
Ambo University @Woliso Campus

School of Technology and Informatics

Computer Science Department

Analysis of Algorithm Course Full hondout

Program: Extension Batch: 4
th

 Semister: II

Course Code:CoSc 3131

Prepared and Compiled by: Yoobsan Bechera (BSc)

 May/25/2020, AU, Oromia, Ethiopia

Page i of 71

Table of Contents
Chapter 1 ... 1

Introduction to Analysis of Algorithm .. 1

Introduction ... 1

Properties of an algorithm ... 1

Euclid‟s algorithm for computing gcd(m,n) ... 4

Alternative Euclid‟s algorithm .. 4

Algorithm Evaluation .. 5

Correct Algorithm ... 5

How to prove the correctness of an algorithm? .. 5

The sorting problem .. 6

Insertion Sort Algorithm ... 6

Insertion sort ... 6

Proof correctness of the algorithm .. 7

Review Exercise.. 8

Chapter 2 ... 8

Why we study algorithm? ... 8

Algorithm Design & Analysis Process ... 9

Analysis of Algorithm ... 9

Analysis of Insertion Sort ... 10

Best Case Analysis of Insertion Sort ... 11

Worst Case Analysis of Insertion Sort .. 11

Average Case Analysis of Insertion Sort .. 11

Running time of an algorithm ... 12

How to analyze „for loops‟ ... 13

How to Analyze „Nested for loops‟ .. 13

How to Analyze „Consecutive statements‟ ... 13

How to Analyze „Conditionals‟ .. 14

Asymptotic analysis .. 15

Asymptotic notations: Big-Oh (O) .. 15

Page ii of 71

Order of growth of functions .. 16

Asymptotic notations: Big-Omega () ... 17

Asymptotic notations: Theta () .. 17

Algorithmic efficiency .. 18

Recursive Algorithm ... 18

The factorial function .. 19

Analysis of Recursive algorithm using substitution: .. 19

Recursive algorithm for reversing an Array ... 20

Review Exercise.. 21

Chapter 3 ... 21

Disjoint sets and Graph ... 21

Disjoint sets ... 21

Algorithm for Disjoint set ... 22

Graph .. 26

Graph Interpretations .. 26

Graph Definitions and Types .. 26

Adjacency multilist ... 29

Graph Traversals ... 30

Depth-First Traversal .. 31

Breadth-First Search (BFS) ... 32

Time complexity ... 33

Review Exercise.. 34

Chapter 4 ... 34

The divide-and-conquer strategy .. 34

Divide-and-Conquer Strategy ... 35

Divide-and-Conquer Technique .. 36

Solving Recurrence Relation .. 36

Binary Recursive Method ... 38

Binary search .. 38

Binary Search Recursive Algorithm ... 39

Binary Search Iterative Algorithm .. 40

Page iii of 71

Chapter 5 ... 46

Greedy Algorithms .. 46

The greedy method ... 46

Feasible vs. optimal solution ... 46

Greedy Choice Property .. 47

Knapsack problem .. 48

Analysis of Knapsack problem ... 49

Minimum Spanning Trees ... 50

Prim‟s algorithm ... 51

Kruskal‟s algorithm .. 52

Correctness of Kruskal .. 54

Dijkstra‟s shortest-path algorithm ... 54

Huffman Coding ... 55

Chapter 6 ... 56

Dynamic programming ... 56

Divide & Conquer vs. Dynamic Programming ... 56

Greedy vs. Dynamic Programming ... 56

Dynamic programming approaches .. 57

0/1 Knapsack: Brute-force approach ... 58

The shortest path in multistage graphs .. 60

String editing ... 62

Chapter 7 ... 63

Backtracking Algorithm .. 63

Backtracking ... 63

Backtracking approach .. 63

The Queens Problem ... 63

4 - Queens ... 64

Traveling Salesperson Problem (TSP) .. 65

Branch and Bound Algorithm ... 66

Page 1 of 71

Chapter 1

Introduction to Analysis of Algorithm

Introduction

What is an algorithm?

o An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for

obtaining a required output for any legitimate input in a finite amount of time. The

definition can be illustrated by the following diagram.

o An algorithm is a clearly specified set of simple instructions to be followed to solve a

problem. Any well-defined computational procedure that takes some value (or set of values)

as an input and produces some value (or set of values) as an output. A sequence of

computational steps that transforms the input into the output

o A set of well-defined, finite rules used for problem solving. A finite set of instructions that,

if followed, accomplish a particular task. It is a precise, systematic method for producing a

specified result.

Properties of an algorithm

o From the above definitions, algorithm has the following properties: Sequence,

Unambiguous, Input, Output, Finite

Sequence

o It is a step-by-step procedure for solving a given problem

o Every algorithm should have a beginning (start) and a halt (end) step

o The first step (start step) and last step (halt step) must be clearly noted

o Between the two every step should have preceding and succeeding steps

Page 2 of 71

o That is, each step must have a uniquely defined preceding and succeeding step

Unambiguous

o Define rigorously the sequence of operations performed for transforming the inputs into

the outputs

o No ambiguous statements are allowed: Each step of an algorithm must be clearly and

precisely defined, having one and only one interpretation.

o At each point in computation, one should be able to tell exactly what will happen next

o Algorithms must specify every step. It must be composed of concrete steps

o Every detail of each step must be spelled out, including how to handle errors

o This ensures that if the algorithm is performed at different times or by different systems

using the same data, the output will be the same.

Input specified

o The inputs are the data that will be transformed during the computation to produce the

output

o An input to an algorithm specifies an instance of the problem the algorithm solves

o Every algorithm should have a specified number (zero or more) input values (or

quantities) which are externally supplied

 We must specify the type of data and the amount of data

o Note that, correct algorithm is not one that works most of the time but one that works

correctly for all legitimate inputs

Output specified

o The output is the data resulting from the computation

 It is the intended result

o Every algorithm should have one or a sequence of output values

 There must be one or more result values

o A possible output for some computations is a statement that there can be no output, i.e.,

no solution is possible

o The algorithm can be proved to produce the correct output given a valid input.

Page 3 of 71

Finiteness: It must terminate

o Every valid algorithm must complete or terminate after a finite number of steps.

o If you trace out the instructions of an algorithm, then for all cases the algorithm must

terminate after a finite number of steps.

o It must eventually stop either with the right output or with a statement that no solution is

possible.

o Finiteness is an issue for computer algorithms because

 Computer algorithms often repeat instructions

 If the algorithm doesn‟t specify when to stop, the computer will continue to repeat

the instructions forever.

Middle-school algorithm for computing gcd(m,n)

Step1: Find the prime factors of m

Step2: Find the prime factors of n

Step3: Identify all the common factors in the two prime expressions found in Step 1 and Step 2.

o If p is a common factor occurring pm and pn times in m and n, respectively, it should

be repeated min(pm,pn) times.

Step4: Compute the product of all the common divisors as the GCD for the given inputs, m and

n

Step5: Return this value as GCD of m and n

 Exercise: Design an algorithm that identifies the common factors in two prime expressions

(for step 3 in the above algorithm).

Consecutive integer checking algorithm for computing gcd (m, n)

Step1: k = min (m, n) - find the minimum of m & n

Step2: Divide m by k.

o If the remainder of the division is 0, go to Step 3;

o otherwise, go to Step 4

Step3: Divide n by k.

Page 4 of 71

o If the remainder of the division is 0, proceed to Step 5

o otherwise, proceed to Step 4

Step4: Decrease the value of k and go to step 2

Step5: Return the value of k as gcd of m and n and stop

Euclid‟s algorithm for computing gcd(m,n)

 Step1: if n = 0

o return the value of m as the answer and stop

o Otherwise proceed to step 2.

Step2: divide m by n and assign the remainder to r.

Step3: assign the value of n to m and the value of r to n.

Step4: go to Step 1

Alternative Euclid‟s algorithm

o We can also express the same algorithm in a better way as follows:

 Algorithm Euclid (m,n)

 //Input: two nonnegative, not-both-zero integers‟ m & n

 //Output: gcd of m and n

 while n ≠ 0 do

 r  m mod n

 m  n

 n  r

 end while

 return m

 end algorithm

Exercise

1) Write an algorithm (that satisfies the properties) for computing gcd(m,n) using either

Middle school or Consecutive integer checking algorithm

Page 5 of 71

2) Write a program to implement one of the above algorithms for computing gcd(m,n) and

test your program using inputs

a. gcd(60,24)

b. gcd(31415,14142)

c. gcd(60,0)

3) Justify why the algorithm will eventually stop in (i) consecutive integer checking

algorithm (ii) Euclid‟s algorithm for computing gcd(m,n)

Algorithm Evaluation

o Which one is an efficient algorithm? Compare consecutive integer checking and Euclid

algorithm. How much iteration required solving gcd (60, 24)? What about

gcd(31415,14142)

o Consecutive integer checking procedure is much more complex and slower than Euclid

algorithms. Euclid‟s algorithm is less complex and faster to compute. Which one is the

correct algorithm? How can we know?

Correct Algorithm

 A correct algorithm solves the given computational problem. If the algorithm is not doing

what it is supposed to do, it is worthless. An algorithm is said to be correct if, for every input

instance, it halts with the correct output

 An incorrect algorithm might not halt at all on some input instances, or might halt with a

wrong answer. In order to show that an algorithm is incorrect, you need just one instance of

its input for which the algorithm fails

How to prove the correctness of an algorithm?

 Common techniques are by mathematical induction & contradiction

Proof by Induction:

 The induction base: is the proof that the statement is true for initial value (e.g. n =1)

o The induction hypothesis: is the assumption that the statement is true for an

arbitrary values 1, 2, …, n

o The induction step: is the proof that if the statement is true for n, it must be true for

n+1

o Example 1: show that, for all positive integers n,

 Answer:

2

)1(
...21




nn
n

Page 6 of 71

Exercise: proof by induction that:

The sorting problem

o One might need to sort a sequence of numbers into non-increasing order or into non-

decreasing order.

o Statement of the sorting problem:

Input: a sequence of n number a1, a2, …,an

Output: a permutation (reordering) a1', a2', …,an' such that a1' a2'  …  an '.

Example:

o Given an input sequence <31, 41, 59, 26, 41, 58>, a sorting algorithm that arranges in non-

decreasing order returns as an output the sequence <26, 31, 41, 41, 58, 59>

Insertion Sort Algorithm

o It is an efficient algorithm for sorting a smaller number of elements. It is similar to sorting a

hand of playing cards.

o Idea: Every time, take one card and insert the card to correct position in already sorted cards.

o We start with an empty left hand and the cards face down on the table. We then remove one

card at a time from the table & insert it into the correct position in the left hand. To find the

correct position for a card, we compare it with each of the cards already in the hand, from

right to left as shown in the figure.

Insertion sort

o Principle: starting from the beginning sort each member of the input by putting one by one

in its proper position

1

1
...

1
011









r

r
rrrr

n
nn

Page 7 of 71

o Input: a sequence of n number a1, a2, …,an. We are required to sort the array in increasing

order.

o Output: a permutation (reordering) a1', a2', …,an' such that a1' a2'  …  an '.

Example: show how the insertion sort algorithm sorts in increasing order the sequence

 A = <5, 2, 4, 6, 1, 3>

 An algorithm to sort in non-decreasing order

Algorithm INSERTION-SORT(A, n)

//input: array of A[1..n]

//output: sorted array of A

 for j = 2 to length[A] do

 key  A[j]

//insert A[j] to sorted sequence A[1..j-1]

 i  j-1

 while i >0 and A[i]>key do

 A[i+1]  A[i] //move A[i] one position right

 i  i-1

 end while

 A[i+1]  key

 end for

end algorithm

Proof correctness of the algorithm

 The index j indicates the “current value” being inserted into the sorted array.

o Array element A[1..j-1] constitute the currently sorted element.

o Elements A[j+1...n] correspond to the other values still not sorted

 At each iteration of the outer for loop, the element A[j] is picked out of the array (line 2).

Then, starting in position j-1, elements are successively moved one position to the right until

Page 8 of 71

the proper position for A[j] is found (while loop from lines 4-7), at which point it is inserted

(line 8)

Proof by induction

Example to finding the maximum element problem

 The Input is an array A storing n elements and the output is the maximum one in A. Given

array A= [31, 41, 26, 41, 58], max algorithm returns 58.

 Algorithm findMax(A, n)

 //Input: An array A[1..n].

 //Output: The maximum element in A.

 currentMax  A[0]

 for i 1 to n -1 do

 if currentMax < A[i] then

 currentMax  A[i]

 end for

 return currentMax

 end algorithm

Review Exercise

1) Write an algorithm for finding minimum element(s) from the given sequence.

a) Is your algorithm correct and efficient?

b) For your answer of “a” above justify your reason.

2) We can write an algorithm either by flow chart or pseudo code. Write an algorithm

which finds the average of n numbers by both ways.

Chapter 2

Why we study algorithm?

 Suppose computers are infinitely fast and computer memory was free. Would you have any

reason to study algorithm?

Page 9 of 71

 Yes, because we want to demonstrate that the algorithm is correct; it terminates with the

intended solution for all inputs given.

 However, the reality shows the following facts:

o Computers may be fast, but they are not infinitely fast

o Memory may be cheap, but it is not free

o Computing time and resources are therefore a bounded resources

Algorithm Design & Analysis Process

Analysis of Algorithm

 As you may have noted, there are often multiple algorithms one can use to solve the same

problem.

o In solving GCD problem, we can use techniques such as middle school, consecutive

integer checking or Euclid

o In searching from a sequence of list, one can use linear search, binary search…

o You can come up with your own variants.

How do we choose which algorithm is the best?

o The fastest/most efficient algorithm.

o The one that uses the fewest resources.

o The clearest.

o The shortest, ...

 Analysis of algorithm is the analysis of resource usage of a given algorithm. It means

predicting the resources that the algorithm requires. The main resources are running time

Page 10 of 71

and memory usage. An algorithm that solves a problem but requires a year and GBs of

main memory is hardly of any use.

 The objective of algorithm analysis is:

o to measure the resources (e.g., time, space) requirements of an algorithm

so as to determine how quickly (with less memory) an algorithm executes

in practice.

 An algorithm should make efficient use of computer resources. Most frequently, we look at

efficiency:

o how long does the algorithm take to run

o What is the best way to represent the running time of an algorithm?

Efficiency

 An algorithm must solve a problem with the least amount of computational resources such as

time and space. An algorithm should run as fast as possible using as little memory as

possible.

 Two types of algorithmic efficiency evaluation:

Time efficiency - indicates how fast the algorithm runs

Space efficiency - indicates how much memory the algorithm needs

What to analyze?

o To keep things simple, we will concentrate on the running time of algorithms and will

not look at the space (the amount of memory) needed or required.

o So, efficiency considerations of algorithm usually focus on the amount of time

elapsed (called running time of an algorithm) when processing data.

Analysis of Insertion Sort

 algorithm INSERTION-SORT(A) cost times

 for j  2 to length[A] do c1 n

 key  A[j] c2 n-1

 i  j-1 c3 n-1

 while i >0 and A[i]>key do c4



n

j

jt
2

1
2




n

j

jt

Page 11 of 71

 A[i+1]  A[i] c5

 i  i-1 c6

 A[i+1]  key c7 n-1

o (tj is the number of times the while loop test in line 4 is executed for that value of j)

 The running time, T(n), of the insertion algorithm is the sum of running times for each

statement executed, i.e.: =c1n+ c2(n-1)+ c3(n-1)+ c4
n

j=2 tj+ c5
n

j=2 (tj-1)+ c6
n

j=2(tj-1)+

c7(n-1)

Best Case Analysis of Insertion Sort

 Occurs if the array contains already sorted values. For each j = 2, 3, 4… n, we then find

that A[i] ≤ key in line 4 when i has its initial value of j – 1. Thus tj=1 for j = 2, 3,…, n,

and line 5 and 6 will be executed 0 times

 The best case running time is

 T(n) = c1n + c2(n-1) + c3(n-1) + c4(n-1) + c7(n-1)

 = (c1 + c2 + c3 + c4 + c7)n – (c2 + c3 + c4 + c7)

 This running time can be expressed as an + b for constants a and b that depends on the

statement cost ci;

o it is thus a linear function of n

Worst Case Analysis of Insertion Sort

 Occurs if the array contains values that are in reverse sorted order, which is in decreasing

order. We must compare each element A[j] with each element in the entire sorted sub array

A[1..j-1]. So, tj = j for j = 2, 3… n.

 Therefore the worst case running time of INSERTION-SORT is T (n). This worst case

running time can be expressed as an
2
 + bn + c for constants a, b, c, it is thus a quadratic

function on n

Average Case Analysis of Insertion Sort

o Suppose that we randomly choose n numbers and apply insertion sort. How long does it take

to determine where in sub array A [1...j-1] to insert the element A[j]?

 On average, half the elements in A [1...j-1] are less than A[j], and half the elements

are greater. Therefore, we check half the sub array A [1...j-1], so tj = j/2 and T(n) will

still be in the order of n
2
.

1
2




n

j

jt

Page 12 of 71

o This average case running time can then be expressed as quadratic function, an
2
 + bn + c

for constants a, b, c, which is the same as worst case.

o In summary, the running time of insertion sort for

 Best case: an – b

 Worst case: an
2
 + bn - c

 Average case: an
2
 + bn - c

Running time of an algorithm

o Several factors affect the running time of an algorithm:

 Compiler used (quality of compiler)

 Computer used (speed of machine): The same operation may take different times on

different machines.

 The algorithm used (or quality of source code): Not all operations take the same time.

For example, addition is typically quicker than multiplication, and integer addition is

typically quicker than floating point addition.

 The input to the algorithm (size and characteristics of input): Different inputs lead to

different running times.

o The first two are beyond the scope of theoretical model. The last two are the

main factors that we deal

 For most algorithms, the running time depends on:

o characteristics of the input: An already sorted sequence is easier to sort than

unsorted one for sorting algorithms

o size of the input: Short sequences are easier to sort than long ones

 Thus, the running time of most algorithms varies with the characteristics and size of

input.

o Running time is expressed as T(n) for some function T of input size n.

 Example: Find the running time T(n) for the algorithm

 int x = 0

 for (int i =1; i < n; i = i + 5)

Page 13 of 71

 x++;

 T(n) = 0.6*n + 3 = an + b

 To find running time, T(n), we have two options:

1. Count the number of times each of the algorithm‟s step-by-step instructions are

executed. This method is excessively difficult and usually unnecessary

2. Count the number of times the most important operations of the algorithm is executed.

Which are the basic operations for an algorithm? The most time consuming operations

are found inside the inner most loop.

How to analyze „for loops‟

 In general, a for loop translates to a summation. The index and bounds of the summation are

the same as the index and bounds of the „for’ loop.

 for i = 1 to N do

 sum = sum + i;

 end for loop

 Suppose we count the number of additions that are done. There is 1 addition per iteration of

the loop, hence N additions in total

How to Analyze „Nested for loops‟

 Nested for loops translate into multiple summations, one for each for loop.

 for i = 1 to N do

 for j = 1 to M do

 sum = sum + i + j ;

 end inner for

 end outer for

 Suppose again we count the number of additions. The outer summation is for the outer for

loop.

How to Analyze „Consecutive statements‟

 Add the running times of the separate blocks of your algorithm.

Page 14 of 71

 for i = 1 to N do

 sum = sum + i;

 end for

 for i = 1 to N do

 for j = 1 to N do

 sum = sum + i + j;

 end inner for

 end outer for

T(n) = n + n
2

How to Analyze „Conditionals‟

 if (test) s1 else s2:

o Compute the maximum of the running time for s1 and s2.

 if (test == 1)

 for (int i = 1; i <= N; i++)

 sum = sum + 1;

 end for

 else

 for (int i=1;i<=N;i++)

 for (int j = 1; j <= N; j++)

 sum = sum + i + j;

 end inner for

 end outer for

 end if

Page 15 of 71

Asymptotic analysis

 There are five notations used to describe a running time function: Big-Oh, Big-Omega,

Theta, Little-o, little-omega. Demonstrating that a function T(n) is in big-O (or others) of a

function f(n) requires that we find specific constants C and no for which the inequality holds.

 The following points are facts that can be used for efficiency comparison.

Asymptotic notations: Big-Oh (O)

Definition:

o Let f(n) and g(n) be functions mapping nonnegative integers to real numbers.

o A function f(n) = O(g(n)), if there is some positive constant c > 0 and a non-negative

integer no ≥ 1 such that

 f(n) ≤ c.g(n) for all n ≥ no

 Big-O expresses an upper bound on the growth rate of a function, for sufficiently large

values of n

 An upper bound is the best algorithmic solution that has been found for a problem

(“what is the best thing that we know we can do?”)

 In simple words, f(n) = O(g(n)) means that the growth rate of f(n) is less than or equal to

g(n). The statement f(n) = O(g(n)) states only that c.g(n) is un upper bound on the value

of f(n) for all n, n ≥ n0

Big-Oh theorems

 Theorem 1: If k is a constant, then k is O(1)

Example: f(n) = 2
100

 = O(1)

 Theorem 2: If f(n) is a polynomial of degree k, then

 f(n) = O(n
k
)

Page 16 of 71

o If f(n) = a0+ a1n + a2n
2
 + … + akn

k
, where ai and k are constants, then f(n) is in

O(n
k
)

o Polynomial‟s growth rate is determined by the leading term

Example: f(n) = 7n
4

+ 3n
2

+ 5n + 1000 is O(n
4
)

 Theorem 3: Constant factors may be ignored

 If g(n) is in O(f(n)), then k * g(n) is O(f(n)), k >0

 Example:

 T(n) = 7n
4

+3n
2

+ 5n +1000 is O(n
4
)

 T(n) = 28n
4

+ 12n
2

+ 20n + 4000 is O(n
4
)

 Theorem 4 (Transitivity)

o If T(n) is O(f(n))and f(n) is O(g(n)), then T(n) is O(g(n)).

 Theorem 5

o If T(n) is in O(f(n)) and g(n) is in O(h(n)), then T(n) + g(n) is in O(T(n) + g(n))

 Theorem 6

o If T(n) is in O(f(n)) and g(n) is in O(h(n)), then T(n) . g(n) is in O(T(n) . g(n))

o product of upper bounds is upper bound for the product

 Theorem 7

o If f1(n) = O(g1(n)) and f2(n) = O(g2(n)), then f1(n) + f2(n) = O(max(g1(n), g2(n))

Order of growth of functions

 Typical orders: Here is a table of some typical cases. It shows that the typical order is:

 O(1) < O(log n) < O(n) < O(nlog n) < O(n
2
) < O(n

3
) < O(2

n
)

Example: Big-Oh (O)

Page 17 of 71

 Find O(f(n) for the given functions:

a) f(n) = 2n + 6

b) f(n) = 13n
3
 + 42n

2
 + 2n log n

c) If f(n) = 3n
2
 + 4n + 1 then show that f(n) = O(n

2
)

d) If f(n) = 10n + 5 and g(n) = n, then show that f(n) is O(g(n))

Asymptotic notations: Big-Omega ()

Definition:

o Let f(n) and g(n) be functions mapping nonnegative integers to real numbers.

o A function f(n) = (g(n)), if there is some positive constant c > 0 and a negative

integer no ≥ 1 such that

 f(n) ≥ c.g(n) for all n ≥ no

 The statement f(n) = (g(n)) states only that c.g(n) is a lower bound on the value of f(n) for

all n, n ≥ n0. In simple terms, f(n) = (g(n)) means that the growth rate of f(n) is greater than

or equal to g(n)

Big-Omega- Example

 Show that the function T(n) = 5n
2
 – 64n + 256 = Ω(n

2
)

o We need to show that for non-negative integer n0 and a constant c > 0, T(n) ≥ c.n
2
 for

all integers n ≥ n0

o we have that for c=1 and n0 = 0, T(n) ≥ cn
2
 for all integers n ≥ n0

o What if c = 2 and n0 = 16 ?

o Show if f(n) = 10n
2
 + 4n + 2 and g(n) = n

2
 , then f(n) = Ω(n

2
)

 Show that 3n
2
 + 5 ≠ Ω(n

3
)

Asymptotic notations: Theta ()

Definition:

o Let f(n) and g(n) be functions mapping nonnegative integers to real numbers.

o A function f(n) = (g(n)), if there exist some positive constant c1 and c2 and a

negative integer constant no ≥ 1 such that c1.g(n) ≤ f(n) ≤ c2.g(n) for all n ≥ no

Page 18 of 71

 The Theta notation is used when the function f can be bounded both from above and below

by the same function. When we write f(n) = (g(n)), we mean that f lies between c1 times

the function g and c2 times the function g except possibly when n is smaller than n0

 Another way to view the θ-notation is that the function:

o f(n) = θ(n) if and only if

o f(n) = Ο(g(n)) and f(n) = Ω(g(n))

Asymptotic Tightness

 The theta notation is more precise than both the Big-O and Big- notations. The function

f(n) = (g(n)) iff g(n) is both an upper and lower bounds on f(n). Big-Oh does not have to be

asymptotically tight:

o f(n) = ½n is O(n) with c=1, n0=1, but is also in O(n
100

)…

 Big- isn‟t tight either

o f(n) = n
5
 is (n) with c=1, n0 = 1…

o Theta () is tight…

o f(n) must be in same growth classes to meet definition.

o Can you prove this assertion? Prove that f(n)=3n
3
+2n

2
+1 is (n

3
).

o Show that f(n) is O(n
3
), and also, f(n) is (n

3
)

Algorithmic efficiency

 What is the best, worst and average case time complexity of the following algorithms:

o Insertion sort?

o Linear search?

Recursive Algorithm

 Recursive algorithm: calls itself again and again until exit condition is satisfied

To define a recursive algorithm:

Specify a base case: there should be one or more base cases

o Begin by testing for a set of base cases.

Page 19 of 71

o Every possible chain of recursive calls must eventually reach a base case, and the

handling of each base case should not use recursion.

Recur once: rule to perform a single recursive call each time

o Define a recursive call that makes one recursive call each time and progress

towards a base case.

 Classic example: give recursive definition of the factorial function:

o Recursive definition of the factorial: n! = 1· 2· 3· ··· · (n-1)· n

 Base case: f(n) = 1 if n = 0

 Recursive case: f(n) = n . fn-1 if n > 0

The factorial function

 Recursive algorithm:

 algorithm recursiveFactorial(n)

 if (n = 0) then

 return 1; // base case

 else

 return n * recursiveFactorial(n- 1); // recursive case

 endif

 end algorithm

Analysis of Recursive algorithm using substitution:

 Backward substitution starts with some n and work backward, substituting repeatedly for

each occurrence of the function T (n), until a clear pattern emerges; then substitute for the

base case.

 Running time T (n) = 2n + 2

Example of Recursion

Problem1: Write a recursive function to find the sum of the first n integers A[1…n] and output

the sum. Example: given k = 3, we return sum = A[1] + A[2] + A[3], given k = n, we return

A[1] + A[2] + … + A[n]. How can you define the problem in terms of a smaller problem of the

same type?










0 n if 2)1(

0 n if 2
)(

nT
nT

Page 20 of 71

 1 + 2 + … + n = [1 + 2 + … + (n -1)] + n

 for n > 1, f(n) = f(n.1) + n

 How does each recursive call diminish the size of the problem? It reduces by 1 the number of

values to be summed.

 What instance of the problem can serve as the base case? n = 1.

 As the problem size diminishes, will you reach this base case? Yes, as long as n is

nonnegative. Therefore the statement “n >= 1” needs to be a precondition

Problem2: Write a recursive function to find the sum of the first n integers A[1…n] and output

the sum

algorithm LinearSum(A, n)

// Input: an array A with n elements

 // Output: The sum of the first n integers in A

 if n = 1 then

 return A[0]

 else

 return LinearSum(A, n - 1) + A[n]

 end algorithm

Recursive algorithm for reversing an Array

 Algorithm ReverseArray(A, i, j)

 Input: An array A and indices i = 1 and j = n

 Output: The reversal of the elements in A

 if i < j then

 Swap A[i] and A[j]

 ReverseArray(A, i + 1, j - 1)

 return

 end algorithm

 Algorithm IterativeReverseArray(A, i, j):

 LinearS

(A , 5)

 LinearS

(A , 1)

 LinearS

(A , 2)

 LinearS

(A , 3)

 LinearS

(A , 4)

c
a

c
a

 r A

[0] 4 r4+ A [1] 4

+ 3 =7 r7+ A [2] 7

+ 6 = 1

r1+ A [3] 1

2 = 1

 cr1

+ A [4]

15

Page 21 of 71

Input: An array A and nonnegative integer indices i and j

Output: The reversal of elements in A starting at index i and ending at j

while i < j do

swap A[i] and A[j]

i = i + 1

j = j - 1

 return

 end algorithm

Review Exercise

1) Write (i) an algorithm and (ii) a code that scans through the given sequence of inputs, A =

<a1, a2… an>, finding for one or more minimum value(s).

2) Write algorithm and code for linear search, which scans through the given sequence of

inputs, A = <a1, a2… an>, looking for Key.

 The output is either

 One or more index i (the position of all values if key = A[i]) or

 The special message “Not Found” if Key does not appear in the list.

Chapter 3

Disjoint sets and Graph

Disjoint sets

 Many times the efficiency of an algorithm depends on the data structures used in the

algorithm. Choosing suitable data structure in solving a problem can reduce the time of

execution, the time to implement the algorithm and the amount of memory used.

The problem

 Let‟s consider the following problem: In a room are N persons. Thus, two persons are friends

if they are directly or indirectly friends. If A is a friend with B, and B is a friend with C, then

A is a friend of C too. A group of friends is a group of persons where any two persons in the

Page 22 of 71

group are friends. Given the list of persons that are directly friends, find the number of

groups of friends and the number of persons in each group. For example, N = 9 & the list of

friends are: 1-2, 3-4, 5-1, 6-4, 7-9 and 8-2.

 Some applications involve grouping n distinct elements into a collection of disjoint sets.

o Two sets are disjoint if their intersection is NULL: S1 Λ S2 = Ø

 In disjoint set data structure:

o Each set is represented by a tree, so that each element points to a parent in the tree.

o Every set contains a representative (root), which is also one of the member of the set

Applications

o Maintain the connected components of a graph as new vertices and edges are added.

o To solve the problem of spanning tree (Kruskal algorithm).

o In both applications, we can use a disjoint-set data structure, where we keep a set for

each connected component, containing that component's vertices.

Three operations of disjoint sets are:

CREATE (x):

o Creates a new set {x} containing the single element x.

o The element x must not appear in any other set in our collection.

o The root/leader of the new set is obviously x.

UNION(x, y):

o Combines/merges two disjoint sets containing root x and root y into one set.

o Replaces two sets, A and B with their union A U B.

FIND(x):

 Finds in which set a given node x belongs to and returns the root node of the set

containing the element x.

Algorithm for Disjoint set

 algorithm DisjointSet(x, n)

 //input x[1,2, …,n]

Page 23 of 71

 FOR i = 1 to n DO

 CREATE(xi)

 end for

 FOR (each pair of friends (xi, xj)) DO

 IF (FIND(xi) != FIND(xj)) THEN

 UNION(xi, xj)

 end if

 end for

 end algorithm

 FIND() operation check if the two pairs, xi & xj are in the same group or not, before merging

them using UNION() operation

 Algorithms: Create, Union & Find operations

 procedure CREATE(x)

 parent(x) = -1 //some negative number

 end

 procedure UNION(x,y)

 parent(x) = y

 end

 procedure FIND(x)

 y = x

 while parent(y) > 0 do

 y = parent(y)

 end while

 return y

 end

Page 24 of 71

 Determine time complexity of the above algorithms?

Improving UNION and FIND operations

 Analyze the total time required for performing the following operations:

 UNION(1,2), UNION(2,3), …, UNION(n-1,n), and FIND(1), FIND(2), …, FIND(n)

 There is a need to enhance the efficiency of UNION and FIND operations. Notice that the

time to do a FIND operation on an element corresponds to its depth in the tree. Can we

improve the performance of UNION and FIND? Improve means decrease the height of the

trees. Hence our goal is to keep the trees as short as possible.

 Two heuristics for keeping the height of the disjoint trees short are UNION by rank and

Path Compression

UNION by rank: ensures that when we combine two trees, we try to keep the overall depth of

the resulting tree small.

o If x and y are roots of two distinct trees, this technique makes the root of the smaller

tree a child of the root of the larger tree.

o Union by rank avoids creation of degenerate trees

Path compression: collapses all nodes to point to root node.

 Is used during FIND operation so as to make each node on the find path point directly

to the root.

UNION by rank

 Balances the height of a tree. The idea is that the rank of the root is associated with the depth

of the tree so as to keep the depth small. Weighting rule for UNION(x, y): If the number of

nodes in tree with root x is less than the number in tree with root y, then make y the parent of

x; otherwise, make x the parent of y.

 procedure UNION(x,y)

 z = parent(x) + parent(y)

 if parent(x) > parent(y) then

 parent(x) = y

 parent(y) = z

 else

Page 25 of 71

 parent(y) = x

 parent(x) = z

 end if

 end UNION

 To implement weighting rule there is a need to keep the number of nodes in

every tree in the parent field of the root as –ve numbers.

Path Compression

 Reduces the complexity of FIND algorithm. This is done by collapsing nodes in a tree.

Collapsing rule: If x is a node on the path from y to its root and parent[y] ≠ root[y], then

set parent[x] to root[y]. The idea is that, once we perform a FIND on some element, we

should adjust its parent pointer so that it points directly to the root; that way, if we ever

do another FIND on it, we start out much closer to the root.

 function FIND(x)

 y = x

 while parent(y) > 0 do

 y = parent(y) //Find root

 z = x

 while z ≠ y do //collapse nodes from z to root y

 t = parent(z)

 parent(z) = y

 z = t

 return y

 end FIND

Exercise:

Given S1= {3,4,6},S2 ={1,7,8,9} & S3 = {2,5,10}, represent them using disjoint set tree?

Page 26 of 71

Graph

Graph Interpretations

 The use of a graph may be an easy simplification for a problem.

 Example: Apartment Blueprint: The vertices could represent rooms in a house, and the

edges could indicate which of those rooms are connected to each other.

 Friendship Graphs: Each vertex represents a person, and each edge indicates that the two

people are friends.

Graph Definitions and Types

 A graph G is a pair, G = (V, E), where V is the set of vertices and E is the set of edges that

link together the vertices. The degree of a vertex is determined by the number of distinct

edges that are incident to it.

Types of Graphs

Simple Graphs

A simple graph G is a pair (V, E), where V is a set of vertices (representing the objects) and E is

a set of edges, where each edge in E is a set of 1 or 2 vertices (representing the links between

vertices).

Multigraphs

Page 27 of 71

A multigraph G is a pair (V, E), where V is a set of vertices (representing the objects) and E is a

bag of edges, where each edge in E is a set of 1 or 2 vertices (representing the links between

vertices).

 A bag, or multi-set, is a set in which repeated elements are allowed

Directed Graphs

A directed graph G is a pair (V, E), where V is a set of vertices (representing the objects) and E

is a set of edges, where each edge in E is an ordered pair of vertices (representing the links

between vertices).

Complete graphs

A complete graph is one where every vertex is adjacent to every other vertex.

Vertex degree

The degree of a vertex, v, is the number of times edges are incident on v (where an edge from v

to itself counts twice)

Page 28 of 71

o The degree of vertex a is 2, and degree of vertex b is 4. The function deg:VN returns

the degree of any vertex.

Forms of a Graph

Directed and undirected graphs:

 A directed graph (digraph) is one in which the direction of any given edge is

defined.

 In an undirected graph, G, one can move in both directions between vertices. The

pairs (u, v) and (v, u) represent the same edge

Weighted or unweighted graphs:

 A graph is said to be weighted if each edge has an associated number (weight).

Otherwise, it is unweighted graph.

a) Undirected and un-weighted b) directed and weighted

Graph Representation

Adjacency Matrix

 Let G be a graph with n vertices, where n > 0.

o The adjacency matrix AG is a two-dimensional n×n binary matrix such that

matrix[i][j] storing whether there is an edge between the i
th

 vertex and the j
th

 vertex

Page 29 of 71

o Matrix AG=[aij], where aij is 1 if there is an edge {vi, vj}, 0 otherwise

Exercise: what about for G1

Adjacency Lists

 In adjacency list representation, corresponding to each vertex, v, is a linked list such that

each node of the linked list contains the vertex u, such that (v, u)  E(G). Array, A, of

size n, such that A[i] is a pointer to the linked list containing the vertices to which vi is

adjacent. Each node has two components, (vertex and link)

Exercise: (1) what about for G1

(2) Can you suggest a better representation that solves drawback of Adjacency List?

Adjacency multilist

 In the adjacency multilist representation of a graph G

o There will be one list for each vertex in G.

o Each list has one node for each edge in G

o The node represents the edge that has vertices Vi and Vj incident to a specific

edge. Thus each node will be a member of two lists; one a member for vertex Vi

and one for vertex Vj.

o It has the following structure:

Page 30 of 71

Exercise

Represent the given graph using the following techniques:

a) Adjacency matrix b) Adjacency list c) Adjacency multilist

i) ii)

Graph Traversals

 Given a graph, one of the fundamental graph problems is to traverse every edge and

vertex in a graph so as to:

o count the number of edges

o Identify connected components of a graph.

 Goal: visit all (or some) vertices and edges of the graph using some strategy (the order of

visit is systematic)

 Depth First Search (DFS) and Breadth First Search (BFS) are examples of graph

traversals. The order of exploring the vertices depends upon the data structure used:

Queue: by storing the vertices in a queue, BFS explores vertices following FIFO

order. Thus, it explores starting the initial vertex level by level.

Page 31 of 71

Stack: by storing the vertices in a stack, DFS explores vertices following LIFO order.

Thus, it constantly visits a new neighbor depth-wise.

 Some shortest path algorithms and spanning tree algorithms have specific visit order.

 In DFS, as each vertex v is visited, all of it‟s children are added to front for immediate

processing. Use of a stack leads to a depth-first visit order. Stack is used to keep track of:

nodes to be visited next, or nodes that we have already visited.

 In BFS, as each vertex v is visited all of its unvisited children are kept in a waiting list.

Use of a queue leads to a breadth-first visit order. Queue is used to keep track of: nodes

to be visited next, or nodes that we have already visited.

Depth-First Traversal

 Strategy: Go as far as you can (if there is unvisited node depth-wise); otherwise, go back

and try another way

 The depth-first traversal visits the nodes in the order -

c, a, b, d

Remark:

 A depth-first traversal only follows edges that lead to unvisited vertices. If we omit the

edges that are not followed, the remaining edges form a tree.

DFS: Algorithm

procedure DFS(v)

Page 32 of 71

visited (v) = 1; //Mark v as visited

For each vertex u adjacent to v do

If (visited (u) = 0) then //if vertex u is unvisited

DFS(u)

 end

procedure GraphTraversal()

for i = 1 to n // n is the number of vertices v

visited(vi) = 0; //Mark v as unvisited

for i = 1 to n

 if (visited(vi) = 0)

 DFS(vi)

 end

Breadth-First Search (BFS)

 In DFS, we choose the most recently visited vertex to expand. Whereas, BFS explores the

vertices in the order of their distance from the start vertex level-wise.

o BFS examines every path of length i before going on to paths of length i+1.

 BFS visits the nodes in the order: a, b, c, d

BFS: Algorithm

procedure BFS(v)

visited (v) = 1; //Mark v as visited

Page 33 of 71

enqueue(v)

do{

for all vertices u adjacent to v do

If visited(u) = 0

visited(u) =1 enqueue(u)

v = dequeue()

}while queue is not empty

end

procedure GraphTraversal()

initialize visited(v) = 0; //Mark v as unvisited

for i = 1 to n // n is the number of vertices v

 if (visited(vi) = 0)

 BFS(vi)

 end

Time complexity

 Proof: Depending on the graph representation, time complexity for DFS and BFS is the

same:

o If Adjacency matrix : O(V
2
)

o If Adjacency list : O(V + E)

Exercise

1) Show the order of traversing the following graphs using DFS and BFS starting from node 1

Page 34 of 71

Review Exercise

1) Find the order of traversing the following graphs using DFS and BFS

Chapter 4

The divide-and-conquer strategy

Open problem

o Given a sequence of n numbers, A = <a1, a2… an> and a value Key, write a code

for linear search, which scans through the sequence, looking for Key, and returns

one or more position i such that Key = A[i]?

Floor and Ceiling Functions

 The floor function, also called the greatest integer function or integer value gives the largest

integer less than or equal to ⌊x⌋. Ceiling function ⌈x⌉, gives the smallest integer ≥ x, For all

real x, x-1 < ⌊x⌋ ≤ x ≤ ⌈x⌉ < x+1

Techniques for the Design of Algorithms:

 General approaches to the construction of efficient solutions to problems. Such methods are

of interest because:

Page 35 of 71

o They provide templates suited to solving a broad range of diverse problems which

can be precisely analyzed.

o They can be translated into common control and data structures provided by most

high-level languages.

 Although more than one technique may be applicable to a specific problem, it is often the

case that an algorithm constructed by one approach is clearly superior to equivalent solutions

built using alternative techniques.

o The choice of design paradigm is an important aspect of algorithm analysis

Divide-and-Conquer Strategy

 Divide and Conquer is a general algorithm design paradigm that has created such efficient

algorithms as Merge Sort, Binary Search…

 This method has three distinct steps:

Divide: If the input size is too large, divide the input into two or more sub-problems. That

is, divide P P1, …, Pk, If the input size of the problem is small, it is solved directly

Recur: Use divide and conquer to solve the sub-problems associated with each one-k
th

 of

the data subsets separately, That is, find solution for S(P1), …, S(Pk)

Conquer: Take the solutions to the sub-problems and combine (“merge”) these solutions

into a solution for the original problem. That is, Merge S(P1), …, S(Pk) S(P)

Implementation: suppose we consider the divide-and-conquer strategy when it splits the input

into two sub-problems of the same kind as the original problem.

 If the input size of the problem is small, it is solved directly.

 If the input size of the problem is large, apply the strategy:

o Divide: divide the input data S in two disjoint subsets S1and S2

o Recur: Solve each half of the sub-problems associated with S1 and S2

o Conquer: combine the solution for S1and S2 into a solution for S

General Algorithm

procedure DCS (P)

 if small(P) then

 return S(P)

Page 36 of 71

 else

 divide P into smaller instances P1, P2 …, Pk

 apply DCS to each of these sub-problems

 return (combine(DCS(P1), DCS(P2), …, DCS(Pk))

 end if;

end DCS;

Complexity: f(n) { f(n)  n small

 aT(n/b) + g(n)  otherwise, where:

o b be the ways we divide the problem at each step

o a be the number of sub-problems we solve at each step; i.e. n/b.

o T(n) be the time needed to solve the problem with input of size n

o g(n) be the time for dividing the problem and for combining solutions to sub-

problems

o f(n) be the time to compute the answer directly for small inputs

Divide-and-Conquer Technique

o In general it leads to a recursive algorithm with complexity T(n) = 2 T(n/2) + g(n)

Solving Recurrence Relation

 One of the methods for solving recurrence relation is called the substitution method. This

method repeatedly makes substitutions for each occurrence of the function T(n) until all such

occurrences disappear.

Exercise: solve the following recurrence by substitution

Page 37 of 71

Example of Recursion: SUM A[1…n]

Problem: Write a recursive function to find the sum of the first n integers A[1…n] and

output the sum

o Example: given k = 3, we return sum = A[1] + A[2] + A[3]

 given k = n, we return A[1] + A[2] + … + A[n]

o How can you define the problem in terms of a smaller problem of the same type?

1 + 2 + … + n = [1 + 2 + … + (n -1)] + n

for n > 1, f(n) = f(n.1) + n

o How does each recursive call diminish the size of the problem? It reduces by 1 the

number of values to be summed. What instance of the problem can serve as the

base case? n = 1

o As the problem size diminishes, will you reach this base case? Yes, as long as n is

nonnegative. Therefore the statement “n >= 1” needs to be a precondition

 algorithm LinearSum(A, n)

// Input: an array A with n elements

// Output: The sum of the first n integers in A

if n = 1 then

 return A[0]

 else

 return LinearSum(A, n - 1) + A[n]

 end algorithm

 1

 34 2

 LinearSum (A , 5)

 LinearSum (A , 1)

 LinearSum (A , 2)

,

3

)

(

,

)

 c c cc

 r A [0] 4 r 4

+

A [

1]

4

+

3

=

7 r 7

+

A [

] = 7 + 6

=

1

r1

+ A [3]

1
3

Page 38 of 71

Binary Recursive Method

 Binary recursion occurs whenever there are two recursive calls for each non-base case.

 Algorithm BinarySum(A, i, n):

 if n = 1 then

 return A[i]

 return (BinarySum(A, i, n/ 2) + BinarySum(A, i + n/ 2, n/ 2))

 end algorithm

Binary search

 Binary Search is an algorithm to find an item in a sorted list.

o very efficient algorithm for searching in sorted array

o Limitations: must be a sorted array

Problem: determine whether a given element K is present in the given list or not

Input: Let A = <a1, a2, … an> be a list of elements that are sorted in non-decreasing

order.

Output: If K is present output its position. Otherwise output “Not Found”.

Implementation:

 Pick the pivot item in the middle: Split the list in two halves (size n/2) at m so that

 A[1], … A[m], … A[n].

o If K = A[m], stop (successful search);

Page 39 of 71

o Otherwise, until the list has shrunk to size 1 narrow our search recursively to

either the top half of the list : A[1..m-1] if K < A[m] or the bottom half of the list:

A[m+1..n] if K > A[m]

Example

 Binary Search for 64 in the given list A[] = {5 8 9 13 22 30 34 37 41 60 63 65 82 87 90 91}

1. Looking for 64 in this list.

2. Divide the list into two (1+17)/2 = 9

3. Pivot = 38. Is 64 < 38? No.

4. Recurse looking for 64 in the list > 38.

5. etc.

Binary Search Recursive Algorithm

 Four Questions in designing recursive algorithm :

o How can you define the problem in terms of a smaller problem of the same type?

Look at the middle of the list. Then recursively search the top or bottom half, as

appropriate.

o How does each recursive call diminish the size of the problem? It cuts the size of the

list in half (roughly).

o What instance of the problem can serve as the base case? Base case = 1.

o As the problem size diminishes, will you reach this base case? Yes, A list cannot have

negative size.

procedure BSearch(A, low, high, key)

 // A is sorted array. Low =1, high = n

 if low = high then

 if key = A[low] then return low

 else return “Not Found”;

Page 40 of 71

 end if

 else

 mid = (low + high)/2;

 if key > A[mid]

 return BSearch(A, mid+1, high, key);

 else

 return BSearch(A, low, mid-1, key);

 end if

 end if

 end algorithm

Binary Search Iterative Algorithm

 Procedure BinarySearch(A, n, key)

 low  1; high  n;

 while low  high do

 mid  (low+high)/2

 if key = A[mid] then

 return mid

 else if key < A[mid] then

 high  mid-1

 else low  mid+1

 return “NotFound”

end

Analysis: considering the number of element comparison, the worst-case recurrence is:

Page 41 of 71

Finding the minimum & maximum

 Let there are n elements < a1, a2, … an>. The problem is to find max and min elements in a

set.

Straightforward algorithm

procedure max_min(A, n, max,min)

 max = min = A[1]

 for i = 2 to n do

 if A[i] > max then

 max = A[i]

 if A[i] < min then

 min = A[i]

end procedure

Analysis: there are 2 (n-1) numbers of element comparisons in the best, worst and average

cases. Can you suggest any improvement in the max_min algorithm?

Divide and conquer for finding min & max

 Recurrence relation:

o If n =1, both max and min are the same. max = min = a[1]

o If n =2 the problem can be solved by making one element comparison a[1] > a[2] or

a[1] < a[2]

o If n > 2 divide < a1, a2, … an> into two instances a[1..n/2] and a[n/2+1…n] and solve

the sub-problems recursively.

Example: find the maximum of a given set of n numbers a[] = {29 14 15 1 6 10 32 12}

Page 42 of 71

Solution:

Recursive algorithm

 procedure max_min(A, low, high, max, min)

 if low = high then

 max = min = A[1]

 else if low = high – 1 then

 if A[low] < A[high] then

 max = A[high]; min = A[low]

 else

 max = A[low]; min = A[high];

 end if

 else

 mid = (low+high)/2

 max_min(A, low, mid, max, min);

 max_min(A, mid+1, high, max2, min2);

 if max < max2 then max = max2;

 if min > min2 then min = min2;

 end if

 end procedure

Time complexity

Page 43 of 71

 Analysis: considering the number of element comparison, the worst-case recurrence is:

Merge sort

 Given a set of n elements A = < a1, a2, … an>, design an algorithm which sort them in non-

decreasing order.

Implementation:

o Split the list in to two halves and sort each half

o Merge the two halves as follows:

 Repeat the following until no elements remain in one of the arrays:

 compare the first elements in the remaining unprocessed portions of the

arrays

 copy the smaller of the two into A, while incrementing the index

indicating the unprocessed portion of that array

 Once all elements in one of the arrays are processed, copy the remaining

unprocessed elements from the other array into A.

Example: consider array of ten elements: a[1:10]=(31,28,17,65,35,42,86,25,45,52)

Merge sort Execution Example

Page 44 of 71

Merge-Sort Execution Example

 Merge Algorithm

procedure merge(low, mid, high)

 h  low; i  low; j  mid+1;

 while h  mid and j  high do

 if A[h]  A[j] then

 B[i] = A[h]; h = h+1

 else B[i] = A[j]; j = j+1

 i = i+1

 if h > mid then

 for k = j to high do

Page 45 of 71

 B[i] = A[k]; i = i+1

 else

 for k = h to mid do

 B[i] = A[k]; i = i+1

 endif

 for k = low to high do

 A[k] = B[k];

end

Merge sort Algorithm

 procedure mergesort(low,high)

 if low < high then //if there are more than one element

 mid  (low+high)/2

 mergesort(low, mid)

 mergesort(mid+1, high)

 merge(low,mid,high)

 end if

end

Analysis: considering the number of element comparison, the worst-case recurrence is:

Page 46 of 71

Chapter 5

Greedy Algorithms

The greedy method

 An optimization problem is one in which you want to find, not just a solution, but the best

solution. A “greedy algorithm” works well for most optimization problems. Greedy method

suggests that one can devise an algorithm that works in phases:

o At each phase, take one input at a time (from the ordered input according to the

selection criteria) and decide whether it is an optimal solution.

Feasible vs. optimal solution

 Greedy method solves problem by making a sequence of decisions.

o Decisions are made one by one in some order.

o Each decision is made using a greedy criterion.

o A decision, once made, is (usually) not changed later.

 Given n inputs we are required to obtain a subset that satisfies some constraints

o Any subset that satisfies the given constraints is called a feasible solution

o A feasible solution that either maximizes or minimizes a given objective function is

called an optimal solution.

Greedy algorithm

 To apply greedy algorithm

o Decide optimization measure (maximization of profit or minimization of cost)

 Sort the input in increasing or decreasing order based on the optimization measure

selected for the given problem

o Formulate a multistage solution

 Take one input at a time as per the selection criteria

o Select an input that is feasible and part of the optimal solution

 from the ordered list pick one input at a time and include it in the solution set if it

fulfills the criteria

Page 47 of 71

Greedy Choice Property

o Greedy algorithm always makes the choice that looks best at the moment with the hope

that a locally optimal choice will lead to a globally optimal solution. It says that a

globally optimal solution can be arrived at by making a locally optimal choice

 Locally optimal choice  globally optimal solution

The Problem of Making Coin Change

o Assume the coin denominations are: 25, 10, 5, and 1.

o Problem: Make a change of a given amount using the smallest possible number of coins

 Example: make a change for x = 92.

 Mathematically this is written as x = 25a + 10b + 5c + 1d

 So that a + b + c + d is minimum & a, b, c, d ≥ 0.

Greedy algorithm for coin changing

o Order coins in decreasing order

o Select coins one at a time (divide x by denomination)

o Solution: contains a = 3, b = 1, c = 1, d = 2.

Algorithm

 procedure greedy (A, n)

 Solution ← { }; // set that will hold the solution set.

 FOR i = 1 to n DO

 x = SELECT (A)

 IF FEASIBLE (Solution, x) THEN

 Solution = UNION (Solution, x)

 end if

 end FOR

 RETURN Solution

 end procedure

SELECT function:

 Selects the most promising candidates from A[] and removes it from the list.

Page 48 of 71

FEASIBLE function:

 a Boolean valued function that determines whether x can be included into the

solution vector.

UNION function:

 combines x with the solution

Algorithm for Coin Change

 Make change for n units using the least possible number of coins.

Algorithm MAKE-CHANGE (C, n, A)

 //C ← {50, 25, 10, 5, 1}

 //A is the amount to be changed

 Sol ← {} // initialize Sol

 rem = A

 WHILE rem > 0 & i < n DO

 Sol[k++] = rem / C[i++]

 rem = rem mod C[i++]

 end while

 RETURN Sol

 end algorithm

Knapsack problem

 In a knapsack problem, we are given n items (where i =1, 2 . . . n) and a knapsack. Item i

has weight wi > 0 and the knapsack has a capacity of W.

 If a fraction xi, 0 ≤ xi ≤ 1 of item i is placed in the knapsack, then a profit of pixi is earned.

 The objective is to obtain the filling of the knapsack that maximizes the total profit

earned. That is,

Page 49 of 71

 Thus a feasible solution is any set (xi, i = 1… n) satisfying (2) and (3). An optimal solution is

a feasible solution that maximizes (1).

Greedy Algorithm

Example: consider the following instances of the knapsack problem.

 n=3, W=20, (p1, p2, p3) = (25, 24, 15), and (w1, w2, w3) = (18, 15,10)

 Three measures can be applied to find the solution

o Profit of items

o Weight of items

o Ratio of profit to weight of items

 procedure Greedy-knapsack (w, x, W, n)

 //w[i] is sorted array in decreasing order of pi/wi

 FOR i =1 to n do

 x[i] =0

 capacity = W; i = 1

 WHILE w[i] < capacity & i ≤ n do

 IF capacity ≤ w[i] then break;

 x[i] = 1

 capacity = capacity - w[i++]

 end while

 IF i ≤ n then

 x[i] = capacity / w[i]

end procedure

 If the items are already sorted into decreasing order of Pi / wi, then the while-loop takes a

time in O (n). Complexity of greedy algorithm including the sort is in O(n log n).

Analysis of Knapsack problem

 Is the algorithm correct?

Page 50 of 71

o If the algorithm is correct it halts with the right answer or optimal solution. The optimal

solution to this problem is obtained by sorting items by the ratio of profit to weight of

items.

o Optimal solution fills the knapsack completely. Because we can always increase the

contribution of some object i by a fractional amount until the total weight is exactly W.

Proof (by contradiction):

o That greedy method generates an optimal solution to the given instance of the

knapsack problem.

Minimum Spanning Trees

Problem: Laying Telephone Wire and Minimize the total length of wire connecting the customers.

 Assume you have an undirected graph G = (V,E) with weights assigned to edges. The

objective is “use smallest set of edges of the given graph to connect everything together”.

How? A minimum spanning tree is a least-cost subset of the edges of a graph that connects

all the nodes. It is a sub-graph of an undirected weighted graph G, such that:

o It is a tree (i.e., it is acyclic)

o It covers all the vertices V

o contains |V| - 1 edges

o The total cost associated with tree edges is the minimum among all possible spanning

trees

 Applications of MST is:

o Network design, road planning, etc.

How can we generate a MST?

Page 51 of 71

 A MST is a least-cost subset of the edges of a graph that connects all the nodes. A greedy

method to obtain a minimum-cost spanning tree builds this tree edge by edge. The next edge

to include is chosen according to some optimization criterion.

 Criteria: to choose an edge that results in a minimum increase in the sum of the costs of the

edges so far included.

General procedure:

o Start by picking any node and adding it to the tree

o Repeatedly: Pick any least-cost edge from a node in the tree to a node not in the tree,

and add the edge and new node to the tree

o Stop when all nodes have been added to the tree

Prim‟s algorithm

Prim‟s: Always takes the lowest-cost edge between nodes in the spanning tree and nodes not yet

in the spanning tree.

 If A is the set of edges selected so far, then A forms a tree.

o The next edge (u,v) to be included in A is a minimum cost edge not in A such that A

υ {(u,v)} is also a tree, where u is in the tree & v is not.

Property: At each step, we add the edge (u,v) s.t. the weight of (u,v) is minimum among all

edges. This spanning tree grows by one new node and edge at each iteration. Each step maintains

a minimum spanning tree of the vertices that have been included thus far. When all vertices have

been included, we have a minimum cost spanning tree for the graph

Example: find the minimum spanning tree using Prim algorithm

Prim‟s Algorithm

procedure primMST(G, cost, n, T)

Page 52 of 71

 Pick a vertex 1 to be the root of the spanning tree T

 mincost = 0

 for i = 2 to n do near (i) = 1

 near(1) = 0

 for i = 1 to n-1 do

 find j such that near(j) ≠ 0 and cost(j,near(j)) is min

 T(i,1) = j; T(i,2) = near (j)

 mincost = mincost + cost(j,near(j))

 near (j) = 0

 for k = 1 to n do

 if near(k) ≠ 0 and cost(k,near(k) > cost(k,j) then

 near (k) = j

 end for

 end for

 return mincost

end procedure

Correctness of Prim‟s

 If the algorithm is correct it halts with the right answer or optimal solution. Optimal solution

is obtained if:

o Prim algorithm adds n-1 edges (with minimum cost) to the spanning tree without

creating a cycle

Kruskal‟s algorithm

 Kruskal algorithm: Always tries the lowest-cost remaining edge. It considers the edges of the

graph in increasing order of cost. In this approach, the set T of edges so far selected for the

Page 53 of 71

spanning tree may not be a tree at all stages in the algorithm. But it is possible to complete T

into a tree.

o Create a forest of trees from the vertices

o Repeatedly merge trees by adding “safe edges” until only one tree remains. A “safe

edge” is an edge of minimum weight which does not create a cycle

 Example:

Kruskal Algorithm

 procedure kruskalMST(G, cost, n, T)

 i = mincost = 0

 while i < n – 1 do

 delete a minimum cost edge (u,v)

 j = find(u)

 k = find(v)

 if j ≠ k then

 i = i +1

 T(i,1) = u; T(i,2) = v

 mincost = mincost + cost(u,v)

 union(j,k)

 end if

 end while

Page 54 of 71

 if i ≠ n-1 then return “no spanning tree”

 return mincost

end procedure

o After each iteration, every tree in the forest is a MST of the vertices it connects

o Algorithm terminates when all vertices are connected into one tree

o Running time is bounded by sorting (or findMin): O(n
2
)

Correctness of Kruskal

 If the algorithm is correct it halts with the right answer or optimal solution. Optimal solution

is obtained if:

o Kruskal algorithm adds n-1 edges (with minimum cost) to the spanning tree without

creating a cycle

Dijkstra‟s shortest-path algorithm

 Dijkstra‟s algorithm finds the shortest paths from a given node to all other nodes in a graph.

Always takes the shortest edge connecting a known node to an unknown node.

 Initially,

o Mark the given node as known (path length is zero)

o For each out-edge, set the distance in each neighboring node equal to the cost (length)

of the out-edge, and set its predecessor to the initially given node

 Repeatedly (until all nodes are known),

o Find an unknown node containing the smallest distance

o Mark the new node as known

o For each node adjacent to the new node, examine its neighbors to see whether their

estimated distance can be reduced (distance to known node plus cost of out-edge)

 If so, also reset the predecessor of the new node

 PROCEDURE shortestPath(v,COST,DIST,n)

 start with V1(s)

 FOR i = 1 to n DO //initialize S and DIST

 S(i) = 0; DIST(i) = COST(v,i);

Page 55 of 71

 END FOR

 S(v1) = 1

 FOR num = 2 to n-1 DO

 choose vertex u such that S(u) = 0 and DIST(u) is min

 S(u) = 1 //put u in S

 FOR each w adjacent to u with S(w) = 0 DO

 IF DIST[w] > DIST[u] + COST(u,w) THEN

 DIST[w] = DIST[u] + COST(u,w);

 END FOR

 END FOR

END PROCEDURE

Huffman Coding

 The problem: Given a set of n messages and their weights (or frequencies), construct a

set of code words so that the expected decoding time per symbol is minimized. Each code

is a binary string that is used for transmission of the corresponding message.

o At the receiving end the code is decoded using a decode tree. A decode tree is a

binary tree in which external nodes represent messages.

o The binary bits in the code word for a message determine the branching needed at

each level of the decode tree to reach the correct external node.

How to minimize decoding time?

 The Huffman encoding algorithm is a greedy algorithm

o You always pick the two smallest numbers to combine

o Example: given the following, apply the Huffman algorithm to find an optimal binary

code:

 Character: b e c a d t

 Frequency: 5 10 12 16 17 25

Algorithm

Page 56 of 71

procedure HuffmanCode(L,n)

 for i = 1 to n-1 do

 r = new Nodetype

 rlchild = least(L)

 rrchild = least(L)

 rfrequency = rlchildfrequency + rrchildfrequency

 insert(l,r)

 end for

 return (least(L))

end procedure

Chapter 6

Dynamic programming

Divide & Conquer vs. Dynamic Programming

 Both techniques split their input into parts, find sub-solutions to the parts, and combine

solutions to sub-problems. In divide and conquer, solution to one sub-problem may not affect

the solutions to other sub-problems of the same problem. In dynamic programming, sub-

problems are not independent. Sub-problems may share sub-sub-problems

Greedy vs. Dynamic Programming

 Both techniques are an algorithm design technique for optimization problems (minimizing or

maximizing), and both build solutions from a collection of choices of individual elements.

The greedy method computes its solution by making its choices in a serial forward fashion,

never looking back or revising previous choices.

 Dynamic programming computes its solution forward/backward by synthesizing them from

smaller sub-solutions, and by trying many possibilities and choices before it arrives at the

optimal set of choices. There is no a priori test by which one can tell if the Greedy method

will lead to an optimal solution.

 By contrast, there is a test for Dynamic Programming, called The Principle of Optimality

The Principle of Optimality

Page 57 of 71

 In DP an optimal sequence of decisions is obtained by making explicit appeal to the

principle of optimality.

Definition: A problem is said to satisfy the Principle of Optimality if the sub-solutions of an

optimal solution of the problem are themselves optimal solutions for their sub-problems.

 In solving a problem, we make a sequence of decisions D1, D2,..., Dn. If this sequence is

optimal, then the k decisions also be optimal

Examples: The shortest path problem satisfies the principle of optimality.

 This is because if a, x1, x2,..., xn, b is a shortest path from node a to node b in a graph,

then the portion of xi to xj on that path is a shortest path from xi to xj.

 DP reduces computation by:

o Storing solution to a sub-problem the first time it is solved.

o Looking up the solution when sub-problem is encountered again.

o Solving sub-problems in a bottom-up or top-down fashion.

Dynamic programming (DP)

 DP is an algorithm design method that can be used when the solution to a problem can be

viewed as the result of a sequence of decisions.

Example: The solution to knapsack problem can be viewed as the result of a sequence of

decisions. We have to decide the values of xi, 1 ≤ i ≤ n. First we make a decision on x1, then x2

and so on.

 For some problems, an optimal sequence of decisions can be found by making the decisions

one at a time using greedy method. For other problems, it is not possible to make step-wise

decisions based on only local information. One way to solve such problems is to try all

possible decision sequences. However time and space requirement is prohibitive.

 DP reduces those possible sequences not leading to optimal decision.

Dynamic programming approaches

 To solve a problem by using dynamic programming:

o Find out the recurrence relations.

 Dynamic programming is a technique for efficiently computing recurrences

by storing partial results.

o Represent the problem by a multistage graph.

o In summary, if a problem can be described by a multistage graph, then it can be

solved by dynamic programming

Forward approach and backward approach:

Page 58 of 71

o If the recurrence relations are formulated using the backward approach, then the relations

is solved beginning with the last decision.

o If the recurrence relations are formulated using the forward approach, then the relations

are solved starting from the beginning until we each to the final decision

 Example: 0-1 knapsack problem

0-1 Knapsack problem

 The problem is called a “0-1” problem, because each item must be entirely accepted or

rejected. Just another version of this problem is the “Fractional Knapsack Problem”, where

we can take fractions of items.

 Given a knapsack with maximum capacity W, and a set of n items with weight w1, w2, , wn

and benefit value p1, p2 , …, pn (all wi, pi & W are integer values), the problem is:

o How to pack the knapsack to achieve maximum total value of packed items? That is:

0/1 Knapsack: Brute-force approach

 In solving this problem with a straightforward algorithm, for the n items, we consider 2
n

possible combinations of items. We go through all combinations and find the one with the

best benefit/profit and with total weight less or equal to W

o Running time - O(2
n
)

Can we do better?

 Yes, with an algorithm based on dynamic programming approach such as backward or

forward. Assuming Si(W) is the optimal solution, we can recursively obtain S1, …, Sn

following:

 Backward approach: solves the recurrence relations beginning with the last decision.

N.B. If S0(W) = 0, "w ≥ 0 and S0(W) = -inf, "w ≤ 0

 Si(W) = max {Si-1(W), Si-1(W - wi) + Pi}

Forward approach: solves the recurrence relations starting from the beginning until we

reach to the final decision.

 Si(W) = max {Si+1(W), Si+1(W - wi+1) + Pi+1}

Page 59 of 71

Note: If Sn(W) = 0, "w ≥ 0 and Sn(W) = -inf, "w ≤ 0

Example: consider the case in which n=3, W=6, (w1, w2, w3) = (2, 3, 4), and (p1, p2, p3) = (1, 2,

5).

0/1 Knapsack: DP approach

 To solve a knapsack problem we need to carefully identify the sub-problems. If items are

labeled 1…n, then a sub-problem would be to find an optimal solution for Sk = {items labeled

1, 2, .. k} along with w, which will represent the exact weight for each subset of items

 The sub-problem then will be to compute S[k,w]

 It means, that the best subset of Sk that has total weight w is one of the two:

First case: wk>w. Item k can‟t be part of the solution, since if it was, the total weight

would be > w, which is unacceptable

Second case: wk <=w. Then the item k can be in the solution, and we choose the case

with greater value

0-1 Knapsack Algorithm

procedure DPknapsack(P[], w[], W, n)

 for w = 0 to W do

 S[0,w] = 0

 for i = 1 to n do

 S[i,0] = 0

 for w = 1 to W do

 if wi <= w then // item i can be part of the solution

 if pi + S[i-1,w-wi] > S[i-1,w] then

 S[i,w] = pi + S[i-1,w- wi]

 else

Page 60 of 71

 S[i,w] = S[i-1,w]

 else S[i,w] = S[i-1,w] // wi > w

end procedure

 Running time is reduced from O(2
n
) (brute force approach) to O(n*W)

Example:

 Let‟s run our algorithm on the following data: n = 4 (# of elements) W = 5 (max weight)

Elements (weight, profit): (2,3), (3,4), (4,5), (5,6)

The shortest path in multistage graphs

 Find the shortest path in multistage graphs for the following example?

 The greedy method cannot be applied to this case: (S, A, D, T) 1+4+18 = 23. The real

shortest path is: (S, C, F, T) 5+2+2 = 9.

The shortest path

o Given a multi-stage graph, how can I find a shortest path?

 Let p(i,j) denote the minimum cost path from vertex j to the terminal vertex T.

Let COST(i,j) denote the cost of p(i,j) path. Then using the

o Forward approach we obtain:

 COST(i,j) = min { COST(i+1,k) + c(k,j)}

Page 61 of 71

 (j,k) Є E k Є Vi+1

o Backward approach: Let p(i,j) be a minimum cost path from vertex S to a vertex j in Vi .

Let COST(i,j) be the cost of p(i,j).

 COST(i,j) = min { COST(i,k) + c(k,j-1)}

k Є Vi+1

(j,k) Є E

Note: If (i, j) is not element of E then COST(i, j) = inf.

Algorithm

procedure shortest_path (COST[], A[], n)

 //cost[i,j] is the cost of edges[i,j] and A[i,j] is the shortest path from i to j

 //cost[i,i] is 0.0

 for i = 1 to n do

 for j = 1 to n do

 A(i, j) := COST(i, j) //copy cost into A

 for k = 1 to do

 for i = 1 to do

 for j = 1 to do

 A(i, j) = min(A(i, j), A(i,k) + A(k,j));

 end for

 end for

 end for

 return A(1..n,1..n)

end shortest_path

o This algorithm runs in time O(n
3
)

Page 62 of 71

String editing

o The problem is given two sequences of symbols, X = x1 x2 … xn and Y = y1 y2 … ym, transform

X to Y, based on a sequence of three operations: Delete, Insert and Change, so that for

every operation COST(Cij) is incurred.

o The objective of string editing is to identify a minimum cost sequence of edit operation that

will transform X into Y.

Example: consider the sequences X = {a a b a b} and Y = {b a b b}. Identify a minimum cost

sequence of edit operation that transform X into Y. Assume change costs 2 units, delete and

insert 1 unit.

 (a) apply brute force approach

 (b) apply dynamic programming

Dynamic programming

 The minimum cost of any edit sequence that transforms x1 x2 … xi into y1 y2 … yj (for i>0 and

j>0) is the minimum of the three costs: delete, change, or insert operations. The following

recurrence equation is used for COST(i,j).

Example

o Transform the sequences X = {a a b a b} and Y = {b a b b} with minimum cost sequence

of edit operation using dynamic programming approach, Assume that change costs 2

units, delete and insert 1 unit.

Page 63 of 71

 The value 3 at (5,4) is the optimal solution

 By tracing back one can determine which operations lead to optimal solution

o Delete x1, Delete x2 and Insert y4 Or, Change x1 to y1 & Delete x4.

Chapter 7

Backtracking Algorithm

Backtracking

 It is a systematic way to search for a solution to a problem among all available options in a

search space. It does so by assuming that the solutions are represented by vectors (v1, ..., vm)

of values and by traversing, in a depth first manner, the domains of the vectors until the

solutions are found.

o Often the problem to be solved calls for finding one vector that maximizes (or

minimizes or satisfies) a criterion function P(x1, ..., xm).

 We build from a partial solution of length k, v = (a1, ..., ak) and try to extend it by adding

another element. After extending it, we will test whether what we have so far is still possible

as a partial solution.

o If it is still a candidate solution, great. If not, we delete ak and try the next element

from Sk:

Backtracking approach

 An important requirement in backtracking is that there must be proper hierarchy in

systematically searching for solutions so that sets of solutions that do not fulfill a certain

requirement are rejected before the solutions are produced.

o For this reason the examination and production of the solutions follows a model of

non-cycle graph for which in this case we will consider as a tree.

o It is easily understood that the tree (or any other graph) is produced during the

examination of the solutions so that no rejected solutions are produced.

o When a node is rejected, the whole sub-tree is rejected, and we backtrack to the

ancestor of the node so that more children are produced and examined.

The Queens Problem

 Consider a n by n chess board, and the problem of placing n queens on the board without the

queens threatening one another.

Page 64 of 71

 The solution space is {1, 2, 3,…, n}
n
. The backtracking algorithm may record the columns

where the different queens are positioned. Trying all vectors (p1, ..., pn) implies n
n
 cases

queens threatening one another.

 Noticing that all the queens must reside in different columns reduces the number of cases to

n!

 For the latter case, the root of the traversal tree has degree n, the children have degree n - 1,

the grand children degree n - 2, and so forth.

How backtracking works

 As a bounding function we use if (x1, ..., xi) is the path to the current E-node (node being

expanded), then all children nodes with parent-child labeling xi+1 are such that (x1, ..., xi+1)

represents the chessboard configuration in which no two queens are attacking.

 Start with the root node as the only live node. This become the E-node and the path is ().

Generate one child (say 2). The path is now (1), which corresponds to placing queen 1 on

column 1.

 Node 2 becomes the E-node. Node 3 is then generated. If the node is attacked by the previous

node, the path is immediately killed. Otherwise add to the path list (1, 2) and generate the

next node. If the path cannot lead to an answer node then backtrack and try another path.

4 - Queens

 The problem is to place four queens on an 4 x 4 chessboard so that

o No two attacks, i.e. no two of them are on the same row, column or diagonal.

Page 65 of 71

Algorithm for n-queens

 Let (x1, ..., xn) represent a solution in which xi is the column of the ith row where the ith

queen is placed. All xi‟s be distinct since no two queens can be placed in the same column.

o Computing time = 0 + 1 + 2 + … + (n-

Algorithm

procedure NQueens(k,n)

 for i = 1 to n do

 if place(k,i) then

 x[k] = i

 if k = n then print (x[1:n])

 else NQueens(k+1, n)

 end if

 end for

end NQueens

procedure place(k,i) //returns true if a queen is placed at (k,i)

 for j = 1 to k-1 do

 if (x[j] = i) or ((abs(x[j] - i) = (abs(j - k)) then

 //two in the same column or in the same diagonal

 return false

 return true

end place

Traveling Salesperson Problem (TSP)

 The problem assumes a set of n cities, and a salesperson which needs to visit each city

exactly once and return to the base city at the end. The solution should provide a route of

minimal length. The traveling salesperson problem is an NP-hard problem, and so no

polynomial time algorithm is available for it.

Page 66 of 71

o Given an instance G = (V, E) the backtracking algorithm may search for a vector of

cities (v1, ..., v|V |) which represents the best route.

o The validity criteria may just check for number of cities in the routes, pruning out

routes longer than |V |. In such a case, the algorithm needs to investigate |V ||V |

vectors from the solution space.

 Traveling Salesperson

 On the other hand, the validity criteria may check for repetition of cities, in which case the

number of vectors reduces to |V |!.

o That is, complexity = n!

 Given the following problem, starting from city „a‟ apply backtracking algorithm to find the

shortest path to visit all cities (and back to city a).

 The route (a, b, d, c) is the shortest one with length = 51. Can we reach to this decision using

backtracking algorithm?

Branch and Bound Algorithm

Approach

o Track best current solution found

o Eliminate partial solutions that cannot improve upon best current solution

Page 67 of 71

o Reduces amount of backtracking

 Not guaranteed to avoid exponential time O(2
n
)

Example: Travel Salesperson

 Branch and bound algorithm for TSP

o Find possible paths using recursive backtracking

o Track cost of best current solution found

o Stop searching path

 if cost > best current solution

o Return lowest cost path

 If good solution found early, can reduce search

 May still require exponential time O(2
n
)

