
 1 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

Lecture Notes

ON
Fundamentals of Database Systems

CoSc2071

Prerequisites: Introduction to Computer Science (CoSc1011)

BSc. II Semester, Evening (CS Second year)

AMBO UNIVERSITY WOLISO CAMPUS, TECHNOLOGY AND

INFORMATICS SCHOOL

Department of Computer Science

Prepared by: Abraham A.

Email: abrahamojip210@gmail.com

Phone No. : +251 910272054 or 900272244

2019/20 G.C (2012 E.C)

Woliso, Ethiopia

mailto:abrahamojip210@gmail.com

 2 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

CHAPTER ONE

Introduction to Database Systems

Database systems are designed to manage large data set in an organization. The data

management involves both definition and the manipulation of the data which ranges

from simple representation of the data to considerations of structures for the storage of

information. The data management also consider the provision of mechanisms for the

manipulation of information.

Today, Databases are essential to every business. They are used to maintain internal

records, to present data to customers and clients on the World-Wide-Web, and to support

many other commercial processes. Databases are likewise found at the core of many

modern organizations.

The power of databases comes from a body of knowledge and technology that has

developed over several decades and is embodied in specialized software called a

database management system, or DBMS. A DBMS is a powerful tool for creating and

managing large amounts of data efficiently and allowing it to persist over long periods

of time, safely. These systems are among the most complex types of software available.

Thus, for our question: What is a database? In essence a database is nothing more than a

collection of shared information that exists over a long period of time, often many years.

In common dialect, the term database refers to a collection of data that is managed by a

DBMS.

Thus the DB course is about:

 How to organize data

 Supporting multiple users

 Efficient and effective data retrieval

 Secured and reliable storage of data

 Maintaining consistent data

 Making information useful for decision making

Data management passes through the different levels of development along with the

development in technology and services. These levels could best be described by

categorizing the levels into three levels of development. Even though there is an

advantage and a problem overcome at each new level, all methods of data handling are

in use to some extent. The major three levels are;

1. Manual Approach

 3 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

2. Traditional File Based Approach

3. Database Approach

1. Manual Approach

In the manual approach, data storage and retrieval follows the primitive and traditional

way of information handling where cards and paper are used for the purpose.

 Files for as many event and objects as the organization has are used to store

information.

 Each of the files containing various kinds of information is labelled and stored in

one or more cabinets.

 The cabinets could be kept in safe places for security purpose based on the

sensitivity of the information contained in it.

 Insertion and retrieval is done by searching first for the right cabinet then for the

right the file then the information.

 One could have an indexing system to facilitate access to the data

Limitations of the Manual approach

􀂾Prone to error

􀂾Difficult to update, retrieve, integrate

􀂾You have the data but it is difficult to compile the information

􀂾Limited to small size information

􀂾Cross referencing is difficult

An alternative approach of data handling is a computerized way of dealing with the

information. The computerized approach could also be either decentralized or

centralized base on where the data resides in the system.

2. Traditional File Based Approach

After the introduction of Computer for data processing to the business community, the

need to use the device for data storage and processing increase. There were, and still are,

several computer applications with file based processing used for the purpose of data

handling. Even though the approach evolved over time, the basic structure is still similar

if not identical.

 File based systems were an early attempt to computerize the manual filing

system.

 This approach is the decentralized computerized data handling method.

 4 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

 A collection of application programs perform services for the end-users. In

such systems, every application program that provides service to end users

define and manage its own data

 Such systems have number of programs for each of the different applications

in the organization.

 Since every application defines and manages its own data, the system is

subjected to serious data duplication problem.

 File, in traditional file based approach, is a collection of records which

contains logically related data.

Limitations of the Traditional File Based approach

As business application become more complex demanding more flexible and reliable

data handling methods, the shortcomings of the file based system became evident. These

shortcomings include, but not limited to:

 Separation or Isolation of Data: Available information in one application may

not be known.

 5 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

 Limited data sharing

 Lengthy development and maintenance time

 Duplication or redundancy of data

 Data dependency on the application

 Incompatible file formats between different applications and programs

creating inconsistency.

 Fixed query processing which is defined during application development

The limitations for the traditional file based data handling approach arise from two basic

reasons.

1. Definition of the data is embedded in the application program which makes it

difficult to modify the database definition easily.

2. No control over the access and manipulation of the data beyond that imposed

by the application programs.

The most significant problem experienced by the traditional file based approach of data

handling is the “update anomalies”. We have three types of update anomalies;

1. Modification Anomalies: a problem experienced when one or more data value is

modified on one application program but not on others containing the same data

set.

2. Deletion Anomalies: a problem encountered where one record set is deleted from

one application but remain untouched in other application programs.

3. Insertion Anomalies: a problem encountered where one cannot decide whether the

data to be inserted is valid and consistent with other similar data set.

3. Database Approach
Following a famous paper written by Ted Codd in 1970, database systems changed

significantly. Codd proposed that database systems should present the user with a view

of data organized as tables called relations. Behind the scenes, there might be a complex

data structure that allowed rapid response to a variety of queries. But, unlike the user of

earlier database systems, the user of a relational system would not be concerned with the

storage structure. Queries could be expressed in a very high-level language, which

greatly increased the efficiency of database programmers. The database approach

emphasizes the integration and sharing of data throughout the organization.

Thus in Database Approach:

 6 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

 Database is just a computerized record keeping system or a kind of electronic filing

cabinet.

 Database is a repository for collection of computerized data files.

 Database is a shared collection of logically related data designed to meet the

information needs of an organization. Since it is a shared corporate resource, the

database is integrated with minimum amount of or no duplication.

 Database is a collection of logically related data where these logically related data

comprises entities, attributes, relationships, and business rules of an organization's

information.

 In addition to containing data required by an organization, database also contains

a description of the data which called as “Metadata” or “Data Dictionary” or

“Systems Catalogue” or “Data about Data”.

 Since a database contains information about the data (metadata), it is called a self-

descriptive collection on integrated records.

 The purpose of a database is to store information and to allow users to retrieve

and update that information on demand.

 Database is deigned once and used simultaneously by many users.

 Unlike the traditional file based approach in database approach there is program

data independence. That is the separation of the data definition from the

application. Thus the application is not affected by changes made in the data

structure and file organization.

 Each database application will perform the combination of: Creating database,

Reading, Updating and Deleting data.

Benefits of the database approach
 Data can be shared: two or more users can access and use same data instead of

storing data in redundant manner for each user.

 Improved accessibility of data: by using structured query languages, the users can

easily access data without programming experience.

 Redundancy can be reduced: isolated data is integrated in database to decrease the

redundant data stored at different applications.

 Quality data can be maintained: the different integrity constraints in the database

approach will maintain the quality leading to better decision making

 Inconsistency can be avoided: controlled data redundancy will avoid inconsistency

of the data in the database to some extent.

 7 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

 Transaction support can be provided: basic demands of any transaction support

systems are implanted in a full scale DBMS.

 Integrity can be maintained: data at different applications will be integrated together

with additional constraints to facilitate shared data resource.

 Security majors can be enforced: the shared data can be secured by having different

levels of clearance and other data security mechanisms.

 Improved decision support: the database will provide information useful for decision

making.

 Standards can be enforced: the different ways of using and dealing with data by

different unite of an organization can be balanced and standardized by using

database approach.

 Compactness: since it is an electronic data handling method, the data is stored

compactly (no voluminous papers).

 Speed: data storage and retrieval is fast as it will be using the modern fast computer

systems.

 Less labour: unlike the other data handling methods, data maintenance will not

demand much resource.

 Centralized information control: since relevant data in the organization will be stored

at one repository, it can be controlled and managed at the central level.

 8 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

Limitations and risk of Database Approach

 Introduction of new professional and specialized personnel.

 Complexity in designing and managing data

 The cost and risk during conversion from the old to the new system

 High cost incurred to develop and maintain

 Complex backup and recovery services from the users perspective

 Reduced performance due to centralization

 High impact on the system when failure occur

Database Management System (DBMS)

Database Management System (DBMS) is a Software package used for providing

EFFICIENT, CONVENIENT and SAFE MULTI-USER (many people/programs accessing

same database, or even same data, simultaneously) storage of and access to MASSIVE

amounts of PERSISTENT (data outlives programs that operate on it) data. A DBMS also

provides a systematic method for creating, updating, storing, retrieving data in a

database. DBMS also provides the service of controlling data access, enforcing data

 9 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

integrity, managing concurrency control, and recovery. Having this in mind, a full scale

DBMS should at least have the following services to provide to the user.

1. Data storage, retrieval and update in the database

2. A user accessible catalogue

3. Transaction support service: ALL or NONE transaction, which minimize data

inconsistency.

4. Concurrency Control Services: access and update on the database by different

users simultaneously should be implemented correctly.

5. Recovery Services: a mechanism for recovering the database after a failure

must be available.

6. Authorization Services (Security): must support the implementation of access

and authorization service to database administrator and users.

7. Support for Data Communication: should provide the facility to integrate with

data transfer software or data communication managers.

8. Integrity Services: rules about data and the change that took place on the data,

correctness and consistency of stored data, and quality of data based on

business constraints.

9. Services to promote data independency between the data and the application

10. Utility services: sets of utility service facilities like

 Importing data

 Statistical analysis support

 Index reorganization

 Garbage collection

DBMS and Components of DBMS Environment

A DBMS is software package used to design, manage, and maintain databases. It provides
the following facilities:

 Data Definition Language (DDL):
 Language used to define each data element required by the organization.
 Commands for setting up schema of database

 Data Manipulation Language (DML):
 Language used by end-users and programmers to store, retrieve, and

access the data e.g. SQL
 Also called "query language"

 Data Dictionary: tool used to store and organize information about the data

 10 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

The DBMS is software that helps to design, handle, and use data using the database approach.

Taking a DBMS as a system, one can describe it with respect to it environment or other

systems interacting with the DBMS. The DBMS environment has five components.

1. Hardware: Components that are comprised of personal computers, mainframe or

any server computers, network infrastructure, etc.

2. Software: those components like the DBMS software, application programs,

operating systems, network software, and other relevant software.

3. Data: This is the most important component to the user of the database. There are

two types of data in a database approach that is Operational and Metadata.

The structure of the data in the database is called the schema, which is composed of

the Entities, Properties of entities, and relationship between entities.

4. Procedure: this is the rules and regulations on how to design and use a database. It

includes procedures like how to log on to the DBMS, how to use facilities, how to start

and stop transaction, how to make backup, how to treat hardware and software

failure, how to change the structure of the database.

5. People: people in the organization responsible to designing, implement, manage,

administer and use of the database.

Database Development Life Cycle
As it is one component in most information system development tasks, there are several steps

in designing a database system. Here more emphasis is given to the design phases of the

system development life cycle. The major steps in database design are;

1. Planning: that is identifying information gap in an organization and propose a

database solution to solve the problem.

2. Analysis: that concentrates more on fact finding about the problem or the

opportunity. Feasibility analysis, requirement determination and structuring, and

selection of best design method are also performed at this phase.

3. Design: in database designing more emphasis is given to this phase. The phase is

further divided into three sub-phases.

a. Conceptual Design: concise description of the data, data type, relationship

between data and constraints on the data.

• There is no implementation or physical detail consideration.

• Used to elicit and structure all information requirements

b. Logical Design: a higher level conceptual abstraction with selected specific data

model to implement the data structure.

 11 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

• It is particular DBMS independent and with no other physical

considerations.

c. Physical Design: physical implementation of the upper level design of the

database with respect to internal storage and file structure of the database for

the selected DBMS.

• To develop all technology and organizational specification.

4. Implementation: the testing and deployment of the designed database for use.

5. Operation and Support: administering and maintaining the operation of the

database system and providing support to users.

Roles in Database Design and Use
As people are one of the components in DBMS environment, there are group of roles played

by different stakeholders of the designing and operation of a database system.

1. Database Administrator (DBA)

 Responsible to oversee, control and manage the database resources (the database

itself, the DBMS and other related software)

 Authorizing access to the database

 Coordinating and monitoring the use of the database

 Responsible for determining and acquiring hardware and software resources

 Accountable for problems like poor security, poor performance of the system

 Involves in all steps of database development

We can have further classifications of this role in big organizations having huge amount of

data and user requirement.

1. Data Administrator (DA): is responsible on management of data resources.

Involves in database planning, development, maintenance of standards policies

and procedures at the conceptual and logical design phases.

2. DataBase Administrator (DBA): is more technically oriented role. Responsible for

the physical realization of the database. Involves in physical design,

implementation, security and integrity control of the database.

2. Database Designer (DBD)

 Identifies the data to be stored and choose the appropriate structures to represent

and store the data.

 12 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

 Should understand the user requirement and should choose how the user views

the database.

 Involve on the design phase before the implementation of the database system.

We have two distinctions of database designers, one involving in the logical and conceptual

design and another involving in physical design.

1. Logical and Conceptual DBD

 Identifies data (entity, attributes and relationship) relevant to the

organization

 Identifies constraints on each data

 Understand data and business rules in the organization

 Sees the database independent of any data model at conceptual level

and consider one specific data model at logical design phase.

2. Physical DBD

 Take logical design specification as input and decide how it should be

physically realized.

 Map the logical data model on the specified DBMS with respect to tables

and integrity constraints. (DBMS dependent designing)

 Select specific storage structure and access path to the database

 Design security measures required on the database

3. Application Programmer and Systems Analyst

 System analyst determines the user requirement and how the user wants to view

the database.

 The application programmer implements these specifications as programs; code,

test, debug, document and maintain the application program.

 Determines the interface on how to retrieve, insert, update and delete data in the

database.

 The application could use any high level programming language according to the

availability, the facility and the required service.

4. End Users

Workers, whose job requires accessing the database frequently for various purpose. There

are different group of users in this category.

1. Naïve Users:

 13 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

 Sizable proportion of users

 Unaware of the DBMS

 Only access the database based on their access level and demand

 Use standard and pre-specified types of queries.

2. Sophisticated Users

 Are users familiar with the structure of the Database and facilities of

the DBMS.

 Have complex requirements

 Have higher level queries

 Are most of the time engineers, scientists, business analysts, etc

3. Casual Users

 Users who access the database occasionally.

 Need different information from the database each time.

 Use sophisticated database queries to satisfy their needs.

 Are most of the time middle to high level managers.

These users can be again classified as “Actors on the Scene” and “Workers behind the Scene”.

Actors on the Scene

 Data Administrator

 Database Administrator

 Database Designer

 End Users

Workers behind the Scene

 DBMS designers and implementers: who design and implement different DBMS

software.

 Tool Developers: experts who develop software packages that facilitates database

system designing and use. Prototype, simulation, code generator developers

could be an example. Independent software vendors could also be categorized in

this group.

 Operators and Maintenance Personnel: system administrators who are

responsible for actually running and maintaining the hardware and software of

the database system and the information technology facilities.

 14 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

CHAPTER TWO

Database System Concepts and Architecture

History of Database Systems
The purpose and origin of the Three-Level database architecture

 All users should be able to access same data

 A user's view is unaffected or immune to changes made in other views

 Users should not need to know physical database storage details

 DBA should be able to change database storage structures without affecting the

users' views.

 Internal structure of database should be unaffected by changes to physical aspects

of storage.

 DBA should be able to change conceptual structure of database without affecting

all users.

ANSI-SPARC Three-level Architecture

A NSI-SPARC Architecture and Database Design Phases

 15 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

The contents of the external, conceptual and internal levels

The purpose of the external/conceptual and the conceptual/internal mappings

External Level: Users' view of the database. Describes that part of database that is relevant

to a particular user. Different users have their own customized view of the database

independent of other users.

Conceptual Level: Community view of the database. Describes what data is stored in

database and relationships among the data.

Internal Level: Physical representation of the database on the computer. Describes how

the data is stored in the database.

 16 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

Differences between Three Levels of ANSI-SPARC Architecture

Defines DBMS schemas at three levels

Internal schema at the internal level to describe physical storage structures and access

paths. Typically uses a physical data model.

Conceptual schema at the conceptual level to describe the structure and constraints for the

whole database for a community of users. Uses a conceptual or an implementation data

model.

External schemas at the external level to describe the various user views. Usually uses the

same data model as the conceptual level.

The meaning of logical and physical data independence

Data Independence

1. Logical Data Independence

 Refers to immunity of external schemas to changes in conceptual schema.

 17 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

 Conceptual schema changes e.g. addition/removal of entities should not

require changes to external schema or rewrites of application programs.

 The capacity to change the conceptual schema without having to change the

external schemas and their application programs.

2. Physical Data Independence

 The ability to modify the physical schema without changing the logical schema

 Applications depend on the logical schema

 In general, the interfaces between the various levels and components should be

well defined so that changes in some parts do not seriously influence others.

 The capacity to change the internal schema without having to change the

conceptual schema

 Refers to immunity of conceptual schema to changes in the internal schema

 Internal schema changes e.g. using different file organizations, storage

structures/devices should not require change to conceptual or external schemas.

Data Independence and the ANSI-SPARC Three-level Architecture

The distinction between a Data Definition Language (DDL) and a Data

Manipulation Language (DML)

Database Languages

Data Definition Language (DDL)

 18 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

 Allows DBA or user to describe and name entitles, attributes and relationships

required for the application.

 Specification notation for defining the database schema

Data Manipulation Language (DML)

 Provides basic data manipulation operations on data held in the database.

 Language for accessing and manipulating the data organized by the

appropriate data model

 DML also known as query language

Procedural DML: user specifies what data is required and how to get the

data.

Non-Procedural DML: user specifies what data is required but not how it is

to be retrieved

SQL is the most widely used non-procedural language query language

Fourth Generation Language (4GL)

 Query Languages

 Forms Generators

 Report Generators

 Graphics Generators

 Application Generators

A Classification of data models

A specific DBMS has its own specific Data Definition Language, but this type of language

is too low level to describe the data requirements of an organization in a way that is

readily understandable by a variety of users. We need a higher-level language. Such a

higher-level is called data-model.

Data Model: a set of concepts to describe the structure of a database, and certain

constraints that the database should obey.

A data model is a description of the way that data is stored in a database. Data model

helps to understand the relationship between entities and to create the most effective

structure to hold data.

Data Model is a collection of tools or concepts for describing

 Data

 19 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

 Data relationships

 Data semantics

 Data constraints

The main purpose of Data Model is to represent the data in an understandable way.

Categories of data models include:

 Object-based

 Record-based

 Physical

Object-based Data Models

 Entity-Relationship

 Semantic

 Functional

 Object-Oriented

Record-based Data Models

Consist of a number of fixed format records. Each record type defines a fixed

number of fields, Each field is typically of a fixed length.

 Relational Data Model

 Network Data Model

 Hierarchical Data Model

We have three major types of data models

1. Hierarchical Model

2. Network Model

3. Relational Data Model

 Hierarchical Model

 The simplest data model

 Record type is referred to as node or segment

 The top node is the root node

 Nodes are arranged in a hierarchical structure as sort of upside-down tree

 A parent node can have more than one child node

 A child node can only have one parent node

 20 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

 The relationship between parent and child is one-to-many

 Relation is established by creating physical link between stored records

(each is stored with a predefined access path to other records)

 To add new record type or relationship, the database must be redefined and

then stored in a new form.

ADVANTAGES of Hierarchical Data Model:

􀂾Hierarchical Model is simple to construct and operate on

􀂾Corresponds to a number of natural hierarchically organized domains - e.g.,

assemblies in manufacturing, personnel organization in companies

􀂾Language is simple; uses constructs like GET, GET UNIQUE, GET NEXT, GET

NEXT WITHIN PARENT etc.

DISADVANTAGES of Hierarchical Data Model:

􀂾Navigational and procedural nature of processing

􀂾Database is visualized as a linear arrangement of records

􀂾Little scope for "query optimization"

2. Network Model

• Allows record types to have more that one parent unlike hierarchical model

• A network data models sees records as set members

• Each set has an owner and one or more members

• Allow no many to many relationship between entities

 21 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

• Like hierarchical model network model is a collection of physically linked

records.

• Allow member records to have more than one owner

ADVANTAGES of Network Data Model:

􀂾Network Model is able to model complex relationships and represents

semantics of add/delete on the relationships.

􀂾Can handle most situations for modeling using record types and relationship

types.

􀂾Language is navigational; uses constructs like FIND, FIND member, FIND

owner, FIND NEXT within set, GET etc. Programmers can do optimal

navigation through the database.

DISADVANTAGES of Network Data Model:

􀂾Navigational and procedural nature of processing

􀂾Database contains a complex array of pointers that thread through a set of

records.

􀂾Little scope for automated "query optimization”

3. Relational Data Model

 Developed by Dr. Edgar Frank Codd in 1970 (famous paper, 'A Relational

Model for Large Shared Data Banks')

 Terminologies originates from the branch of mathematics called set theory and

relation

 Can define more flexible and complex relationship

 22 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

 Viewed as a collection of tables called “Relations” equivalent to collection of

record types

 Relation: Two dimensional table

 Stores information or data in the form of tables rows and columns

 A row of the table is called tupleequivalent to record

 A column of a table is called attributeequivalent to fields

 Data value is the value of the Attribute

 Records are related by the data stored jointly in the fields of records in two

tables or files. The related tables contain information that creates the relation

 The tables seem to be independent but are related some how.

 No physical consideration of the storage is required by the user

 Many tables are merged together to come up with a new virtual view of the

relationship

Alternative terminologies

Relation Table File

Tuple Row Record

Attribute Column Field

 The rows represent records (collections of information about separate items)

 The columns represent fields (particular attributes of a record)

 Conducts searches by using data in specified columns of one table to find

additional data in another table

 In conducting searches, a relational database matches information from a field in

one table with information in a corresponding field of another table to produce a

third table that combines requested data from both tables

Relational Data Model

Properties of Relational Databases
 Each row of a table is uniquely identified by a PRIMARY KEY composed of

one or more columns

 Each tuple in a relation must be unique

 Group of columns, that uniquely identifies a row in a table is called a

CANDIDATE KEY

 ENTITY INTEGRITY RULE of the model states that no component of the

primary key may contain a NULL value.

 23 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

 A column or combination of columns that matches the primary key of another

table is called a FOREIGN KEY. Used to cross-reference tables.

 The REFERENTIAL INTEGRITY RULE of the model states that, for every

foreign key value in a table there must be a corresponding primary key value

in another table in the database or it should be NULL.

 All tables are LOGICAL ENTITIES

 A table is either a BASE TABLES (Named Relations) or VIEWS (Unnamed

Relations)

 Only Base Tables are physically stores

 VIEWS are derived from BASE TABLES with SQL instructions like: [SELECT ..

FROM .. WHERE .. ORDER BY]

 Is the collection of tables

o Each entity in one table

o Attributes are fields (columns) in table

 Order of rows and columns is immaterial

 Entries with repeating groups are said to be un-normalized

 Entries are single-valued

 Each column (field or attribute) has a distinct name

All values in a column represent the same attribute and have the same data format.

Building Blocks of the Relational Data Model

The building blocks of the relational data model are:

 Entities: real world physical or logical object

 Attributes: properties used to describe each Entity or real world object.

 Relationship: the association between Entities

 Constraints: rules that should be obeyed while manipulating the data.

1. The ENTITIES (persons, places, things etc.) which the organization has to deal with.

Relations can also describe relationships

The name given to an entity should always be a singular noun descriptive of each

item to be stored in it. E.g.: student NOT students.

Every relation has a schema, which describes the columns, or fields

The relation itself corresponds to our familiar notion of a table: A relation is a

collection of tuples, each of which contains values for a fixed number of attributes

 24 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

2. The ATTRIBUTES - the items of information which characterize and describe these

entities.

Attributes are pieces of information ABOUT entities. The analysis must of course

identify those which are actually relevant to the proposed application. Attributes

will give rise to recorded items of data in the database

At this level we need to know such things as:

• Attribute name (be explanatory words or phrases)

• The domain from which attribute values are taken (A DOMAIN is a set of

values from which attribute values may be taken.) Each attribute has

values taken from a domain. For example, the domain of Name is string

and that for salary is real

• Whether the attribute is part of the entity identifier (attributes which just

describe an entity and those which help to identify it uniquely)

• Whether it is permanent or time-varying (which attributes may change their

values over time)

• Whether it is required or optional for the entity (whose values will sometimes

be unknown or irrelevant)

Types of Attributes
(1) Simple (atomic) Vs Composite attributes

• Simple: contains a single value (not divided into sub parts)

E.g. Age, gender

• Composite: Divided into sub parts (composed of other attributes)

E.g. Name, address

(2) Single-valued Vs multi-valued attributes

• Single-valued: have only single value (the value may change but has

only one value at one time)

E.g. Name, Sex, Id. No., color of_eyes

• Multi-Valued: have more than one value

 25 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

E.g. Address, dependent-name

Person may have several college degrees

(3) Stored vs. Derived Attribute

• Stored: not possible to derive or compute

E.g. Name, Address

• Derived: The value may be derived (computed) from the values of

other attributes.

E.g. Age (current year – year of birth)

Length of employment (current date- start date)

Profit (earning-cost)

G.P.A (grade point/credit hours)

(4) Null Values

• NULL applies to attributes which are not applicable or which do not

have values.

• You may enter the value NA (meaning not applicable)

• Value of a key attribute cannot be null.

Default value - assumed value if no explicit value.

3. The RELATIONSHIPS between entities which exist and must be taken into account

when processing information.

 One external event or process may affect several related entities.

 Related entities require setting of LINKS from one part of the database

to another.

 A relationship should be named by a word or phrase which explains its

function

 Role names are different from the names of entities forming the

relationship: one entity may take on many roles, the same role may be

played by different entities

 26 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

 An important point about a relationship is how many entities

participate in it. The number of entities participating in a relationship is

called the DEGREE of the relationship.

 UNARY/RECURSIVE RELATIONSHIP: Single entity

 BINARY RELATIONSHIPS: Two entities associated

 TERNARY RELATIONSHIP: Three entities associated

 N-NARY RELATIONSHIP: arbitrary number of entity sets

􀂾ONE-TO-ONE, e.g. Building - Location,

􀂾ONE-TO-MANY, e.g. hospital - patient,

􀂾MANY-TO-ONE, e.g. Employee - Department

􀂾MANY-TO-MANY, e.g. Author - Book.

 Another important point about relationship is the range of instances that

can be associated with a single instance from one entity in a single

relationship. The number of instances participating or associated with a

single instance from another entity in a relationship is called the

CARDINALITY of the relationship.

4. Relational Constraints/Integrity Rules

• Relational Integrity

 Domain Integrity: No value of the attribute should be beyond the

allowable limits

 Entity Integrity: In a base relation, no attribute of a primary key

can be null

 27 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

 Referential Integrity: If a foreign key exists in a relation, either the

foreign key value must match a candidate key in its home relation

or the foreign key value must be null foreign key to primary key

match-ups

 Enterprise Integrity: Additional rules specified by the users or

database administrators of a database are incorporated

• Key constraints
If tuples are need to be unique in the database, and then we need to make each

tuple distinct. To do this we need to have relational keys that uniquely identify

each relation.

Super Key: an attribute or set of attributes that uniquely identifies a tuple within a

relation.

Candidate Key: a super key such that no proper subset of that collection is a Super

Key within the relation.

A candidate key has two properties:

1. Uniqueness

2. Irreducibility

If a candidate key consists of more than one attribute it is called

composite key.

Primary Key: the candidate key that is selected to identify tuples uniquely within

the relation.

The entire set of attributes in a relation can be considered as a primary case in a

worst case.

Foreign Key: an attribute, or set of attributes, within one relation that matches the

candidate key of some relation.

A foreign key is a link between different relations to create the view or the unnamed

relation.



 Relational languages and views
The languages in relational database management systems are the DDL and the

DML that are used to define or create the database and perform manipulation on

the database.

We have the two kinds of relation in relational database. The difference is on

how the relation is created, used and updated:

 28 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

1. Base Relation

A Named Relation corresponding to an entity in the conceptual schema, whose

tuples are physically stored in the database.

2. View
Is the dynamic result of one or more relational operations operating on the base

relations to produce another virtual relation. So a view virtually derived relation

that does not necessarily exist in the database but can be produced upon request

by a particular user at the time of request.

Purpose of a view

 Hides unnecessary information from users

 Provide powerful flexibility and security

 Provide customized view of the database for users

 A view of one base relation can be updated.

 Update on views derived from various relations is not allowed.

 Update on view with aggregation and summary is not allowed.

Schemas and Instances and Database State

Relational databases are developed based on the relational data model

Schemas
Schema describes how data is to be structured, defined at set-up time, rarely changes (also

called "metadata") 

 Database Schema (intension): specifies name of relation, plus name and type of each

column.

 refer to a description of database (or intention)

 specified during database design

 should not be changed unless during maintenance

 Schema Diagrams

 convention to display some aspect of a schema visually

 Schema Construct

 refers to each object in the schema (e.g. STUDENT)

E.g.: STUNEDT (FName,LName,Id,Year,Dept,Sex)

 Three-Schema Architecture

 29 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

 Internal schema (or internal level)

o Internal schema describes the physical storage, structure of the

database (data storage, access paths)

 Conceptual schema (or conceptual level)

 describes the structure of the entire database

 hides the details of physical storage structures

 concentrates on the describing

o entities, data types, relationships, operations, and constraints

 High-level data models or an implementation data model may be used

here.

 External schema (or view-level)

 includes a number of external schema or user view

 each view describes subset of database needed by a particular user

 High Level data model or an implementation data model can be used

here

Instances
 Database state (snapshot or extension): is the collection of data in the database at

a particular point of time (snap-shot).

o Refers to the actual data in the database at a specific time

o State of database is changed any time we add or delete a record

o Valid state: the state that satisfies the structure and constraints specified in the

schema and is enforced by DBMS

 Instance is actual data of database at some point in time, changes rapidly

 To define a new database, we specify its database schema to the DBMS (database is

empty)

 database is initialized when we first load it with data

 30 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

CHAPTER THREE

DATABASE DESIGN

Database design consists of several tasks:

 Requirements Analysis,

 Conceptual Design, and Schema Refinement,

 Logical Design,

 Physical Design and

 Tuning

 In general, one has to go back and forth between these tasks to refine a

database design, and decisions in one task can influence the choices in

another task.

 In developing a good design, one should ask: What are the important

queries and updates? What attributes/relations are involved?

The Three levels of Database Design

Conceptual Database Design
 Conceptual design is the process of constructing a model of the information used

in an enterprise, independent of any physical considerations.

o It is the source of information for the logical design phase.

 31 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

o Community User’s view

 After the completion of Conceptual Design one has to go for refinement of the

schema, which is verification of Entities, Attributes, and Relationships

Logical Database Design
 Logical design is the process of constructing a model of the information used in an

enterprise based on a specific data model (e.g. relational, hierarchical or network or

object), but independent of a particular DBMS and other physical considerations.

o Normalization process

 Discover new entities

 Revise attributes

Physical Database Design
 Physical design is the process of producing a description of the implementation of

the database on secondary storage. -- defines specific storage or access methods

used by database

o Describes the storage structures and access methods used to achieve

efficient access to the data.

o Tailored to a specific DBMS system -- Characteristics are function of DBMS

and operating systems

o Includes estimate of storage space

Conceptual Database Design

 Conceptual design revolves around discovering and analyzing organizational and

user data requirements

 The important activities are to identify

 Entities

 Attributes

 Relationships

 Constraints

 And based on these components develop the ER model using

 ER diagrams

The Entity Relationship (E-R) Model

 Entity-Relationship modeling is used to represent conceptual view of the database

 32 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

 The main components of ER Modeling are:

o Entities

 Corresponds to entire table, not row

 Represented by Rectangle

o Attributes

 Represents the property used to describe an entity or a relationship

 Represented by Oval

o Relationships

 Represents the association that exist between entities

 Represented by Diamond

o Constraints

 Represent the constraint in the data

Before working on the conceptual design of the database, one has to

know and answer the following basic questions.

• What are the entities and relationships in the enterprise?

• What information about these entities and relationships should we store in

the database?

• What are the integrity constraints that hold? Constraints on each data with

respect to update, retrieval and store.

• Represent this information pictorially in ER diagrams, then map ER diagram

into a relational schema.

Developing an E-R Diagram
 Designing conceptual model for the database is not a one linear process but an

iterative activity where the design is refined again and again.

 To identify the entities, attributes, relationships, and constraints on the data,

there are different set of methods used during the analysis phase. These include

information gathered by…

o Interviewing end users individually and in a group

o Questionnaire survey

o Direct observation

o Examining different documents

 The basic E-R model is graphically depicted and presented for review.

 33 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

 The process is repeated until the end users and designers agree that the E-R

diagram is a fair representation of the organization’s activities and functions.

 Checking for Redundant Relationships in the ER Diagram. Relationships

between entities indicate access from one entity to another - it is therefore

possible to access one entity occurrence from another entity occurrence even if

there are other entities and relationships that separate them - this is often

referred to as Navigation' of the ER diagram

 The last phase in ER modeling is validating an ER Model against requirement of

the user.

Graphical Representations in ER Diagramming

 34 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

Example 1

 35 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

 Build an ER Diagram for the following information:

o Students

 Have an Id, Name, Dept, Age, Gpa

o Courses

 Have an Id, Name, Credit Hours

o Students enroll in courses and receive a grade

Entity versus Attributes
 Consider designing a database of employees for an organization:

 Should address be an attribute of Employees or an entity (connected to Employees

by a relationship)?

• If we have several addresses per employee, address must be an entity

(attributes cannot be set-valued/multi valued)

 If the structure (city, Woreda, Kebele, etc) is important, e.g. want to retrieve

employees in a given city, address must be modeled as an entity (attribute values

are atomic)

 36 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

 Cardinality on Relationship expresses the number of entity occurrences/tuples

associated with one occurrence/tuple of related entity.

 Existence Dependency: the dependence of an entity on the existence of one or more

entities.

 Weak entity : an entity that can not exist without the entity with which it has a

relationship – it is indicated by a

 Participating entity in a relationship is either optional or mandatory.

Structural Constraints on Relationship
1. Constraints on Relationship / Multiplicity/ Cardinality Constraints

 Multiplicity constraint is the number of or range of possible occurrence of an entity
type/relation that may relate to a single occurrence/tuple of an entity type/relation
through a particular relationship.

 Mostly used to insure appropriate enterprise constraints.

One-to-one relationship:
 A customer is associated with at most one loan via the relationship borrower
 A loan is associated with at most one customer via borrower

E.g.: Relationship Manages between STAFF and BRANCH

The multiplicity of the relationship is:

One branch can only have one manager

One employee could manage either one or no branches

 37 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

One-To-Many Relationships
 In the one-to-many relationship a loan is associated with at most one customer

via borrower, a customer is associated with several (including 0) loans via
borrower

E.g.: Relationship Leads between STAFF and PROJECT

The multiplicity of the relationship
 One staff may Lead one or more project(s)

 One project is Lead by one staff

Many-To-Many Relationship

 A customer is associated with several (possibly 0) loans via borrower
 A loan is associated with several (possibly 0) customers via borrower

E.g.: Relationship Teaches between INSTRUCTOR and COURSE

 38 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

The multiplicity of the relationship
 One Instructor Teaches one or more Course(s)
 One Course Thought by Zero or more Instructor(s)

Participation of an Entity Set in a Relationship Set
 Total participation (indicated by double line): every entity in the entity set participates

in at least one relationship in the relationship set. The entity with total participation

will be connected with the relationship using a double line.

E.g. 1: Participation of EMPLOYEE in “belongs to” relationship with DEPARTMENT

is total since every employee should belong to a department.

E.g. 2: Participation of EMPLOYEE in “manages” relationship with DEPARTMENT,

DEPARTMENT will have total participation but not EMPLOYEE



 Partial participation: some entities may not participate in any
relationship in the relationship set

E.g. 1: Participation of EMPLOYEE in “manages” relationship with DEPARTMENT,
EMPLOYEE will have partial participation since not all employees are managers.

 39 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

Problem in ER Modeling
The Entity-Relationship Model is a conceptual data model that views the real world as

consisting of entities and relationships. The model visually represents these concepts by

the Entity-Relationship diagram. The basic constructs of the ER model are entities,

relationships, and attributes. Entities are concepts, real or abstract, about which

information is collected. Relationships are associations between the entities. Attributes

are properties which describe the entities.

While designing the ER model one could face a problem on the design which is called a

connection traps. Connection traps are problems arising from misinterpreting certain

relationships

There are two types of connection traps;

1. Fan trap:

Occurs where a model represents a relationship between entity types, but the

pathway between certain entity occurrences is ambiguous.

May exist where two or more one-to-many (1:M) relationships fan out from an

entity. The problem could be avoided by restructuring the model so that there

would be no 1:M relationships fanning out from a singe entity and all the

semantics of the relationship is preserved.

Example:

Semantics description of the problem;

 40 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

Problem: Which car (Car1 or Car3 or Car5) is used by Employee 6 Emp6 working in

Branch 1 (Bra1)? Thus from this ER Model one cannot tell which car is used by which

staff since a branch can have more than one car and also a branch is populated by more

than one employee. Thus we need to restructure the model to avoid the connection trap.

To avoid the Fan Trap problem we can go for restructuring of the E-R Model. This will

result in the following E-R Model.

Semantic description of the problem;

2. Chasm Trap:

 41 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

Occurs where a model suggests the existence of a relationship between entity

types, but the path way does not exist between certain entity occurrences.

May exist when there are one or more relationships with a minimum multiplicity

on cardinality of zero forming part of the pathway between related entities.

Example:

If we have a set of projects that are not active currently then we can not assign a

project manager for these projects. So there are project with no project manager

making the participation to have a minimum value of zero.

Problem:

How can we identify which BRANCH is responsible for which PROJECT? We know that

whether the PROJECT is active or not there is a responsible BRANCH. But which branch

is a question to be answered, and since we have a minimum participation of zero between

employee and PROJECT we can’t identify the BRANCH responsible for each PROJECT.

The solution for this Chasm Trap problem is to add another relation ship between the

extreme entities (BRANCH and PROJECT)

Enhanced E-R (EER) Models)
 Object-oriented extensions to E-R model

 EER is important when we have a relationship between two entities and the

participation is partial between entity occurrences. In such cases EER is used to

reduce the complexity in participation and relationship complexity.

 ER diagrams consider entity types to be primitive objects

 EER diagrams allow refinements within the structures of entity types

 EER Concepts

o Generalization

o Specialization

o Sub classes

o Super classes

 42 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

o Attribute Inheritance

o Constraints on specialization and generalization



 Generalization
o Generalization occurs when two or more entities represent categories of the

same real-world object.

o Generalization is the process of defining a more general entity type from a

set of more specialized entity types.

o A generalization hierarchy is a form of abstraction that specifies that two or

more entities that share common attributes can be generalized into a higher

level entity type.

o Is considered as bottom-up definition of entities.

o Generalization hierarchy depicts relationship between higher level

superclass and lower level subclass.

o Generalization hierarchies can be nested. That is, a subtype of one hierarchy

can be a supertype of another. The level of nesting is limited only by the

constraint of simplicity.

Example: Account is a generalized form for Saving and Current Accounts



 Specialization
o Is the result of subset of a higher level entity set to form a lower level entity

set.

o The specialized entities will have additional set of attributes (distinguishing

characteristics) that distinguish them from the generalized entity.

o Is considered as Top-Down definition of entities.

 43 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

o Specialization process is the inverse of the Generalization process. Identify

the distinguishing features of some entity occurrences, and specialize them

into different subclasses.

o Reasons for Specialization

 Attributes only partially applying to superclasses

 Relationship types only partially applicable to the superclass

o In many cases, an entity type has numerous sub-groupings of its entities

that are meaningful and need to be represented explicitly. This need

requires the representation of each subgroup in the ER model. The

generalized entity is a superclass and the set of specialized entities will be

subclasses for that specific Superclass.

 Example: Saving Accounts and Current Accounts are Specialized

entities for the generalized entity Accounts. Manager, Sales,

Secretary: are specialized employees.

 Subclass/Subtype
o An entity type whose tuples have attributes that distinguish its members from

tuples of the generalized or Superclass entities.

o When one generalized Superclass has various subgroups with distinguishing

features and these subgroups are represented by specialized form, the groups

are called subclasses.

o Subclasses can be either mutually exclusive (disjoint) or overlapping

(inclusive).

o A single subclass may inherit attributes from two distinct superclasses.

o A mutually exclusive category/subclass is when an entity instance can be in

only one of the subclasses.

 E.g.: An EMPLOYEE can either be SALARIED or PART-TIMER but not

both.

o An overlapping category/subclass is when an entity instance may be in two or

more subclasses.

 E.g.: A PERSON who works for a university can be both.



 Superclass /Supertype
o An entity type whose tuples share common attributes. Attributes that are

shared by all entity occurrences (including the identifier) are associated with
the supertype.

o Is the generalized entity

 Relationship Between Superclass and Subclass

 44 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

o The relationship between a superclass and any of its subclasses is called a

superclass/subclass or class/subclass relationship

o An instance can not only be a member of a subclass. i.e. Every instance of a

subclass is also an instance in the Superclass.

o A member of a subclass is represented as a distinct database object, a

distinct record that is related via the key attribute to its super-class entity.

o An entity cannot exist in the database merely by being a member of a

subclass; it must also be a member of the super-class.

o An entity occurrence of a sub class not necessarily should belong to any of

the subclasses unless there is full participation in the specialization.

o A member of a subclass is represented as a distinct database object, a

distinct record that is related via the key attribute to its super-class entity.

o The relationship between a subclass and a Superclass is an “IS A” or “IS

PART OF” type.

 Subclass IS PART OF Superclass

 Manager IS AN Employee

o All subclasses or specialized entity sets should be connected with the

superclass using a line to a circle where there is a subset symbol indicating

the direction of subclass/superclass relationship.



o We can also have subclasses of a subclass forming a hierarchy of

specialization.

o Superclass attributes are shared by all subclasses f that superclass

o Subclass attributes are unique for the subclass.



 Attribute Inheritance

 45 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

o An entity that is a member of a subclass inherits all the attributes of the

entity as a member of the superclass.

o The entity also inherits all the relationships in which the superclass

participates.

o An entity may have more than one subclass categories.

o All entities/subclasses of a generalized entity or superclass share a common

unique identifier attribute (primary key). i.e. The primary key of the

superclass and subclasses are always identical.

 Consider the EMPLOYEE supertype entity shown above. This entity can

have several different subtype entities (for example: HOURLY and

SALARIED), each with distinct properties not shared by other subtypes.

But whether the employee is HOURLY or SALARIED, same attributes

(EmployeeId, Name, and DateHired) are shared.

 The Supertype EMPLOYEE stores all properties that subclasses have in

common. And HOURLY employees have the unique attribute Wage

(hourly wage rate), while SALARIED employees have two unique

attributes, StockOption and Salary.

Constraints on specialization and generalization
 Completeness Constraint.

o The Completeness Constraint addresses the issue of whether or not an

occurrence of a Superclass must also have a corresponding Subclass

occurrence.

 46 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

o The completeness constraint requires that all instances of the subtype be

represented in the supertype.

o The Total Specialization Rule specifies that an entity occurrence should at

least be a member of one of the subclasses. Total Participation of superclass

instances on subclasses is diagrammed with a double line from the

Supertype to the circle as shown below.

E.g.: If we have EXTENTION and REGULAR as subclasses of a superclass STUDENT,

then it is mandatory that each student to be either EXTENTION or REGULAR student.

Thus the participation of instances of STUDENT in EXTENTION and REGULAR

subclasses will be total.



o The Partial Specialization Rule specifies that it is not necessary for all entity

occurrences in the superclass to be a member of one of the subclasses. Here we

have an optional participation on the specialization. Partial Participation of

superclass instances on subclasses is diagrammed with a single line from the

Supertype to the circle.

E.g.: If we have MANAGER and SECRETARY as subclasses of a superclass EMPLOYEE,

then it is not the case that all employees are either manager or secretary. Thus the

participation of instances of employee in MANAGER and SECRETARY subclasses will

be partial.

 47 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C



 Disjointness Constraints.
o Specifies the rule whether one entity occurrence can be a member of more than

one subclasses. i.e. it is a type of business rule that deals with the situation
where an entity occurrence of a Superclass may also have more than one
Subclass occurrence.

o The Disjoint Rule restricts one entity occurrence of a superclass to be a member
of only one of the subclasses. Example: a EMPLOYEE can either be SALARIED
or PART-TIMER, but not the both at the same time.

o The Overlap Rule allows one entity occurrence to be a member f more than one
subclass. Example: EMPLOYEE working at the university can be both a
STUDENT and an EMPLOYEE at the same time.

o This is diagrammed by placing either the letter "d" for disjoint or "o" for
overlapping inside the circle on the Generalization Hierarchy portion of the
E-R diagram.

The two types of constraints on generalization and specialization (Disjointness and
Completeness constraints) are not dependent on one another. That is, being disjoint
will not favour whether the tuples in the superclass should have Total or Partial
participation for that specific specialization.

From the two types of constraints we can have four possible constraints

 Disjoint AND Total
 Disjoint AND Partial
 Overlapping AND Total
 Overlapping AND Partial

 48 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

CHAPTER FOUR

NORMALIZATION

A relational database is merely a collection of data, organized in a particular manner. As

the father of the relational database approach, Codd created a series of rules called normal

forms that help define that organization

One of the best ways to determine what information should be stored in a database is to

clarify what questions will be asked of it and what data would be included in the answers.

Database normalization is a series of steps followed to obtain a database design that allows

for consistent storage and efficient access of data in a relational database. These steps

reduce data redundancy and the risk of data becoming inconsistent.

NORMALIZATION is the process of identifying the logical associations between data

items and designing a database that will represent such associations but without

suffering the update anomalies which are;

1. Insertion Anomalies

2. Deletion Anomalies

3. Modification Anomalies

Normalization may reduce system performance since data will be cross referenced from

many tables. Thus denormalization is sometimes used to improve performance, at the

cost of reduced consistency guarantees.

Normalization normally is considered as good if it is lossless decomposition.

Mnemonic for remembering the rationale for normalization could be the following:

1. No Repeating or Redunduncy: no repeting fields in the table

2. The Fields Depend Upon the Key: the table should solely depend on the key

3. The Whole Key: no partial keybdependency

4. And Nothing But The Key: no inter data dependency

 49 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

5. So Help Me Codd: the rules of Codd

All the normalization rules will eventually remove the update anomalies that may
exist during data manipulation after the implementation. The update anomalies are;

Pitfalls of Normalization

 Requires data to see the problems
 May reduce performance of the system
 Is time consuming,
 Difficult to design and apply and
 Prone to human error

The underlying ideas in normalization are simple enough. Through normalization we want to

design for our relational database a set of tables that;

(1) Contain all the data necessary for the purposes that the database is to serve,

(2) Have as little redundancy as possible,

(3) Accommodate multiple values for types of data that reqre them,

(4) ui(4) Permit efficient updates of the data in the database, and

(5) Avoid the danger of losing data unknowingly.

The type of problems that could occur in insufficiently normalized table is called update

anomalies which includes;

(1) Insertion anomalies

An "insertion anomaly" is a failure to place information about a new database entry into all the

places in the database where information about that new entry needs to be stored. In a properly

normalized database, information about a new entry needs to be inserted into only one place

in the database; in an inadequately normalized database, information about a new entry may

need to be inserted into more than one place and, human fallibility being what it is, some of

the needed additional insertions may be missed.

(2) Deletion anomalies

A "deletion anomaly" is a failure to remove information about an existing database entry when

it is time to remove that entry. In a properly normalized database, information about an old, to-

be-gotten-rid-of entry needs to be deleted from only one place in the database; in an

inadequately normalized database, information about that old entry may need to be deleted

from more than one place, and, human fallibility being what it is, some of the needed additional

deletions may be missed.

(3) Modification anomalies

 50 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

A modification of a database involves changing some value of the attribute of a table. In a

properly normalized database table, whatever information is modified by the user, the

change will be effected and used accordingly.

The purpose of normalization is to reduce the chances for anomalies to occur in a

database.

Example of problems related with Anomalies

EmpID FName LName SkillID Skill SkillType School SchoolAdd Skill

Level

12 Abebe Mekuria 2 SQL Database AAU Sidist_Kilo 5

16 Lemma Alemu 5 C++ Programming Unity Gerji 6

28 Chane Kebede 2 SQL Database AAU Sidist_Kilo 10

25 Abera Taye 6 VB6 Programming Helico Piazza 8

65 Almaz Belay 2 SQL Database Helico Piazza 9

24 Dereje Tamiru 8 Oracle Database Unity Gerji 5

51 Selam Belay 4 Prolog Programming Jimma Jimma City 8

94 Alem Kebede 3 Cisco Networking AAU Sidist_Kilo 7

18 Girma Dereje 1 IP Programming Jimma Jimma City 4

13 Yared Gizaw 7 Java Programming AAU Sidist_Kilo 6

Deletion Anomalies:

If employee with ID 16 is deleted then ever information about skill C++ and the type of skill

is deleted from the database. Then we will not have any information about C++ and its skill

type.

Insertion Anomalies:

What if we have a new employee with a skill called Pascal? We can not decide weather Pascal

is allowed as a value for skill and we have no clue about the type of skill that Pascal should

be categorized as.

Modification Anomalies:

What if the address for Helico is changed fro Piazza to Mexico? We need to look for every

occurrence of Helico and change the value of School_Add from Piazza to Mexico, which is

prone to error.

Database-management system can work only with the information that we put

explicitly into its tables for a given database and into its rules for working with those

tables, where such rules are appropriate and possible.

 51 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

Functional Dependency (FD)

Before moving to the definition and application of normalization, it is important to have an

understanding of "functional dependency."

Data Dependency

The logical association between data items that point the database designer in the

direction of a good database design are refered to as determinant or dependent

relationships.

Two data items A and B are said to be in a determinant or dependent relationship if

certain values of data item B always appears with certain values of data item A. if the

data item A is the determinant data item and B the dependent data item then the direction

of the association is from A to B and not vice versa.

The essence of this idea is that if the existence of something, call it A, implies that B must exist

and have a certain value, then we say that "B is functionally dependent on A." We also often

express this idea by saying that "A determines B," or that "B is a function of A," or that "A

functionally governs B." Often, the notions of functionality and functional dependency are

expressed briefly by the statement, "If A, then B." It is important to note that the value B must be

unique for a given value of A, i.e., any given value of A must imply just one and only one value

of B, in order for the relationship to qualify for the name "function." (However, this does not

necessarily prevent different values of A from implying the same value of B.)

XY holds if whenever two tuples have the same value for X, they must have the same value

for Y

The notation is: AB which is read as; B is functionally dependent on A

In general, a functional dependency is a relationship among attributes. In relational databases, we

can have a determinant that governs one other attribute or several other attributes.

FDs are derived from the real-world constraints on the attributes

Example

Dinner Course Type of Wine

Meat Red

Fish White

Cheese Rose

Since the type of Wine served depends on the type of Dinner, we say Wine is functionally dependent

on Dinner.

Dinner  Wine

 52 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

Dinner Course Type of Wine Type of Fork

Meat Red Meat fork

Fish White Fish fork

Cheese Rose Cheese fork

Since both Wine type and Fork type are determined by the Dinner type, we say Wine is

functionally dependent on Dinner and Fork is functionally dependent on Dinner.

Dinner  Wine

Dinner  Fork

Partial Dependency
If an attribute which is not a member of the primary key is dependent on some part of the

primary key (if we have composite primary key) then that attribute is partially functionally

dependent on the primary key.

Let {A,B} is the Primary Key and C is no key attribute.

Then if {A,B}  C and B C
Then C is partially functionally dependent on {A,B}

Full Dependency
If an attribute which is not a member of the primary key is not dependent on some part of the

primary key but the whole key (if we have composite primary key) then that attribute is fully

functionally dependent on the primary key.

Let {A,B} is the Primary Key and C is no key attribute

Then if {A,B}  C and BC and A  C does not hold

Then C Fully functionally dependent on {A,B}

Transitive Dependency
In mathematics and logic, a transitive relationship is a relationship of the following form: "If A implies

B, and if also B implies C, then A implies C."

Example:
If Abebe is a Human, and if every Human is an Animal, then Abebe must be an Animal.

Generalized way of describing transitive dependency is that:

If A functionally governs B, AND

If B functionally governs C

THEN A functionally governs C

Provided that neither C nor B determines A (B /A and C/A)

In the normal notation:

 53 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

{(AB) AND (B/C)} ==> A/C

Steps of Normalization

We have various levels or steps in normalization called Normal Forms. The level of complexity,

strength of the rule and decomposition increases as we move from one lower level Normal Form

to the higher.

A table in a relational database is said to be in a certain normal form if it satisfies certain
constraints.

normal form below represents a stronger condition than the previous one

Normalization towards a logical design consists of the following steps:
UnNormalized Form:

Identify all data elements

First Normal Form:

Find the key with which you can find all data

Second Normal Form:

Remove part-key dependencies. Make all data dependent on the whole key.

Third Normal Form

Remove non-key dependencies. Make all data dependent on nothing but the key.

For most practical purposes, databases are considered normalized if they adhere to

third normal form.

First Normal Form (1NF)

Requires that all column values in a table are atomic (e.g., a number is an atomic value, while

a list or a set is not).

We have two ways of achiving this:

1. Putting each repeating group into a separate table and connecting them with a

primary key-foreign key relationship

2. Moving this repeating groups to a new row by repeating the common attributes. If

so then Find the key with which you can find all data

Definition of a table (relation) in 1NF

If

 There are no duplicated rows in the table. Unique identifier

 Each cell is single-valued (i.e., there are no repeating groups).

 Entries in a column (attribute, field) are of the same kind.

 54 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

Example for First Normal form (1NF)

UNNORMALIZED

EmpID FirstName LastName Skill SkillType School SchoolAdd SkillLevel

12 Abebe Mekuria SQL,

VB6

Database,

Programming

AAU,

Helico

Sidist_Kilo

Piazza

5

8

16 Lemma Alemu C++

IP

Programming

Programming

Unity

Jimma

Gerji

Jimma City

6

4

28 Chane Kebede SQL Database AAU Sidist_Kilo 10

65 Almaz Belay SQL

Prolog

Java

Database

Programming

Programming

Helico

Jimma

AAU

Piazza

Jimma City

Sidist_Kilo

9

8

6

24 Dereje Tamiru Oracle Database Unity Gerji 5

94 Alem Kebede Cisco Networking AAU Sidist_Kilo 7

FIRST NORMAL FORM (1NF)

Remove all repeating groups. Distribute the multi-valued attributes into different rows and identify a

unique identifier for the relation so that is can be said is a relation in relational database.

EmpID FirstName LastName SkillID Skill SkillType School SchoolAdd SkillLevel

12 Abebe Mekuria 1 SQL Database AAU Sidist_Kilo 5

12 Abebe Mekuria 3 VB6 Programming Helico Piazza 8

16 Lemma Alemu 2 C++ Programming Unity Gerji 6

16 Lemma Alemu 7 IP Programming Jimma Jimma City 4

28 Chane Kebede 1 SQL Database AAU Sidist_Kilo 10

65 Almaz Belay 1 SQL Database Helico Piazza 9

65 Almaz Belay 5 Prolog Programming Jimma Jimma City 8

65 Almaz Belay 8 Java Programming AAU Sidist_Kilo 6

24 Dereje Tamiru 4 Oracle Database Unity Gerji 5

94 Alem Kebede 6 Cisco Networking AAU Sidist_Kilo 7

SECOND NORMAL FORM 2NF

 55 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

No partial dependency of a non key attribute on part of the primary key. This will result in a set of

relations with a level of Second Normal Form.

Any table that is in 1NF and has a single-attribute (i.e., a non-composite) key is automatically also in

2NF.

Definition of a table (relation) in 2NF

 It is in 1NF and

 If all non-key attributes are dependent on all of the key. i.e. no partial dependency.

Since a partial dependency occurs when a non-key attribute is dependent on only a part of the

(composite) key, the definition of 2NF is sometimes phrased as, "A table is in 2NF if it is in 1NF

and if it has no partial dependencies."

Example for 2NF:

EMP_PROJ

EmpID EmpName ProjNo ProjName ProjLoc ProjFund ProjMangID

EMP_PROJ rearranged

EmpID ProjNo EmpName ProjName ProjLoc ProjFund ProjMangID

This schema is in its 1NF since we don’t have any repeating groups or attributes with multi-valued

property. To convert it to a 2NF we need to remove all partial dependencies of non key attributes

on part of the primary key.

{EmpID, ProjNo}EmpName, ProjName, ProjLoc, ProjFund, ProjMangID

But in addition to this we have the following dependencies

EmpIDEmpName

ProjNoProjName, ProjLoc, ProjFund, ProjMangID

As we can see some non key attributes are partially dependent on some part of the primary key.

Thus these collections of attributes should be moved to a new relation.

EMPLOYEE

EmpID EmpName

PROJECT

 56 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

ProjNo ProjName ProjLoc ProjFund ProjMangID

EMP_PROJ

EmpID ProjNo

THIRD NORMAL FORM (3NF)

Eliminate Columns Not Dependent On Key - If attributes do not contribute to a description of the

key, remove them to a separate table.

This level avoids update and delete anomalies.

Def of a Table (Relation) in 3NF

􀂾It is in 2NF and

􀂾There are no transitive dependencies between attributes.

Example for (3NF)

Assumption: Students of same batch (same year) live in one building or dormitory.

STUDENT

StudID Stud_F_Name Stud_L_Name Dept Year Dormitary

125/97 Abebe Mekuria Info Sc 1 401

654/95 Lemma Alemu Geog 3 403

842/95 Chane Kebede CompSc 3 403

165/97 Alem Kebede InfoSc 1 401

985/95 Almaz Belay Geog 3 403

This schema is in its 2NF since the primary key is a single attribute.

Let’s take StudID, Year and Dormitary and see the dependencies.

StudIDYear AND YearDormitary

Then transitively StudIDDormitary

To convert it to a 2NF we need to remove all partial dependencies of non key attributes on

part of the primary key.

 57 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

Boyce-Codd Normal Form (BCNF):

Isolate Independent Multiple Relationships - No table may contain two or more 1:n or N:M

relationships that are not directly related.

The correct solution, to cause the model to be in 4th normal form, is to ensure that all M:M

relationships are resolved independently if they are indeed independent, as shown below.

Def: A table is in BCNF if it is in 3NF and if every determinant is a candidate key.

Forth Normal form (4NF)

Isolate Semantically Related Multiple Relationships - There may be practical constrains on

information that justify separating logically related many-to-many relationships.

Def: A table is in 4NF if it is in BCNF and if it has no multi-valued dependencies.

Fifth Normal Form (5NF)

A model limited to only simple (elemental) facts, as expressed in ORM.

Def: A table is in 5NF, also called "Projection-Join Normal Form" (PJNF), if it is in 4NF

and if every join dependency in the table is a consequence of the candidate keys of the

table.

Domain-Key Normal Form (DKNF)

A model free from all modification anomalies.

Def: A table is in DKNF if every constraint on the table is a logical consequence of the

definition of keys and domains.

Physical Database Design Methodology for Relational Database

 The Logical database design is concerned with the what;
 The Physical database design is concerned with the how.

 58 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

 Physical database design is the process of producing a description of the
implementation of the database on secondary storage. It describes the base relations,
file organization, and indexes used to achieve effective access to the data along with
any associated integrity constraints and security measures.

 Physical design describes the base relation, file organization, and indexes used to
achieve efficient access to the data, and any associated integrity constraints and
security measures.

 Sources of information for the physical design process include global logical data
model and documentation that describes model.

 Describes the storage structures and access methods used to achieve efficient access
to the data

 Knowledge of the DBMS that is selected to host the database systems, with all its
functionalities, is required since functionalities of current DBMS vary widely.

Steps in physical database design
1. Translate logical data model for target DBMS

 To determine the file organizations and access methods that will be used to

store the base relations; i.e. the way in which relations and tuples will be held

on secondary storage

 To decide how to represent the base relations we have identified in the global

logical data model in the target DBMS.

 Design enterprise constraints for target DBMS

1.1. Design base relation

1.2. Design representation of derived data

1.3. Design enterprise constraint

2. Design physical representation

2.1. Analyze transactions

To understand the functionality of the transactions that will run on the

database and to analyze the important transactions

2.2. Choose file organization

To determine an efficient file organization for each base relation

2.3. Choose indexes

2.4. Estimate disk space and system requirement

To estimate the amount of disk space that will be required by the
database

3. Design user view

 59 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

To design the user views that were identified in the conceptual database
design methodology

4. Design security mechanisms
5. Consider controlled redundancy

To determine whether introducing redundancy in a controlled
manner by relaxing the normalization rules will improve the
performance of the system.

6. Monitor and tune the operational system

Design access rules

To design the access rules to the base relations and user views.

1. Translate logical data model for target DBMS

This phase is the translation of the global logical data model to produce a relational
database schema in the target DBMS. This includes creating the data dictionary based on
the logical model and information gathered.
After the creation of the data dictionary, the next activity is to understand the
functionality of the target DBMS so that all necessary requirements are fulfilled for the
database intended to be developed.
Knowledge of the DBMS includes:

 how to create base relations
 whether the system supports:

o definition of Primary key
o definition of Foreign key
o definition of Alternate key
o definition of Domains
o Referential integrity constraints
o definition of enterprise level constraints

1.1. Design base relation

Designing base relation involves identification of all necessary requirements about a

relation starting from the name up to the referential integrity constraints.

The implementation of the physical model is dependent on the target DBMS since some

has more facilities than the other in defining database definitions.

The base relation design along with every justifiable reason should be fully documented.

 60 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

1.2. Design representation of derived data

While analyzing the requirement of users, we may encounter that there are some

attributes holding data that will be derived from existing or other attributes. A decision

on how to represent such data should be devised.

Most of the time derived attributes are not expressed in the logical model but will be

included in the data dictionary. Whether to store stored attributes in a base relation or

calculate them when required is a decision to be made by the designer considering the

performance impact.

The representation of derived attributes should be fully documented.

1.3. Design enterprise constraint

Data in the database is not only subjected to constraints on the database and the data

model used but also with some enterprise dependent constraints.

This constraint definition is also dependent on the DBMS selected and enterprise level
requirements.
All the enterprise level constraints and the definition method in the target DBMS should
be fully documented.
2. Design physical representation

This phase is the level for determining the optimal file organizations to store the base

relations and indexes that are required to achieve acceptable performance, that is, the

way in which relations and tuples will be held on the secondary storage.

2.1. Analyze transactions

2.2. Choose file organization

2.3. Choose indexes

2.4. Estimate disk space and system requirement

3. Design user view

4. Design security mechanisms

5. Consider controlled redundancy

6. Monitor and tune the operational system

CHAPTER FIVE

STRUCTURED QUERY LANGUAGE (SQL)

 61 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

What is SQL?

Structured Query Language, commonly abbreviated to SQL and pronounced as “sequel”, is not a

conventional computer programming language in the normal sense of the phrase. It allows users

to access data in relational database management systems. SQL is about data and results, each SQL

statement returns a result, whether that result be a query, an update to a record or the creation of a

database table. SQL is most often used to address a relational database, which is what some people

refer to as a SQL database.So in brief we can describe SQL as follows:

• SQL stands for Structured Query Language

• SQL allows you to access a database

• SQL can execute queries against a database

• SQL can retrieve data from a database

• SQL can insert new records in a database

• SQL can delete records from a database

• SQL can update records in a database

• SQL is easy to learn

Creating a Database

Many database systems have graphical interfaces which allow developers (and users) to create,

modify and otherwise interact with the underlying database management system (DBMS).

However, for the purposes of this chapter all interactions with the DBMS will be via SQL

commands rather than via menus.

SQL Commands

There are three groups of commands in SQL:

1. Data Definition

2. Data Manipulation and

3. Transaction Control

Characteristics of SQL Commands

Here you can see that SQL commands follow a number of basic rules:

• SQL keywords are not normally case sensitive, though this in this tutorial all commands

(SELECT, UPDATE etc) are upper-cased.

• Variable and parameter names are displayed here as lower-case.

 62 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

• New-line characters are ignored in SQL, so a command may be all on one line or broken up

across a number of lines for the sake of clarity.

• Many DBMS systems expect to have SQL commands terminated with a semi-colon character.

Data Definition Language (DDL) in SQL

The Data Definition Language (DDL) part of SQL permits database tables to be created or deleted.

We can also define indexes (keys), specify links between tables, and impose constraints between

database tables.

The most important DDL statements in SQL are:

• CREATE TABLE - creates a new database table

• ALTER TABLE - alters (changes) a database table

• DROP TABLE - deletes a database table

How to create table

Creating a database is remarkably straightforward. The SQL command which you have to give is

just:

CREATE DATABASE dbname;

In this example you will call the database GJUniv, so the command which you have to give

is:

CREATE DATABASE GJUniv;

Once the database is created it, is possible to start implementing the design sketched out

previously.

So you have created the database and now it's time to use some SQL to create the tables required

by the design. Note that all SQL keywords are shown in upper case, variable names in a mixture

of upper and lower case.

The SQL statement to create a table has the basic form:

CREATE TABLE name(col1 datatype, col2 datatype, …);

So, to create our User table we enter the following command:

CREATE TABLE User (FirstName TEXT, LastName TEXT, UserID TEXT, Dept TEXT,

EmpNo INTEGER, PCType TEXT);

The TEXT datatype, supported by many of the most common DBMS, specifies a string of

characters of any length. In practice there is often a default string length which varies by product.

In some DBMS TEXT is not supported, and instead a specific string length has to be declared.

Fixed length strings are often called CHAR(x), VCHAR(x) or VARCHAR(x), where x is the string

 63 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

length. In the case of INTEGER there are often multiple flavors of integer available. Remembering

that larger integers require more bytes for data storage, the choice of int size is usually a design

decision that ought to be made up front.

How to Modify table

Once a table is created it's structure is not necessarily fixed in stone. In time requirements change

and the structure of the database is likely to evolve to match your wishes. SQL can be used to

change the structure of a table, so, for example, if we need to add a new field to our User table to

tell us if the user has Internet access, then we can execute an SQL ALTER TABLE command as

shown below:

ALTER TABLE User ADD COLUMN Internet BOOLEAN;

To delete a column the ADD keyword is replaced with DROP, so to delete the field we have just

added the SQL is:

ALTER TABLE User DROP COLUMN Internet;

How to delete table

If you have already executed the original CREATE TABLE command your database will already

contain a table called User, so let's get rid of that using the DROP command:

DROP TABLE User;

And now we'll recreate the User table we'll use throughout the rest of this tutorial:

CREATE TABLE User (FirstName VARCHAR (20), LastName VARCHAR (20),

UserID VARCHAR(12) UNIQUE, Dept VARCHAR(20), EmpNo INTEGER UNIQUE, PCType

VARCHAR(20);

Data Manipulation Language in SQL (DML)

SQL language also includes syntax to update, insert, and delete records. These query and update

commands together form the Data Manipulation Language (DML) part of SQL:

• INSERT INTO - inserts new data into a database table

• UPDATE - updates data in a database table

• DELETE - deletes data from a database table

• SELECT - extracts data from a database table

How to Insert Data

Having now built the structure of the database it is time to populate the tables with some data. In the

vast majority of desktop database applications data entry is performed via a user interface built around

some kind of GUI form. The form gives a representation of the information required for the application,

 64 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

rather than providing a simple mapping onto the tables. So, in this sample application you would

imagine a form with text boxes for the user details, drop-down lists to select from the PC table, drop-

down selection of the software packages etc. In such a situation the database user is shielded both from

the underlying structure of the database and from the SQL which may be used to enter data into it.

However we are going to use the SQL directly to populate the tables so that we can move on to the

next stage of learning SQL.

The command to add new records to a table (usually referred to as an append query), is:

INSERT INTO target [(field1[, field2[, ...]])]

VALUES (value1[, value2[, ...]);

So, to add a User record for user Jim Jones, we would issue the following INSERT query:

INSERT INTO User (FirstName, LastName, UserID, Dept, EmpNo, PCType) 6

VALUES ("Jim", "Jones", "Jjones","Finance", 9, "DellDimR450");

Obviously populating a database by issuing such a series of SQL commands is both tedious and prone

to error, which is another reason why database applications have front-ends. Even without a

specifically designed front-end, many database systems - including MS Access - allow data entry direct

into tables via a spreadsheet-like interface.

The INSERT command can also be used to copy data from one table into another. For example, The

SQL query to perform this is:

INSERT INTO User (FirstName, LastName, UserID, Dept, EmpNo, PCType, Internet)

SELECT FirstName, LastName, UserID, Dept, EmpNo, PCType, Internet

FROM NewUsers;

How to Update Data

The INSERT command is used to add records to a table, but what if you need to make an amendment

to a particular record? In this case the SQL command to perform updates is the UPDATE command,

with syntax:

UPDATE table

SET newvalue

WHERE criteria;

For example, let's assume that we want to move user Jim Jones from the Finance department to

Marketing. Our SQL statement would then be:

UPDATE User

SET Dept="Marketing"

WHERE EmpNo=9;

Notice that we used the EmpNo field to set the criteria because we know it is unique. If we'd used

another field, for example LastName, we might have accidentally updated the records for any other

user with the same surname.

 65 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

The UPDATE command can be used for more than just changing a single field or record at a time. The

SET keyword can be used to set new values for a number of different fields, so we could have moved

Jim Jones from Finance to marketing and changed the PCType as well in the same statement (SET

Dept="Marketing", PCType="PrettyPC"). Or if all of the Finance department were suddenly granted

Internet access then we could have issued the following SQL query:

UPDATE User

SET Internet=TRUE

WHERE Dept="Finance";

You can also use the SET keyword to perform arithmetical or logical operations on the values. For

example if you have a table of salaries and you want to give everybody a 10% increase you can issue

the following command:

UPDATE PayRoll

SET Salary=Salary * 1.1;

How to Delete Data

Now that we know how to add new records and to update existing records it only remains to learn how

to delete records before we move on to look at how we search through and collate data. As you would

expect SQL provides a simple command to delete complete records. The syntax of the command is:

DELETE [table.*]

FROM table

WHERE criteria;

Let's assume we have a user record for John Doe, (with an employee number of 99), which we want to

remove from our User we could issue the following query:

DELETE *

FROM User

WHERE EmpNo=99;

In practice delete operations are not handled by manually keying in SQL queries, but are likely to be

generated from a front end system which will handle warnings and add safe-guards against accidental

deletion of records.

Note that the DELETE query will delete an entire record or group of records. If you want to delete a

single field or group of fields without destroying that record then use an UPDATE query and set the

fields to Null to over-write the data that needs deleting. It is also worth noting that the DELETE query

does not do anything to the structure of the table itself, it deletes data only. To delete a table, or part of

a table, then you have to use the DROP clause of an ALTER TABLE query.

Constraints in SQL

Data types are a way to limit the kind of data that can be stored in a table. For many applications,

however, the constraint they provide is too coarse. For example, a column containing a product price

 66 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

should probably only accept positive values. But there is no data type that accepts only positive

numbers. Another issue is that you might want to constrain column data with respect to other columns

or rows. For example, in a table containing product information, there should only be one row for each

product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as much

control over the data in your tables as you wish. If a user attempts to store data in a column that would

violate a constraint, an error is raised. This applies even if the value came from the default value

definition.

Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in a certain

column must satisfy an arbitrary expression. For instance, to require positive product prices, you could

use:

CREATE TABLE products (product_no integer, name text, price numeric CHECK (price > 0)

);

As you see, the constraint definition comes after the data type, just like default value definitions.

Default values and constraints can be listed in any order. A check constraint consists of the key word

CHECK followed by an expression in parentheses. The check constraint expression should involve the

column thus constrained, otherwise the constraint would not make too much sense.

4.7.2 Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax

example:

CREATE TABLE products (product_no integer NOT NULL, name text NOT NULL, price

numeric);

A not-null constraint is always written as a column constraint. A not-null constraint is functionally

equivalent to creating a check constraint CHECK (column_name IS NOT NULL), but in PostgreSQL

creating an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit

names to not-null constraints created that way.

4.7.3 Unique Constraints

Unique constraints ensure that the data contained in a column or a group of columns is unique with

respect to all the rows in the table. The syntax is

CREATE TABLE products (product_no integer UNIQUE, name text, price numeric);

when written as a column constraint, and

CREATE TABLE products (product_no integer, name text, price numeric,UNIQUE

(product_no));

when written as a table constraint.

4.7.4 Primary Key Constraints

Technically, a primary key constraint is simply a combination of a unique constraint and a not-null

constraint. So, the following two table definitions accept the same data:

CREATE TABLE products (product_no integer UNIQUE NOT NULL, name text,

price numeric);

 67 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

CREATE TABLE products (product_no integer PRIMARY KEY,name text,

price numeric);

Primary keys can also constrain more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (a integer,b integer,c integer, PRIMARY KEY (a, c));

A primary key indicates that a column or group of columns can be used as a unique identifier

for rows in the table. (This is a direct consequence of the definition of a primary key. Note

that a unique constraint does not, in fact, provide a unique identifier because it does not

exclude null values.) This is useful both for documentation purposes and for client

applications. For example, a GUI application that allows modifying row values probably needs to know

the primary key of a table to be able to identify rows uniquely.

Foreign Keys Constraints

A foreign key constraint specifies that the values in a column (or a group of columns) must match the

values appearing in some row of another table. We say this maintains the referential integrity between

two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (product_no integer PRIMARY KEY, name text,

price numeric);

Let's also assume you have a table storing orders of those products. We want to ensure that the orders

table only contains orders of products that actually exist. So we define a foreign key constraint in the

orders table that references the products table:

CREATE TABLE orders (order_id integer PRIMARY KEY,product_no integer

REFERENCES products (product_no), quantity integer);

Now it is impossible to create orders with product_no entries that do not appear in the products table.

We say that in this situation the orders table is the referencing table and the products table is the

referenced table. Similarly, there are referencing and referenced columns.

CHAPTER SIX

RELATIONAL QUERY LANGUAGES

 68 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C



 Query languages: Allow manipulation and retrieval of data from a database.
 Query Languages != programming languages!

o QLs not intended to be used for complex calculations.
o QLs support easy, efficient access to large data sets.

 Relational model supports simple, powerful query languages.
Formal Relational Query Languages

 There are varieties of Query languages used by relational DBMS for
manipulating relations.

 Some of them are procedural

o User tells the system exactly what and how to manipulate the data
 Others are non-procedural

o User states what data is needed rather than how it is to be retrieved.

Two mathematical Query Languages form the basis for Relational languages

 Relational Algebra:
 Relational Calculus:

 We may describe the relational algebra as procedural language: it can be used

to tell the DBMS how to build a new relation from one or more relations in the
database.

 We may describe relational calculus as a non procedural language: it can be
used to formulate the definition of a relation in terms of one or more database
relations.

 Formally the relational algebra and relational calculus are equivalent to each
other. For every expression in the algebra, there is an equivalent expression in
the calculus.

 Both are non-user friendly languages. They have been used as the basis for
other, higher-level data manipulation languages for relational databases.

A query is applied to relation instances, and the result of a query is also a relation instance.

 Schemas of input relations for a query are fixed
 The schema for the result of a given query is also fixed! Determined by

definition of query language constructs.

Relational Algebra

The basic set of operations for the relational model is known as the relational algebra.

These operations enable a user to specify basic retrieval requests.

 69 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

The result of the retrieval is a new relation, which may have been formed from one or

more relations. The algebra operations thus produce new relations, which can be further

manipulated using operations of the same algebra.

A sequence of relational algebra operations forms a relational algebra expression, whose

result will also be a relation that represents the result of a database query (or retrieval

request).

 Relational algebra is a theoretical language with operations that work on one

or more relations to define another relation without changing the original

relation.

 The output from one operation can become the input to another operation

(nesting is possible)

 There are different basic operations that could be applied on relations on a

database based on the requirement.
 Selection (σ) Selects a subset of rows from a relation.

 Projection (π) Deletes unwanted columns from a relation.

 Renaming: assigning intermediate relation for a single operation

 Cross-Product (x) Allows us to combine two relations.

 Set-Difference (-) Tuples in relation1, but not in relation2.

 Union (∪) Tuples in relation1 or in relation2.

 Intersection (∩) Tuples in relation1 and in relation2

 Join Tuples joined from two relations based on a condition

 Using these we can build up sophisticated database queries.

Table1:
Sample table used to illustrate different kinds of relational operations. The relation contains

information about employees, IT skills they have and the school where they attend each skill.

Employee

EmpID FName LName SkillID Skill SkillType School SchoolAdd SkillLevel

12 Abebe Mekuria 2 SQL Database AAU Sidist_Kilo 5

16 Lemma Alemu 5 C++ Programming Unity Gerji 6

28 Chane Kebede 2 SQL Database AAU Sidist_Kilo 10

25 Abera Taye 6 VB6 Programming Helico Piazza 8

65 Almaz Belay 2 SQL Database Helico Piazza 9

 70 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

24 Dereje Tamiru 8 Oracle Database Unity Gerji 5

51 Selam Belay 4 Prolog Programming Jimma Jimma City 8

94 Alem Kebede 3 Cisco Networking AAU Sidist_Kilo 7

18 Girma Dereje 1 IP Programming Jimma Jimma City 4

13 Yared Gizaw 7 Java Programming AAU Sidist_Kilo 6

Selection
􀂾Selects subset of tuples/rows in a relation that satisfy selection condition.

􀂾Selection operation is a unary operator (it is applied to a single relation)

􀂾The Selection operation is applied to each tuple individually

􀂾The degree of the resulting relation is the same as the original relation but the

cardinality (no. of tuples) is less than or equal to the original relation.

􀂾The Selection operator is commutative.

􀂾Set of conditions can be combined using Boolean operations (∧(AND), ∨(OR), and

~(NOT))

􀂾No duplicates in result!

􀂾Schema of result identical to schema of (only) input relation.

􀂾Result relation can be the input for another relational algebra operation! (Operator

composition.)

􀂾It is a filter that keeps only those tuples that satisfy a qualifying condition (those

satisfying the condition are selected while others are discarded.)

Notation:

<Selection Condition>

<Relation Name>

Example: Find all Employees with skill type of Database.

< SkillType =”Database”>

(Employee)

This query will extract every tuple from a relation called Employee with all the attributes

where the SkillType attribute with a value of “Database”.

The resulting relation will be the following.

EmpID FName LName SkillID Skill SkillType School SchoolAdd SkillLevel

12 Abebe Mekuria 2 SQL Database AAU Sidist_Kilo 5

 71 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

28 Chane Kebede 2 SQL Database AAU Sidist_Kilo 10

65 Almaz Belay 2 SQL Database Helico Piazza 9

24 Dereje Tamiru 8 Oracle Database Unity Gerji 5

If the query is all employees with a SkillType Database and School Unity the relational algebra
operation and the resulting relation will be as follows.

 < SkillType =”Database” AND School=”Unity”> (Employee)

EmpID FName LName SkillID Skill SkillType School SchoolAdd SkillLevel

24 Dereje Tamiru 8 Oracle Database Unity Gerji 5

Projection
􀂾Selects certain attributes while discarding the other from the base relation.
􀂾The PROJECT creates a vertical partitioning – one with the needed columns

(attributes) containing results of the operation and other containing the discarded
Columns.

􀂾Deletes attributes that are not in projection list.
􀂾Schema of result contains exactly the fields in the projection list, with the same

names that they had in the (only) input relation.
􀂾Projection operator has to eliminate duplicates!

 Note: real systems typically don’t do duplicate elimination unless the
user explicitly asks for it.

􀂾If the Primary Key is in the projection list, then duplication will not occur
􀂾Duplication removal is necessary to insure that the resulting table is also a relation.

Notation:

π <Selected Attributes> <Relation Name>

Example: To display Name, Skill, and Skill Level of an employee, the query and the
resulting relation will be:

π <FName, LName, Skill, Skill_Level> (Employee)

FName LName Skill SkillLevel

Abebe Mekuria SQL 5

Lemma Alemu C++ 6

 72 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

Chane Kebede SQL 10

Abera Taye VB6 8

Almaz Belay SQL 9

Dereje Tamiru Oracle 5

Selam Belay Prolog 8

Alem Kebede Cisco 7

Girma Dereje IP 4

Yared Gizaw Java 6

If we want to have the Name, Skill, and Skill Level of an employee with Skill SQL and
SkillLevel greater than 5 the query will be:

π<FName, LName, Skill, Skill_Level> (<Skill=”SQL” ∧ SkillLevel>5>(Employee))

FName LName Skill SkillLevel

Chane Kebede SQL 10

Almaz Belay SQL 9

Rename Operation
􀂾We may want to apply several relational algebra operations one after the other. The

query could be written in two different forms:

1. Write the operations as a single relational algebra expression by nesting the
operations.

2. Apply one operation at a time and create intermediate result relations. In the
latter case, we must give names to the relations that hold the intermediate
results􀂾Rename Operation

If we want to have the Name, Skill, and Skill Level of an employee with salary greater than
1500 and working for department 5, we can write the expression for this query using the two
alternatives:

1. A single algebraic expression:

The above used query is using a single algebra operation, which is:

π<FName, LName, Skill, Skill_Level> (<Skill=”SQL” ∧ SkillLevel>5>
(Employee))

2. Using an intermediate relation by the Rename Operation:

 73 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

Step1: Result
<DeptNo=5 ∧ Salary>1500>

(Employee)

Step2: Resultπ
<FName, LName, Skill, Skill_Level>

(Result1)

Then Result will be equivalent with the relation we get using the first alternative.

UNION Operation
The result of this operation, denoted by R U S, is a relation that includes all tuples that
are either in R or in S or in both R and S. Duplicate tuples are eliminated.
The two operands must be “type compatible”.
Type Compatibility
The operand relations R

1
(A

1
, A

2
, ..., A

n
) and R

2
(B

1
, B

2
, ..., B

n
) must have the same number of attributes, and

the domains of corresponding attributes must be compatible; that is, Dom(A
i
)=Dom(B

i
) for i=1, 2, ..., n.

The resulting relation for;
• R1 ∪ R2,
• R1 ∩ R2, or
• R1-R2 has the same attribute names as the first operand relation R1 (by convention).

INTERSECTION Operation
The result of this operation, denoted by R ∩ S, is a relation that includes all tuples that are
in both R and S. The two operands must be "type compatible"

Set Difference (or MINUS) Operation
The result of this operation, denoted by R - S, is a relation that includes all tuples that are
in R but not in S. The two operands must be "type compatible”.

Some Properties of the Set Operators
Notice that both union and intersection are commutative operations; that is

R ∪ S = S ∪ R, and R ∩ S = S ∩ R
Both union and intersection can be treated as n-nary operations applicable to any number
of relations as both are associative operations; that is

R ∪ (S ∪ T) = (R ∪ S) ∪ T, and (R ∩ S) ∩ T = R ∩ (S ∩ T)
The minus operation is not commutative; that is, in general

R - S ≠ S – R

Relational Calculus

A relational calculus expression creates a new relation, which is specified in terms of

variables that range over rows of the stored database relations (in tuple calculus) or over

columns of the stored relations (in domain calculus).

 74 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

In a calculus expression, there is no order of operations to specify how to retrieve the

query result. A calculus expression specifies only what information the result should

contain rather than how to retrieve it.

In Relational calculus, there is no description of how to evaluate a query, this is the main

distinguishing feature between relational algebra and relational calculus.

Relational calculus is considered to be a nonprocedural language. This differs from

relational algebra, where we must write a sequence of operations to specify a retrieval

request; hence relational algebra can be considered as a procedural way of stating a

query.

When applied to relational database, the calculus is not that of derivative and differential

but in a form of first-order logic or predicate calculus, a predicate is a truth-valued

function with arguments.

When we substitute values for the arguments in the predicate, the function yields an

expression, called a proposition, which can be either true or false.

If a predicate contains a variable, as in ‘x is a member of staff’, there must be a range

for x. When we substitute some values of this range for x, the proposition may be true;

for other values, it may be false.

If COND is a predicate, then the set off all tuples evaluated to be true for the predicate

COND will be expressed as follows:

{t | COND(t)}

Where t is a tuple variable and COND (t) is a conditional expression

involving t. The result of such a query is the set of all tuples t that satisfy

COND (t).

If we have set of predicates to evaluate for a single query, the predicates can be

connected using ∧(AND), ∨(OR), and ~(NOT)

A relational calculus expression creates a new relation, which is specified in terms of

variables that range over rows of the stored database relations (in tuple calculus) or over

columns of the stored relations (in domain calculus).

Tuple-oriented Relational Calculus

 75 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

􀂾The tuple relational calculus is based on specifying a number of tuple variables.

Each tuple variable usually ranges over a particular database relation, meaning

that the variable may take as its value any individual tuple from that relation.

􀂾Tuple relational calculus is interested in finding tuples for which a predicate is

true for a relation. Based on use of tuple variables.

􀂾Tuple variable is a variable that ‘ranges over’ a named relation: that is, a variable

whose only permitted values are tuples of the relation.

􀂾If E is a tuple that ranges over a relation employee, then it is represented as

EMPLOYEE(E) i.e. Range of E is EMPLOYEE

􀂾Then to extract all tuples that satisfy a certain condition, we will represent is as all

tuples E such that COND(E) is evaluated to be true.

{E ⁄ COND(E)}

The predicates can be connected using the Boolean operators:

∧ (AND), ∨ (OR), ∼ (NOT)

COND(t) is a formula, and is called a Well-Formed-Formula (WFF) if:
􀂾Where the COND is composed of n-nary predicates (formula composed of

n single predicates) and the predicates are connected by any of the Boolean
operators.

􀂾And each predicate is of the form A θ B and θ is one of the logical operators

{ <, ≤ , >, ≥, ≠, = }which could be evaluated to either true or false. And A

and B are either constant or variables.
􀂾Formulae should be unambiguous and should make sense.

Example (Tuple Relational Calculus)
􀂾Extract all employees whose skill level is greater than or equal to 8

{E | Employee(E) ∧ E.SkillLevel >= 8}

EmpID FName LName SkillID Skill SkillType School SchoolAdd SkillLevel

28 Chane Kebede 2 SQL Database AAU Sidist_Kilo 10

25 Abera Taye 6 VB6 Programming Helico Piazza 8

65 Almaz Belay 2 SQL Database Helico Piazza 9

51 Selam Belay 4 Prolog Programming Jimma Jimma City 8



 76 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

􀂾To find only the EmpId, FName, LName, Skill and the School where the skill is
attended where of employees with skill level greater than or equal to 8, the tuple
based relational calculus expression will be:

{E.EmpId, E.FName, E.LName, E.Skill, E.School | Employee(E) ∧ E.SkillLevel >= 8}
EmpID FName LName Skill School

28 Chane Kebede SQL AAU

25 Abera Taye VB6 Helico

65 Almaz Belay SQL Helico

51 Selam Belay Prolog Jimma



􀂾E.FName means the value of the First Name (FName) attribute for the tuple E.

Quantifiers in Relation Calculus
􀂾To tell how many instances the predicate applies to, we can use the two

quantifiers in the predicate logic.

􀂾One relational calculus expressed using Existential Quantifier can also be

expressed using Universal Quantifier.

1. Existential quantifier ∃ (‘there exists’)

Existential quantifier used in formulae that must be true for at least

one instance, such as:

An employee with skill level greater than or equal to 8 will be:

{E | Employee(E) ∧ (∃E)(E.SkillLevel >= 8)}
This means, there exist at least one tuple of the relation employee where the value

for the SkillLevel is greater than or equal to 8

2. Universal quantifier ∀ (‘for all’)

Universal quantifier is used in statements about every instance, such

as:

An employee with skill level greater than or equal to 8 will be:

{E | Employee(E) ∧ (∀E)(E.SkillLevel >= 8)}
This means, for all tuples of relation employee where value for the SkillLevel

attribute is greater than or equal to 8.

Example:

Let’s say that we have the following Schema (set of Relations)

Employee(EID, FName, LName, Dept)

Project(PID, PName, Dept)

 77 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

Dept(DID, DName, DMangID)

WorksOn(EID, PID)

To find employees who work on projects controlled by department 5 the query

will be:

{E | Employee(E) ∧ (∀x)(Project(x) ∧ (∃w)(WorksOn(w) ∧ x.Dept=5 ∧ E.EID=W.EID))}

CHAPTER SEVEN

 78 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

RECORD STORAGE AND PRIMARY FILE ORGANIZATION

Introduction

 Primary storage:

This category includes storage media that can be operated on directly by the computer central

processing unit (CPU), such as the computer main memory and smaller but faster cache memories.

Primary storage usually provides fast access to data but is of limited storage capacity.

Secondary storage:

This category includes magnetic disks, optical disks, and tapes. These devices usually have a larger

capacity, cost less, and provide slower access to data than do primary storage devices. Data in

secondary storage cannot be processed directly by the CPU; it must first be copied into primary

storage.

Secondary storage Devices
 Whatever their capacity, disks are all made of magnetic material shaped as a thin circular

disk (Figure 1 a) and protected by a plastic or acrylic cover.

 A disk is single sided if it stores information on only one of its surfaces and double-sided

if both surfaces are used.

 To increase storage capacity, disks are assembled into a disk pack (Figure 1 b), which may

include many disks and hence many surfaces.

 Information is stored on a disk surface in concentric circles of small width,4 each having a

distinct diameter.

 Each circle is called a track.

 79 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

 The division of a track into equal-sized disk blocks (or pages) is set by the operating system

during disk formatting (or initialization).

 Typical disk block sizes range from 512 to 4096 bytes.

 Blocks are separated by fixed-size interblock gaps, which include specially coded control

information written during disk initialization.

 A disk is a random access addressable device.

 The hardware address of a block is a combination of a cylinder number, track number

(surface number within the cylinder on which the track is located), and block number

(within the track) is supplied to the disk i/o hardware.

 In many modern disk drives, a single number called LBA (Logical Block Address) which

is a number between 0 and n (assuming the total capacity of the disk is n+1 blocks), is

mapped automatically to the right block by the disk drive controller.

 For a read command, the block from disk is copied into the buffer; whereas for a write

command, the contents of the buffer are copied into the disk block.

 80 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

 Sometimes several contiguous blocks, called a cluster, may be transferred as a unit.

 The actual hardware mechanism that reads or writes a block is the disk read/write head,

which is part of a system called a disk drive.

 A disk or disk pack is mounted in the disk drive, which includes a motor that rotates the

disks.

 A read/write head includes an electronic component attached to a mechanical arm.

 All arms are connected to an actuator attached to another electrical motor, which moves

the read/write heads in unison and positions them precisely over the cylinder of tracks

specified in a block address.

Magnetic Tape Storage Devices

 The main characteristic of a tape is its requirement that we access the data blocks in

sequential order.

 To get to a block in the middle of a reel of tape, the tape is mounted and then scanned until

the required block gets under the read/write head.

 For this reason, tape access can be slow and tapes are not used to store online data, except

for some specialized applications.

 However, tapes serve a very important function-that of backing up the database.

Buffering Of Blocks

 When a single CPU controls multiple processes, parallel execution is not possible.

However, the processes can still run concurrently in an interleaved way.

 81 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

Figure illustrates how reading and processing can proceed in parallel when the time required to

process a disk block in memory is less than the time required to read the next block and fill a

buffer. The CPU can start processing a block once its transfer to main memory is completed; at

the same time the disk I/O processor can be reading and transferring the next block into a different

buffer. This technique is called double buffering.

Placing File Records On Disk

 Records and Record Types

 Data is usually stored in the form of records.

 Each record consists of a collection of related data values or items, where each value is

formed of one or more bytes and corresponds to a particular field of the record.

 Records usually describe entities and their attributes.

 A collection of field names and their corresponding data types constitutes a record type or

record format definition

 A data type, associated with each field, specifies the types of values a field can take.

 The data type of a field is usually one of the standard data types used in programming.

 Files, Fixed-length Records, and Variable length Records

 A file is a sequence of records.

 If every record in the file has exactly the same size (in bytes), the file is said to be made up

of fixed-length records.

 If different records in the file have different sizes, the file is said to be made up of variable-

length records.

A file may have variable-length records for several reasons:

 82 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

 The file records are of the same record type, but one or more of the fields are of varying

size (variable-length fields).

 The file records are of the same record type, but one or more of the fields may have multiple

values for individual records; such a field is called a repeating field and a group of values

for the field is often called a repeating group.

 The file records are of the same record type, but one or more of the fields are optional; that

is, they may have values for some but not all of the file records (optional fields).

 The file contains records of different record types and hence of varying size (mixed file).

 The fixed-length record has the same fields, and field lengths are fixed, so the system can

identify the starting byte position of each field relative to the starting position of the record.

 This facilitates locating field values by programs that access such files.

 Record Blocking and Spanned Versus Unspanned Records

 The records of a file must be allocated to disk blocks because a block is the unit of data

transfer between disk and memory.

 When the block size is larger than the record size, each block will contain numerous

records, although some files may have unusually large records that cannot fit in one block.

 Suppose that the block size is B bytes for a file of fixed-length records of size R bytes, with

B ≥R, we can fit bfr = |B/R|records per block, where the |(x)| (floor function) rounds down

the number x to an integer. The value bfr is called the blocking factor for the file.

 To utilize this unused space, we can store part of a record on one block and the rest on

another.

 A pointer at the end of the first block points to the block containing the remainder of the

record in case it is not the next consecutive block on disk.

 This organization is called spanned, because records can span more than one block.

 Whenever a record is larger than a block, we must use a spanned organization. If records

are not allowed to cross block boundaries, the organization is called unspanned.

 Allocating File Blocks on Disk

 There are several standard techniques for allocating the blocks of a file on disk.

 In contiguous allocation the file blocks are allocated to consecutive disk blocks. This

makes reading the whole file very fast using double buffering, but it makes expanding the

file difficult.

 In linked allocation each file block contains a pointer to the next file block. This makes it

easy to expand the file but makes it slow to read the whole file.

 Another possibility is to use indexed allocation, where one or more index blocks contain

pointers to the actual file blocks. It is also common to use combinations of these techniques.

 File Headers

 A file header or file descriptor contains information about a file that is needed by the system

programs that access the file records.

 83 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

 The header includes information to determine the disk addresses of the file blocks as well

as to record format descriptions.

Operations On Files

 Operations on files are usually grouped into retrieval operations and update operations.

 The former do not change any data in the file, but only locate certain records so that their

field values can be examined and processed.

 The latter change the file by insertion or deletion of records or by modification of field

values.

 In either case, we may have to select one or more records for retrieval, deletion, or

modification based on a selection condition (or filtering condition).

 Open: Prepares the file for reading or writing. Allocates appropriate buffers to hold file

blocks from disk, and retrieves the file header. Sets the file pointer to the beginning of the

file.

 Reset: Sets the file pointer of an open file to the beginning of the file.

 Find (or Locate): Searches for the first record that satisfies a search condition. Transfers

the block containing that record into a main memory buffer.

 Read (or Get): Copies the current record from the buffer to a program variable in the user

program.

 FindNext: Searches for the next record in the file that satisfies the search condition.

Transfers the block containing that record into a main memory buffer.

 Delete: Deletes the current record and (eventually) updates the file on disk to reflect the

deletion.

 Modify: Modifies some field values for the current record and (eventually) updates the file

on disk to reflect the modification.

 Insert: Inserts a new record in the file by locating the block where the record is to be

inserted, transferring that block into a main memory buffer, writing the record into the

buffer, and (eventually) writing the buffer to disk to reflect the insertion.

 Close: Completes the file access by releasing the buffers and performing any other needed

cleanup operations.

 FindAll: Locates all the records in the file that satisfy a search condition.

 Find (or Locate) n: Searches for the first record that satisfies a search condition and then

continues to locate the next n - 1 records satisfying the same condition.

 FindOrdered: Retrieves all the records in the file in some specified order.

 Reorganize: Starts the reorganization process.

Files Of Unordered Records (Heap Files)

 84 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

 In this simplest and most basic type of organization, records are placed in the file in the

order in which they are inserted, so new records are inserted at the end of the file.

 Such an organization is called a heap or pile file.

 Inserting a new record is very efficient: the last disk block of the file is copied into a buffer;

the new record is added; and the block is then rewritten back to disk.

 To delete a record, a program must first find its block, copy the block into a buffer, then

delete the record from the buffer, and finally rewrite the block back to the disk.

 This leaves unused space in the disk block.

 During reorganization, the file blocks are accessed consecutively, and records are packed

by removing deleted records.

 To read all records in order of the values of some field, we create a sorted copy of the file.

Files of Ordered Records (Sorted Files)

 We can physically order the records of a file on disk based on the values of one of their

fields-called the ordering field.

 This leads to an ordered or sequential file.

 If the ordering field is also a key field of the file-a field guaranteed to have a unique value

in each record-then the field is called the ordering key for the file.

 Ordered records have some advantages over unordered files.

 First, reading the records in order of the ordering key values becomes extremely efficient,

because no sorting is required.

 Second, finding the next record from the current one in order of the ordering key usually

requires no additional block accesses, because the next record is in the same block as the

current one (unless the current record is the last one in the block).

 Third, using a search condition based on the value of an ordering key field results in faster

access when the binary search technique is used, which constitutes an improvement over

linear searches, although it is not often used for disk files.

Hashing Technique

 Another type of primary file organization is based on hashing, which provides very fast

access to records on certain search conditions. This organization is usually called a hash

file.

 The search condition must be an equality condition on a single field, called the hash field

of the file.

 In most cases, the hash field is also a key field of the file, in which case it is called the hash

key.

 85 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

 The idea behind hashing is to provide a function h, called a hash function or randomizing

function, which is applied to the hash field value of a record and yields the address of the

disk block in which the record is stored.

Internal Hashing

 For internal files, hashing is typically implemented as a hash table through the use of an

array of records.

 Suppose that the array index range is from 0 to M – 1 then we have M slots whose addresses

correspond to the array indexes.

 We choose a hash function that transforms the hash field value into an integer between 0

and M - 1.

 One common hash function is the h(K) = K mod M function, which returns the remainder

of an integer hash field value K after division by M; this value is then used for the record

address.

 Other hashing functions can be used.

 One technique, called folding, involves applying an arithmetic function such as addition

or a logical function such as exclusive or to different portions of the hash field value to

calculate the hash address.

 Another technique involves picking some digits of the hash field value-for example, the

third, fifth, and eighth digits-to form the hash address.

 The problem with most hashing functions is that they do not guarantee that distinct values

will hash to distinct addresses

 A collision occurs when the hash field value of a record that is being inserted hashes to an

address that already contains a different record.

 In this situation, we must insert the new record in some other position, since its hash address

is occupied.

 The process of finding another position is called collision resolution.

 There are numerous methods for collision resolution, including the following:

o Open addressing: Proceeding from the occupied position specified by the hash

address, the program checks the subsequent positions in order until an unused

(empty) position is found.

o Chaining: For this method, various overflow locations are kept, usually by

extending the array with a number of overflow positions. In addition, a pointer field

is added to each record location. A collision is resolved by placing the new record

in an unused overflow location and setting the pointer of the occupied hash address

location to the address of that overflow location

 86 | P a g e
Fundamentals of Database Systems CS dep’t, AUWC 2020 G.C

o Multiple hashing: The program applies a second hash function if the first results

in a collision. If another collision results, the program uses open addressing or

applies a third hash function and then uses open addressing if necessary.

