.
During the overview phase of the inspection, the author states the objectives of the inspection. In
addition to finding faults, reviewers may also be asked to look for deviations from coding
standards or for inefficiencies.

Fagan’s inspections are usually perceived as time-consuming because of the length of the
preparation and inspection meeting phase. The effectiveness of a review also depends on the
preparation of the reviewers. David Parnas proposed a revised inspection process, the active
design review, which eliminates the inspection meeting of all inspection team members [Parnas
& Weiss, 1985]. Instead, reviewers are asked to find faults during the preparation phase. At the
end of the preparation phase, each reviewer fills out a questionnaire testing his or her
understanding of the component. The author then meets individually with each reviewer to
collect feedback on the component.
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Both Fagan’s inspections and the active design reviews have been shown to be usually
more effective than testing in uncovering faults. Both testing and inspections are used in
safety-critical projects, as they tend to find different types of faults.

11.4.2 Usability Testing

Usability testing tests the user’s understanding of the system. Usability testing does not
compare the system against a specification. Instead, it focuses on finding differences between
the system and the users’ expectation of what it should do. As it is difficult to define a formal
model of the user against which to test, usability testing takes an empirical approach:
participants representative of the user population find problems by manipulating the user
interface or a simulation thereof. Usability tests are also concerned with user interface details,
such as the look and feel of the user interface, the geometrical layout of the screens, sequence of
interactions, and the hardware. For example, in case of a wearable computer, a usability test
would test the ability of the user to issue commands to the system while lying in an awkward
position, as in the case of a mechanic looking at a screen under a car while checking a muffler.

The technique for conducting usability tests is based on the classical approach for
conducting a controlled experiment. Developers first formulate a set of test objectives,
describing what they hope to learn in the test. These can include, for example, evaluating
specific dimensions or geometrical layout of the user interface, evaluating the impact of
response time on user efficiency, or evaluating whether the online help documentation is
sufficient for novice users. The test objectives are then evaluated in a series of experiments in
which participants are trained to accomplish predefined tasks (e.g., exercising the user interface
feature under investigation). Developers observe the participants and collect data measuring user
performance (e.g., time to accomplish a task, error rate) and preferences (e.g, opinions and
thought processes) to identify specific problems with the system or collect ideas for improving it
[Rubin, 1994].

There are two important differences between controlled experiments and usability tests.
Whereas the classical experimental method is designed to refute a hypothesis, the goal of
usability tests is to obtain qualitative information on how to fix usability problems and how to
improve the system. The other difference is the rigor with which the experiments are performed.
It has been shown that even a series of quick focused tests starting as early as requirements
elicitation is extremely helpful. Nielsen uses the term discount usability engineering to refer to
simplified usability tests that can be accomplished at a fraction of the time and cost of a full-
blown study, noting that a few usability tests are better than none at all [Nielsen & Mack, 1994].
Examples of discount usability tests include using paper scenario mock-ups (as opposed to a
videotaped scenario), relying on handwritten notes as opposed to analyzing audio tape
transcripts, or using fewer subjects to elicit suggestions and uncover major defects (as opposed
to achieving statistical significance and using quantitative measures).
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There are three types of usability tests:

• Scenario test. During this test, one or more users are presented with a visionary
scenario of the system. Developers identify how quickly users are able to understand
the scenario, how accurately it represents their model of work, and how positively they
react to the description of the new system. The selected scenarios should be as realistic
and detailed as possible. A scenario test allows rapid and frequent feedback from the
user. Scenario tests can be realized as paper mock-ups3 or with a simple prototyping
environment, which is often easier to learn than the programming environment used for
development. The advantage of scenario tests is that they are cheap to realize and to
repeat. The disadvantages are that the user cannot interact directly with the system and
that the data are fixed.

• Prototype test. During this type of test, the end users are presented with a piece of
software that implements key aspects of the system. A vertical prototype completely
implements a use case through the system. Vertical prototypes are used to evaluate core
requirements, for example, response time of the system or user behavior under stress. A
horizontal prototype implements a single layer in the system; an example is a user
interface prototype, which presents an interface for most use cases (without providing
much or any functionality). User interface prototypes are used to evaluate issues such
as alternative user interface concepts or window layouts. A Wizard of Oz prototype is
a user interface prototype in which a human operator behind the scenes pulls the levers
[Kelly, 1984]. Wizard of Oz prototypes are used for testing natural language
applications, when the speech recognition or the natural language parsing subsystems
are incomplete. A human operator intercepts user queries and rephrases them in terms
that the system understands, without the test user being aware of the operator. The
advantages of prototype tests are that they provide a realistic view of the system to the
user and that prototypes can be instrumented to collect detailed data. However,
prototypes require more effort to build than test scenarios.

• Product test. This test is similar to the prototype test except that a functional version of
the system is used in place of the prototype. A product test can only be conducted after
most of the system is developed. It also requires that the system be easily modifiable
such that the results of the usability test can be taken into account. 

In all three types of tests, the basic elements of usability testing include [Rubin, 1994]

• development of test objectives

3. Using storyboards, a technique from the feature animation industry, consists of sketching a sequence of pictures of
the screen at different points in the scenario. The pictures of each scenario are then lined up chronologically against
a wall on a board (hence the term “storyboard”). Developers and users walk around the room when reviewing and
discussing the scenarios. Given a reasonably sized room, participants can deal with several hundreds of sketches.
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• a representative sample of end users
• the actual or simulated work environment
• controlled, extensive interrogation, and probing of the users by the person performing

the usability test
• collection and analysis of quantitative and qualitative results
• recommendations on how to improve the system.

Typical test objectives in a usability test address the comparison of two user interaction
styles, the identification of the best and the worst features in a scenario or a prototype, the main
stumbling blocks, the identification of useful features for novice and expert users, when help is
needed, and what type of training information is required. 

11.4.3 Unit Testing

Unit testing focuses on the building blocks of the software system, that is, objects and
subsystems. There are three motivations behind focusing on these building blocks. First, unit
testing reduces the complexity of overall test activities, allowing us to focus on smaller units of
the system. Second, unit testing makes it easier to pinpoint and correct faults, given that few
components are involved in the test. Third, unit testing allows parallelism in the testing
activities; that is, each component can be tested independently of the others.

The specific candidates for unit testing are chosen from the object model and the system
decomposition. In principle, all the objects developed during the development process should be
tested, which is often not feasible because of time and budget constraints. The minimal set of
objects to be tested should be the participating objects in use cases. Subsystems should be tested
as components only after each of the classes within that subsystem have been tested individually. 

Existing subsystems, which were reused or purchased, should be treated as components
with unknown internal structure. This applies in particular to commercially available
subsystems, where the internal structure is not known or available to the developer. 

Many unit testing techniques have been devised. Below, we describe the most important
ones: equivalence testing, boundary testing, path testing, and state-based testing. 

Equivalence testing 

This blackbox testing technique minimizes the number of test cases. The possible inputs
are partitioned into equivalence classes, and a test case is selected for each class. The
assumption of equivalence testing is that systems usually behave in similar ways for all members
of a class. To test the behavior associated with an equivalence class, we only need to test one
member of the class. Equivalence testing consists of two steps: identification of the equivalence
classes and selection of the test inputs. The following criteria are used in determining the
equivalence classes.

• Coverage. Every possible input belongs to one of the equivalence classes.
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• Disjointedness. No input belongs to more than one equivalence class.

• Representation. If the execution demonstrates an erroneous state when a particular
member of a equivalence class is used as input, then the same erroneous state can be
detected by using any other member of the class as input. 

For each equivalence class, at least two pieces of data are selected: a typical input, which
exercises the common case, and an invalid input, which exercises the exception handling
capabilities of the component. After all equivalence classes have been identified, a test input for
each class has to be identified that covers the equivalence class. If there is a possibility that not
all the elements of the equivalence class are covered by the test input, the equivalence class must
be split into smaller equivalence classes, and test inputs must be identified for each of the new
classes. 

For example, consider a method that returns the number of days in a month, given the
month and year (see Figure 11-10). The month and year are specified as integers. By convention,
1 represents the month of January, 2 the month of February, and so on. The range of valid inputs
for the year is 0 to maxInt.

We find three equivalence classes for the month parameter: months with 31 days (i.e., 1, 3,
5, 7, 8, 10, 12), months with 30 days (i.e., 4, 6, 9, 11), and February, which can have 28 or 29
days. Nonpositive integers and integers larger than 12 are invalid values for the month
parameter. Similarly, we find two equivalence classes for the year: leap years and non–leap
years. By specification, negative integers are invalid values for the year. First we select one valid
value for each equivalence class (e.g., February, June, July, 1901, and 1904). Given that the
return value of the getNumDaysInMonth() method depends on both parameters, we combine
these values to test for interaction, resulting in the six equivalence classes displayed in
Table 11-2. 

Boundary testing

This special case of equivalence testing focuses on the conditions at the boundary of the
equivalence classes. Rather than selecting any element in the equivalence class, boundary testing
requires that the elements be selected from the “edges” of the equivalence class. The assumption

class MyGregorianCalendar {
...

public static int getNumDaysInMonth(int month, int year) {…}
...
}

Figure 11-10 Interface for a method computing the number of days in a given month (in Java). The
getNumDaysInMonth() method takes two parameters, a month and a year, both specified as integers.
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behind boundary testing is that developers often overlook special cases at the boundary of the
equivalence classes (e.g., 0, empty strings, year 2000). 

In our example, the month of February presents several boundary cases. In general, years
that are multiples of 4 are leap years. Years that are multiples of 100, however, are not leap
years, unless they are also multiple of 400. For example, 2000 was a leap year, whereas 1900
was not. Both year 1900 and 2000 are good boundary cases we should test. Other boundary
cases include the months 0 and 13, which are at the boundaries of the invalid equivalence class.
Table 11-3 displays the additional boundary cases we selected for the getNumDaysInMonth()
method.

A disadvantage of equivalence and boundary testing is that these techniques do not
explore combinations of test input data. In many cases, a program fails because a combination of
certain values causes the erroneous fault. Cause-effect testing addresses this problem by
establishing logical relationships between input and outputs or inputs and transformations. The
inputs are called causes, the outputs or transformations are effects. The technique is based on the
premise that the input/output behavior can be transformed into a Boolean function. For details
on this technique and another technique called “error guessing,” we refer you to the literature on
testing (for example [Myers, 1979]).

Table 11-2  Equivalence classes and selected valid inputs for testing the getNumDaysInMonth() method.

Equivalence class Value for month input Value for year input

Months with 31 days, non–leap years 7 (July) 1901

Months with 31 days, leap years 7 (July) 1904

Months with 30 days, non–leap years 6 (June) 1901

Month with 30 days, leap year 6 (June) 1904

Month with 28 or 29 days, non–leap year 2 (February) 1901

Month with 28 or 29 days, leap year 2 (February) 1904

Table 11-3  Additional boundary cases selected for the getNumDaysInMonth() method.

Equivalence class Value for month input Value for year input

Leap years divisible by 400 2 (February) 2000

Non–leap years divisible by 100 2 (February) 1900

Nonpositive invalid months 0 1291

Positive invalid months 13 1315



458 Chapter 11  •  Testing

Path testing 

This whitebox testing technique identifies faults in the implementation of the component.
The assumption behind path testing is that, by exercising all possible paths through the code at
least once, most faults will trigger failures. The identification of paths requires knowledge of the
source code and data structures. The starting point for path testing is the flow graph. A flow
graph consists of nodes representing executable blocks and edges representing flow of control.
A flow graph is constructed from the code of a component by mapping decision statements (e.g.,
if statements, while loops) to nodes. Statements between each decision (e.g., then block, else
block) are mapped to other nodes. Associations between each node represent the precedence
relationships. Figure 11-11 depicts an example of a faulty implementation of the
getNumDaysInMonth() method. Figure 11-12 depicts the equivalent flow graph as a UML

public class MonthOutOfBounds extends Exception {…};
public class YearOutOfBounds extends Exception {…};

class MyGregorianCalendar {
public static boolean isLeapYear(int year) {

boolean leap;
if ((year%4) == 0){

leap = true;
} else {

leap = false;
}
return leap;

}
public static int getNumDaysInMonth(int month, int year)

throws MonthOutOfBounds, YearOutOfBounds {
int numDays;
if (year < 1) {

throw new YearOutOfBounds(year);
}
if (month == 1 || month == 3 || month == 5 || month == 7 ||

month == 10 || month == 12) {
numDays = 32;

} else if (month == 4 || month == 6 || month == 9 || month == 11) {
numDays = 30;

} else if (month == 2) {
if (isLeapYear(year)) {

numDays = 29;
} else {

numDays = 28;
}

} else {
throw new MonthOutOfBounds(month);

}
return numDays;

}
}

Figure 11-11 An example of a (faulty) implementation of the getNumDaysInMonth() method (Java). 
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activity diagram. In this example, we model decisions with UML branches, blocks with UML
actions, and control flow with UML transitions.

Complete path testing consists of designing test cases such that each edge in the activity
diagram is traversed at least once. This is done by examining the condition associated with each
branch point and selecting an input for the true branch and another input for the false branch.
For example, examining the first branch point in Figure 11-12, we select two inputs: year=0
(such that year < 1 is true) and year=1901 (such that year < 1 is false). We then repeat the
process for the second branch and select the inputs month=1 and month=2. The input (year=0,
month=1) produces the path {throw1}. The input (year=1901, month=1) produces a second path
{n=32 return}, which uncovers one of the faults in the getNumDaysInMonth() method. By
repeating this process for each node, we generate the test cases depicted in Table 11-4.

We can similarly construct the activity diagram for the method isLeapYear() and derive
test cases to exercise the single branch point of this method (Figure 11-13). Note that the test
case (year = 1901, month = 2) of the getNumDaysInMonth() method already exercises one of

Figure 11-12 Equivalent flow graph for the (faulty) implementation of the getNumDaysInMonth()
method of Figure 11-11 (UML activity diagram).

[year < 1]

[month in (1,3,5,7,10,12)]
n=32

throw2 n=29

return

throw1

n=28

n=30
[month in (4,6,9,11)]

[month == 2] [leap(year)]
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the paths of the isLeapYear() method. By systematically constructing tests to cover all the
paths of all methods, we can deal with the complexity associated with a large number of
methods. 

Using graph theory, it can be shown that the minimum number of tests necessary to cover
all edges is equal to the number of independent paths through the flow graph [McCabe, 1976].
This is defined as the cyclomatic complexity CC of the flow graph, which is

CC = number of edges - number of nodes + 2

where the number of nodes is the number of branches and actions, and the number of edges is
the number of transitions in the activity diagram. The cyclomatic complexity of the
getNumDaysInMonth() method is 6, which is also the number of test cases we found in
Table 11-4. Similarly, the cyclomatic complexity of the isLeapYear() method and the number
of derived test cases is 2.

By comparing the test cases we derived from the equivalence classes (Table 11-2) and
boundary cases (Table 11-3) with the test cases we derived from the flow graph (Table 11-4 and
Figure 11-13), several differences can be noted. In both cases, we test the method extensively for
computations involving the month of February. However, because the implementation of
isLeapYear() does not take into account years divisible by 100, path testing did not generate
any test case for this equivalence class.

In general, path testing and whitebox methods can detect only faults resulting from
exercising a path in the program, such as the faulty numDays=32 statement. Whitebox testing
methods cannot detect omissions, such as the failure to handle the non–leap year 1900. Path
testing is also heavily based on the control structure of the program; faults associated with
violating invariants of data structures, such as accessing an array out of bounds, are not
explicitly addressed. However, no testing method short of exhaustive testing can guarantee the
discovery of all faults. In our example, neither equivalence testing or path testing uncovered the
fault associated with the month of August. 

Table 11-4  Test cases and their corresponding path for the activity diagram depicted in Figure 11-12.

Test case Path

(year = 0, month = 1) {throw1}

(year = 1901, month = 1) {n=32 return}

(year = 1901, month = 2) {n=28 return}

(year = 1904, month = 2) {n=29 return}

(year = 1901, month = 4) {n=30 return}

(year = 1901, month = 0) {throw2}
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State-based testing

This testing technique was recently developed for object-oriented systems [Turner &
Robson, 1993]. Most testing techniques focus on selecting a number of test inputs for a given
state of the system, exercising a component or a system, and comparing the observed outputs
with an oracle. State-based testing, however, compares the resulting state of the system with the
expected state. In the context of a class, state-based testing consists of deriving test cases from
the UML state machine diagram for the class. For each state, a representative set of stimuli is
derived for each transition (similar to equivalence testing). The attributes of the class are then
instrumented and tested after each stimuli has been applied to ensure that the class has reached
the specified state.

For example, Figure 11-14 depicts a state machine diagram and its associated tests for the
2Bwatch we described in Chapter 2, Modeling with UML. It specifies which stimuli change the
watch from the high-level state MeasureTime to the high-level state SetTime. It does not show
the low-level states of the watch when the date and time change, either because of actions of the
user or because of time passing. The test inputs in Figure 11-14 were generated such that each
transition is traversed at least once. After each input, instrumentation code checks if the watch is
in the predicted state and reports a failure otherwise. Note that some transitions (e.g., transition
3) are traversed several times, as it is necessary to put the watch back into the SetTime state

Test case Path

year = 1901, month = 2 leap=false return

year = 1904, month=2 leap=true return

Figure 11-13 Equivalent flow graph for the (faulty) isLeapYear() method implementation of
Figure 11-11 (UML activity diagram) and derived tests. The test in italic is redundant with a test we
derived for the getNumDaysInMonth() method.

[(year%4) == 0)]
leap=true

leap=false

return
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(e.g., to test transitions 4, 5, and 6). Only the first eight stimuli are displayed. The test inputs for
the DeadBattery state were not generated.

Currently, state-based testing presents several difficulties. Because the state of a class is
encapsulated, test cases must include sequences for putting classes in the desired state before
given transitions can be tested. State-based testing also requires the instrumentation of class
attributes. Although state-based testing is currently not part of the state of the practice, it
promises to become an effective testing technique for object-oriented systems as soon as proper
automation is provided.

Stimuli Transition tested Predicted resulting state

Empty set 1. Initial transition MeasureTime

Press left button 2. MeasureTime

Press both buttons 
simultaneously

3. SetTime

Wait 2 minutes 4. Timeout MeasureTime

Press both buttons 
simultaneously

3. Put the system into the SetTime 
state to test the next transition.

SetTime

Press both buttons 
simultaneously

5. SetTime->MeasureTime

Press both buttons 
simultaneously

3. Put the system into the SetTime 
state to test the next transition.

SetTime

Press left button 6. Loop back onto MeasureTime MeasureTime

Figure 11-14 UML state machine diagram and resulting tests for 2Bwatch SetTime use case. Only the
first eight stimuli are shown.

MeasureTime SetTime

3.pressBothButtons

5.pressBothButtons/beep

4.after 2 min.

DeadBattery

8.batteryEmpty7.batteryEmpty

1.

pressLeftButton
pressRightButton

2.

pressLeftButton
pressRightButton

6.
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Polymorphism testing

Polymorphism introduces a new challenge in testing because it enables messages to be
bound to different methods based on the class of the target. Although this enables developers to
reuse code across a larger number of classes, it also introduces more cases to test. All possible
bindings should be identified and tested [Binder, 2000].

Consider the NetworkInterface Strategy design pattern that we introduced in Chapter 8,
Object Design: Reusing Pattern Solutions (see Figure 11-15). The Strategy design pattern uses
polymorphism to shield the context (i.e., the NetworkConnection class) from the concrete
strategy (i.e., the Ethernet, WaveLAN, and UMTS classes). For example, the
NetworkConnection.send() method calls the NetworkInterface.send() method to send bytes
across the current NetworkInterface, regardless of the actual concrete strategy. This means
that, at run time, the NetworkInterface.send() method invocation can be bound to one of three
methods, Ethernet.send(), WaveLAN.send(), UMTS.send().

When applying the path testing technique to an operation that uses polymorphism, we
need to consider all dynamic bindings, one for each message that could be sent. In
NetworkConnect.send() in the left column of Figure 11-16, we invoke the
NetworkInterface.send() operation, which can be bound to either Ethernet.send(),
WaveLAN.send(), or the UMTS.send() methods, depending on the class of the nif object. To deal
with this situation explicitly, we expand the original source code by replacing each invocation of
NetworkInterface.send() with a nested if else statement that tests for all subclasses
ofNetworkInterface (right column of Figure 11-16). Depending on the class, nif is cast into
the appropriate concrete class, and the associated method is invoked. 

Figure 11-15 A Strategy design pattern for encapsulating multiple implementations of a
NetworkInterface (UML class diagram).
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Note that in some situations, the number of paths can be reduced by eliminating
redundancy. For the sake of this example, we simply adopt a mechanical approach.

Once the source code is expanded, we extract the flow graph (Figure 11-17) and generate
test cases covering all paths. This results in test cases that exercise the send() method of all
three concrete network interfaces.

When many interfaces and abstract classes are involved, generating the flow graph for a
method of medium complexity can result in an explosion of paths. This illustrates, on the one
hand, how object-oriented code using polymorphism can result in compact and extensible
components, and on the other hand, how the number of test cases increases when trying to
achieve any acceptable path coverage.

public class NetworkConnection {
//...
private NetworkInterface nif;
void send(byte msg[]) {

queue.concat(msg);
if (nif.isReady()) {

nif.send(queue);
queue.setLength(0);

}
}
}

public class NetworkConnection {
//...
private NetworkInterface nif;
void send(byte msg[]) {

queue.concat(msg);
boolean ready = false;
if (nif instanceof Ethernet) {

Ethernet eNif = (Ethernet)nif;
ready = eNif.isReady();

} else if (nif instanceof WaveLAN) {
WaveLAN wNif = (WaveLAN)nif;
ready = wNif.isReady();

} else if (nif instanceof UMTS) {
UMTS uNif = (UMTS)nif;
ready = uNif.isReady();

}
if (ready) {

if (nif instanceof Ethernet) {
Ethernet eNif = (Ethernet)nif;
eNif.send(queue);

} else if (nif instanceof WaveLAN){
WaveLAN wNif = (WaveLAN)nif;
wNif.send(queue);

} else if (nif instanceof UMTS){
UMTS uNif = (UMTS)nif;
uNif.send(queue);

}
queue.setLength(0);

}
}
}

Figure 11-16 Java source code for the NetworkConnection.send() message (left) and equivalent Java
source code without polymorphism (right). The source code on the right is used for generating test cases.
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11.4.4 Integration Testing

Unit testing focuses on individual components. The developer discovers faults using equivalence
testing, boundary testing, path testing, and other methods. Once faults in each component have
been removed and the test cases do not reveal any new fault, components are ready to be
integrated into larger subsystems. At this point, components are still likely to contain faults, as
test stubs and drivers used during unit testing are only approximations of the components they
simulate. Moreover, unit testing does not reveal faults associated with the component interfaces
resulting from invalid assumptions when calling these interfaces.

Integration testing detects faults that have not been detected during unit testing by
focusing on small groups of components. Two or more components are integrated and tested,
and when no new faults are revealed, additional components are added to the group. If two
components are tested together, we call this a double test. Testing three components together is a
triple test, and a test with four components is called a quadruple test. This procedure allows the
testing of increasingly more complex parts of the system while keeping the location of potential

Figure 11-17 Equivalent flow graph for the expanded source code of the NetworkConnection.send()
method of Figure 11-16 (UML activity diagram).
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faults relatively small (i.e., the most recently added component is usually the one that triggers
the most recently discovered faults).

Developing test stubs and drivers for a systematic integration test is time consuming. For
that reason, Extreme Programming, for example, stipulates that drivers be written before
components are developed [Beck & Andres, 2005]. The order in which components are tested,
however, can influence the total effort required by the integration test. A careful ordering of
components can reduce the resources needed for the overall integration test. In the next sections,
we discuss horizontal integration testing strategies, in which components are integrated
according to layers, and vertical integration testing strategies, in which components are
integrated according to functions. 

Horizontal integration testing strategies

Several approaches have been devised to implement a horizontal integration testing
strategy: big bang testing, bottom-up testing, top-down testing, and sandwich testing. Each of
these strategies was originally devised by assuming that the system decomposition is
hierarchical and that each of the components belong to hierarchical layers ordered with respect
to the “Call” association. These strategies, however, can be easily adapted to nonhierarchical
system decompositions. Figure 11-18 shows a hierarchical system decomposition that we use
for discussing these strategies. 

The big bang testing strategy assumes that all components are first tested individually and
then tested together as a single system. The advantage is that no additional test stubs or drivers
are needed. Although this strategy sounds simple, big bang testing is expensive: if a test
uncovers a failure, it is impossible to distinguish failures in the interface from failures within a
component. Moreover, it is difficult to pinpoint the specific component (or combination of
components) responsible for the failure, as all components in the system are potentially
exercised. This results in integration strategies that integrate only a few components at the time.

The bottom-up testing strategy first tests each component of the bottom layer
individually, and then integrates them with components of the next layer up. This is repeated
until all components from all layers are combined. Test drivers are used to simulate the
components of higher layers that have not yet been integrated. Note that no test stubs are
necessary during bottom-up testing.

The top-down testing strategy unit tests the components of the top layer first, and then
integrates the components of the next layer down. When all components of the new layer have
been tested together, the next layer is selected. Again, the tests incrementally add one
component at a time. This is repeated until all layers are combined and involved in the test. Test
stubs are used to simulate the components of lower layers that have not yet been integrated. Note
that test drivers are not needed during top-down testing. 

The advantage of bottom-up testing is that interface faults can be more easily found: when
the developers substitute a test driver for a higher-level component, they have a clear model of
how the lower-level component works and of the assumptions embedded in its interface. If the
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higher-level component violates assumptions made in the lower-level component, developers are
more likely to find them quickly. The disadvantage of bottom-up testing is that it tests the most
important subsystems, namely the components of the user interface, last. Faults found in the top
layer may often lead to changes in the subsystem decomposition or in the subsystem interfaces
of lower layers, invalidating previous tests.

The advantage of top-down testing is that it starts with user interface components. The
same set of tests, derived from the requirements, can be used in testing the increasingly more
complex set of subsystems. The disadvantage of top-down testing is that the development of test
stubs is time-consuming and prone to error. A large number of stubs is usually required for
testing nontrivial systems, especially when the lowest level of the system decomposition
implements many methods.

Figures 11-19 and 11-20 illustrate the possible combinations of subsystems that can be
used during integration testing. Using a bottom-up strategy, subsystems E, F, and G are united
tested first, then the triple test B-E-F and the double test D-G are executed, and so on. Using a
top-down strategy, subsystem A is unit tested, then double tests A-B, A-C, and A-D are
executed, then the quad test A-B-C-D is executed, and so on. Both strategies cover the same
number of subsystem dependencies, but exercise them in different order.

The sandwich testing strategy combines the top-down and bottom-up strategies,
attempting to make use of the best of both. During sandwich testing, the tester must be able to
reformulate or map the subsystem decomposition into three layers, a target layer (“the meat”), a

Figure 11-18 Example of a hierarchal system decomposition with three layers (UML class diagram, layers
represented by packages).
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Figure 11-19 Bottom-up test strategy. After unit testing subsystems E, F, and G, the bottom up integration
test proceeds with the triple test B-E-F and the double test D-G.

Figure 11-20 Top-down test strategy. After unit testing subsystem A, the integration test proceeds with
the double tests A-B, A-C, and A-D, followed by the quad test A-B-C-D.
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layer above the target layer (“the top slice of bread”), and a layer below the target layer (“the
bottom slice of bread”). Using the target layer as the focus of attention, top-down testing and
bottom-up testing can now be done in parallel. Top-down integration testing is done by testing
the top layer incrementally with the components of the target layer, and bottom-up testing is
used for testing the bottom layer incremental with the components of the target layer. As a result,
test stubs and drivers need not be written for the top and bottom layers, because they use the
actual components from the target layer. 

Note that this also allows early testing of the user interface components. There is one
problem with sandwich testing: it does not thoroughly test the individual components of the
target layer before integration. For example, the sandwich test shown in Figure 11-21 does not
unit test component C of the target layer. 

The modified sandwich testing strategy tests the three layers individually before
combining them in incremental tests with one another. The individual layer tests consists of a
group of three tests: 

• a top layer test with stubs for the target layer

• a target layer test with drivers and stubs replacing the top and bottom layers

• a bottom layer test with a driver for the target layer.

Figure 11-21  Sandwich testing strategy (UML activity diagram). None of the components in the target
layer (i.e., B, C, D) are unit tested.
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The combined layer tests consist of two tests:

• The top layer accesses the target layer. This test can reuse the target layer tests from the
individual layer tests, replacing the drivers with components from the top layer.

• The bottom layer is accessed by the target layer. This test can reuse the target layer tests
from the individual layer tests, replacing the stub with components from the bottom
layer.

The advantage of modified sandwich testing is that many testing activities can be
performed in parallel, as indicated by the activity diagrams of Figures 11-21 and 11-22. The
disadvantage of modified sandwich testing is the need for additional test stubs and drivers.
Overall, modified sandwich testing leads to a significantly shorter overall testing time than
top-down or bottom-up testing.

Figure 11-22 An example of modified sandwich testing strategy (UML activity diagrams). The
components of the target layer are unit tested before they are integrated with the top and bottom layers.
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Vertical integration testing strategies

In the previous section, we discussed horizontal integration testing strategies, in which
components are integrated into layers, following the subsystem decomposition. As development
responsibilities also follow the subsystem decomposition, horizontal integration is
straightforward to manage, as tests verify the interfaces that have been negotiated between
teams. The main drawback, however, is that an operational system that can be a release
candidate, is only available very late during development.

Vertical integration testing strategies, in contrast, focus on early integration. For a given
use case, the needed parts of each component, such the user interface, business logic,
middleware, and storage, are identified and developed in parallel and integration tested. Note
that this is different than the vertical prototypes for usability testing discussed in Section 11.4.2,
as vertical prototypes are not release candidates. A system build with a vertical integration
strategy produces release candidates.

For example, Extreme Programming [Beck & Andres, 2005], uses a vertical integration
strategy in terms of a user stories. A user story is a single functional requirement formulated by
the customer that is realized and integration tested during an iteration. At the end of an iteration,
a release candidate is produced and demonstrated to the customer. The drawback of vertical
integration testing, however, is that the system design is evolved incrementally, often resulting in
reopening major system design decisions. 

We discuss solutions to the early integration challenges when introducing continuous
integration in Chapter 13, Configuration Management.

11.4.5 System Testing

Unit and integration testing focus on finding faults in individual components and the interfaces
between the components. Once components have been integrated, system testing ensures that
the complete system complies with the functional and nonfunctional requirements. Note that
vertical integration testing is a special case of system testing: the former focuses only on a new
slice of functionality, whereas the system testing focuses on the complete system.

During system testing, several activities are performed:

• Functional testing. Test of functional requirements (from RAD)
• Performance testing. Test of nonfunctional requirements (from SDD)
• Pilot testing. Tests of common functionality among a selected group of end users in the

target environment
• Acceptance testing. Usability, functional, and performance tests performed by the

customer in the development environment against acceptance criteria (from Project
Agreement)

• Installation testing. Usability, functional, and performance tests performed by the
customer in the target environment. If the system is only installed at a small selected set
of customers it is called a beta test.
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Functional testing

Functional testing, also called requirements testing, finds differences between the
functional requirements and the system. Functional testing is a blackbox technique: test cases
are derived from the use case model. In systems with complex functional requirements, it is
usually not possible to test all use cases for all valid and invalid inputs. The goal of the tester is
to select those tests that are relevant to the user and have a high probability of uncovering a
failure. Note that functional testing is different from usability testing (described in Chapter 4,
Requirements Elicitation), which also focuses on the use case model. Functional testing finds
differences between the use case model and the observed system behavior, whereas usability
testing finds differences between the use case model and the user’s expectation of the system.

To identify functional tests, we inspect the use case model and identify use case instances
that are likely to cause failures. This is done using blackbox techniques similar to equivalence
testing and boundary testing (see Section 11.4.3). Test cases should exercise both common and
exceptional use cases. For example, consider the use case model for a subway ticket distributor
(see Figure 11-23). The common case functionality is modeled by the PurchaseTicket use case,
describing the steps necessary for a Passenger to successfully purchase a ticket. The TimeOut,
Cancel, OutOfOrder, and NoChange use cases describe various exceptional conditions resulting
from the state of the distributor or actions by the Passenger.

Figure 11-24 depicts the PurchaseTicket use case describing the normal interaction
between the Passenger actor and the Distributor. We notice that three features of the
Distributor are likely to fail and should be tested:

Figure 11-23 An example of use case model for a subway ticket distributor (UML use case diagram).
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1. The Passenger may press multiple zone buttons before inserting money, in which case
the Distributor should display the amount of the last zone.

2. The Passenger may select another zone button after beginning to insert money, in
which case the Distributor should return all money inserted by the Passenger.

3. The Passenger may insert more money than needed, in which case the Distributor
should return the correct change.

Figure 11-25 depicts the test case PurchaseTicket_CommonCase, which exercises these
three features. Note that the flow of events describes both the inputs to the system (stimuli that
the Passenger sends to the Distributor) and desired outputs (correct responses from the
Distributor). Similar test cases can also be derived for the exceptional use cases NoChange,
OutOfOrder, TimeOut, and Cancel.

Test cases, such as PurchaseTicket_CommonCase, are derived for all use cases, including
use cases representing exceptional behavior. Test cases are associated with the use cases from
which they are derived, making it easier to update the test cases when use cases are modified. 

Performance testing

Performance testing finds differences between the design goals selected during system
design and the system. Because the design goals are derived from the nonfunctional
requirements, the test cases can be derived from the SDD or from the RAD. The following tests
are performed during performance testing:

Use case name PurchaseTicket

Entry condition The Passenger is standing in front of ticket Distributor.

The Passenger has sufficient money to purchase ticket.

Flow of events 1. The Passenger selects the number of zones to be traveled. If the 
Passenger presses multiple zone buttons, only the last button 
pressed is considered by the Distributor.

2. The Distributor displays the amount due.
3. The Passenger inserts money.
4. If the Passenger selects a new zone before inserting sufficient 

money, the Distributor returns all the coins and bills inserted by 
the Passenger.

5. If the Passenger inserted more money than the amount due, the 
Distributor returns excess change.

6. The Distributor issues ticket.
7. The Passenger picks up the change and the ticket.

Exit condition The Passenger has the selected ticket.

Figure 11-24 An example of use case from the ticket distributor use case model PurchaseTicket.
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• Stress testing checks if the system can respond to many simultaneous requests. For
example, if an information system for car dealers is required to interface with 6000
dealers, the stress test evaluates how the system performs with more than 6000
simultaneous users.

• Volume testing attempts to find faults associated with large amounts of data, such as
static limits imposed by the data structure, or high-complexity algorithms, or high disk
fragmentation.

• Security testing attempts to find security faults in the system. There are few systematic
methods for finding security faults. Usually this test is accomplished by “tiger teams”
who attempt to break into the system, using their experience and knowledge of typical
security flaws.

• Timing testing attempts to find behaviors that violate timing constraints described by
the nonfunctional requirements.

• Recovery tests evaluates the ability of the system to recover from erroneous states, such
as the unavailability of resources, a hardware failure, or a network failure. 

After all the functional and performance tests have been performed, and no failures have
been detected during these tests, the system is said to be validated. 

Test case name PurchaseTicket_CommonCase

Entry condition The Passenger standing in front of ticket Distributor.

The Passenger has two $5 bills and three dimes.

Flow of events 1. The Passenger presses in succession the zone buttons 2, 4, 1, and 2.
2. The Distributor should display in succession $1.25, $2.25, $0.75, and $1.25.
3. The Passenger inserts a $5 bill.
4. The Distributor returns three $1 bills and three quarters and issues a 2-zone 

ticket.
5. The Passenger repeats steps 1–4 using his second $5 bill. 
6. The Passenger repeats steps 1–3 using four quarters and three dimes. The 

Distributor issues a 2-zone ticket and returns a nickel.
7. The Passenger selects zone 1 and inserts a dollar bill. The Distributor issues 

a 1-zone ticket and returns a quarter.
8. The Passenger selects zone 4 and inserts two $1 bills and a quarter. The 

Distributor issues a 4-zone ticket.
9. The Passenger selects zone 4. The Distributor displays $2.25. The 

Passenger inserts a $1 bill and a nickel, and selects zone 2. The Distributor
returns the $1 bill and the nickel and displays $1.25.

Exit condition The Passenger has three 2-zone tickets, one 1-zone ticket, and one 4-zone ticket.

Figure 11-25 An example of test case derived from the PurchaseTicket use case.
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Pilot testing

During the pilot test, also called the field test, the system is installed and used by a
selected set of users. Users exercise the system as if it had been permanently installed. No
explicit guidelines or test scenarios are given to the users. Pilot tests are useful when a system is
built without a specific set of requirements or without a specific customer in mind. In this case, a
group of people is invited to use the system for a limited time and to give their feedback to the
developers. 

An alpha test is a pilot test with users exercising the system in the development environment.
In a beta test, the pilot test is performed by a limited number of end users in the target environment;
that is, the difference between usability tests and alpha or beta tests is that the behavior of the end
user is not observed and recorded. As a result, beta tests do not test usability requirements as
thoroughly as usability tests do. For interactive systems where ease of use is a requirement, the
usability test therefore cannot be replaced with a beta test.

The Internet has made the distribution of software very easy. As a result, beta tests are
more and more common. In fact, some companies now use it as the main method for system
testing their software. Because the downloading process is the responsibility of the end user, not
the developers, the cost of distributing the experimental software has decreased sharply.
Consequently, a restricted number of beta testers is also a matter of the past. The new beta test
paradigm offers the software to anybody who is interested in testing it. In fact, some companies
charge their users for beta testing their software!

Acceptance testing

There are three ways the client evaluates a system during acceptance testing. In a
benchmark test, the client prepares a set of test cases that represent typical conditions under
which the system should operate. Benchmark tests can be performed with actual users or by a
special test team exercising the system functions, but it is important that the testers be familiar
with the functional and nonfunctional requirements so they can evaluate the system. 

Another kind of system acceptance testing is used in reengineering projects, when the new
system replaces an existing system. In competitor testing, the new system is tested against an
existing system or competitor product. In shadow testing, a form of comparison testing, the new
and the legacy systems are run in parallel and their outputs are compared. 

After acceptance testing, the client reports to the project manager which requirements are
not satisfied. Acceptance testing also gives the opportunity for a dialog between the developers
and client about conditions that have changed and which requirements must be added, modified,
or deleted because of the changes. If requirements must be changed, the changes should be
reported in the minutes to the client acceptance review and should form the basis for another
iteration of the software life-cycle process. If the customer is satisfied, the system is accepted,
possibly contingent on a list of changes recorded in the minutes of the acceptance test.
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Installation testing

After the system is accepted, it is installed in the target environment. A good system
testing plan allows the easy reconfiguration of the system from the development environment to
the target environment. The desired outcome of the installation test is that the installed system
correctly addresses all requirements. 

In most cases, the installation test repeats the test cases executed during function and
performance testing in the target environment. Some requirements cannot be executed in the
development environment because they require target-specific resources. To test these
requirements, additional test cases have to be designed and performed as part of the installation
test. Once the customer is satisfied with the results of the installation test, system testing is
complete, and the system is formally delivered and ready for operation. 

11.5 Managing Testing

In previous sections, we showed how different testing techniques are used to maximize the
number of faults discovered. In this section, we describe how to manage testing activities to
minimize the resources needed. Many testing activities occur near the end of the project, when
resources are running low and delivery pressure increases. Often, trade-offs lie between the
faults to be repaired before delivery and those that can be repaired in a subsequent revision of the
system. In the end, however, developers should detect and repair a sufficient number of faults
such that the system meets functional and nonfunctional requirements to an extent acceptable to
the client.

First, we describe the planning of test activities (Section 11.5.1). Next, we describe the test
plan, which documents the activities of testing (Section 11.5.2). Next, we describe the roles
assigned during testing (Section 11.5.3). Next, we discuss the topics of regression
testing(Section 11.5.4), automated testing (Section 11.5.5), and model-based testing
(Section 11.5.6).

11.5.1 Planning Testing

Developers can reduce the cost of testing and the elapsed time necessary for its completion
through careful planning. Two key elements are to start the selection of test cases early and to
parallelize tests.

Developers responsible for testing can design test cases as soon as the models they
validate become stable. Functional tests can be developed when the use cases are completed.
Unit tests of subsystems can be developed when their interfaces is defined. Similarly, test stubs
and drivers can be developed when component interfaces are stable. Developing tests early
enables the execution of tests to start as soon as components become available. Moreover, given
that developing tests requires a close examination of the models under validation, developers can
find faults in the models even before the system is constructed. Note, however, that developing
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tests early on introduces a maintenance problem: test cases, drivers, and stubs need to be

updated whenever the system models change.

The second key element in shortening testing time is to parallelize testing activities. All

component tests can be conducted in parallel; double tests for components in which no faults

were discovered can be initiated while other components are repaired. For example, the quad test

A-B-C-D in Figure 11-26 can be performed as soon as double tests A-B, A-C, and A-D have not

resulted in any failures. These double tests, in turn, can be performed as soon as unit test A is

completed. The quad test A-B-C-D can be performed in parallel with the double test D-G and

the triple test B-E-F, even if tests E, F, or G uncover failures and delay the rest of the tests. 

Testing represents a substantial part of the overall project resources. A typical guideline

for projects following a Unified Process life cycle is to allocate 25 percent of project resources to

testing (see Section 15.4.2; [Royce, 1998]). However, this number can go up depending onsafety

and reliability requirements on the system. Hence, it is critical that test planning start early, as

early as the use case model is stable.  

Figure 11-26 Example of a PERT chart for a schedule of the sandwich tests shown in Figure 11-21. The
PERT chart notation is defined in Section 3.3.4.
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11.5.2 Documenting Testing

Testing activities are documented in four types of documents, the Test Plan, the Test Case
Specifications, the Test Incident Reports, and the Test Summary Report:4

• The Test Plan focuses on the managerial aspects of testing. It documents the scope,
approach, resources, and schedule of testing activities. The requirements and the
components to be tested are identified in this document.

• Each test is documented by a Test Case Specification. This document contains the
inputs, drivers, stubs, and expected outputs of the tests, as well as the tasks to be
performed.

• Each execution of each test is documented by a Test Incident Report. The actual results
of the tests and differences from the expected output are recorded. 

• The Test Report Summary document lists all the failures discovered during the tests that
need to be investigated. From the Test Report Summary, the developers analyze and
prioritize each failure and plan for changes in the system and in the models. These
changes in turn can trigger new test cases and new test executions.

The Test Plan (TP) and the Test Case Specifications (TCS) are written early in the process,
as soon as the test planning and each test case are completed. These documents are under
configuration management and updated as the system models change. Figure 11-27 is an outline
for a Test Plan.

4. Documents described in this section are based on the IEEE 829 standard on testing documentation. Note that we 
omitted certain sections and documents (e.g., the Test Item Transmittal Report) for the sake of simplicity. Refer to 
the standard for a complete description of these documents [IEEE Std. 829-2008].

Test Plan

1. Introduction
2. Relationship to other documents
3. System overview 
4. Features to be tested/not to be tested
5. Pass/Fail criteria
6. Approach
7. Suspension and resumption
8. Testing materials (hardware/software requirements)
9. Test cases

10. Testing schedule

Figure 11-27 Outline of a Test Plan.
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Section 1 of the test plan describes the objectives and extent of the tests. The goal is to
provide a framework that can be used by managers and testers to plan and execute the necessary
tests in a timely and cost-effective manner.

Section 2 explains the relationship of the test plan to the other documents produced during
the development effort such as the RAD, SDD, and ODD (Object Design Document). It explains
how all the tests are related to the functional and nonfunctional requirements, as well as to the
system design stated in the respective documents. If necessary, this section introduces a naming
scheme to establish the correspondence between requirements and tests.

Section 3, focusing on the structural aspects of testing, provides an overview of the system
in terms of the components that are tested during the unit test. The granularity of components
and their dependencies are defined in this section.

Section 4, focusing on the functional aspects of testing, identifies all features and
combinations of features to be tested. It also describes all those features that are not to be tested
and the reasons for not testing them.

Section 5 specifies generic pass/fail criteria for the tests covered in this plan. They are
supplemented by pass/fail criteria in the test design specification. Note that “fail” in the IEEE
standard terminology means “successful test” in our terminology. 

Section 6 describes the general approach to the testing process. It discusses the reasons for
the selected integration testing strategy. Different strategies are often needed to test different
parts of the system. A UML class diagram can be used to illustrate the dependencies between the
individual tests and their involvement in the integration tests.

Section 7 specifies the criteria for suspending the testing on the test items associated with
the plan. It also specifies the test activities that must be repeated when testing is resumed. 

Section 8 identifies the resources that are needed for testing. This should include the
physical characteristics of the facilities, including the hardware, software, special test tools, and
other resources needed (office space, etc.) to support the tests. 

Section 9, the core of the test plan, lists the test cases that are used during testing. Each test
case is described in detail in a separate Test Case Specification document. Each execution of
these tests will be documented in a Test Incident Report document. We describe these documents
in more details later in this section. 

Section 10 of the test plan covers responsibilities, staffing and training needs, risks and
contingencies, and the test schedule. 

Figure 11-28 is an outline of a Test Case Specification.

The Test Case Specification identifier is the name of the test case, used to distinguish it
from other test cases. Conventions such as naming the test cases from the features or the
component being tested allow developers to more easily refer to test cases. Section 2 of the TCS
lists the components under test and the features being exercised. Section 3 lists the inputs
required for the test cases. Section 4 lists the expected output. This output is computed manually
or with a competing system (such as a legacy system being replaced). Section 5 lists the
hardware and software platform needed to execute the test, including any test drivers or stubs.
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Section 6 lists any constraints needed to execute the test such as timing, load, or operator
intervention. Section 7 lists the dependencies with other test cases.

The Test Incident Report lists the actual test results and the failures that were experienced.
The description of the results must include which features were demonstrated and whether the
features have been met. If a failure has been experienced, the test incident report should contain
sufficient information to allow the failure to be reproduced. Failures from all Test Incident
Reports are collected and listed in the Test Summary Report and then further analyzed and
prioritized by the developers.

Note that the IEEE standard [IEEE Std. 829-2008] for software test documentation uses a
slightly different outline that is more appropriate for large organizations and systems. Section
10, for example, is covered by several sections in the standard (responsibilities, staffing and
training needs, schedule, risks, and contingencies).

11.5.3 Assigning Responsibilities

Testing requires developers to find faults in components of the system. This is best done when
the testing is performed by a developer who was not involved in the development of the
component under test, one who is less reticent to break the component being tested and who is
more likely to find ambiguities in the component specification.

For stringent quality requirements, a separate team dedicated to quality control is solely
responsible for testing. The testing team is provided with the system models, the source code,
and the system for developing and executing test cases. Test Incident Reports and Test Report
Summaries are then sent back to the subsystem teams for analysis and possible revision of the
system. The revised system is then retested by the testing team, not only to check if the original
failures have been addressed, but also to ensure that no new faults have been inserted in the
system.

For systems that do not have stringent quality requirements, subsystem teams can double
as a testing team for components developed by other subsystem teams. The architecture team
can define standards for test procedures, drivers, and stubs, and can perform as the integration
test team. The same test documents can be used for communication among subsystem teams.

Test Case Specification

1. Test case specification identifier
2. Test items
3. Input specifications
4. Output specifications
5. Environmental needs
6. Special procedural requirements
7. Intercase dependencies

Figure 11-28 Outline of a Test Specification.
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One of the main problems of usability tests is with enrolling participants. Several
obstacles are faced by project managers in selecting real end users [Grudin, 1990]:

• The project manager is usually afraid that users will bypass established technical
support organizations and call the developers directly, once they know how to get to
them. Once this line of communication is established, developers might be sidetracked
too often from doing their assigned jobs. 

• Sales personnel do not want developers to talk to “their” clients. Sales people are afraid
that developers may offend the client or create dissatisfaction with the current
generation of products (which still must be sold). 

• The end users do not have time. 

• The end users dislike being studied. For example, an automotive mechanic might think
that an augmented reality system will put him out of work. 

Debriefing the participants is the key to coming to understanding how to improve the
usability of the system being tested. Even though the usability test uncovers and exposes
problems, it is often the debriefing session that illustrates why these problems have occurred in
the first place. It is important to write recommendations on how to improve the tested
components as fast as possible after the usability test is finished, so they can be used by the
developers to implement any necessary changes in the system models of the tested component.

11.5.4 Regression Testing

Object-oriented development is an iterative process. Developers modify, integrate, and retest
components often, as new features are implemented or improved. When modifying a
component, developers design new unit tests exercising the new feature under consideration.
They may also retest the component by updating and rerunning previous unit tests. Once the
modified component passes the unit tests, developers can be reasonably confident about the
changes within the component. However, they should not assume that the rest of the system will
work with the modified component, even if the system has previously been tested. The
modification can introduce side effects or reveal previously hidden faults in other components.
The changes can exercise different assumptions about the unchanged components, leading to
erroneous states. Integration tests that are rerun on the system to produce such failures are called
regression tests.

The most robust and straightforward technique for regression testing is to accumulate all
integration tests and rerun them whenever new components are integrated into the system. This
requires developers to keep all tests up-to-date, to evolve them as the subsystem interfaces
change, and to add new integration tests as new services or new subsystems are added. As
regression testing can become time consuming, different techniques have been developed for
selecting specific regression tests. Such techniques include [Binder, 2000]:
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• Retest dependent components. Components that depend on the modified component are
the most likely to fail in a regression test. Selecting these tests will maximize the
likelihood of finding faults when rerunning all tests is not feasible.

• Retest risky use cases. Often, ensuring that the most catastrophic faults are identified is
more critical than identifying the largest number of faults. By focusing first on use
cases that present the highest risk, developers can minimize the likelihood of
catastrophic failures.

• Retest frequent use cases. When users are exposed to successive releases of the same
system, they expect that features that worked before continue to work in the new
release. To maximize the likelihood of this perception, developers focus on the use
cases that are most often used by the users.

In all cases, regression testing leads to running many tests many times. Hence, regression
testing is feasible only when an automated testing infrastructure is in place, enabling developers
to automatically set up, initialize, and execute tests and compare their results with a predefined
oracle. We discuss automated testing in the next section.

11.5.5 Automating Testing

Manual testing involves a tester to feed predefined inputs into the system using the user
interface, a command line console, or a debugger. The tester then compares the outputs
generated by the system with the expected oracle. Manual testing can be costly and error prone
when many tests are involved or when the system generates a large volume of outputs. When
requirements change and the system evolves rapidly, testing should be repeatable. This makes
these drawbacks worse, as it is difficult to guarantee that the same test is executed under the
same conditions every time.

The repeatability of test execution can be achieved with automation. Although all aspects
of testing can be automated (including test case and oracle generation), the main focus of test
automation has been on execution. For system tests, test cases are specified in terms of the
sequence and timing of inputs and an expected output trace. The test harness can then execute a
number of test cases and compare the system output with the expected output trace. For unit and
integration tests, developers specify a test as a test driver that exercises one or more methods of
the classes under tests.

The benefit of automating test execution is that tests are repeatable. Once a fault is
corrected as a result of a failure, the test that uncovered the failure can be repeated to ensure that
the failure does not occur anymore. Moreover, other tests can be run to ensure (to a limited
extent) that no new faults have been introduced. Moreover, when tests are repeated many times,
for example, in the case of refactoring (see Section 10.3.2), the cost of testing is decreased
substantially. However, note that developing a test harness and test cases is an investment. If
tests are run only once or twice, manual testing may be a better alternative.
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An example of an automated test infrastructure is JUnit, a framework for writing and
automating the execution of unit tests for Java classes [JUnit, 2009]. The JUnit test framework
is made out of a small number of tightly integrated classes (Figure 11-29). Developers write new
test cases by subclassing the TestCase class. The setUp() and tearDown() methods of the
concrete test case initialize and clean up the testing environment, respectively. The runTest()
method includes the actual test code that exercises the class under test and compares the results
with an expected condition. The test success or failure is then recorded in an instance of
TestResult. TestCases can be organized into TestSuites, which will invoke sequentially each
of its tests. TestSuites can also be included in other TestSuites, thereby enabling developers
to group unit tests into increasingly larger test suites.

Typically, when using JUnit, each TestCase instance exercises one method of the class
under test. To minimize the proliferation of TestCase classes, all test methods exercising the
same class (and requiring the same test environment initialized by the setUp() method) are
grouped in the same ConcreteTestCase class. The actual method that is invoked by runTest()
can then be configured when creating instances of TestCases. This enables developers to
organize and selectively invoke large number of tests.

Figure 11-29 JUnit test framework (UML class diagram). 

Test

TestCase TestSuite

TestResult

run(TestResult)
setUp()
tearDown()

testName:String

run(TestResult)

runTest()

run(TestResult)
addTest()

ConcreteTestCase

setUp()
tearDown()
runTest()
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11.5.6 Model-Based Testing

Testing (manual or automated) requires an infrastructure for executing tests, instrumenting the
system under test, and collecting and assessing test results. This infrastructure is called the test
harness or test system. The test system is made of software and hardware components that
interact with various actors, which can then be modeled using UML. In Chapters 2-10, we have
shown how the system under development and the development organization can be modeled in
UML. Similarly, we can model the test system in UML. To be able to do this, we need to extend
UML with new entity objects for modeling the test system. 

UML profiles provide a way for extending UML. A UML profile is a collection of new
stereotypes, new interfaces, or new constraints, thus providing new concepts specialized to an
application domain or a solution domain.

U2TP (UML 2 Testing Profile, [OMG, 2005]) is an example of a UML profile, which
extends UML for modeling testing. Modeling the test system in U2TP provides the same
advantages as when modeling the system under development: test cases are modeled in a
standard notation understood by all participants, test cases can be automatically generated from
test models, test cases execution and results can be automatically collected and recorded.

U2TP extends UML with the following concepts:

• The system under test (stereotype «sut»), which may be the complete system under
development, or only a part of it, such as a subsystem or a single class.

• A test case (stereotype «testCase») is a specification of behavior realizing one or
more test objectives. A test cases specifies the sequence of interactions among the
system under test and the test components. The interactions are either stimuli on the
system under test or observations gathered from the system under test or from test
components. A test case is represented as a sequence diagram or state machine. Test
cases return an enumerated type called verdict, denoting if the test run passed, failed,
was inconclusive, or an error in the test case itself was detected. In U2TP terminology,
an error is caused by a fault in the test system, while a failure is caused by a fault in the
system under test.

• A test objective (stereotype «testObjective») describes in English the goal of one or
several test cases. A test objective is typically a requirement or a part of a requirement
that is being verified. For example, the test objective of the displayTicketPrices test
case is to verify that the correct price is displayed after selected a zone button on the
ticket distributor.

• Test components (stereotype «testComponent»), such as test stubs and utilities needed
for executing a test case. Examples of test components include simulated hardware,
simulated user behavior, or components that inject faults.

• Test contexts (stereotype «testContext»), which include the set of test cases, the
configuration of test components and system under test needed for every test case, and
a test control for sequencing the test cases.
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• An arbiter (interface Arbiter), which collects the local test results into an aggregated
result.

• A scheduler (interface Scheduler), which creates and coordinate the execution of the
test cases among test components and system under test.

Figure 11-30 depicts an example of a test system in U2TP for the TicketDistributor of
Figures 11-23–11-25. The test context PurchaseTicketSuite groups all the test cases for the
PurchaseTicket use case. The system under test is the TicketDistributor software. To make
it easier to control and instrument the system to assess the success or failure of tests, we simulate
the ticket distributor display with a DisplaySimulator test component.

For example, Figure 11-31 depicts the expected interactions of the
displayTicketPrices() test case resulting to a pass verdict. selectZone1(), selectZone2(),
and selectZone4() are stimuli on the system under test. getDisplay() are observations to
assess if individual test steps were successful. Note that only the expected interactions are
displayed. Any unexpected interactions, missing interactions, or observations that do not match
the oracles, lead to a failed verdict. U2TP also provides mechanisms, not discussed here, to
explicitly model interactions that lead to an inconclusive or a failed verdict.

The displayTicketPrices() test case of Figure 11-31 explicitly models the mapping
between zones and ticket prices. In a realistic system, this approach would not be sustainable, as
many test cases are repeated for boundary values and with samples of different equivalence
classes. To address this challenge, U2TP provides the concepts of DataPool, DataPartition,
and DataSelector, to represent test data samples, equivalence classes, and data selection
strategies, respectively. These allow to parameterize test cases with different sets of values,
keeping the specification of test cases concise and reusable.

Figure 11-30 Example of a test system for the TicketDistributor (U2TP).

TestSystem

«testContext»

«testCase»displayTicketPrices()
«testCase»purchaseZone1WithBill()
«testCase»purchaseZone1WithCoins()

PurchaseTicketSuite

«testComponent»
DisplaySimulator

«sut»
TicketDistributor

«import»
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Figure 11-31  Example of test behavior for the test case displayTicketPrices() (U2TP). Only
expected interactions leading to a pass verdict are represented.

«testContext»

selectZone2()
setDisplay(“$1.25”)

getDisplay()

return pass

PurchaseTicketSuite
«sut»

TicketDistributor
«testComponent»
DisplaySimulator

getDisplay():“$1.25”

selectZone4()
setDisplay(“$2.25”)

getDisplay()

getDisplay():“$2.25”

selectZone1()
setDisplay(“$0.75”)

getDisplay()

getDisplay():“$0.75”

selectZone2()
setDisplay(“$1.25”)

getDisplay()

getDisplay():“$1.25”
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11.6 Further Readings
Historically, the term “bug” was first used to denote a fault by Grace Hopper when a moth
interfered with a computer relay, causing the program to stop [Hopper, 1981]. The term has been
used since to denote design and coding faults caused by developers. 

Fagan showed that code inspections can be more effective than testing for finding faults in
a given amount of time [Fagan, 1976]. Many replicated experiments confirmed Fagan’s finding.
For that reason, inspections and peer reviews are stipulated by several standards, including ISO
9000. However, with the exception of critical systems, code inspections are not widely used
because they are often perceived, ironically, as too time consuming.

Many books have been written about testing. However, progress in this discipline is slow
and few new ideas have yielded results comparable to code inspections. The Art of Software
Testing, although several decades old, remains a classic in the testing literature and relevant for
today’s systems [Myers, 1979]. 

The introduction of object-oriented programming techniques opened the door for
increased modularity and reuse. However, polymorphism also increased drastically the number
of paths to be tested. Testing Object-Oriented Systems contains the most comprehensive
treatment of testing issues and techniques for object-oriented systems [Binder, 2000]. 

A common misconception is that usability testing requires large budgets and sophisticated
know-how. Handbook of Usability Testing [Rubin, 1994] and Usability Inspection Methods
[Nielsen & Mack, 1994] provide practical guidance and show how even limited usability tests
can dramatically improve a system. Usability Engineering Lifecycle [Mayhew, 1999] integrates
usability testing into object-oriented software engineering life cycle.

Developing reliable systems goes beyond testing. As discussed in the introduction of this
chapter, alternative techniques, such as fault avoidance and fault tolerance, can complement
testing to produce a highly reliable system. An excellent coverage of the topic is provided in
[Siewiorek & Swarz, 1992].

U2TP is a response by a consortium to a request for proposals from OMG to develop a
UML profile for testing. U2TP has been finalized and is now an official OMG standard
[OMG, 2005]. Baker provides a practical introduction on model-based testing using U2TP
[Baker et al., 2008].
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11.7 Exercises

11-1 Correct the faults in the isLeapYear() and getNumDaysInMonth() methods of
Figure 11-11 and generate test cases using the path testing method. Are the test cases
you found different than those of Table 11-4 and Figure 11-13? Why? Would the test
cases you found uncover the faults you corrected?

11-2 Generate equivalent Java code for the state machine diagram for the SetTime use case
of 2Bwatch (Figure 11-14). Use equivalence testing, boundary testing, and path testing
to create test cases for the code you have just generated. How do these test cases
compare with those generated using state-based testing?

11-3 Build the state machine diagram corresponding to the PurchaseTicket use case of
Figure 11-24. Generate test cases based on the state machine diagram using the state-
based testing technique. Discuss the number of test cases and differences with the test
case of Figure 11-25.

11-4 Given the subsystem decomposition 

comment on the testing plan used by the project manager:

What decisions were made? What are the advantages and disadvantages of this test
plan?

User Interface(A)

Billing(B) Event Service(C) Learning(D)

Database(E) Network(F) Neural Network(G)

Layer III

Layer II

Layer I

Test A

Test G

Test B,E,F

Test D,G

Test A,B,C,D

Test A,B,C,D,

Test E

Test F

E,F,G
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11-5 You are responsible for the integration testing of a system that encrypts network traffic.
This system includes a key generator subsystem that uses random numbers. During
integration testing, you use a stub implementation of the key generator that produces a
predictable result. However, for the release version of the system, you want to
substitute the stub implementation with the random implementation, so that the
generated keys are not predictable to an outsider. Implement a test infrastructure using
one of the design patterns described in Chapter 8, Object Design: Reusing Pattern
Solutions to enable the exchange of these two key generator implementations at run
time. Justify your choice.

11-6 Use path testing to generate test cases for all the methods of the NetworkConnection
class depicted in Figure 11-15 and in Figure 8-11. Expand first the source code to
remove any polymorphism. How many test cases did you generate using path testing?
How many test cases would you generate if the source code is not expanded?

11-7 Apply the software engineering and testing terminology from this chapter to the
following terms used in Feynman’s article mentioned in the introduction: 

• What is a “crack”?
• What is “crack initiation”?
• What is “high engine reliability”?
• What is a “design aim”?
• What is a “mission equivalent”?
• What does “10 percent of the original specification” mean?
• How is Feynman using the term “verification,” when he says that “As deficiencies

and design errors are noted they are corrected and verified with further testing”?
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12
Rationale Management

The [motorcycle] description would cover the “what” of the 
motorcycle in terms of components, the “how” of the engine in 
terms of functions. It would badly need a “where” analysis in 
the form of an illustration and also a “why” analysis in the 
form of engineering principles that led to this particular 
conformation of parts. 
—Robert Pirsig, in Zen and the Art of Motorcycle Maintenance

Rationale is the justification of decisions. The models we have described until now represent
the system. Rationale models represent the reasoning that leads to the system, including its
functionality and its implementation. Rationale is critical in two areas: it supports the decision
making, and it supports the capture of knowledge. Rationale includes

• the issues that were addressed
• the alternatives that were considered
• the decisions that were made to resolve the issues
• the criteria that were used to guide decisions
• the debate developers went through to reach a decision. 

In the context of decision making, the rationale improves the quality of decisions by
making decision elements—such as criteria, priorities, and arguments—explicit. In the context
of knowledge capture, the rationale is the most important information in the development
process when changing the system. For example, when functionality is added to the system, the
rationale enables developers to track which decisions should be revisited and which alternatives
have already been evaluated. When new staff is assigned to the project, new developers can
become familiar with past decisions by accessing the rationale of the system.

Unfortunately, rationale is also the most complex information that developers generate,
and thus, is the most difficult to maintain and update. Moreover, capturing rationale represents
an up-front investment with long-term returns. In this chapter, we describe issue-modeling, a
representation for modeling rationale. We then describe the activities of creating, maintaining,
and accessing rationale models. We conclude this chapter by describing management issues
related to rationale management, such as decision support and negotiation.
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12.1 Introduction: Slicing Ham

System models are abstractions of what the system does. The requirements analysis model,
including the use case model, the class model, and the sequence diagrams (see Chapter 4,
Requirements Elicitation, and Chapter 5, Analysis) represents the behavior of the system from
the user’s point of view. The system design model (see Chapter 6, System Design: Decomposing
the System) represents the system through its subsystems, design goals, hardware nodes, data
stores, access control, and so on. The rationale model represents why a given system is
structured and behaves the way it does.1 Why should we capture the why? Consider the
following example:2

Developers and cooks are good at disseminating new practices and techniques. The
rationale behind these techniques, however, is usually lost, making it difficult to improve them
as their application context changes. The Y2K bug is such an example: in the 1960s and 1970s,
memory costs drove developers to represent information as compactly as possible. For this
reason, the year was often represented with two characters instead of four (e.g., “1998” was
represented as “98”). The assumption of the developers was that the software would only be
used for a few years. Arithmetic operations on years represented with two digits assumes that all
dates are within the same century. Unfortunately, this shortcut breaks down at the turn of the
century for software performing arithmetic on two-digit years. For example, when computing
the age of a person, a person born in 1949 will be considered 01 – 49 = –48 years old in 2001.
The practice of encoding years with two digits became standard, even after memory prices
dropped significantly and the year 2000 loomed. Moreover, new systems had to be backward-

1. Historically, much research about rationale focuses on design, hence, the term design rationale is most often used in 
the literature. Instead, we use the term rationale to avoid confusion and to emphasize that rationale models can be 
used during all phases of development.

Mary asks John, her husband, why he always cuts off both ends of the ham before putting it in the oven.
John responds that he is following his mother’s recipe and that he had always seen her cut the ends off
the ham. He never really questioned the practice and thought it was part of the recipe. Mary, intrigued
by this answer, calls her mother-in-law to find out more about this ham recipe.

Ann, John’s mother, provides more details on the ham cutting, but no culinary justification. She says
that she has always trimmed about an inch off each end of the ham as her mother did, assuming it had
something to do with improving the taste.

Mary continues her investigation and calls John’s maternal grandmother, Zoe. At first, Zoe is very
surprised. She does not cut the ends of the ham and she cannot imagine how such practice could
possibly improve the taste. After much discussion, Zoe eventually remembers that, when Ann was a
little girl, she used to cook on a much narrower stove that could not accommodate standard-sized meat
loaves. To work around this problem, she used to cut off about an inch from each end of the ham. She
stopped this practice once she got a wider stove.

2. Far-fetched example adapted for this chapter, original author unknown.
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compatible with older ones. For these reasons, many systems delivered as late as the 1990s still
have Y2K bugs.

Rationale models enable developers and cooks to deal with change, such as larger stoves
or cheaper memory prices. Capturing the justification of decisions effectively models the
dependencies between starting assumptions and decisions. When assumptions change, decisions
can be revisited. In this chapter, we describe techniques for capturing, maintaining, and
accessing rationale models. In this chapter, we have included

• a bird’s-eye view of the activities related with rationale models (Section 12.2)
• issue modeling, the technique we use for representing rationale (Section 12.3)
• the activities necessary for creating and accessing rationale models (Section 12.4)
• management issues related with maintaining rationale models (Section 12.5).

First, let us define the concept of rationale model.

12.2 An Overview of Rationale

A rationale is the motivation behind a decision. More specifically, it includes

• Issue. To each decision corresponds an issue to be solved so that development can
proceed. An important part of the rationale is a description of the specific issue that is
being solved. Issues are usually phrased as questions: How should a ham be cooked?
How should years be represented?

• Alternatives. Alternatives are possible solutions that could address the issue under
consideration. These include alternatives that were explored but discarded because they
did not satisfy one or more criteria. For example, buying a wide stove costs too much.
Representing years with a binary 16-bit number requires too much processing.

• Criteria. Criteria are desirable qualities that the selected solution should satisfy. For
example: a recipe for ham should be realizable on standard kitchen equipment.
Developers in the 1960s minimized memory foot prints. During requirements analysis,
criteria are nonfunctional requirements and constraints (e.g., usability, number of input
errors per day). During system design, criteria are design goals (e.g., reliability,
response time). During project management, criteria are management goals and trade-
offs (e.g., timely delivery versus quality).

• Argumentation. Cooking and software development decisions are not algorithmic.
Cooks and developers discover issues, try solutions, and argue their relative benefits. It
is only after much discussion that a consensus is reached or a decision imposed. This
argumentation occurs during all aspects of the decision process, including criteria,
justifications, explored alternatives, and trade-offs.

• Decisions. A decision is the resolution of an issue representing the selected alternative
according to the criteria that were used for evaluation and the justification of the
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selection. Cutting an inch off each end of a ham and representing years with two digits
are decisions. Decisions are already captured in the system models we develop during
requirements analysis and system design. Moreover, many decisions are made without
exploring alternatives or examining the corresponding issues.

We make decisions throughout the development process, and we can use rationale models
during any development activity:

• During requirements elicitation and requirements analysis, we make decisions about
the functionality of the system, most often together with the client. Decisions are
motivated by user or organizational needs. The justification of these decisions is useful
for creating test cases during system integration and user acceptance.

• During system design, we select design goals and design the subsystem decomposition.
When identifying design goals, for example, we often base our decision on
nonfunctional requirements. Capturing the rationale of these decisions enables us to
trace dependencies between design goals and nonfunctional requirements. This allows
us to revise the design goals when requirements change. 

• During project management, we make assumptions about the relative risks present in
the development process. We are more likely to start development tasks related to a
recently released component as opposed to a mature one. Capturing the justifications
behind the risks and the fallback plans facilitates mitigation if these risks become
problems. 

• During integration and testing, we discover interface mismatches between subsystems.
Accessing the rationale for the subsystems, we can often determine which change or
assumption introduced the mismatch and correct the situation with minimal impact on
the rest of the system.

Maintaining rationale is an investment of resources for dealing with change: we capture
information now to make it easier to revise decisions later, when changes occur. The amount of
resources we are willing to invest depends on the type of project. 

If we are building a complex system for a single customer, we will most likely revise and
upgrade the system several times over a long period. In this case, the client may even require that
rationale be recorded. If we are building a conceptual prototype for a new product, we will most
likely throw out the prototype once product development is approved and underway. If we divert
development resources to record rationale, we risk delaying the demonstration of the prototype
and face project cancellation altogether. In this case, we do not record rationale, because the
return on such an investment would be minimal. 

More generally, we distinguish four levels of rationale capture:

• No explicit rationale capture. Resources are spent only on development. The
documentation focuses on the system models only. Rationale information is present
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only in the developers’ memories and in communication records such as E-mail
messages, memos, and faxes.

• Rationale reconstruction. Resources are spent in recovering design rationale during the
documentation effort. The design criteria and the motivation behind major architectural
decisions is integrated with the corresponding system models. Discarded alternatives
and argumentation are not captured explicitly.

• Rationale capture. Major effort is spent in capturing rationale as decisions are made.
Rationale information is documented as a separate model and cross-referenced with
other models. For example, issue models represent rationale with a graph of nodes,
each representing an issue, an alternative, or an evaluation criteria. The rationale behind
the requirements model can then be captured by attaching issue models to use cases.

• Rationale integration. The rationale model becomes the central model developers use.
Rationale produced during different phases are integrated into a live and searchable
information base. Changes to the system occur first in the information base as a
discussion followed by one or more decisions. The system models represent the sum of
the decisions captured in the information base.

In the first two levels of rationale capture, No explicit rationale capture and Rationale
reconstruction, we rely on developers’ memory to capture and store rationale. In the last two
levels, Rationale capture and Rationale integration, we invest resources in constructing
corporate memory that is independent of developers. The trade-off between these two extremes
is the investment of resources during the early phases of development. In this chapter, we focus
on the last two levels of rationale capture.

In addition to long-term benefits, maintaining rationale can also have short-term positive
effects: making explicit the rationale of a decision enables us to understand better the criteria
others follow. It also encourages us to make rational decisions instead of emotional ones. If
nothing else, it helps us distinguish which decisions were carefully evaluated and which were
made under pressure and rushed.

Rationale models represent a body of information that is larger and changing faster than
the system models. This introduces issues related to complexity and change, and we have
modeling techniques for dealing with those. Next, we describe how we represent rationale with
issue models.

12.3 Rationale Concepts

In this section, we describe issue models, the representation we use for rationale. Issue modeling
is based on the assumption that design occurs as a dialectic activity during which developers
solve a problem by arguing the pros and cons of different alternatives. We can then capture
rationale by modeling the argument that lead to the development decisions. We represent

• a question or a design problem as an issue node (Section 12.3.2)
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• alternative solutions to the problem as proposal nodes (Section 12.3.3)
• pros and cons of different alternatives using argument nodes (Section 12.3.4)
• decisions we make to resolve an issue as a resolution node (Section 12.3.5)
• implementation of these resolutions as action items (Section 12.3.6).

In Section 12.3.7, we survey several issue representations of historical significance. But
first, let us talk about centralized traffic control, the domain for the examples in this chapter.

12.3.1 Centralized Traffic Control

Centralized traffic control (CTC) systems enable train dispatchers to monitor and route trains
remotely. Train tracks are divided into contiguous track circuits that represent the smallest unit a
dispatcher can monitor. Signals and other devices ensure that at most one train can occupy a
track circuit at any time. When a train enters a track circuit, a sensor detects its presence and the
train identification appears on the dispatcher’s monitor. The dispatcher operates switches to
route trains. The system enables a dispatcher to plan a complete route by aligning a sequence of
switches in the corresponding position. The set of track circuits controlled by a single dispatcher
is called a “track section.”

Figure 12-1 is a simplified display of a CTC user interface. Track circuits are represented
by lines. Switches are represented by the intersection of three lines. Signals are represented with
icons indicating whether a signal is open (i.e., allowing a train to pass) or closed (i.e., forbidding
a train to pass). Switches, trains, and signals are numbered for reference in commands issued by
the dispatcher. In Figure 12-1, signals are numbered S1–S4, switches are numbered SW1 and SW2,
and trains are numbered T1291 and T1515. Computers near the tracks, called “wayside stations,”
ensure that the state of a group of switches and signals do not present any safety hazard. For
example, a wayside station controlling the devices of Figure 12-1 ensures that opposing signals,
such as S1 and S2, cannot be open simultaneously. Wayside stations are designed such that the
state of the device they control is safe even in the case of failure. Such equipment is called “fail-
safe.” CTC systems communicate with wayside stations to modify the state of the tracks when

Figure 12-1 A simplified example of a CTC track section display.
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dispatching trains. CTC systems are typically highly available but need not be fail-safe, given that
the safety of trains is guaranteed by the wayside stations.

In the 1960s, CTC systems had a custom display board containing light bulbs to display the
status of the track circuits. Switches and signals were controlled via an input board with many
push buttons and toggle switches. In the 1970s, CRTs replaced the custom boards and provided
dispatchers more detailed information with less real estate. More recently, workstation-based
traffic control systems have been introduced, offering the possibility of a more sophisticated user
interface to dispatchers and the ability to distribute processing among multiple computers.

Centralized traffic control systems need to be highly available. Although traffic control
systems are not life-critical (safety is ensured by wayside stations), a failure of the system can
lead to major traffic disruption in the controlled tracks, thus resulting in substantial economic
loss. Consequently, the transition to a new technology, such as moving from a mainframe to a
workstation environment or moving from a textual interface to a graphical user interface, should
be carefully evaluated and accomplished much more gradually than for other systems. Traffic
control is a domain in which capturing rationale is critical and thus serves as the basis for the
examples of this chapter.

Let us discuss next how issue models are used to represent rationale.

12.3.2 Defining the Problem: Issues

An issue represents a concrete problem, such as a requirement, a design, or a management
problem. How soon should a dispatcher be notified of a train delay? How should persistent data
be stored? Which technology presents the most risk? Issues most often represent problems that
do not have a single correct solution and that cannot be resolved algorithmically. Issues are
typically resolved through discussion and negotiation.

We represent issues in UML with instances of class Issue. Issues have a subject
attribute, summarizing the issue, a description attribute, describing the issue in more detail and
referring to supporting material, and a status attribute, indicating whether the issue has been
resolved or not. The status of an issue is open if it has not yet been resolved and closed
otherwise. A closed issue can be reopened. By convention, we give a short name to each issue,
such as train delay?:Issue, for reference. For example, Figure 12-2 depicts the three issues
we gave as examples in the previous paragraph.

Issues raised during development are often related. For example, issues can be
decomposed into smaller subissues. What are the response time requirements of the traffic
control system? includes How soon should a dispatcher be notified of a train delay? The
complete system development can be phrased as a single issue—Which traffic control system
should we build?—that can then be decomposed into numerous subissues. Issues can also be
raised by decisions made on other issues. For example, the decision to cache data on a local node
raises the issue of maintaining consistency between the central and cached copies of the data.
Such issues are called consequent issues.
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Consider the centralized traffic control system we previously described. Assume we are
currently examining the transition from a mainframe system to a desktop system. In the future
system, each dispatcher will have an individual desktop machine that communicates with a
server, which manages the communication with field devices. During design discussions, two
interface issues are raised: How should commands be input to the system? and How should track
circuits be displayed to the dispatcher? Figure 12-3 depicts two issues represented with a UML
object diagram.

An issue should focus only on the problem, not on possible alternatives to address it. A
convention that encourages this is to phrase issues as questions. To reinforce this concept, we
also include a question mark at the end of the issue name. Information about the possible
alternatives addressing an issue are captured by proposals, which we discuss next.

12.3.3 Exploring the Solution Space: Proposals

A proposal represents a candidate answer to an issue. A dispatcher need not be notified is a
proposal to the issue How soon should a dispatcher be notified of a train delay? A proposal need
not be a good or valid answer to the issue it addresses. Proposals enable developers to explore
the solution space thoroughly. Often when brainstorming, proposing a flawed solution triggers
new ideas and solutions that would not have been thought of otherwise. Different proposals
addressing the same issue can overlap. For example, proposals to the issue How to store
persistent data? could include Use a relational database and Use a relational database for

train delay?:Issue How soon should a dispatcher be notified of a train delay?

storage?:Issue How should persistent data be stored?

technology risk?:Issue Which technology presents the most risk?

Figure 12-2  An example of issues (UML object diagram).

input?:Issue How should the dispatcher input commands?

display?:Issue How should track sections be displayed?

Figure 12-3 CTC interface issues (UML object diagram).

train delay?:Issue

storage?:Issue
technology risk?:Issue

input?:Issuedisplay?:Issue
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structured data and flat files for images. Proposals are used to represent the solution to the
problem as well as to the discarded alternatives.

A proposal can address one or more issues. For example, Use Model/View/Dispatcher
architecture can address How to separate interface objects from entity objects? and How to
maintain consistency across multiple views? Proposals can also trigger new issues. For example,
in response to the issue How to minimize memory leaks?, the proposal Use garbage collection
may trigger the consequent issue How to minimize response time degradation due to memory
management? When we address an issue, we need to ensure that all consequent issues
associated with the selected proposals are addressed, as well.

We represent proposals in UML as instances of the class Proposal. Proposals, like
Issues, have subject and description attributes. By convention, we give proposals a short
name and phrase them as a statement starting with a verb. Proposals are related to the Issues
they address with an addressed by association. Issues are related to the Proposals that
triggered them with a raises association. 

While discussing the interface issues of our centralized traffic control system, we consider
two proposals: a point&click interface, which allows track circuits to be represented
graphically, and a text-based interface, in which track sections are represented with special
characters. The text-based proposal raises a consequent issue about which terminal emulation
to use. Figure 12-4 depicts the addition of the two proposals and the consequent issue.

A proposal should only contain information related to the solution, not its value,
advantages, and disadvantages. Criteria and arguments are used for this purpose. We describe
these next.

point&click:Proposal The interface for the dispatcher could be realized with a point-and-click
interface.

text only:Proposal The display used by the dispatcher can be a text-only display with
graphic characters to represent track segments.

terminal?:Issue Which terminal emulation should be used for the display?

Figure 12-4  An example of proposals and consequent issue (UML object diagram). Proposals and
consequent Issue are emphasized in bold.
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text-based:Proposal point&click:Proposal

input?:Issuedisplay?:Issue

terminal?:Issue
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12.3.4 Evaluating the Solution Space: Criteria and Arguments

A criterion is a desirable quality that proposals addressing a specific issue should have. Design
goals, such as response time or reliability, are criteria used for addressing design issues.
Management goals, such as minimum cost or minimum risk, are criteria used for addressing
management issues. A set of criteria indicates the dimensions against which each proposal is
assessed. A proposal that meets a criterion is said to be assessed positively against that criterion.
Similarly, a proposal that fails to meet a criterion is said to be assessed negatively against that
criterion. Criteria may be shared among several issues.

We represent criteria in UML as instances of the Criterion class. A Criterion, like
Issues and Proposals, has subject and description attributes. The subject attribute is
always phrased positively; that is, it should state the quality that proposals should maximize.
Fast, responsive, and cheap are good subject attributes. Cost and time are not. A Criterion is
associated to Proposals with assessment associations. Assessment associations have a value
attribute, indicating whether it is positive or negative, and a weight attribute, indicating the
strength of the proposal with respect to the criterion. By convention, we append a “$” sign to the
end of a criterion name, emphasizing that criteria are goodness measures and should not be
confused with arguments or issues.

While evaluating the interface of our centralized traffic control system, we identify two
criteria: availability, which represents the nonfunctional requirement to maximize the up time
of the system, and usability, which represents (in this case) the nonfunctional requirement to
minimize the time to input valid commands (see Figure 12-5). These criteria are taken from the

availability$:Criterion The traffic control system should have at least a 99% availability.

usability$:Criterion The time to input commands should be less than 2 seconds.

Figure 12-5  An example of criteria and assessments (UML object diagram). Criteria are emphasized
in bold. A negative assessment is indicated by an association labeled fails, whereas positive assessments
are indicated with an association labeled meets.
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nonfunctional requirements of the system. We assess both proposals against those criteria: we
decide that the point-and-click interface is negatively assessed against the availability criteria,
being more complex than the text interface and thus presenting a higher likelihood of bugs. We
decide, however, that the point-and-click interface is more usable than the textual interface, due
to an easier selection of commands and input of data. Note that the set of associations linking the
proposals and the criteria in Figure 12-5 represent a trade-off: each proposal maximizes one of
the two criteria; the issue is to decide which criteria has a higher priority. 

An argument is an opinion expressed by a person, agreeing or disagreeing with a
proposal, a criterion, or an assessment. Arguments capture the debate that drives the
exploration of the solution space, defines the goodness measures, and eventually leads to a
decision. We represent arguments in UML with instances of the class Argument, including
subject and description attributes. Arguments are related to the entity they discuss with an
is supported by or an is opposed by association. 

While discussing the relative priority of the availability and usability criteria, we
decide that any benefit on the usability aspect would be offset by a reduced availability of the
system. We capture this by creating an argument that supports the availability criterion (see
Figure 12-6). Note that an argument can simultaneously support a node while opposing another.

availability-

first!:Argument
Point-and-click interfaces are much more complex to implement than
text-based interfaces. They are also more difficult to test, since the
number of actions available to the dispatcher is much larger. The point-
and-click interface risks introducing fatal errors in the system that
would offset any usability benefit the interface would provide.

Figure 12-6  An example of an argument (UML object diagram). Argument is emphasized in bold.
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When selecting criteria, assessing proposals, and arguing about them, we evaluate the
design space. The next step is to use this evaluation to come to closure and resolve the issue.

12.3.5 Collapsing the Solution Space: Resolutions

A resolution represents the alternative selected to close an issue. A resolution represents a
decision and has an impact on one of the system models or on the task model. A resolution can
be based on several proposals and summarizes the justification that leads to the decision. We
represent resolutions with an instance of class Resolution, including subject, description,
justification, and status attributes. A Resolution is related to Proposals with based-on
associations. A Resolution has exactly one resolves association to the Issue it resolves.

The status attribute of a Resolution indicates whether or not the Resolution is still
relevant. When the Resolution is linked with its corresponding issue, its status is set to active
and the status of the corresponding Issue is changed to closed. If the Issue is reopened, the
status of the Issue is changed to open and the status of the Resolution is changed to
obsolete. A closed Issue has exactly one active Resolution and any number of obsolete
Resolutions.

Finalizing the traffic control interface issue, we select a text-based display and a keyboard
interface as a basis for the user interface. This decision is motivated by treating the availability
criterion as more important than the usability criterion: a text-based interface will result in much
simpler and more reliable user interface code at the cost of some usability. The dispatcher will
not be able to see as much data at one time and will not be able to issue commands as fast as
using a point-and-click interface. We create a resolution node that contains the justification of
the decision and create links between the resolution and the two issues it addresses (see
Figure 12-7).

Adding a resolution to an issue model effectively concludes the discussion of the
corresponding issue. As development is iterative, it is sometimes necessary to reopen an issue
and reevaluate competing alternatives. At the end of development, however, most issues should
be closed or listed as known problems in the documentation. 

12.3.6 Implementing Resolutions: Action Items

A resolution is implemented in terms of one or more action items. A person is assigned to an
action item, which is a task with a completion date. Action items are not part of the rationale per
se, but rather they are part of the task model (see Chapter 11, Project Management). Action
items are described here because they are tightly integrated into the issue model.

We represent an action item in UML with an instance of the ActionItem class. The
ActionItem class has subject, description, owner, deadline, and status attributes. The
owner is the person responsible for completing the ActionItem. The status of an ActionItem
can be todo, notDoable, inProgress, or done. A Resolution is associated with the
ActionItems with an is implemented by link. Figure 12-8 represents the ActionItems
generated after the resolution of Figure 12-7.
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The issue notation we described and its integration with the task model is the modeling
notation we use for representing rationale. Next, we survey other issue models that have been
proposed in the literature.

12.3.7 Examples of Issue-Based Models and Systems

The capture of rationale as an issue model was originally proposed by Kunz and Rittel. Since
then, many different models have been proposed and evaluated for software engineering and
other disciplines. Here, we compare four: IBIS (Issue-Based Information System, [Kunz &
Rittel, 1970]), DRL (Decision Representation Language, [Lee, 1990]), QOC (Questions,
Options, and Criteria, [MacLean et al., 1991]), and the NFR Framework [Chung et al., 1999].

text-based & 

keyboard:Resolution
We select a text-based display and a keyboard input for the traffic
control user interface. The terminal emulation should provide line
characters that allow track circuits to be drawn in text mode. 

This decision is motivated by the relative simplicity and reliability of
text-based interfaces compared with point-and-click interfaces. We are
aware that this decision costs some usability, as fewer data can be
presented to the dispatcher and issuing commands by the dispatcher
will be slower and more prone to errors. 

Figure 12-7  An example of closed issue (UML object diagram). Resolution emphasized in bold.
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Issue-Based Information System

Issue-Based Information System (IBIS) includes an issue model and a design method
for addressing ill-structured, or wicked problems (as opposed to tame problems). A wicked
problem is defined as a problem that cannot be solved algorithmically but, rather, has to be
resolved through discussion and debate. 

The IBIS issue model (Figure 12-9) has three nodes (Issues, Positions, and Arguments)
related by seven kinds of links (supports, objects-to, replaces, responds-to, generalizes,
questions, and suggests). Each Issue describes a design problem under consideration.
Developers propose solutions to the problem by creating Position nodes (similar to the
Proposal nodes we described in Section 12.3.3). While alternatives are being generated,
developers argue about their value with Argument nodes. Arguments can either support a
Position or object-to a Position. Note that the same node can apply to multiple positions.
The IBIS model did not originally include Criterion and Resolution.

updateSDD:ActionItem For Alice. Update the SDD to reflect the text-based&keyboard
resolution.

investigateTerm:ActionItem For Dave. Investigate different terminal emulation and their 
advantages for displaying TrackSections.

Figure 12-8  An example of implementation of a resolution (UML object diagram). ActionItems in bold. 

Figure 12-9 The IBIS model (UML class diagram).
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IBIS is supported by a hypertext tool (gIBIS, [Conklin  & Burgess-Yakemovic, 1991]) and
is used for capturing rationale during face-to-face meetings. It provided the basis for most of the
subsequent issue models, including DRL and QOC, which we discuss next.

Decision Representation Language

Decision Representation Language (DRL) aims at capturing the decision rationale of a
design [Lee, 1990]. A decision rationale is defined by Lee as the representation of the qualitative
elements of decision making, including the alternatives being considered, their evaluation, the
arguments that led to these evaluations, and the criteria used in these evaluations. DRL is
supported by SYBIL, a tool that enables the user to track dependencies among elements of the
rationale when revising evaluations. DRL elaborates on the original IBIS model by adding nodes
to capture Design Goals and Procedures. DRL views the construction of the rationale as a task
comparable to the design of the artifact itself. DRL is summarized in Figure 12-10. The main
drawbacks of DRL are its complexity (7 types of nodes and 15 types of links) and the effort
spent in structuring the captured rationale.

Questions, Options, and Criteria

Questions, Options, and Criteria (QOC) is another elaboration of IBIS. Questions
represent design problems to be solved (Issues in the issue model we presented). Options are
possible answers to Questions (Proposals in our model). Options can trigger other
Consequent Questions. Options are assessed negatively and positively against Criteria,
which are relative measures of goodness defined by the developers. Also, Arguments can support

Figure 12-10 Decision Representation Language (UML class diagram).
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or challenge any Question, Option, Criterion, or relationship between those. Arguments may
also support and challenge Arguments. Figure 12-11 depicts the QOC model.

QOC and IBIS differ at the process level. IBIS’s aim, on the one hand, is to capture design
argumentation as it occurs (e.g., gIBIS is used for capturing information generated during design
meetings). QOC structures, on the other hand, are constructed as an act of reflection on the
current state of the design. This conceptual separation of the construction and argumentation
phases of the design process emphasizes the systematic elaboration and structuring of rationale
as opposed to capturing it as a side effect of deliberation. Rationale, from QOC’s perspective, is
a description of the design space explored by the developers. From IBIS’s perspective, rationale
is a historical record of the analysis leading to a specific design. In practice, both approaches can
be applied to capture sufficient rationale. We describe the activities related to capturing and
maintaining rationale in Section 12.4.

The NFR Framework

The NFR Framework [Chung et al., 1999] is a method for tracking the relevant
nonfunctional requirements for each decision, evaluated alternative, and interaction between
nonfunctional requirements. Unlike the previous three issue models, the NFR Framework is
specific to requirements engineering. Nonfunctional requirements are treated as goals to be met.
To address the difficulty that nonfunctional requirements are usually high-level and subjective,
goals are refined and clarified by decomposing them into subgoals. Goals and subgoals are
represented as nodes in a goal graph. Decomposition relationships are represented as directed
arcs. The NFR Framework provides two types of decompositions:

• AND decomposition. A goal can be decomposed into subgoals, all of which need to be
met to help the parent goal.

Figure 12-11 Questions, Options, and Criteria model (UML class diagram).
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• OR decomposition. A goal can be decomposed into alternative subgoals, any one of
which needs to be satisfied to help the parent goal.

The top-level goals (specified by the client and the users) are hence refined into lower-
level and more concrete goals. Note that a single subgoal can be related to more than one parent
goal. Moreover, the NFR Framework provides additional types of links to capture other
relationships. For example, correlation links between two goals indicate how one goal in the
graph can support or hinder the other goal. Since nonfunctional requirements are rarely qualities
that are either met or not, links in a goal graph represent how much a goal contributes to or
hinders another goal. A goal is satisficed (as opposed to satisfied) when the selected alternative
meets the goal within acceptable limits. Otherwise, the goal is said to be denied. Five weights
can be associated with a link: makes, helps, neutral, hurts, and breaks. Root nodes represent
high-level goals specified by the client. As these goals are successively refined into more
concrete ones, the refinement activity moves towards system features. Goals that represent
system features (as opposed to nonfunctional requirements) are called operationalizing goals.

Figure 12-12 depicts a partial goal graph indicating alternatives for an ATM authentication
mechanism. In this goal graph, Flexibility, Low cost, and Security are high-level goals.
Security is then decomposed using an AND relationship into Authentication,
Confidentiality, and Integrity, denoting that for an account to be secure, the system must
allow only authorized users to operate on the account, that all transactions must be held
confidential, and that all transactions yield a valid result (i.e., no money can be created or
destroyed by abusing the system). The Authentication subgoal is further refined, using an OR
relationship, into Account+PIN, SmartCard+PIN, and FingerPrint reader. These last three goals,
since they represent different features of the system, are operationalizing goals, and therefore,

Figure 12-12 An example of goal refinement using the NFR Framework for the ATM authentication
mechanism (NFR goal graph).

Flexibility Low cost Security

Account+PIN Finger Print Reader SmartCard+PIN

Authentication Confidentiality Integrity

_

++ _

¸

¸

X

¸

OR

AND



510 Chapter 12  •  Rationale Management

are represented using thicker circles. We use two correlation links to indicate (for example) that
the Account+PIN goal helps the low cost goal but hurts the Flexibility goal.

Once an initial goal graph has been refined and several operationalizing goals have been
developed, different subsets of operationalizing goals can be evaluated and selected. By
following the decomposition and correlation links, the developers can check whether the high-
level goals are met (at least to a sufficiently reasonable extent). In Figure 12-12, we evaluate the
Account+PIN goal as a solution and observe that the Authentication and Low cost goals are
satisficed, that the Security goal will be satisficed once the Confidentiality and the
Integrity goals are satisficed, but that the Flexibility goal is not satisficed. For realistic
problems, the goal graph becomes substantially larger, at which point tool support would be
necessary for evaluating and comparing different alternatives. Other aspects of the NFR
Framework not covered here include the reuse of goal decompositions from one system to
another. This enables the developer to pick groups of solutions that were previously explored
and evaluate them against new criteria.

12.4 Rationale Activities: From Issues to Decisions

Maintaining rationale helps developers deal with change. By capturing the justification of
decisions, they can more easily revisit important decisions when user requirements or the target
environment changes. For rationale models to be useful, however, they must be captured,
structured, and easily accessible. In this section, we describe these activities, including

• capturing rationale during design meetings (Section 12.4.2)
• revising rationale models with subsequent clarifications (Section 12.4.3)
• capturing additional rationale during revisions (Section 12.4.4)
• reconstructing rationale that was not captured (Section 12.4.5).

The most critical rationale information is generated during system design: decisions
during system design can impact every subsystem, and their revision is costly, especially when
done late in the design process. Moreover, the rationale behind subsystem decomposition is
usually complex, as it spans many different issues, such as hardware allocation, persistent
storage, access control, global control flow, and boundary conditions.

For these reasons, we focus on system design in this chapter. Note, however, that
maintaining rationale can be done similarly throughout the development, from requirements
elicitation to field testing. We illustrate rationale activities with issues from the system design of
CTC, a centralized traffic control system for freight trains. We describe the current system design
model of CTC next.

12.4.1 CTC System Design

Consider the CTC system we described in Section 12.3.1. We are in the process of reengineering
a legacy system, replacing a mainframe computer with a network of workstations. We are also
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enhancing the system, such as adding access control and increasing focus on security and
usability. We are in the middle of system design. So far, we identified from the nonfunctional
requirements several design goals (ordered by descending priority):

• Availability. The system should crash less than once per month and recover completely
from a crash within 10 minutes.

• Security. No entity outside the control room should be able to access the state of the
controlled tracks or manipulate any of their devices.

• Usability. Once trained, a dispatcher should input no more than two erroneous
commands per day.

We allocate a client node per dispatcher. Two redundant server nodes maintain the global
state of the system (see Figure 12-13). The servers are also responsible for persistent storage.
Data are stored in flat files that can be copied off-line and imported into a database for off-line
processing. Communication with devices on the tracks is done via modems managed by a
dedicated machine. Middleware supports two types of communication among subsystems:
method invocation for handling requests and notification of state changes for informing
subsystems of state changes. Each subsystem subscribes to the events it is interested in.
Presently, we must address access control issues and define the mechanisms that prevent
dispatchers from manipulating the tracks of other dispatchers. We describe in the following
sections how the access control issue is debated and resolved while capturing its rationale.

12.4.2 Capturing Rationale in Meetings

Meetings enable developers to present, negotiate, and resolve issues face to face. The physical
presence of the respective developers involved in the discussion is important, adding the benefits
of nonverbal communication: it allows people to assess the relative positions of each other and
the trade-offs they are willing to make. Conversely, negotiating and making decisions via
E-mail, for example, is difficult, as misunderstandings can easily occur. Face-to-face meetings
are instead a more natural starting point for capturing rationale.

We described procedures for organizing and capturing meetings with minutes and agendas
in Chapter 3, Project Organization and Communication. An agenda, posted in advance of the
meeting, describes the status and points to be discussed. The meeting is recorded in minutes that
are made available shortly after the meeting. Using the issue modeling concepts we described in
Section 12.3, we write an agenda in terms of issues that we need to discuss and resolve. We state
the objective of the meeting as coming to a resolution on these issues and any related subissues
that are raised in the discussion. We structure the meeting minutes in terms of proposals that we
explore during the meeting, criteria that we agree on, and arguments we use to support or
oppose proposals. We capture decisions as resolutions and action items that implement
resolutions. During the meeting we review status in terms of the action items that we produced
in the previous meetings.
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DispatcherClient Each dispatcher is assigned a DispatcherClient node running the user
interface to the system.

CTCServer A CTCServer is responsible for maintaining the state of the system. It
transmits dispatcher commands to the field devices and receives state
information from the field via the ModemPool node. A CTCServer is also
responsible for storing persistent state (e.g., device addresses, device names,
dispatcher assignments, train schedules). Two CTCServers, a main server and
a hot back-up, are used to increase availability.

ModemPool The ModemPool manages the modems used to communicate with the field
devices.

ModemManager The ModemManager is responsible for connecting to field devices and
transmitting field commands. 

StorageSubsystem The StorageSubsystem is responsible for maintaining persistent state.

TrackingSubsystem The TrackingSubsystem is responsible for maintaining track state, as notices
of state changes are received from the field, and for issuing device commands
via the ModemManager, based on user-level commands received from the
UISubsystem.

UISubsystem The UISubsystem is responsible for receiving commands and displaying track
state to the dispatcher. The UISubsystem controls the validity of the
dispatcher’s commands before forwarding them to the CTCServer.

Figure 12-13 Subsystem decomposition for CTC (UML deployment diagram). The state of the system is
maintained by a mainServer. A hotBackup of the mainServer stands by in case the mainServer fails. The
mainServer sends commands and receives state transitions from the tracks via the ModemPool.
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mainServer:CTCServer

hotBackup:CTCServer

:ModemPool
TrackingSubsystem

StorageSubsystem

UISubsystem
ModemManager
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For example, consider the access control issue of the CTC system. We need to organize a
meeting of the architecture team, including the developers responsible for the UISubsystem, the
TrackingSubsystem, and the NotificationService. Alice, the facilitator for the architecture
team, posts the agenda depicted in Figure 12-14.

During the meeting, we review the action item generated in the previous architecture
meeting—AI[1]: Investigate access control model by middleware. The middleware provides
basic blocks for authentication and encryption but does not introduce any other constraints on
the access model. Issues I[1] and I[2] are resolved quickly with domain knowledge: a
dispatcher can see all TrackSections, but can only manipulate the devices of her TrackSection.
Issue I[3], however, (How should access control be integrated with TrackSections and
NotificationService?) is more difficult and sparks a debate.

AGENDA: Integration of access control and notification

When and Where Role

Date: 9/13 Primary Facilitator: Alice

Start: 4:30 P.M. Timekeeper: Dave

End: 5:30 P.M. Minute Taker: Ed
Building: Train Hall Room: 3420

1. Purpose
The first revisions of the hardware/software mapping and the persistent storage design have been
completed. The access control model needs to be defined and its integration with the current subsystems,
such as NotificationService and TrackingSubsystem, needs to be defined.

2. Desired outcome

Resolve issues about the integration of access control with notification.

3. Information sharing [Allocated time: 15 minutes]

AI[1]: Dave: Investigate the access control model provided by the middleware.

4. Discussion [Allocated time: 35 minutes]

I[1]: Can a dispatcher see other dispatchers’ TrackSections?

I[2]: Can a dispatcher modify another dispatchers’ TrackSections?

I[3]: How should access control be integrated with TrackSections and NotificationService?

5. Wrap up [Allocated time: 5 minutes]
Review and assign new action items.
Meeting critique.

Figure 12-14 Agenda for the access control discussion of CTC.
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Dave, the developer responsible for the NotificationService, proposes to integrate the
access control with the TrackSection (see Figure 12-15). The TrackSection would maintain an
access list of the Dispatchers who can examine or modify any given TrackSection. Events
would also be organized by TrackSections. To be notified about events in a TrackSection, a
subsystem would need to subscribe to a TrackSection via the NotificationService. The
NotificationService would then check with the given TrackSection if the current dispatcher
had at least read access.

NotificationService The NotificationService broadcasts changes of state of a 
TrackSection. To receive notices from the NotificationService, a 
subsystem needs to subscribe to a TrackSection. Only subsystems that 
have access to a given TrackSection can subscribe to the events generated 
by a TrackSection. The access is determined by invoking the 
isAccessible() operation on the TrackSection.

System The System is responsible for tracking securely who is the current 
dispatcher based on information provided by the UIClient. The 
TrackSection examines the credentials of the current dispatcher with the 
whoIsThis() operation.

TrackSection A TrackSection consists of a set of contiguous TrackCircuits and their 
associated Devices. Access is controlled at the TrackSection level with an 
access list.

UIClient The UIClient is responsible for displaying TrackSections and inputting 
commands for changing the TrackSection state.

Figure 12-15 Proposal P[1]: The access is controlled by the TrackSection object with an access list.
The NotificationService queries the TrackSection to determine whether a subsystem can receive
notices about a given TrackSection (UML communication diagram.)
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Alice, the developer responsible for the TrackSubsystem that includes the TrackSection
class, proposes to reverse the dependency between the TrackSection and the Notification–
Service (see Figure 12-16). In this proposal, the UIClient would interact only with the
TrackSection class, including when subscribing to events. The UIClient would invoke the
subscribeToEvents() method on the TrackSection, which would perform the access control
checks and then invoke the subscribeToStateChangeEvents() on the NotificationService.
The UIClient would then not have direct access to the NotificationService. This has the
advantage of centralizing all the protected operations in one class and centralizing the access
control checks. Moreover, the TrackSection would then also be able to unsubscribe UIClients
when the access list is modified.

NotificationService The NotificationService broadcasts changes of state of a 
TrackSection. To receive notices from the NotificationService, a 
subsystem needs to subscribe to a TrackSection. The 
NotificationService is accessible only to the TrackSection class which 
controls access.

TrackSection A TrackSection consists of a set of contiguous TrackCircuits and their 
associated Devices. Access is controlled at the TrackSection level. To 
receive notices of state changes, a subsystem needs to invoke the 
subscribeToEvents() operation of the TrackSection class. The 
TrackSection checks access before invoking the 
subscribeToTrackSectionEvents() method on NotificationService.

Figure 12-16 Proposal P[2]: The UIClient subscribes to track section events via the
subscribeToEvents() operation on the TrackSection. The TrackSection checks access and then
invokes the subscribeToTrackSectionEvents() operation on the NotificationService. The
NotificationService is not accessible to the UIClient class. (UML communication diagram, differences
from Figure 12-15 highlighted in italics.)
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Ed notes that every dispatcher is allowed to see other dispatcher’s TrackSections, so only
modification of state needs to be controlled. Assuming that all modifications are done via
method invocation, and that the NotificationService is used only for broadcasting changes,
the NotificationService need not be integrated with access control. In this case, a refinement
of Dave’s initial proposal could be used (see Figure 12-17).

The architecture team decides to use Ed’s proposal based on its simplicity. Ed produces
the chronological meeting minutes depicted in Figure 12-18.

Ed produces the minutes of Figure 12-18 by inserting in the agenda the discussion that is
relevant to the different issues. The discussion, however, is recorded as a chronological list of
statements made by the participants. Most of these statements mix the presentation of an
alternative with the argumentation against another alternative. To clarify the minutes, Ed
restructures them after the meeting with issue models (Figure 12-19).

The important results of the access control meeting are

• Dispatchers can see all TrackSections, but modify only the ones they are assigned to.

• An access list associated with TrackSections is used for access control.

• NotificationService is not integrated with access control, because state changes can
be seen by all Dispatchers.

NotificationService The NotificationService broadcasts changes of state of a 
TrackSection. To receive notices from the NotificationService, a 
subsystem needs to subscribe to a TrackSection. Only subsystems that 
have access to a given TrackSection can subscribe to the events generated 
by a TrackSection. The access is determined by invoking the 
isAccessible() operation on the TrackSection.

Figure 12-17 Proposal P[3]: The access to operations that modify TrackSections is controlled by the
TrackSection object with an access list. The NotificationService need not be part of the access control,
because every dispatcher can see changes of state. (UML communication diagram, subtractions from
Figure 12-15 highlighted in strikeout italics.)
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CHRONOLOGICAL MINUTES: Integration of access control and notification

When and Where Roles
Date: 9/13, 4:30–6 P.M. Primary Facilitator: Alice
Building: Train Hall, 3420 Timekeeper: Dave, Minute Taker: Ed

1. Purpose

The first revisions of the hardware/software mapping and the persistent storage design have been
completed. The access control model needs to be defined and its integration with the current subsystems,
in particular, NotificationService and TrackingSubsystem, needs to be defined.

2. Desired outcome
Resolve issues about the integration of access control with notification

3. Information sharing
AI[1]:Dave: Investigate the access control model provided by the middleware.

Status: The middleware supports strong authentication and encryption. It does not introduce any 
constraints on the access model. Any access policy can be implemented on the server.

4. Discussion 
I[1]: Can a dispatcher see other dispatchers’ TrackSections?

Ed: Yes, in CTC specification. 
I[2]: Can a dispatcher modify another dispatcher’s TrackSections?

Zoe: No. Only the dispatcher assigned to the TrackSection can manipulate the devices of 
the section. Note that the dispatcher can be reassigned dynamically.

Ed: Also in CTC specification.
I[3]: How should access control be integrated with TrackSections and NotificationService?

Dave: The TrackSection maintains an access list. The notification service asks the 
TrackSection about which subsystems have access.

Alice: We should probably reverse the dependency between TrackSection
and NotificationService. Instead, the UIClient requests subscriptions from the 
TrackSection, which checks for access and then calls the NotificationService.
This way, all protected methods are in one place.

Dave: This way, the TrackSection can also more easily unsubscribe dispatchers when their 
access is revoked.

Ed: Hey, no need for access control in NotificationService: Dispatchers can see all
TrackSections. As long as the NotificationService is not used for changing 
the TrackSection state, there is no need to restrict subscriptions.

Alice: But thinking about the access control on notification would be more general.
Ed: But more complex. Let’s just separate access control and notification at this point and 

revisit the issue if the requirements change.
Alice: Ok. I’ll take care of revising the TrackingSubsystem API.

5. Wrap up 
AI[2]: Alice: Design access control for the TrackingSubsystem based on authentication and 
encryption provided by the middleware.

Figure 12-18 Chronological minutes for the access control discussion of CTC.
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STRUCTURED MINUTES: Integration of access control and notification

When and Where Roles
Date: 9/13, 4:30–6 P.M. Primary Facilitator: Alice

Building: Train Hall, 3420 Timekeeper: Dave, Minute Taker: Ed

1. Purpose

The first revisions of the hardware/software mapping and the persistent storage design have been
completed. The access control model needs to be defined and its integration with the current subsystems,
in particular, NotificationService and TrackingSubsystem, needs to be defined.

2. Desired outcome

Resolve issues about the integration of access control with notification. 

3. Information sharing
AI[1]:Dave: Investigate the access control model provided by the middleware.

Status: The middleware supports strong authentication and encryption. It does not introduce any
constraints on the access model. Any access policy can be implemented on the server.

4. Discussion 
I[1]: Can a dispatcher see other dispatchers’ TrackSections?

R[1]: Yes (from CTC specification and confirmed by Zoe, a test user).
I[2]: Can a dispatcher modify another dispatcher’s TrackSections?

R[2]: No. Only the dispatcher assigned to the TrackSection can manipulate the devices of 
the section. Note that the dispatcher can be reassigned dynamically (from CTC 
specification and confirmed by Zoe).

I[3]: How should access control be integrated with TrackSections and NotificationService?
P[3.1]:TrackSections maintain an access list of which subsystems can examine or modify the

state of the TrackSection. To subscribe to events, a subsystem sends a request to the 
NotificationService, which in turns sends a request to the corresponding 
TrackSection to check access.

P[3.2]:TrackSections host all protected operations. The UIClient requests subscription 
to TrackSection events by sending a request to the TrackSection, which checks
access and sends a request to the NotificationService.
A[3.1] for P[3.2]: Access control and protected operations are centralized
into a single class.

P[3.3]: There is no need to restrict the access to the event subscription. The UIClient
requests subscriptions directly from the NotificationService. The 
NotificationService need not check access.
A[3.2] for P[3.3] Dispatchers can see the state of any TrackSections (see R[1]).
A[3.3] for P[3.3]: Simplicity.

R[3]: P[3.3]. See action item AI[2].

5. Wrap up 
AI[2]:Alice: Design access control for the TrackingSubsystem based on authentication and 
encryption provided by the middleware and on resolution R[3] discussed in these minutes.

Figure 12-19 Structured minutes for the access control discussion of CTC.
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By focusing on the issue model, we have also captured the fact that

• Integrating the NotificationService with access control was investigated.
• Centralizing all protected methods into the TrackSection class was an accepted

principle.

The last two pieces of information are rationale information and would usually be
considered unimportant. However, this is the type of information that is captured by the minute
taker and structured to facilitate future changes.

12.4.3 Capturing Rationale Asynchronously

Meeting discussions rely on context information. When the meeting starts, most participants
already have a substantial amount of information about the system, its intended purpose, and its
design. The facilitator of the meeting usually focuses on a small set of issues to be resolved. For
example, in the meeting we presented in the previous section, all participants knew the purpose
and functionality of the CTC system, its design goals, and current subsystem decomposition. The
minutes of this meeting record only the issues under discussion and, therefore, do not contain
much or any background information. Unfortunately, this information is lost over time, and
meeting minutes become obsolete quickly.

We can use issue modeling to address this problem. In Chapter 3, Project Organization
and Communication, we described the use of groupware for supporting asynchronous
communication. By integrating the preparation and recording of the meeting with the
asynchronous communication, we can capture additional contextual information.

In the CTC example, assume that Mary, the developer responsible for the UISubsystem, was
not able to attend the access control meeting. She reads the agenda and the meeting minutes,
which were posted on the newsgroup dedicated to the architecture team. Although she
understands the outcome of the meeting, the discussion about the NotificationService
requires clarification: Argument A[3.3] for proposal P[3.3] claims that, because Dispatchers
can see every TrackSection, all events can be visible, so there is no need to control the access to
the events. This implies that the NotificationService is used only for notifying other
subsystems of state changes. In other words, the TrackSection does not change its state as a
consequence of events generated by other subsystems. Mary wants to confirm that this
assumption is correct; consequently, she posts an issue on the newsgroup (Figure 12-20). She
also proposes to disallow the TrackingService from subscribing to any events in order to
ensure proper access control.

Follow-up on meeting minutes enables developers to capture more of the context
surrounding the design. As a consequence, more rationale and clearer information are captured.
Using the same issue model for both meetings and online discussions allows us to integrate all
rationale information. Although this can be done with minimal technology, such as newsgroups,
the representation of the issue model, the meeting agendas and minutes, and related messages
can be integrated into a groupware tool, such as a custom Lotus Notes database or a multi-user
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issue base hosted on a Web site (see example in Figure 12-21). Once we institute procedures for
organizing and recording rationale in meetings and expanding it with groupware, we are able to
capture a great deal of rationale. The next challenge is to keep this information up to date as
changes occur.

12.4.4 Capturing Rationale when Discussing Change

Rationale models help us deal with change. Unfortunately, rationale is itself subject to change
when we revise decisions. When we design a solution in response to a requirements change, for
example, we look at past rationale to assess which decisions should be revised and design the
change. Not only do we need to capture the rationale for the change and its solution, but we also
need to relate it with past rationale.

For example, in the CTC system, assume the requirements on the access control changed.
Before, Dispatchers were allowed to see all TrackSections. The client informed us that, unlike
previously specified, Dispatchers should be able to see only the neighboring TrackSections.
In response to this change, we need to modify the design of the access control and organize a
meeting with the architecture team. In particular, we need to search past rationale associated
with access control. Alice, the primary facilitator of the architecture team, posts the agenda
depicted in Figure 12-22.

Newsgroup: ctc.architecture.discuss
Subject: Date:
I[1]: Can a dispatcher see other dispatcher’s TrackSections? 9/14
I[2]: Can a dispatcher modify another dispatcher’s TrackSections? 9/14
I[3]: How should access control be implemented? 9/14

P[3.1]: TrackSection has access list 9/14
P[3.2]: TrackSection has subscription operations 9/14

+A[3.1]: Extensibility. 9/14
+A[3.2]: Centralize all protected operations. 9/14

P[3.3]: NotificationService is not part of access 9/14
+A[3.3]: Dispatchers can see all TrackSections 9/14
+A[3.4]: Simplicity. 9/14

---
From: Mary
Newsgroups: ctc.architecture.discuss
Subject: Consequent Issue: Should notification not be used for requests?
Date: Thu, 15 Sep 13:12:48 -0400

I[4] responding to A[3.3]: for access lists against capabilities
> Dispatchers can see all TrackSections and, thus, should be able
> to see all events. 
This assumes that the TrackSection does not rely on events to change its state 
and that events are used only for informing other subsystems of state changes. 
For the purpose of robustness, should we disallow the TrackingService to 
subscribe to any events?

Figure 12-20 Example of a consequent issue posted asynchronously (newsgroup post). Mary, a developer
who did not attend the meeting, requests clarification. This leads to the post of an additional issue and the
capture of more rationale.
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Figure 12-21 An example of an issue database (LN IBIS database template in Domino Lotus Notes).
Developers can access and post issues, proposals, arguments, and resolutions with Web forms.

AGENDA: Revision of access control, dispatchers can access only neighboring tracks.

When and Where Role
Date: 10/13, 4:30–5:30 P.M. Primary Facilitator: Alice
Location: Signal Hall 2300 Timekeeper: Dave, Minute Taker: Ed

1. Purpose

The client requested that dispatchers be able to access only neighboring TrackSections.

2. Desired outcome

Resolve access control issues related to this change of requirement.

3. Information sharing [Allocated time: 15 minutes]

AI[1]: Dave: Recover rationale for access control.

4. Discussion [Allocated time: 35 minutes]

I[1]: How should access control be revised based on the neighboring track requirement?

5. Wrap up [Allocated Time: 5 minutes]

Review and assign new action items. 
Meeting critique.

Figure 12-22 Agenda for the access control revision of CTC.
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During the meeting, Dave presents the rationale discussed in previous meetings and on the
architecture newsgroup. The architecture team notices that the assumption that all subsystems
can see events is not valid anymore: the dispatcher should be allowed to see only the events
related to neighboring TrackSections. Proposal P[2] (see Figure 12-16) seems to be the better
solution under the new requirements, as all protected operations could be centralized in the
TrackSection class. Unfortunately, implementation has already progressed, and the developers
want to minimize changes to the code. Instead, Alice proposes to select proposal P[1] (see
Figure 12-15): the current UIClient stays unchanged, as the interfaces to the TrackSection and
NotificationService classes need not change. Only the NotificationService needs to
change such that it sends requests to the TrackSection to check the access of the current
dispatcher. To revoke dispatcher privileges when an access list is changed, the TrackSection
sends a request to the NotificationService to unsubscribe Dispatchers. This introduces a
circular dependency between TrackSection and NotificationService, but minimizes
modifications to existing code. 

This solution is selected by the architecture team. Ed produces the structured minutes
depicted in Figure 12-23 (chronological minutes not displayed for brevity).

The minutes depicted in Figure 12-23 serve two purposes: to record the rationale for the
new change and to relate it to past rationale. This is done by quoting the past rationale that was
used to revisit the access control decision. Furthermore, these new minutes are posted on the
architecture newsgroup and discussed by other developers who could not attend the meeting,
thus completing the cycle of recording and clarifying rationale information. When groupware is
used, new rationale can be related to past rationale with a hyperlink, making it easier for
developers to navigate to the related information.

STRUCTURED MINUTES: Revision of access control, dispatchers access only neighboring tracks.

When and Where Role
Date: 10/13, 4:30–5:30 P.M. Primary Facilitator: Alice
Location: Signal Hall 2300 Timekeeper: Dave, Minute Taker: Ed

1. Purpose

The client requested that dispatchers be able to access only neighboring TrackSections.

2. Desired outcome

Resolve access control issues related to this change of requirement.

3. Information sharing

AI[1]: Dave: Recover rationale for access control.

Result: Issues I[1] (from 9/13) and I[2] (from 9/15) recovered:

Figure 12-23 Structured minutes for the access control revision of CTC. Italics denote the rationale that
was recovered for the purpose of the meeting. (Continued on next page).
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I[1]: How should access control be integrated with TrackSections and NotificationService?
(Minutes from 9/14)

P[3.1]: TrackSections maintain an access list of who can examine or modify the state of 
the TrackSection. To subscribe to events, a subsystem sends a request to the 
NotificationService, which in turns sends a request to the corresponding 
TrackSection to check access.

P[3.2]: TrackSections host all protected operations. The UIClient requests subscription 
to TrackSection events by sending a request to the TrackSection, which checks access 
and sends a request to the NotificationService.

A[3.1] for P[3.2]: Extensibility.

A[3.2] for P[3.2]: Access control and protected operations are centralized into
one class.

P[3.3]: There is no need to restrict the access to the event subscription. The UIClient
requests subscriptions directly from the NotificationService. The 
NotificationService need not check access.

A[3.3] for P[3.3] Dispatchers can examine the state of any TrackSections (see 
R[1]).

A[3.4] for P[3.3]: Simplicity.

R[3]: P[3.3]. See action item AI[2].

I[2]: Should notification not be used for requests? (from Mary’s news post 9/15)
R[2]: Notification should be used only for informing of state changes. 

TrackSections and, more generally, TrackingSubsystem should not change their 
state based on events.

4. Discussion
I[1]: How should access control be revised based on the neighboring track requirement?

P[1.1]: Protected operations, including subscription, centralized in TrackSection, as in
P[3.2] (from 9/13).

A[1.1] against P[1.1]: This requires all subsystems subscribing to notification events 
to be modified, since the subscription operation is moved from the 
NotificationService to the TrackSection.

P[1.2]: NotificationService sends requests to TrackSections to check access. 
TrackSection sends request to NotificationService to unsubscribe dispatchers 
whose access has been revoked. P[3.1] (from 9/13)

A[1.2] for P[1.2]: Minimal change to existing implementation.

A[1.3] against P[1.2]: Circular dependencies.

R[1]: P[1.2], see AI[2] and AI[3].

5. Wrap up 
AI[2]: Alice: Change the TrackSection to unsubscribe dispatchers when their 

rights are revoked.

AI[3]: Dave: Modify NotificationService to check access with TrackSection when 
subscribing to a new subsystem.

Figure 12-23 Continued.
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Note that even when an issue base is used to maintain and track open issues, this
information base can grow quickly into a large unstructured chaos. Moreover, some issues are
not recorded, as not all issues are discussed in meetings. Many issues are discussed and resolved
informally in hallway conversations. It is necessary, therefore, to reconstruct the missing
rationale of the system and integrate it with past rationale. We discuss this in the next section.

12.4.5 Reconstructing Rationale

Reconstructing rationale is a different method for capturing the rationale of the system. Instead
of capturing decisions and their justifications as they occur, rationale is systematically
reconstructed from the system model, the communication record, and developers’ memories.
With this method, rationale is captured and structured more systematically. Fewer resources are
invested during the early phases of the process, thus enabling developers to come to a solution
faster. Also, separating the design activity from the rationale capture enables developers to step
back and critique their design more objectively. Reconstructing rationale, however, focuses
mostly on the selected solution. Capturing discarded alternatives is much more difficult as
developers forget. For example, assume that we did not capture the rationale of the access
control in CTC and that the only information we had was the system design model
(Figure 12-24).

We want to recover the rationale of the system design for review and documentation. We
decide to organize each issue as a table with two columns, the left column for the proposals and
the right column for their corresponding arguments. In Figure 12-25, we recover the rationale
for the integration of access control with notification. We identify two possible solutions: P[1],

4. Access control

Access in CTC is controlled at the level of TrackSections: the Dispatcher who is assigned to a
TrackSection can modify its state, that is, open and close signals and switches and modify other
devices. Moreover, the Dispatcher can examine the state of neighboring TrackSections without
modifying their state. This is necessary for the Dispatcher to observe the Trains that are about to enter
the controlled TrackSection.

Access control is implemented with an access list maintained by the TrackSection. The access list
contains the identity of the Dispatcher, who can modify the TrackSection (i.e., writers), and the
identify of the Dispatcher, who can see the state of the track section (i.e., readers). For the sake of
generality, the access list is implemented such that it can include multiple readers and multiple writers.
The TrackSection checks the access list for every operation that modifies or queries the state of the
TrackSection.

When subsystems subscribe to events, the NotificationService sends a request to the TrackSection
to check access. The TrackSection sends a request to the NotificationService to unsubscribe
dispatchers whose access is revoked. 

The communication diagram of Figure 12-15 depicts this solution.

Figure 12-24 Excerpt from system design document, access control section.
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in which the TrackSection class exports all operations whose access is controlled, including
subscription to notifications, and P[2], in which the NotificationService delegates the access
control check to the TrackSection. We then enumerate the advantages and disadvantages of
each solution in the right column and summarize the justification of the decision as a resolution
at the bottom of the table.

A reconstructed rationale, such as the one in Figure 12-25, costs less to capture than the
activities we described previously. It is more difficult, however, to capture the discarded

I[1]: How should access control of TrackSections be integrated with notification?

Access in CTC is controlled at the level of TrackSections: the Dispatcher who is assigned to a
TrackSection can modify its state, that is, open and close signals and switches and modify other
devices. Moreover, the Dispatcher can examine the state of neighboring TrackSections without
modifying their state. This is necessary for the Dispatcher to observe the Trains that are about to enter
the controlled TrackSection.

P[1]: TrackSection class controls all state 
modification and notification subscription 
access.

Access control is implemented as an access list in 
TrackSection. The TrackSection class checks 
access of the caller for every operation that 
examines or modifies state. In particular, the caller 
subscribes to notification events by invoking 
methods on TrackSection, which in turn forwards 
the request to the NotificationService if access 
is granted. This solution is illustrated in 
Figure 12-16.

For:
• Central solution: all protected methods related 

to the TrackSection are in one place.

P[2]: TrackSection class controls state 
modification; NotificationService controls 
subscription.

Like P[1], except that the caller requests 
subscriptions to events directly from the 
NotificationService, which checks access with 
the TrackSection before granting the 
subscription. This solution is illustrated in 
Figure 12-15.

For:
• Access-independent interface: the interfaces 

of NotificationService and 
TrackSection are the same as if there were 
no access control (legacy argument).

Against:
• Circular dependency between 

NotificationService and TrackSection:
the TrackSection invokes operations on the 
NotificationService to generate events; 
the NotificationService subscription 
methods invoke operations on the 
TrackSection to check access.

R[1]:
P[2]. P[1] would have been a better solution; however, access control did not apply to notification. To
minimize code and design rework, P[2] was selected. 

Figure 12-25 Reconstructed rationale for the notification access control issue of CTC.
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alternatives and the reasons for such choices, especially when decisions are revised over time. In
Figure 12-25, the resolution states that we did not select the better proposal, and we were able to
remember the reasons for this nonoptimal decision (i.e., that substantial code had been
completed prior to this decision, and we wanted to minimize code rework). Alternatively,
reconstructing rationale is an effective tool for review and for identifying decisions that are
inconsistent with the design goals of the project. Moreover, even if the reviewed decisions
cannot be revised at a late stage in the project, this knowledge can benefit new developers
assigned to the project or developers revising the system in later iterations.

The balance between rationale capture, maintenance, and reconstruction differs for each
project and must be carefully managed. It is relatively frequent to see rationale capture efforts
accumulate enormous amounts of information that is either useless or not easily accessible to
developers who should benefit from it. We focus on management issues next.

12.5 Managing Rationale

In this section, we describe issues related to managing rationale activities. Recording
justifications for design decisions is often seen as an intrusion from management into the work
of developers, and thus rationale techniques encounter resistance from developers and often
degenerate into a bureaucratic process. Rationale techniques need to be carefully managed to be
useful. In this section, we describe how to

• document rationale (Section 12.5.1)

• assign responsibilities for capturing and maintaining rationale models (Section 12.5.2)

• communicate about rationale models (Section 12.5.3)

• use issues to negotiate (Section 12.5.4)

• resolve conflicts (Section 12.5.5).

As before, we continue focusing on the system design activity. Note, however, that these
techniques can be applied uniformly throughout system development.

12.5.1 Documenting Rationale

Rationale models (e.g., issue models) are different in structure than system models (e.g., use
case models, class models, source code). While system models for realistic systems are large
and complex, developers can organize them into layers or hierarchies, cross-reference them by
use cases, and attach object design documentation to the source code. Rationale models are
much more voluminous (many alternatives and arguments are generated for every decision) and
continuously evolving (decisions are revisited and reopened). Hence, thinking of a rationale as a
document usually defeats the purpose of capturing it: the rationale document is always out of
date and inconsistent with system documents, which are kept up to date more often.
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Instead, most approaches store rationale in a repository that is continuously updated and
augmented with new issues and decisions. The key challenges for these repositories are that they
must be kept up to date and that they can be easily accessed when needed. In recent work, this
led to integrating the rationale repository tightly with the development tools and processes. For
example, REQuest is a tool for rationale-based use case specification [Dutoit & Paech, 2002].
Figure 12-26 depicts a view of REQuest. The left column is used to access the requirements,
written in terms of use cases and nonfunctional requirements. The right column is used to access
the rationale represented as an augmented QOC model. Buttons at the top of the left column
enable developers to ask different types of questions (about clarity, completeness, consistency,
well-formedness, correctness, and justification) and attach them to the current element. Green,
yellow, and red rationale indicators in the left column indicate questions associated with a
specific element and whether or not the questions have been resolved. Clicking a rationale
indicator displays the corresponding issues in the right column.

By integrating the specification and the rationale views, the rationale repository is more
likely to include useful and up-to-date rationale, because developers can access it easily. For
long-term use, a rationale editor consolidates and maintains the rationale model as needed. Next,
we describe further the roles associated with rationale management.

Figure 12-26 An example of rationale repository for requirements engineering: REQuest enables issue
models to be attached to different requirements elements [Dutoit & Paech, 2002]. The left column depicts
the requirements model in terms of use cases and nonfunctional requirements, and the right column depicts
the issue model. 
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12.5.2 Assigning Responsibilities

Assigning responsibilities for capturing and maintaining rationale is the most critical
management decision in making rationale models useful. Maintaining rationale can easily be
perceived as an intrusive bureaucratic process through which developers need to justify all
decisions. Instead, rationale models should be maintained by a small number of people who
have access to all developers’ information, such as drafts of design documents and developer
newsgroups. This small group of people, historians of the system design, becomes useful to the
other developers when providing rationale information, and thus creates an incentive for
developers to provide their members with information. Below are the main roles in rationale
model maintenance:

• The minute taker records rationale in meetings. This includes recording chronological
statements during the meeting and restructuring them with issues after the meeting (see
Section 12.4.2).

• The rationale editor collects and organizes information related to rationale. This
includes obtaining the meeting minutes from the minute taker, prototype and
technology evaluations reports from developers, and drafts of all system models and
design documents from the technical writers. The rationale editor imposes minimal
overhead on the developers and the writers by performing the structuring and indexing
role. The developers need not provide information structured as issue models; however,
the rationale editor constructs an index of all issues.

• The reviewer examines the rationale captured by the rationale editor and identifies
holes to be reconstructed. The reviewer then collects the relevant information from
communication records and, if necessary, from the developers. This role should not be
a management role or a quality assurance role: the reviewer must directly benefit the
developers to be able to collect valid information. This role can be combined with the
rationale editor role.

The size of the project determines the number of minute takers, rationale editors, and
reviewers. The following heuristics can be used for assigning these roles:

• One minute taker per team. Meetings are usually organized by subsystem team or by
cross-functional team. A developer of each team can function as a minute taker, thus
distributing this time-consuming role across the project.

• One rationale editor per project. The role of rationale editor for a project is a full-
time role. Unlike the role of minute taker, which can be rotated, the role of rationale
editor requires consistency and should be assigned to a single person. In small
projects, this role can be assigned to the system architect (see Chapter 6, System
Design: Decomposing the System).
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• Increase the number of reviewers after delivery. When the system is delivered and the
number of developers directly needed for the project decreases, some developers
should be assigned the reviewer role for salvaging and organizing as much information
as possible. Rationale information is still recoverable from developers’ memories, but
disappears quickly as developers move to other projects.

12.5.3 Heuristics for Communicating about Rationale

A large part of communication is rationale information, given that argumentation is, by
definition, rationale (see Section 12.2). Developers argue about design goals, whether a given
issue is relevant or not, the benefit of several solutions, and their evaluation. Rationale
constitutes a large and complex body of information, usually larger than the system itself.
Communication, moreover, occurs most often in small forums; for example, in a team meeting
or a conversation at the coffee machine. The challenge of communicating about rationale is to
make this information accessible to all concerned parties without causing an information
overload. In this chapter, we focused on techniques for capturing and structuring rationale, such
as using issue models in minutes, follow-up conversations, and storing rationale in a repository.
In addition, the following heuristics can be used to increase the structure of rationale and
facilitate its navigation:

• Name issues consistently. Issues should be consistently and uniquely named across
minutes, newsgroups, E-mail messages, and documents. Issues can have a number
(e.g., 1291) and a short name (e.g., “the access/notification issue”) for ease of
reference.

• Centralize issues. Although issues will be discussed in a variety of contexts, encourage
one context (e.g., a newsgroup or an issue base) to be a central repository of issues.
This issue base should be maintained by the rationale editor, but could be used and
extended by any developer. This enables developers to search for information quickly.

• Cross-reference issues and system elements. Most issues apply to a specific element in
the system model (e.g., a use case, an object, a subsystem). Finding which model
element a specific issue applies to is straightforward. However, finding which issues
apply to a specific model element is a much more difficult problem. To facilitate this
type of query, issues should be attached to the applicable model element when they are
raised.

• Manage change. Rationale evolves as system models do. Thus, configuration
management should be applied as consistently to rationale and documents as it is to
system models.

Capturing and structuring rationale not only improves communication about rationale, but
also facilitates communication about the system models. Integrating both rationale and system
information enables developers to better maintain both types of information.
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12.5.4 Issue Modeling and Negotiation

Most important decisions in development are the result of negotiation. Different parties
representing different, and often conflicting, interests come to a consensus on some aspect of the
system. Requirements analysis includes the negotiation of functionality with a client. System
design includes the negotiation of subsystem interfaces among developers. Integration includes
the resolution of conflicts between developers. We use issue modeling to represent the
information exchanged during these negotiations to help capture rationale. We can also use issue
modeling to facilitate negotiations.

Traditional negotiation, which consists of bargaining over positions, is often time
consuming and inefficient, especially when the negotiating parties hold incompatible positions.
Effort is spent in defending one’s position, citing all its advantages, and denigrating the other’s
position, citing all its disadvantages. The negotiation either progresses in small steps toward a
consensus or is ended by an arbitrary solution. These difficulties can occur even when
negotiating parties have compatible interests: when defending positions, people have greater
trouble evolving or changing their position without losing credibility. The Harvard method of
negotiation [Fisher et al., 1991] addresses these points by taking the focus away from positions.
We rephrase several important points of the Harvard method in terms of issue modeling:

• Separate developers from proposals. Developers can spend a lot of resources
developing a specific proposal (i.e., a position), to the point that a criticism of the
proposal is taken as a personal criticism of the developer. Developers and proposals
should be separated to make it easier to evolve or discard a proposal. This can be done
by having multiple developers work on the same proposal or by having all concerned
parties participate in the development of all proposals. Separating design and
implementation work can further facilitate this distinction. By ensuring that negotiation
comes before implementation and before substantial resources are committed,
developers are able to negotiate proposals that all can live with.

• Focus on criteria, not on proposals. When developers make proposals and argue about
them, they have some criteria in mind. The proposal they make usually satisfies the
criteria that are important to them, but not necessarily other developers’ criteria. By
making these criteria explicit, developers can more easily identify the root of conflicts
and negotiate a compromise. Once an accepted set of criteria is in place, evaluating and
selecting proposals is far less controversial. Furthermore, criteria are much less subject
to change than other factors in the project.

• Take into account all criteria instead of maximizing a single one. Different criteria
reflect interests of different parties. Performance criteria are usually motivated by
usability concerns. Modifiability criteria are motivated by maintenance concerns. Even
if some criteria are considered higher priority than others, optimizing only these high-
priority criteria risks leaving one or more parties out of the negotiation.
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Viewing development as a negotiation acknowledges its social aspects. Developers are
people who, in addition to technical opinions, can have an emotional perspective on different
solutions. This can influence (and sometimes interfere) with their relationships with other
developers as conflicts arise. Using issue modeling to capture rationale and drive decisions can
integrate and improve both the technical and social aspects of development. 

An example of such an approach is WinWin, a requirements elicitation tool and technique
for negotiating different viewpoints among stakeholders [Boehm et al., 1998]. WinWin resulted
from the observation that satisfying all key stakeholders is a necessary condition for project
success. Often, the issue of dealing with conflicting success criteria is not only to reconcile
conflicting views, but also to identify the key stakeholders of the system and to clarify their
success criteria. Once these criteria are known to all, it is much easier to identify conflicts and to
resolve them by negotiating compromise alternatives. 

The WinWin tool uses an issue model similar to the QOC model (Figure 12-27). A
significant difference is that each node in the issue model is attached to a taxonomy category
that represents the application domain under consideration. The Criteria node is named
Win Condition and represents a stakeholder success criterion. The WinWin process starts by
identifying key stakeholders and their Win Conditions. Conflicting Win Conditions are
detected and discussed using the issue model. Once an Agreement is achieved, it is entered in the
tool and linked back to the conflicting Win Conditions. This ensures that consensus is found
and documented.

12.5.5 Conflict Resolution Strategies

Occasionally, project participants fail to come to a consensus through negotiation. In such cases,
it is critical that conflict resolution strategies already be in place to deal with the situation. The
worst design decisions are those that are not taken because of the lack of consensus or the

Figure 12-27 WinWin issue model (UML class diagram).
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absence of conflict resolution strategies. This delays critical decisions until late in development,
resulting in high redesign and recording costs.

Many different conflict resolution strategies are possible; these are five examples:

• Majority wins. In case of conflict, a majority vote could remove the deadlock and
resolve the decision. Several collaboration tools enable users to attach weights to
different arguments in the issue model, and thus to compute which proposal should be
selected with an arithmetic formula [Purvis et al., 1996]. This assumes that the opinion
of each participant matters equally and that, statistically, the group usually makes the
right decisions.

• Owner has last word. In this strategy, the owner of an issue (the person who raised it)
is responsible for deciding the outcome. This assumes that the owner has the largest
stake in the issue. 

• Management is always right. An alternative strategy is to fall back on the
organizational hierarchy. If a group is unable to reach consensus, the manager of the
group imposes a decision based on the argument. This assumes that the manager is
capable of understanding the argument and making the right trade-offs.

• Expert is always right. In this strategy, an external expert, foreign to the debate,
assesses the situation and advises the best course of action. For example, during
requirements analysis, a test user can be interviewed to evaluate the different proposals
on an issue. Unfortunately, such an expert has limited knowledge of other system
decisions or, more generally, of the design context.

• Time decides. As an issue is left unresolved, time becomes a pressure and forces a
decision. Also, controversial issues may become easier to resolve as other decisions are
made and other aspects of the system defined. The danger with this strategy is that it
leads to decisions that optimize short-term criteria (such as ease of implementation)
and disregard long-term criteria (such as modifiability and maintainability).

The majority wins and the owner has last word strategies do not work well. They both
result in inconsistent results (multiplicity of decision makers) and in decisions that are not well
supported by the rest of the participants. The management is always right and expert is always
right strategies lead to better technical decisions and better consensus when the manager and the
Expert are sufficiently knowledgeable. The time decides strategy is a fallback, albeit one that
may result in costly rework. 

In practice, we first attempt to reach consensus, and, in case of lack of consensus, fall back
on an expert or management strategy. If the expert or manager strategy fails, we let time decide
or take a binding majority vote.
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12.6 Further Readings

Most of the issue-based work in rationale research finds its roots in the work of Rittel [Kunz &
Rittel, 1970]. Rittel, however, proposed the IBIS issue model as a solution for negotiating
complex problems in political science. Conklin introduced IBIS to software engineering in the
late 1980s and contributed the gIBIS tool [Conklin  & Burgess-Yakemovic, 1991], which was
used for an extensive case study in industry. gIBIS has led to a commercial tool called
QuestMap, which has been used effectively in the context of capturing and structuring rationale
during meetings.

In the early 1990s, QOC was proposed as an alternative model to IBIS, focusing on the
systematic evaluation of options against criteria (as opposed to the opportunistic posting of
arguments) [MacLean et al., 1991]. Since then, it has generally been accepted that IBIS is a
more appropriate representation for capturing rationale on the fly, whereas QOC is a more
appropriate representation for structuring rationale for long-term use.

Applications of rationale to software engineering are few [Moran & Carroll, 1996] [Dutoit
et al., 2006]. Major challenges include the technical issues (e.g., rationale models are large and
difficult to search) and non-technical issues, in particular, the perception that rationale is an
overhead that benefits only other participants [Dutoit & Paech, 2001]. However, there have been
successful cases that have illustrated the importance of tightly integrating the capture and use of
rationale within a specific process. In this chapter, we mentioned three examples from the
requirements engineering domain: WinWin [Boehm et al., 1998], the NFR Framework [Chung et
al., 1999], and REQuest [Dutoit & Paech, 2002].

12.7 Exercises

12-1 In Section 12.3, we examined an issue related to access control and notification in the
CTC system. Select a similar issue that could occur in the development of CTC, populate
it with relevant proposals, criteria, and arguments, and justify a resolution. Examples of
such issues include

• How can consistency between mainServer and hotBackup be maintained?

• How should failure of the mainServer be detected and the subsequent switch to the
hotBackup be implemented?

12-2 You are developing a UML modeling tool. You are considering the integration of
rationale into the tool. Describe how a developer could attach issues to different model
elements. Draw a class diagram of the issue model and its association with model
elements.

12-3 Below is an excerpt from a system design document for an accident management
system. It is a natural language description of the rationale for a relational database for
permanent storage. Model this rationale with issues, proposals, arguments, criteria, and
resolutions, as defined in Section 12.3.
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12-4 Consider the NFR Framework described in Section 12.3.7. Draw a QOC model that is
equivalent to the goal graph depicted in Figure 12-12. Discuss the respective advantage
and disadvantages of QOC and the NFR Framework for representing rationale during
requirements.

12-5 You are integrating a bug reporting system with a configuration management tool to
track bug reports, bug fixes, feature requests, and enhancements. You are considering
an issue model for integrating these tools. Draw a class diagram of the issue model, the
corresponding discussion, configuration management, and bug-reporting elements.

One fundamental issue in database design was database engine realization. The initial
nonfunctional requirements on the database subsystem insisted on the use of an object-oriented
database for the underlying engine. Other possible options included using a relational database, a
file system, or a combination of the other options. An object-oriented database has the
advantages of being able to handle complex data relationships and is fully buzzword compliant.
On the other hand, OO databases may be too sluggish for large volumes of data or high-
frequency accesses. Furthermore, existing products do not integrate well with CORBA, because
that protocol does not support specific programming language features such as Java associations.
Using a relational database offers a more robust engine with higher performance characteristics
and a large pool of experience and tools to draw on. Furthermore, the relational data model
integrates nicely with CORBA. On the downside, this model does not easily support complex
data relationships. The third option was proposed to handle specific types of data that are written
once and read infrequently. This type of data (including sensor readings and control outputs) has
few relationships with little complexity and must be archived for extended periods of time. Files
offer an easy archival solution and can handle large amounts of data. Conversely, any code would
need to be written from scratch, including serialization of access. We decided to use only a
relational database, based on the requirement to use CORBA and in light of the relative
simplicity of the relationships between the system’s persistent data.
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13
Configuration 
Management

Those who would repeat the past must control
the teaching of history.

—Frank Herbert, in Chapterhouse: Dune

Change pervades the development process: requirements change when developers improve
their understanding of the application domain, the system design changes with new technology
and design goals, the object design changes with the identification of solution objects, and the
implementation changes as faults are discovered and repaired. These changes can affect every
work product, from the system models to the source code and the documentation. Configuration
management is the process of controlling and monitoring change to work products. Once a
baseline is defined, configuration management minimizes the risks associated with changes by
defining a formal approval and tracking process for changes.

In this chapter, we describe the following activities:

• Configuration item identification is the modeling of the system as a set of evolving
components.

• Promotion management is the creation of versions for other developers.
• Release management is the creation of versions for the client and the users.
• Branch management is the management of concurrent development.
• Variant management is the management of versions intended to coexist.
• Change management is the handling, approval, and tracking of change requests.

We conclude this chapter by discussing project management issues related to
configuration management. In particular, we discuss continuous integration, in which the
creation of promotions and the execution of regression tests are automated, to ensure the early
detection of integration problems.
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13.1 Introduction: An Aircraft Example

Passenger aircraft are one of the most complex engineering feats to be attempted by a private
corporation. They must be safe and reliable, and they must be economical. Unlike trains or cars,
the aircraft systems cannot simply be shut down in the event of a failure. Unlike NASA, airlines
need to post a profit and pay dividends to their stockholders. These requirements result in very
complex designs that include many redundancies and diagnostic systems. A Boeing 747, for
example, is composed of more than 6 million parts. To develop and maintain such complex
systems, while remaining economically competitive, aircraft manufacturers extend the life of a
model by incrementally improving on the same design. The Boeing 747, for example, was first
released in 1967 and is still in production at the time of this writing. It has gone through four
major revisions, the latest, the 747-400, released in 1988. Another approach to dealing with the
high complexity of aircraft is the reuse of as many parts and subsystems across aircraft models
as possible. Consider the following example.

Airbus A320

In 1988, Airbus Industries, a consortium of European aircraft industries, released the A320, the first
fly-by-wire passenger aircraft. The pilots control the plane like an F16 fighter jet by using a small
joystick located on their side. Digital impulses are then transmitted to a computer, which interprets and
relays them to the wings and tail controls. Unlike hydraulic systems, computerized control allows for
envelope protection, which prevents the pilot from exceeding certain parameters, such as maximum and
minimum speed, maximum angle of attack, and maximum G-values. The A320 has 150 seats and is
targeted for short- to medium-haul routes.

A321 and A319 

The commercial success of the A320 allowed Airbus to work on two derivative airplanes, the A319, a
shorter, 124-seat version, and the A321, a longer, 185-seat version. Changing the length of a basic
design to obtain a new aircraft has been a standard practice in the industry. This allows the manufacturer
to save on cost and time by leveraging an existing design. It also saves operating costs for airlines, who
then need only maintain one stock of spare parts. In this case, however, Airbus pushed the concept even
further, ensuring that all three aircraft have the same cockpit controls and the same handling
characteristics. The A321, for example, has slotted flaps and slightly modified wing controls to make
the plane feel like the A320, even though the A321 is longer. Consequently, any pilot certified for one of
the aircraft can fly the other two. This results in cost savings for airline operators who need to train
pilots only once, share flight simulators, spare parts, and maintenance crews for all three versions.

A330 and A340

Pursuing this philosophy even further, Airbus paid great care to the handling characteristics of the A330
and A340. These two aircraft, built for the long-haul and ultra-long-haul markets, can carry twice as
many passengers as the A320 and up to three times as far. They have the same cockpit layout and
fly-by-wire system. Pilots trained on the A320 family can fly the A330 or the A340 with minimal
retraining, further reducing the operating costs of the airline. Comparatively, the handling
characteristics of a 737 (comparable to the A319) are very different from a 747 (comparable to the
larger version of the A340). 
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Incremental refinement and subsystem reuse are not without problems. Each change that
is made to one model must be carefully evaluated in the context of the other two. For example, if
we decide to install a new, more efficient powerplant on the A320, we would need to evaluate if
the same powerplant could also be used on the A319 and the A321, to retain the advantage of
sharing parts across all three models. Then, we need to evaluate whether the handling of each
aircraft changes significantly, in which case we may need to modify the computerized control
software to account for this. Otherwise, all pilots flying the A320 would need to be retrained and
recertified, not to mention the loss of a common platform and training program for all three
aircraft. Then, the modified aircraft would have to be recertified by the governing authority (e.g.,
the Federal Aviation Agency in the United States, the Joint Aviation Authorities in the European
Community), which would decide on the safety of the aircraft and whether new maintenance or
pilot training procedures are necessary. Finally, the state of each individual aircraft must be
carefully documented so that the correct parts can be replaced. In summary, any change that
would threaten the safety of the aircraft, its efficiency, or the portability of pilots across aircraft
models must be identified and rejected. These issues require aircraft manufacturers and
operators to follow sophisticated version and change control procedures.

Although usually not quite as complex as a passenger aircraft, software system
development nevertheless suffers from similar problems. Software systems have a long life cycle
to allow the recouping of initial investment: for example, many Unix systems still contain code
dating as far back as the 1970s. Software systems can exist in many different variants: for
example, some flavors of Unix operating systems can run on mainframes as well as home PCs
and Macintosh computers. Maintenance changes to existing and running software systems must
be controlled and evaluated carefully to ensure a certain level of reliability: For example, the
introduction of the Euro currency, a simple change in scale, has had a very visible and
substantial impact on many financial and business software systems around the globe. Finally,
software systems evolve much more rapidly than aircraft, requiring developers to track change
and its impact.

Configuration management enables developers and aircraft manufacturers to deal with
change. The first function of configuration management is the identification of configuration
items. Which subsystems are likely to change? Which subsystem interfaces should not change?
Each subsystem likely to change is modeled as a configuration item and its state labeled with a
version number. The fly-by-wire software of the A320 is a configuration item. The device driver
for a serial port in a Unix operating system is a configuration item.

The second function of configuration management is to manage change through a formal
process. A change request is first logged, then analyzed, then accepted if consistent with the
goals of the project. A change request for an aircraft is a thick report listing all the subsystems
and contractors involved in the change. A change request for a simple software system can be
merely an E-mail requesting a new feature. The change is then approved or rejected, depending
on the foreseen impact of the change on the overall system.
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Finally, the third function of configuration management is to record sufficient status
information on each version of each configuration item and its dependencies. By looking at the
maintenance book of an A320 and the version numbers of its subsystems, a maintenance
engineer is able to tell which subsystems need to be replaced or upgraded. Looking at the latest
release of a serial port device driver, its improvements and the changes since the last release, we
are able to determine whether or not we should upgrade to the new driver.

Configuration management has been traditionally treated as a maintenance topic. The
distinction between development and maintenance has become blurred, however, and often
configuration management is introduced quite early in the process. In this chapter, we focus
primarily on the early phases of configuration management and briefly address its use during
maintenance. But first, we define more formally the concept of configuration management.

13.2 An Overview of Configuration Management

Configuration management is the discipline of managing and controlling change in the
evolution of software systems [IEEE Std. 1042-1987]. Configuration management systems
automate the identification of versions, their storage and retrieval, and supports status
accounting. Configuration management includes the following activities:

• Identification of configuration items. Components of the system and its work
products and their versions are identified and labeled uniquely. Developers identify
configuration items after the Project Agreement (Section 14.3.6), once the principal
deliverables and components of the system are agreed on. Developers create versions
and additional configuration items as the system evolves.

• Change control. Changes to the system and releases to the users are controlled to
ensure consistency with project goals. Change control can be done by the developers,
by management, or by a control board, depending on the level of quality required and
the rate of change.

• Status accounting. The status of individual components, work products, and change
requests are recorded. This allows developers to distinguish versions more easily and
track issues related to changes. This also allows management to track project status.

• Auditing. Versions selected for releases are validated to ensure the completeness,
consistency, and quality of the product. Auditing is accomplished by the quality control
team.

In addition, the following activities are often considered part of configuration management
[Dart, 1991]:

• Build management. Most configuration management systems enable the automatic
building of the system as developers create new versions of the components. The
configuration management system has sufficient knowledge of the system to minimize
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the amount of recompilation. It may also be able to combine different versions of
components to build different variants of the system (e.g., for different operating
system and hardware platforms).

• Process management. In addition to change control, projects may have policies about
the creation and documentation of versions. One such policy can be that only
syntactically correct code can be part of a version. Another policy can be that builds are
attempted (and should succeed) every week. Finally, the configuration management
process includes policies for notifying relevant developers when new versions are
created or when a build fails. Some configuration management systems enable
developers to automate such work flows.

Traditionally, configuration management is seen as a management discipline, helping
project managers with change control, status accounting, and auditing activities ([Bersoff et al.,
1980] and [IEEE Std. 1042-1987]). More recently, however, configuration management has also
been seen as a development support discipline, helping developers deal with the complexity
associated with large numbers of changes, components, and variants [Babich, 1986]. In this
chapter, we focus in more detail on the latter view and only briefly address the activities of
change control and status accounting.

In our view, configuration management pervades the software life cycle. It begins with the
identification of configuration items after the deliverables and principal components of the
system have been defined. It continues throughout development as developers create versions of
work products during analysis, system design, object design, and implementation. With
rationale management (see Chapter 12, Rationale Management), configuration management is
the principal tool available to developers for dealing with change.

Next, let us focus in more detail on the concepts of configuration management.

13.3 Configuration Management Concepts

In this section, we present the main concepts of configuration management (Figure 13-1). As
often as possible, we use the same terminology as the IEEE guidelines on configuration
management [IEEE Std. 1042-1987]:

• A configuration item is a work product or a piece of software that is treated as a single
entity for the purpose of configuration management. A composite of configuration
items is defined as a configuration management aggregate (CM aggregate). The fly-
by-wire software of the A320 is a configuration item; the A320 is a CM aggregate. The
serial port device driver is a configuration item; the Linux operating system is a CM
aggregate.

• A change request is a formal report issued by a user or a developer to request a
modification in a configuration item. For example, the Engineering Change Proposal
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[MIL Std. 480], the standard change request form in the United States government, is
seven pages long. An informal change request can be a one-line E-mail message.

• A version identifies the state of a configuration item or a configuration aggregate at a
well-defined point in time. Given a CM aggregate, a consistent set of versions of its
configuration items is defined as a configuration. A configuration can be thought as a
version of a CM aggregate. 

• Versions that are intended to coexist are called variants.

• A promotion is a version that has been made available to other developers in the
project. A release is a version that has been made available to the client or the users.

• A software library stores versions and provides facilities to track the status of
changes. A repository is a library of releases. A master directory is a library of
promotions.

13.3.1 Configuration Items and CM Aggregates

A configuration item is a work product or a component of a work product that is under
configuration management and treated as a single entity for such purposes. For example, the fly-
by-wire software of the A320 is a configuration item (Figure 13-2). During an upgrade, the
complete software is replaced. The fly-by-wire software cannot be broken down into smaller
components that can be installed independently. Similarly, the device driver for the serial port in
any operating system is a configuration item. This component is simple enough that it cannot be
further broken down for installation.

A CM aggregate is a composition of configuration items. The 747 is a CM aggregate of
six million parts. The Linux1 operating system is a CM aggregate that includes a process

Figure 13-1 Configuration management concepts (UML class diagram).

1. Linux is a freely available POSIX [POSIX, 1990] operating system created by Linus Torvalds. For more information 
check http://www.linux.org/.

Controlled item
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scheduler, a memory manager, many device drivers, network daemons, file systems, and many
other subsystems.

13.3.2 Versions and Configurations

A version identifies the state of a configuration item at a well-defined point in time. Successive
versions of a work product differ by one or more changes, such as the correction of a fault, the
addition of new functionality, or the removal of unnecessary or obsolete functionality. A
configuration identifies the state of a CM aggregate.

A baseline is a version of a configuration item that has been formally reviewed and agreed
on, by management or the client, and which can be changed only through a change request. For
example, each aircraft must undergo a rigorous certification process by the governing agency
(i.e., the FAA or the JAA) before it can be operated by an airline. Any change to the aircraft after
certification requires a formal change process and recertification. This ensures that changes are
made consistently with project goals (e.g., safety and reliability) and regulations, and that they
are communicated to relevant developers and users (e.g., the airline passengers and the airline
operator).

Versions that are intended to coexist are called variants. For example, the A319, the
A320, and the A321 are variants of the same basic aircraft (Figure 13-3). The principal
difference is their length, that is, the number of passenger and freight that they can carry. The
A320-200, however, is a version of the A320 that replaced the initial version. In other words, an
airline can buy both the A319 and the A320-200, but it cannot buy the older A320-100. In the
case of a software system, the system can have a Macintosh variant, a Windows variant, and a
Linux variant, each providing identical functionality. A system may also have a standard variant
and a professional or deluxe variant, supporting a different range of functionality. Variants share
a large amount of code that implements the core functionality, and differences are confined to a
small number of lower level subsystems.

Figure 13-2 An example of CM aggregates and configuration items (UML object diagram).

A320:CM Aggregate

Wing:CI

Fly-by-wire SW:CI Landing Gear:CM Aggregate

Tire:CIFuselage:CI
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13.3.3 Change Requests

A change request is a formal step initiating the change process. A user, client, or developer
discovers a fault in a work product or wants a new feature. The author of the change request
specifies the configuration item to which the requests applies, its version, the problem to be
solved, and a proposed solution. In the case of a formal change process, the costs and benefits of
the change are then assessed before the change is approved or rejected. In both cases, the
rationale of the decision is recorded with the change request. 

For example, shortly after the A320 was certified in February 1988, a revised version, the
A320-200, was recertified. The new version included a few modifications that yielded a longer
range and greater take-off weight. One of these changes was the addition of winglets at the end
of the wings that significantly reduced drag and thereby reduced fuel consumption. Fuel
consumption is a major cost for the airline operator and, thus, a strong selling argument for the
airline manufacturer. During the A320 design, a change request was issued, describing the
winglet change, its performance evaluation, and its estimated cost. The change was approved,
implemented, and the A320-200 passed certification in November 1988. A change request for
the Linux operating system kernel is an E-mail message to Linus Torwalds.

13.3.4 Promotions and Releases

A promotion is a version that is made available to other developers. A promotion denotes a
configuration item that has reached a relatively stable state and can be used or reviewed by other
developers. For example, subsystems are promoted for other teams using that subsystem.
Subsystems are then promoted for the quality control team to assess their quality. Later, as faults
are discovered and repaired, revisions of the subsystem are promoted for reevaluation.

Figure 13-3 Examples of baselines, versions, and variants (UML object diagram). The A319, A320, and
the A321 are all based on the same design. They vary mostly by the length of their fuselage.

A320:Baseline

A320-200:Version

A319:Baseline
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First release
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derived from derived from
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A release is a version that is made available to users. A release denotes that a
configuration item has met the quality criteria set by the quality control team and can be used or
reviewed by the users. For example, the system is released to beta testers for finding additional
faults and assessing the perceived quality of the system. As faults are discovered and repaired,
revisions of the subsystem are promoted for reevaluation by the quality control team and, when
the quality criteria are met, released again to the users.

13.3.5 Repositories and Workspaces

A software library, as defined in [IEEE Std. 1042-1987], provides facilities to store, label, and
identify versions of the configuration items (i.e., documentation, models, and code). A software
library also provides functionality to track the status of changes to the configuration items. We
distinguish between three types of libraries:

1. The developer’s workspace, also known as the dynamic library, is used for everyday
development by the developers. Change is not restricted and is controlled by the
individual developer only.

2. The master directory, also known as the controlled library, tracks promotions. Change
needs to be approved and versions need to meet certain project criteria (e.g., “Only
code that can be compiled without errors may be checked in”) before they are made
available to the rest of the project.

3. The software repository, also known as the static library, tracks releases. Promotions
need to meet certain quality control criteria (e.g., “All faults detected by regression tests
must be repaired”) before a promotion becomes a release.

Note that, in present configuration management systems, the term repository usually
denotes the library in which both promotions and releases are tracked. Developers create new
promotions by checking in changes from their workspace to the repository. Releases are then
distinguished from promotions using a naming convention or a version identification scheme.

13.3.6 Version Identification Schemes

Versions are uniquely identified by developers and systems using a version identifier, also
called a version number. Some exotic examples include

• The Ada specification went through five successive major versions, named Strawman,
Woodenman, Tinman, Ironman, and Steelman [Steelman, 1978].

• The version identification scheme for TEX, a typesetting program for technical texts
[Knuth, 1986], is based on decimals of the number : Each time a bug is found (which
is rare) and repaired the version number of TEX is incremented to add another digit.
The current version number is 3.1415926.
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In general, however, version numbers of a given configuration item can be quite large. In
this case, developers and configuration management systems use version identification schemes
that support automation more easily, such as sequential numbers with two or three decimals. For
example, consider a UML editor called MUE (for My UML Editor), which is built and released
incrementally. We can use a three-digit scheme to distinguish between functional changes, small
improvements, and bug fixes (Figure 13-4). The leftmost digit denotes a major version (e.g.,
overhaul of functionality or of the user interface), the second digit, the minor version (e.g.,
addition of limited functionality), and the third digit denotes revisions (e.g., corrections). By
convention, versions before 1.0.0 denote versions released for alpha or beta testing.

Such a simple sequential scheme, however, only works with a sequential series of
versions. A branch identifies a concurrent development path requiring independent
configuration management. Releases are seen by the user as an incremental and sequential
development process. The development of different features, however, can be done by different
teams concurrently and later merged into a single version. The sequence of versions created by
each team is a branch, which is independent from the versions created by the other teams. When
versions of different branches need to be reconciled, the versions are merged; that is, a new
version is created containing selected elements from both ancestor versions.

For releases, the sequential identification scheme is usually sufficient, because the concept
of branch is not visible to the users. For developers and configuration management systems,
however, this is not sufficient, because branches are often used for supporting concurrent
development. The version identification scheme used by CVS [Berliner, 1990], for example,

Three-digit version identification scheme

<version> ::= <configuration item name>.<major>.<minor>.<revision>
<major> ::= <nonnegative integer>

<minor> ::= <nonnegative integer>

<revision> ::= <nonnegative integer>

Figure 13-4 Three-digit version identification scheme (Backus-Naur Form and UML object diagram).

MUE.1.0.0:Release

MUE.1.2.1:Release

MUE.2.0.3:Release

MUE.0.0.1:Release
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Second major 
release with three 
series of bug fixes

Alpha test release
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explicitly represents branches and versions. Version numbers include a branch identifier
followed by a revision number. The branch identifier includes the version number from which
the branch was started, followed by a unique number identifying the branch. This enables
developers to identify to which branch a version belongs and in which order versions of one
branch were produced.

In Figure 13-5, two branches are depicted: the main trunk (left package) and the branch
1.2.1 derived from version 1.2 (right package). In the MUE example, the branch may have been
derived for the purpose of evaluating competing implementations of the same feature (e.g.,
support for UML interaction diagrams in MUE). Note that this identification scheme does not
identify how versions are merged back onto the main trunk. In Figure 13-5, version 1.2.1.2 is
merged with version 1.3 onto the main trunk to produce version 2.0.

CVS version identification scheme

<version> ::= <configuration item name>.<version identifier>

<version identifier> ::= <branch>.<revision>

<branch> ::= <version identifier>.<branch number> | <branch number>

<branch number> ::= <nonnegative integer>

<revision> ::= <nonnegative integer>

Figure 13-5 CVS version identification scheme (Backus-Naur Form and UML object diagram). Branches
are identified with the version they were derived from followed by a unique number. 
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13.3.7 Changes and Change Sets

The evolution of a configuration item can be modeled in two ways:

• State-based view. As a series of versions, that is, as a series of states of the
configuration item. Each state is identified by a version number (e.g., the A320-200,
MUE.1.0). This is the view most often encountered in practice.

• Changed-based view. As a baseline followed by a series of changes called deltas. A
change represents the difference between two successive versions, in terms of lines or
paragraphs that have been added or removed from the configuration item. Often,
repairing a fault or adding functionality to a system requires changes to several
configuration items. All the changes to configuration items associated with a single
revision of a configuration are grouped into a change set. If two change sets do not
overlap (i.e., if they apply to different and unrelated sets of configuration items), they
can be applied to the same baseline in arbitrary order, thus providing more flexibility to
the developer when selecting configurations.

Continuing the MUE example, assume that we revised the first baseline twice: MUE.1.1 was
released to fix a bug related to classes with no operations, and MUE.1.2 was released to fix a bug
related to drawing dashed lines. Each of these revisions corresponded to changes in a single
subsystem. The change sets corresponding to each of these revisions is thus independent, and
could be applied to the baseline in any order. For example, when the emptyClassFix:
ChangeSet is applied to the MUE.1.0:Release, we derive the MUE.1.1:Release. Applying the
dashedLineFix:ChangeSet next results in the MUE.1.2:Release. If instead, we apply the
dashedLineFix:ChangeSet first, we would obtain the MUE.1.1a:Release. Applying the
emptyClassFix:ChangeSet next, however, also results in the MUE.1.2:Release. The change set
corresponding to the second baseline, however, depends on both of these revisions. Figure 13-6
illustrates the release history of MUE as a series of change sets and their dependencies.

The change-based view of configuration management is more general than the state-based
view. It allows the developer to view related versions of different configuration items as one
action. Moreover, when change sets do not overlap, they can be applied to more than one
version. This approach is used for delivering bug fixes and minor improvements after a piece of
software has been released; each change set is delivered as a separate patch that can be directly
applied to the delivered baseline or any derived version. As long as patches do not overlap, they
can be applied in any order onto the baseline.

13.3.8 Configuration Management Tools

Due to the importance of configuration management in software development, there are many
configuration management and version management tools available to developers. In this
section, we briefly describe four of them, RCS [Tichy, 1985], CVS [Berliner, 1990], Perforce
[Perforce], and ClearCase [Leblang, 1994].
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RCS (Revision Control System), a free tool, controls a repository storing all versions of the
configuration items. To obtain a specific version, developers check out a version into their
workspace by specifying a version number or a date. To change a configuration item, the
developer needs to lock the item first, preventing all other developers from changing the item.
When the change is completed, the developer checks the modified item back into the repository,
simultaneously creating a new version and releasing the lock. To optimize storage, RCS only
stores the latest version of each configuration item and the differences between each version.
The concept of configuration can be realized by attaching a developer-specified label to all
versions that belong to the configuration. Developers can then check out a consistent set of
versions by using the label. Note that this approach does not allow version control of the
configuration itself. RCS does not support the concept of branch.

Figure 13-6 Change set representation of the MUE release history (UML object diagram).
dashedLineFix:ChangeSet and emptyClassFix:ChangeSet can be applied to the MUE.1.0:Release in
arbitrary order because they do not overlap.
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CVS (Concurrent Version System), also a free tool, extends RCS with the concept of branch.
Instead of a sequence of differences, CVS stores a tree of differences for each configuration item.
CVS also provides tools for merging two branches and detecting overlaps. The change control
policy of CVS is also different from RCS. Instead of locking a configuration item, CVS considers
each developer to be a separate branch. If only a single developer modified a configuration item
between two check-ins, CVS automatically merges the branch onto the main trunk. If CVS detects
a concurrent change, it first attempts to merge the two changes and then, in case of overlap,
notifies the last developer to check in. With this policy, CVS can support a higher level of
concurrent development than RCS.

Perforce is a commercial replacement for CVS. It is based on the same concept of central
repository as CVS and RCS. Perforce, however, also supports the concept of change and change
set, allowing the developer to more easily track the configuration items that were involved on a
given change.

ClearCase, another commercial tool, supports also the concepts of CM aggregates and
configurations. A CM aggregate is realized as a directory, which is managed as a configuration
item by ClearCase. ClearCase also allows the specification of configurations with rules,
selecting versions of each configuration item. A version can be specified with a static rule (i.e.,
refer to a specific version number) or with a dynamic rule (e.g., refer to the latest version of an
item). ClearCase also provides access control mechanisms to define the ownership of each
configuration item and configuration.

13.4 Configuration Management Activities

In the previous section, we described the main concepts of configuration management. In this
section, we focus on the activities necessary to define and manage configuration items,
promotions, and releases. We also describe activities related with the use of branches and
variants for concurrent development. Configuration management activities described in this
section include

• Configuration Item and CM Aggregate Identification (Section 13.4.1)
• Promotion Management (Section 13.4.2)
• Release Management (Section 13.4.3)
• Branch Management (Section 13.4.4)
• Variant Management (Section 13.4.5)
• Change Management (Section 13.4.6).

For the basis of the examples in this section, we use a distributed car parts catalog called
myCarParts. MyCarParts allows car dealers and car owners alike to browse and order parts from
their computer. MyCarParts has a client/server architecture, with two types of clients: the
EClient for expert users, such as car mechanics and part dealers, and the Nclient for novice
users, including car owners who repair their own cars. The system requires users to authenticate,
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which allows it to determine the list price of the parts given the particular user. A user who
orders many parts is eligible for volume discounts, whereas an occasional client pays the full list
price. The system also tracks the interests of each user, using this information to better optimize
the network usage. The user is also sent customized notices about new products or new discount
prices. Figure 13-7 displays the subsystem decomposition of myCarParts.

The development and evolution of the myCarParts system requires the coordinated release
of several components.

• The protocol used by the clients and the server to exchange information is occasionally
upgraded to support new client functionality and to improve response time and

:DealerPC The :DealerPC is the machine used by a dealer to order parts. The :DealerPC
has often a higher bandwidth link to the server.

:EClient The :EClient is located on the :DealerPC. It provides functionality to an expert
user for finding parts by part identifier, vehicle make and year, and order history.
The :EClient is designed for high-volume clients, such as car repair shops and
parts dealers.

:HomePC The :HomePC is the machine used by a car owner to order parts. The :HomePC is
connected to the server via a modem.

:NClient The :NClient is located on the :HomePC. It provides functionality to the novice
user for finding parts by description and, in subsequent releases, by clicking on a
vehicle map. The :NClient is designed for the occasional client, such as a car
hobbyist.

:ServerHost The :ServerHost hosts the parts catalog server.

:Server The :Server enables client to retrieve lists of parts by criteria and part entries, to
order parts, and to track client activity.

Figure 13-7 MyCarParts hardware allocation (UML deployment diagram).
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throughput. Because there is no guarantee that all users have the same version of the
client, it is necessary for the server to maintain backward compatibility with older
clients. Every new revision must be tested with older clients to validate this property.

• New client versions may implement functionality that is supported only in new
versions of the server. Therefore, the server must be upgraded first, before the new
client versions can be made available.

• When a new version of either client is available, the user can download a patch. The
corresponding hardcopy manual, however, is sent via standard mail. In the event that
several versions are released in a short time, a user should be able to identify which
manual corresponds to which version.

For example, assume that the initial release of myCarParts allows users to browse the
catalog using textual information only. Parts have a part identifier, a name, a description, the list
of vehicles and years for which this part is manufactured, and cross references to other parts
with which it can be assembled. The user can search the database using any of these fields. This
can be problematic for novice users who do not know the name of the part they are looking for.
In a second release, we address this problem by providing the user with a navigation map of
parts. If the user knows what the part looks like and where it is located in the vehicle, he only
needs to click on the corresponding part of the map. The change to introduce navigation maps
and the releases of the components of myCarParts need to be carefully sequenced, considering
the constraints we described before. Adding the navigation map requires the following sequence
of steps:

1. The Server must be modified to support the storage and retrieval of subassembly maps.
2. The Server must be released and installed.
3. One map per vehicle and year must be created and stored in the database.
4. The NClient must be modified to use the navigation maps as a possible interface.
5. The NClient must be released and installed.

In the following sections, we use myCarParts and the navigation map change as the basis
for the examples.

13.4.1 Configuration Item and CM Aggregate Identification

The identification of configuration items and CM aggregates occurs primarily after the project
agreement, when a set of deliverables is agreed upon with the customer, and after system design,
when most of the subsystems have been identified. The identification of configuration items and
CM aggregates, however, continues throughout the development as the set of deliverables is
redefined and as subsystems are added and removed from the subsystem decomposition.

Identifying configuration items and CM aggregates is similar to identifying objects during
analysis. It is not algorithmic because some configuration items are trivial to identify (e.g., the
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RAD, the SDD), while others are more subtle (e.g., a client server protocol definition).
Configuration items are self-contained documents or pieces of code whose evolution must be
tracked and controlled. These include deliverable documents, work products, subsystems,
off-the-shelf components that can evolve during the life cycle of the system, and interface
descriptions. 

In the myCarParts example, we identify each of the deliverable documents as a
configuration item. In the myCarParts Project Agreement, the following were defined as
deliverables:

• user level documents, including the RAD and the User Manual (UM)

• system documents, including the SDD and the ODD

• the source code of the system, including its subsystems (depicted in Figure 13-7) and
various installation programs.

We identify, moreover, the interfaces between subsystems entities whose evolution should
be carefully controlled, as changes to these can introduce major problems. We identify two
components of the SDD, the Client Server Protocol Specification and the Data Schema
Description, as configuration items.

Figure 13-8 depicts the configuration items and the CM aggregates we identified for
myCarParts. Because myCarParts subsystems can be released independently, we identify one
CM aggregate for each subsystem that includes the configuration items relevant to the
subsystem. For example, if we modify the NClient subsystem to include the navigation map
functionality, we need to revise the RAD to specify the new use cases, change the
NClient UM:CI to explain how this functionality is used, modify the NClient ODD:CI to include
new classes for the map, and implement and test the changes in the source code.2 The
NClient:CM Aggregate is then revised to include the most recent versions of the configuration
items related to the NClient, before it is released to the users. Note that this change can be done
without modifying the EClient:CM Aggregate, so configuration items related to the EClient
and the NClient subsystems are modeled as separate configuration items and CM aggregates.

The three subsystems constituting the myCarParts system, however, are not completely
independent. Before we can add navigation maps to the NClient subsystem, we need first to
provide functionality for storing and retrieving these tables in the Server subsystem. Although
this functionality is realized and released separately, we still need to make sure that the releases
of clients are coordinated with server releases (in the sense that servers should be upgraded
before clients). For this purpose, we also identify system-level CM aggregates for each of the
deliverables. The RAD:CM Aggregate, the SDD:CM Aggregate, and the ODD:CM Aggregate

represent consistent versions of the deliverables. For example, the versions of the

2. For brevity, the source code, test, and test manual are not depicted in Figure 13-8.
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ODD:CM Aggregate with the NClient ODD:CI describing the navigation map classes also contain
the Server ODD:CI describing how to store and retrieve these maps.

13.4.2 Promotion Management

Creating a new promotion for a configuration item occurs when a developer wants to share the
configuration item with others. Developers create promotions to make the configuration item
available for review or for the purpose of debugging another configuration item. Once the
promotion is created and stored in the repository, developers interested in the promotion check it

Figure 13-8 Configuration items and CM aggregates for myCarParts (UML object diagram).
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out of the repository. Developers not interested in the promotion continue to work with earlier
versions. Once a promotion is created, it cannot be modified. The developer who created the
promotion can continue modifying the configuration item without interfering with the
developers using the promotion. To distribute new changes, the developer needs to create a new
promotion.

For example, consider the navigation map change in myCarParts (Figure 13-9). First,
developers modify the analysis model to specify the navigation map use cases and its interaction
with the existing use cases, resulting in the NClient RAD.2.0:Promotion. The system design
model is then modified to accommodate the storage and downloading of maps, resulting in the
Protocol.2.0:Promotion and Data Schema.2.0:Promotion. Then, a first implementation of
the server side of the protocol is realized in the Server.2.0:Promotion, which is made available
to the novice client team to test their implementation of the navigation map (NClient
2.0:Promotion and above). Several bugs are found in the server while testing the NClient. The
server team identifies and addresses these bugs, resulting in the Server.2.1:Promotion and
Server.2.2:Promotion. In the meantime, the documentation team revises the
NClient UM2.0:Promotion based on the NClient RAD.2.0:Promotion. Note that during this
time, the expert client team may be repairing bugs in the EClient.1.5, independently of the
navigation map change. To test the EClient, the expert client team continues to use the former
release of the server (i.e., Server.1.4). Figure 13-9 illustrates the above scenario by depicting a
snapshot of each team’s workspace. Even though teams are working toward a consistent system,
they may all be working on different promotions of the same components until all components
stabilize.

Promotions represent the state of a configuration item at the time it is made available for
other developers. A project may usually require that code promotions do not contain compiler
errors, but it makes few other constraints to encourage the exchange of work products among
teams. Once the quality of configuration items is improved and assessed by the quality control
team, the promotion may become eligible for a release.

13.4.3 Release Management

The creation of a new release for a configuration item or an CM aggregate is a management
decision, usually based on marketing and quality control. A release is made available to offer
additional (or revised) functionality or to address critical bugs. 

Although creating a release seems similar to creating a promotion, it is a much more
complicated and expensive process. Developers deal with change as part of their work. If the
new version of a component introduces more problems than it addresses, they can simply roll
back to an earlier promotion. A user manual that is not up to date does not interfere with their
work, given that they know the product. Users, on the other hand, are not in the business of
testing software. Discovering inconsistencies in the system and its documentation interferes with
their work and can lead them to switch products or contractors. Releases, therefore, are created
in a much more controlled process than promotions, attempting to ensure consistency and
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quality. The quality control team assesses the quality of the individual components of a release
and coordinates revisions to defective components. This auditing process allows the quality
control team to ensure the consistency of the release with minimal interference with the
developer’s work.

For example, consider the release of the navigation map functionality for myCarParts
(Figure 13-10). We first create a stable promotion of the NClient.2.4 and the Server.2.3 that
implements the new functionality. The quality control team tests the NClient.2.4 promotions
against the latest version of the RAD (i.e., NClient RAD.2.0). Quality control finds a bug,

Figure 13-9 Snapshot of the workspaces used by myCarParts developers (UML object diagram). The
Novice Workspace, the Tech Writer Workspace, and the Server Workspace contain promotions related
to the navigation map functionality. The Expert Workspace, however, contains older and more stable
versions. For all configuration items, version numbers of the form 1.x refer to the promotions without
navigation maps functionality, whereas version numbers of the form 2.x refer to the promotions containing
partial or complete implementations of the navigation maps.
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which is fixed in a subsequent promotion of the NClient.2.5. When testing the new
functionality, quality control also tests the current version of the EClient (i.e., EClient.1.5, not
shown in Figure 13-10) with Server.2.3. Satisfied with the state of the software, quality control
decides to include NClient.2.5, EClient.1.5, and Server.2.3 in the next major release of
myCarParts. Quality control then checks the user manual (NClient UM.2.0) for consistency
against NClient.2.5. A few additional problems are found and addressed in the promotion
NClient UM.2.1, which is then included in the release under construction. The release is then
system tested with a selected set of users. Two more problems with the NClient.2.5 and
Server.2.3 are discovered by a system tester and are addressed in NClient.2.6 and
Server.2.4. The software is retested and released to the users as myCarParts.2.0.

The administrator of the myCarParts site first upgrades the Server and its database
schema and observes, during a system test, if any user discovers unforeseen compatibility
problems with the older clients. After the system test, the administrator then makes available the
NClient.2.6 to the users who would like to use the navigation map functionality. Once the
stability of the new release is validated in the field, all users are encouraged to upgrade. Older
versions of the server and the clients are discontinued. Any change to the documentation or
subsystems of myCarParts will be delivered as a patch or as a third release.

The focus of the release process in the myCarParts example is on quality and consistency.
The quality control team acts as a gatekeeper between the users and the developers. The
assumption behind this process is that users are not interested in debugging the systems they use.
They expect that these systems support their work. This assumption does not hold when the
users are software developers. In this case, a substantial number of tools used by this group of
users are also developed and maintained by them. These can range from simple scripts that make
it more convenient to accomplish a repetitive task, to full-fledged programming languages,
syntax editors, or configuration management systems. With the popularity of the Internet among
software developers, an increasing number of these ad hoc tools are shared and distributed,
especially those that address common problems. This leads to the availability of numerous freely
available programs, ranging from simple scripts to operating systems (e.g., Linux). In this
situation, users (who are software developers) are willing to test, debug, and send contributed
code to the program author in exchange for early access to the piece of software. In this software
development model, known as the bazaar model [Raymond, 1998], releases and promotions
become much more similar than in the context of the controlled process we described above.

13.4.4 Branch Management

Until now, we have examined the management of promotions and releases in the context of a
single change. Various configuration items are revised until the change is completed and
assessed by quality control. During this process, we have dealt with the complexity caused by
the difficulty in maintaining consistency among related promotions and in minimizing the
introduction of new faults. We have focused, however, on only a single thread of development.
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Usually, developers work on multiple improvements concurrently. For example, while

some developers implement the navigation map functionality in the NClient and the Server,

other developers may be improving the Server response time, and yet another group of

developers may be extending the EClient to store the history of queries issued by the user.

When threads of development focus on different subsystems of myCarParts (e.g., navigation

Figure 13-10 Release process for the navigation map functionality of myCarParts.2.0 (UML activity
diagram). :P denotes a promotion, :R denotes a release.
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maps in the NClient and the Server, query history in EClient), teams can be isolated by
working on different configurations of the same group of subsystems. For example, the
navigation map effort works with the most recent versions of the NClient and the Server, while
the query history effort works with the most recent version of the EClient and an older, stable
version of the Server. This approach works only if changes affect nonoverlapping sets of
components and if subsystems interfaces remain backward compatible. However, when two
changes require modifications to the same component, a different approach is required.
Concurrent branches and subsequent merging can be used to coordinate changes.

For example, let us focus on two concurrent and overlapping changes: while one team of
developers implement the navigation map functionality (described in Section 13.4.2 and in
Section 13.4.3), we assign another team the task of improving the response time of the Server.
Both teams may change the Server, the NClient, and their interfaces to accomplish their
respective goals.

These changes are assigned to different teams because of the difference in their associated
risks. The navigation map improvement extends the functionality of myCarParts and is well
defined. The response time improvement, however, requires experimental work and is open
ended: The developers first need to identify performance bottlenecks and design heuristics to
speed up common requests. The resulting improvement then must be measured and assessed
against any loss of reliability and decrease in maintainability. Finally, separating both changes
provides us with more flexibility during delivery: if the response time improvement is completed
early, we can merge it with the functional improvement and release it at the same time,
otherwise, we can deliver it later as a patch.

To support both changes concurrently while keeping teams independent, we set up a
branch, starting from the latest promotions of the subsystems at the time the changes are
approved (see Figure 13-11). 

The teams working on functional improvements continue working on the main trunk
(starting at Server.1.5 and NClient.1.6). The team responsible for the response time
improvement works on the branch (starting at Server.1.5.1.1).3 The performance
improvement team restricts its changes to the Server subsystem and decides to avoid modifying
the Server interface. Both teams then work independently until they complete their
improvements. The navigation map improvement is completed first and made part of the second
release of myCarParts, as we saw in Figure 13-10 (as Server.2.4). Soon after, the response
time improvement is completed (Server.1.5.1.7, in Figure 13-11). The response time
improvement is considered successful, yielding a fourfold decrease in response time for
common requests, while marginally extending the client server protocol. At this point, we need
to integrate this improvement with the main trunk, hoping to produce a version of myCarParts
which has both the navigation map functionality and the fourfold improvement in response time.

3. We use the CVS identification scheme for identifying versions and branches [Berliner, 1990].
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Merges can usually be done with the help of the configuration management tool, which
attempts to merge the most recent parts of the versions. When conflicts are detected, that is,
when both versions contain modifications to the same classes or methods, the configuration
management tool reports the problem back to the developer. The developer then resolves the
conflict manually. In our example, the tool reports a conflict in the DBInterface class, which
was modified by both teams (Figure 13-12). 

The navigation map team added a method, processMapRequest(), to retrieve maps from
the database. The response time improvement team modified the processPartRequest(), which
retrieves parts from the database given a part id. We construct a merged version of the
DBInterface class by selecting the processMapRequest() from the main trunk and the
processPartRequest() from the branch. We then test the revised DBInterface class to make

Figure 13-11 An example of branch (UML object diagram, some promotions were omitted for brevity, :P
denotes a promotion, :R denotes a release). On the main trunk, developers add the navigation map
functionality to myCarParts. On a concurrent branch, developers improve the response time of the server
by integrating a cache between the server and the database. The response time improvement is completed
after the release of the navigation map functionality and made available as a patch. 
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sure we have dealt with all the conflicts, which results in the Server.2.5:Promotion. Later, we
realize that the same caching mechanism can be used for the processMapRequest(), which can
result in further response time improvements. We modify the processMapRequest() method,
retest the server, and create the Server.2.6:Promotion.

Heuristics for branch management

As we saw in this example, merging two branches is a nontrivial operation. It usually
needs to be supported by a configuration management tool and requires substantial intervention
and testing by developers. In the myCarParts example, illustrating a very simple case, the
response time improvement team was careful not to change the Server interface and limited
their changes to the Server subsystem. These constraints minimized the likelihood of an overlap

Figure 13-12 An example of merge for the DBInterface class of the myCarParts system (UML class
diagram).
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with the changes made by the navigation map team. In general, if no constraints are set, branches
can diverge to the point where they cannot be merged. Although there are no reliable ways to
address this problem, several heuristics can be used to mitigate the risk of divergent branches:

• Identify likely overlaps. Once the development branches are set up, but before design
and implementation work starts, developers can anticipate where overlaps could occur.
This information is then used to specify constraints for containing these overlaps.
Examples of such constraints include not modifying the interface of classes involved in
the overlap.

• Merge frequently. The configuration management policy can require developers
working on a branch to frequently merge with the latest version of the main trunk (e.g.,
daily, weekly, or whenever a new promotion is created). The merges are only created on
the branch and are not propagated back on the main trunk. The policy also may specify
that such merges need only ensure that the code still compiles; that is, the merges need
not necessarily address all overlaps. This policy encourages developers to find overlaps
early and think about how to address them before the actual merge.

• Communicate likely conflicts. Although teams working on different branches need to
work independently, they should anticipate conflicts during the future merge and
communicate them to the relevant teams. This also has the benefit of improving the
design of both changes by taking into account constraints from both teams.

• Minimize changes on the main trunk. Minimizing the number of changes to one of the
branches to be merged reduces the likelihood of conflicts. Although this constraint is
not always acceptable, it is a good configuration management policy to do only bug
fixes on the main branch and do all other changes on the development branch.

• Minimize the number of branches. Configuration management branches are complex
mechanisms that should not be abused. Merge work caused by reckless branching may
result in substantially more effort than if a single branch had been used. Changes that
may result in overlaps and conflicts usually depend on each other and can be addressed
sequentially. Branches should be used only when concurrent development is required
and when conflicts can be reconciled.

In all cases, creating a branch is a significant event in the development. It should require
management approval and should be carefully planned.

13.4.5 Variant Management

Variants are versions that are intended to coexist. A system has multiple variants when it is
supported on different operating systems and different hardware platforms. A system also has
multiple variants when it is delivered with different levels of functionality (e.g., novice version
vs. expert version, standard version vs. deluxe version). Two fundamental approaches are
possible when dealing with variants (Figure 13-13):
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• Redundant teams. A team is assigned to each variant. Each team is given the same
requirements and is responsible for the complete design, implementation, and testing of
the variant. A small number of configuration items are shared across variants, such as
the user manual and the RAD.

• Single project. Design a subsystem decomposition that maximizes the amount of code
shared across variants. For multiple platforms, confine variant-specific code in low-
level subsystems. For multiple levels of functionality, confine increments of
functionality in individual and mostly independent subsystems. 

The redundant team option leads to multiple smaller projects that share a requirements
specification. The single project option leads to a larger, single project with most teams sharing
core subsystems. At first glance, the redundant team option leads to redundancies in the project
as the core functionality of the system will be designed and implemented multiple times. The
single project option seems more efficient, given that a potentially large amount of code can be

Figure 13-13 Examples of redundant variants and variants sharing configuration items (UML object
diagram). In the redundant team organization, the myCarParts NClients for the Macintosh and the PC are
realized independently. In the single project organization, the myCarParts NClients for the Macintosh and
the PC differ in their UI.
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reused across variants, given a good system design. Surprisingly, the redundant team option is
often chosen in commercial developments to avoid organizational complexity [Kemerer, 1997]. 

Issues introduced by code sharing include

• Single supplier/multiple consumers. Core subsystems are used by teams working on
different variants, and, thus, with possibly diverging requirements. The core subsystem
teams need to satisfy their requirements uniformly.

• Long change request turnaround. When one variant-specific team issues a change
request for a core subsystem, the approval and implementation of the change can take
longer than for other changes. The longer turnaround is needed to ensure the change
does not interfere with the other variant-specific teams.

• Cross platform inconsistencies. Core subsystems introduce constraints on variant
specific subsystems that can interfere with platform constraints. For example, a core
subsystem can be designed with a threaded control flow in mind, whereas the user
interface toolkit of a specific variant assumes an event-driven flow of control.

Each of these issues can be perceived by variant-specific teams as a motivation to
implement their own core subsystems. These issues can be addressed, however, by anticipating
variant-specific issues during system design and through effective configuration management. A
good system design is resilient to platform and variant-specific issues. This results in a
subsystem decomposition that is identical for all variants, where each system variant differs by
substituting one or more subsystems. For example in Figure 13-13, the Macintosh and PC
variants of the NClient share the Parts Catalog and the Server Interface subsystem. The
user interface and the network interface subsystems are different, but have the same interface.
This results in a subsystem decomposition in which each subsystem is either variant independent
(i.e., supporting all variants) or variant specific (i.e., supporting a small number of variants). The
issues we raised before can then be addressed as follows:

• The single supplier/multiple consumers issue is addressed by careful change
management: If a requested change is variant specific, it should not be addressed in a
core subsystem. If the requested change benefits all variants, then it should be
addressed only in the core subsystems.

• Long change request turnaround is shortened by involving the team that issued the
change request during validation. The suggested change is implemented in a new
promotion of the core subsystem and released to the team who requested the change.
The team evaluates the solution and tests its implementation, whereas other teams
continue using the former promotion. Once the change is validated, other variant teams
may start using the revised subsystem. We described such a scenario with the Server
side changes required by the navigation map (see Section 13.4.4): the novice client
team validated the new version of the server, and the EClient team continued working
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with a former (and more stable) release. Note that when variant teams require
concurrent changes to the core subsystem, core developers can use branches to isolate
the impact of each change until they reach a stable state.

• Cross-platform inconsistencies are avoided as much as possible during system design
by focusing on a variant-independent subsystem decomposition. Lower-level, cross-
platform inconsistencies are addressed in variant-specific subsystems, at the cost of
some glue objects or redundancy between core and variant-specific subsystems. If all
else fails, independent development paths should be considered when the supported
variants are substantially different.

Managing multiple variants with shared subsystems is complex, as we indicated earlier.
After an up-front investment during system design, however, the shared code approach yields
numerous advantages, such as increased quality and stability of the shared code and greater
consistency in quality across variants. Finally, when the number of variants is large, considering
variant-specific issues early and designing configuration management mechanisms to meet them
lead to substantial savings in time and cost. 

13.4.6 Change Management

The creation of new promotions and releases is driven by change requests. A team repairs a fault
and creates a promotion for quality control to evaluate. Clients define new requirements or
developers take advantage of a new implementation technology, causing a new release of the
system. Change requests can range from correcting a typo in a menu label to reimplementing a
major subsystem to address performance issues. Change requests also vary in their timing: a
request for additional functionality during the requirements review can lead to modifying the
draft RAD, whereas the same request made during testing can additionally lead to major
subsystem surgery. Change requests must be handled differently depending on their scope and
their timing. The handling of change requests, called change management, is part of
configuration management.

Change management processes vary in their formality and complexity with the project
goals. In the case of a complex system with high reliability requirements, for example, the
change request form has several pages (e.g., [MIL Std. 480]), requires the approval of several
managers, and takes several weeks to be processed. In the case of a simple tool written by one
developer, informal communication is sufficient. In both cases, the change process includes the
following steps (Figure 13-14):

1. The change, identifying a fault or a new feature, is requested. This can be done by
anyone, including a user or a developer.

2. The request is assessed against project goals. In large projects, this is done by a control
board. In smaller projects, this is done by the project manager. This may include a cost–
benefit analysis and an evaluation of the impact of the change on the rest of the system.
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3. Following the assessment, the request is either accepted or rejected.

4. If it is accepted, the change is planned, prioritized, and assigned to a developer and
implemented.

5. The implemented change is audited. This is done by the quality control team or
whoever is responsible for managing releases.

13.5 Managing Configuration Management

In this section, we address management issues related to configuration management. These
include

• Documenting Configuration Management (Section 13.5.1)

• Assigning Configuration Management Responsibilities (Section 13.5.2)

• Planning Configuration Management Activities (Section 13.5.3)

• Continuous Integration: Integration Testing and Promotion Management
(Section 13.5.4).

Figure 13-14 An example of change management process (UML activity diagram).
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13.5.1 Documenting Configuration Management

[IEEE Std. 828-2005] is a standard for writing Software Configuration Management Plans
(SCMP). Such a plan documents all the relevant information to the configuration management
activities of a specific project. The plan is generated during the planning phase, put under
configuration management, and revised as necessary. The scope and the length of the plan may
vary according to the needs of the project. A mission-critical project with a formal change
control process may require a 30-page document. A project developing a conceptual prototype
may only require a 5-page document.

An SCMP contains six types of information: introduction, management, activities,
schedules, resources, and plan maintenance (see Figure 13-15).

The Introduction describes the scope and audience of the document, key terms, and
references.

The Management section describes the organization of the project (which can be a
reference to the corresponding section in the Software Project Management Plan; see
Chapter 14, Project Management) and how the configuration management responsibilities are
assigned within this organization.

The Activities section describes in detail the identification of configuration items, the
change control process, the process for creating releases and for auditing, and the process for
status accounting. Responsibilities for each of these activities are assigned to a role defined in
the management section.

The Schedule denotes when configuration management activities take place and how they
are coordinated. In particular, it defines at which point changes can be requested and approved
through the formal change process.

Software Configuration Management Plan

1. Introduction
1.1 Purpose
1.2 Scope
1.3 Key terms
1.4 References

2. Management
2.1 Organization
2.2 Responsibilities

3. Activities
4. Schedule
5. Resources
6. Plan Maintenance

Figure 13-15 An example of a template for the Software Configuration Management Plan.
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The Resources section identifies the tools, techniques, equipment, personnel, and training
necessary for accomplishing the configuration activities. 

Finally, Plan Maintenance defines how the SCMP, itself under configuration management,
is maintained and revised. In particular, this section details the person responsible for its
maintenance, the frequency of updates, and the change process for updating the plan.

The [IEEE Std. 828-2005] standard is defined such that the above outline can be applied to
any project, from a reliable systems design to a freeware product.

13.5.2 Assigning Configuration Management Responsibilities

Configuration management is a project function that involves many different tasks and
participants in the project. As in the case of system design, tasks that require consistency should
be performed by a small number of people. During system design, a small team of architects
makes decisions about subsystem decomposition. Similarly, a small team of configuration
managers identifies the configuration items and CM aggregates to be controlled. As in the case
of testing, quality control tasks such as release management should be performed by different
participants than development tasks such as object design and implementation. 

Configuration management includes the following roles:

• Configuration manager. This role is responsible for identifying configuration items
and CM aggregates, and may also be responsible for defining the procedures for
creating promotions and releases. This role is often combined with the role of architect.

• Change control board. This role is responsible for approving or rejecting change
requests based on project goals. Depending on the complexity of the change process,
this role can also be involved in assessing the change and in planning accepted changes.
This role is often combined with the role of team or project manager.

• Developer. This role creates promotions triggered by change requests or the normal
activities of development. The main configuration management activity of developers
is to check in changes and resolve merge conflicts.

• Auditor. This role is responsible for selecting and evaluating promotions for release.
The auditor is also responsible for ensuring the consistency and completeness of the
release. This role is often accomplished by the quality control team.

The roles for configuration management are defined during project planning and assigned
early to ensure consistency. Reassigning configuration management roles too often can severely
limit the benefits of configuration management and fail to control change.

13.5.3 Planning Configuration Management Activities

Project managers should plan configuration management activities during the project start
phase. Most of the configuration management procedures can be defined before the project starts
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since they do not depend on the system itself, but rather on project goals and nonfunctional
requirements such as safety and reliability. 

The key elements in planning configuration management are

• defining the configuration management processes

• defining and assigning roles

• defining change criteria; that is, what attributes of the work products can be changed
and how late in the process can changes occur

• defining release criteria; that is, which criteria should be evaluated when auditing
promotions for a release

Moreover, configuration management procedures and tools should be in place before
changes begin to occur, so that they can be recorded, approved, and tracked.

13.5.4 Continuous Integration: Testing and Promotion Management

Object-oriented development is an iterative process, characterized by the incremental addition of
features and improvements to an existing product. In configuration management terms, each
developer works on their own branch, testing the new feature locally, and then merging their
changes onto the main trunk. Each merge is the integration of a revised subsystem, requiring the
execution of integration and regression tests. As the number of features that are concurrently
developed grows, merging changes back onto the main trunk becomes a bottleneck, with each
developer having to wait until the previous change is integrated. Conflicts between changes from
different developers are detected late, further blocking the work of other developers.

Continuous integration [Duval et al., 2007] is a method combining promotion
management (Section 13.4.2) and integration testing (Section 11.4.4) that aims at detecting
integration problems early, thus reducing integration bottlenecks. Continuous integration is
characterized by the following points:

• Single public branch. Developers make changes and test them locally in their own
private branch. However, promotions are created on a single main trunk shared by all
developers. There are no concurrent development branches that will require a costly
merge down the road.

• Automated build and regression test. Committing changes to the main trunk (i.e.,
creating a new promotion) triggers an automated build and the necessary regression
tests. If the build fails, the developer committing the change is notified immediately, so
that either the problem is solved quickly or the change is backed out of the main trunk.
When the build is broken, no other developer can commit to the main trunk. If a
regression test fails and it is shown that the failure is localized, other developers may
continue merging their changes, while the offending change is repaired. However, the
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goal of continuous integration is to keep the head version on the main trunk stable so
that all developers have a solid base to develop on.

• Frequent promotions. Developers design and implement their changes so that they can
commit frequently, typically once a day. High risk changes and refactoring that impact
the software architecture are merged first, details local to the new feature are added last.
This ensures that overlaps between changes are detected and resolved before the new
features have been completely implemented based on a flawed design.

• Transparent build status. The status of the build is visible to all developers. On the one
hand, it increases the pressure to repair broken builds quickly. On the other hand, it
encourages developers to check in their code only after they are reasonably confident
that it will not break the build.

For example, Figure 13-16 shows a dashboard in CruiseControl [CruiseControl]. Each box
represents a subsystem with its accompanying tests. Successful builds are depicted by check
marks, failed builds are depicted by exclamation marks. The dashboard further distinguishes
builds that were newly broken and those that were recently repaired. Clicking on the box enables
the user to examine more details about the build, for example, which tests or compilation activity
failed, what changes were recently made that could have caused the build failure. An overview
picture such as Figure 13-16 provides a quick impression about the relative maturity of the
different subsystems. 

The main benefit of continuous integration is that new integration problems are detected
early. Consequently, it is critical to keep the build and test duration short, even as the size and
complexity of the product increases. Staged builds address this problem by separating build and
test actions into several phases. During the first phase, a new executable is built and a minimal
set of regression tests (also called smoke tests) detect the most serious problems. After the first
phase succeeds, other developers can integrate their changes. During the second phase, longer
running tests, such as performance tests or end-to-end tests using realistic data, ensure that the
maturity of the main trunk. Assigning a test to the first phase or the second phase is a trade-off
between detecting as many new problems early and keeping the build time short.

Continuous integration leverages off the techniques presented in this chapter and in
Chapter 11, Testing, but differs in its emphasis and time scale. During continuous integration,
many small changes and integration occurs frequently. In a top-down or a bottom-up integration
approach, large changes are integrated at the subsystem level once over a substantial period of
time. Continuous integration works best for projects with an evolving architecture and an
integrated team of developers. Subsystem level integration works best for projects where the
architecture is well-defined and subsystems are contributed by different (and often competing)
suppliers.
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13.6 Further Readings

Historically, configuration management emerged as a discipline around the same time as the
“software crisis” was identified. Much of the early work on configuration management was
motivated by large contract development projects in which requirements changes and successive
releases needed to be managed carefully. The Capability Maturity Model of the SEI rates
organizations that do not have configuration management at the bottom maturity level (see
Section 15.3). Although configuration management is increasingly relevant in current projects
with many variants or many development sites, the discipline is still underdeveloped. Software
Configuration Management [Babich, 1986] is still a relatively standard textbook.

The first version control tools appeared in the early 1970s, as magnetic storage media,
such as hard disks and tape drives, became widespread. Often, version control and build
management would be part of the operating system: VAX VMS, for example, created a new file
whenever a change was made and let the user remove the versions that were not needed. In the
Unix world, SCCS (Source Code Control System), distributed as part of the operating system,
enabled a developer to store successive versions and branches of the same file as a series of
increments [Rochkind, 1975]. In the mid 1980s, RCS (Revision Control System) improved on

Figure 13-16 An example of continuous integration build status (CruiseControl). Each square represents
a project. The darkest squares correspond to builds that were successful for more than 24 hours.

! ! !

!
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SCCS by focusing on multiple users and provided coordination and locking mechanisms [Tichy,
1985]. In the early 1990s, CVS (Concurrent Version System) [Berliner, 1990] allowed developers
modifying the same files concurrently and provided support for merging branches and handling
merge conflicts. Subversion introduced in 2000 provides a similar interface as CVS, but adds
version histories for directories, tracking file renaming, move, and deletions. Subversion tracks
histories using a database, allowing atomic commit operations on the repository. From the late
1990s, commercial configuration management tools have integrated process support features for
change request, tracking, and notification.

Continuous integration is a corner stone of Extreme Programming [Beck & Andres, 2005]
and was made popular in the Java community with CruiseControl [CruiseControl], an open
source tool for automating build and regression tests. Other well-known tools for continuous
integration are Tinderbox and Bonsai, developed as part of the Mozilla open source project
[Mozilla].

13.7 Exercises

13-1 RCS adopts a reverse delta approach for storing multiple versions of a file. For example,
assume a file has three revisions—1.1, 1.2, and 1.3. RCS stores the file as of version 1.3,
then the differences between 1.2 and 1.3, and finally the differences between 1.1 and
1.2. When a new version is created, say 1.4, the difference between 1.3 and 1.4 is com-
puted and stored, and the 1.3 version is deleted and replaced by 1.4. Explain why RCS
does not simply store the initial version (in this case 1.1) and the differences between
each successive version.

13-2 CVS uses a simple text-based rule to identify overlaps during a merge: there is an
overlap if the same line was changed in both versions that are being merged. If no such
line exists, then CVS decides there is no conflict and the versions are merged
automatically. For example, assume a file contains a class with three methods—a(),
b(), and c(). Two developers work independently on the file. If they both modify the
same lines of code, say the first line of method a(), then CVS decides there is a conflict.
Explain why this approach will fail to detect certain types of conflicts. Provide an
example in your answer.

13-3 Configuration management systems such as RCS, CVS, and Perforce use file names and
their paths to identify configuration items. Explain why this feature prevents the
configuration management of CM aggregates, even in the presence of labels.

13-4 Explain how configuration management can be beneficial to developers, even in the
absence of a change control or auditing process. List two scenarios illustrating your
explanation.

13-5 In Chapter 12, Rationale Management, we described how rationale information can be
represented using an issue model. Draw a UML class diagram for a problem tracking
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system that uses an issue model for the description and discussion of changes and their
relationship with versions. Focus only on the domain objects of the system.

13-6 In Chapter 11, Testing, we described how the quality control team find faults in
promotions created by subsystem teams. Draw a UML activity diagram including the
change process activities and testing activities of a multi-team project.
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14
Project Management

Take off your engineering hat and put on your management hat.
—Statement made during the 51-L launch discussion

Managers do not generate a useful product on their own. Instead, they provide and
coordinate resources so that others can generate useful products. Managing a software project
requires a combination of managerial and social skills to foresee potentially damaging problems
and to implement the appropriate response. Because of the lack of visible product and the
reliance on nontechnical skills, management is usually the target of jokes by developers and
others. Management, however, is a critical function for bringing a project to a successful end,
given the complexity of current systems and the high rate of change during development.

Managers do not make technical decisions and often do not have the background to make
such decisions. Instead, they are responsible for coordinating and administering the project and
ensuring that a high-quality system is delivered on time and within budget. The main tools of
management are planning, monitoring, controlling, risk management, and contingency handling.

In this chapter, we describe project management activities from a project manager’s point
of view. We assume a two-level project management hierarchy, typical for today’s software
industry. We describe topics associated with classical project management, such as work
breakdown structures, task plans, role assignments, risk management, and software project
management plans. We discuss both classical methods to management, which aim to deliver a
product to address a fixed set of requirements and milestones, and agile methods, which aim at
delivering a product incrementally, while renegotiating requirements as the project progresses.

In the next chapter, Chapter 15, Software Life Cycle, we focus on models, called “software
life cycles,” for reusing and improving project management knowledge across projects. In both
this chapter and the next chapter, we take an optimistic view of project management and focus
on academic concepts. In Chapter 16, Methodologies: Putting It All Together, we examine what
happens outside of textbook situations. We provide methodologies and heuristics for adapting
the building blocks presented in this chapter to specific situations.
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14.1 Introduction: The STS-51L Launch Decision

Consider the following example:

Example: The STS-51L launch decisiona

On January 28, 1986, the Space Shuttle Challenger flying mission STS-51L exploded 73 seconds into
flight, killing all seven crew members aboard. The Rogers Presidential Commission, formed to
investigate the accident, determined that combustion gases leaking through a joint in the right solid
rocket booster caused the ignition of hydrogen fuel from the external fuel tank. The Rogers Commission
also determined that there were serious flaws in the decision-making process at NASA.

The main components of the Space Shuttle are the orbiter, the solid rocket boosters, and the external
tank. The orbiter is the vehicle that transports cargo and astronauts. The solid rocket boosters provide
most of the thrust necessary to put the orbiter into orbit. When they consume all their fuel, they are
detached and fall back into the ocean. The external tank, providing fuel to the orbiter’s engine, is also
detached before reaching orbit. The solid booster rockets were built by a private contractor, Morton
Thiokol. They were constructed in sections for easy transport, then assembled at the launch site. Each
section is connected by a joint. A design flaw of this joint was responsible for the combustion gas leak
that caused the accident.

The Rogers Commission determined that the engineers at Thiokol were aware of possible failure of the
solid booster rocket joints. Solid booster rockets recovered from previous shuttle flights indicated that
rubber gaskets, called “O-rings,” in the field joints had been eroded by combustion gases. This erosion
seemed particularly severe on flights that launched in cold temperatures. This erosion concerned
engineers because the O-rings had not been designed to come in contact with the combustion gases.
Managers treated the joint problem as an acceptable risk, given that erosion had occurred in previous
missions without causing an incident. Engineers at Thiokol had repeatedly and unsuccessfully
attempted to communicate the severity of the problem to their management. In the days preceding the
STS-51L launch, engineers were alarmed by the low temperatures at the launch site and attempted to
convince their management to recommend against a launch. Thiokol initially recommended against the
launch and then later reversed its position, at the urging of NASA.

Both NASA and Thiokol have hierarchical reporting structures, typical of public administration
organizations, and the information flow through the organization follows the reporting structure.
Engineers report to their group manager who then reports to the project manager, and so on. Each level
can choose to modify, distort, or suppress any information before sending it upward, based on its own
objectives. The STS-51L mission had been delayed repeatedly and was already several months late.
Management at both NASA and Thiokol wanted to meet the deadline. This situation resulted in
improper information dissemination and inadequate risk evaluation at both NASA and Thiokol.

The Rogers Commission determined that the primary cause of the Challenger accident was a design
flaw in the solid rocket booster joint. The Rogers Commission, however, also determined that the
decision-making process and the communication structure at Thiokol and NASA were flawed and failed
to assess the risks of launching the flawed vehicle.

a. The Challenger accident has been summarized here as an example of project management failure. Both the 
mechanical and administrative failures that caused the Challenger accident are much more complex than this 
summary suggests. For a complete report of the investigation, refer to the Rogers Commission report [Rogers 
et al., 1986] and related books on the subject [Vaughan, 1996]. 
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Project management ensures the delivery of a quality system on time and within budget;
the essential components of this definition are quality, time, and money. Ensuring delivery
within budget requires a manager to estimate and assign the resources required by the project in
terms of participants, training, and tools. Ensuring on-time delivery requires a manager to plan
work effort and to monitor the status of the project in terms of tasks and work products. Finally,
ensuring quality requires a manager to provide problem-reporting mechanisms and monitor the
status of the product in terms of defects and risks. All three aspects of the project—quality,
budget, and time—are essential for success.

In this chapter, we describe the role of management in software projects. However, the
material presented here is far from sufficient for learning to act as a project manager on the
Shuttle program or elsewhere. This chapter is oriented toward project leaders in innovative
projects in industry, instructors of team-based project courses, and developers who are about to
become team leaders. We assume a two-level management hierarchy, with the project manager
at the top, the team leaders at the middle, and developers at the bottom. This is large enough for
experiencing the effects of complexity on management and to be typical of today’s software
industry.

In Section 14.2, we provide a bird’s-eye view of management and its relationship to other
development activities. In Section 14.3, we describe the models used for management, such as
roles, work products, tasks, and schedules. These models are documented in the software project
management plan. In Section 14.4, we describe the management activities for classical team-
based projects. In Section 14.5, we describe the management activities for agile projects.

14.2 An Overview of Project Management

We provided a model of a project in Chapter 3, Project Organization and Communication, from
the developer’s point of view. The goal was to provide enough information for a developer to
understand project management artifacts and activities. Work to be done was not structured
beyond the task level. Project management artifacts were already created and could only be read
and commented on. The focus in this chapter is on the project manager who has to create project
management artifacts. A project consists of the following components: 

• Outcome. This is a work product or a group of work products. Work products
produced for the customer are also called deliverables.

• Work. This is the work to be performed to achieve the outcome. The work is broken
down into units of work, which can be tasks or activities. A task is the smallest amount
of work that can be managed. Tasks and activities can also be recursively grouped into
higher-level activities. Work is described in work packages.

• Schedule. A schedule maps on a timeline the units of work performed to achieve the
outcome. Units of work can depend on each other. A schedule has a start, a duration,
and an end.
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• Resource. The people (called participants), funds, equipment, and facilities required to
perform the work are the project’s resources. People assume one or more roles in the
project. Each role is responsible for one or more work packages.

Projects are subject to the same barriers as software systems: complexity and change.
Complex products require a large number of participants with diverse skills and backgrounds.
Competitive markets and evolving requirements introduce change in the development, triggering
frequent resource reallocation and making it difficult to track the status of the project. 

Dealing with change in a project is further complicated because the project components
Outcome, Schedule, Work, and Resources are interdependent. A change in one component
usually has an impact on the others. For example, adding a new feature to a deliverable usually
increases development time and resources. Shortening the duration of a project usually implies
that some features cannot be delivered.

Project managers can deal with project complexity and change the same way developers
deal with system complexity: through modeling, communication, rationale, and configuration
management. Communication, rationale, and configuration aspects of project management have
already been dealt with in previous chapters (Chapters 3, 11, and 12, respectively). In this
chapter we use a variety of object, dynamic, and functional models to describe project
management. To distinguish these models from the system models we call them “management
models.”

Management models allow us to represent project components, the constraints these
components are subjected to, and the relationship among components. The work breakdown
structure is a decomposition of the work into manageable tasks. The task model or network
diagram considers temporal dependencies between tasks. The organization chart shows the
project participants and their roles in the project. 

The main task of a project manager is to construct, realize, and validate these models
throughout the duration of a project. Using these models, the project manager communicates
with customers and developers about the status of the project and responsibilities. 

From a functional point of view, project management can be defined as the process of
guiding a project from the beginning through its complete duration to its end using a set of
management models. Project management includes four basic activities:

• Planning. This activity is concerned with specifying the results to be achieved and the
activities and tasks to produce these results, determining a schedule and estimating the
required resources such as people and funds. 

• Organizing. This activity defines the organization of the project and the identification
of roles and responsibilities. The roles are mapped to the work identified during the
planning activity. 

• Controlling. This activity is concerned with making sure to identify when actual
activities deviate from the planned ones. This involves reconfirming people’s expected
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performance, monitoring actions taken and results achieved, addressing problems
encountered, and sharing information with people interested in the project. If a
substantial deviation occurs between the planned work and the actual work, the project
manager needs to reallocate resources, change the schedule, or renegotiate the
outcome.

• Terminating. This activity is concerned with finishing the project. It involves delivering
the system to the client according to the acceptance criteria defined in the project
agreement, installing the accepted system at the customer site, reviewing the project
history to extract lessons learned from the project, and modifying of project templates
for the next iteration of the project or for a new project. 

From a dynamic point of view, a project can be in one of several phases. which we have
already mentioned in Chapter 3. We refine this model by adding another state, Conception (see
Figure 14-1). 

Project conception. During this phase, also called concept phase, the idea for the project is
born. In a software project this is usually a new requirement triggered by the need of an existing
a market or a new technology. The concept phase is handled in many different ways. For a small
project it may consist of an informal discussion between interested people and a go-ahead
decision based on a verbal agreement. 

In a larger project, the idea is investigated thoroughly, usually with a cost–benefit analysis
and a technical feasibility study. The cost–benefit analysis is a comparative assessment of all
costs that will be incurred to perform the project and of all benefits anticipated from the project’s
outcome. Some benefits can be reduced operating costs or increased revenue. Other benefits
might include improved morale, reduced turnover, increased productivity, or fewer absences.

Figure 14-1 Phases of a Software Project (UML state machine diagram).
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The technical feasibility study investigates if the outcome is technically feasible. A typical issue
to be addressed is whether the required innovation can be made available in time during the
duration of the project. Proceeding to the next phase usually requires a formal review and a
formal go-ahead decision. 

Project definition. During this phase, the project manager, a client, and the software architect
are involved. The project manager can be one of the interested people from the concept phase or,
as it is quite common, brought in from the outside at the beginning of this phase. The project
definition phase includes the following activities:

• Problem definition. During this activity, the client and the project manager define the
scope of the system in terms of functionality, constraints, and deliverables. The client
and the project manager also agree on acceptance criteria and target dates. The
resulting document, called the problem statement, serves as the starting point of the
Requirements Analysis Document (RAD), which is developed during the steady state
phase.

• Initial Software Project Management Plan (SPMP). During this activity, the project
manager provides an overview of the project, a description of the results to be
produced, a work breakdown structure, roles and responsibilities, a project schedule,
budgets for required resources, and a description of how risks will be identified and
managed.

• Initial software architecture. This activity is performed in parallel to the development
of the SPMP. The focus is on the software architecture, in particular on the
decomposition of the system into subsystems. The software architecture is crucial for
managing the project, because it also serves as the basis for the initial team
organization. It therefore requires a close interaction between the software architect and
the project manager. The software architect revises the subsystem decomposition
during the steady state phase. The initial software architecture document will expand
into the System Design Document (SDD). 

• Project Agreement definition. The client and the project manager formally agree on
the scope of the system and the delivery date as baselined in the Project Agreement
document.

Project start. During this phase, the project manager sets up the project infrastructure, hires
participants, organizes them in teams, and kicks off the project. Project start includes the
following activities:

• Infrastructure set-up. In project-based organizations, it cannot be assumed that the
infrastructure exists. The project manager must therefore define the requirements for
the infrastructure of the project. These requirements address the communication
channels for project participants like bulletin boards, web sites, and meeting
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management procedures, tools for configuration management, building and testing
environments and workflows for the authoring and reviews of documents. The project
manager can then give this infrastructure specification to an infrastructure team, which
will set up this infrastructure and maintain it throughout the project.1

• Skill identification. During this activity, the project manager identifies the skills and
interests of the developers and records them in a skills matrix.

• Team assembly. The project manager uses the skill matrix to assign the participants to
teams for each subsystem defined in the initial software architecture document, defines
cross-functional teams, and selects team leaders. The project manager and the team
leaders together then assign roles and responsibilities to participants. When skills and
roles do not match, the project manager identifies additional training needs and
tutorials for the team members during this phase. Finally, the project manager assigns
work packages to the teams. 

• Project kick-off. The project manager, the team leaders, and the client officially start
the project in a kick-off meeting with all developers being present. The purpose of the
kick-off meeting is to share with all the project participants the scope of the project, the
communication infrastructure, and the responsibilities of each team. After project kick-
off, the project enters steady state.

Project steady state. During project definition and project start, most decisions are made by
the project manager. During the steady state, team leaders are taking over some management
functions. In particular, they are responsible for tracking the status of their team and identifying
problems in team meetings. Team leaders report the status of their team to the project manager,
who then evaluates the status of the complete project. Team leaders respond to deviations from
the plan by reallocating tasks to developers or obtaining additional resources from the project
manager. The project manager is responsible for the interaction with the client, obtaining formal
agreements and renegotiating resources and deadlines. Steady state project management
includes the following activities:

• Project scope definition. Once the analysis model is stable, the client and the project
manager formally agree on the functional and nonfunctional requirements of the
system, which might lead to an update in the Project Agreement document.

• Controlling. Throughout the remaining project phases, team leaders and the project
manager monitor status in a weekly meeting and compare it with the planned schedule
from the SPMP. The team leaders are responsible for collecting status information
through meetings, reviews, problem reports, and work product completion. They are
also responsible to report status to the project manager.

1. Depending on the size and complexity of the project, financial and personal management systems are set up as well. 
These systems are not covered in this book. 
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• Risk management. During this activity, project participants identify additional
potential problems that could cause delays in the schedule and budget overruns. The
project manager and the team leaders identify, analyze, and prioritize risks, and prepare
contingency plans.

• Project replanning. Whenever the project deviates from the schedule or when a
contingency plan is activated, the project manager needs to revise the schedule and
reallocates resources to meet the delivery deadline. The project manager can hire new
staff, create new teams, or merge existing teams. Project replanning can also be
triggered when the client changes the requirements.

Project termination. During this phase, the project outcome is delivered to the customer and
the project history is collected. Most of the developers’ involvement with the project ends just
before this phase when they clean up models and code and complete the documentation. A
handful of key developers, the technical writers, and the team leaders are involved with
wrapping up the system for installation and acceptance and collecting the project history for
future use.

• Delivery. This activity consists of two subactivities, the client acceptance test and
installation, usually in that order.

• Client acceptance test. The software system is evaluated with the client according
to the acceptance criteria set forth in the Project Agreement. Functional and
nonfunctional requirements are demonstrated and tested using scenarios defined in
the Project Agreement. The client formally accepts the product at this stage.

• Installation. The system is deployed in the target environment and documents are
delivered. The installation may include user training and a roll-out phase, during
which data is migrated from the previous system to the new system. 

• Postmortem. The project manager and the team leaders collect the history of the
project to allow the organization to learn from it. By capturing the history of major and
minor failures and by analyzing their causes, an organization can avoid repeating
mistakes and improve its practice.

Each of the states allows significant parallelism of the project management activities. This
is modeled in the activity diagram in Figure 14-2. In the following we describe these activities in
more detail. In the next section we describe project management models used for the various
project phases, in particular for the work to be performed, schedules, and team-based
organizations. We also describe how to document these models in a software project
management plan. 
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Figure 14-2 Management activities in a software project (UML activity diagram).
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14.3 Project Management Concepts

The basic assumption of project planning is that the project outcome cannot be produced in a
single monolithic activity. If this could be done, we would not need a project, we would just do
the work instead of planning it. Because we cannot do this, we use a divide-and-conquer
approach to decompose the work into smaller, more doable pieces.

One of the key tasks in project planning is therefore the decomposition of the total work
package into smaller tasks. This involves two things: identifying appropriate tasks and
identifying dependencies between tasks. We will first talk about tasks and how to identify them.
A hierarchical representation of all the tasks in a project is called the work breakdown
structure (WBS). We then talk about the representation of the temporal dependencies between
tasks, which is called the task model or network diagram. The task model is then mapped onto a
time line which is the project schedule.

14.3.1 Tasks and Activities

A task is a well-defined work assignment for a project participant or a team. A task is the
smallest unit of work that is subject to project management. A task includes a description and a
duration, and is assigned to a role filled by a participant. Tasks consume resources and produce one
or more a work products. They often consume work products produced by other tasks. Table 14-1
provides simple examples of tasks.

Table 14-1  Examples of tasks for the realization of the database subsystem. 

Task name
Assigned 
role

 Description Task input Task output

Database subsystem

requirements 

elicitation

System
designer

Elicit requirements from 
subsystem teams about 
storage needs, identify 
persistent objects

Team
liaisons

Database API,
persistent
object analysis 
model

Database subsystem

design
Subsystem
design

Design the database 
subsystem, recommend 
commercial product

Subsystem
API

Database
subsystem
design

Database subsystem

implementation
Implementor Implements the database 

subsystem
Subsystem
design

Database sub-
system code

Database subsystem

inspection
Implementor Conducts a code 

inspection of the 
database subsystem

Subsystem
source code

List of 
discovered 
defects

Database subsystem

test plan
Tester Develops a test suite for 

the database subsystem
Subsystem
source code

Tests and test 
plan

Database subsystem

test
Tester Executes the test suite for 

the database subsystem
Subsystem
test plan

Test results, list 
of defects
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Related tasks are grouped into activities. Activities are larger units of work. Their duration
is often the same as a development phase, such as requirements analysis or system design. When
activities span the whole duration of a project, they are called project functions. Examples of
project functions are configuration management and project management itself (Figure 14-3).

14.3.2 Work Products, Work Packages, and Roles

A manager assigns tasks, activities, and project functions to participants or a team, who carry it
out, while the manager monitors the progress and completion of the work. In a small project this
can be done informally, often with a shake of hands. In larger projects, this must be spelled out
more explicitly in form of a work package (Figure 14-4). A work package describes the work
products to be produced, the resources needed to perform the work, the expected duration,
dependencies on inputs, which are work products produced by other tasks as well as
dependencies on other tasks. It also specifies the acceptance criteria and the name of the
responsible individual or organizational unit. 

Figure 14-3 Tasks, Activities, and Project Functions (UML class diagram).

Figure 14-4 Relationship between Outcome, Work, and Work Packages (UML class diagram).
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Work packages are important management artifacts, because we assign them to participants
to do the work. We can specify a work package right after the tasks have been identified. An
example of a small work package is an action item, which contains only the name of the
participant, the description of the task to be performed, and the time by which it must be
completed. Examples of larger work packages are descriptions for creating an object model, a class
diagram, source code, a document section, or a document. For example, each section of the
requirements analysis document can correspond to a work package specifying who has to write the
section and by when. 

Any work product to be delivered to the customer is called a deliverable. The software
system and the accompanying documentation, such as the user manual, are deliverables. All
other types of work products consumed only by other project participants are called internal
work products. For example, action items are internal work products. 

14.3.3 Work Breakdown Structure

The hierarchical representation of all the tasks in a project is called the work breakdown
structure (WBS). The work breakdown structure is a very simple model of the work to be
performed, because it uses only aggregation to model all the identified tasks (see Figure 14-5).

Figure 14-6 depicts a partial work breakdown structure for building a house. The activities
on the right can be assigned to different companies. The cost of an aggregate activity (e.g.,
Build Structure) is computed by aggregating the cost of its children (e.g., Build Foundation,
Build Walls, Build Roof). The node at the root of the hierarchy (e.g., Build House) represents
all the work that is required to complete the project. Note that a work breakdown structure does
not denote the sequencing of activities. For example, in Figure 14-6, Install Sewer Pipes and
Build House are accomplished in parallel, even though they are part of different branches of the
hierarchy. Temporal dependencies are captured in the task model, which we describe next.

14.3.4 Task Model

Tasks are related by temporal dependencies. An example of a temporal dependency is that the
Build Roof task cannot start before the Build Walls task is completed. The set of tasks and
their dependencies is called the task model or network diagram. Figure 14-7 depicts in UML the
task model corresponding to Figure 14-6. 

Figure 14-5 The Work Breakdown Structure is the aggregation of all the work to be performed in a
project (UML class diagram).
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Figure 14-6 Partial work breakdown structure for a house (UML instance diagram).

Figure 14-7 An example of a task model with temporal dependencies for the database subsystem example
of Table 14-1 (UML activity diagram).

Build Foundation

Build Walls

Build Roof

Install Heating

Build Structure

Install PlumbingBuild House:WBS

Install Sewer Pipes

Install Supply Pipes

Install Tubs & Sinks

Install Electric

Database subsystem
req. elicitation

Database subsystem
design

Database subsystem
implementation

Database subsystem
inspection

Database subsystem
test plan

Database subsystem
test



588 Chapter 14  •  Project Management

Tasks have a duration, which corresponds to the actual time needed to complete the task
given the number of required participants. Durations are estimated by the project manager
before the project starts. Once dependencies among tasks and task durations are known, the
project manager can compute the shortest possible time in which the project can be completed.
This is simply the longest path in the task model, called critical path, that proceeds from the
first task in the project to the last, where the length of the path is computed by adding the task
durations. The project manager focuses particularly on the tasks on the critical path, as any delay
in these tasks results in delays of the overall project and missed deadlines. A task’s slack time is
the maximum amount of time a task can be postponed without delaying the rest of the project.
By definition, tasks on the critical path have a zero slack time.

Time constraints can be used to specify the start or end of a task independent from the
relationship of the task to other tasks. Time constraints are usually the result of an interaction of
the project manager with the client. If the system must be finished in the first week of December,
it has an MFO constraint. If a task T must start on a Monday, it has an MSO (see Table 14-2)
constraint. ASAP is the most commonly used constraint by people ordering tasks; ALAP is the
most commonly used constraint by people receiving tasks.

14.3.5 Skill Matrix

Once the work breakdown structure has been formulated, the project manager has to find the
right participants to perform the individual tasks. This is difficult because project managers must
work with people they may not know well. 

Making a special effort to identify skills, knowledge, and interests helps the manager to
make more appropriate use of any special talents and improves the morale and productivity of
the project team.

Table 14-2  Time constraints. 

Constraint Definition

ASAP Start the task as soon as possible

ALAP As late as possible

FNET Finish no earlier than

SNET Start no earlier than

FNLT Finish no later than

SNLT Start no later than

MFO Must finish on

MSO Must start on
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A skills matrix is a convenient form of relating the skills, knowledge, and interests of
people to the tasks to be performed in the project. The rows of a skill matrix (see Table 14-3)
denote the units of work—tasks, activities, and project functions—from the work breakdown
structure. The columns denote project participants. An entry in the matrix identifies the skill and
knowledge level of the particular participant for the task. We distinguish three types of entries:
primary skill, a secondary skill, and an interest. A primary skill or knowledge qualifies a person
to lead a unit of work. A secondary skill or knowledge qualifies a person to participate in a task.
Interest means the person is interested but has no skill in a task. 

14.3.6 The Software Project Management Plan

The management models described so far are summarized in Figure 14-8. This is a refinement of
the model we defined in Chapter 3. We added three composite patterns to generalize the classes
WorkProduct, Task, and Participant. We also added the Work Breakdown Structure and the
Organization classes, which are usually not visible to the developers. 

The project management models are summarized in the Software Project Management
Plan (SPMP) [IEEE Std. 1058-1998]. In waterfall projects, this document is created before the
project kick-off by the project manager. In architecture-centric projects, it is created after the
software architecture is defined. In agile projects, this document is updated after each iteration.
Figure 14-9 depicts an example outline for the SPMP.

The audience of the SPMP includes the management and the developers. The SPMP
documents all issues related to client requirements (such as deliverables and acceptance criteria),
the project goals, the project organization, the division of labor into tasks, and the allocation of
resources and responsibilities. The first three sections of the SPMP provide background
information for the rest for the document. It briefly describes the project, the client deliverables,
the project milestones, and expected document changes. This section contains the hard
constraints from the Project Agreement that are relevant to the developers.

The fourth section of the SPMP describes the Project organization. The section describes
the organizational structure of subsystem teams and cross-functional teams. The boundaries of

Table 14-3   Example of a skill matrix with 4 tasks and 4 participants. 

Tasks\ Participant Bill Mary Sue Ed

Control Design

Database Design

User Interface Design

Configuration Management

 secondary skillprimary skill  interest
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each team and of the management are defined and responsibilities assigned. Communication
roles, such as liaisons, are also described in this section. By reading this section, developers are
able to identify the participants in other teams they need to communicate with.

The fifth section of the SPMP, Managerial process plans, describes how management
deals with project initiation, steady state, and termination, and how it addresses unforeseen
problems. Anticipated risks and contingency plans are made public.

The sixth section of the SPMP, Technical process plans, describes the technical standards
that all teams are required to adopt. These cover the process model, development methodology,
the coding guidelines, infrastructure, and the product acceptance plan.

The seventh section of the SPMP, Supporting process plans, includes provisions for each
of the supporting processes, such as configuration management, verification and validation,
documentation, quality assurance, reviews and audits, problem reporting, subcontractor
management, and process improvement. 

An initial version of the SPMP should be written by the project manager during the project
definition phase, and it should be coordinated with its companion document, the initial software
architecture document. 

We call the software project management plan and the software architecture initial,
because the documents should not be finalized until the beginning of the project steady state

Figure 14-8 Model of a Project from a project manager’s point of view. This is a refinement of the model
used in Chapter 3: we have added three composite patterns to generalize the classes WorkProduct, Task and
Participant (UML class diagram). 
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phase. In fact, we recommend a baseline of these documents only after the requirements analysis
phase. Only then will all the project participants be able to understand the impact of the
requirements on the work.

The completed SPMP document should be reviewed both by management and by
developers to ensure that the plans are feasible and realized in the project. 

The evolution section of the SPMP provides a history of changes, including the author
responsible for the change, date of change, and a brief description of the change. The SPMP
should be updated whenever decisions that effect the outcome are made or problems are
discovered. In very large-scale projects this project function continues during the duration of the

Software Project Management Plan (SPMP)

1. Overview
1.1 Project summary
1.2 Evolution of the plan

2. References
3. Definitions
4. Project organization

4.1 External interfaces
4.2 Internal structure
4.3 Roles and responsibilities

5. Managerial process plans
5.1 Start-up plan
5.2 Work plan
5.3 Control plan
5.4 Risk management plan
5.5 Closeout plan

6. Technical process plans
6.1 Process model 
6.2 Methods, tools, and techniques
6.3 Infrastructure plan
6.4 Product acceptance plan

7. Supporting process plans
7.1 Configuration management plan
7.2 Verification and validation plan
7.3 Documentation plan
7.4 Quality assurance plan
7.5 Reviews and audits
7.6 Problem resolution plan
7.7 Subcontractor management plan
7.8 Process improvement plan

8. Additional plans

Figure 14-9 An example of a template for the SPMP.
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project. In this case updating all aspects of the SPMP is assigned to a separate person employed
as a planner.

In smaller projects, the role of the planner is usually played by the project manager.
Keeping the SPMP constantly up-to-date might become impossible because of the high
workload. In this case, we recommend that the project manager create three versions of the
SPMP: an initial version as the basis for project planning, the baselined version after the project
agreement is signed, and a final version at the end of the project termination as the basis for the
postmortem session. 

14.4 Classical Project Management Activities

In this section, we describe the activities of a project manager managing a team-based software
project. Omitting the concept phase activities, our focus begins with the project definition phase.

The main activities of the project manager during project definition are to define the
organization structure, and to identify work products, tasks, schedule, and roles. Team leaders
join the project at the end of the project definition phase and their main effort is spent in
monitoring and managing teams during steady state. Team leaders should be aware, however, of
the project activities preceding their involvement and of the interaction with the client. We
discuss the following management activities:

• Planning the Project (Section 14.4.1): defining the problem, identifying the initial task
model and organization structure, estimating needed resources such as personnel and
funds. 

• Organizing the Project (Section 14.4.2): hiring participants, skill identification,
mapping roles and responsibilities to participants, and organizing tutorials and the
project kick-off meeting. 

• Controlling the Project (Section 14.4.3): project monitoring, risk management, and the
project agreement. 

• Terminating the Project (Section 14.4.4): the client acceptance test, installation, and
project postmortem. 

In this section, we focus on classical projects, in which the scope of the product is
relatively well defined at the beginning of the project and the goal of the project is to deliver
within a specific deadline and budget. In Section 14.5, we revisit these activities for an agile
project, in which the scope and requirements of the product are defined as the project progresses,
and the product is delivered in increments.

14.4.1 Planning the Project

Project planning focuses on the definition phase—the definition of the problem, planning a
solution, and estimating resources— and results in the following work products (Figure 14-10):
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• The problem statement is a short document describing the problem the system should
address, the target environment, client deliverables, and acceptance criteria. The
problem statement is an initial description and is the seed for the Project Agreement,
formalizing the common understanding of the project by the client and management,
and for the Requirements Analysis Document (RAD), a precise description of the
system under development.

• The top-level design represents the initial decomposition of the system into
subsystems. It is used to assign subsystems to individual teams. The top-level design
will be the seed for the System Design Document (SDD), a precise description of the
software architecture. 

• The Software Project Management Plan (SPMP) describes all the managerial
aspects of the project, in particular the work breakdown structure, the schedule,
organization, work packages, and budget.

Moving the design of the software architecture to the beginning is called architecture-
centric project management. Designing the top-level design and the SPMP in parallel is highly
desirable. However, pushing the design of the subsystem decomposition into the project

Figure 14-10 Work products generated during project planning and their relationship with typical project
deliverables (UML class diagram).
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organization phase is a deviation from long-standard software project management practices. In
university environments and in small company projects, the software project manager and
software architect roles are often assumed by the same person. Because the work load is high,
this requires a technically competent and highly motivated manager. In large projects the roles
should be assumed by different people. The software architect and project manager should work
closely together as a decision-making team, dividing responsibilities between management and
technical decisions [Paulish, 2001]. 

Developing the problem statement

The Problem Statement is developed by the project manager and the client as a mutual
understanding of the problem to be addressed by the system. The problem statement describes
the current situation, the functionality it should support, and environment in which the system
will be deployed. It also defines the deliverables expected by the client, together with delivery
dates and a set of acceptance criteria. The problem statement may also specify constraints on the
development environment, such as the programming language to be used. The problem
statement is not a precise or complete specification of the system. Instead, it is a high-level
summary of two project documents yet to be developed, the RAD and the SPMP.

The problem statement is developed iteratively by the project manager and the client.
Developing the problem statement is both a negotiation activity and an information-gathering
activity during which each party learns the expectations and constraints of the other. The
problem statement contains a high-level description of the functionality of the system. It should
also provide concrete examples to ensure that both parties are sharing the same vision. Scenarios
are used for describing both the current situation and the future situation (see Chapter 4,
Requirements Elicitation).

Figure 14-11 is an example outline for a problem statement. The first section describes the
problem domain. Section 2 of the problem statement provides example scenarios describing the
interaction between users and the system for the essential functionality. Scenarios are used for
describing both the current situation and the future situation. Section 3 summarizes the
functional requirements of the system. Section 4 summarizes the nonfunctional requirements
including constraints placed by the client, such as the choice of the programming language,
component reuse, or selection of a separate testing team. Section 5 describes the deployment
environment, including platform requirements, a description of the physical environment, users,
and so on. Section 6 lists client deliverables and their associated deadlines.

Defining the top-level design

The top-level design describes the software architecture of the system. The top-level
design should be done by the software architect. A project manager assuming the role of the
software architect must have enough technical expertise to accomplish this.
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The subsystem decomposition should be high level, focusing on functionality. It should be
kept constant until the analysis phase produces a stable system model. The subsystem
decomposition can and should be revisited during subsystem design, and new subsystems are
usually created during the system design phase. In this case the organization might have to be
changed to reflect the new design. The software architect identifies the major subsystems and
their services, but does not yet define their interfaces at this point. The subsystem decomposition
is refined and modified later during system design (see Chapter 6, System Design: Decomposing
the System).

Later, during the project start phase, the subsystem decomposition serves as the basis of
the organizational units. Each subsystem is assigned to a team that is responsible for its
definition and realization. Teams who work on dependent subsystems will negotiate individual
services and their interfaces as these become necessary.

Identifying the work breakdown structure

There are several different approaches to developing the work breakdown structure (WBS)
for a project. The most commonly used approach is functional decomposition based on the
software process. For example, the work breakdown structure in Table 14-4 is based on a
functional breakdown of the work to be performed. 

A functional decomposition based on the functions of the product itself can also be used to
define the tasks. This is often used in a high-risk projects where the system functionality is
released incrementally in a set of prototypes. For example, if a software system provides three
main functions, a system function–oriented work breakdown structure could consist of tasks that
build and deliver these system functions in a series of three prototypes. 

An object-oriented work breakdown structure is also possible. For example, if a product
consists of five components, an object-oriented WBS would include five tasks associated with
the construction of each of these components. Specifying the development of these subsystems
of the software architecture as tasks comes quite naturally in object-oriented software projects.

PROBLEM STATEMENT

1. Problem domain
2. Scenarios
3. Functional requirements
4. Nonfunctional requirements
5. Target environment
6. Deliverables & deadlines

Figure 14-11 Outline of problem statement document. Note that the sections 2, 3, and 4 are not a complete
or precise specification of the system. They provide the basis for requirements elicitation. Section 6,
however, describes contractual deliverables and their associated due dates.
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Figure 14-12 shows such a work breakdown structure for a system consisting of three
subsystems.

Another decomposition is based on geographical areas. If the project has developer teams
in different geographical regions, the tasks might be identified for each of these regions. Another

Table 14-4  Example of functional work breakdown structure for a simple ATM. 

Use case Work breakdown structure

Authenticate 1. Realize authentication use case
1.1. Develop user interface forms (Login, change PIN)
1.2. Realize authentication protocol with server
1.3. Develop initial account creation

Withdraw Money 2.  Develop money withdrawal use case
2.1. Develop user interface forms (Select Account,

Specify Amount)
2.2. Realize communication with server
2.3. Develop business logic for approving withdrawal
2.4. Develop interface with cash distributor

Deposit Check 3. Develop deposit check use case
3.1. Develop user interface forms (Specify Check, Insert Check)
3.2. Realize communication with server
3.3. Develop business logic for recording the deposit
3.4. Develop interface with label printer

Figure 14-12 An example of an object-oriented work breakdown structure where the subsystem
decomposition is used to identify high-level activities and tasks (UML object diagram).
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WBS is based on organizational units. These can be the organizational units of the company
(marketing, operations, and sales) or they can be based on the people in the project. 

No matter what approach is used, the ultimate goal is to decompose the total work into
tasks that are small enough to be doable, whose duration can easily be estimated, and that can be
assigned to a single person.2

When creating a work breakdown structure, the following heuristics are quite useful for
the project manager: 

• Reuse an existing WBS. Consult people who have worked on similar projects.
Incorporate the information into the work breakdown structure.

• Involve key developers. Developers with knowledge about the solution domain should
participate in the development of the work breakdown structure. If they join the project
after the work breakdown structure is developed, they should be able to review and
critique it before they begin to work on their assigned tasks.

• Identify work gaps. All work to be performed in the project must be mapped onto tasks.
Work that is associated with an activity must eventually be addressed by at least one
task. If new work appears, an activity should be found or newly defined that includes
this task. 

• Identify work overlaps. The same task should not be included in more than one activity.
For example, the project manager should not let the developers do subsystem testing, if
all subsystems tests are performed by a separate testing team.

Creating the initial schedule

After the temporal dependencies are established in the task model, we can create a
schedule. This requires the estimation of durations for each of the tasks. Estimating task
durations is quite difficult. Estimated times can of course be based on prior experience of the
manager or the estimator, but they often do not give the needed precision. It is impossible to
come up with a precise model for the complete project. One solution is to start with an initial
schedule representing deadlines mutually agreed by the client and the project manager. These
dates are generous enough that, even in the event of change, they can still be met.

Initially, the project manager should create a schedule that is detailed enough for the first
weeks of the project, showing events for the project kick-off meetings, the initial team meetings,
and tutorials. The rest of the project schedule should not be more detailed than the schedule in
the problem statement. The initial version of the SPMP should be viewed as a proposed version

2.  There are things you have to do in a project such as coming to work, eating food, etc., which are usually not 
considered tasks. That is, the project participant is not responsible to report the status of these things to the project 
manager or team leader. Managers who try to turn these things into tasks as well are often called “micro-managers” 
because they get too involved and manage low-level details.
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to be reviewed by the software architecture and subsystem teams before it can be considered
binding for all project participants. 

The individual teams should start working on a revision of the initial version of the
subsystem decomposition right after the initial team meeting, focusing on their subsystem and
work breakdown structure for the development of the subsystem. 

This planning activity has to be done by the team in parallel with ongoing requirements
analysis and system design activities. The newly found tasks should be presented during a
formal planning review scheduled during or near the end of the analysis phase. The result of the
planning review should be a revised work breakdown structure and software architecture. This
revision, in turn, is the basis for the second version of the SPMP, which should be baselined and
used as the basis for the project agreement with the client.

Scheduling requires a continuing trade-off between resources, time, and implemented
functionality and should be done regularly by the project manager. However, creating and
updating schedules are complicated activities, especially when people have to juggle between
commitments on more than one project. Resolving overloaded resources is a topic that is beyond
the scope of this book.

14.4.2 Organizing the Project

During project start, project management assembles the teams according to the top-level design
described in the software architecture, sets up the communication infrastructure, and then kicks
off the project by organizing the first two meetings. Once all participants are assigned tasks and
status reporting mechanisms are in place, the project is considered to be in steady state. 

Project start activities are crucial for project-based organizations and are usually
performed under time pressure. The main problem is that the project members don’t yet know
each other. They have not yet had time to discover their different personalities and different
working styles. Getting to know the diversity of the responsibilities within the project is another
issue that needs to be addressed by the project manager. 

Setting up the communication infrastructure

Clear and accurate communication is critical for the success of a development project.
Moreover, communication becomes crucial when the number of project participants increases.
Consequently, setting up the communication infrastructure for a project must occur as early as
possible. The project manager needs to address the following modes of communication:

• Scheduled modes of communication. These include planned milestones, such as client
and project reviews, team status meetings, inspections, and so on. Scheduled modes of
communication are the formal means through which project participants gather and
share information. These are best supported by synchronous or face-to-face
communication, such as meetings, formal presentations, video conferences, and
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telephone conference calls. The manager schedules dates and designates facilitators for
each of these interactions.

• Event-based modes of communication. These include problem reports, change requests,
issue discussion, and resolution. Event-based modes usually arise from unforeseen
problems and crises. Asynchronous mechanisms such as E-mail, groupware, and
problem databases need to be set up early, and participants need to be trained to use
them. When the number of participants is large, centralized infrastructures, such as
Web sites and bulletin boards, are preferable as they make information visible to more
people than E-mail or bilateral conversations. 

Identifying skills

Once the initial work breakdown structure and task models have been created, the project
manager knows the type of skills required for each task. For example, tasks related to
requirements elicitation require application domain knowledge. Tasks that involve discussions
with the client require effective communication skills. Tasks related to testing require attention
to detail and quality-oriented thinking. In general, a software engineering development project
requires a variety of skills: 

• Application domain skills. These include knowledge of the application domain, such as
banking terms and procedures and credit rating formulae in the context of banking
applications.

• Communication skills. These include the ability to communicate with stakeholders who
are not familiar with software development or with the application domain, the ability
to summarize and present complex ideas, and the ability to negotiate and achieve
consensus.

• Technical skills. These include knowledge of specific technology used in the project,
such as programming skills or knowledge of a specific component, the ability to assess
risks and bottlenecks in a software design, and the ability to find workarounds to
unexpected problems.

• Quality skills. These include attention to detail, the ability to identify boundary cases
and generate the corresponding test cases, and the ability follow procedures.

• Management skills. These include the ability to assess personal skills, motivate, provide
feedback, and assess project-level risks.

The task of the project manager, when organizing the project, is to identify individuals
with the right combination of skills for each task using a skill matrix (see Section 14.3.5). The
rows of the skill matrix come from the required skills for each tasks. The columns come from
the pool of available staff. In project-based organizations, the skills of each individual are
recorded in a profile, as the individual gains experience through projects and attends specific
courses. For resources hired from outside the organization (e.g., freelancers), a profile can be
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reconstituted from a combination of self-assessment (e.g., the individual’s resume) and from the
organization’s own assessment (e.g., interviews, tests). The set of profiles available to an
organization represents the competence of the organization.

Assigning management roles

Management roles are assigned to individual participants. A role such as team leader
cannot be filled effectively if is shared. First, a team leader fills a communication function by
acting as a liaison between higher-level management and developers and thus must be able to
communicate a consistent picture of status back and forth. Second, although a team leader
usually seeks the consensus of developers, he or she occasionally has to impose time-critical
decisions. Other management roles, such as liaisons between teams, also require the same
degree of consistency and thus are assigned to a single individual.

A good project manager seeks three skills in a participant when assigning management
roles: the ability to communicate, the ability to recognize risks early, and the discipline to
separate management decisions from technical ones. Such skills often come from experience in
previous projects. Having experience with teams is an important prerequisite for a team leader.

Assigning technical roles

In projects with small resources, the role of the software architect is often assumed by the
project manager. The advantage is a tight coordination of managerial and high-level technical
activities. The disadvantage is the additional time required by the project manager, which often
leads to task overload. The two roles should be assigned to different people.

Technical roles can be assigned to a team of participants. Complex software projects, for
example, can have a separate testing team composed of only testers. Once the project manager has
defined the responsibilities of the teams, it is the task of the team leader to assign individual tasks
to each team member based on availability or skill. Technical roles do not require the same level of
consistency as management roles do, given that their tasks are better defined and that they rely on
management and liaisons for coordination.

Dealing with skill shortages

In general, there are rarely sufficient skills for a given project (that is, not all rows in the
matrix can be assigned to a column), in part because of the rapid evolution of technology. The
project manager generates a training plan when skills are missing. This can include in-house
training, courses by vendors, and on-the-job training. Formal training can become expensive for
an organization, so in practice, much training happens on the job. The project manager should
distribute new or inexperienced staff across the project such that each team has at least one
experienced developer. Experienced developers provide technical leadership and can often serve
as mentors for the unexperienced developers who then gain experience more quickly. For
example, peer-programming techniques in which two developers share a computer and
collaborate on a single development task are advocated in the extreme programming life cycle
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process (see Chapter 15, Software Life Cycle) as a means to disseminate skills through the
organization with minimal formal training.

Formal training and learning by practice is a trade-off the project manager evaluates
within the given project time constraints. Formal training enables developers to become more
productive earlier; however, it is expensive and constitutes a longer-term investment benefiting
future projects.

Selecting team sizes

Although technical roles can be assigned to teams, the size of a single team is constrained
by management and communication overhead. When there are more participants on a team, then
the communication overhead is higher and team effectiveness is lower. The observations below
are adapted from [Kayser, 1990], who originally applied these heuristics to the formation of
subgroups during meetings. Given that team meetings are a significant tool for collecting status,
negotiation, and decision making, constraints on the number of participants in meetings are the
upper limits on the team size:

• Three members. During meetings, every member has a chance to speak. Issues are
discussed thoroughly and resolved easily. A possible problem with this team size is that
one member can dominate the other two. Also, small teams suffer from the cumulation
of multiple roles for each participant (“too many hats” syndrome).

• Four members. Starting with teams of this size allows the team to continue to function
even if a participant drops out. Reaching consensus with a team of even numbers can be
problematic since there can be a tie when voting. As a result, resolving issues can take
a relatively long time.

• Five and six members. This is the ideal size for a software development team. Members
can still meet face to face. Diverse perspectives, supported by a mix of ideas, opinions,
and attitudes, promotes creative thinking. Single roles can be assigned to each member,
creating a mini-organization in which each member complements the others. 

• Seven members. This is still a relatively effective team size, but team meetings tend to
become long. Reviewing the status requires more than half an hour. If teams of seven
are necessary, it is advisable to form subteams during the formal team meetings, each
having the task to discuss and resolve a subset of the open issues from the agenda. 

• Eight and more members. Teams of this size become difficult to manage. The internal
structure often starts to break down into subteams. Coalitions and side conversations
often occur during formal meetings. Members have more opportunities to compete than
to cooperate. Although results are usually satisfactory, the time to reach these results is
longer than with a team of smaller size.
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Assembling the teams

The next step in the project organization phase is to assemble the teams who will produce
the deliverables. The project manager selects the team leaders before the teams are formed. In
addition to being capable of understanding the team status, the team leader needs to be able to
communicate effectively, recognize pending crises (technical or social), and make trade-offs
taking into account project level concerns. 

The project start phase is an ideal time for training team leaders and familiarizing them
with project procedures and ground rules. The team leader role is distinct from the role of
technical leader. The technical leader, usually the liaison to the architecture team, interacts with
the chief architect and the architecture liaisons from the other teams and has final say on the
technical decisions within the team. The role of architecture liaison requires excellent technical
skill and development experience. 

In a training context, such as a university project course or an industrial pilot project
exploring a new software method, the team leader can be split into two roles. A coach trains,
explains, advises the team and acts as a liaison to the project manager. A team leader trainee fills
all other responsibilities of the team leader, including facilitating status meetings and assigning
tasks. In a university project course, this role can be filled by the instructor or an experienced
teaching assistant, whereas the architecture liaison can be filled by a student. In a development
project at a company, the team leader is filled by a developer who has experience and knowledge
with the organization’s management procedures, whereas the architecture liaison is filled by a
developer who has strong technical skills.

Developers who will work for the project can be assigned to the project all at once (flat
staffing), or the project can be gradually ramped up by hiring people as needed (gradual
staffing). On the one hand, gradual staffing is motivated by saving resources in the early part of
the project. Requirements elicitation and analysis do not require as many people as coding and
testing. Moreover, analyst and implementor are roles requiring different skills and thus should
be assigned to different people. On the other hand, flat staffing has the advantage of establishing
teams early and the social environment necessary for spontaneous communication. Some of the
developers can be assigned to the analysis activities with the analysts, and the others may
already start other activities such as setting up the configuration management environment,
technology survey and evaluation, and training. With shorter projects and market deadlines, flat
staffing is becoming the preferred staffing scheme. The dilemma between gradual staffing and
flat staffing has been discussed in length by Brooks [Brooks, 1995].

Kick-off meeting

The project manager, the team leaders, and the client officially start the project in a kick-
off meeting with all developers present. The purpose of kick-off meetings is to share information
with all the project participants about the scope of the project, the communication infrastructure,
and the responsibilities of each team. The presentation should be split between client and project
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manager. The client presents the requirements and the scope of the project. The project manager
presents the project infrastructure, top-level design and team responsibilities.

Agreeing on project scope

This document formally defines the scope, duration, cost, and deliverables for the project.
The Project Agreement can be in the form of a contract, a statement of work, a business plan, or
a project charter. The Project Agreement is typically finalized after the analysis model is
stabilized and the planning of the rest of the project is underway. 

A Project Agreement should contain at least the following:

• list of deliverable documents
• criteria for demonstrations of functional requirements
• criteria for demonstrations of nonfunctional requirements, including accuracy,

reliability, response time, and security
• criteria for acceptance.

The Project Agreement represents the baseline of the client acceptance test. Any change in
the functionality to be delivered, the nonfunctional requirements, the deadlines, or the budget of
the project requires the renegotiation of the Project Agreement.

After the completion of the project kick-off and agreement in the project scope, the project
enters steady state.

14.4.3 Controlling the Project

To make effective decisions in the steady state phase of the project, the project manager needs
accurate status information. Unfortunately, collecting accurate status information is difficult.
While a complex system is difficult to understand in itself, the status of its components and its
impact on future deliveries are even more difficult to understand. Developers will not report to
their team leader any problem they believe they can address in time. However, small departures
from the schedule, not worth reporting independently, aggregate and degenerate into large
departures much later in the schedule. By the time team leaders discover and report a major
problem to the project manager, it has already caused a substantial delay in the project. 

Several tools are available to collect status information. Because none of them are accurate
or reliable alone, team leaders and project managers need to use a combination of these. Below
we review their advantages and disadvantages. 

Meetings

• Periodic status meetings. Status meetings conducted at the team level have the best
potential for reporting status and information required for corrective decisions. Status
meetings, however, can also provide inaccurate status information if team members do
not cooperate. Participants are naturally reluctant to report problems or mistakes. They
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cooperate only if they can trust a manager not to step into problems that they can
resolve themselves. Managers need to make problem reporting beneficial to developers
by intervening only when necessary.

• Sharp milestones. Progress can be measured by determining if developers deliver work
products on time. Managers can increase the accuracy of this method by defining sharp
milestones such that they can be accurately monitored. For example, the “coding
completed” milestone is not a sharp milestone, because it does not take into account the
quality of the code delivered. The code could contain few or many defects and the
milestone would be considered completed in either case. Conversely, defining a
milestone as the completion of the test, demonstration, documentation, and integration
of a specific feature yields better status information. When defining and monitoring
sharp milestones, managers do not need the cooperation of developers.

• Project reviews. A project review is a means for all participants to exchange status and
plan information about all the teams with formal presentation. Project reviews suffer
from similar problems as status meetings. If participants are already reluctant to admit
problems in front of their team leader, they definitively will not admit problems in a
public forum. 

• Code inspections. Formal peer review of code is an effective method for discovering
defects early. When performed frequently, results can also be used as an indication of
progress.

• Prototype demonstrations. Prototype demonstrations are partial implementations of the
system for evaluating technology or functionality. They usually do not illustrate how
borderline cases are dealt with or how robust the implementation is. They are good for
measuring initial progress, but are not sharp measures of completion.

Metrics

It is difficult to manage the evolution of a product without objective measures. Although
meetings and inspections help assess the status of a project, they rely on the perception of
selected participants and their willingness to communicate what they know. The optimism of a
single participant can lead to the belief that the project has progressed much further than it has.
Software metrics are quantitative measures of selected aspects of the process or the system.
Instrumenting the process and the evolving system with automated metrics attempts to provide a
tool for measuring progress objectively.

Many software metrics have been proposed, such as the number of lines of source code,
the number of branching points [McCabe, 1976], the number of variables and operators
[Halstead, 1977], and the number of functional requirements [Albrecht & Gaffney, 1983]. Using
software metrics as a management tool has been difficult, as many work products are not
software items, and the values and trends observed require much interpretation from the
manager. Many project or product parameters have a potential impact on the metric being
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measured. For example, if the size of a subsystem in lines of source code increases rapidly,
maybe the developers assigned to the subsystem are productive, or they maybe are duplicating
code. With iterative and architecture-centric approaches, however, software components to test
and measure become available much earlier. Moreover, metrics can also measure attributes of
the process, such as deviations with the schedule, resources expended, and number of
participants leaving prematurely.

• Measuring financial status. Comparing planned costs against actual costs in the context
of actual progress enables a manager to assess the financial health of the project.
Software development projects are labor intensive; consequently, most of the cost
associated with the project is staffing. The planned staffing profile of the project over
time provides a cost baseline against which to compare actual costs. In addition, the
task model and the schedule provides us with the estimated effort and the deadline for
each task. An earned value assessment enables us to assess both the cost and schedule
situation of a project using one chart. For example, in Figure 14-13, the thin line
depicts the planned costs of the project over time. A project that is on budget and on
schedule would follow the same line very closely. The thick line represents the actual
costs of the project over time. In the example of Figure 14-13, we actually spent less
than planned. However, if we only looked at these two curves, we would not be able to
assess whether or not the project is in a good financial state. The project could be under
cost because we accomplished the planned work for less money, or because we did not
accomplish as much as planned. Consequently, we plot a third curve, the earned value,
which represents the value of the work we completed so far. The earned value is
measured by adding the planned costs of the tasks that have been completed. In this
example, the earned value is between the actual cost and the planned cost, indicating
that the project is under budget and late. If the earned value had been above the planned
costs, the project would have been under budget and early.

• Measuring technical progress. While measuring financial status is well understood in
software engineering and in project management in general, software development
projects introduce a special challenge when determining what tasks have actually been
accomplished. Measuring technical progress requires size metrics for each team. For
the development team, this can include the number of lines of source code under
baseline or the number of closed change requests. For the testing team, this can include
the number of defects found or the number of open change requests. For the
architecture team, it might be the number of critical use cases that have been
demonstrated. Size metrics, however, must be viewed in combination with quality
metrics to ensure that participants are not locally optimizing their numbers. For
example, change requests should be considered closed only after all regression tests
related to the change do not discover new defects.
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• Measuring stability. Once an initial version of the system is baselined, change requests
are issued to control and track changes to the baseline. Measuring the rate of new
change requests corresponding to defects in the system indicates how stable the system
becomes over time. Measuring the rate of change requests to the requirements similarly
indicates how stable the requirements have become in the view of the client. If work
completion indicates that the project is almost finished but the rate of change requests
is still high, the project may not be achieving its target quality goals.

• Measuring modularity. Breakage is a measure of the impact of a change on the baseline
(which can be measured in terms of lines of code, number of files, function points, or
any size metric that is appropriate in the context of the project). It is expected that early
changes affect more source code than later ones, as the architecture should become
more modular over the project time. Measuring breakage can encourage this trend and
make visible early any architectural issues (e.g., identifying specific types of changes
that yield high breakage). Increasing breakage indicates a degrading modularity over
the lifetime of the project, probably resulting from an inadequate architecture or
specific nonfunctional requirements that are difficult to meet.

• Measuring maturity. Mean time between failures measures the time between
discovered defects during testing. As the project nears delivery, the number of
discovered defects should decrease, indicating an increasing maturity of the product. A
decreasing maturity can indicate that developers are under pressure to address open
change requests and do not pay sufficient attention to quality. Decreasing maturity can
also result from a lack of stability (see measuring stability, above).

Figure 14-13 Assessing the financial status of a project using earned value. An earned value above actual
costs indicates that more work was accomplished for the same a mount of money (i.e., the project is under
budget). An earned value below planned costs indicates that not as much work was completed as planned
(i.e., the project is late).

Current

Actual cost

Earned value

Planned cost

time

Time
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Finally, independently of the methods used for determining status, the project manager,
the team leaders, and the developers need to communicate status information in understandable
terms. Next, we describe risk management as a method for controlling projects, communicating
potential problems, and planning contingencies.

Managing risk

The focus of risk management is to identify possible problems in the project and address
them before they can significantly affect the delivery date or the budget. The key element of risk
management is to set up the appropriate information flows such that risks and problems are
accurately reported in a timely manner. Many projects fail either because simple problems were
reported too late or because the wrong problem was addressed. In this section, we focus on the
activities of risk management for identifying, analyzing, and addressing risks. For more details
on risk management in software engineering, we refer the reader to the specialized literature
(e.g., [Boehm, 1991] and [Charette, 1989]).

The first step of risk management is to identify risks. Risks are potential problems that
result from an area of uncertainty. Risks can be managerial or technical. Managerial risks
include any uncertainty related to the organization, work products, roles, or task plan. Technical
risks include any uncertainty related to the system models, including changes of the
functionality of the system, the nonfunctional requirements, the architecture, or the
implementation of the system. In particular, technical risks include defects discovered late in the
development. Table 14-5 depicts examples of risks in a software project.

Developers are often aware of the risks applicable to their tasks. The challenge is to
encourage developers to report risks so they can be managed. This entails rewarding developers
for reporting risks and problems and making the risk management activities directly beneficial
to developers. Spontaneous risk reporting is usually not sufficient. Project participants, including
the client, the developers, and the managers, are usually reluctant to communicate potential

Table 14-5  Examples of risks identified in the OWL project.

Risk Risk type

Behavior of a commercial off-the-shelf (COTS) component does not comply with
published standard.

Technical

COTS components delivery date is later than planned. Managerial

Users are not willing to use chosen user interface to interact with system. Technical

Selected middleware is too slow to meet performance requirement for data logging. Technical

Development of subsystems takes more time than scheduled. Managerial
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failures or shortcomings and are too optimistic about their outcome. A more systematic
approach to risk identification is to interview the project participants using a structured
questionnaire. Participants are asked in group sessions to list the risks they anticipate with
respect to specific tasks. Figure 14-14 depicts example questions from the Taxonomy-Based
Risk Identification process [Carr et al., 1993]. In this example, the interviewer attempts to
determine if there are any risks related to nonfunctional requirements. Depending on the answer
to the first question, the interviewer can ask follow-up questions to make sure no other related
risks are present. The rationale behind this questionnaire is to cover all the areas of development
in which risks are typically found.

Systematic risk identification produces a large number of managerial and technical risks,
some of them critical, others unimportant. Prioritizing risks allows managers to focus on the
critical risks. Risks are characterized by the likelihood they can become problems and by their
potential impact to the project when they become problems. By using these two attributes, risks
can be assigned to one of four categories:

• likely, high potential impact

• unlikely, high potential impact

• likely, low potential impact

• unlikely, low potential impact.

Managers should worry about the risks of the first category: likely, high potential impact.
For these risks, developers and managers should draw contingency plans and monitor the risk
carefully. If the likelihood of the risk increases, managers can activate the contingency plan and
address the problem in time. Moreover, managers should monitor the risks of the second
category: unlikely, high potential impact. Contingency plans do not need to be drawn for them
unless their likelihood increases. Finally, the risks in the third and fourth categories can be
ignored unless sufficient resources are available for monitoring them. Table 14-6 orders the risks
presented in Table 14-5.

1. Requirements
. . .
d. Performance
. . .

[23] Has a performance analysis been done?
(Yes) (23.a) What is your level of confidence in the performance analysis?
(Yes) (23.b) Do you have a model to track performance through design and implementation?

Figure 14-14 Questions for eliciting performance risks in the Taxonomy-Based Risk Identification
process. If the question to question 23 is positive, questions 23.a and 23.b are asked of the developers [Carr
et al., 1993].



Classical Project Management Activities 609

Once risks have been identified and prioritized, mitigation strategies should be designed

for the critical risks. Mitigation strategies can include lowering the likelihood of the risk or

decreasing its potential impact. Risks are usually caused by an area of uncertainty, such as

missing information or lack of confidence in some information. Developers decrease the

likelihood of a risk by further investigating the causes of the risk, by changing suppliers or

components, or by selecting a redundant supplier or component. Similarly, developers reduce

the impact of the risk on the project by developing an alternate or redundant solution. In most

cases, however, mitigating a risk incurs additional resources and cost. Table 14-7 describes

mitigation strategies for the risks presented in Table 14-5. 

Once risks are identified, prioritized, and mitigated, the risk management plan should be

communicated to all concerned. Risk management relies on timely communication.

Spontaneous and timely reporting of potential problems should be encouraged. Risk

management plans and technical documents are communicated using the same channels.

Developers and other project participants review risks at the same time they review the technical

content of the project. As mentioned earlier, communication is the most significant barrier when

dealing with uncertainty.

14.4.4 Terminating the Project

In the project termination phase the project manager prepares for the client acceptance test,

manages the system integration, testing, and installation at the client’s site. Finally the project

manager oversees the project postmortem. 

Table 14-6  Prioritized risks for a project. 

Risk Likelihood Potential impact

Behavior of a COTS component does not 
comply with published standard.

Not likely High

New COTS component delivery date is later 
than planned.

Likely High

Users are not willing to use user interface. Likely for users spending less 
than 2 hours per day in front of 
a computer

High

Selected middleware is too slow to meet 
performance requirement for data logging.

Not likely, low sampling 
frequency

High

Development of components takes more time 
than scheduled.

Likely, first occurrence High
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Accepting the system

The purpose of the client acceptance test is the presentation of the system and the approval
of the client according to acceptance criteria set forth in the Project Agreement. The result is the
formal acceptance (or rejection) of the system by the client. Installation of the system and field
tests by the client may already have occurred. The client acceptance test constitutes the visible
end of the project.

The client acceptance test is conducted as a series of presentations of functionality and
novel features of the system. Important scenarios from the Problem Statement are exercised and
demonstrated by the developers or by future users. Additional demonstrations focus on the
nonfunctional requirements of the system such as accuracy, reliability, response time, or
security. If installation and user evaluations occurred prior to the client acceptance test, their
results are presented and summarized. Finally, the client acceptance test also serves as a
discussion forum for subsequent activities such as maintenance, knowledge transfer, or system
enhancement.

Installation

The installation phase of a project includes the field test of the system, the comparison of
the system results with the legacy system, the rollout of the legacy system, and the training of
users. The installation may be conducted by the supplier, by a contractor, or by the client,
depending on the Project Agreement.

Table 14-7  Mitigation strategies for a project. 

Risk Mitigation strategy

Behavior of a COTS component does not comply 
with published standard.

• Run benchmarks to identify nonconformance.
• Investigate if nonconforming functions can be 

avoided.

COTS component delivery date later than 
planned.

• Monitor risk by asking manufacturer for 
intermediate status reports.

Users are not willing to use user interface. • Perform usability studies using mock-ups.
• Develop alternate interface.

Selected middleware is too slow to meet 
performance requirement for data logging.

• Monitor risk. Plan for a performance 
evaluation prototype.

Development of components takes more time than 
scheduled.

• Increase the priority of this task with respect to 
other implementation tasks.

• Assign key developers to this task.



Agile Project Management Activities 611

To minimize risks, installation and field testing are usually done incrementally, with
noncritical sites used as a field test environment. When the client is convinced that the disruption
to his business will be minimal, the delivered system enters full-scale operation. Replacement
systems and upgrades are rarely introduced in a “big-bang” fashion because the largest number
of problems are discovered during the first few days of operation.

Postmortem

Every project uncovers new problems, unforeseen events, and unexpected failures. Each
project, therefore, constitutes an opportunity for learning and anticipating new risks. Many
software companies conduct a postmortem study of each project after its completion. The
postmortem includes collecting data about planned vs. actual delivery dates and number of
defects discovered, qualitative information about technical and managerial problems
encountered, and suggestions for future projects. Although this phase is the least visible in the
life cycle, the company depends on it for learning and improving its efficiency.

14.5 Agile Project Management Activities

The project management method described in the previous section evolved out of the
management of large complex projects, in which the goal of project management was to develop
repeatable and predictable processes as a basis for planning and decision making. While such
methods are appropriate for well-defined requirements and mature technology, they lead to
organizations that are rigid and slow to respond to unexpected events or ill-defined requirements
typical of new product developments. 

Agile methods deal better with ill-defined requirements and emerging solution
technologies, which are characterized by frequent change. Requirements change as new insights
are gained by the client and the users, software architecture changes as new technologies are
adopted or discarded, thus straining the classical approaches in which change is controlled or
even discouraged. Agile methods attempt to deal with these challenges by focusing on small
product increments that are developed in short time bursts. After each product increment,
progress is reviewed, lessons are learned, the project organization or goals are adjusted
accordingly.

In this section, we describe Scrum [Schwaber & Beedle, 2002], an example of agile
project management method, and contrast it with the previous section. Note that many activities
described in the previous section, such as skill management, risk management, system
installation, are relevant in both approaches.

14.5.1 Planning the Project: Create Product and Sprint Backlogs

The Scrum approach is characterized by short iterations, called sprints, during which a release
candidate is developed. In Scrum, this is called a potentially deliverable product increment.
Consequently, Scrum is an example of vertical integration (see Section 11.4.4).
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The project is started with a project kick off meeting, during which the product owner
and the Scrum master brainstorm a first version of the requirements. At the end of the kick off,
the requirements are prioritized into a list called the product backlog. The project backlog starts
as a vision formulated in terms of business requirements, and is updated and refined in terms of
system requirements as the team makes progress in realizing the product. The project backlog
reflects the current understanding of the product between the client and the project, rather than a
fixed contract specifying the final product. 

A sprint starts with a sprint planning meeting, during which the stakeholders (the client,
management, and the team) select which items of the product backlog should be considered for
the next product increment. The team then determines a set of tasks, together with an effort
estimate, for realizing the selected requirements. The list of tasks and their effort estimates
constitute the sprint backlog. At the end of the sprint planning meeting, the team takes
responsibility for the sprint backlog and commits to delivering the product increment at the end
of the sprint. A sprint is timeboxed to typically 30 days. At the end of the sprint, the product
increment is reviewed and the scope of the next sprint is defined. Any unfinished work is
returned to the product backlog.

The items in the product backlog are grouped into releases with planned release dates. As
sprints result into completed increments, the product owner has three options:

1. decide whether to turn the sprint result into a product increment

2. declare the project finished and deliver the final product

3. adjust the release planning by shifting items between releases or adjusting release 
dates, based on the team’s progress

14.5.2 Organizing the Project

Scrum defines three roles:

• The product owner is responsible for the requirements. The product owner
participates in the creation of the product backlog, and prioritizes the product backlog
before each sprint. The product owner represents the client and users with a single
voice. The product owner changes and re-prioritizes the product backlog before each
sprint to reflect lessons learned. The product owner is solely responsible for the product
backlog and has no influence on the team during the sprint.

• The Scrum master is a management role responsible for the process. The Scrum
master sets up and enforces the rules and practices of the project. The Scrum master
facilitates the daily Scrum meetings, monitors progress, and removes obstacles
preventing the team to do its work. The Scrum master is the interface between the
Scrum team and the product owner, ensures the team productivity, and shields the team
from distractions.
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• The Scrum team is responsible for developing the product increment. The team is
cross functional including all the skills required to build the product increment. The
team is self organizing in that each member commits to work based on their own skills
and availability. There are no roles or job descriptions assigned to specific members,
such as analysts, programmers, or testers. Members learn and adapt their skills based
on the work to be done. The team participates in the sprint planning meeting and
commits to the list of tasks defined in the sprint backlog.

14.5.3 Controlling the Project: Daily Scrums and Burn Down Charts

The Scrum master monitors the progress of the project with daily Scrum meetings and burn
down charts.

The daily Scrum meeting takes place at the beginning of the work day, and lasts at most
15 minutes. During the daily Scrum meeting, each team member reports individually:

• status: work done since the last daily Scrum meeting

• new issues: obstacles that are preventing them to accomplish their work

• new action items: work promised for the rest of the day

Reporting on these three points allows the Scrum master to monitor the progress of each
member and to identify corrective actions, such as:

• Planning new work that was not identified in the sprint planning meeting or in the
previous daily Scrum meetings

• Reallocation of tasks between members due to mismatch of skills or lack of interest

• Removing obstacles

Compared to the meeting templates presented in Chapter 3, Project Organization and
Communication (Section 3.4.3) and in Chapter 12, Rationale Management (Section 12.4.2),
Scrum uses a meeting template reduced to the absolute minimum. For example, discussion and
resolution of new issues is postponed to follow-up meetings scheduled later in the day in which
only the relevant stakeholders participate. The Scrum approach thus minimizes the time
developers spend in unnecessary meetings, by timeboxing status reporting and by sparing them
from discussions that are not relevant to them. The daily occurrence of the Scrum meetings
allows the team to identify unexpected issues early and make decisions quickly.

The daily Scrum meetings provide a short-term view of the sprint. To review progress and
assess trends, the Scrum master uses a burn down chart, which depicts the estimated remaining
effort as a function of time (see Figure 14-15). Each backlog item in the sprint log contains an
informal estimate in hours necessary to complete the item. The team members update their
estimates daily, based on the work they have accomplished so far and on the insights gained.
Work completed decreases the remaining effort in the sprint backlog. New work or a revised
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estimate for a task that turned out to be more complex increases the remaining effort in the
sprint. As the sprint burn down chart plots the cumulative estimated amount of work for the
sprint backlog, the Scrum master can assess the general trend of the sprint and identify any need
for corrective actions

Similarly, a release burn down chart, updated at the end of every sprint, shows the
remaining effort in days for releases, based on estimates of product backlog items in days.

14.5.4 Terminating the Project: Sprint Reviews

While the daily progress of the team is highly visible (e.g., daily Scrum meetings, daily sprint
backlog updates), the product owner cannot interfere with the team during the sprint. After the
sprint planning meeting, the team assumes complete authority for the product increment and is
left to its own devices while the Scrum master is responsible for removing obstacles raised by
the team. At the end of the sprint, management may adjust team composition or the product
owner may change requirements based on past team performance. If the goals of a sprint
become obsolete or not reachable, the sprint may also be terminated abnormally by the team or
by management. As sprints are normally short, abnormal termination occurs rarely.

With the end of each sprint, the product owner may renegotiate the product backlog with
the client. Based on the latest product increment, the product owner may propose to revise
specific requirements or assign new priorities. Based on the performance of the team, the
product owner may propose a release schedule or change the allocation of requirements to
releases.

Figure 14-16 shows an overview of the Scrum process.

Figure 14-15 Assessing progress trend with a burn down chart. An increase corresponds to an upward
revision of estimated work (new work, tasks initially underestimated). A decrease corresponds to a
downward estimate of remaining work (work completed, obsolete tasks taken out of the plan).
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Figure 14-16 Overview of a Scrum process (UML activity diagram).
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14.6 Further Readings
A good overview of generic project management concepts can be found in Portny
[Portny, 2001]. Teams are the key to many project-based organizations. Katzenbach provides a
categorization of different team types, ranging from working groups to high-performing teams
[Katzenbach & Smith, 1994]. The IEEE-1058 described in this chapter is under revision and to
be approved in 2009. Royce describes the early role of a software architect during the
development of a software system using the Unified Process [Royce, 1998]. 

Paulish’s book on architecture-centric project management contains a detailed description
of the opportunities and challenges when the software architecture is formulated simultaneously
with the software project management plan [Paulish, 2001]. 

Estimation of software development effort is difficult, and few approaches yield accurate
results in the general case. COCOMO II is a statistical model that provides effort and time
estimates based on a large number of parameters [Boehm et al., 2000].

On the other end of the spectrum of estimation, Planning Poker [Grenning, 2002] is a
consensus-driven estimation method, in which the stakeholders estimate and discuss effort in a
moderated discussion. Consensus-driven methods aim to leverage from the experience of the
stakeholders while reconciling conflicting goals. Consensus-based methods have been made
popular by agile development [Cohn, 2006].

Scrum, which was co-developed by Ken Schwaber and Jeff Sutherland in the early 1990s
[Schwaber, 1995], is one of the earliest agile management methods. The Scrum development
method is described in [Schwaber & Beedle, 2002]. Many books have followed on this topic,
including adoption patterns for agile methods [Elssamadisy, 2009] and best practices
[Schwaber, 2004]. 

Of historical interest are two software project organization forms proposed by Brooks and
Weinberg. The chief programmer organization [Brooks, 1995] is a hierarchical organization
that assigns all team decisions to the team leader, called the chief programmer. The chief
programmer is responsible for the design and development of the subsystem and delegates
programming tasks to a pool of specialists. In contrast, egoless programming [Weinberg, 1971]
takes a democratic structure, adopted by the self organizing Scrum teams. For people interested
in organizations, we recommend the book from Wigand, Picot, and Reichwald [Wigand et
al., 1997]. 
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14.7 Exercises

14-1 In Figure 14-1, we modeled the phases of a project with a state chart. Use the state pat-
tern by making each of these phases a different class. Use the project management
activities introduced in this chapter to make them public operations on these classes.
Assume a team-based project organization. 

14-2 What are the relative advantages of flat staffing versus gradual staffing?

14-3 What is the difference between reporting status and making decisions in a meeting?
Should they always be kept separate in a meeting?

14-4 Why should the software architect and project leader be different people?

14-5 Draw a UML model of the team organization of the ARENA project for each the main
phases (i.e., conception, definition, start, steady state, termination).

14-6 Draw a task model of the system design of the MyTrip system presented in Chapter 6,
System Design: Decomposing the System.

14-7 Estimate the time to complete each task of the task model produced in Exercise 14-6
and determine the critical path.

14-8 Identify, prioritize, and plan for the top five risks related to the system design of MyTrip
presented in Chapter 6, System Design: Decomposing the System.

14-9 Identify, prioritize, and plan for the top five risks related to the user interface subsystem
of CTC presented in Chapter 12, Rationale Management.

14-10 Linux, developed using the bazaar model, is more reliable and more responsive than
many operating systems running on Intel PCs. Make a case why the bazaar model
should or should not be used for the Space Shuttle control software.

14-11 Organize the project participants into teams of four people. Each team has the
following resources available: 2 eggs, 1 roll of TESA film, 1 roll of toilet paper, a cup
with water, a bucket with two liters of sand, 20 foam balls (each about 1 cm diameter),
1 table whose surface is about 1 meter above the ground. Each team has 25 minutes
time to build and test an artifact that allows an egg to be released 75 cm above the table
such that the egg falls on the table without cracking. Each team has another 5 minutes
to demonstrate the artifact to project management. 

14-12 Organize the project into teams of four people. Each team has the following resources
available: 2 buckets of DUPLO pieces, 2 tables separated by a distance of 1.50 meters.
Each team has 25 minutes time to build and test a bridge solely out of the available
DUPLO pieces that hangs free for at least one minute between the two table surfaces.
Each team has another 5 minutes to demonstrate the artifact to project management.

14-13 Specify all management models for the icebreaker project described in Exercise 14-11. 

14-14 Write an SPMP for the icebreaker project described in Exercise 14-11. 

14-15 What does a flat section in a burn down chart mean (for example the section between
days 3 and 6 in Figure 14-15)?
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15
Software Life Cycle

There must always be a discrepancy between concepts and 
reality, because the former are static while the latter is dynamic 
and flowing.

—Robert Pirsig, in Lila

A software life cycle model represents all the activities and work products necessary to
develop a software system. Life cycle models enable managers and developers to deal with the
complexity of the process of developing software in the same way as an analysis model or a
system design model enables developers to deal with the complexity of a software system. In the
case of software systems, the reality being modeled includes phenomena such as watches,
accidents, trains, sensors, and buildings. In the case of software development, the reality
includes phenomena such as participants, teams, activities, and work products. Many life cycle
models have been published in the literature in an attempt to better understand, measure, and
control the development process. Life cycle models make the software development activities
and their dependencies visible and manageable.

In this chapter, we revisit the activities described in previous chapters from the perspective
of life cycle modeling. The modeling techniques we used for modeling software systems can
also be used to represent life cycles. Whereas life cycle models are usually represented with ad
hoc notations, we try to use UML diagrams whenever possible. First, we describe the typical
activities and work products of a software life cycle as defined by the IEEE standard 1074 [IEEE
Std. 1074-2006]. Next, we introduce the Capability Maturity Model, a framework for assessing
the maturity of organizations and their life cycles. We then discuss different life cycle models
that have been proposed for developing complex software systems; these include the waterfall
model, the spiral model, the V-model, and the unified software process. We also discuss a life cycle
model called the issue-based model, in which products and activities are modeled as a set of
issues stored in a knowledge base. The issue-based model is an entity-centered view of the
software life cycle that can accommodate frequent changes over the duration of a project.
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15.1 Introduction: Polynesian Navigation

Polynesian navigation

Polynesia is a large set of islands roughly forming a triangle with Tahiti at the center, Hawaii at the
north, Easter Island at the east, and New Zealand at the southwest. Polynesians came from southeast
Asia, settling Pacific islands systematically from west to east. Polynesians had already completed their
settlement several hundreds of years before Columbus arrived in the Caribbean. They reached Tahiti in
1400 B.C., Hawaii in 500 A.D., and New Zealand sometime between 500 A.D. and 1100 A.D.

Polynesian fishermen would discover a new island opportunistically, identify its location, and tell
people back home. The settlement of the new island was deliberate, involving the transplantation of
families, plants such as bananas, sugar cane, and yams, and domesticated animals such as dogs, pigs,
and chickens. 

What makes this feat even more remarkable was that Polynesians were technologically in the Stone
Age. They built multi-hulled canoes with tools of bones and stones and without using any metal. Their
canoes were designed to stay on a specific course and withstand storms, and could sail significantly
faster than the European ships of the time. They transmitted knowledge of seafaring and the location of
islands by word of mouth from one generation to the next. 

Polynesians navigated without instruments, relying on the rising and setting of stars, the direction of the
wind, and the swell of the ocean to maintain a course. The people of the island of Truk in Micronesia,
east of Polynesia, have preserved these ancient navigation skills and enable us to speculate about how
Polynesians managed to travel several thousands of kilometers by canoe. Near the equator, stars rise and
set around a north–south axis. Altair, for example, rises in the east and sets in the west. Some stars rise
and set further north: Vega rises in the northeast and sets in the northwest. Other stars rise and set further
south: Antares rises in the southeast and sets in the southwest. When facing the rising point of Vega, the
navigator would turn his back on the setting point of Antares. By memorizing the relative position of 16
stars, the Polynesian navigator could always find a visible star to adjust his course. During the day or
overcast nights, the navigator would use the direction of the wind and the swell of the ocean, which he
would have memorized in relationship with these stars. 

Near landfall, the shape and sound of the waves would change. At that point, they looked for specific
species of land-based birds that would fly out to sea in the morning to fish and return to land in the
evening. When spotting these birds in the evening, they would follow their flight. When spotting them
in the morning, they would sail toward their point of origin. 

By contrast, the shipbuilders of the age of Columbus had mastered the use of metal for several
thousands of years. Columbus’s logs indicate that he was not a celestial navigator. Instead of following
stars, he used dead reckoning: the helmsman held course by looking at a magnetic compass. Every hour,
the speed of the boat was measured by throwing a piece of flotsam in the water and by measuring the
time it took to clear the length of the ship. By knowing the direction and the speed of the ship at all
times, Columbus could compute the distance he had sailed since leaving port. We know from records
that he did not use a corrected compass, as his course towards America drifted to the south. On his way
back, his course drifted by the same amount to the north, so he did not notice the limitations of the
magnetic compass.
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The example above illustrates how similar goals can be accomplished with very different
processes. Polynesians evolved their craft of navigation and their knowledge of the stars during
increasingly long ocean trips, as the distance between islands increased significantly as they
moved toward the east. They invented and refined a process that could be repeated accurately
every time a new island was discovered. At the time of Columbus, most navigators stayed close
to the coast, as they sailed toward the East Indies around Africa using dead reckoning. Columbus
applied an existing navigation process to cross the Atlantic. In both cases, the navigator had a
goal (e.g., settling a specific island, finding a transatlantic route to the Indies) and a set of
survival skills applied to local situations that eventually supported that goal (e.g., recognizing
the proximity of islands, ability to set a course, ability to correct a course). If Columbus and the
Polynesians had met and been able to communicate, each could have learned a range of new
skills and modified their respective processes accordingly. This transfer of knowledge, however,
assumes that Columbus and the Polynesians would have been able to share a common model of
navigation.

In the previous chapters, we used UML as a modeling language for describing and
communicating about systems. In this chapter, we focus on models of the software development
process, called software life cycle models. Modeling the software life cycle is a difficult
undertaking because it is a complex and changing system. Like software systems, software life
cycles can be described by several different models. Most proposed life cycle models have
focused on the activities of software development and represented them explicitly as class
objects. This view of the software life cycle is called activity centered. Another view of the
software life cycle is to focus on the work products created by these activities. This other view is
called entity centered. The activity-centered view leads participants to focus on how work
products are created. The entity-centered view leads participants to focus on the content and
structure of the work products. Figure 15-1 depicts a simple life cycle for software development
using three activities: Problem definition, System development, and System operation.

Figure 15-2 shows an activity-centered view of this simplistic life cycle model. The
associations between the activities show a linear time dependency, which is implied by the use of
the activity diagram notation: the problem statement precedes system development, which in
turn precedes system operation. Other time dependencies are possible. 

For example, in the software life cycle of Figure 15-3, the activities System development
and Market creation can be done concurrently.

Figure 15-4 is an entity-centered view of the model depicted by Figure 15-2. Software
development produces four entities: a Market survey document, a Requirements

specification document, an Executable system, and a Lessons learned document.

The activity-centered and entity-centered views are complementary, as illustrated by
Figure 15-5. Every product is generated by one or more activities. The Problem definition
activity uses a Market survey document as input and generates a Requirements
specification document. The System development activity takes the Requirements
specification document as input and produces an Executable system. System operation
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generates a Lessons learned document that could be used during the development of the next
product. Alternatively, every activity generates one or more products.  

In Section 15.2, we describe the life cycle activities defined by the IEEE 1074 standard
[IEEE Std. 1074-2006]. This standard introduces precise definitions that enable project
participants to understand and communicate effectively about the life cycle. In this section, we
also describe the information flows between activities.

Figure 15-1 Simple life cycle for software development (UML use case diagram).

Figure 15-2 Simple life cycle for software development (UML activity diagram).

Figure 15-3 Another simple life cycle (UML activity diagram).
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In Section 15.3, we describe the Capability Maturity Model, a framework for assessing the
maturity of organizations and their life cycles. This framework enables organizations and
projects to be compared based on the activities of their life cycles.

In Section 15.4, we survey several activity-centered life cycle models that propose
different orderings of activities. We discuss two sequential models, the waterfall model [Royce,
1970] and the V-model [Jensen & Tonies, 1979], and two iterative models, the spiral model
[Boehm, 1987] and the Unified Software Process [Jacobson et al., 1999]. We also describe an
entity-based life cycle model based on issues.

Figure 15-4 Entity-centered view of software development (UML class diagram).

Figure 15-5 Activities and products of the simple life cycle of Figure 15-2 (UML class diagram).
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15.2 IEEE 1074: Standard for Developing Life Cycle Processes

The IEEE Standard for Software Life Cycle Processes describes the set of activities and
processes that are mandatory for the development and maintenance of software [IEEE Std.
1074-2006]. Its goal is to establish a common framework for developing life cycle models and
provide examples for typical situations. In this section, we describe the main activities
introduced by the standard and clarify its fundamental concepts using UML diagrams.

15.2.1 Processes and Activities

A process is a set of activities that is performed toward a specific purpose (e.g., requirements,
management, delivery). The IEEE standard lists a total of 17 processes, grouped into higher
levels of abstractions called process groups (Table 15-1). Examples of process groups are
project management, pre-development, development, and post-development. Examples of
processes in the development process group include

• the Requirements Process during which the developers develop the system models

• the Design Process during which developers decompose the system into components

• the Implementation Process during which developers realize each component. 

Table 15-1  Software processes in IEEE 1074. 

Process group Processes

Life Cycle Modeling Selection of a Life Cycle Model 

Project Management Project Initiation
Project Monitoring and Control
Software Quality Management

Pre-Development Concept Exploration
System Allocation

Development Requirements
Design
Implementation

Post-Development Installation
Operation and Support
Maintenance
Retirement

Integral Verification and Validation
Software Configuration Management
Documentation Development
Training
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Each process is composed of activities. An activity is a task or group of subactivities that
are assigned to a team or a project participant to achieve a specific purpose. The Requirements
Process, for example, is composed of three activities:

• Define and Develop Software Requirements during which the functionality of the
system is defined precisely

• Define Interface Requirements during which the interactions between the system and
the user are defined precisely

• Prioritize and Integrate Software Requirements during which all requirements are
integrated for consistency and prioritized by client preference.

Tasks consume resources (e.g., personnel, time, money) and produce a work product.
During planning, activities are decomposed into project-specific tasks, are given a start and
ending date, and are assigned to a team or a project participant (Figure 15-6). During the project,
actual work is tracked against planned tasks, and resources are reallocated to respond to
problems.

Figure 15-6 Model of the software life cycle (UML class diagram). A software life cycle consists of
process groups, which in turn consist of processes. A process accomplishes a specific purpose (e.g.,
requirements, design, installation). A process consists of activities, which in turn consist of subactivities or
tasks. Tasks represent the smallest piece of work that is relevant to management. Tasks consume resources
and produce one or more work products. A project is an instance of a software life cycle.
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The processes required by IEEE 1074 are listed in Table 15-1. From the developers’ point
of view, the first six processes (i.e., the Life Cycle Modeling, the Project Management, and the
Pre-Development Processes) have often already been initiated before their involvement with the
project.

15.2.2 Life Cycle Modeling

During Life Cycle Modeling, the project manager customizes the activities defined in IEEE 1074
for a specific project (i.e., for an instance of a life cycle model). Not all projects require the same
activities and the same sequencing of activities. For example, projects that do not deal with a
persistent storage do not need to execute the activity Design Data Base. The selected life cycle
model serves as input to the Project Initiation Process described in the next section.

15.2.3 Project Management

During Project Management, the project manager initiates, monitors, and controls the project
throughout the software life cycle. Project Management consists of three processes (Table 15-2).

The Project Initiation Process creates the infrastructure for the project. During this
process, the task plan, schedule, budget, organization, and project environment are defined. The
project environment includes project standards, communication infrastructure, meeting and
reporting procedures, development methodology, and development tools. Most of the

Table 15-2  Project management processes. 

Process Clausea

a. The Clause Column in this table and the other tables in this chapter refers to a clause number in IEEE 1074. 
This is a cross-reference to the standards document as published in [IEEE Std. 1074-2006]. 

Activities

Project Initiation 3.1.3
3.1.4
3.1.5
3.1.6

Map Activities to Software Life Cycle Model
Allocate Project Resources
Establish Project Environment
Plan Project Management

Project Monitoring and Control 3.2.3
3.2.4
3.2.5
3.2.6
3.2.7

Analyze Risks
Perform Contingency Planning
Manage the Project
Retain Records
Implement Problem Reporting Model

Software Quality Management 3.3.3
3.3.4
3.3.5
3.3.6

Plan Software Quality Management
Define Metrics
Manage Software Quality
Identify Quality Improvement Needs
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information generated during this process is documented in the Software Project Management
Plan (SPMP). The Project Initiation Process is complete as soon as a stable environment for the
project is established.

The Project Monitoring and Control Process ensures that the project is executed
according to the task plan and budget. If the project manager observes any deviation from the
schedule, she will take corrective action such as reallocating some of the resources, changing
procedures, or replanning the schedule. The SPMP is updated to reflect any of these changes.
The Project Monitoring and Control Process is active throughout the life cycle.

The Software Quality Management Process ensures that the system under construction
meets the required quality standards (which were selected during Project Initiation). This
process is executed by a separate quality management team to avoid conflicts of interest (i.e., the
goal of the developers is to complete the system on time, and the goal of the quality management
team is to ensure that the system is not considered complete until it meets the required quality
standard). The Software Quality Management Process is active throughout most of the life cycle.

We described in Chapter 14, Project Management, the activities of Project Initiation and
Project Monitoring and Control that are related to planning, organization, and tracking. The
activity Establish Project Environment requires particular attention in the context of a team-
based project. One of the critical parts of the project environment is the communication
infrastructure that will support the dissemination of information among the participants. To be
able to react rapidly to changes and report problems without introducing unreasonable
overhead, all project participants need to be aware of the information flow through the project
and the mechanisms for disseminating information. We described in Chapter 3, Project
Organization and Communication, the activities related to defining and using the
communication infrastructure. Note that to define the development team structure, and thereby
the communication infrastructure, the initial system architecture (produced by the System
Allocation Process described in the next section) must first be defined.

15.2.4 Pre-Development 

During Pre-Development, management (or marketing) and a client identify an idea or a need.
This can be addressed with a new development effort (greenfield engineering), or a change to the
interface of an existing system (interface engineering), or software replacement of an existing
business process (reengineering). The System Allocation Process establishes the initial system
architecture and identifies hardware, software, and operational requirements. Note that the
subsystem decomposition is the foundation of the communication infrastructure among the
project members. The requirements, subsystem decomposition, and communication
infrastructure are described in the Problem Statement,1 which serves as input for the
Development process. The Pre-Development processes are depicted in Table 15-3. 

1. The Statement of Need mentioned in the IEEE 1074 standard is similar to the Problem Statement, but does not 
contain any project organization information.
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15.2.5 Development

Development consists of the processes directed toward the construction of the system
(Table 15-4). 

The Requirements Process starts with the informal description of the requirements and
defines the system requirements in terms of high-level functional requirements, producing a
complete specification of the system and a prioritization of the requirements. We describe the
Requirements Process in Chapter 4, Requirements Elicitation, and Chapter 5, Analysis.

The Design Process takes the architecture produced during the System Allocation Process
and the specification from the Requirements and produces a coherent and well-organized
representation of the system. The activities Perform Architectural Design and Design Interfaces

Table 15-3  Pre-development processes. 

Process Clause Activities

Concept Exploration 4.1.3
4.1.4
4.1.5
4.1.6
4.1.7

Identify Ideas or Needs
Formulate Potential Approaches
Conduct Feasibility Studies
Plan System Transition (if Applicable)
Refine and Finalize the Idea or Need

System Allocation 4.2.3
4.2.4
4.2.5

Analyze Functions
Develop System Architecture
Decompose System Requirements

Table 15-4  Development processes. 

Process Clause Activities

Requirements 5.1.3
5.1.4
5.1.5

Define and Develop Software Requirements
Define Interface Requirements
Prioritize and Integrate Software Requirements

Design 5.2.3
5.2.4
5.2.5
5.2.6
5.2.7

Perform Architectural Design
Design Data Base (if Applicable)
Design Interfaces
Select or Develop Algorithms (if Applicable)
Perform Detailed Design

Implementation 5.3.3
5.3.4
5.3.5
5.3.6
5.3.7
5.3.8

Create Test Data
Create Source
Generate Object Code
Create Operating Documentation
Plan Integration
Perform Integration
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refine the subsystem decomposition. This also includes the allocation of requirements to
hardware and software systems, the description of boundary conditions, the selection of off-the-
shelf components, and the definition of design goals. The detailed design of each subsystem is
done during the Perform Detailed Design activity. The Design Process results in the definition
of design objects, their attributes and operations, and their organization into packages. By the
end of this activity, all methods and their type signatures are defined. New classes are introduced
to take into account nonfunctional requirements and component-specific details. The Design
process used in this book is described in Chapter 6, System Design: Decomposing the System,
Chapter 8, Object Design: Reusing Pattern Solutions, and Chapter 9, Object Design: Specifying
Interfaces.

The Implementation Process takes the design model and produces an equivalent
executable representation. The Implementation Process includes integration planning and
integration activities. Note that tests performed during this process are independent of those
performed during quality control or Verification and Validation. We describe in Chapter 11,
Testing, the testing and integration aspects of the Implementation.

15.2.6 Post-Development 

Post-Development consists of the installation, maintenance, operation and support, and
retirement processes (Table 15-5).

During Installation, the system software is distributed and installed at the client site. The
installation culminates with the client acceptance test according to the criteria defined in the
Project Agreement. Operation and Support is concerned with user training and operation of the
system. Maintenance is concerned with the resolution of software errors, faults, and failures
after the delivery of the system. Maintenance requires a ramping of the software life cycle

Table 15-5  Post-development processes. 

Process Clause Activities

Installation 6.1.3
6.1.4
6.1.5
6.1.7

Plan Installation
Distribution of Software 
Installation of Software
Accept Software in Operational Environment

Operation and Support 6.2.3
6.2.4
6.2.5

Operate the System
Provide Technical Assistance and Consulting
Maintain Support Request Log

Maintenance 6.3.3 Reapply Software Life Cycle

Retirement 6.4.3
6.4.4
6.4.5

Notify Users
Conduct Parallel Operations (If Applicable)
Retire System
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processes and activities into a new project. Retirement removes an existing system, terminating
its operations or support; this occurs when the system is upgraded or replaced by a new system.
To ensure a smooth transition between the two systems, both systems are often run in parallel
until the users have gotten used to the new system. Except for client delivery and acceptance, we
do not address the post-development processes in this book.

15.2.7 Integral Processes (Cross-Development)

Several processes take place during the complete duration of the project. These are called
Integral processes (we also use the term cross-development processes) and include Validation
and Verification, Software Configuration Management, Documentation Development, and
Training (Table 15-6). 

Verification and Validation includes verification and validation tasks. Verification tasks
focus on showing that the system models comply with the specification. Verification includes
reviews, audits, and inspections. Validation tasks ensure that the system addresses the client’s
needs and includes system testing, beta testing, and client acceptance testing. Verification and
Validation activities occur throughout the life cycle with the intent of detecting anomalies as
early as possible. For example, each model could be reviewed against a checklist at the end of
the process that generated it. The review of a model, say the design model, may result in the
modification of a model generated in other processes, say the analysis model. The activity

Table 15-6  Integral processes (also called cross-development processes). 

Process Clause Activities

Verification and Validation 7.1.3
7.1.4
7.1.5
7.1.6
7.1.7
7.1.8

Plan Verification and Validation
Execute Verification and Validation Tasks
Collect and Analyze Metric Data
Plan Testing 
Develop Test Requirements
Execute the Tests

Software Configuration 
Management

7.2.3
7.2.4
7.2.5
7.2.6

Plan Configuration Management
Develop Configuration Identification
Perform Configuration Control
Perform Status Accounting

Documentation Development 7.3.3
7.3.4
7.3.5

Plan Documentation
Implement Documentation
Produce and Distribute Documentation

Training 7.4.3
7.4.4
7.4.5
7.4.6

Plan the Training Program
Develop Training Materials
Validate the Training Program
Implement the Training Program
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Collect and Analyze Metric Data generates project data that can also serve for future projects
and contribute to the knowledge of the organization. The activities Plan Testing and Develop
Test Requirements can be initiated as early as after the completion of the requirements. In large
projects, these tasks are performed by different participants than the developers. We describe
mechanisms for reviews, audits, and inspections in Chapter 3, Project Organization and
Communication. We describe specific reviews associated with requirements elicitation, analysis,
and system design in Chapters 4, 5, and 6, respectively. We describe testing activities in
Chapter 11, Testing.

The Configuration Management Process focuses on the tracking and control of changes of
work products. Items under configuration management include the source code for the system,
all development models, the software project management plan, and all documents visible to the
project participants. We describe configuration management in Chapter 13, Configuration
Management.

The Documentation Process deals with the work products (excluding code), documenting
the results produced by the other processes. Document templates are selected during this
activity. The IEEE 1074 standard, however, does not prescribe any specific document or
template. Development and cross-development specific documentation issues are discussed in
chapters where documents are produced (e.g., Chapter 5, Analysis, discusses the Requirements
Analysis Document; Chapter 13, Configuration Management, discusses the Software
Configuration Management Plan).

15.3 Characterizing the Maturity of Software Life Cycle Models

In the previous section we introduced the activities and artifacts that constitute a software life
cycle. Which of these activities and artifacts are chosen for a specific project is not defined by
the standard. One of the goals of the Capability Maturity Model (CMM) is to provide
guidelines for selecting life cycle activities. The CMM assumes that the development of
software systems is made more predictable when an organization uses a well-structured life
cycle process, visible to all project participants, and when the organization adapts to change.
CMM uses the following five levels to characterize the maturity of an organization [Paulk et al.,
1995]:

Level 1: Initial. An organization on the initial level applies ad hoc activities to develop
software. Few of these activities are well defined. The success of a project on this maturity level
usually depends on the heroic efforts and skills of key individuals. From the client’s point of
view, the software life cycle model, if it exists at all, is a black box: after providing the problem
statement and negotiating the project agreement, the client must wait until the end of the project
to inspect the deliverables of the project. During the duration of the project, the client has
effectively no way to interact with project management. 

Level 2: Repeatable. Each project has a well-defined software life cycle model. Models,
however, differ among projects, reducing the opportunity for teamwork and reuse of know-how.
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Basic project management processes are used to track cost and schedule. New projects are based
on the experience of the organization with similar previous projects and success is predictable
for projects in similar application domains. The client interacts with the organization at well-
defined points in time, such as client reviews and the client acceptance test, allowing some
corrections before delivery.

Level 3: Defined. This level uses a documented software life cycle model for all managerial
and technical activities across the organization. A customized version of the model is produced
at the beginning of each project during the Life Cycle Modeling activity. The client knows the
standard model and the model selected for a specific project.

Level 4: Managed. This level defines metrics for activities and deliverables. Data are
constantly collected during the duration of the project. As a result, the software life cycle model
can be quantitatively understood and analyzed. The client is informed about risks before the
project begins and knows the measures used by organization. 

Level 5: Optimized. The measurement data are used in a feedback mechanism to improve the
software life cycle model over the lifetime of the organization.The client, project managers, and
developers communicate and work together during the development of the project.

To be able to measure the maturity of an organization, a set of key process areas (KPA)
has been defined by the Software Engineering Institute (SEI). To achieve a specific level of
maturity, the organization must demonstrate that it addresses all the key process areas defined
for that level. Some of these key process areas go beyond activities defined in the IEEE 1074
standard. Table 15-7 shows a mapping between maturity level and key process areas.

Table 15-7   Mapping process maturity level and key process areas.

Maturity Level Key Process Area

1. Initial Not applicable

2. Repeatable Focus: Establish basic project management controls.

• Requirements management: Requirements are baselined in a project agreement 
and maintained during the project. 

• Project planning and tracking: A software project management plan is established 
at the beginning of the project and is tracked during the project. 

• Subcontractor management: The organization selects and effectively manages 
qualified software subcontractors.

• Quality assurance management: All deliverables and process activities are 
reviewed and audited to verify that they comply with standards and guidelines 
adopted by the organization. 

• Configuration management: A set of configuration management items is defined 
and maintained throughout the entire project. 
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Table 15-7   Continued.

Maturity Level Key Process Area

3. Defined Focus: Establish an infrastructure that allows a single effective software life cycle
model across all projects.

• Organization process focus: The organization has a permanent team to constantly 
maintain and improve the software life cycle model. 

• Organization process definition: A standard software life cycle model is used for 
all projects in the organization. A database is used for software life cycle-related 
information and documentation. 

• Training program: The organization identifies the needs for training for specific 
projects and develops training programs. 

• Integrated software management: Each project team can its tailor its specific 
process from the standard process.

• Software product engineering: The software is built in accordance with the 
defined software life cycle, methods, and tools. 

• Intergroup coordination: The project teams interact with each other to address 
requirements and issues. 

• Peer reviews: Developers examine each other’s deliverables to identify potential 
defects and areas where changes are needed. 

4. Managed Focus: Quantitative understanding of the software life cycle process and deliverables.

• Quantitative process management: Productivity and quality metrics are defined 
and constantly measured across the project. It is critical that these data are not 
immediately used during the project, in particular to assess the performance of 
developers, but are stored in a database to allow for comparison with other 
projects.

• Quality management: The organization has defined a set of quality goals for 
software products. It monitors and adjusts the goals and products to deliver high-
quality products to the user. 

5. Optimized Focus: Keep track of technology and process changes that may cause changes in the
system model or deliverables, even during a project.

• Defect prevention: Failures in past projects are analyzed, using data from the 
metrics database. If necessary, specific actions are taken to prevent those defects 
from occurring again.

• Technology change management: Technology enablers and innovations are 
constantly investigated and shared throughout the organization. 

• Process change management: The software process is constantly refined and 
changed to deal with inefficiencies identified by the software process metrics. 
Constant change is the norm, not the exception.
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15.4 Life Cycle Models
Figure 15-7 depicts the information flow among processes in the IEEE 1074 standard. The
complexity of the standard is significant as can be seen in the many dependencies among the
processes. Each association represents a work product that is generated by one process and
consumed by another process. Each association also represents a formal communication channel
between project participants supported by the exchange of documents, models, or code. 

Figure 15-7 Process interrelationships in the IEEE 1074 standard (UML activity diagram, adapted from
[IEEE Std. 1074-2006]). As suggested by this picture, dependencies among processes and activities are
complex and seldom allow a sequential execution of processes.
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In this section we review several life cycle models. Most of these models focus on the
development processes exclusively.

15.4.1 Sequential Activity-Centered Models

We start with activity-centered life cycle models. The oldest software life cycle model is the
waterfall model, which prescribes a sequential execution of the activities. The V-model is a
variation of the waterfall model that introduces different levels of abstractions for the activities. 

Waterfall model

The waterfall model, first described by Royce [Royce, 1970], is an activity-centered life
cycle model that prescribes sequential executions of subsets of the development processes and
management processes described in the previous section (Figure 15-8). 

Figure 15-8 The waterfall model of software development is an activity-centered view of the software life
cycle. Software development activities are performed in sequence (UML activity diagram adapted from
[Royce, 1970] using IEEE 1074 names; project management and cross-development processes are omitted).
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All requirements activities are completed before the system design activity starts. The goal
is never to turn back once an activity is completed. The key feature of this model is the constant
verification activity (called “verification step” by Royce) which ensures that each development
activity does not introduce unwanted or delete mandatory requirements. This model provides a
simple (or even simplistic) view of software development that measures progress by the number
of tasks that have been completed. The model assumes that software development can be
scheduled as a step-by-step process that transforms user needs into code.

V-Model

The V-model is a variation of the waterfall model that makes explicit the dependency
between development activities and verification activities. The difference between the waterfall
model and the V-model is that the latter depicts the level of abstraction. All activities from
requirements to implementation focus on building an increasingly detailed representation of the
system, whereas all activities from implementation to operation focus on validating the system.
Figure 15-9 depicts the V-model.

Figure 15-9 V-model of software development (UML activity diagram; adapted from [Jensen & Tonies,
1979]). The horizontal object flow denotes the information flow between activities at the same abstraction
level. The V-shape layout of the activities was conserved to reflect the original drawing. However, the layout
of the activities has no semantics in UML.
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Higher levels of abstractions of the V-model deal with the requirements in terms of
elicitation and operation. The middle level of the V-model focuses on mapping the problem into a
software architecture. The lower level of the V-model focuses on details such as the assembly of
software components and the coding of new ones. For example, the goal of the Unit Test activity
is to validate units against their description in the detailed design. The Component Integration
and Test activity validates functional components against the preliminary (or high-level) design.
In many aspects, the waterfall model and its variants are simplistic abstractions of the software
development process. The weakness of these models is that they assume that after an activity is
finished and reviewed, the associated work product can be baselined. Such an idealized model is
appropriate only if the specification of the requirements is highly reliable and stable. In practice,
system development rarely conforms to this ideal model. Changes during an activity often
require reworking a prior activity. 

15.4.2 Iterative Activity-Centered Models

Boehm’s spiral model and the more recent Unified Process model are based on the iterative
execution of activities. 

Spiral model

Boehm’s spiral model [Boehm, 1987] is an activity-centered life cycle model that was
devised to address the source of weaknesses in the waterfall model, in particular, to
accommodate infrequent change during the software development. It is based on the same
activities as the waterfall model; however, it adds several activities such as risk management,
reuse, and prototyping to each activity. These extended activities are called cycles or rounds.

The spiral model focuses on addressing risks incrementally, in order of priority. Each
round is composed of four phases (Figure 15-10). During the first phase (upper left quadrant),
developers explore alternatives, define constraints, and identify objectives. During the second
phase (upper right quadrant), developers manage risks associated with the solutions defined
during the first phase. During the third phase (lower right quadrant), developers realize and
validate a prototype or the part of the system associated with the risks addressed in this round.
The fourth phase (lower left quadrant) focuses on planning the next round based on the results of
the current round. The last phase of the round is usually conducted as a review involving the
project participants, including developers, clients, and users. This review covers the products
developed during the previous and current rounds and the plans for the next round. Boehm’s
spiral model distinguishes the following rounds: Concept of Operation, Software Requirements,
Software Product Design, Detailed Design, Code, Unit Test, Integration and Test, Acceptance
Test, and Implementation.2

2. Note that the figure illustrates only the first three activities (Concept of Operation, Software Requirements, and 
Software Product Design). The rounds for the remaining activities—Detailed Design, Code, Unit Test, Integration 
and Test, Acceptance Test—are not shown in detail, but only as blocks at the end of the last layer of the spiral. 
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Each round follows the waterfall model and includes the following activities:

1. Determine objectives
2. Specify constraints
3. Generate alternatives
4. Identify risks
5. Resolve risks
6. Develop and verify next-level product
7. Plan. 

The first two activities define the problem addressed by the current cycle. The third
activity, Generate alternatives, defines the solution space. The activities Identify risks and
Resolve risks identify future problems that may result in high cost or cancellation of the project.
The activity Develop and verify next-level product is the realization of the cycle. The activity
Plan is a management activity to prepare for the next cycle. These rounds can be viewed in a

Figure 15-10 Boehm’s spiral model (adapted from [Boehm, 1987]). The distance from the origin
represents the cost accumulated by the project. The angle from the horizontal represents the type of activity.
For example, the project P1 is currently in the risk analysis activity associated with software requirements.
The project P2 is in the development of the system product design. 
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polar-coordinate system shown in Figure 15-10. The first round, Concept of Operation, starts in
the upper left quadrant. Subsequent rounds are represented as additional layers on the spiral. The
notation makes it easy to determine the status of the project at any time. The distance from the
origin is the cost accumulated by the project. The angular coordinate indicates the progress
accomplished within each phase. 

Unified Software Development Process

The Unified Software Development Process (also called the Unified Process) is a life
cycle model proposed by Booch, Jacobson, and Rumbaugh [Jacobson et al., 1999]. The unified
process distinguishes important time ranges called cycles in the lifetime of a software system.
Note that these are different from the cycles in the spiral model: they can be thought of as
characterizing the stage of maturity of the software system during its lifetime. Cycles have no
specific names. However, starting with the “birth” of the system, we can think of the system to
be in the “childhood,” “adulthood,” or “retirement” cycle until it “dies.” A cycle generally ends
with a release of the system as a product to a customer. Each cycle can be in one of four states
called phases: Inception, Elaboration, Construction, and Transition (see Figure 15-11). During
the inception phase, the scope of the system is established, in particular what should be included
and not included. This phase also identifies the use cases that will drive the trade-off decisions
between conflicting design goals; these use cases are also called the core use cases. At least one
candidate software architecture is identified, and the core use cases are demonstrated against this
architecture. A first estimation and schedule for the entire project, including detailed estimates
for the elaboration phase, are also established during this phase. 

During the elaboration phase, the user’s view of the requirements is captured in a
repository. The software architecture is designed, and an initial set of build vs. buy decisions is
made, so that cost, schedule, and resource estimates can be derived. During the construction
phase, components are bought or built, and the release is compared with the acceptance criteria.
The transition phase is entered when the baselined system is mature enough for deployment to
the user community. 

Figure 15-11 States of a software system called phases in the Unified Process. The Unified Process
distinguishes four phases: inception, elaboration, construction, and transition (UML state machine diagram).
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Each phase can consist of a number of iterations. Each iteration addresses a set of related
use cases or mitigates some of the risks identified at the beginning of the iteration. An iteration
in the Unified Process is generally associated with a project as we defined it in Chapter 14,
Project Management.

For the duration of each iteration, several activities are performed in parallel. To
emphasize the parallelism and the fact that they are active across the complete iteration, these
activities are called workflows in the Unified Process.3 Development-oriented workflows are
called engineering workflows. The Unified Process distinguishes between Requirements,
Design, Implementation, and Test as engineering workflows (Figure 15-12). These workflows
have already been described in previous chapters of this book. The Requirements workflow
involves analysis of the application domain and creation of requirements artifacts such as the
analysis model (see Chapter 5). The Design workflow focuses on the creation of solution and
design artifacts such as the system design model (see Chapter 6) or the object design model (see
Chapter 8). The Implementation workflow realizes the solution in source code (see Chapter 10).
The Test workflow is involved in the testing of the models and the maintenance of
implementation and deployment artifacts (source code) (see Chapter 11).

The Unified Process distinguishes four cross-functional activities called supporting
workflows: Management, Environment, Assessment, and Deployment. The Management
workflow addresses all planning aspects for the software system as described in Chapter 14. The
Environment workflow is concerned with the automation of the software process itself and

3. The Unified Process does not follow the naming conventions in the IEEE standard. Workflows can be considered as 
special activities spanning more than one iteration (project). Engineering workflows are project functions because 
their duration is the same as the duration of an iteration, i.e., the project. The term supporting workflow can be 
equated with integral process.

Figure 15-12 Workflows in the unified software life cycle used by Royce [Royce, 1998] (UML class
diagram).
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maintenance of the development environment, in particular the infrastructure for communication
and configuration management. The Assessment workflow assesses processes and products
needed for reviews, walkthroughs, and inspections. The Deployment workflow enables the
transition of the software system to the end user. 

The Unified Process emphasizes the staging of resources for each of the workflows during
phases and iterations, thereby coupling project management issues very closely with software
life cycle issues (see Figure 15-13). This is done by managing each iteration as a software
project, as described in Chapter 14, Project Management. Because the duration of the workflows
is the duration of the project, they can be seen as project functions with differing phase-specific
needs. For example, during the Elaboration phase, the Requirements workflow needs most of
the resources, while the Implementation workflow resource requirements are less. During the
Construction phase, the resource needs for the Requirements workflow diminish, and the Design
and Implementation workflows need increasingly more resources. 

Figure 15-14 shows an entity-centered view of the Unified Process as a set of models. The
requirements are captured in the use case model. The analysis model describes the system as a
set of classes. The design model defines the structure of the system as a set of subsystems and
interfaces, and the deployment model defines the distribution across. The implementation model
maps the classes to components, and the test model verifies that the executable system provides
the functionality described in the use case model. 

Figure 15-13  The seven workflows in the Unified Process–Management, Environment, Requirements,
Design, Implementation, Assessment, and Deployment–are project functions performed during the entire
lifetime of a system. Each of the workflows has different resource needs depending on the phase and
iteration of the software system. The histograms for each workflow indicate the amount of work per
iteration—the higher the block, the more resources are consumed by the workflow in that iteration (adapted
from [Jacobson et al., 1999] and [Royce, 1998]).
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All models are related to each other through traceability dependencies. A model element
can be traced to at least one element in an associated model. For example, every use case has a
traceable relationship with at least one class in the analysis model. Traceability allows us to
understand the effect of change in one model on other models, in particular, it allows us to
provide traceability in the requirements. 

The dependencies between the models in Figure 15-14 can be maintained in different
ways. During forward engineering, analysis and design models are established from the use
case model, and the implementation model and test models are then generated from these
models. During reverse engineering, the analysis and design models are extracted or updated
from existing code. Round-trip engineering is a combination of reverse and forward
engineering. It allows the developer to switch between these development modes at any time,
depending on which model is undergoing the most amount of change.

15.4.3 Entity-Centered Models

If the time between changes is significantly smaller than the duration of an activity, and if
changes can occur in the application domain as well as in the solution domain, both the waterfall
model and the spiral model exhibit problems. For example, assume that the development team
selects the hardware platform and that new platforms appear every three to four years. As long
as the project time is significantly less than three years, the knowledge of the development team
at the beginning of the project is usually sufficient to select a platform once during system
design. However, if a new platform appears every three to four months and the duration of the

Figure 15-14 Entity-centered life cycle view of the models of the Unified Process (UML class diagram).
The dependencies depict traceability. There are dependencies between all models. Only the dependencies
between the use case model and the other models are shown [Jacobson et al., 1999].
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project is also three or four months, the platform decision will probably have to be reconsidered
during the project. 

In this section, we describe an entity-centered life cycle model, called the issue-based life
cycle model, that aims at dealing with frequent changes. This model is based on the rationale
behind the system as an issue model (Chapter 12, Rationale Management). Each project starts
with a set of issues. If the project starts from scratch, these issues are drawn from the project
manager’s experience or from a standard template. In a reengineering or interface project, issues
may be available from the rationale of the previous project. If the project has a long history, the
rationale should be well populated. Examples of issues are What should be the initial teams?
Should the mechanic have access to driver-specific information? What is the appropriate
middleware? What software architecture should we use? and Which implementation language
should we use? All issues are stored in an issue base accessible to project participants.

The status of an issue can be closed or open. A closed issue is an issue that has been
resolved. For example, a closed issue can be a decision about the platform on which the system
should run (e.g., Solaris). Closed issues can be reopened, however, as changes occur in the
application or solution domain. For example, if we need to support additional platforms (e.g.,
Linux and Windows NT), we reopen the issue, reevaluate the alternatives, and provide a new
resolution. Open issues are resolved by discussion and negotiation among project participants
(see Chapter 3, Project Organization and Communication). An issue i2 depends on another
issue i1 if the resolution of i1 constrains the alternatives available for i2. Tracking the
dependencies among issues enables developers to assess the impact of revisiting a given issue.
The issue base also tracks dependencies among issues. Figure 15-15 shows a snapshot of the
issue base of a project, depicting the issue status and dependencies.

Figure 15-15 Snapshot of a project issue base (UML object diagram). Issues i1 and i5 have been
resolved, whereas all other issues are still open. Dependencies among issues indicate that the resolution of
an issue can constrain the alternatives for dependent issues.
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Issues can be mapped to the activities of life cycle models described earlier. For example,
assume the activities Planning and System Design are part of the selected life cycle model. How
do we set up the initial teams? can be categorized as a planning issue, and What software
architecture shall we use? can be categorized as a system design issue. The status of issues can
then be used to track the status of each activity. If any system design issues are still open, the
System Design activity has not yet been completed. The life cycle models we described earlier
can then be seen as special cases of the issue-based model. In the Waterfall model, for example,
developers completely resolve the issues associated with an activity before moving to the next
activity. Figure 15-16 depicts the state of a project during System Design.

In Boehm’s spiral model, risks correspond to issues that are evaluated and reopened at the
beginning of each round. Issues are resolved in the order of their priority as defined during risk
analysis. Note, however, that “issue” is a more general concept than “risk.” For example, the
issue Which access control model should we use? is a design problem, not a risk. 

In the general case (Figure 15-17), all activities may still have associated open issues,
which means that all activities must be managed concurrently. The goal of the project manager is
to keep the number of open issues small and manageable without imposing time or activity-
based constraints on the resolution of issues. Using issues and their dependencies for managing
the life cycle activities allows all life cycle activities to proceed concurrently.

Figure 15-16 The waterfall model as a special case of the issue-based life cycle model (UML object
diagram). All issues that belong to the same issue category are contained in the same UML package. In the
project status shown in the figure, all the requirements elicitation and analysis issues have been closed; that
is, the requirements elicitation and analysis activities have been completed. 
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15.5 Further Readings

Waterfall-based software life cycle models are still widely used. Into the 1990s, software
companies contracted by the U.S. Department of Defense, for example, were required to use the
2167A standard [DoD-STD-2167A], which was based on the waterfall model. The sawtooth
model [Rowen, 1990] was an attempt to improve the V-model by solving discrepancies between
the user and software developer’s perception of the system at different levels of abstractions over
time. 

ISO/IEC 12207: 1995 Standard for Information Technology–Software life cycle processes
[ISO/IEC 12207, 1995] is a framework for software life cycle processes, with well-defined
terminology, processes, activities, and tasks to be applied during the acquisition, supply,
development, operation, and maintenance of software. This standard is occasionally (and
erroneously) thought to be a replacement for IEEE 1074, the standard covered in this chapter
[IEEE Std. 1074-2006]. ISO/IEC 12207 is a high-level description of the activities needed in a
two-party relationship, one acquiring software, the other supplying software. It describes an
architecture for software life cycles, but does not specify details about how particular activities
should be implemented or performed. The IEEE 1074 standard is at a lower level of abstraction,
as it is targeted for the user who needs to build a specific software life cycle for project or set of
projects. For example, IEEE 1074 specifies dependencies and interfaces between the activities in
terms of documents and work products. IEEE has subsequently adopted ISO/IEC 12207 as

Figure 15-17 In a complex project state, all activities can still have some open issues, which means that
all activities need to be managed concurrently.
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IEEE/EIA 12207.0-1996 with the addition of guidance and clarifications and revised IEEE 1074
in 1997 so that both standards are compatible [IEEE/EIA, 1996].

The Unified Process is becoming the de facto standard for iterative activity-centered
software life cycle models. It has its roots in the Objectory process described in [Jacobson et al.,
1992] and [Jacobson et al., 1995]. Objectory was the basis for the Rational Unified Process
[Kruchten, 1998], which in turn formed the basis for the Unified Process.

15.6 Exercises

15-1 Model as classes the activities of Figure 15-2 and the work products of Figure 15-4 and
draw a UML class diagram depicting the relationships between activities and work
products.

15-2 Assume that the waterfall model shown in Figure 15-8 has been derived from the IEEE
standard model in Figure 15-7 during the activity Life Cycle Modeling. What processes
and activities have been omitted in the waterfall model?

15-3 Redraw Boehm’s spiral model in Figure 15-10 as a UML activity diagram. Compare
the readability of the original figure with the activity diagram.

15-4 Draw a UML activity diagram describing the dependency between activities for a life
cycle in which requirements, design, implementation, test, and maintenance occur
concurrently. (This is called an evolutionary life cycle.) 

15-5 Describe how testing activities can be initiated well before implementation activities.
Explain why this is desirable.

15-6 In project management, a relationship between two tasks is usually interpreted as a
precedence relationship; that is, one task must complete before the next one is initiated.
In a software life cycle, a relationship between two activities is a dependency; that is,
one activity uses a work product from another activity. Discuss this different. Provide
an example in the context of the V-model.

15-7 Assume you are part of the IEEE committee that will revise the IEEE 1074 standard.
You have been assigned the task of modeling communication as an explicit integral
process. Make a case for the activities that would belong to this process.
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P 16
Methodologies:
Putting It All Together
We should be careful to get out of an experience only the 
wisdom that is in it—and stop there; lest we be like the cat that 
sits down on a hot stove-lid. She will never sit down on a hot 
stove-lid again—and that is well; but also she will never sit 
down on a cold one anymore.

—Mark Twain, Following the Equator: A Journey 
Around the World

In the previous chapters, we described a range of development and management methods
covering many different aspects of complex and changing software systems. For dealing with
system and application domain complexity, we described methods such as use case modeling,
object modeling, applying architectural styles, reusing design patterns, and mapping of models
to source code. For communicating knowledge about the system, we discussed UML diagrams,
issue models, informal communication mechanisms, and documents. For dealing with change,
we examined a variety of organizations, processes, and life cycles.

By now, you have an overview of the current state of the art of methods in object-oriented
software engineering, which you can view as a thick cookbook of recipes. In practice, however,
a cookbook is rarely enough for the novice to cook a complete meal. Moreover, not all
ingredients are always available, and the cook has to improvise to bridge the gaps.

In this chapter, we present methodologies as guidance for the manager to select and
customize the recipe to the specific project environment. The discussion about the right
methodology for software development is far from over. We present a design space ranging from
light-weight approaches to heavy-weight approaches. The idea is to help you understand this
space for yourself when organizing and running software projects. Although we cannot replace
experience with a book, we provide actual project examples to illustrate how trade-offs are made
when defining, setting up, and running a software project. 

We also present case studies conducted as software engineering project courses that cover
a wide range from a four-month, two-developer project collocated with the client to a
distributed, one-year, 100-person project with a remote client. In each of these case studies we
describe the selection of specific methods and techniques. All of our case studies involve actual
clients and developers who are technically fluent with respect to programming, but new to
software engineering concepts.
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16.1 Introduction: The First Ascent of K21

When Mount Everest (8,850 m) was successfully climbed with oxygen in 1953—after many
unsuccessful attempts without oxygen—it was assumed that one had to use oxygen to reach a summit in
such an extreme altitude. When the second highest peak K2 (8,611 m) was attempted by an Italian
expedition in 1954, oxygen was included in the equipment list.

Unplanned bivouac on K2 

On July 30, 1954, Walter Bonatti and high-altitude porter Mahdi started at Camp 8 with a crucial carry
of oxygen to Camp 9. The oxygen load was for the lead climbers Achille Compagnoni and Lino
Lacedelli, who had arrived at Camp 9 earlier. The expedition leader had selected them as candidates for
the final summit push, and the oxygen was intended to help them climb in the extreme altitude. When
Bonatti and Mahdi arrived at the location of the agreed Camp 9 spot, they could not find anybody.
Constantly searching for Compagnoni and Lacedelli, they eventually established voice communication
with the lead climbers, but they were not able to join them. Around 9:30 P.M. they were forced to
bivouac. 

An unplanned bivouac at an altitude of 8,100 m is a very serious affair. Bonatti and Mahdi endured a
horrible night in a snow blizzard without any protection from the winds. Unbelievably, Bonatti came out
of the ordeal unhurt, but Mahdi got severe frostbite and eventually had to undergo various amputations
on his fingers and toes. The next day, Bonatti and Mahdi left their load at the bivouac site and stumbled
down to Camp 8. Compagnoni and Lacedelli left their tent, went to the bivouac site to pick up the
oxygen and started for the summit. In the official account of the climb, Compagnoni and Lacedelli ran
out of oxygen about 200 m below the summit, which they reached at 6 P.M. Some of the summit pictures
show the oxygen packs at their feet. 

Discussion 

The fact that Bonatti was unscathed from the bivouac led to many accusations, in particular that he had
tried to climb K2 against the order of the expedition leader.

Compagnoni and Lacedelli claimed they ran out of oxygen early because Bonatti had used up part of the
oxygen supply during the unplanned bivouac so he would stay strong enough for the summit attempt.
Bonatti did not have a respirator mask with him, so he could have not possibly used oxygen. A detailed
analysis of the summit pictures in 1993 demonstrated that Compagnoni and Lacedelli had worn their
oxygen masks all the way up to the summit of K2 [Marshall, 2001]. Why did they lie? Marshall thinks
that Compagnoni must have been horrified when going back to Camp 8 after the successful summit
push to discover what happened the night before. He must have worried he would be blamed,
particularly if he felt even partially responsible for the unplanned bivouac. He must have also felt
threatened when he was questioned by the expedition leader about Mahdi’s injuries. 

Mahdi told his liaison officer, who in turn relayed it to the expedition leader, that Bonatti had intended
to reach the summit. Bonatti cannot possibly have told his intentions to Mahdi, because he spoke only
Italian and Mahdi spoke only Urdu. But how did Mahdi arrive at this conclusion? 

1. This discussion  leaves out many of the fascinating details of the problems that occurred during the first ascent of 
K2. To fully appreciate the complex interdependencies between equipment, motivations, reward structures, hidden 
agendas, expectations, novices and experts, and different view points, we refer the reader to the K2 chapters in 
Bonatti’s book [Bonatti, 2001].
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An expedition leader has to make several key decisions to create a successful expedition:
which mountain should be climbed, what process should be used, what type of tools, and who
should be part of the team. The answers to these questions lead to a variety of styles. The fixed-
rope style focuses on the creation of a base camp followed by several high camps. These camps
are then connected by fixed ropes that allow the climbers to move fast between these camps. In
the Alpine style, climbers do not use fixed ropes at all. The climbers carry everything they need,
setting up camp only when the night falls or when the weather stops them.

After the failures on Mount Everest and K2 in the 1920s and 1930s, it became an almost
universal opinion that Mount Everest and K2 could not be climbed without oxygen. After Mount
Everest was climbed with oxygen in 1953, oxygen was seen as fundamental to a successful
climb. In 1978, Reinhold Messner and Peter Habeler climbed Mount Everest without oxygen.

Even the question whether an expedition leader is needed at all can be answered in
different ways. From the early 1920s to the late 1960s, many expeditions were organized almost
like the military. They used a hierarchical organization with an expedition leader, several lead
climbers, a support team, many porters, and a liaison officer, whose task was to resolve difficult
communication problems between the porters and the rest of the expedition members. The 1954
expedition to K2 involved more than 300 porters. In 1980, Reinhold Messner went to Mt.
Everest with a support team of two people who accompanied him only to base camp. From there
he went solo without oxygen all the way to the summit and back in one single push. 

Like an expedition leader, the project manager of a software project must deal with key
decisions about project goals, software life cycle, project organization, tools, methods, and team
members. Although some of these decisions are made by other people or even imposed by the
organization, the character of the project and the ability for the project manager to respond to

Before the Second World War, all 8,000-m summit attempts were made with the help of experienced
high-altitude Sherpas from Nepal. Even expeditions to K2 and Nanga Parbat, located in the Karakorum,
hired Sherpas. After the war, Karakorum expeditions would get their climbing permit only if they hired
local porters. The Hunzas in the north of Pakistan were the obvious choice. Hunzas are highly capable
mountain people, but at that time they were still rather inexperienced in high-altitude expeditions.

In 1953, the Hunza Mahdi was hired as a rookie porter during the first ascent of Nanga Parbat. The
Nanga Parbat expedition started as a traditional fixed-rope expedition with a hierarchical organization,
but the final summit push was made by Hermann Buhl in a heroic 40-hour solo climb. Buhl did this
against the order of the expedition leader [Buhl, 1956].

By observing Buhl’s method, Mahdi must have concluded how successful climbing of 8,000-m peaks
had to be done. He had reason to assume that Bonatti was attempting to copy Buhl’s feat, instead of
simply delivering oxygen bottles to the lead climbers so they could reach the summit.

Mahdi’s (false) allegation, that Bonatti had plotted to reach the summit first, must have produced quite
an explosive reaction in Compagnoni because this was in violation of the expedition leader’s orders.
Compagnoni now thought he had a perfect excuse to lay the entire blame for Mahdi’s injuries on
Bonatti. To protect themselves further from being responsible for Mahdi’s injuries, Compagnoni and
Lacedelli most probably invented the story of the early loss of oxygen as well. 



654 Chapter 16  •  Methodologies: Putting It All Together

unexpected events are strongly formed by these decisions. In Chapter 14, Project Management,
we discussed project management decisions such as those related to time, schedule, cost, and
project organization. In Chapter 15, Software Life Cycle, we discussed project-independent
decisions, such as process model, dependencies among activities, process maturity, and process
improvement. To deal with the complexity of the material, we discussed these issues separately
in Chapters 14 and 15. During a project, however, the manager has to deal with these issues
together, as they depend on the project context and are strongly interdependent. In this chapter,
we discuss how to approach these decisions within a coherent framework. To facilitate this
discussion, we distinguish between project goals, environment, methods, tools, and software
engineering methodologies (Table 16-1). 

The project goals include the criteria that are used to evaluate the success of a project. The
project goal may be simply the on-time delivery of the specified system. In other cases, project
goals can include broader strategic aspects, such as ensuring repeat business from the client or
decreasing business costs.

Table 16-1  Examples of goals, environments, methods, and methodologies in mountain climbing and in 
software engineering.

Mountain climbing Software engineering 

Goal Mount Everest

K2

Nanga Parbat

The delivery of an emergency 
information system within quality, 
budget, and schedule constraints.

Environment Clear, cold weather

Porters

Climbing permit requirement

Local client

Novice developers

Project duration

Project distribution

Emergency response plan

Method Free climbing

Belaying & repelling

Liaison officer

Use case modeling

Design pattern reuse

Project-based organization

Tool Oxygen bottles

Rope

CASE tool

Version control tool

Methodology Alpine style

Fixed rope style

Extreme Programming

Royce’s methodology
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The environment includes the elements present at the beginning of the project. In
software development, the environment is defined by the client and by the current state of the
development organization. The environment constrains the project manager. Examples includes
the participants’ background, the problem type, and the location of the project.

Methods are recipes that the project manager can freely select to bring the project to a
successful end in the given environment. Examples include the methods we described so far in
this book, such as use case requirements elicitation or design pattern reuse. Different methods
work in different environments; an expedition using oxygen needs more porters.

Tools are devices or programs that support specific activities. Mountaineering tools
include oxygen bottles, ropes, pitons, tents, and so on. Software engineering tools include
modeling tools, compilers, debuggers, change tracking tools, and version control tools.
Developers often rely on specific tools to automate steps stipulated by the methods they use.

A software engineering methodology is a collection of methods and tools for developing
and managing a software system to achieve a specific goal in a given environment. It specifies
when methods or tools should be used and what to do when unexpected events occur. 

Section 16.2 describes typical elements of the environment that have a high impact on the
project. Section 16.3 discusses typical issues that are addressed by methodologies considering a
given environment and a set of available methods. Section 16.4 describes two general software
engineering methodologies, Extreme Programming [Beck & Andres, 2005] and Royce’s
software engineering unified methodology [Royce, 1998], to illustrate the spectrum of
methodologies available to a software project manager. Section 16.5 discusses the typical
methodology issues in the context of three case studies.

16.2 Project Environment

During a software development project, many factors can influence the selection of methods. In
this section, we consider the following aspects of the environment, which have a substantial
impact on the initiation of the project: participants’ expertise, client type, end users,
technological climate, distribution, and project duration.

Participants’ expertise. The background of the client, project manager, and developers can
constrain or open the field of methods that can be used during the project. Expertise includes the
familiarity with the application domain, the solution domain, and with various development
techniques and management practices. 

Client type. The client type affects the nature and amount of feedback during requirements
elicitation and the speed of decisions when changes are requested. The client type includes two
aspects: the ability to make decisions and knowledge of the application domain. Hence, we
distinguish between four types of clients (Table 16-2):

• The local king client is a client who can answer developer questions and make
decisions without having to ask anybody else. The local king has deep knowledge of
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the application domain and is usually collocated with the project. Local kings do not
report to anybody else and can effectively collaborate with the developers and the
project manager.

• The proxy client stands in for the real client. Proxy clients are sent by the real client,
either because of lack of time or because of physical distance would make
collaboration with an organization difficult. Proxy clients have sufficient knowledge of
the application domain to answer clarification questions from the developers, but do not
have sufficient power of representation to make major decisions.

• The pseudo client is a member of the development organization (e.g., the marketing
department) who acts as a client, because the system is targeted at a new market
segment, as opposed to a single individual or company. Pseudo clients can make
decisions within a short time and can collaborate well with the development
organization, but have a limited knowledge of the application domain. Often developers
act as pseudo clients.

• No client. Many projects start without a client, for example, when a visionary product
is developed before a market segment is opened. In most cases, however, the project
selects a pseudo client, so that the stakes of the developers can be balanced against the
stakes of the future user. 

End user access. Although clients may have deep domain knowledge, they have different
stakes than the end user. Clients are usually interested in an early delivery date, with as much
functionality as possible, and low cost. End users are interested in a system with a user interface
that they are familiar with or is easy to learn and that supports their specific task well. When the
stakes of the client and the end user are different, the project success may also depend on a
usability test conducted by end users.

Technological climate. Depending on the requirements expressed by the client, a project may
be constrained in the technological components it has to use. A project improving a legacy
system deals with well-known and mature technology. A project developing a first-of-a-kind
prototype based on a technology enabler may have to deal with preliminary versions of
components and immature technology. 

Table 16-2  Types of clients, decision power, and knowledge of the application domain.

Domain knowledge

Decision power

High Low

High Local king client Pseudo client

Low Proxy client No client
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Geographical distribution. Projects where all participants are located in a single room are
the easiest to manage, as all participants can get to know each other and much of the important
coordination can occur informally. However, there are many situations when single-room
projects are not possible or not desirable. The organization may have resulted from the merger or
acquisition of several individual companies with different skills. In other situations, the
development organization is a consortium or a temporary alliance of several subcontractors,
located in different geographical locations. In yet other situations, some part of the development
organization may need to be collocated with the client. While geographical distribution
increases the availability of skill, it also introduces new challenges, such as slower
communication, lower awareness among teams, and loss of information between sites. In the
first successful ascent of K2, the organization was highly distributed, which contributed to the
information loss: the expedition leader remained in the base camp, the lead climbers were in
Camp 9, and the support climbers bringing the last bottles of oxygen were in Camp 8.

Project duration vs. rate of change. The relationship between the project duration and the
rate of requirements and technological change affects which life cycles can be selected for the
project. A short project in which requirements do not change does not require extensive
configuration management or rationale management. Conversely, a multi-year project with
many requirement changes and staff turnover benefits from systematic configuration
management and rationale management approaches.

16.3 Methodology Issues
Methodologies provide general principles and strategies for selecting methods. Such high-level
guidance is also useful when dealing with new situations. In this section, we present selected
issues for which methodologies typically provide guidance. These include

• How much planning should be done in advance? (Section 16.3.1)
• How much of the design should result from reusing past solutions? (Section 16.3.2)
• How much of the system should be modeled before it is coded? (Section 16.3.3)
• In how much detail should the process be defined? (Section 16.3.4)
• How often should the work be controlled and monitored? (Section 16.3.5)
• When should the project goals be redefined? (Section 16.3.6)

16.3.1 How Much Planning?

Software project management plans are one of the keys in running a successful project.
However, plans have limitations. Thomas Gladwin has demonstrated this in an article in which
he compared the methods by which the Polynesians and the Europeans navigate the open sea
([Gladwin, 1964] as cited by [Suchman, 2007]). The European navigator begins with a plan of
the course. His effort throughout the voyage is directed to following the plan. If unexpected
events occur, the plan is altered and corrective activities are introduced to still achieve the
planned goal. This type of planning and controlling works well for assembly productions similar
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to those described by Taylor in the early 1920s [Taylor, 1911] for the production of many
identical cars, but not for building systems that require creative problem solving and reactivity to
change.

The Polynesian navigator begins with an objective instead of a plan. He sets off toward the
objective and responds to conditions as they arise in an ad hoc fashion. He uses his skills and
experience by observing the wind, the waves, the tides and currents, the fauna, the stars, the
clouds, the sound of the water on the side of the boat, to figure out the direction of his objective
or the proximity of land. If asked, he can point to his objective at any moment, but he cannot
describe his course. This type of project management is the key element of agile methodologies
and can be used with advantage in projects exploring new technology—projects whose purpose
is break existing paradigms. 

Another limitation of plans is described in [Suchman, 2007]: “In planning to run a series
of rapids in a canoe, one is very likely to sit for a while above the falls and plan one’s descent.
The plan might go something like: ‘I’ll get as far over to the left as possible, try to make it
between those large rocks, then backferry hard to the right to make it around that next bunch.’ ...
But, however detailed, the plan stops short of the actual business of getting your canoe through
the falls. When it really comes down to the details of responding to currents and handling a
canoe, you effectively abandon the plan and fall back on whatever embodied skills are available
to you.” 

In general, software project management plans are especially useful to kick off a software
project and to stay on course when no major changes are expected. They are limited in helping
the project manager or developers control the project when unexpected change occurs. In this
case a project manager generally cannot anticipate an alternative activity, or its consequence,
until some course of action is already under way. “It is frequently only on acting in a present
situation that its possibilities become clear, and we often do not know ahead of time, or at least
not with any specificity, what future state we desire to bring about” [Suchman, 2007].

16.3.2 How Much Reuse?

Reusing architectures, design patterns, and off-the-shelf components can significantly reduce the
development effort required to deliver a system (Chapters 6 through 8). This assumes, however,
that finding the appropriate solution or component to reuse can be done efficiently and reliably,
and that participants understand the reused elements sufficiently well to assess their impact on
the rest of the system. Moreover, while reuse decreases development time, it does not decrease
significantly the time needed to test the system and may increase the time to repair defects. For
commercial components, reuse also introduces risks associated with the amount and length of
support provided by the vendor.

In general, the project manager faces three different trade-offs:

• Architecture reuse. In this case, the project participants adopt a preexisting system
design and adapt it to the system (Chapter 6). As no actual software is reused, assessing
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an existing architecture is not more difficult than assessing an ad hoc architecture built
from scratch. Given an architecture that fits the needs of the system, selecting an
existing architecture is always more advantageous than recreating one from scratch.
The challenge in this approach, however, is to select an architecture that will enable
participants to meet the nonfunctional requirements of the system.

• Design pattern reuse. Similar to architecture reuse, design pattern reuse does not
involve existing software (Chapter 8). However, design patterns provide solutions to
partial design problems. Hence, developers will reuse, adapt, and combine many
different design patterns during object design. This can lead to an over-engineered
system when design patterns are used only for the sake of using design patterns. In
particular, the project manager and the chief architect should ensure that the
nonfunctional requirements and design goals are not hurt by the introduction of specific
patterns.

• Framework and component reuse. The reuse of a framework or a set of components
constrains the system design and may force developers to use specific design patterns
(Chapter 8). Moreover, components are usually black boxes provided by a vendor, and
they cannot be modified. The project manager must carefully assess the risks associated
with the reuse. In general, framework assessments are shared among several projects in
the organization, enabling projects to reduce the overhead associated with selecting a
framework.

In the end, the project environment is the determining factor for selecting a reuse strategy.
For well-defined application domains and flexible client requirements, a component-based
approach may be the most cost effective. For new systems, building from scratch may be the
only solution.

16.3.3 How Much Modeling?

Modeling constructs an abstraction of the system focusing only on the relevant aspects and
ignoring all other. Modeling enables developers to deal with complexity by reasoning with
simpler concepts. As development goes on, models are often refined to include more and more
details, and if one is not careful, the complexity of the models may become comparable to the
complexity of the system being modeled. Modeling makes implicit knowledge about the system
explicit and formalizes it so that a number of participants can share this knowledge without
misunderstanding. Models can support three different types of activities:

• Design. Models provide a representation that enables developers to reason about the
system. The models also form the basis for coding, as CASE tools are able to convert
models into source code templates.

• Communication. Models provide a common vocabulary that enables developers to
discuss specific design details, even though the corresponding system has not yet been
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realized. Models can support a broad range of communication activities, from
exchanging models on paper napkins during lunch to formal inspections in the meeting
room.

• Archive. Models provide a compact representation for storing the design and its
rationale for future reference. Successful systems have extended life cycles, requiring
several generations of developers to become familiar with early decisions.

A project manager can use modeling to support one or more of the activities above. In
general, modeling presents several challenges to the manager:

• Formalizing knowledge is expensive. It takes time and effort from developers, and
requires validation and consensus so that every participant agrees on the same
meanings.

• Models introduce redundancy. If changes are made to the system, the models must be
updated as well. If several models depict the same aspects of the system, all must be
updated. If one model becomes out of sync, it loses its value. 

• Models become complex. As the model complexity becomes similar to the complexity
of the system, the benefit of having a model is reduced significantly.

The project manager can choose to create activities dedicated to maintaining model
consistency and correctness or to minimize the amount of modeling by redirecting effort towards
coding and testing. In general, the trade-off depends on the project environment. On the one
hand, in a single-site project with a local king client, writing a complete requirements model is
not as critical, since the client is continuously involved in the project and available for questions.
The client can be seen as a “walking” specification of the system instead of a written
specification. On the other hand, a distributed project requires knowledge about requirements
and system design to be made as explicit as possible, as participants may have different stakes in
the project and have no opportunities to communicate this knowledge informally. Developing a
detailed use case model annotated with scenarios enables participants to converge toward a
single-system concept and to document the decisions and commitments they made (Chapter 4).
Similarly, a long-running project can challenge participants’ memories and suffer a high staff
turnaround, in which case making knowledge explicit for long-term use is an investment. In such
cases, methods such as rationale management (Chapter 12) and configuration management
(Chapter 13) enable participants to capture the justifications behind decisions and the history of
decisions, respectively.

Deciding whether or not to externalize knowledge can also depend on control factors.
Participants can make themselves indispensable to the project by refusing to share their know-
how with other participants. In the first ascent of the K2, the expedition leader actually kept
Mahdi’s account secret, because he was angry that a participant of the organization had worked
against his order (or at least that is how it seemed). As a result, for many years Bonatti actually
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did not know why he was avoided by the fellow expedition members, who thought of him as a
liar who would sell his grandmother to get to the summit.

16.3.4 How Much Process?

Modeling the software life cycle presents similar benefits and challenges as modeling the
system. On the one hand, it enables participants to reason over a simplified representation of the
process, devise and implement improvements, and, consequently, share this knowledge across
projects with the rest of the organization. On the other hand, process knowledge is difficult to
make explicit and to keep up to date.

The trade-off faced by the project manager ranges from no modeling to a detailed and
continuously refined model, depending on how many resources can be expended in this activity.
The project manager selects a specific solution based on the project environment. A well-known
application or solution domain leads to repeatable processes [Paulk et al., 1995], increasing the
benefit of modeling the process and attempting to share it across projects. In distributed
organizations, sharing process knowledge enables a high degree of standardization and, hence, a
lower level of miscommunication. For example, having a single well-defined configuration
management and change control process (Chapter 13) enables a manager to easily track the
status of individual changes and anticipate the rate of change for the near future. Rapid
prototyping efforts and concept exploration usually exhibit a much more chaotic process that
resembles brainstorming. There is less benefit in capturing or trying to control such a process as
it is usually not repeated and of much shorter duration. In such situations, the project could
follow either an entity-based life cycle or no explicit life cycle.

When modeling a software life cycle process and reusing it in a different project, the
project manager should make sure that the correct knowledge is being generalized and reused. In
the first ascent of the K2, Mahdi had experienced one climb (Nanga Parbat), which started as a
hierarchical, fixed-rope expedition. At the end he saw one climber (Buhl) refusing to listen to the
expedition leader and going solo for the summit (in Alpine style, so to speak). He concluded that
this was the way such expeditions were conducted.

16.3.5 How Much Control and Monitoring?

A detailed software life cycle model can lead to a detailed plan that can then be checked against
actual progress. On one end of the spectrum, a plan could be so detailed as to plan and monitor
the progress of each participant on each day. At the other end of the spectrum, a plan could
include a single milestone indicating the delivery, leaving participants to plan their own work
accordingly. Although both approaches are unreasonable, the project manager must choose a
point somewhere in between that fits the project environment.

In general, both planning and assessing the actual progress requires experience.
Consequently, novice participants are poor judges of their progress. Similarly, the lack of
precedents make it difficult to plan innovative systems. To deal with novices, a project manager
can select a hierarchical reporting organization with more experienced participants in the middle
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levels. The project manager can also define milestones as demonstration and scenario-based
reviews (as opposed to documents) to force participants to confront difficult issues early. To
control an innovative development, a project manager can increase the frequency of milestones
while leaving their exact content flexible to provide more opportunities for project goals to be
refined and redirected. Conversely, a project manager could leverage the knowledge of
experienced developers by enabling them to revise the project plan or the process model. For a
project with a mixture of experienced and novice participants, the project manager can select
peer-reviews, walkthroughs, and peer programming techniques to facilitate the transfer of
knowledge from experts to novices and to create a web of informal communication channels.

In the first ascent of the K2, the hierarchical organization led to thin communication
channels, which contributed to several miscommunications. For example, Mahdi talked with the
liaison officer, who relayed his statements to the expedition leader. However, the expedition
leader did not talk to Bonatti to confirm Mahdi’s statements.

16.3.6 When to Redefine Project Goals?

Sometimes a project goal is too ambitious or the original goal is simply wrong. When this
situation occurs, it is best to admit the failure and do a thorough analysis to understand what
went wrong. It requires a certain psychological capability from the manager to admit that the
goal cannot be achieved. After all, from the beginning of the project to the point of failure, the
main job of the manager was to convince everybody that the project was doable. One way to deal
with this is to declare the outcome of the project as a successful failure. Instead of focusing on
the failure, the manager focuses on an analysis of the project and determines lessons learned.
Many lessons cannot be learned in a successful project. The insights resulting from this analysis
can often be used to improve the next project, or to recognize dangerous obstacles in the future
that are suddenly now so clearly visible.

Although declaring a successful failure is a way to cancel a project and learn from one’s
mistakes, this option is not always available. Another possibility is to redefine the status at the
end of the project as the original goal. Sometimes this redefinition allows the project manager
and the developers to deal with unexpected outcomes and to reach an intermediate, less
ambitious goal that should have been defined as the original goal. In other cases, the original
goal becomes irrelevant, and the redefinition of the project goal is a way to recycle the work that
has been achieved so far.

16.4 A Spectrum of Methodologies

A software engineering methodology is a coherent set of principles for addressing the issues we
described in the previous section. In mountaineering, fixed-rope styles and Alpine styles are
methodologies. Once an expedition leader selects one of these styles, the selection of many
methods follows. For example, humans cannot sustain the lack of oxygen at high altitudes. As
the fixed-rope style requires the incremental establishment of a large number of camps,
complete with tents, sleeping bags, food supplies, and fuel, many climbers and porters will be
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exposed to high altitudes longer than sustainable without oxygen. Most fixed-rope style
expeditions of 8,000-m summits will then count on supplying the highest camps with oxygen
bottles. Conversely, an Alpine-style expedition can plan a quick enough attempt at the summit to
avoid prolonged exposure at critical altitudes.

In the same way, different styles of software development consist of the combinations of
different project organizations and software life cycles. Traditionally, software engineering
methodologies have evolved out of large complex, one-time projects, leading to an extensive
planning phase, detailed modeling (i.e., documentation), a hierarchical organization, and fine-
grained planning. This requires high overhead that is not always justified for shorter or routine
projects. As a reaction to these heavier methodologies, agile methodologies, such as Extreme
Programming [Beck & Andres, 2005], Feature-Driven Design [Palmer & Felsing, 2002], and
Scrum [Schwaber & Beedle, 2002], have appeared in recent years. In these more agile
methodologies, planning is accomplished incrementally, the source code is treated as the only
model of interest, and loose teams of experienced programmers are given the freedom to plan
and organize their own work. Another advantage of agile methodologies is that they can adapt to
fundamental changes in requirements [Cockburn, 2001]. A well-accepted definition of agility is
“the ability to both create and respond to change in order to profit in a turbulent business
environment” [Highsmith, 2004].

As in mountaineering, the environment constrains the set of methods that can be selected.
An Alpine-style expedition may be a way to conquer a mountain at high speed, but it is certainly
not the best way to bring paying customers to the top of Mt. Everest. Similarly, agile
methodologies can achieve spectacular results with the right set of skills, but may not be
appropriate without a critical mass of experience among participants.

In Section 16.4.1, we describe Royce’s methodology [Royce, 1998], the software
engineering equivalent of the fixed-rope climbing. Royce follows the Unified Process and
provides many project management heuristics for estimating, controlling, and monitoring
projects. In Section 16.4.2, we describe Extreme Programming (XP) [Beck & Andres, 2005], an
early agile methodology and the software engineering equivalent of Alpine climbing. XP
minimizes the generation of models and documentation by focusing on methods for making the
design of the system explicit in the source code and for disseminating knowledge among the
organization through peers. In Section 16.4.3, we describe the evolution of agile methodologies
starting with the Rugby approach from Takeuchi and Nonaka [Takeuchi & Nonaka, 1986], to
modern agile methodologies with a main focus on Scrum [Schwaber & Beedle, 2002]. Rugby
methodologies are the software engineering equivalent of expedition climbing to unknown
summits.

16.4.1 Royce’s Methodology

Royce’s methodology is based on the Unified Process life cycle described in Chapter 15. It is
iterative, focuses on risk management and change management, and departs significantly from



664 Chapter 16  •  Methodologies: Putting It All Together

the conventional waterfall approaches typical of large projects. Key principles of the
methodology include

• Architecture-first approach. Focus on critical use cases, significant architecture
decisions, and life cycle plans before committing resources for full-scale development.
Address requirements, architecture, and plan together at the beginning of each iteration.

• Iterative life cycle process that confronts risks early. Focus on critical use cases, high
architectural risks, and planning uncertainties as early as possible. Each iteration
should focus on a specific risk and move the requirements, the architecture, and the
planning in a balanced manner.

• Component-based development. Minimize number of human-generated lines of code.
This includes the reuse of commercial components, the use of code-generating tools,
and the use of high-level programming languages.

• Change management environment. Introduce controlled baselines and automated
change processes to deal with changes introduced by the iterative life cycle process. 

• Round-trip engineering. Use automation to more tightly couple models and source
code, thereby decreasing the cost of change.

• Objective quality control. Use automated metrics and quality indicators to assess
progress as an architecture evolves toward a finished product.

• Visual modeling languages. Use visual languages such as UML to support modeling,
communication, and documentation.

• Demonstration-based approach. Identify and follow performance issues early and
assess intermediate artifacts.

In the following, we describe how Royce’s methodology addresses the issues of planning,
modeling, reuse, process, and control.

How much planning?

In Royce’s methodology a project plan is developed iteratively, similar to the software.
Plans are detailed and refined as the stakeholders increase their knowledge of the application and
solution domains. Planning errors are like software defects: the earlier they are resolved, the less
impact they have on project success. 

Royce’s methodology organizes the work breakdown structure around software life cycle
activities. The first-level elements in the work breakdown structure represent the life cycle
workflows—management, requirements, design, implementation, assessment, and deployment.
The second-level elements represent phases—inception, elaboration, construction, and
transition. Finally, the third-level elements correspond to artifacts that are produced during the
phase. Complex projects add levels to group sets of related artifacts within a phase. The
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organization of the work breakdown structure around the life cycle instead of the system shields
it from changes to the system.

While recognizing that estimation of new projects is difficult, Royce suggests to compute
the initial estimate with a model, such as COCOMO II [Boehm et al., 2000], and refine it with
the project manager, developers, and testers. This enables multiple points of view to be factored
into the estimate. Moreover, this enables the project participant to feel ownership of the estimate.
After each iteration, the plan is revised to reflect the performance of the project and to repair any
planning error.

How much reuse?

A key principle in Royce’s methodology is to minimize the amount of human-generated
source code, by reusing commercial components, using code generation tools, and using high-
level visual programming languages. Royce treats reuse as a return-on-investment decision.
Using any of these methods decreases development time. Mature components and tools also
reduce time to repair defects; immature components and tools can increase quality problems so
drastically that they offset any economic benefit. Hence, buy-versus-build decisions are treated
as risks that should be confronted early in the life cycle (e.g., in the first iterations of the
elaboration phase). When components are reused in more than one project, the return on
investment can be further increased.

How much modeling?

Royce organizes artifacts based on the activities of the Unified Process (Section 15.4.2):

• The management set captures the artifacts associated with planning and monitoring
activities. These artifacts use ad hoc notations to capture the “contracts” among project
participants and other stakeholders. Specific artifacts included in this set are the
problem statement, the software process management plan, the configuration
management plan, and status descriptions.

• The requirements set consists of artifacts describing the visionary scenarios, prototypes
for user interfaces, and the requirements analysis model.

• The design set consists of artifacts describing software architecture and interface
specifications. 

• The implementation set consists of source code, components, and executables needed
for testing the components and the system. 

• The deployment set includes all the deliverables negotiated between the project
manager and the client: in general, the executable code, the user manual, and the
administrator manual. 
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Test artifacts resulting from the assessment workflow are part of each of the above sets.
The management set includes the test plan and procedures. Test specifications are part of the
requirements set. Tests are simply viewed as an integral part of the system, and the same tools
and techniques are used for developing tests.

The diagram of all artifact sets generated over the phases of a software system is called the
artifact road map. Figure 16-1 shows an example of an artifact map for managing a large
software project according to Royce’s methodology. 

How much process?

Royce’s methodology includes heuristics and guidelines for tailoring the life cycle process
based on the technical and managerial complexity of the project. Royce considers the following
factors when tailoring the process:

• Scale. The number of participants in a project is the single most important factor in
determining the process. Small projects (1 to 5 participants) require much less

Figure 16-1  Example of an artifact road map of work products in a project using the Unified Process as
a software life cycle model. The artifact names are the ones used in this book. Informal releases are shown
as hollow triangles, baselined artifacts are shown as solid triangles, dotted lines represent the end of a phase
(adapted from [Royce, 1998]).
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management overhead than larger projects (>100 participants). In smaller projects,
performance is highly dependent on the technical skills of each participant and on the
tools they use. In larger projects, the management skills of team leaders becomes a
primary performance bottleneck. With small projects, management can be informal,
with focus on the technical artifacts, few milestones, and no formal processes. Larger
projects must be much more formal, with well-defined milestones and focus on change
management artifacts, such as change requests and baselines.

• Stakeholder cohesion. A cooperative set of stakeholders allows a flexible plan and
informal agreements. For example, projects with a few stakeholders who share a
common goal (e.g., the development of an off-the-shelf product by a start-up company)
often have cooperative stakeholders. This enables plans and requirements to be refined
at the beginning of each iteration. Conversely, contention among stakeholders requires
more formal agreements and well-defined processes to achieve consensus. For
example, projects accomplished by a consortium of organizations often feature
contentious sets of stakeholders with conflicting goals. A contentious set of
stakeholders results in more emphasis on use case modeling and demonstration-based
reviews. The assessment workflow becomes critical, and review and quality ensuring
activities take precedence over other workflows to ensure stakeholder acceptance. 

• Process flexibility. The rigor of the contract binding the client with the development
organization determines the rigor of the process definition. A rigorous contract, typical
in one-time, custom development contracts for the government, requires precise and
detailed process definitions, whereas internal developments, such as experimental
prototypes, enjoy much more flexibility.

• Process maturity. Organizations with mature processes are easier to manage than
organizations with immature processes. Mature organizations have achieved a level of
experience and process definition that enables precise planning and a high degree of
process automation. 

• Architectural risk. Ideally, the feasibility of the architecture should be demonstrated
before full-scale commitment to develop the system. However, it is not always possible
to eliminate all architectural risks before the start of the construction phase. For
example, because the architecture is new and untested, higher architectural risk during
construction results in higher levels of implementation and rework. Addressing this risk
earlier results in more design effort during elaboration and more emphasis on
demonstrations. 

• Domain experience. An organization that includes participants with domain expertise
shortens the earlier phases of the life cycle by increasing the reuse of experience and
processes from previous projects. A team of participants that has developed similar
systems in the past requires fewer elaboration iterations and fewer status assessments.
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When initiating a project, a project manager assesses all of these factors when deciding the
level of detailed process definition and the amount of effort to budget for each phase. 

How much control?

A software development project is difficult to manage if its current status cannot be
measured objectively. This is one of the reasons why conventional software projects are difficult
to manage, as most intermediate artifacts are documents. An iterative life cycle addresses this
problem in part, as many more technical artifacts than just documents are available early. The
goals of software metrics are to provide an accurate picture to the development and management
team of the progress to date and the current quality of evolving software products, so that budget
and schedule accuracy can be improved over time.

At the beginning of each iteration, the plan, the requirements, and the architecture are
updated. Moreover, each new iteration results in change requests for baselined work products to
accommodate the resolution of new risks. Hence, change management is critical during an
iterative process. The change process needs to track changes from request through approval and
to assignment and implementation. The amount of code scraped or reworked, the size of the
change, and other such metrics are critical to control the overall quality of the system. Royce’s
methodology focuses on three management metrics and four quality metrics:

• Management metrics:
• Work: How many tasks have been completed compared to the plan?
• Costs: How many resources have been consumed compared to the budget?
• Team dynamics: How many participants leave the project prematurely, and how

many new participants are added?
• Quality metrics:

• Change traffic: How many change requests are issued over time?
• Breakage: How much source code is reworked per change?
• Rework: How much effort is needed to implement a change?
• Mean time between failures: How many defects are discovered per hour of testing?

When metric collection is automated or otherwise accomplished with minimal human
intervention, the project manager can rely on an increasingly accurate picture of the current
status of the system and its quality. For example, the number of change requests over time can be
computed when a change-tracking tool is used. Breakage and other code metrics can be
computed when changes are completed and checked into a version control tool. Mean time
between failures can be computed from data entered in a defect-tracking tool.

Summary

Table 16-3 below summarizes the methods used by Royce’s methodology for each
methodological issue.
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16.4.2 Extreme Programming

Extreme Programming (XP) is a methodology targeted at small teams of developers who need
to develop software quickly in a changing environment. It aims at making the design of the
system as explicit as possible in the source code, hence reducing the need for documentation and
the risk of inconsistencies among different documents. System design is approached in an
incremental way. Only features that are needed for the requirement under consideration are
implemented. The developers do not first design a general extensible architecture that could deal
with future requirements. Instead, requirements are addressed one at a time: The existing code is
first refactored to improve the system design in light of the current requirement. The refactored
code is tested; tests for the current requirements are then written. Finally, the requirement is
implemented. In short, system design is improved for extensibility only immediately before the
system needs to be extended.

XP contains a collection of project management heuristics. For example, code is not
owned by a specific developer, but rather owned by the team. Every line of code must actually be
written by a pair of programmers who match themselves dynamically for a specific task. The
driver has the control of the keyboard and mouse and the partner watches the driver over her
shoulder. After the task is done, the pair disassembles. Afterward, anybody can change the code;

Table 16-3  Methods in Royce’s methodology categorized by methodological issues.

Issues Methods

Planning Evolutionary WBS
Initial model-based estimation of cost and schedule (e.g., COCOMO II)
Iteration planning, including all stakeholders

Modeling Critical use cases and driving requirements first
Architecture first
UML
Round-trip engineering

Reuse Buy vs. build decisions during elaboration 
Focus on mature components for reducing amount of human-generated source
code

Process Scale
Stakeholder cohesion
Process flexibility
Process maturity
Architectural risk
Domain experience

Control Management indicators (work, cost, team dynamics)
Quality indicators (change traffic, breakage, rework, MTBF)



670 Chapter 16  •  Methodologies: Putting It All Together

there is no “owner” with sole authority to make the necessary changes. This form of ownership
is quite close to the egoless programming scheme originally proposed by Weinberg [Weinberg,
1971].

XP can be boiled down into five key principles:

• Rapid feedback. Confronting issues early results in more time for resolving issues. This
applies both to client feedback and feedback from testing.

• Simplicity. The design should focus on the current requirements. As many changes will
occur and few of them can be predicted, it is easier to deal with new requirements when
they occur. A simple design is easier to understand and to change than a complex one
with many layers of indirection for protecting against anticipated changes.

• Incremental change. It is easier to deal with changes one at the time instead of many
concurrent changes. Changes should be integrated one by one with the current baseline.

• Embracing change. Change is inevitable and frequent in XP projects. It should be
treated as a normal phenomenon and not as an exception to be avoided.

• Quality work. XP focuses on rapid projects where progress is demonstrated frequently.
Nevertheless, each incremental change should be implemented carefully and
completely. Investing time to do excellent work the first time will reduce scrap and
rework later.

Next, we describe how XP addresses the issues of planning, reuse, modeling, process, and
control. 

How much planning?

In XP, planning is driven by requirements and their relative priorities. Requirements are
elicited by writing stories with the client. Stories are high-level use cases that encompass a set of
coherent features. Developers then decompose each story in terms of the development tasks
needed to realize the features of the story. Developers estimate the duration of each task in terms
of days; if a task is planned for more than a couple of weeks, it is further decomposed into
smaller tasks. After estimating the effort needed for each story, the client and the developers
meet to assign specific stories to releases, which correspond to versions of the system that will
be deployed to the end user. The user stories are organized into stacks of related functionality.
The client prioritizes the stacks so that essential requirements can be addressed early and
optional requirements later. This leads to the release plan: it specifies which story will be
implemented for which release and when it will be deployed to the end user. Releases are
scheduled frequently (e.g., every one or two months) to ensure rapid feedback from the end
users.

The effort needed to realize user stories is initially estimated in terms of ideal weeks. An
ideal week is a week in which all work time is dedicated to this single purpose. When estimating



A Spectrum of Methodologies 671

the cost of a release, this number is then adjusted by a factor to reflect such overhead activities as
meetings, holidays, and sick days. This factor also takes into account uncertainties associated
with planning. For new teams with no previous experience in XP, authors recommend starting
with a default factor of three—three actual weeks are needed to accomplish the work of a single
ideal week. This factor can be lowered as time progresses. The inverse of this factor—how many
ideal weeks can be accomplished during a fixed amount of time—is called the project velocity.

Every release is made up of a number of smaller iterations that typically last for two or
three weeks. Each iteration produces a promotion of the system, which is submitted to the client
for acceptance testing. By exposing the client to small increments of functionality, the client has
the opportunity to introduce changes many times during development. Each iteration represents
a small step toward a release, so changes are small and can easily be undone if necessary. 

The beginning of an iteration starts with the so-called “planning game,” in which the client
selects the stories to be implemented. The ordering and priority of each user story scheduled for
the current release is also decided with the client. The client then specifies acceptance tests for
each story. An acceptance test is a scenario that exercises the system and is used to validate a
specific story. Acceptance tests are also used for system regression testing before each release. 

At the end of an iteration, the team computes the actual project velocity by adding the
ideal weeks of the completed user stories (i.e., that passed the acceptance tests). During the next
iteration, the client can only select a set of stories whose estimated effort does not exceed the
number of ideal weeks accomplished during the previous iteration. This enables the client to
trade off functionality for cost, and developers to transparently justify the cost of each feature.
The planning for an iteration also includes time to address any acceptance tests that failed at the
end of the previous iteration. If the project velocity deviates substantially from the original plan
for more than two iterations, a new release planning meeting is called with the client to adjust
the schedule.

From a project management point of view, stories can be thought of as work packages in a
work breakdown structure. The difference with respect to traditional project management is that
the task estimations come from the developers, not from the project manager.

How much reuse?

XP does not emphasize reuse as a key method for increasing productivity. And although
XP does not rule out the use of design patterns, developers are encouraged to select the simplest
solution that addresses the user story currently being implemented. Design patterns might be
introduced as a result of refactoring, when changes are actually implemented. In this respect, XP
differs from conventional methodologies in that it does not focus on the system architecture,
which would allow such reuse to be planned at the onset. Instead, the system architecture is
refined and discovered one story at the time, as the prototype evolves toward the complete
system.
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How much modeling?

XP minimizes documentation. The assumption is that fewer deliverables reduces the
amount of work and duplication of issues. Instead, knowledge is communicated directly among
participants—for example, the client is a walking specification, the design is discussed during
CRC card sessions, all developers can modify any part of the code. The system design is made
as explicit as possible in the source code by using explicit names and by decomposing methods
into many simpler ones, each with a descriptive name. Refactoring is used to improve design
incrementally. Coding standards further help developers communicate using only source code.

How much process?

XP follows a simple life cycle process consisting of four activities: planning, design,
coding, and testing. Planning occurs at the beginning of each iteration. Design, coding, and
testing occur incrementally in rapid succession. There are only a few constraints on these
activities, which are summarized below:

• Test first. Unit tests are written by the developer and before units are written. This
enables the developer to refine the API (Application Programmer Interface) to the class
and ensures the existence of unit tests early.

• Write tests for each new bug. When defects are discovered, a unit test is created to
reproduce the defect. Then the defect is repaired and all unit tests are run again.

• Refactor before extending. When new features are implemented, refactoring may be
necessary to create a design that accommodates the change. The refactoring is done
first, then the extension is implemented. This ensures that the design does not decay as
new features are added. As ownership of the code is shared, refactoring may affect code
that the developer did not initially write.

• Production code is written in pairs. Whereas individual developers may write
prototypes for experiments or proof of concepts, production code (i.e., code that is part
of a release) is written in pairs to ensure fewer defects, an improved design, and shared
knowledge about the design.

• Integrate often. Source code from developers is integrated into the main branch, one
contribution at the time. Unit tests for all integrated units are used for regression
testing.

XP encourages developers to improve on this process when necessary. There are, however,
no formal process instrumentation or process improvement activities; they are unnecessary given
the small project sizes for which XP is suited.
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How much control?

XP attempts to reduce the number of meetings developers need to attend so that they can
spend more time writing tests, coding, and refactoring. Status is communicated in the team by
means of a daily stand-up meeting. All project participants stand up in a circle and take turns
briefly updating the team about the tasks they completed the previous day, the tasks they are
currently working on, and the open issues they are facing. No discussions are allowed, to keep
the meeting short. If any discussion is necessary, only the participants involved meet informally
later that day.

The need for inspections and peer review is eliminated by using pair programming. Since
all production code (including unit tests) are written in pairs, the review occurs during the code
writing. As code is not owned by any specific pair, many programmers become familiar with any
specific piece of code. Moreover, pairs are rotated often to enable a better distribution of
knowledge throughout the project.

XP replaces the command and control structure of large projects, such as those found in
Royce’s methodology, by a self-organizing system [Highsmith & Orr, 2000]. A leader (as
opposed to a manager) communicates a vision of system requirements and architecture,
cultivates an environment where innovative ideas can be promoted and elaborated, and
encourages risk taking. The leader must encourage an environment where participants can
collaborate, share information, and develop mutual trust. The leader must still make the hard
decisions to ensure that participants pull in the same direction, and get the product shipped. The
leader must be able to decide when to build consensus and when to dictate. The leader is like the
Polynesian navigator guiding his boat toward an objective, as opposed to managing his project
according to a rigid step-by-step plan.

Summary

Table 16-4 summarizes the methods used by XP for each issue.

16.4.3 Rugby Methodologies

In 1986, Takeuchi and Nonaka published a methodology to address the specific problems that
occur in new product development [Takeuchi & Nonaka, 1986]. They named it the Rugby
approach, because the rugby game requires all team members to go the distance as a unit,
passing the ball back and forth while moving simultaneously. This approach was in contrast to
the methodologies that existed at that time, which Takeuchi and Nonaka compared with a relay
race, where one runner moves at a time, passing the baton to the next runner. For many
situations, these relay-based methodologies were seen as too slow, too heavy, and not able to
react well to change. 

In rugby, the normal flow of the game is stopped after an infringement occurs, for example
after the ball is passed forward (which is not allowed in Rugby) or after the ball has been
trapped. The game is then restarted with a formation called the scrum, which is quite a physical
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event where injuries can occur. In software development, agile methodologists argue that
developers should also stop and review the situation whenever change has occurred, such as
changes in the requirements. To reduce the risk of overlooking unexpected changes, agile
methodologists propose to meet as regularly as possible to identify these changes as early as
possible. So while heavyweight methodologists tried to avoid unexpected change, agile
methodologists regard unexpected change as the normal situation to be accepted at regular
points during project-runtime. 

XP described in the previous section was one of the first “light-weight” methodologies to
address the slowness and bureaucracy of these methodologies [Beck & Andres, 2005]. Based on
the Rugby approach, Ken Schwaber published the Scrum approach in 1995 [Schwaber, 1995].
Other light-weight methodologies with similar goals emerged during the same time such as
Adaptive Software Development (ASD) [Highsmith & Orr, 2000], Crystal Clear [Cockburn,
2004]. In 2005, Martin Fowler published an overview of these methodologies [Fowler, 2005].

 In 2000 a group of XP experts and other methodologists discussed the relationship of XP
with other “light-weight” methodologies. During that meeting, the name agile methodology was

Table 16-4  XP methods by methodological issues.

Issue Methods

Planning Write user stories with the client.
Plan frequent small releases (every 1 to 2 months).
Create schedule with release planning.
Kick off an iteration with iteration planning.

Modeling Select the simplest design that addresses the current story.
Use a system metaphor to model difficult concepts.
Use CRC cards for the initial object decomposition.
Write code that adheres to standards.
Refactor whenever possible.

Process Code the unit test first.
Code unit tests for all production code.
Do not release before all unit tests pass.
Write a new test for each uncovered bug.
Do not add functionality early.
Collocate the project with the client.
Program all production code in pairs.
Integrate code one pair at the time.

Control Code is owned collectively.
Adjust schedule.
Rotate pairs.
Start the day with a stand-up status meeting.
Run acceptance tests often and publish the results.



A Spectrum of Methodologies 675

chosen instead of light-weight methodology, because the term light-weight was considered to
evoke the wrong idea of being “light-headed”. The key points of an agile methodology were
then published with four so-called value statements in the Agile Alliance Manifesto
[AgileManifesto, 2001]:

• Individuals and interactions over processes and tools. The most important factor in a
software project are the people and how they work together. Software development is
better done by a social network of self-organizing people than an organizational
hierarchy with strict lines of authority, processes with fixed roles and sophisticated
tools. 

• Working software over comprehensive documentation. The goal of software
development is to create software, not documentation. 

• Customer collaboration over contract negotiation. Having a contract with the customer
is important, but it is not a substitute for communication. Successful developers work
closely with their customers to discover what they need, and they educate their
customers along the way. 

• Responding to change over following a plan. A good software project should start with
a plan, but that does not mean it must be followed literally, it must be changeable if the
situation changes and change is a reality in software development. As work progresses,
the understanding of the application and solution domain, the business environment
and the underlying technology changes and developers should be able to respond to
these changes.

In this section, we describe elements of Rugby methodologies not covered by XP,
addressing the five methodological questions in this chapter.

How much planning?

Agile methodologies have had a poor reputation with respect to planning. Critics of agile
methodologies often say that “agile teams don't plan” or “agile teams won't commit to dates and
features.” In fact, agile methodologies advocate a lot of planning, but not all of it at the
beginning of a project. Agile planning is iterative and refines estimates as requirements stabilize
and more experience is gained by the team. In a deterministic model of development, the SPMP
is developed up front, in a nondeterministic model of development, the SPMP is developed
incrementally and iteratively, and adapts to the current situation. 

Iterative planning implies that the agile planner is always prepared to acknowledge that
the plan itself is wrong instead of trying to get the project back to the planned course. This can
happen as a response to change, for example, when requirements change or when promising new
technology appears in the middle of the project. At the start of a project the plan may state that a
product should fulfill a specific set of requirements, but in the middle of the project the client
decides that a different set of requirements would increase the value of the product significantly. 
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This uncertainty is also reflected in the estimate models used for incremental planning.
Cohn, for example, advocates three distinct estimates: The order of magnitude estimate, done at
the beginning of the project, which can be off by as much as an order of magnitude from the
eventual values. The next level estimate is the budgetary estimate with a precision of +25% to
-10%. Late in the project follows the definite estimate, with a precision of +10% to -5%
[Cohn, 2006].

Closely related to agile planning is agile estimation, such as Planning Poker
[Grenning, 2002]. Planning Poker involves a moderator and the team members. It starts with a
list of features of the system to be developed. These can be the functional or nonfunctional
requirements, often presented in terms of user stories or scenarios. Each team member gets a
deck of cards containing a set of different values, for example 1, 2, 3, 5, 8, 13, 20, 40, 100. For
each feature on the list, the team members discuss their difficulty and privately choose a value
card that they think represents the correct estimate. Then the moderator asks that all the cards are
simultaneously revealed. In general, there will not be an immediate consensus about the
estimates and the team members with the highest and lowest estimates are asked to justify their
choices. This usually leads to another round of discussion and another estimation. This process
is repeated until a consensus is reached. There are different ways to reach a consensus. For
example, the developer who is responsible for the requirement may have more weight in the
consensus vote, the moderator may also get more power to negotiate the consensus.

As agile estimation is iterative, planners improve their estimates as they gain a better
understanding of the development team and the application domain.

How much reuse?

Rugby methodologies are used with advantage in new product development, in our
terminology greenfield engineering, where the focus is not so much on the reuse of models or
existing processes, but more on the reuse of knowledge.

Knowledge acquisition is encouraged on the individual level as well as on the team level.
Team level learning takes place on the technical level in terms of tutorials and training programs
as well as on the social level. Furthermore, the team members are encouraged to accumulate
experience in areas other than their own. This allows team members to speak with people from
other domains, an important aspect for the elicitation of requirements and the discovery of
innovative designs.

Subsequently, knowledge is transferred between projects by reassigning key experts to
different teams. While organizations learn by converting individual project successes to standard
practice, institutionalization often creates a problem when the project environment changes
significantly. In such a situation, standard practices established from previous projects are rarely
applicable. In contrast, Takeuchi and Nonaka claim that learning from mistakes is more helpful
than learning from success. Project managers as well as developers can usually learn more from
mistakes than from successes [Petroski, 1992]. Allowing mistakes during a project is an
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important aspect of the Scrum methodology: the key is to find the mistakes early and having the
time to correct them. This is made possible by the daily Scrum meetings.

How much modeling?

Throughout the book we have introduced the concept of modeling as a key to solve
software engineering problems. UML has become one of the dominating languages to model
applications and software systems. We use UML to specify requirements with functional models
for the customer (use case models), we realize the dynamic behavior (workflows) with state
chart and activity diagrams, and we use deployment diagrams to describe a software installation. 

We have emphasized the need for keeping the models consistent which each other
(Section 4.3.3). Ambler advocates to update models only “when it hurts” [Ambler, 2002], that is,
developers should not try to make models consistent with each other after a change in one of the
models. Agile Modeling also assumes that there are many ways to model the same concept.
Ambler also proposes to create several models in parallel, drawing models with the simplest
notations and using the simplest tools. For example, in Scrum tasks are written on slips of paper
and organized on a white board.

One particularly simple modeling technique is paper prototyping, where end users are
asked to perform realistic tasks by interacting with a paper version of the interface [Norman,
2002]. The user interface is executed by a person playing the computer, who doesn’t explain
how the user interface is going to be implemented. Paper prototyping can be used for usability
testing of any type of human-computer interaction, but is mostly used for testing Web-browsers,
and hand-held devices. Its purpose is to get quick feedback from users while the user interface
design is still in the drawing stage. User interface paper prototypes can be hand-drawn drawings
or screen shots, often changed with the help of drawing or photo-editing tools.

To encourage natural behavior, the developers often prefer to do these tests without the
end user knowing that the system is not yet implemented. This can be done with the Wizard of
Oz technique, where a human (the wizard, usually sitting in another room) simulates the
behavior of the system by intercepting all communications between the end user and the system.
That is, the end user does not know that a human generates the responses. The Wizard of Oz
technique can provide valuable information on which to base future designs, by gathering
information about the nature of the interaction, testing the interaction of a device before building
a functional model and identifying problems users will have with the devices and interactions. 

For example, the user types a search query, and the wizard provides the result as if it
comes from a real search engine. This allows testing the user interface, in particular query
formulation and filtering of results, before implementing it. The Wizard of Oz technique can
also be used with advantage when designing natural language interfaces: The design and syntax
of the command language of the eventual system is driven by the actual language and
formulations used by the users during the tests [Kelly, 1984].
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How much process?

A deterministic process model, also called “defined process control model” by Tunde
[Tunde & Ray, 1994] assumes that, given a well-defined set of inputs, the same outputs can be
generated every time. Deterministic models have their roots in the early 1900s, when Frederick
Taylor formulated his ideas of scientific management [Taylor, 1911]. Taylor said that any
process based upon tradition, heuristics and rules of thumb should be replaced by precise
procedures. With the advancement of statistical methods, his approach was later called quality
control and quality management. Total quality management (TQM) in the 1980s was another
attempt to make production deterministic by reducing and, if possible, eliminating variations in
the process so that greater consistency in the desired product could be obtained [Deming, 1982].

The waterfall software life cycle model can be seen as an attempt to treat software
development as a deterministic process. However, trying to model software development as a
deterministic process has led to many projects with incomplete products, loss of control, and
clients receiving the wrong product in spite of frozen requirements. Software development is
better modeled with a non-deterministic model, also called “empirical process control model”
[Tunde & Ray, 1994]. The use of such a model in software development is justified by the fact
that software processes exhibit too much complexity to be fully understood where changes with
unpredictable impact can occur at any time. Project managers using a non-deterministic model
accept these unexpected events and deals with them through frequent inspection. For example,
in Scrum, the next “Sprint” is planned based on the experience of the last iteration. While
planning this Sprint, a redirection of the project goals and requirements by the client is explicitly
allowed. That is, Scrum empirically responds to any changes, that is, it is based on the empirical
process control model.

How much control?

 Control in agile methodologies is based on the concept called subtle control by Takeuchi
and Nonaka. On the one hand, the team commits to challenging goals. On the other hand, the
team is self-organizing. This tension, between challenge and freedom creates a built-in
instability in which innovative solutions can by rapidly developed. Takeuchi and Nonaka call
teams self-organizing if they are:

• autonomous: each team can make its own decisions, independent from its place in the
organizational hierarchy. 

• self-transcendent: the teams establish their own goals and pursue their own ideas
independent from the current patterns and knowledge used in the application as well as
solution domains. Teams are encouraged to think out of the box. Contradictory goals
are allowed, even encouraged to overcome the current way of thinking and to prepare
for the discovery of new ideas.

• multi-disciplinary: each of the team members is selected with respect to different skills
needed for the project. 
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Scrum teams are self organizing. Although the teams are encouraged to work on their
own, they are not uncontrolled. Management establishes enough checkpoints to prevent
instability turning into chaos. But the control is not based on externally imposed rigid schemes
and deadlines but on self-control. That is, the project monitoring is done by the teams
themselves, for example through peer pressure. This can be done by controlling the group
dynamics of the team, by selecting the team members based on their experience and their energy,
or by adding more experienced team members to a team of beginners. Important is the ability of
the project manager to tolerate and anticipate errors.

To be able react to upcoming problems, issues must be identified as early as possible.
Scrum advocates the daily Scrum meeting, in which the team members regularly share their
work progress and problems they have encountered. This allows the team to identify obstacles as
early as they appear, and react to them.

Summary

Table 16-5 summarizes the methods used by Rugby for each issue.

Table 16-5  Rugby methods by methodological issues.

Issue Methods

Planning Plan project as a prioritized list of high-level requirement.
Define consensus goals of the current iteration.
Agree on a consensus effort estimate; a precise estimate is only done for the
current iteration.
Revise estimates daily, based on newly identified work and progress.

Modeling Sketches
Paper prototype
Wizard of Oz

Reuse Reuse knowledge, not models.
Reassign key experts to other projects to disseminate knowledge within the
organization.

Process Overlap development activities.
Integrate completed items into a potentially deliverable product increment.
Return incomplete items to the global todo list.

Control Conduct brief daily status meetings.
Assess trends with burn down charts.
Review iteration results with product owner and client.
Readjust team for next iteration, if necessary.
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16.5 Case Studies

Novice project managers tend to be strict about the decisions made at the beginning of a project,
and are usually not willing to adjust to the challenges of new situations that occur in any real
project, whether technical or managerial. This unwillingness often has its roots in the
inexperience of the manager with the methods and techniques applied in the project. A project
manager needs to view himself as a continual apprentice, exploring the possibilities of applying
tools and methods in a project as an n-dimensional parameter space. In this space each project
occupies a point or a subspace spanned by the particular choice of values for the project
parameters.

To get experience, a novice project manager should start with simple project parameters;
for example, a team of five people, focusing on a single project parameter, either an unknown
requirement, a new technology, a new method, or a new methodology. It is not recommended to
change more than one of these parameters. It is not advisable to start with a large project with
unknown requirements, new experimental technologies and 50 team members. For example, we
do not recommend experimenting with a new methodology when addressing a new requirement
from the client. With more and more project experience, managers and developers can advance
to larger and larger projects with more degrees of freedom.

In this section, we provide three case studies of projects from the point of view of a novice
project manager. All three projects involved a set of senior software engineering students and a
real client:

• ATRACT (Automated Test and RAtionale Capture Tool) is a six-month XP project
focusing on the development of a test infrastructure for a middleware environment
(Section 16.5.1). ATRACT featured one requirement iteration followed by three
development iterations.

• FRIEND (First Responder Interactive Emergency Navigational Database) is a five-
iteration project with a collocated king client focusing on an emergency response
system (Section 16.5.2). We describe the first iteration as a single project, then how the
combination of five iterations formed another project.

• JAMES (Java Architecture for Mobile Extended Services) is a distributed, two-iteration
project focusing on the use of smart card applications for the car driver
(Section 16.5.3).

Note that these projects are all student projects. Students are often concurrently pursuing
other instructional courses during the period of the software development. This is similar to a
matrix development organization in which each individual can be working on a number of
projects. For each project, we examine the project goals, the project environment, the methods
selected to address planning, reuse, modeling, process, and control, and the lessons learned.
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16.5.1 XP Project: ATRACT

Project goal

The goal of ATRACT was to provide a framework for writing and executing tests for a
middleware environment specialized for small wireless devices, such as cell phones and MP3
players. The framework had to provide services for moving files between devices. Devices,
based on the type of file received, could either process, store, or ignore the files. As many new
types of devices and files had to be supported, the vendor of the middleware environment had a
need for a testing environment for specifying and automating tests. As the development and
execution of tests could involve several developers, the tool also had to include features for
discussing tests using an issue-based model.

The goal for the first release was to achieve a robust testing environment with at least the
minimum amount of functionality and documentation needed for conducting actual tests. An
additional goal for all participants was to learn about XP and evaluate its effectiveness for small
projects conducted in pairs.

Project environment

Local king client. The client of this project was the middleware vendor. He was familiar with
both the technology and the platform.

Novice participants. In addition to the client, two developers and a supervisor took part in the
project. All participants had taken part in software development projects; however, all were new
to XP. The developers relied on the advice of an external participant for the application and
customization of XP.

Mature technology. Because the platform for the system was Java, developers were able to
select relatively mature components for developing the test infrastructure.

End user access. The client of the project was also an end user.

Project located at the client site. The developers were collocated at the client site and had
unrestricted access to the client. The client was able to make immediate decisions and did not
have to refer questions to other members of the company.

Project duration. As the developers were familiar with use case modeling and the
requirements tool that was used, the project was divided into two phases: In a first two-month
phase that focused only on requirements, a set of vertical prototypes and a use case model of the
visionary system were developed. The developers validated the mock-ups with the client and
used the use case model for tracking requirements issues. The second phase, which lasted for
four months, was dedicated to realizing the first release of the system according to an XP
process. At the beginning of the second phase, the use case model was converted into user
stories that were used by the developers and the client for requirements prioritization and
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estimation. This two-phase approach enabled us to minimize the risks associated with using a
new methodology (XP) by restricting its use to the construction phase of the project.

How much planning?

The milestones of the project were fixed from the start, due to constraints on the developer
and management side. Previous experience in such projects (six months, few developers, new
client), suggested a requirements phase of about 6 to 8 weeks. The end of the requirements
phase also coincided with the beginning of the year, which made it easier to schedule in the
client’s calendar. The release plan and the decomposition of the first release into three iterations
was decided only after the requirements phase was completed. The developers chose a high-
velocity schedule from the start, confident in their ability to produce (an ideal week was
estimated to take only about 1.5 actual weeks). To the surprise of most participants, the velocity
did not change during the project.

How much reuse?

Initially, the developers did not plan to reuse any software packages because of the short
time constraints associated with the development phase. Much of the project time was already
spent understanding the application domain, in particular the existing middleware and
infrastructure. While implementing the user stories, however, the developers found themselves
writing a custom interpreter for creating tests scripts, including setting variables, specifying
loops, and manipulating files. As the custom language for the test script became more complex,
the developers decided to discard their custom interpreter and reused, instead, an open-source
implementation based on Javascript. This actually put the project back on schedule and resulted
in additional functionality for the client and a lower learning curve for end users.

How much modeling?

The requirements were initially represented as use cases for the first phase. After the start
of the second phase, only user stories and tasks were written down on index cards, which were
also used to track actual effort. The use case model was not kept up to date after the switch to
XP. Otherwise, no visual models were constructed. All system and object design knowledge was
embedded into the code as source code comments and as method and class names. The lack of a
model was not an issue given that only one pair of developers worked on the project and for a
short period of time.

How much process?

During iteration 2, the XP process, including the activities iteration planning, refactoring,
writing tests, realizing user stories, and test, was followed closely by the developers. The client,
however, did not write user stories or acceptance tests directly, due to lack of time; instead, the
developers would write the stories and the tests based on meetings with the client. As there were
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no schedule deviations or difficult issues, the manager turned into an observer and did not
participate very much past the requirements phase.

How much control?

The developers met the manager shortly before the end of each iteration, before meeting
with the client, to demonstrate the current status of the code and to assess any open issues. As
the project followed the initial schedule closely and there were few open issues at the end of an
iteration, the meetings were used mostly to bring the manager up to date on the application
domain. The meeting was then followed a few days later by a meeting with the client for the
iteration acceptance test.

Outcome

The project ended on time, delivering the required user documentation, installation scripts,
source, and executable code. A brief post-development phase led to the update of the use case
model to reflect the changes that had been made to the requirements. The client was satisfied
with the result, and most importantly, his expectations were in line with the outcome because he
had closely followed the complete development process. 

Lessons learned

Training the client. Even though the project was collocated with the client organization, the
client did not have enough resources to dedicate to writing user stories and acceptance tests. The
organization was too small to spare that much time for an infrastructure project. Hence, the
client did not learn as much about the process as originally planned. In this situation, the first
two months of requirements paid off as developers were able to elicit and validate a stable set of
requirements from a small number of meetings with the client, using scenarios, mock-ups, and
use cases. For a longer running project, it is critical that the client understand the ground rules of
XP when prioritizing user stories, estimating effort, and readjusting the schedule as a result of
velocity changes. Put in Royce’s terms, an XP project works for cohesive sets of stakeholders.

Training the developers about the process. XP requires a core of experienced developers.
Experience enables developers to produce accurate estimates, to localize changes, and to make
judgement calls about when to communicate issues with other participants. ATRACT was a small
enough project where both developers knew all that needed to be known about the current status
of the project. In a larger project, the rotation of pairs can be used to bring new developers, in
particular beginners, up to date and introduce redundancy into the system. We anticipate,
however, that running a larger project with only novice developers following XP would entail a
severe learning curve before the project reached a steady state of changes.
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16.5.2 Local King Client: FRIEND

Project goal

The FRIEND system is an emergency management system for coordinating field units
working on an accident. When the FRIEND project started in 1992, accident management was
accomplished mostly with paper-based processes. The appearance of technology enablers such
as digital wireless technology and PDAs (personal digital assistants) led to the goal of replacing
the paper process with an electronic process. FRIEND was designed for various types of
accidents, from minor traffic accidents to such major incidents as fires and storms. The project
was structured in five iterations demonstrating increasingly more complex prototypes. Many
examples of Chapter 4 are taken from this project.

Each development iteration of the project was executed as a one-semester software
engineering course with senior students as developers. The goal of the project was to develop a
demonstration prototype of the FRIEND system. A second goal was to expose the students to
state-of-the-art software engineering methods and tools. Although FRIEND did not follow closely
Royce’s methodology, it started with many of its elements, including a project-based
organization, well-defined change processes, and similar artifact sets.

Project environment

Local king client. The client for FRIEND was the police chief of a local community. He
initially did not have any background in software engineering or wireless technology. He had
detailed knowledge about the application domain, and could make immediate decisions about
the scope and the direction of the project.

Novice participants. The project included an average of 40 participants, mostly novice
developers, with strong technical skills but little experience in projects of this scale.
Management had conducted several projects of this scale. The application domain was new to all
the participants.

End user accessible. The client was also an end user. Moreover, a selected set of other end
users was available for usability testing.

State-of-the-art technology. FRIEND focused on wireless technology and PDAs as a platform
for the prototype. Although the technology used was relatively stable, it was new and required
additional training for the students before working code could be produced.

Single-site project. The project occurred in one location. All students had access to a single
lab. The client was available on short notice.

Project duration. The project initially included two months of preparation, followed by a
four-month development iteration. As the results of the first iteration were successful, the project
led to four successor projects that further refined the concept and architecture of the system, and
a spin-off company that realized a product. The overall project eventually lasted three years.
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How much planning?

As FRIEND was a concept exploration project, the functionality and the platform of the
prototypes were not specified in detail. The milestones, however, were fixed from the start. As
the participants had little experience in large-scale development, the schedule of the project was
based on the waterfall model. The requirements, system design, object design, and coding were
each planned for approximately four weeks, with a formal review at the end of each
development activity.

How much reuse?

Both the application domain (accident management) and the technology enablers (Apple
Newtons, wireless Motorola modems) used for the project were new to the students. Little reuse
was possible for the domain-specific parts of the system. Off-the-shelf packages were used for
the graphical user interface and the networking subsystems. In general, the short duration of the
project limited the complexity and the number of off-the-shelf packages that could be used.

How much modeling?

The project produced three artifact sets: a client set, a management set and a system set.
The system set corresponds to the requirements, design, implementation, and deployment set in
Royce’s methodology. The client set included the documents under the client’s responsibility
and written in collaboration with project management. This included the Problem Statement and
the Initial Schedule (Table 16-6). 

Task models representing management information were constructed during project
initiation by management and revised throughout the project. They were documented in the
Software Project Management Plan, the Software Configuration Management Plan, and the Top-
Level Design document that was used to set up the initial teams (Table 16-7).

System models represent the system at different levels of abstraction and from different
perspectives. The use case model describes the system from the user’s point of view. The
analysis model describes entities modeling the accident management domain . The system and
object design models represent the software architecture and the solution objects based on the

Table 16-6  Client documents. The problem statement was handed out to the students at the beginning of 
the project. 

Document Purpose Produced by

Problem Statement Describes the needs, visionary scenarios, target 
environment, requirements and constraints

Concept Exploration

Initial Schedule Describes major milestones Project Initiation
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chosen technology of PDA and wireless communication. The analysis models were documented
in the Requirements Analysis Document (Table 16-8).

The system design was documented in the System Design Document. The object design
model was documented in the Object Design Document. Models in the analysis and object
design phase were written in OMT [Rumbaugh et al., 1991] and entered into a small CASE tool
called OMTool. The OMT models were used both for generating the initial code fragments as
well as figures in the design documents.

The purpose of models in FRIEND was primarily to support design and communication. As
the goal of FRIEND was to demonstrate a prototype, we expected the system to evolve rapidly,
making it costly and difficult to maintain consistency between models and the system. Hence,
archiving was not a primary goal. Instead, we expected knowledge to be transmitted across
iterations by way of the prototype and the implicit knowledge carried by the students who
continued with the project.

How much process?

The life cycle model included three phases. During the pre-development phase,
preliminary requirements and the initial software architecture were developed. Infrastructure
choices were also made, in particular a single room was chosen and dedicated solely for the
students working on the project. Only the client, project manager, and coaches were involved in
this phase. At the beginning of the development phase, all students were assigned to a team to
work toward the construction of the system. The goal of the development phase was to validate
the architecture of the system and expose the participants to all aspects of an iterative software
life cycle. The requirements, design, implementation, and test cases were developed
incrementally. Core functionality was developed during the development phase. Some optional
functionality was added during the post-development phase. The rationale for this approach was
to deliver a system with required functionality on time, as opposed to delivering a complete

Table 16-7  Management documents. 

Document Purpose Produced by

Top-Level Design Describes the preliminary software 
architecture, in particular the subsystem 
decomposition. 

Top-Level Design

Software Project 
Management Plan 

The controlling document to manage the 
project

Project Initiation

Project Monitor and Control

Software 
Configuration 
Management Plan 

The controlling document describing the 
software configuration management activities

Software Configuration 
Management
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system late. Table 16-9 describes the three phases in the terminology of the IEEE 1074 life cycle
model.

Note that the life cycle did not include operation and support activities because the goal of
the project was to develop only a demonstration prototype. 

How much control?

Because of the large number of participants (42 students, 5 coaches) and their lack of
experience in large-scale development, we adopted a hierarchical project organization and strict
control. During pre-development, a preliminary top-level design of the system was created to
serve as a basis for team decomposition. The project team was organized in five subsystem

Table 16-8  System documents for FRIEND.

Document Purpose Produced by

Requirements
Analysis Document 
(RAD)

Describes the functional and global 
requirements of the system as well as four 
models: use case, object, functional, and 
dynamic models.

Requirements

User Manual Describes the use of the system (in the form of 
a tutorial). 

Requirements

System Design 
Document (SDD)

Describes design goals, trade-offs made 
between design goals, high-level decomposition 
of the system, concurrency identification, 
hardware/software platform, data management, 
global resource handling, software control, and 
boundary conditions. 

System Design

Object Design 
Document (ODD)

Describes the system in terms of refined object 
models, in particular the chosen data structures 
and algorithms, as well as full signatures for all 
public methods. This document results in the 
detailed specification of each class used by the 
programmers during the implementation phase.

Object Design

Test Manual Describes testing strategy—the unit and system 
tests performed on the system along with 
expected and actual results.

Testing

Administrator 
Manual

Describes the administrative procedures to 
install, operate, and bring down the system. 
Also contains a list of error codes, and failure 
and termination conditions.

Install Software



688 Chapter 16  •  Methodologies: Putting It All Together

teams (Campus, Communication, Database, EMOC, and UI), each responsible for one
subsystem (Figure 16-2). A cross-functional architecture team was composed of liaisons from
each subsystem team. A tool team was responsible for providing the infrastructure to the other
teams, including build scripts, configuration management, and test harness. For the initial
assignment of students to teams, we used a skill matrix considering programming knowledge,
knowledge of specific tools, wishes, and interests. The identification of the skills and interests
was based on information provided by the students.

During the first week of the project, we trained the students to use a well-defined process
for reporting status and conducting reviews. Each team met weekly to discuss status. The
weekly team meeting was facilitated by a coach, who posted a meeting agenda prior to the
meeting. A student would record the meeting content in meeting minutes and action items and
post them shortly after the meeting. The coaches of the teams also met weekly with the project

Table 16-9  Software life cycle activities for FRIEND.

Phase Purpose Activities  IEEE 1074 activities

Pre-
development

Initiate project Project Initiation 
Concept Exploration 
Top-Level Design

3.1 Project Initiation
4.1 Concept Exploration
4.2 System Allocation

Development Validate 
architecture

Train 
participants

Demonstrate 
core 
requirements

Demonstrate 
feasibility

Project Management 
Requirements Elicitation
Analysis
Analysis Review
System Design
System Design Review
Object Design
Object Design Review
Implementation
Unit Testing 
System Integration Testing
System Testing (alpha test)
Configuration Management 

Tutorials

3.2 Project Monitor & Control
5.1 Requirements

5.2 Design

5.2.7 Perform Detailed Design

5.3 Implementation
7.1 Verification & Validation

7.2 Software Configuration
Management

7.4 Training

Post-
development

Demonstrate 
optional
requirements

Deliver 
prototype

Client 
acceptance

Project Management 
Refinement 
Install Software 
Client Acceptance Test
Field Testing (beta test) 
Configuration Management 

3.2 Project Monitor & Control
6.3 Maintenance
6.1.5 Install Software
6.1.6 Accept Software
7.1 Verification & Validation
7.2 Software Configuration

Management
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manager. Progress was assessed in monthly project reviews. During the first month, the project
manager and the coaches ensured that the status reporting and meeting process was followed
rigorously. This resulted in the project status being visible for all students, thus allowing them to
recognize the value of such information. Moreover, during the first two months, roles within
teams were rotated, enabling each student to facilitate a status meeting, act as a liaison to the
architecture team, and specialize in a tool role. The motivation for role rotation was
pedagogical—each student had the opportunity to learn most roles; it also acted as a selection
mechanism—students who performed well in a specific role often ended up serving in that role
for the rest of the project. 

After the system design review (i.e., the second project review), both process enforcement
and role rotation were relaxed. Students were told to keep the tools and methods that worked,
and discard those that got in the way. As a result, the status reporting process remained in place,
but increasingly more decisions were made locally as coding progressed. Students who
displayed communication skills usually ended up in the liaison roles. Students who excelled at
technical tasks ended up carrying the technical tasks of the team. Conflicts and interface
problems discovered during builds were resolved face to face in the lab. Only major integration
issues resulted in ad hoc meetings. 

In essence, the organization of the project evolved from hierarchical to a series of XP
subprojects, one for each subsystem. Each subproject treated the other teams using the
subsystem as collocated clients. This organization was only possible once a solid architectural
concept was in place, defining the responsibilities of each team.

Outcome

The project produced a conceptual prototype that demonstrated how Geographical
Information Systems could be used to organize and display incident information. The success of

Figure 16-2 Team organization of FRIEND during iteration 1 (CMU Fall course 15-413, 1992). White
rectangles indicate subsystem teams; gray rectangles, cross-functional teams. The numbers in parentheses
indicate the number of team members.
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the first project led to four more iterations exploring a variety of technologies and functionality
(Figure 16-3):

• Iteration 2 focused on consolidating the feedback from the client into the prototype. It
included a subset of the students who had worked on the first prototype, and followed
an iterative software life cycle process focusing on the prototype. Each review focused
on new functionality to be added to the working prototype.

• Iteration 3 started from scratch with a new set of students and a more ambitious
problem statement. The scope of the system was extended to include Emergency
Operations Plan functionality for disasters that would need to be coordinated at the
state level. This iteration reverted to a waterfall process, as there were many novice
developers.

• Iteration 4 consolidated the feedback from the client and investigated technological
issues, such as the use of WaveLAN networks and cellular phone modems. A prototype
of the system was demonstrated using Newton PDAs. Iteration 4 included a subset of
students who took part in iteration 3 and followed an iterative software life cycle.

• Iteration 5 investigated the use of NeXTStep’s Distributed Objects as middleware
technology for managing all communication among nodes.

A company was spun off after iteration 5 to turn FRIEND into a product.

Lessons learned

Training the client. At the beginning of the project the client did not have any computer
background. However, the client invested quite a bit of time in the project and learned how to
communicate with the developers directly. By the fourth prototype, the client could understand
and criticize high-level class diagrams. In general, developers should not expect this to happen,
as clients usually do not plan time to learn about the project infrastructure. However, for a long-
term project with a collocated client, it is worthwhile to identify ways to train them.

Figure 16-3 Iterations in the FRIEND project.

Iteration 1 Iteration 2

Jan. MaySep.
1993

DevelopmentPredevelopment

Legend:

Jul. Nov. Mar. Jan. MaySep.
1994

Jul. Nov. Mar.

Iteration 3 Iteration 4 Iteration 5

Jul.
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Training the developers about the application domain. The students were able to learn the
main concepts of the application domain fairly quickly, as the client was available on short
notice for clarifying ambiguities and misunderstandings. Projects without a collocated client
have to find other ways to validate requirements and carefully track questions, ambiguities, and
changes.

Setting up a dedicated lab. The project benefited from a dedicated lab for students to
program, meet, prepare demonstrations, drink coffee, and conduct client presentations. A white
board was used for tracking current issues, task assignments, and project status, and was often
more up to date than the project web site. Having a single dedicated lab enabled informal
communication to take place and many design and management issues to be uncovered early and
resolved quickly.

Maintaining the infrastructure. The project organization chose to set up a tool team whose
responsibility was to find new development tools and existing class libraries and thereby to
support the infrastructure of the project. Because the participants of the tool team were
novices—which is typical for a student project course—they had little understanding of the
requirements of an infrastructure for supporting a large project. Moreover, as they did not
participate in the main development effort, they did not have much credibility with the other
students and were sidelined. We recommend instead to assign the responsibility of the
infrastructure to an administrative group independent of the specific project. Even in project-
based organizations, there is a need for project-independent support functions such as
infrastructure maintenance. Having a permanent infrastructure group makes it easier to reuse the
infrastructure across projects and increase the return on investment. The infrastructure group
also gains credibility with the developers with the accumulated experience from multiple
projects.

Using version control as an integration tool. The early set-up of a version control scheme
and build infrastructure in pre-development provided the teams with a concrete mechanism for
detecting and resolving conflicts early. Beginning with the pre-development phase of iteration 2
of this project, a “Hello World” prototype with corresponding build and test scripts was checked
into the version control repository. This practice is also being followed by many software
development companies, such as Microsoft [Cusumano & Selby, 1997].

16.5.3 Distributed Project: JAMES

Project goal

Smart card technology has opened up a vast range of applications. Some of the key
applications include pay phones, mobile communications, electronic cash, parking, health care
and network access. Another important application is the use of the smart card for the
automotive industry as a value-added service.
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The goals of the JAMES project were twofold: First, to investigate JavaCard technology and
assess if it can be used to host multiple applications on the same card, the purpose being to
reduce the number of cards each individual needs to carry around. Second, to define a system
architecture that would enable users to select a combination of applications and dynamically
store them on their cards. This allows the car manufacturer to offer new services and
applications that could be added even after the purchase of the vehicle.

To accomplish these two goals, JAMES was to demonstrate a technology prototype that
included three smart card applications: Travel, a system for planning and following routes on an
onboard digital street map; Bonus, a reward system similar to a frequent flier mileage program;
and VIP, a system for storing and customizing individual preferences, such as seat position,
radio station, and audio volume settings.

Project environment

Proxy client. A proxy client from DaimlerChrysler was available full time during the project.
The proxy client presented the problem statement to the students during a kick-off meeting.
After the kick-off meeting, all communication with the client was through the proxy client. A
separate Lotus Notes database was set up exclusively for communication between the proxy
client and the students. 

Novice participants. The developers of the JAMES project were drawn from the same pool of
senior students as the FRIEND project. The client and the proxy client came from the information
technology department of DaimlerChrysler and had knowledge of the application domain and
the software engineering methods used in the project.

No end user access. There was no access to the end user. Vehicle owners among the
developers and the proxy client were used as semi-representative end users.

Immature technology. The technology under evaluation (the Cyberflex kit developed by
Schlumberger [Schlumberger]) was in beta release. The JavaCard API it implemented was also
new, which resulted in a general lack of developer documentation and substantial time spent
working around bugs. 

Three-site project. The project was distributed among three sites. One set of students was
working in Carnegie Mellon University (CMU), Pittsburgh, PA. The other set was working in
Technical University Munich (TUM), Germany. The client was located at Stuttgart, Germany,
and the proxy client for iteration 1 was located in Pittsburgh, collocated with the first team of
students. The proxy client returned to Stuttgart for the remaining iterations.

Project duration The project included three iterations, each lasting approximately four
months. The first was initiated at CMU; iteration 2 involved both the CMU and the TUM sites;
iteration 3 involved only the CMU site (Figure 16-4). The overall project, including pre- and
post-development, lasted 11 months.
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How much planning?

The goal of the project was the demonstration of a conceptual prototype. Unlike FRIEND,
the demonstration environment was known in advance and constrained the development kit used
for programming the smart cards. This required more planning to take place earlier than in the
FRIEND project, as the project often worked with pre-release versions of the development tools.
Iteration 1 was planned as a waterfall iteration, similar to FRIEND. Fixed milestones delimited the
requirements, system design, implementation, and coding activities. Iteration 2 featured an
iterative prototyping approach, with prototypes of increasing functionality demonstrated every
month. The TUM and the CMU sites worked on different subsystems, but shared the same
architecture.

How much reuse?

The conceptual prototype was required to interact with an existing software system for
accessing dealer data. The existence of this legacy system and the short iteration times reduced
the opportunity to reuse components that were not already part of the existing infrastructure.

How much modeling?

Distributed software development can have several advantages. For example, a project can
leverage specific combinations of skills without relocating participants within the organization. 

In JAMES, a substantial amount of knowledge needed to be transferred between sites at the
beginning of the second development phase. At CMU, most students participating in iteration 3
had participated in iteration 1. Hence, the knowledge transfer from iteration 1 to iteration 3 was
not an issue at CMU. At TUM, however, none of the participants were familiar with the system,
except for the instructor and one of the coaches. The participants at TUM were given access to
all the deliverables of iteration 1 and could communicate with the CMU team via Lotus Notes

Figure 16-4 Iterations in the JAMES project.
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and E-mail. To encourage further information exchange between both sites, two members from
the TUM team traveled to Pittsburgh early in iteration 2, and one member of the CMU team
traveled to Munich for the integration phase and the client acceptance test.

As in FRIEND, models in JAMES were used primarily as a basis for design and for
communication. The archival value of the documents produced by iteration 1 was limited, as
they were not consistent with the current version of the prototype. Students at the TUM site
reverse-engineered the first prototype system to recover an up-to-date model of the system,
correcting inconsistencies and omissions in the accompanying documentation. The result of this
activity, which we called Inventory Analysis, was an Inventory Analysis Document describing
the components of the first prototype and their implementation status (Table 16-10).

How much process?

We refined the life cycle of the FRIEND project to include a second development iteration
and added activities focused on transferring knowledge from one site to the other (Table 16-11).
Both development iterations were structured in the same way, such that the same documents,
methods, and procedures could be used. The second development iteration, however, was an
improvement iteration that produced a refined version of the Requirements Analysis Document,
the System Design Document, the Object Design Document, and the prototype system. 

Since the project relied on the JavaCard technology, one team on the TUM site was
responsible for developing focused technology prototypes showing how specific risks associated
with the prerelease state of the technology could be addressed. The technology team interacted
directly with the technology provider (Schlumberger’s smart card division), reported on its
current list of issues, and demonstrated its prototypes during the monthly reviews associated
with each document. These prototypes were subsequently used by other teams as sample code
for implementing their own subsystems.

In general, the process in iteration 2 evolved into an entity-based process—a process
focusing on the prototype, open issues, and changes, as opposed to focusing on the activities
(Section 15.4)—as issues associated with the JavaCard environment presented the highest risks.

How much control?

As in FRIEND, the JAMES project organization started as a strict hierarchical organization.
During iteration 1, 41 participants were organized into five teams (see Figure 16-5) each
responsible for a subsystem (Logbook, Maintenance, Travel, VIP and Vehicle). Two cross-

Table 16-10  Inventory documents. 

Document Purpose Produced by

Inventory Analysis
Document

Describes the models and components that have
been realized, their status, and the problems
associated with them

Inventory Analysis
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Table 16-11  Activities for JAMES. Differences from FRIEND highlighted in italics.

Phase Purpose Activities IEEE 1074 activities

Pre-
development 
phase

Initiate project Project Initiation 
Concept Exploration 
Top-level Design

3.1 Project Initiation
4.1 Concept Exploration
4.2 System Allocation

First
development 
phase

Validate 
architecture

Train 
participants of 
first site

Demonstrate 
core 
requirements

Demonstrate 
feasibility

Project Management 
Requirements Elicitation
Analysis
System Design
Object Design
Implementation
Unit Testing 
System Integration Testing
System Testing (alpha test)
Configuration Management 

Lectures & Tutorials

3.2 Project Monitor & Control
5.1 Requirements

5.2 Design
5.2.7 Perform Detailed Design
5.3 Implementation
7.1 Verification & Validation

7.2 Software Configuration
Management

7.4 Training

Second 
development 
phase

Improve 
architecture

Train 
participants of 
second site 

Demonstrate 
extensibility

Demonstrate 
desirable 
requirements

Inventory Analysis
Inventory Review
Project Management 
Requirements Elicitation
Analysis
Requirements Review
System Design
System Design Review
Object Design
Object Design Review
Implementation
Unit Testing 
System Integration Testing
System Testing (alpha test)
Configuration Management 

Tutorials

3.2 Project Monitor & Control
5.1 Requirements

5.2 Design

5.2.7 Perform Detailed Design

5.3 Implementation
7.1 Verification & Validation

7.2 Software Configuration 
Management

7.4 Training

Post-
development 
phase

Demonstrate 
complete 
functionality

Deliver 
prototype

Client 
acceptance

Project Management 
Refinement 
Install Software 
Client Acceptance Test
Field Testing (beta test) 
Configuration Management 

3.2 Project Monitor & Control
6.3 Maintenance
6.1.5 Install Software
6.1.6 Accept Software
7.1 Verification & Validation
7.2 Software Configuration

Management
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functional teams, Architecture and HCI, composed of liaisons from the subsystem teams, were
responsible for coordinating issues related to system architecture and user interface,
respectively. Each team met weekly to report status and resolve open issues. Coaches of the
teams met with the project manager weekly.

During iteration 2, the two subsystem teams Bonus and VIP were located at TUM (23
participants), and the subsystem team Travel was at CMU (10 participants). The HCI and
Architecture teams were located at TUM and made into subsystem teams (as opposed to being a
cross-functional team). The team coaches reported to a site manager, who then reported to the
project manager. The coaches met weekly with the site manager. The project manager traveled
between sites every three weeks to coordinate and synchronize development at both sites.

As in FRIEND, the process was relaxed after two months into the iteration. During
iterations 1 and 2, this lead to similar results, with students finding roles in which they
performed best and a sustained meeting process that externalized status knowledge on the
bulletin boards. In the third iteration, however, the CMU team was sufficiently small that all
members could meet face to face in the same room. Consequently, it did not follow the meeting
process and posted fewer and fewer information on the bulletin boards, making it difficult to
communicate with the other site.

Outcome

The JAMES project ended in the successful demonstration of a prototype illustrating the
potential of automotive applications using the JavaCard technology. The demonstrated prototype
was not integrated, however: the final CMU and TUM demonstrations were based on different
versions of the architecture. The CMU team had simply ignored the revisions performed by the
TUM team and continued working on a branch dating back to the first development iteration.

Figure 16-5 Team organization of the development teams in Pittsburgh during iteration 1 (CMU Fall
course 15-413, 1997). White rectangles indicate subsystem teams; gray rectangles, cross-functional teams.
The numbers in parentheses indicate the number of team members.
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This being our first experience with distributed projects, we encountered many difficult
issues that would have been simple to resolve in a non-distributed setting. For example, the final
client acceptance test was conducted on March 30, 1998, via a three-way video conference
between Pittsburgh, Munich, and Stuttgart. It was originally scheduled for 9 A.M. Pittsburgh
time and 3 P.M. German time. Unfortunately, Germany had switched to daylight saving time the
previous weekend, but the United States was to switch the following weekend. An American
student traveling to Munich caught the mistake (i.e., 3 P.M. CED was 8 A.M. EST), less than
48 hours before the meeting. Such miscalculations and misunderstandings cost the project quite
a bit in resources and additional stress.

Lessons learned

Training the client. Collaboration with the client turned out to be much more complicated
than originally expected for two reasons:

• During iteration 1, the proxy client was physically present at the development site and
always available.  The proxy client quickly became familiar with the project process
and infrastructure, but she often had to forward information to the client for decisions.
The proxy client had the background and time to learn to use the infrastructure, but the
modeling information put out by the students was not at the right level of abstraction
for briefings at the client organization. Instead, all materials had to be translated and
summarized by the proxy client, which led to delayed responses from the client. A
scenario-based briefing approach, which we introduced at the end of the project,
improved this situation. 

• During iteration 2, the proxy client was not physically present at either site. Electronic
communication and video conferencing during formal reviews were the only
communication medium during most of the iteration. Although this made it difficult for
the TUM team to come up to speed on the application domain, having the proxy client
back in her organization made it easier for the project to promote its results.

Training the developers about the process. In short iterations with students, quickly
teaching the software life cycle process know-how is critical to setting up the organization.
Starting with iteration 2, coaches were recruited from the best students of the previous iterations,
which made such quick ramp-up possible. Coaches were also able to disseminate application
domain knowledge and catch requirements problems early. Short iterations and high staff
turnover limit the number of tools that could be introduced. In general, changing the tools used
in the process and changes in the process itself are easier to accomplish between projects (as
opposed to during the project). For long-running projects, infrastructure and process changes
should occur only between releases.

Iteration overlap. The amount of time overlap between iterations in distributed projects
presents a critical project management trade-off. A small overlap prevents sufficient knowledge
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to be transferred: participants from the second site will have to learn most of the knowledge
from work products only. A large overlap provides more opportunities for knowledge transfer in
the form of targeted questions and answers. If the second development phase starts too early,
however, participants of the second site interfere with the participants of the first site, who are
still in the process of creating the knowledge to be transferred.

Transferring implicit knowledge. Informal communication was not possible across sites,
because participants from different sites did not know each other. This prevented the
spontaneous information exchanges necessary for resolving issues and transferring implicit
knowledge. The only mechanism that worked effectively was travelling to the other sites.

Version control as an integration tool. In FRIEND, version control served as an integration
mechanism for teams to communicate. Occasionally, when a hand-over was necessary before a
change was fully integrated or debugged, incomplete versions were created for the sole purpose
of transferring files from one team to another. This use of the version control system, and more
generally, any informal use of a tool for communication, was not possible across sites.

16.5.4 Case Studies Summary

The projects we presented in this section spanned a broad spectrum in size, duration, and clients.
ATRACT included four participants; JAMES, more than 80. ATRACT was completed within six
months; FRIEND lasted two years. The types of clients each project interacted with also varied
significantly, from a chief of police with little experience of software engineering to an
information technology specialist with car manufacturing domain knowledge. Table 16-12
summarizes the variations in the project environment in all three projects. 

As a result, each project selected different methods with different results. In the following
sections we discuss heuristics that we extracted from the three case studies in the areas of
planning, modeling, process, and control. Table 16-13 summarizes the decisions made by each

Table 16-12  Summary of the project environment for the three case studies.

Problem Client Duration Distribution

ATRACT Test environment 
for middleware

King 6 months Local client

FRIEND Emergency 
response system 
(Greenfield 
engineering & 
reengineering)

King 4 months

(2 years, including 
follow-on projects)

Local client

JAMES Smart card vehicle 
Applications

Proxy 11 months Remote client,
2 developer sites
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project for these aspects. We do not discuss reuse since there was not a significant amount of
reuse in any of the three projects.

How much planning?

The milestones to plan and the level of detail in describing them depends on the project
goal. ATRACT produced a detailed functional specification within two months that enabled client
and developers to prioritize requirements, because the goal of the ATRACT project was a tool that
the client could use in a production environment. In iteration 1 of FRIEND, neither the client nor
the developers knew enough of each other’s domain to plan anything. Instead, demonstration
and review dates were agreed upon that provided flexibility in milestone content. As the project
made progress and the knowledge of both client and developers improved, more detailed plans
were developed. 

In general, detailed planning should not be done before client and developers agree on
functionality and architecture. If the functionality or the architecture is still subject to substantial
change, then detailed planning is possible only for the next iteration. In all cases, it is important
to involve the client and the developers in the planning and ensure that likely planning changes
are made visible.

Table 16-13  Summary of the methods selected in the three case studies.

Planning Modeling Process Control

ATRACT XP-based planning 
after detailed 
requirements

Use cases

User stories

Requirements 
phase followed by 
three XP 
development 
iterations

Client 
demonstrations at 
the end of each 
iteration

FRIEND Royce-based 
iteration planning

Client,
management, and 
system artifact sets

OMT

Waterfall, followed 
by four unified 
process iterations

Weekly team 
meetings, monthly 
client reviews

JAMES Royce-based 
iteration planning

Client,
management, and 
system artifact sets

UML

Waterfall, then 
unified process 
iterations

Weekly team 
meetings, monthly 
project reviews, 
monthly 
management
travel, inventory 
analysis
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How much modeling?

The amount of modeling depends on the amount of knowledge that must be made explicit
and transferred among participants. In ATRACT, participants wrote use cases until they were
relatively confident that they understood the client’s requirements and that the client could
picture the system to be developed. After that point, no modeling took place as all three
participants shared the same location and could provided changes to the requirements
informally.

In FRIEND, detailed object models of the application domain and the system were
constructed; these were used to generate code. The application domain was much more foreign
to the developers than in ATRACT, and there were many more participants to bring up to speed.
The models were used primarily as a basis for design and for communication, but not for
archiving, as the prototype evolved rapidly.

In the distributed JAMES project, transferring knowledge across sites required that more
knowledge be made explicit. As in FRIEND, the models and the system were not kept consistent,
as the prototype evolved rapidly. Instead, students recovered the design of iteration 1 with
inventory analysis. Building detailed models would have been well worth the effort because of
the need to share knowledge across continents. However, this was difficult, given the fast pace of
changes and the scarce amount of resources. Moreover, detailed modeling was perceived as an
overhead activity benefiting the other site, and as contention developed between the sites, it was
not perceived as a critical activity. Sending developers across sites so they could meet in person
was more effective in sharing knowledge and in reducing contention than keeping detailed
models up to date.

In general, the cost of formalizing knowledge and keeping it up to date is high. It should
be viewed as an investment for

• enabling the validation of requirements or architectural decisions
• enabling participants of a single site to converge on a single-system concept
• supporting participants traveling among multiple sites. 

The return on the investment is lowest for short projects and few participants. In this
situation, peer reviews seem to be a much more effective way to transfer knowledge.

How much process?

ATRACT followed an entity-based life cycle throughout development. FRIEND and JAMES
started with a waterfall iteration and switched to an entity-based life cycle after the client
reviewed the first prototype. At the beginning of the FRIEND and JAMES projects, iteration 1 was
necessary to train novice developers. By the end of all three projects, however, developers were
following a life cycle similar to XP with short iterations and daily builds. All three projects were
small enough that they could maintain a small team atmosphere locally. Note that in the case of
JAMES, the entity life cycle was not integrated across sites. Although JAMES met its goals and was
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considered successful, it failed to keep the system design at both sites in sync. An activity-based

life cycle for managing cross-site issues would have been necessary in a project developing

production code to enable sufficient control. Entity-based life cycles require close collaboration

and informal communication to enable developers to resolve problems discovered in daily

builds.

How much control? 

The amount of control evolved and spanned the entire spectrum during the life cycle of

each project. FRIEND and JAMES started with strict hierarchical organizations in the first two

months of the iteration. This enabled the systematic rotation of roles in the project and a large

amount of status and technical information made explicit on the bulletin board. Consequently, by

the time coding was started (usually around Thanksgiving), students with leadership and

communication skills naturally assumed team leader and liaisons roles, respectively. Moreover,

the procedures that yielded benefits (e.g., writing meeting minutes) were deemed worth the

overhead associated with them, so they were kept by the students. In our experience, this enabled

us to relax the enforcement of procedures when students came back from Thanksgiving break,

leading to an agile, entity-based process. Technical decisions were made locally within teams,

and conflicts and issues could be dealt with faster than they could be communicated to

management.

In other words, the first two months of the iteration were used to set up a consistent vision

of the requirements and the architecture. Once these seeds were firmly planted, project

management could be relaxed. The project then evolved as a living organism, using natural

selection and self-organization. The team structure, the communication paths set up by the

liaison, and the meeting procedures usually survived the transition. The increasing deadline

pressure associated with the client acceptance test (which could not be rescheduled) ensured that

the project remained focused and that all teams worked in the same direction. Although the level

of experience and the number of participants prevented us from starting with a self-organizing

project, we were able to evolve into one by planting the appropriate seeds early in the iteration.

In FRIEND, this was possible because all developers had access to the client, who was able to

provide a coherent picture of the application domain. In JAMES, the distribution of the project

made a coherent evolution toward the client acceptance test much more difficult.

In general, an agile organization can function when all key participants share the same

goal and the same architectural concept, either because they are provided with the same vision

from the client or because the system concept is strong enough to herd them in a single direction.

Hierarchical organizations become necessary when stakeholders put forward many conflicting

criteria and contend for a limited amount of resources. 
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Methodological Heuristics

Be prepared to change the system. Changes to the software system will occur throughout the project.
The changes come from the client side (unforeseen usability issues, new requirements) as well as from
the development side (unforeseen technical issues, new architectural decisions). Trying to freeze the
specification may be desirable to make a project predictable, but it usually leads to an inferior product
that doesn’t meet the end users’ expectations. Instead, accept the concept that requirements and
architecture change throughout the project and define change management processes.

Be prepared to change the organization. Hierarchical projects and self-organizing projects have
different strengths. Hierarchical organizations are more predictable and more effective for getting a
project off the ground. Self-organizing projects foster more innovation and can lead to superior
products, with appropriate guidance. After developer expertise in the software life cycle increases and
after a common vision for the system requirements and architecture emerges, one should consider
delegating decision making to the individuals who have the knowledge to make the decision. This in
turn requires increased ability to assess actual progress with quality indicators and management metrics.

Be prepared to change the process. Expertise and common vision also facilitates adapting the process.
The software life cycle model can evolve from an activity-based process to an entity-based process in
which work is assigned in terms of changes to the baseline. As the core requirements are completed, the
project can be driven by time (e.g., release on a certain date) instead of by feature (e.g., release when
specific features are completed). 

Shorten client decision time. The client must often be involved when dealing with major changes in the
project (new functionality, new release plan). Shortening the time needed for such critical decisions is
key to preventing the project from moving in the wrong direction. This requires an effective
communication mechanism for providing information to the client and resolving the issue with the right
decision maker. Local king clients are ideal for this. For projects without local kings, responsive
information and decision channels need to be put in place between the client and the project.

Build trust. Participants are reluctant to report bad news, especially if it stems from their own mistakes.
Moreover, if they believe they might be punished for making or reporting mistakes, the issue will simply
be covered up. Knowing about these mistakes early, however, is often the difference between a success
and a failure. Conversely, providing the resources and control to participants to address the reported,
unexpected problems helps keep the focus on a successful project outcome. 

Learn the right lessons and nothing more. Delegating decision making can lead to perceived short-term
successes, which can result in the wrong lessons being learned. A solo heroic effort can be the
difference between meeting a milestone and missing it. However, the concentration of knowledge in a
limited number of participants can hurt the project and may lead to more serious failures down the road.
Moving from a command-and-control organization to a leadership-and-collaboration organization
requires the manager to become a teacher. Often, mistakes have to be made to ensure that the right
lessons are learned.
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16.6 Further Readings

The word is still open to whether Scrum scales up to very large projects with multiple
development teams. Proposals to solve this challenge include Scrums of Scrums which
include representatives of each development team, starting the project with a single Scrum
and seeding new teams with members of the first Scrum [Larman & Vodde, 2008].

Some researchers argue that software development is chaotic (in the sense of the
mathematical chaos theory); that is, small variations can have a big influence on the outcome of
a software project. Gleick has written a very readable introduction to chaos theory [Gleick,
1987]. Dee Hock introduced the notion of chaordic systems to describe organizations in which
the chaos of competition and the order of cooperation coexist and thrive [Hock, 1999].

Petroski has described the critical role that failure plays in successful designs ([Petroski,
1994]). In particular, he argues that technological innovation is often a response to the failures of
existing products. His books are written from the point of view of civil engineering, but many
observations are applicable to software engineering as well.

16.7 Exercises

16-1 What is the difference between a software life cycle and a methodology? 

16-2 You are improving a legacy system. You need to customize a software life cycle for
your project. Which activities would you need? In which order?

16-3 Royce uses a management metric that counts the number of participants who leave the
project or join the project. You are managing a multi-team project and notice that the
staff turnover in one team is high. Hypothesize what causes could lead to such a
symptom. For each cause, propose a remedy.

16-4 The heuristics we outlined in Section 16.5.4 indicate that the need for models is higher
in distributed organizations. Open-source projects are highly distributed projects that
follow an entity-based life cycle and typically do not have requirements or system
design documents. Provide examples of how modeling knowledge is made explicit and
transferred among participants in such cases.

16-5 Royce’s methodology considers six project factors (scale, stakeholder cohesion,
process flexibility, process maturity, architectural risk, and domain experience) when
tailoring a process for a specific project (Section 16.4.1). Use these factors to describe
which types of projects could use XP as an appropriate methodology. Justify your
choice for each factor.

16-6 While working with Staphylococcus bacteria in 1928, Sir Alexander Fleming
accidently dropped some bread crumbs on one of the dishes. After a week the bacteria
on this dish did not grow as expected. Fleming noticed a bacteria-free circle around a
mold that was contaminating the staphylococcus culture. Instead of throwing the dish
away because the planned experiment had failed, he isolated the mold, grew it in a fluid
medium, and discovered a substance that prevented growth of the bacteria even when it
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was diluted 800 times. Discuss the discovery of penicillin using the terminology and
issues introduced in this chapter.

16-7 Based on the assumption that the earth was round, Columbus’s goal was to find a
shorter way to India by going west instead of east. He encountered America instead of
India. Discuss the discovery of America by Columbus using the terminology and issues
introduced in this chapter.

16-8 Select a project you have been involved with. Using the methodological categories
defined in this chapter, describe the trade-offs that occurred in the project.
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A P P E N D I X A

Design Patterns

Design patterns are partial solutions to common problems, such as separating an interface
from a number of possible implementations, wrapping around a set of legacy classes, or
protecting a caller from changes associated with specific platforms. A design pattern is
composed of a small number of classes that, through delegation and inheritance, provide a
robust and modifiable solution. These classes can be adapted and refined for the specific system
under construction. In addition, design patterns provide examples of inheritance and delegation.

Since the publication of the first book on design patterns for software [Gamma et al.,
1994], many additional patterns have been proposed for a broad variety of problems, including
analysis [Fowler, 1997] [Larman, 2005], system design [Buschmann et al., 1996], middleware
[Mowbray & Malveau, 1997], process modeling [Ambler, 1998], dependency management
[Feiler & Tichy, 1998], configuration management [Brown et al., 1999], and methodology
adoption [Elssamadisy, 2009]. The term itself has become a buzzword attributed to many
different definitions. In this book, we focused only on the original catalog of design patterns, as
it provides a concise set of elegant solutions to many common problems. This appendix
summarizes the design patterns we use in the book and natural language heuristics for applying
them. For each pattern, we provide pointers to the examples in the book. Our goal is to provide a
quick reference. We assume from the reader a basic knowledge of design patterns, object-
oriented concepts, and UML class diagrams.
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A.1 Abstract Factory: Encapsulating Platforms

Name Abstract Factory Design Pattern

Problem description Shield the client from different platforms that provide different implementations
for the same set of concepts.

Solution A platform (e.g., a windowing system) is represented as a set of
AbstractProducts, each representing a concept (e.g., a button) that is
supported by all platforms. An AbstractFactory class declares the operations
for creating each individual product. A specific platform is then realized by a
ConcreteFactory and a set of ConcreteProducts (one for each
AbstractProduct). A ConcreteFactory depends only on its related
ConcreteProducts. The Client depends only on the AbstractProducts and
the AbstractFactory classes, making it easy to substitute platforms.

Consequences • Client is shielded from concrete product classes.
• Substituting families at runtime is possible.
• Adding new products is difficult since new realizations for each factory must 

be created.

Examples • Statically encapsulating incompatible infrastructures for intelligent houses 
(Section 8.4.4)

• Game independence in ARENA (Section 8.6.1)

Related concept • Specification inheritance and implementation inheritance (Section 8.3.2).

Figure A-1 The Abstract Factory design pattern (adapted from [Gamma et al., 1994]).

AbstractFactory
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createProductA()
createProductB()

ProductA1 ProductA2
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AbstractProductB

ProductB1 ProductB2

Client
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A.2 Adapter: Wrapping Around Legacy Code

Name Adapter Design Pattern

Problem description Convert the interface of a legacy class into a different interface expected by the
client, so that the client and the legacy class can work together without changes.

Solution An Adapter class implements the ClientInterface expected by the client.
The Adapter delegates requests from the client to the LegacyClass and
performs any necessary conversion.

Consequences • Client and LegacyClass work together without modification of either 
Client or LegacyClass.

• Adapter works with LegacyClass and all of its subclasses.
• A new Adapter needs to be written for each specialization (e.g., subclass) of 

ClientInterface.

Example • Sorting instances of an existing String class with an existing sort()
method (Section 8.4.2): MyStringComparator is an Adaptor for bridging 
the gap between the String class and the Comparator interface used by the 
Array.sort() method.

Related concept • The Bridge (Section A.3) fills the gap between an interface and its 
implementations.

Figure A-2 The Adapter design pattern (adapted from [Gamma et al., 1994]).
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A.3 Bridge: Allowing for Alternate Implementations

Name Bridge Design Pattern

Problem description Decouple an interface from an implementation so that implementations can be
substituted, possibly at runtime. 

Solution The Abstraction class defines the interface visible to the client. The
Implementor is an abstract class that defines the lower-level methods available
to Abstraction. An Abstraction instance maintains a reference to its
corresponding Implementor instance. Abstraction and Implementor can be
refined independently.

Consequences • Client is shielded from abstract and concrete implementations.
• Interfaces and implementations can be refined independently.

Example • Testing different implementations of the same interface (Section 8.4.1).

Related concept • The Adapter pattern (Section A.2) fills the gap between two interfaces.

Figure A-3 The Bridge design pattern (adapted from [Gamma et al., 1994]).
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A.4 Command: Encapsulating Control Flow

Name Command Design Pattern

Problem description Encapsulate requests so that they can be executed, undone, or queued
independently of the request.

Solution A Command abstract class declares the interface supported by all
ConcreteCommands. ConcreteCommands encapsulate a service to be applied to
a Receiver. The Client creates ConcreteCommands and binds them to specific
Receivers. The Invoker actually executes or undoes a command.

Consequences • The object of the command (Receiver) and the algorithm of the command 
(ConcreteCommand) are decoupled.

• Invoker is shielded from specific commands. 
• ConcreteCommands are objects. They can be created and stored.
• New ConcreteCommands can be added without changing existing code. 

Examples • Providing an undo stack for user commands: All user-visible commands are 
refinements of the Command abstract class. Each command is required to 
implement the do(), undo(), and redo() methods. Once a command is 
executed, it is pushed onto an undo stack. If the user wishes to undo the last 
command, the Command object on the top of the stack is sent the message 
undo().

• Decoupling interface objects from control objects (Section 8.4.5, see also 
Swing Actions, [JFC, 2009]): All user-visible commands are refinements of 
the Command abstract class. Interface objects, such as menu items and 
buttons, create and send messages to Command objects. Only Command
objects modify entity objects. When the user interface is changed (e.g., a 
menu bar is replaced by a tool bar), only the interface objects are modified.

• Decoupling Moves from Games in ARENA (Section 8.6.2)

Related concept • MVC architecture (Figure 6-15).

Figure A-4 The Command design pattern (adapted from [Gamma et al., 1994]).
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A.5 Composite: Representing Recursive Hierarchies

Name Composite Design Pattern

Problem description Represent a hierarchy of variable width and depth so that leaves and composites
can be treated uniformly through a common interface.

Solution The Component interface specifies the services that are shared among Leaf and
Composite (e.g., move(x,y) for a graphic element). A Composite has an
aggregation association with Components and implements each service by
iterating over each contained Component (e.g., the Composite.move(x,y)
method iteratively invokes the Component.move(x,y)). The Leaf services do
the actual work (e.g., Leaf.move(x,y) modifies the coordinates of the Leaf
and redraws it).

Consequences • Client uses the same code for dealing with Leaves or Composites.
• Leaf-specific behavior can be modified without changing the hierarchy.
• New classes of Leaves can be added without changing the hierarchy.

Examples • Groups of drawable elements: Drawable elements can be organized in 
groups that can be moved and scaled uniformly. Groups can also contain 
other groups.

• Hierarchy of files and directories (Figure 2-28): Directories can contain files 
and other directories. The same operations are available for moving, 
renaming, and removing files as well as directories.

• Describing subsystem decomposition (Figure 6-3): We use a Composite
pattern to describe subsystem decomposition. A subsystem is composed of 
classes and other subsystems. Note that subsystems are not actually 
implemented as Composites to which classes are dynamically added.

• Describing hierarchies of tasks (Figure 6-8): We use a Composite pattern to 
describe the organizations of Tasks (Composites) into Subtasks
(Components) and ActionItems (Leaves).We use a similar model to 
describe Phases, Activities, and Tasks (Figure 15-6).

Related concept • Facade pattern (Section A.6).

Figure A-5 The Composite design pattern (adapted from [Gamma et al., 1994]).
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A.6 Facade: Encapsulating Subsystems

Name Facade Design Pattern

Problem description Reduce coupling between a set of related classes and the rest of the system. 

Solution A single Facade class implements a high-level interface for a subsystem by
invoking the methods of lower-level classes. A Facade is opaque in the sense
that a caller does not access the lower-level classes directly. The use of Facade
patterns recursively yields a layered system.

Consequences • Shields a client from the low-level classes of a subsystem.
• Simplifies the use of a subsystem by providing higher-level methods.

Example • Subsystem encapsulation (Figure 6-30): A Compiler is composed of Lexer,
Parser, ParseTree, a CodeGenerator, and an Optimizer. When compiling 
a string into executable code, however, a caller deals only with the Compiler
class, which invokes the appropriate methods on the contained classes.

Related concept • Coupling and cohesion (Section 6.3.3), layers and partitions (Section 6.3.4), 
Composite patterns (Section A.5).

Figure A-6 The Facade design pattern (adapted from [Gamma et al., 1994]).
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A.7 Observer: Decoupling Entities from Views

Name Observer Design Pattern

Problem description Maintain consistency across the states of one Publisher and many Subscribers.

Solution A Publisher (called a Subject in [Gamma et al., 1994]) is an object whose
primary function is to maintain some state—for example, a matrix. One or more
Subscribers (called Observers in [Gamma et al., 1994]) use the state
maintained by a Publisher—for example, to display a matrix as a table or a
graph. This introduces redundancies between the states of the Publisher and
the Subscribers. To address this issue, Subscribers invoke the subscribe()
method to register with a Publisher. Each ConcreteSubscriber also defines
an update() method to synchronize the state between the Publisher and the
ConcreteSusbcriber. Whenever the state of the Publisher changes, the
Publisher invokes its notify() method, which iteratively invoke each
Subscriber.update() method.

Consequences • Decouples a Publisher from the Subscribers.
• Can result in many spurious broadcasts when the state of a Publisher

changes.

Examples • The Observer interface and Observable class are used in Java to realize an 
Observer pattern ([JFC, 2009]).

• The Observer pattern can be used for realizing subscription and notification 
in a Model/View/Controller architecture (Figure 6-15).

• Decoupling Match state from MatchView in ARENA (Section 8.6.3).

Related concept • Entity, interface, control objects (Section 5.3.2).

Figure A-7 The Observer design pattern (adapted from [Gamma et al., 1994]).
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A.8 Proxy: Encapsulating Expensive Objects

Name Proxy Design Pattern

Problem description Improve the performance or the security of a system by delaying expensive
computations, using memory only when needed, or checking access before
loading an object into memory. 

Solution The ProxyObject class acts on behalf of a RealObject class. Both classes
implement the same interface. The ProxyObject stores a subset of the
attributes of the RealObject. The ProxyObject handles certain requests
completely (e.g., determining the size of an image), whereas others are
delegated to the RealObject. After delegation, the RealObject is created and
loaded in memory.

Consequences • Adds a level of indirection between Client and RealObject.
• The Client is shielded from any optimizations for creating RealObjects.

Examples • Protection proxy (Figure 7-9): An Access association class contains a set of 
operations that a Broker can use to access a Portfolio. Every operation in 
the PortfolioProxy first checks with isAccessible() if the invoking 
Broker has legitimate access. Once access has been granted, 
PortfolioProxy delegates the operation to the actual Portfolio object. If 
access is denied, the actual Portfolio object is not loaded into memory.

• Storage proxy (Figure 10-7): An ImageProxy object acts on behalf of an 
Image stored on disk. The ImageProxy contains the same information as the 
Image (e.g., width, height, position, resolution) except for the Image
contents. The ImageProxy services all content-independent requests. Only 
when the Image contents must be accessed (e.g., when the Image is drawn 
on the screen) does the ImageProxy create the RealImage object and load 
its contents from disk.

Related concept • Caching expensive computations (Section 10.4.1).

Figure A-8 The Proxy design pattern (adapted from [Gamma et al., 1994]).
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A.9 Strategy: Encapsulating Algorithms

Name Strategy Design Pattern

Problem description Decouple a policy-deciding class from a set of mechanisms so that different
mechanisms can be changed transparently from a client.

Solution A Client accesses services provided by a Context. The Context services are
realized using one of several mechanisms, as decided by a Policy object. The
abstract Strategy class describes the interface that is common to all
mechanisms that Context can use. The Policy class creates a Concrete–
Strategy object and configures the Context to use it. 

Consequences • ConcreteStrategies can be substituted transparently from Context.
• Policy decides which Strategy is best, given the current circumstances 

(e.g., speed vs. space trade-off).
• New algorithms can be added without modifying Context or Client.

Example • Network switching in mobile applications (Section 8.4.3): A mobile 
application needs to deal with a variety of network access protocols (phone, 
wireless, LAN), depending on the context of the user (location, 
communication costs, etc.). To decouple the policy from selecting a network 
from the network interface, we encapsulate the network access protocol 
implementations with a Strategy pattern.

Related concept Adaptor pattern (Section A.2) and Bridge pattern (Section A.3).

Figure A-9 The Strategy design pattern (adapted from [Gamma et al., 1994]).

Context Strategy

algorithmInterface()

ConcreteStrategyA ConcreteStrategyB

contextInterface()

Client Policy



Appendix A  •  Design Patterns 719

A.10 Heuristics for Selecting Design Patterns

Natural language heuristics for selecting design patterns

Design patterns address specific design goals and nonfunctional requirements. Similar to Abbott’s
heuristics described in Chapter 5, Analysis, key phrases can be used to identify candidate design
patterns. Below are examples for the patterns covered in this chapter.

Phrase Design Pattern

• “Manufacturer independence”
• “Platform independence”

Abstract Factory

• “Must comply with existing interface”
• “Must reuse existing legacy component”

Adapter

• “Must support future protocols” Bridge

• “All commands should be undoable”
• “All transactions should be logged”

Command

• “Must support aggregate structures”
• “Must allow for hierarchies of variable depth 

and width” 

Composite

• “Policy and mechanisms should be decoupled”
• “Must allow different algorithms to be 

interchanged at runtime”

Strategy
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A P P E N D I X B

Glossary

abstract class Superclass that is used only for specialization and never instantiated. Abstract
class names are italicized.

abstract data type A data type defined by an implementation-independent specification.

abstraction The classification of phenomena into concepts. See also modeling.

acceptance testing A system testing activity during which the client decides whether the
system meets the acceptance criteria.

access control list A representation of the access control matrix in which legitimate rights are
represented as a list of (actor, operation) pairs attached to the class that is controlled.

access right A cell in the access control matrix that represents which operations a specific
actor may invoke on a specific class.

accuracy A quantitative measure of the magnitude of error.

action A fundamental unit of behavior. Actions can take a set of inputs, produce a set of
outputs, and change the state of the system. Actions are fundamental in the sense that they are
not decomposed further. Actions can be associated with specific points in a state machine, such
as transitions, state entry, and state exit. Actions normally take a short amount of time to execute
and cannot be interrupted.

action item A task assigned to a participant with a completion date, usually as a result of an
issue resolution.

activity In a software life cycle, a set of tasks performed toward a specific purpose. Activities
can include few or many tasks, depending on their goal. Examples of activities include
requirements elicitation, object identification, and unit testing. See also process.
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In a state machine diagram, a behavior executed as long as an object resides in some state.
Whereas an action is short and non-interruptible, an activity can take a substantial amount of
time and is interrupted when a transition exiting the state is fired. Contrast with action.

activity-centered software life cycle model A software life cycle model that represents
primarily the activities of development. Contrast with entity-centered software life cycle model.

activity diagram UML notation representing the behavior of a system in terms of activities.
An activity is a state that represents the execution of a set of operations. The completion of these
operations then triggers a transition to another activity. Activity diagrams are used to illustrate
combinations of control and data flow.

activity partition See swimlane.

actor External entity that needs to exchange information with the system. An actor can
represent either a user role or another system.

adaptability The ability to change the system to deal with additional application domain
concepts.

aggregation An association denoting a whole–part relationship between two classes. For
example, a System is composed of Subsystems is an aggregation association. 

alternative See proposal.

ambiguity Property of a model indicating whether a concept corresponds to two or more
unrelated phenomena. 

analysis An activity during which developers ensure that the system requirements are correct,
complete, consistent, and unambiguous. Analysis produces the analysis model.

analysis model A model of the system that aims to be correct, complete, consistent, and
unambiguous. The analysis model consists of the functional model, the analysis object model,
and the dynamic model.

analysis object model The object model produced during analysis. The analysis object model
describes the application domain concepts that the system manipulates and the user-visible
interfaces of the system.

analyst The role of the developers who elicit application domain information from users and
clients and construct a use case model of the system under development.

API See Application Programmer Interface.

API engineer A role concerned with defining the API of a subsystem. This role is often
combined with the role of architecture liaison.

application domain Represents all aspects of the user’s problem. This includes the physical
environment in which the system will run, the users, and their work processes. The application
domain is represented by the analysis model during requirements and analysis activities. The
application domain is also called the problem domain. Contrast with solution domain.
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application domain specialist A consultant role responsible for providing application domain
expertise to a project.

application framework A reusable partial application that can be specialized to produce
custom applications. See also class libraries.

application object Object in the analysis model that represents an application domain
concept. The application object is also called the application domain object.

Application Programmer Interface (API) Set of fully specified operations provided by a
subsystem.

architect The role of the developers who make strategic system decisions and construct the
system design model.

architectural pattern See architectural style.

architectural style A general system design model that can be used as a starting point for
system design. Examples of architectural styles include client/server, peer to peer, pipe and
filter, and model/view/controller.

architecture See system design model.

architecture liaison The role of the developers who represent a subsystem team in the
architecture team. They convey information from their team, negotiate interface changes, and
ensure the consistency of APIs across the system.

argument Value passed along with a message.

argumentation The debate among participants to resolve an issue.

as-is scenario Scenario that describes an existing system. As-is scenarios can be used to
validate the developers’ understanding of the system with users.

association A relationship between two or more classes denoting the possible links between
instances of the classes. An association has a name and can have multiplicity and role
information attached to each of its ends.

association class An association with attributes and operations.

attribute A named property of a class defining a range of the values an object can contain. For
example, time is an attribute of the class Watch.

attribute type See type.

attribute visibility Specifies whether or not the attribute can be accessed by other classes.

auditing Validation of versions before a release to ensure consistent and complete delivery.

auditor The role responsible for selecting and evaluating promotions for release.

authentication The process of associating a person with access rights.
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availability The degree to which a system or component is operational and accessible when
required for use.

base class See superclass.

baseline A version of a configuration item that has been formally reviewed and agreed on.

bazaar model A project organization that includes a dynamic and distributed set of
collaborating groups. Contrast with cathedral model.

big bang testing An integration testing strategy in which all components are tested together as
a whole after they have been unit tested.

blackbox framework A framework that relies on well-defined interfaces for extensibility.
Contrast with whitebox framework.

blackbox test A test which focuses on the input/output behavior of a component without
considering its implementation. Contrast with whitebox test.

bottom-up testing An integration testing strategy in which components are incrementally
integrated starting at the lowest level. Bottom-up testing does not require any test stubs. Contrast
with top-down testing, sandwich testing.

boundary object An object that represents the interactions between the user and the system.

boundary condition A special condition the system must handle. Boundary conditions
include start-up, shutdown, and exceptions.

boundary use case A use case for dealing with a boundary condition.

brainstorming A scheduled communication event during which participants generate a large
number of alternatives.

branch A concurrent development path under configuration management.

bug See fault.

build management Tool support for automatically rebuilding the system when new versions
are added.

buried association A foreign key used to represent a one-to-many or a many-to-many
association when mapping an object model to a relational schema.

callback An operation that is temporary and dynamically registered with a class, usually for
the purpose of notification. For example, the subject object in the observer pattern invokes
callbacks to notify subscribed observers.

candidate key In a database management system, a set of attributes that could be used as a
primary key.

capability A representation of access control in which legitimate rights are represented as
(class, operation) pairs attached to an actor. Examples of capabilities include a door key, a
smart card, and a theater ticket.
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Capability Maturity Model (CMM) Framework for assessing the maturity of organizations
characterized by five levels of maturity.

cathedral model A project organization emphasizing planning, system architecture, and
hierarchical control. The chief programmer team is an example of cathedral model. Contrast
with bazaar model.

Centralized Traffic Control (CTC) Procedures and systems enabling dispatchers to monitor
and control train traffic remotely from a central location.

change The adaptation of an aspect of the system, such as the addition or modification of a
requirement, or the substitution of a component for another. See also delta.

change control A process of approving or rejecting a change request to ensure that system
evolution is consistent with project goals.

change control board Team approving change requests in the context of a formal change
process.

change request An unscheduled communication event during which a participant requests a
modified or a new feature in a work product. In configuration management, a formal report
requesting the modification of a configuration item.

change set A set of deltas indicating the differences between two configurations.

chief programmer organization A hierarchical project organization in which the team leader
makes all the critical technical decisions. 

clarity See ambiguity.

class An abstraction of a set of objects with the same attributes, operations, relationships, and
semantics. Classes are different than abstract data types in that a class can be defined by
specializing another class. For example, programming languages such as Modula and Ada
provide mechanisms for defining abstract data types; object-oriented languages such as Java,
C++, or Smalltalk provide mechanisms for defining classes.

class diagram UML notation representing the structure of the system in terms of objects,
classes, attributes, operations, and associations. Class diagrams are used to represent object
models during development.

class extender A developer that realizes specializations of the class under consideration.
Although, like class implementors, class extenders may invoke operations provided by the class
of interest, class extenders focus on specialized versions of the same services.

class implementor A developer that realizes the class under consideration. Class
implementors are responsible for designing the internal data structures and implementing the
code for each publication operation. 

class user A developer that invokes the operations provided by the class under consideration
during the realization of another class, called the client class.
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client A role representing the person or company paying for the development of the system.

client class In a design pattern, a class that accesses the pattern interface. 

client review A scheduled communication event during which a client monitors the status of a
project.

client/server architectural style An architectural style in which user interactions are
managed by simple client programs and functionality is delivered by a central server program.

closed architecture A layered system in which a layer can depend only on layers immediately
below it. Contrast with open architecture.

closed issue An issue that has been resolved.

CM aggregate See configuration management aggregate.

CMM See Capability Maturity Model.

cohesion The strength of dependencies within a subsystem or a class. High coherence is
desirable as it keeps related classes together so they can be modified consistently.

communication An activity during which developers exchange information, either
synchronously or asynchronously, and either spontaneously or according to a schedule.

communication diagram UML notation representing the behavior of the system as a series of
interactions among a group of objects. Each object is depicted as a rectangle in an instance
diagram. Interactions are depicted as lines between objects, annotated with the name of the
message sent. The order of interactions is represented with numbers next to the message names.
See also sequence diagram. 

communication event A type of information exchange that has a defined objective and scope.
A communication event can be scheduled or event driven. Examples of communication events
include client reviews, status reviews, and problem reports.

communication mechanism A tool or a procedure that can be used to transmit and receive
information. Communication mechanisms support one or more communication events.
Examples of communication mechanisms include telephone, fax, E-mail, and groupware.
Communication mechanisms can be either synchronous or asynchronous, depending whether or
not the sender and receiver need to be available at the same time.

communication relationship A type of relationship in a use case diagram denoting the flow
of information between an actor and a use case.

completeness The property of a model describing whether or not all relevant phenomena are
modeled. A model is incomplete if one or more relevant phenomena do not have a
corresponding concept in the model.

component A physical and replaceable part of the system that complies to an interface.
Examples of components include class libraries, frameworks, and binary programs.
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component expert A role of the developers responsible for providing detailed knowledge
about using a specific component. 

component inspection A testing technique that finds faults in a component through the
manual inspection of the source code.

composition aggregation An aggregation relationship in which the existence of the parts
depends on the whole. Contrast with shared aggregation.

concept An abstraction of a set of phenomena with common properties. For example, this
book, my black watch, and the Valley Fisherman’s Club are phenomena. Textbooks on object-
oriented software engineering, black watches, and fisherman’s clubs are concepts. Contrast with
phenomenon.

configuration A version of a configuration management aggregate.

configuration item A work product that is treated as a single entity for the purpose of
configuration management and that needs to be baselined. See also configuration management
aggregate.

configuration management An activity during which developers monitor and control
changes to the system or its models. Goals of configuration management include saving enough
information so that it is possible to restore the system to a prior version; preventing changes that
are not consistent with project goals; and managing concurrent development paths aimed at
evaluating competing solutions.

configuration management aggregate (CM aggregate) An aggregate of related configura-
tion items.

configuration manager A role of the developers responsible for tracking, baselining, and
archiving work products.

consistency The property of a model that indicates whether or not it contradicts itself. A
model is inconsistent if it provides several incompatible views of the system.

constraint A rule attached to a UML element restricting its semantics. Constraints can be
depicted by a note containing natural language text or an expression in a formal language (e.g.,
OCL).

consultant role Any role that is concerned with providing temporary and specialized support
where project participants lack expertise. Consultant roles include the user, the client, the
technical consultant, and the application domain specialist.

contract A set of constraints on a class or a component allowing the caller and the callee to
share the same assumptions about the class or the component. See also invariant, precondition,
and postcondition.

contract inheritance The propagation of the contract of the superclass to its subclasses.

control flow The sequence of execution of operations in the system. Contrast with data flow.
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control node In an activity diagram, nodes that coordinate the control flow in a diagram. See
decision, fork node, join node. 

control object An object that represents a task performed by the user and supported by the
system.

controller In the Model/View/Controller architectural style, a type of subsystem or object
that manages the sequence of interactions with the user.

correction A change to a component for the purpose of repairing a fault.

correctness The property of a model that indicates if it accurately represents the system that
the client needs and that the developers intend to build.

cost criterion A design goal related to the cost of developing, operating, or installing the
system.

coupling The strength of the dependencies between two subsystems or two classes. Low
coupling results in subsystems that can be modified with minimal impact on other subsystems.

CRC card An index card representing a class. The name of the Class is depicted on the top,
its Responsibilities in the left column, and the names of the classes (called Collaborators) it
needs to accomplish its responsibilities are depicted in the right column.

criterion A measure of goodness used when evaluating alternatives for an issue.

critical path The longest path in the task model. Delays on critical path tasks directly result in
a delay in the overall schedule.

cross-development A process group that includes processes that occur throughout the project
and that ensure the completion and quality of project functions. Examples of cross-development
processes include validation and verification, configuration management, documentation, and
training. Also called integral processes.

cross-functional role Any role concerned with coordinating the work of more than one team.
Examples of cross-functional roles include the configuration manager, the architecture liaison,
the tester, and the document editor. 

cross-functional team A team responsible for supporting a subsystem team during a cross-
functional activity such as configuration management, integration, or testing. Contrast with
subsystem team.

CTC See centralized traffic control.

data flow The sequence in which data is transferred, used, and transformed in the system.
Contrast with control flow.

data type An abstraction of a set of values in the context of a programming language. For
example, int is the Java data type that abstracts all the integer values.
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debugging A fault detection technique that attempts to find a fault from an unplanned failure
by stepping through successive states of the system.

decision In the context of activity diagrams, a branch in the control flow of an activity
diagram. A decision denotes alternative transitions based on a condition. In the context of issue
modeling, an issue resolution.

Decision Representation Language (DRL) An issue model extending IBIS to represent the
qualitative elements of decision making.

defect See fault.

delegation A mechanism for code reuse in which an operation merely resends (i.e., delegates)
a message to another class to accomplish the desired behavior.

deliverable A work product destined for the client.

delta A set of differences between two successive versions. Also called change.

dependability The property of a computer system that describes how reliably it performs.

dependability criterion A design goal related to minimizing the number of system crashes
and the consequences of a system crash. Examples of dependability criteria include robustness,
reliability, availability, fault tolerance, security, and safety.

deployment diagram A UML diagram representing run-time components and their
assignments to hardware nodes.

derived class See subclass.

design goal A quality that the system should optimize. Design goals are often inferred from
nonfunctional requirements and are used to guide design decisions. Examples of design goals
include usability, reliability, security, and safety.

design object See solution object.

design pattern A template solution that developers have refined over time to solve a range of
recurring problems. A design pattern includes a name, a problem description, a solution, and a
set of consequences. Specific design patterns are described in Appendix A.

designer See object designer.

developer Any role that is concerned with specifying, designing, and constructing
subsystems. Examples of development roles include the analyst, the system architect, the object
designer, and the implementor.

different time, different place groupware See groupware.

document editor A role of the person who integrates the documents.

domain object See application object.

DRL See Decision Representation Language.
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dynamic access control An access control policy that can be set at runtime. Contrast with
static access control.

dynamic model Describes the components of the system that have interesting behavior. In this
book, we represent the dynamic model with state machine diagrams, sequence diagrams, and
activity diagrams.

egoless programming A project organization in which responsibilities are assigned to a team
instead of individuals. Roles within a team are interchangeable.

encryption A translation of a message, called plaintext, into an encrypted message, called
ciphertext, such that it cannot be understood by unauthorized persons.

end user A role of the people who will use the delivered system.

end user criterion A design goal related to user-visible attributes of the system not yet
covered under a dependability or performance criterion.

enterprise application framework An application-specific framework used for enterprise
business activities.

entity-centered software life cycle model A software life cycle model that primarily
represents the work products produced during development. Contrast with activity-centered
software life cycle model.

entity object An object that represents persistent or long-lived information tracked by the
system.

entry condition A condition that needs to be satisfied before a use case is initiated.

environment The elements that are present at the beginning of a project. 

erroneous state State of the system such that further processing will lead to a failure.

error See erroneous state.

evaluation scenario Scenario that describes an instance of a user task against which the
system is to be evaluated.

event A relevant occurrence in the system. An event is an instance of an event class. Examples
of events include a stimulus from an actor, a time-out, or the sending of a message between two
objects. 

event class An abstraction representing a set of events for which the system has a common
response.

event-driven control A control flow paradigm in which a main loop waits for an event and
dispatches it to the appropriate object.

exception An unexpected event that occurs during the execution of the system.

exception handling A mechanism by which a system treats an exception.

exit condition A condition that are satisfied after the completion of a use case.
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extend relationship A type of relationship in a use case diagram denoting that one use case
extends the flow of events of another one. Extends relationships are typically used for modeling
exceptional behavior, such as exception handling and help functionality.

extender class The class that specializes an implementor class to provide a different
implementation or an extended behavior of the design pattern.

extensibility The quality of a system indicating how easily the system can be changed to
accommodate new functionality.

external behavior The behavior of the system from the user’s point of view. The use case
model describes the external behavior of the system.

Extreme Programming (XP) A methodology targeted for small teams of developers who
need to develop software quickly in a changing environment. Extreme Programming aims at
making the design of the system as explicit as possible in the source code, hence reducing the
need for documentation and the risk of inconsistencies among different documents.

facilitator A meeting management role responsible for organizing and executing a meeting.
The primary facilitator writes the meeting agenda, notifies the meeting participants, and ensures
during the meeting that the agenda is followed. A secondary facilitator supports the primary
facilitator’s role in keeping the meeting on track.

failure Deviation of the observed behavior from the specified behavior.

falsification The process of explicitly trying to demonstrate that a model has faults (e.g., the
model omits relevant details or represents relevant details incorrectly). Prototype and testing are
examples of falsification.

fault The mechanical or algorithmic cause of an error. Also called a bug or a defect.

fault avoidance A method aimed at preventing the insertion of faults while building the
system. Examples of fault avoidance techniques include development methodologies,
configuration management, verification, and reviews.

fault detection A method aimed at discovering faults in the running system. Examples of
fault detection techniques include debugging and testing.

fault tolerance A method aimed at constructing systems that do not fail in the presence of
faults. The ability to withstand faults without failing.

field testing See pilot testing.

firewall A packet filter that allows or denies network packets to go through based on their
source and destination.

flow of events A sequence of events in a use case describing the interactions between the actor
and the system.

foreign key In a database management system, an attribute (or a set of attributes) that
references the primary key of another table. 
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fork node In an activity diagram, a control node that represents the spilling of the control flow
into multiple threads.

forward engineering The process of applying a transformation to a set of model elements,
resulting in a set of corresponding source code statements, such as a class declaration, a Java
expression, or a database schema. Contrast with reverse engineering.

four-tier architectural style An architectural style that organizes the system into four layers:
presentation client, presentation server, application logic, and storage.

framework A set of classes providing a general solution that can be refined to provide an
application or a subsystem.

functional model Describes the functionality of the system from the user’s point of view. In
this book, we represent the functional model with use cases.

functional requirement An area of functionality the system must support. The functional
requirements describe the interactions between the actors and the system independent of the
realization of the system.

functional testing A system testing activity during which developers find differences between
the observed functionality and the use case model.

Gantt chart A notation for representing the schedule of a software project along the time axis.
A Gantt chart is a bar graph in which the horizontal axis represents time and the vertical axis
represents the different tasks to be done. Tasks are represented as bars whose lengths correspond
to the planned duration of the task. 

generalization A modeling activity that results in identifying abstract concepts from lower-
level ones. 

generalization-specialization relationship See inheritance relationship.

global access table A representation of access rights in which every legitimate right is
represented as an (actor, class, operation) tuple.

goal A high-level principle used to guide the project. Goals define the important attributes of
the system: for example, safety in a transportation vehicle, low cost in shrinkwrapped software.

goodness measure A qualitative or quantitative criterion used to assess a proposal. See also
criterion.

greenfield engineering A development project that starts from scratch. See also re-
engineering, interface engineering.

groupware Any software tool supporting the exchange of information among a set of
participants. Same time, different place groupware supports synchronous exchanges. Different
time, different place groupware supports asynchronous exchanges.

hallway conversation A synchronous mechanism of communication during which
participants meet face to face accidentally.
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hierarchical decomposition A subsystem decomposition that yields an ordered set of layers.
See also layer.

hierarchical organization An organization in which reporting and decision-making
structures are hierarchical; that is, decisions are made at the root of the organization and
communicated down to the team leaders and the team members. See also cathedral model.

hook method A method provided by a framework class that is meant to be overwritten in a
subclass to specialize the framework.

horizontal prototype A prototype that partially implements a broad range of functionality, for
example, only the interface objects for a number of use cases.

ideal week In Extreme Programming, a week in which all work time is dedicated to the
implementation of a user story. See also project velocity.

imperative language See procedural language.

implementation An activity during which developers translate the object model into code.

implementation decision A design decision that does not affect the public interface of a class
or a subsystem.

implementation domain See solution domain.

implementation inheritance Inheritance used solely as a mechanism for reuse, and violating
Liskov’s Substitution Principle.

implementation requirement A constraint on the implementation of the system, including
the use of specific tools, programming languages, or hardware platforms. 

implementor See class implementor.

implementor class A class that provides the lower-level behavior of the pattern. In many
patterns, a number of collaborating implementor classes are needed to realize the pattern
behavior.

include relationship A type of relationship in a use case diagram denoting that a use case
invokes another use case. A use case inclusion is analogous to a method invocation.

infrastructure framework A framework used to realize an infrastructure subsystem, such as
a user interface or a storage subsystem.

inheritance A reusability technique in which a child class inherits all the attributes and
operations of a parent class. Inheritance is the mechanism used to realize an inheritance
relationship.

inheritance relationship The relationship between a general class and a more specialized
class. The specialized class adds semantics and functionality to the general class. The
specialized class is called the subclass and the general class is called the superclass.
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inspection A scheduled communication event during which developers formally peer review a
work product with respect to a list of pre-defined criteria. See also walkthrough.

installation An activity during which the system is installed and tested in its operating
environment. Installation can also include the training of users.

installation testing A system testing activity during which developers and the client test the
system in the operational environment.

instance Member of a specific data type. For example, 1291 is an instance of the data type
int. 3.14 is an instance of the data type float.

integral processes See cross-development.

integration testing A testing activity during which developers find faults by combining a
small number of subsystems or objects.

interaction diagram UML notation for representing the system’s behavior in terms of
interactions among a set of objects. Interaction diagrams are used to identify objects in the
application and implementation domains. Interaction diagrams is a general term for referring to
communication diagrams and sequence diagrams.

interface engineering A development project in which the interface of a system is redesigned
and reimplemented, and the core functionality is left untouched. See also greenfield engineering,
reengineering.

interface inheritance See specification inheritance.

interface requirement Constraint imposed by external systems, including legacy systems and
interchange formats.

internal transition A transition that does not leave the state. Internal transitions are triggered
by events and can have associated actions. However, firing an internal transition does not result
in executing any exit or entry actions. See also action, transition. 

internal work product A work product destined only for the internal consumption of the
project.

invariant A predicate that is always true for all instances of a class.

IBIS See Issue-based information system.

issue A critical problem that has no clear solution.

Issue-Based Information System (IBIS) An issue model proposed by Kunz Rittel composed
of three types of nodes: issue, position, and argument.

issue-based development See issue-based life cycle model.

issue-based life cycle model An entity-based software life cycle model in which an issue
model is used to monitor and control progress in the project.
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issue model A model representing the rationale of one or more decisions as a graph. Nodes of
an issue model typically includes issues, proposals, arguments, criteria, and resolutions.

issue resolution An unscheduled communication event during which participants reach a
consensus or a decision on an issue.

join node In an activity diagram, a control node that denotes the synchronization of multiple
threads of control into a single thread.

Joint Application Design (JAD) A requirements elicitation technique involving the
collaboration of clients, users, and developers in constructing a requirements specification
through a week-long working meeting.

Key Process Area (KPA) A set of activities that achieve a goal considered important for
attaining a given level of process maturity. Examples of KPA include configuration
management, requirements change management, and risk management.

kick-off meeting A meeting including all project participants that marks the end of the project
initiation phase and the beginning of steady state.

knowledge acquisition The activity of collecting data, organizing it into information, and
formalizing it into knowledge.

KPA See key process area.

layer A subsystem in a hierarchical decomposition. A layer can depend only on lower-level
layers and has no knowledge of the layers above it.

legal requirement Constraint concerned with licensing, regulation, and certification issues.
An example of a legal requirement is that software developed for the U.S. federal government
must comply with Section 508 of the Rehabilitation Act of 1973, which requires that
government information systems be accessible to people with disabilities.

liaison A communication role responsible for the information flow between two teams. For
example, an architecture liaison represents a subsystem team at the architecture team.

life cycle See software life cycle.

link An instance of an association. A link connects two objects. 

Liskov Substitution Principle Formal definition for specification inheritance. It essentially
states that, if a client code uses the methods provided by a superclass, then developers should be
able to add new subclasses without having to change the client code.

local king client A client who can answer developer questions and make decisions without
having to ask anybody else. The local king has deep knowledge of the application domain and is
usually collocated with the project.

maintainability The ability to change the system to deal with new technology or to fix
defects.



736 Appendix B  •  Glossary

maintenance criterion A design goal related to the difficulty of changing or upgrading the
system after it has been delivered.

management role Any role that is concerned with planning, monitoring, and controlling the
project. Examples of management roles include project manager and team leader. See also
project management.

many-to-many association An association with 0..n or 1..n multiplicity on both ends.

mapping A mathematical correspondence that assigns an element (or a set of elements) of one
model to each element of another model.

master directory A library of promotions.

meeting A synchronous mechanism of communication during which participants present,
discuss, negotiate, and resolve issues, either face-to-face or via telephone or videoconferencing.

meeting agenda Document used to prepare and conduct a meeting. A meeting agenda usually
consists of at least three sections: a header identifying the planned meeting location, time, and
participants; a list of items participants will report on; and a list of issues to be discussed and
resolved.

meeting minutes A document used to record the content and decisions of a meeting. Meeting
minutes usually consist of three sections that correspond to the sections of the agenda, as well as
action items and decision items.

message A mechanism by which a sending object requests the execution of an operation in the
receiving object. A message is composed of a name and a number of arguments. The receiving
object matches the name of the message to one or more operations and passes the arguments to
the operation. The message send ends when the results of the operation are returned to the
sending object.

method In the context of development, a repeatable technique for solving a specific problem.
For example, a recipe is a method for cooking a specific dish. In the context of a class or an
object, the implementation of an operation. For example, SetTime(t) is a method of the class
Watch.

methodology A collection of methods for solving a class of problems. A seafood cookbook is
a methodology for preparing seafood. This book describes a methodology for dealing with
complex and changing systems.

middleware framework A framework used to integrate distributed applications and
components.

minute taker A meeting role responsible for recording a meeting, in particular, the resolutions
that participants have agreed on and their implementation in terms of action items.

model An abstraction of a system aimed at simplifying the reasoning about the system by
omitting irrelevant details. For example, if the system of interest is a ticket distributor for a train,
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blue prints for the ticket distributor, schematics of its electrical wiring, and object models of its
software are models of the ticket distributor.

model object See entity object model/view/controller architectural style.

model transformation A transformation that is applied to an object model and results in
another object model. The purpose of object model transformation is to simplify or optimize the
original model, bringing it closer to a system that complies with all requirements in the
specification.

Model/View/Controller (MVC) architectural style A three-tier architectural style in which
domain knowledge is maintained by model objects, displayed by view objects, and manipulated
by control objects. In this book, model objects are called entity objects and view objects are
called boundary objects.

modeling An activity during which participants construct an abstraction of a system by
focusing on interesting aspects and omitting irrelevant details. What is interesting or irrelevant
depends on the task in which the model is used. See also abstraction.

modifiability The quality of a system describing how easily existing models can be modified. 

multiplicity A set of integers attached to an association end indicating the number of links that
can legitimately originate from an instance of the class at the association end. For example, an
association denoting that a Car has four Wheels has a multiplicity of 1 on the Car end and 4 on
the Wheel end.

MVC See Model/View/Controller.

name In a class, a mandatory string identifying the class within a subsystem. The class name
is unique within the subsystem. In an association, an optional string describing the association
between two classes. In an attribute, a mandatory string identifying the attribute within the class.
The attribute name is unique within the class.

navigation Direction in which an association can be followed.

nested state A state within a nested state machine. 

nested state machine A state machine that models the behavior of a single state as a set of
nested states, internal transitions, and actions. 

NFR Framework A method for tracking the relevant nonfunctional requirements for each
decision, evaluated alternative, and interaction between nonfunctional requirements.

nonfunctional requirement A user-visible constraint on the system. Nonfunctional
requirements describe user-visible aspects of the system that are not directly related with the
functionality of the system. See also design goal.

notation A graphical or textual set of rules for representing a model. For example, the Roman
alphabet is a notation for representing words; UML is a graphical notation for representing
system models.
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note A comment attached to a UML diagram.

object An instance of a class. An object has an identity and stores attribute values. 

Object Constraint Language (OCL) A formal language defined as part of the UML used for
expressing constraints.

object design An activity during which developers define custom objects to bridge the gap
between the analysis model and the hardware/software platform. This includes specifying object
and subsystem interfaces, selecting off-the-shelf components, restructuring the object model to
attain design goals, and optimizing the object model for performance. Object design results in
the object design model.

Object Design Document (ODD) A document describing the object design model. The
object design model is often generated from comments embedded in the source code.

object design model A detailed object model representing the application and solution objects
that make up the system. The object design model includes detailed class specifications,
contracts, types, signatures, and visibilities for all public operations.

object designer A role of developers who refine and specify the interface of classes during
object design.

object diagram A class diagram that includes only instances.

object model Describes the structure of a system in terms of objects, attributes, associations,
and operations. During requirements and analysis, the object model starts as the analysis object
model and describes the application concepts relevant to the system. During system design, the
object model is refined into the system design object model and includes descriptions of the
subsystem interfaces. During object design, the object model is refined into the object design
model and includes detailed descriptions of solution objects.

object-oriented analysis An activity concerned with modeling the application domain with
objects.

object-oriented design An activity concerned with modeling the solution domain with
objects.

OCL See Object Constraint Language.

OCL bag An OCL collection representing an unordered multi-set (i.e., a set that can contain
the same element several times). OCL bags are used to represent the result of navigating a series
of associations.

OCL collection An OCL abstract type representing a group of objects.

OCL sequence An OCL collection representing an ordered list. OCL sequences are used to
represent the result of navigating a single ordered association.

OCL set An OCL collection representing a mathematical set. OCL sets are used to represent
the result of navigating a single association.
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ODD See Object Design Document.

one-to-many association An association that has a multiplicity of 1 on one end and a 0..n or
a 1..n multiplicity on the other end.

one-to-one association An association with multiplicity of 1 on each end.

open architecture A layered architecture in which a layer may make use of services in any
layer below it (as opposed to only the layer immediately below it). Contrast with closed
architecture.

open issue An issue that has not yet been resolved.

operation An atomic piece of behavior that is provided by a class. A calling object triggers the
execution of an operation by sending a message to the object on which the operation should be
executed.

operations requirement Constraint on the administration and management of the system in
the operational setting.

organization A set of teams, roles, communication paths, and reporting structure tailored to a
specific project (project organization) or a class of projects (division or corporate organization).

package A UML grouping concept denoting that a set of objects or classes are related.
Packages are used in use case and class diagrams to deal with the complexity associated with
large numbers of use cases or classes.

packaging requirement Constraint on the actual delivery of the system (e.g., constraint on
the installation media for setting up the software).

participant Any person involved with a software development project.

participating actor An actor interacting with a use case.

participating actor instance An actor instance interacting with a scenario.

participating object An analysis object that is involved in a given use case.

partition A subsystem in a peer-to-peer architectural style.

pattern expert A role of the developers responsible for providing detailed knowledge about
specific patterns.

pattern interface That part of the design pattern visible to the client class. Often, the pattern
interface is realized by an abstract class or an interface. 

peer-based communication structure A communication structure in which developers from
different teams communicate directly.

peer review A scheduled communication event during which team members identify defects
and find solutions in preliminary work products. See also inspection, walkthrough.

peer-to-peer architectural style A generalization of the client/server architectural style in
which subsystems can act either as clients or servers.
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performance Any quantifiable attribute of the system, such as response time, throughput,
availability, and accuracy.

performance criterion A design goal related to the speed or space attributes of a system.
Examples of performance criteria include response time, throughput, and memory space.

performance testing A system testing activity during which developers find differences
between nonfunctional requirements and system performance.

persistent data Data that outlive a single execution of the system.

PERT chart A notation representing a schedule as an acyclic graph of tasks.

phase Often used as a synonym for activity or process.

phenomenon An object of a reality as perceived by the modeler. Modeling consists of
selecting the phenomena of a reality that are of interest, identifying their common properties,
and abstracting them into concepts. Contrast with concept.

pilot testing A testing activity during which a selected set of users exercises the system in the
deployment environment.

pipe and filter architectural style An architectural style in which subsystems sequentially
process data from a set of inputs and send their results to other subsystems via a set of outputs.
Associations between subsystems are called pipes. Subsystems are called filters. Filters do not
depend on each other and can thus be rearranged in different orders and configurations.

portability The ease with which a system or component can be transferred from one hardware
or software environment to another.

postmortem review A scheduled communication event during which participants capture the
lessons learned during the project.

postcondition A predicate that must be true after an operation is invoked.

precondition A predicate that must be true before an operation is invoked.

primary facilitator See facilitator. 

primary key In a database management system, a set of attributes whose values uniquely
identify the data records in a table.

problem definition A scheduled communication event during which the client and manager
define the scope of the system.

problem domain See application domain.

problem inspection A scheduled communication event during which developers gather
information from the problem statement, the client, and the user about their needs and the
application domain.

problem presentation A scheduled communication event during which the client and the
manager communicate the high-level requirements of the system to the project participants.
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problem solving A search activity that includes the generation and evaluation of alternatives
addressing a given problem, often by trial and error.

problem statement A document cooperatively written by the client and project management
that briefly describes the scope of the system, including high-level requirements, target
environment, deliverables, and acceptance criteria. See also Project Agreement.

procedural language A programming language in which the developer specifies an explicit
sequence of steps to produce a result. Also known as an imperative language.

procedure-driven control A control flow paradigm in which operations wait for input. The
sequencing of operations is otherwise done explicitly through sending messages.

process A set of activities that is performed toward a specific purpose. Examples of processes
include requirements elicitation, analysis, project management, and testing. A process is
synonymous with a high-level activity. See also activity.

process group A group of related processes. Examples of process groups include
management, pre-development, development, and post-development.

process management In configuration management, a set of policies dictating how versions
should be created and documented, including policies for notifying developers when new
versions are created or when a build fails.

project agreement A document that formally defines the scope, duration, cost, and
deliverables of a project. Requirements are often categorized into core requirements (which the
system must meet when delivered), desirable requirements (which must be satisfied eventually),
and optional requirements (which may or may not be required in the future). The Project
Agreement subsumes the Problem Statement. 

project-based organization A corporate organization in which work is divided according to
projects; that is each participant works on exactly one project at any one time.

project conception phase The first phase of a project during which the idea for the project is
born. In a software project this is usually a new requirement triggered by the need of an existing
market or a new technology.

project definition phase The phase of a project, during which a possible client, the project
manager, and the software architect are involved in agreeing on an initial problem statement,
schedule, and software architecture.

project initiation In IEEE 1074, a project management activity during which the project
scope and resources are defined. In this book, project initiation is called project start phase.

project management An activity during which managers plan, budget, monitor, and control
the development process. Project management ensures that constraints and project goals are met.

project member See participant.
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project review A scheduled communication event during which a project manager monitors
the status of a project.

project start phase A project phase that occurs after the client and the project manager
commit to the project. During the start phase, the project manager sets up the project
infrastructure, hires participants, organizes them in teams, defines the major milestones, and
kicks off the project.

project steady state A management activity during which management monitors and controls
the progress of the project.

project termination A management activity during which the project is concluded: the
system is delivered and accepted by the client.

project velocity In Extreme Programming, a factor indicating how many ideal weeks can be
accomplished during a fixed amount of time. 

promotion A version that has been made available internally to other developers in the
project. See also release.

proposal A possible resolution of an issue.

prototyping A process of designing and realizing a simplified version of the system for
evaluation with the user or the manager. For example, a usability prototype evaluates the
usability of different interfaces. A performance prototype assesses the performance of different
alternatives.

proxy client A participant who stands in for the real client. Proxy clients have sufficient
knowledge of the application domain to answer clarification questions from the developers, but
do not have sufficient power to make major decisions.

pseudo client A member of the development organization who acts as a client because the
system is targeted at a new market segment, as opposed to a single individual or company.
Pseudo clients can make decisions within a short time and can collaborate well with the
development organization, but have a limited knowledge of the application domain.

pseudo requirement A nonfunctional requirement that can be in the implementation,
interface, operation, packaging, or legal domains. 

QOC See Questions, Options, and Criteria.

qualification A technique for reducing the multiplicity of associations by replacing many-to-
many or one-to-many associations with qualified associations.

qualified association An association in which one end is indexed by an attribute. For
example, the association between Directory and File is a qualified association indexed by a
filename on the Directory end. 

qualifier Attribute used to index the qualified end of a qualified association. 
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questionnaire A synchronous mechanism of communication during which information is
elicited from a participant with a structured set of questions.

Questions, Options, and Criteria (QOC) An issue model, proposed by McLean et al.,
extending IBIS to represent criterion and assessment information.

RAD See Requirements Analysis Document.

rationale The justification of decisions. For example, selecting myDBMS as a database
management system is a system design decision. Stating that myDBMS is reliable and responsive
enough to attain the project’s goals is part of the rationale for this design decision. Also called
design rationale.

rationale editor A role responsible for collecting and organizing rationale information.

rationale management An activity during which developers create, capture, update, and
access rationale information.

rationale model See issue model.

readability The quality of a system describing how easy it can be understood from its source
code.

realizability The property of a model indicating whether the system it represents can be
realized.

reengineering A development project in which a system and its accompanying business
processes are redesigned and reimplemented. See also greenfield engineering, interface
engineering.

refactoring Transformation of the source code that improves its readability or modifiability
without changing the behavior of the system. Refactoring aims at improving the design of a
working system by focusing on a specific field or method of a class.

refined class See subclass.

regression testing A testing activity during which integration tests are rerun to ensure that the
system does not regress after a change; that is, the system passes all the integration tests it did
before the change.

release In communication, a scheduled communication event during which a developer makes
available to the rest of the project a new version of a work product. See also promotion. In
configuration management, a version that has been made available externally, that is, to the
client or the users.

reliability Ability of a system or component to perform its required functions under stated
conditions for a specified period of time. Reliability requirements include, for example, an
acceptable mean time to failure, the ability to detect specified faults, or to withstand specified
security attacks. Reliability includes dependability, robustness, and safety.

reporting structure The structure representing the chain of control and status reporting.
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repository In a repository architectural style, the central subsystem that manages persistent
data. In configuration management, a library of releases.

repository architectural style An architectural style in which persistent data is managed and
stored by a single subsystem. Peripheral subsystems are relatively independent and interact only
through the central subsystem.

request for change See change request.

request for clarification An unscheduled communication event during which a participant
requests more information.

requirement A function that the system must have (a functional requirement) or a user-visible
constraint on the system (nonfunctional requirement).

Requirements Analysis Document (RAD) The document describing the analysis model.

requirements elicitation An activity during which project participants define the purpose of
the system. Requirements elicitation produces the functional model.

requirements engineering An activity that includes requirements elicitation and analysis.

requirements specification A complete and precise description of the system from the user’s
point of view. A requirements specification, unlike the analysis model, is understandable to the
user. In object-oriented software engineering, the requirements specification includes use cases
and scenarios.

requirements testing See functional testing.

response time An attribute of the system denoting how quickly it can react to a user input.

resolution The proposal selected by participants to close an issue.

resources Assets that are used to accomplish work, including time, equipment, and labor.

reverse engineering The process of applying a transformation to a set of source code
elements, resulting in a set of model elements. The purpose of reverse engineering is to recreate
the model for an existing system, either because the model was lost, never created, or because it
became out of sync with the source code. Contrast with forward engineering.

reviewer A role of people validating work products for quality criteria such as completeness,
correctness, consistency, and clarity.

risk An area of uncertainty that can lead to a deviation in the project plan (e.g., late delivery,
requirements not met, cost above budget), including the failure of the project.

risk-based development A software life cycle driven by the identification and resolution of
risks. See also Spiral model.

risk management A management method for identifying and addressing areas of uncertainty
before they negatively affect the schedule of the project or the quality of the system.
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robustness The degree to which a system or component can function correctly in the presence
of invalid inputs or stressful environment conditions.

role In the context of an organization, a set of responsibilities in the project assigned to a
person or a team. A person can fill one or more roles. Examples of roles include analyst, system
architect, tester, developer, manager, reviewer. In the context of an association end, a string
indicating the role of the class at the association end with respect to the association. 

round-trip engineering A model maintenance activity that combines forward and reverse
engineering. Changes to the implementation model are propagated to the analysis and design
models through reverse engineering. Changes to the analysis and design models are propagated
to the implementation model through forward engineering.

Royce’s methodology An iterative risk-driven methodology proposed by Royce based on the
Unified Process life cycle. 

safety A measure of the absence of catastrophic consequences to the environment.

same time, different place groupware See groupware

sandwich testing An integration testing strategy that combines top-down and bottom-up
testing.

schedule A map of a task model on a time line. A schedule represents work in terms of
calendar time.

schema In a database management system, a meta-model for the data.

scenario Instance of a use case. A scenario represents a concrete sequence of interactions
between one or more actors and the system. 

SCMP See Software Configuration Management Plan.

SDD See System Design Document.

secondary facilitator See facilitator.

security Property of a system indicating its ability to protect the resources against
unauthorized use, whether malicious or accidental.

sequence diagram UML notation representing the behavior of the system as a series of
interactions among a group of objects. Each object is depicted as a column in the diagram. Each
interaction is depicted as an arrow between two columns. Sequence diagrams are used during
analysis to identify missing objects, attributes, or relationships. Sequence diagrams are used
during object design to refine the specification of classes. See also communication diagram. 

service A set of related operations offered by a subsystem.

shared aggregation An aggregation relationship in which the whole and the part can exist
independently. Contrast with composition aggregation.
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signature Given an operation, the tuple made up of the types of its parameters and the type of
the return value. Operation signatures are specified during object design.

slack time For a task, the maximum amount of time a task can be delayed without affecting
the overall project schedule.

software architecture See system design model.

Software Configuration Management Plan (SCMP) A document defining the procedures
and conventions associated with the configuration management of a project. These include
identifying configuration items, accounting for their status, approving change requests, and
auditing.

software library A store of versions with facilities to track the status of changes.

software life cycle All activities and work products necessary for the development of a
software system.

software life cycle model An abstraction representing the development of software for the
purpose of understanding, monitoring, or controlling it. Examples of software life cycle models
include the waterfall model, the V-model, Boehm’s spiral model, the Unified Process, and the
issue-based life cycle model.

Software Project Management Plan (SPMP) The controlling document of a software
project. The SPMP defines the activities, work products, milestones, and resources allocated to
the project. Also defined in the SPMP are the management procedures and conventions
applicable to the project such as status reporting, risk management, and contingency
management.

software reliability The property of a software system indicating the probability that the
software will not cause a failure of the system for a specified duration.

solution domain The space of all possible systems. The solution domain is the focus of the
system design, object design, and implementation activities. Contrast with application domain.

solution domain specialist A consultant role responsible for providing knowledge about
solutions to implement the system. This can include the development method, the process,
implementation technology, or the development environment.

solution object An object in the system design or object design model that represents a
solution domain concept. Also called design object.

specialization A modeling activity that results in identifying more specific concepts from a
high-level one.

specification inheritance Inheritance used as a means of subtyping.

spiral model An iterative and incremental software life cycle model centered around risk
management.

SPMP See Software Project Management Plan.
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state A condition that is satisfied by the attribute values of an object or a subsystem.

state machine diagram UML notation representing the behavior of an individual object as a
number of states and transitions between these states. A state represents a particular set of values
for an object. Given a state, a transition represents a future state the object can move to and the
conditions associated with the change of state. State machine diagrams are used during analysis
to describe objects with state-dependent behavior.

static access control An access control policy that can be set only at compile time. Contrast
with dynamic access control.

status accounting In configuration management, the tracking of change requests, change
approval, and rationale for change.

status meeting A scheduled communication event during which team leaders monitor the
status of their team.

status review See status meeting.

stereotype An extension mechanism to classify model elements in UML. A stereotype is
represented by a string enclosed by guillemets (e.g., «control») and attached to the model
element to which it applies, such as a class or an association. Formally, attaching a stereotype to
a model element is semantically equivalent to creating a new class in the UML meta-model (i.e.,
the model that represents the constructs of UML). For example, the stereotype «control»
attached to an object denotes a control object.

stimulus A message sent to an object or to the system by an actor or another object; it usually
results in the invocation of an operation. Examples of stimuli include clicking on a user interface
button, selecting a menu item, typing a command, or sending a network packet.

strict inheritance An inheritance relationship that complies with the Liskov Substitution
Principle.

structural testing A testing activity that finds differences between the system and the system
design model.

structured interview An interview, following a questionnaire, whose purpose is to clarify
incomplete or ambiguous answers.

subclass The specialized class in a generalization relationship. See also generalization.

subsystem In general, a smaller, simpler part of a larger system; in system design, a well-
defined software component that provides a number of services to other subsystems. Examples
of subsystems include storage subsystems (managing persistent data), user interface subsystems
(managing the interaction with the user), networking subsystems (managing the communication
with other subsystems over a network).
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subsystem decomposition The division of the system into subsystems. Each subsystem is
described in terms of its services during system design and its API during object design.
Subsystem decomposition is part of the system design model.

subsystem interface The set of operations of a subsystem that is publicly available to other
subsystems.

subsystem team A team responsible for developing a subsystem. Contrast with cross-
functional team.

superclass The general class in a generalization relationship. See also generalization.

supportability The ease of changing the system after deployment.

swimlane A UML grouping concept denoting activities that are carried out by the same object
or set of objects.

synchronicity See communication mechanism, groupware.

system An organized set of communicating parts designed for a specific purpose. For
example, a car, composed of four wheels, a chassis, a body, and an engine, is designed to
transport people. A watch, composed of a battery, a circuit, wheels, and hands, is designed to
measure time. 

system architect See architect.

system design An activity during which developers define the system design model, including
the design goals of the project, and decompose the system into smaller subsystems that can be
realized by individual teams. System design also leads to the selection of the hardware/software
platform, persistent data management strategy, global control flow, access control policy, and
boundary condition strategies.

System Design Document (SDD) A document describing the system design model. 

system design model A high-level description of the system, including design goals,
subsystem decomposition, hardware/software platform, persistent storage strategy, global
control flow, access control policy, and boundary condition strategies. The system design model
represents the strategic decisions made by the architecture team that allow subsystem teams to
work concurrently and cooperate effectively.

system model The set of all models built during development to reason about the system. The
system model includes the analysis model, the system design model, the object design model,
and the source code.

system testing A testing activity during which developers test all the subsystems as a single
system. System testing includes functional testing, performance testing, acceptance testing, and
installation testing.

task An atomic unit of work that can be managed. Tasks consume resources and produce one
or more work products.
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task model A model of work for a project represented as tasks and their interdependencies.

team A set of participants who work on a common problem in a project.

team-based organization An organization in which project participants are assigned to teams
that are responsible for specific subsystems or project functions. Participants in a team-based
organization are allocated full-time to the project.

team leader A management role responsible for planning, monitoring, and controlling a
single team.

technical consultant A consultant role that provides solution domain expertise to the project.

technical writer See document editor.

test case A set of inputs and expected results that exercises a component with the purpose of
causing failures.

test driver A partial implementation of a component that exercises the tested component. Test
drivers are used during unit and integration testing.

Test Manual A document describing the test cases used to test the system, along with their
results. 

test planning An activity that allocates resources for tests and schedules testing activities.

test stub A partial implementation of a component on which the tested component depends.
Test stubs are used to isolate components during unit and integration testing and allow
components to be tested even when their dependent components have not yet been implemented.

tester A role concerned with the planning, design, execution, and analysis of tests.

testing An activity during which developers find differences between the system and its
models by executing the system (or parts of it) with sample input data sets. Testing includes unit
testing, integration testing, system testing, and usability testing.

thread A control flow paradigm in which the system creates an arbitrary number of threads to
handle an arbitrary number of input channels.

three-tier architectural style An architectural style that organizes the system into an
interface layer, an application logic layer, and a storage layer.

throughput An attribute of the system denoting how much work it can accomplish within a
specified amount of time.

timekeeper A meeting role responsible for tracking time so that the primary facilitator can
accelerate the resolution of an issue (or table it) if necessary.

top-down testing An integration testing strategy in which components are incrementally
integrated together starting with the highest level components. Top down testing does not require
any test drivers. Contrast with bottom-up testing, sandwich testing.
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top-level design Initial subsystem decomposition used for team organization and initial
planning.

traceability The property of a model describing whether a model element can be traced to the
original requirement or rationale that motivated its existence.

training scenario Tutorial scenario used for introducing new users to the system. These are
step-by-step instructions designed to hand-hold the user through common tasks.

transformation A mapping from one model to another that aims at improving one aspect of
the transformed model (e.g., its modularity) while preserving all of its other properties (e.g., its
functionality). A transformation is usually localized, affects a small number of classes,
attributes, and operations, and is executed in a series of small steps.

transition A possible change of state associated triggered by events, conditions, or time.

tuple An ordered set of values. Common uses for the tuple are representing a set of value
attributes in a relational database and representing an access right.

type In an attribute or a variable: describes the legal values the attribute or variable can take.

UML state machine See state machine diagram.

unambiguous requirement See ambiguity.

Unified Modeling Language (UML) A standard set of notations for representing models.

Unified Process See Unified Software Development Process. 

Unified Software Development Process An iterative software life cycle model characterized
by cycles of four phases, called Inception, Elaboration, Construction, and Transition.

unit testing Testing individual components. 

usability Ease with which a user can learn to operate, prepare inputs for, and interpret outputs
of a system or component.

usability testing The validation of a system or a model through the use of prototypes and
simulations by a user.

use case A general sequence of interactions between one or more actors and the system. See
also scenario.

use case diagram UML notation used during requirements elicitation and analysis to
represent the functionality of the system. A use case describes a function of the system in terms
of a sequence of interactions between an actor and the system. A use case also includes entry
conditions that must be true before executing the use case and the exit conditions that are true at
the completion of the use case.

user See end user.

User Manual A document describing the user interface of the system such that a user
unfamiliar with the system can use it.
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V-model A variation of the waterfall model that makes explicit the dependencies between
development processes and verification processes.

validation An activity that ensures that the system addresses the client’s needs.

variant Versions that are intended to coexist. For example, if a system can be executed on
different platforms, the system has a variant for each platform (e.g., a Windows variant, a
Macintosh variant, a Linux variant).

verifiability The property of a model indicating whether or not it can be falsified. 

verification A set of formal methods that attempt to detect faults without executing the
system.

version A state of a configuration item or a CM aggregate at a well-defined point in time. The
version of a CM aggregate is called a configuration.

version identifier A number or a name that uniquely identifies a version.

vertical prototype A prototype that completely implements a restricted functionality, for
example, all the interface, control, and entity objects for one use case.

view In modeling, a subset of a model. Views focus on selected model elements to make them
more understandable. In the Model/View/Controller architectural style, a type of object or
subsystem responsible for displaying to the user information from model objects or subsystems.

visibility See attribute visibility.

visionary scenario Scenario that describes a future system. Visionary scenarios are used both
as a point in the modeling space by developers as they refine their ideas of the future system and
as a communication medium to elicit requirements from users.

walkthrough A scheduled communication event during which a developer presents a work
product line by line and other developers ask questions and challenge the work product. See also
inspection.

waterfall model A software life cycle model in which all development processes occur
sequentially.

WBS See work breakdown structure.

whitebox framework A framework that relies on inheritance and dynamic binding for
extensibility. Contrast with blackbox framework.

whitebox test A test that focuses on the internal structure of a component. Contrast with
blackbox test.

Work Breakdown Structure (WBS) A hierarchical decomposition of project work into
tasks. Leaves represent tasks that are assigned to participants. Aggregates represent the work
associated with a work product.

work package A specification of work to be accomplished in completing a task or activity. 
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work product An artifact produced during development. Examples of work products include
the Requirements Analysis Document, the System Design Document, user interface prototypes,
market surveys, as well as the delivered system.

workflow In the Unified Process, a thread of cohesive and mostly sequential activities that
produce the artifacts. Engineering workflows (Requirements, Design, Implementation,
Assessment, Deployment) focus on development activities. Supporting workflows (Management,
Configuration and Change, Environment) focus on overhead activities needed to coordinate the
development activities.

workspace In configuration management, a library of promotions.

XP See Extreme Programming.
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Design patterns
Abstract Factory (328, 341, 710) this pattern shields a system from the concrete classes provided by

a specific platform, such as a windowing style or an operating system.
Adapter (319, 711) This pattern encapsulates a piece of legacy code that was not designed to work

with the system. It also limits the impact of substituting the piece of legacy code for a different
component.

Bridge (321, 712) This pattern decouples the interface of a class from its implementation. Unlike the
Adapter pattern, the developer is not constrained by an existing piece of code.

Command (329, 342, 713) This pattern enables the encapsulation of control objects so that user
requests can be treated uniformly, independent of the specific request. This pattern protects
these objects from changes required by new functionality. 

Composite (55, 228, 233, 330, 714) This pattern represents a hierarchy which has dynamic width and
depth. The services related to the hierarchy are factored out using inheritance, allowing a system
to treat leaves and intermediate composite nodes uniformly.

Facade (254, 715) This pattern reduces dependencies among classes by encapsulating a subsystem
with a simple unified interface. 

Observer (240, 342, 716) This pattern allows to maintain consistency across the states of one
Publisher and many Subscribers.

Proxy (274, 405, 717) This pattern improves the performance or the security of a system by delaying
expensive computations, using memory only when needed, or checking access before loading
an object into memory.

Strategy (325, 463, 718) This pattern decouples a policy from a set of mechanisms or a context from a
set of implementations. Depending on the policy or context, the mechanisms or
implementations can be changed at runtime transparently from the client.

Notations
UML use case diagrams (31, 44) Use case diagrams are used to represent the functionality of the

system, as seen by an actor.
UML class diagrams (32, 50) Class diagrams are used to represent the structure of the system, in

terms of subsystems, classes, attributes, operations, and associations.
UML sequence diagrams (32, 59) Sequence diagrams represent behavior in terms of a series of

interactions among a set of objects.
UML statechart diagrams (33, 62) Statechart diagrams represent behavior of a single object as a

state machine in terms of events and transitions.
Activity diagrams (33, 65) Activity diagrams are flow diagrams which represent behavior of a set of

objects as activities and transitions.
UML deployment diagrams (228) Deployment diagrams represent the mapping of software

components to hardware nodes.
Issue models (497) Issue models represent the justification of decisions in terms of issues, proposals,

arguments, criteria, and resolutions.
PERT charts (90) PERT charts represent the division of work into tasks and ordering constraints.



Example systems

2Bwatch and SatWatch (125) 2Bwatch is a digital watch with two buttons. SatWatch is a digital
watch that uses GPS satellites to select the correct time zone. Except for a display, it provides no
interface for its user. Both are systems that are simple enough for introducing basic
requirements elicitation concepts. 

FRIEND (131, 181) FRIEND is a distributed information system for managing accidents. It allows
field officers, dispatchers, and authorities to communicate and allocate resources to an
emergency. FRIEND is a much more complex system than either 2Bwatch or SatWatch. It
illustrates how requirements elicitation and analysis methods scale up to a real system. FRIEND
was realized in CMU between 1992 and 1994.

myTrip (247) myTrip enables users to plan a trip and download its information into their car. Once in
the car, users can execute their trip and receive directions. This example was inspired from the
JAMES system which was realized in CMU and in TUM in 1997 and 1998. We use the myTrip
system to illustrate system design methods.

CTC (510) CTC is a centralized traffic control system for trains. It enables dispatchers to monitor and
direct trains remotely. Such systems usually have a long life and high availability requirements.
We use the access control mechanisms of CTC for illustrating rationale management methods.

myCarParts (550) myCarParts is a web-based electronic catalog of car parts. It enables novice users
and mechanics to browse, search, and order parts. myCarParts is a client server system in which
both the server and the client are incrementally improved. We use myCarParts to illustrate the
activities of configuration management. myCarParts was inspired by PAID, a system realized at
CMU and TUM in 1998 and 1999.

ARENA (153, 206, 290, 341, 382, 424) ARENA is a multi-user, Web-based system for organizing and
conducting tournaments. ARENA is game independent in the sense that organizers can adapt a
new game to the ARENA game interface, upload it to the ARENA server, and immediately announce
and conduct tournaments with players and spectators located anywhere on the Internet.
Organizers can also define new tournament styles, describing how players are mapped to a set of
matches and how to compute an overall ranking of players by adding up their victories and
losses (hence, figuring out who won the tournament). To recoup their operational costs,
organizers can also invite potential sponsors to display advertisement banners during games.
ARENA has been realized at TUM and the University of Otago in 2002 and 2003.
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