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Chapter 1 

Introduction to Analysis of Algorithm 

Introduction 

What is an algorithm? 

o An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for 

obtaining a required output for any legitimate input in a finite amount of time. The 

definition can be illustrated by the following diagram.  

 

o An algorithm is a clearly specified set of simple instructions to be followed to solve a 

problem. Any well-defined computational procedure that takes some value (or set of values) 

as an input and produces some value (or set of values) as an output. A sequence of 

computational steps that transforms the input into the output 

o A set of well-defined, finite rules used for problem solving. A finite set of instructions that, 

if followed, accomplish a particular task. It is a precise, systematic method for producing a 

specified result. 

Properties of an algorithm 

o From the above definitions, algorithm has the following properties: Sequence, 

Unambiguous, Input, Output, Finite 

Sequence  

o It is a step-by-step procedure for solving a given problem 

o Every algorithm should have a beginning (start) and a halt (end) step 

o The first step (start step) and last step (halt step) must be clearly noted 

o Between the two every step should have preceding and succeeding steps  
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o That is, each step must have a uniquely defined preceding and succeeding step 

Unambiguous 

o Define rigorously the sequence of operations performed for transforming the inputs into 

the outputs 

o No ambiguous statements are allowed: Each step of an algorithm must be clearly and 

precisely defined, having one and only one interpretation. 

o At each point in computation, one should be able to tell exactly what will happen next 

o Algorithms must specify every step. It must be composed of concrete steps 

o Every detail of each step must be spelled out, including how to handle errors 

o This ensures that if the algorithm is performed at different times or by different systems 

using the same data, the output will be the same. 

Input specified 

o The inputs are the data that will be transformed during the computation to produce the 

output 

o An input to an algorithm specifies an instance of the problem the algorithm solves 

o Every algorithm should have a specified number (zero or more) input values (or 

quantities) which are externally supplied 

 We must specify the type of data and the amount of data 

o Note that, correct algorithm is not one that works most of the time but one that works 

correctly for all legitimate inputs 

Output specified 

o The output is the data resulting from the computation  

  It  is the intended result 

o Every algorithm should  have one or a sequence of output values   

 There must be one or more result values 

o A possible output for some computations is a statement that there can be no output, i.e., 

no solution is possible 

o The algorithm can be proved to produce the correct output given a valid input.  
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Finiteness: It must terminate 

o Every valid algorithm must complete or terminate after a finite number of steps. 

o If you trace out the instructions of an algorithm, then for all cases the algorithm must 

terminate after a finite number of steps. 

o It must eventually stop either with the right output or with a statement that no solution is 

possible. 

o Finiteness is an issue for computer algorithms because  

 Computer algorithms often repeat instructions 

 If the algorithm doesn‟t specify when to stop, the computer will continue to repeat 

the instructions forever. 

Middle-school algorithm for computing gcd(m,n) 

Step1: Find the prime factors of m 

Step2: Find the prime factors of n 

Step3: Identify all the common factors in the two prime   expressions found in Step 1 and Step 2.  

o If p is a common factor occurring pm and pn times in m and n, respectively, it should 

be repeated min(pm,pn) times. 

Step4: Compute the product of all the common divisors as the GCD for the given inputs, m and 

n 

Step5: Return this value as GCD of m and n 

 Exercise: Design an algorithm that identifies the common factors in two prime expressions 

(for step 3 in the above algorithm). 

Consecutive integer checking algorithm for computing gcd (m, n) 

Step1: k = min (m, n) - find the minimum of m & n 

Step2:  Divide m by k.  

o If the remainder of the division is 0, go to Step 3;  

o otherwise, go to Step 4 

Step3: Divide n by k.  
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o If the remainder of the division is 0, proceed to Step 5 

o otherwise, proceed to Step 4 

Step4: Decrease the value of k and go to step 2 

Step5: Return the value of k as gcd of m and n and stop 

Euclid‟s algorithm for computing gcd(m,n) 

                              Step1:  if n = 0 

o  return the value of m as the answer and stop 

o  Otherwise proceed to step 2. 

Step2: divide m by n and assign the remainder to r. 

Step3: assign the value of n to m and the value of r to n.  

Step4: go to Step 1 

Alternative Euclid‟s algorithm 

o We can also express the same algorithm in a better way as follows: 

 Algorithm Euclid (m,n) 

 //Input: two nonnegative, not-both-zero integers‟ m & n 

 //Output: gcd of m and n 

 while n  ≠ 0 do 

   r  m mod n 

   m  n 

   n  r 

   end while 

   return m 

             end algorithm 

Exercise  

1) Write an algorithm (that satisfies the properties) for computing gcd(m,n) using either 

Middle school or Consecutive integer checking algorithm 
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2) Write a program to implement one of the above algorithms for computing gcd(m,n) and 

test your program using inputs  

a. gcd(60,24) 

b. gcd(31415,14142) 

c. gcd(60,0) 

3) Justify why the algorithm will eventually stop in (i) consecutive integer checking 

algorithm (ii) Euclid‟s algorithm for computing gcd(m,n) 

Algorithm Evaluation 

o Which one is an efficient algorithm? Compare consecutive integer checking and Euclid 

algorithm. How much iteration required solving gcd (60, 24)? What about 

gcd(31415,14142) 

o Consecutive integer checking procedure is much more complex and slower than Euclid 

algorithms. Euclid‟s algorithm is less complex and faster to compute. Which one is the 

correct algorithm? How can we know? 

Correct Algorithm 

 A correct algorithm solves the given computational problem. If the algorithm is not doing 

what it is supposed to do, it is worthless. An algorithm is said to be correct if, for every input 

instance, it halts with the correct output 

 An incorrect algorithm might not halt at all on some input instances, or might halt with a 

wrong answer. In order to show that an algorithm is incorrect, you need just one instance of 

its input for which the algorithm fails 

How to prove the correctness of an algorithm? 

 Common techniques are by mathematical induction & contradiction 

Proof by Induction: 

 The induction base: is the proof that the statement is true for initial value (e.g. n =1) 

o The induction hypothesis: is the assumption that the statement is true for an 

arbitrary values 1, 2, …, n 

o The induction step: is the proof that if the statement is true for n, it must be true for 

n+1 

o Example 1: show that, for all positive integers n,  

  Answer: 

2

)1(
...21




nn
n
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Exercise: proof by induction that:  

   

 

The sorting problem 

o One might need to sort a sequence of numbers into non-increasing order or into non-

decreasing order. 

o Statement of the sorting problem: 

Input: a sequence of n number a1, a2, …,an 

Output: a permutation (reordering) a1', a2', …,an' such that a1' a2'  …  an '. 

Example:  

o Given an input sequence <31, 41, 59, 26, 41, 58>, a sorting algorithm that arranges in non-

decreasing order returns as an output the sequence <26, 31, 41, 41, 58, 59> 

Insertion Sort Algorithm 

o It is an efficient algorithm for sorting a smaller number of elements. It is similar to sorting a 

hand of playing cards. 

o Idea: Every time, take one card and insert the card to correct position in already sorted cards. 

o We start with an empty left hand and the cards face down on the table. We then remove one 

card at a time from the table & insert it into the correct position in the left hand. To find the 

correct position for a card, we compare it with each of the cards already in the hand, from 

right to left as shown in the figure.  

  

Insertion sort 

o Principle: starting from the beginning sort each member of the input by putting one by one 

in its proper position 

1

1
...

1
011









r

r
rrrr

n
nn
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o Input: a sequence of n number a1, a2, …,an. We are required to sort the array in increasing 

order. 

o Output: a permutation (reordering) a1', a2', …,an' such that a1' a2'  …  an '. 

Example: show how the insertion sort algorithm sorts in increasing order the sequence 

  A = <5, 2, 4, 6, 1, 3> 

 An algorithm to sort in non-decreasing order 

Algorithm INSERTION-SORT(A, n) 

//input: array of A[1..n] 

//output: sorted array of A 

     for j = 2 to length[A] do  

          key  A[j]  

//insert A[j] to sorted sequence A[1..j-1] 

           i  j-1 

           while i >0 and A[i]>key do  

                    A[i+1]  A[i]  //move A[i] one position right 

                    i  i-1 

            end while 

            A[i+1]  key 

      end for 

end algorithm 

Proof correctness of the algorithm 

 The index j indicates the “current value” being inserted into the sorted array.  

o Array element A[1..j-1] constitute the currently sorted element. 

o Elements A[j+1...n] correspond to the other values still not sorted 

 At each iteration of the outer for loop, the element A[j] is picked out of the array (line 2). 

Then, starting in position j-1, elements are successively moved one position to the right until 
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the proper position for A[j] is found (while loop from lines 4-7), at which point it is inserted 

(line 8) 

Proof by induction 

Example to finding the maximum element problem 

 The Input is an array A storing n elements and the output is the maximum one in A. Given 

array A= [31, 41, 26, 41, 58], max algorithm returns 58.     

                        Algorithm findMax(A, n) 

  //Input: An array A[1..n]. 

  //Output: The maximum element in A. 

  currentMax  A[0] 

  for  i 1 to n -1 do 

       if currentMax < A[i] then  

   currentMax  A[i] 

  end for 

  return currentMax 

                end algorithm 

Review Exercise 

1) Write an algorithm for finding minimum element(s) from the given sequence. 

a) Is your algorithm correct and efficient? 

b) For your answer of “a” above justify your reason.  

2) We can write an algorithm either by flow chart or pseudo code. Write an algorithm 

which finds the average of n numbers by both ways. 

Chapter 2 

Why we study algorithm? 

 Suppose computers are infinitely fast and computer memory was free. Would you have any 

reason to study algorithm? 
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 Yes, because we want to demonstrate that the algorithm is correct; it terminates with the 

intended solution for all inputs given. 

 However, the reality shows the following facts: 

o Computers may be fast, but they are not infinitely fast 

o Memory may be cheap, but it is not free 

o Computing time and resources are therefore a bounded resources 

Algorithm Design & Analysis Process 

        

Analysis of Algorithm 

 As you may have noted, there are often multiple algorithms one can use to solve the same 

problem.  

o In solving GCD problem, we can use techniques such as middle school, consecutive 

integer checking or Euclid 

o In searching from a sequence of list, one can use linear search, binary search…  

o You can come up with your own variants.  

How do we choose which algorithm is the best?  

o The fastest/most efficient algorithm.  

o The one that uses the fewest resources.  

o The clearest.  

o The shortest, ...  

 Analysis of algorithm is the analysis of resource usage of a given algorithm. It means 

predicting the resources that the algorithm requires. The main resources are running time 



Page 10 of 71 
 

and memory usage. An algorithm that solves a problem but requires a year and GBs of 

main memory is hardly of any use.  

 The objective of algorithm analysis is: 

o to measure the resources (e.g., time, space) requirements of an algorithm 

so as to determine how quickly (with less memory) an algorithm executes 

in practice. 

 An algorithm should make efficient use of computer resources. Most frequently, we look at 

efficiency: 

o how long does the algorithm take to run 

o What is the best way to represent the running time of an algorithm?  

Efficiency 

 An algorithm must solve a problem with the least amount of computational resources such as 

time and space. An algorithm should run as fast as possible using as little memory as 

possible. 

 Two types of algorithmic efficiency evaluation: 

Time efficiency - indicates how fast the algorithm runs 

Space efficiency - indicates how much memory the algorithm needs 

What to analyze?  

o To keep things simple, we will concentrate on the running time of algorithms and will 

not look at the space (the amount of memory) needed or required.  

o So, efficiency considerations of algorithm usually focus on the amount of time 

elapsed (called running time of an algorithm) when processing data. 

Analysis of Insertion Sort 

       algorithm INSERTION-SORT(A)           cost       times  

 for j    2 to length[A] do              c1  n 

        key  A[j]    c2  n-1 

        i  j-1                                            c3   n-1 

        while i >0 and A[i]>key do   c4   



n

j

jt
2

1
2




n

j

jt
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               A[i+1]  A[i]                         c5  

                i  i-1                                   c6  

        A[i+1]  key                                  c7 n-1 

o (tj is the number of times the while loop test in line 4 is executed for that value of j) 

 The running time, T(n), of the insertion algorithm is the sum of running times for each 

statement executed, i.e.: =c1n+ c2(n-1)+ c3(n-1)+ c4
n

j=2 tj+ c5
n

j=2 (tj-1)+ c6
n

j=2(tj-1)+ 

c7(n-1) 

Best Case Analysis of Insertion Sort 

 Occurs if the array contains already sorted values. For each j = 2, 3, 4… n, we then find 

that A[i] ≤ key in line 4 when i has its initial value of j – 1. Thus tj=1 for j = 2, 3,…, n, 

and line 5 and 6 will be executed 0 times 

 The best case running time is 

 T(n) = c1n + c2(n-1) + c3(n-1) + c4(n-1) + c7(n-1)  

          = (c1 + c2 + c3 + c4 + c7)n – (c2 + c3 + c4 + c7) 

 This running time can be expressed as an + b for constants a and b that depends on the 

statement cost ci;  

o it is thus a linear function of n 

Worst Case Analysis of Insertion Sort 

 Occurs if the array contains values that are in reverse sorted order, which is in decreasing 

order. We must compare each element A[j] with each element in the entire sorted sub array 

A[1..j-1]. So, tj = j for j = 2, 3… n.   

 Therefore the worst case running time of INSERTION-SORT is T (n). This worst case 

running time can be expressed as an
2
 + bn + c for constants a, b, c, it is thus a quadratic 

function on n 

Average Case Analysis of Insertion Sort 

o Suppose that we randomly choose n numbers and apply insertion sort. How long does it take 

to determine where in sub array A [1...j-1] to insert the element A[j]? 

 On average, half the elements in A [1...j-1] are less than A[j], and half the elements 

are greater. Therefore, we check half the sub array A [1...j-1], so tj =  j/2 and T(n) will 

still be in the order of n
2
.  

1
2




n

j

jt
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o This average case running time can then be expressed as quadratic function, an
2
 + bn + c 

for constants a, b, c, which is the same as worst case. 

o In summary, the running time of insertion sort for 

 Best case: an – b 

 Worst case: an
2
 + bn - c  

 Average case: an
2
 + bn - c  

Running time of an algorithm 

o Several factors affect the running time of an algorithm: 

 Compiler used (quality of compiler) 

 Computer used (speed of machine): The same operation may take different times on 

different machines.  

 The algorithm used (or quality of source code): Not all operations take the same time. 

For example, addition is typically quicker than multiplication, and integer addition is 

typically quicker than floating point addition.  

 The input to the algorithm (size and characteristics of input): Different inputs lead to 

different running times.  

o The first two are beyond the scope of theoretical model. The last two are the 

main factors that we deal 

 For most algorithms, the running time depends on:  

o characteristics of the input: An already sorted sequence is easier to sort than 

unsorted one for sorting algorithms 

o size of the input: Short sequences are easier to sort than long ones 

 Thus, the running time of most algorithms varies with the characteristics and size of 

input. 

o Running time is expressed as T(n) for some function T of input size n.  

    Example: Find the running time T(n) for the algorithm 

  int x = 0 

  for (int i =1; i < n; i = i + 5)  
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   x++; 

  T(n) = 0.6*n + 3 = an + b 

 To find running time, T(n), we have two options: 

1. Count the number of times each of the algorithm‟s step-by-step instructions are 

executed. This method is excessively difficult and usually unnecessary 

2. Count the number of times the most important operations of the algorithm is executed. 

Which are the basic operations for an algorithm? The most time consuming operations 

are found inside the inner most loop. 

How to analyze „for loops‟ 

 In general, a for loop translates to a summation. The index and bounds of the summation are 

the same as the index and bounds of the „for’ loop.  

               for i = 1 to N do  

                            sum = sum + i;                                

                          end for loop 

 Suppose we count the number of additions that are done. There is 1 addition per iteration of 

the loop, hence N additions in total 

How to Analyze „Nested for loops‟ 

 Nested for loops translate into multiple summations, one for each for loop. 

                          for i = 1 to N do 

                         for j = 1 to M do  

   sum = sum + i + j ;  

                   end inner for 

                                            end outer for  

 Suppose again we count the number of additions. The outer summation is for the outer for 

loop.  

How to Analyze „Consecutive statements‟ 

 Add the running times of the separate blocks of your algorithm. 



Page 14 of 71 
 

          for i = 1 to N do 

    sum = sum + i; 

                   end for 

           for i = 1 to N do 

             for j = 1 to N do  

             sum = sum + i + j; 

                          end inner for                        

                                     end outer for  

T(n) = n + n
2
 

How to Analyze „Conditionals‟ 

 if (test) s1 else s2:  

o Compute the maximum of the running time for s1 and s2. 

                        if (test == 1) 

     for (int i = 1; i <= N; i++) 

    sum = sum + 1; 

                   end for 

                       else                                

      for (int i=1;i<=N;i++) 

         for (int j = 1; j <= N; j++) 

         sum = sum + i + j; 

                 end inner for 

                             end outer for 

                                            end if 
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Asymptotic analysis 

 There are five notations used to describe a running time function: Big-Oh, Big-Omega, 

Theta, Little-o, little-omega. Demonstrating that a function T(n) is in big-O (or others) of a 

function f(n) requires that we find specific constants C and no for which the inequality holds. 

 The following points are facts that can be used for efficiency comparison. 

   

 

Asymptotic notations: Big-Oh (O) 

Definition: 

o Let f(n) and g(n) be functions mapping nonnegative integers to real numbers.  

o A function f(n) = O(g(n)), if there is some positive constant c > 0 and a non-negative 

integer no ≥ 1 such that  

                        f(n) ≤ c.g(n) for all n ≥ no 

 Big-O expresses an upper bound on the growth rate of a function, for sufficiently large 

values of n 

 An upper bound is the best algorithmic solution that has been found for a problem 

(“what is the best thing that we know we can do?”) 

 In simple words, f(n) = O(g(n)) means that the growth rate of f(n) is less than or equal to 

g(n). The statement f(n) = O(g(n)) states only that c.g(n) is un upper bound on the value 

of f(n) for all n, n ≥ n0 

Big-Oh theorems 

 Theorem 1: If k is a constant, then k is O(1) 

Example: f(n) = 2
100

 = O(1) 

 Theorem 2: If f(n) is a polynomial of degree k, then  

  f(n) = O(n
k
) 
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o If f(n) = a0+ a1n + a2n
2
 + … + akn

k
, where ai and k are constants, then f(n) is in 

O(n
k
) 

o Polynomial‟s growth rate is determined by the leading term 

Example:  f(n) = 7n
4 

+ 3n
2 

+ 5n + 1000 is O(n
4
) 

 Theorem 3: Constant factors may be ignored  

  If g(n) is in O(f(n)), then k * g(n) is O(f(n)), k >0 

                    Example:  

 T(n) = 7n
4 

+3n
2 

+ 5n +1000 is O(n
4
) 

 T(n) = 28n
4 

+ 12n
2 

+ 20n + 4000 is O(n
4
) 

 Theorem 4 (Transitivity) 

o  If T(n) is O(f(n))and f(n) is O(g(n)), then T(n) is O(g(n)). 

 Theorem 5 

o If T(n) is in O(f(n)) and g(n) is in O(h(n)), then T(n) + g(n) is in O(T(n) + g(n)) 

 Theorem 6 

o If T(n) is in O(f(n)) and g(n) is in O(h(n)), then T(n) . g(n) is in O(T(n) . g(n)) 

o product of upper bounds is upper bound for the product 

 Theorem 7 

o If f1(n) = O(g1(n)) and f2(n) = O(g2(n)), then f1(n) + f2(n) = O(max(g1(n), g2(n)) 

Order of growth of functions 

 Typical orders: Here is a table of some typical cases. It shows that the typical order is:  

                     O(1) < O(log n) < O(n) < O(nlog n) < O(n
2
) < O(n

3
) < O(2

n
) 

                   

Example: Big-Oh (O) 
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 Find O(f(n) for the given functions: 

a) f(n) = 2n + 6 

b) f(n) = 13n
3
 + 42n

2
 + 2n log n  

c) If f(n) = 3n
2
 + 4n + 1 then show that f(n) = O(n

2
) 

d) If f(n) = 10n + 5 and g(n) =  n, then show that f(n) is O(g(n)) 

Asymptotic notations: Big-Omega () 

Definition: 

o Let f(n) and g(n) be functions mapping nonnegative integers to real numbers.  

o A function f(n) = (g(n)), if there is some positive constant c > 0 and a negative 

integer no ≥ 1 such that  

                                   f(n) ≥ c.g(n) for all n ≥ no 

 The statement f(n) = (g(n)) states only that c.g(n) is a lower bound on the value of f(n) for 

all n, n ≥ n0. In simple terms, f(n) = (g(n)) means that the growth rate of f(n) is greater than 

or equal to g(n) 

Big-Omega- Example 

 Show that the function T(n) = 5n
2
 – 64n + 256 = Ω(n

2
) 

o We need to show that for non-negative integer n0 and a constant c > 0, T(n) ≥ c.n
2
 for 

all integers n ≥ n0 

o we have that for c=1 and n0 = 0, T(n) ≥ cn
2
 for all integers n ≥ n0 

o What if c = 2 and n0 = 16 ? 

o Show if f(n) = 10n
2
 + 4n + 2 and g(n) = n

2
 ,  then f(n) = Ω(n

2
) 

 Show that 3n
2
 + 5 ≠ Ω(n

3
) 

Asymptotic notations: Theta () 

Definition: 

o Let f(n) and g(n) be functions mapping nonnegative integers to real numbers.  

o A function f(n) = (g(n)), if there exist some positive constant c1 and c2 and a 

negative integer constant no ≥ 1 such that c1.g(n) ≤ f(n) ≤ c2.g(n) for all n ≥ no 
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 The Theta notation is used when the function f can be bounded both from above and below 

by the same function. When we write f(n) = (g(n)), we mean that f lies between c1 times 

the function g and c2 times the function g except possibly when n is smaller than n0 

 Another way to view the θ-notation is that the function: 

o f(n) = θ(n) if and only if  

o f(n) = Ο(g(n)) and f(n) = Ω(g(n)) 

Asymptotic Tightness 

 The theta notation is more precise than both the Big-O and Big- notations. The function 

f(n) = (g(n)) iff g(n) is both an upper and lower bounds on f(n). Big-Oh does not have to be 

asymptotically tight: 

o f(n) = ½n  is O(n) with c=1, n0=1, but is also in O(n
100

)… 

 Big- isn‟t tight either  

o f(n) = n
5
 is (n) with c=1, n0 = 1… 

o Theta () is tight… 

o f(n) must be in same growth classes to meet definition.  

o Can you prove this assertion? Prove that f(n)=3n
3
+2n

2
+1 is (n

3
). 

o Show that f(n) is O(n
3
), and also, f(n) is (n

3
) 

Algorithmic efficiency 

 What is the best, worst and average case time complexity of the following algorithms: 

o Insertion sort? 

o Linear search? 

Recursive Algorithm 

 Recursive algorithm: calls itself again and again until exit condition is satisfied 

To define a recursive algorithm: 

Specify a base case: there should be one or more base cases 

o Begin by testing for a set of base cases.  
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o Every possible chain of recursive calls must eventually reach a base case, and the 

handling of each base case should not use recursion. 

Recur once: rule to perform a single recursive call each time 

o Define a recursive call that makes one recursive call each time and progress 

towards a base case. 

           Classic example: give recursive definition of the factorial function: 

o Recursive definition of the factorial: n! = 1· 2· 3· ··· · (n-1)· n 

  Base case:   f(n) = 1  if n = 0 

  Recursive case:  f(n) = n . fn-1  if n > 0  

The factorial function 

       Recursive algorithm: 

   algorithm recursiveFactorial(n)  

       if  (n  =  0)  then 

        return  1; // base case 

            else   

        return  n  *  recursiveFactorial(n- 1); // recursive case 

   endif 

      end algorithm 

Analysis of Recursive algorithm using substitution: 

 Backward substitution starts with some n and work backward, substituting repeatedly for 

each occurrence of the function T (n), until a clear pattern emerges; then substitute for the 

base case. 

                                                           Running time T (n) = 2n + 2 

Example of Recursion 

Problem1: Write a recursive function to find the sum of the first n integers A[1…n] and output 

the sum.  Example: given k = 3, we return sum = A[1] + A[2] + A[3], given k = n, we return 

A[1] + A[2] + … + A[n]. How can you define the problem in terms of a smaller problem of the 

same type? 










0 n  if      2)1(

0 n  if                      2
)(

nT
nT
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   1 + 2 + … + n = [1 + 2 + … + (n -1)] + n  

    for n > 1, f(n) = f(n.1) + n 

 How does each recursive call diminish the size of the problem? It reduces by 1 the number of 

values to be summed. 

 What instance of the problem can serve as the base case? n = 1.  

 As the problem size diminishes, will you reach this base case? Yes, as long as n is 

nonnegative. Therefore the statement “n >= 1” needs to be a precondition 

Problem2: Write a recursive function to find the sum of the first n integers A[1…n] and output 

the sum 

algorithm LinearSum(A, n) 

// Input: an array A with n elements 

  // Output: The sum of the first n integers in A 

   if n = 1 then 

   return A[0] 

    else                                                

  return LinearSum(A, n - 1) + A[n] 

                    end algorithm 

Recursive algorithm for reversing an Array 

           Algorithm ReverseArray(A, i,  j) 

      Input: An array A and indices i = 1 and  j = n 

      Output: The reversal of the elements in A 

      if i <  j then 

    Swap A[i] and A[ j] 

    ReverseArray(A, i + 1,  j - 1) 

       return 

        end algorithm 

        Algorithm IterativeReverseArray(A, i, j ): 

 

  LinearS
 

( A , 5 ) 

  LinearS
 

( A , 1 ) 

  LinearS
 

( A , 2 ) 

  LinearS
 

( A , 3 ) 

  LinearS
 

( A , 4 ) 

 

 

 

 
c
a

c
a

 

 

    r A 

[ 0 ] 4 r4+  A [ 1 ] 4

+  3 =7 r7+  A [ 2 ] 7  

+  6  = 1
 
r1+  A [ 3 ] 1

 

2  =  1
 

  cr1
 
+  A [ 4 ] 

 
15  
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Input: An array A and nonnegative integer indices i and j 

Output: The reversal of elements in A starting at index i and ending at j 

while i <  j do 

swap A[i ] and A[ j ] 

i  = i + 1 

j  = j - 1 

 return 

          end algorithm 

Review Exercise 

1) Write (i) an algorithm and (ii) a code that scans through the given sequence of inputs, A = 

<a1, a2… an>, finding for one or more minimum value(s).  

2) Write algorithm and code for linear search, which scans through the given sequence of 

inputs, A = <a1, a2… an>, looking for Key.  

 The output is either  

 One or more index i (the position of all values if key = A[i]) or  

 The special message “Not Found” if Key does not appear in the list. 

 

Chapter 3 

Disjoint sets and Graph 

Disjoint sets 

 Many times the efficiency of an algorithm depends on the data structures used in the 

algorithm. Choosing suitable data structure in solving a problem can reduce the time of 

execution, the time to implement the algorithm and the amount of memory used.  

The problem 

 Let‟s consider the following problem: In a room are N persons. Thus, two persons are friends 

if they are directly or indirectly friends.  If A is a friend with B, and B is a friend with C, then 

A is a friend of C too. A group of friends is a group of persons where any two persons in the 
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group are friends. Given the list of persons that are directly friends, find the number of 

groups of friends and the number of persons in each group. For example, N = 9 & the list of 

friends are: 1-2, 3-4, 5-1, 6-4, 7-9 and 8-2. 

 Some applications involve grouping n distinct elements into a collection of disjoint sets. 

o Two sets are disjoint if their intersection is NULL: S1 Λ S2 = Ø 

 In disjoint set data structure: 

o Each set is represented by a tree, so that each element points to a parent in the tree. 

o Every set contains a representative (root), which is also one of the member of the set 

Applications 

o Maintain the connected components of a graph as new vertices and edges are added. 

o To solve the problem of spanning tree (Kruskal algorithm). 

o In both applications, we can use a disjoint-set data structure, where we keep a set for 

each connected component, containing that component's vertices.  

Three operations of disjoint sets are: 

CREATE (x): 

o Creates a new set {x} containing the single element x.  

o The element x must not appear in any other set in our collection.  

o The root/leader of the new set is obviously x. 

UNION(x, y):  

o Combines/merges two disjoint sets containing root x and root y into one set. 

o Replaces two sets, A and B with their union A U B. 

FIND(x):  

 Finds in which set a given node x belongs to and returns the root node of the set 

containing the element x. 

Algorithm for Disjoint set 

                     algorithm DisjointSet(x, n) 

  //input x[1,2, …,n] 
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   FOR i = 1 to n DO 

   CREATE(xi)  

   end for 

  FOR (each pair of friends (xi, xj) ) DO 

   IF (FIND(xi) != FIND(xj)) THEN 

    UNION(xi, xj)  

   end if 

   end for 

                    end algorithm 

 FIND() operation check if the two pairs, xi & xj are in the same group or not, before merging 

them using UNION() operation 

           Algorithms: Create, Union & Find operations 

                       procedure CREATE(x) 

    parent(x) = -1 //some negative number 

                  end 

                        procedure UNION(x,y) 

       parent(x) = y 

                    end 

              procedure FIND(x) 

        y = x 

    while parent(y) > 0 do 

   y = parent(y) 

  end while 

  return y 

           end 
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 Determine time complexity of the above algorithms? 

Improving UNION and FIND operations 

 Analyze the total time required for performing the following operations:  

 UNION(1,2), UNION(2,3), …, UNION(n-1,n), and  FIND(1), FIND(2), …, FIND(n) 

 There is a need to enhance the efficiency of UNION and FIND operations. Notice that the 

time to do a FIND operation on an element corresponds to its depth in the tree.  Can we 

improve the performance of UNION and FIND?  Improve means decrease the height of the 

trees. Hence our goal is to keep the trees as short as possible.  

 Two heuristics for keeping the height of the disjoint trees short are UNION by rank and 

Path Compression 

UNION by rank: ensures that when we combine two trees, we try to keep the overall depth of 

the resulting tree small. 

o If x and y are roots of two distinct trees, this technique makes the root of the smaller 

tree a child of the root of the larger tree. 

o Union by rank avoids creation of degenerate trees 

Path compression: collapses all nodes to point to root node. 

 Is used during FIND operation so as to make each node on the find path point directly 

to the root. 

UNION by rank 

 Balances the height of a tree. The idea is that the rank of the root is associated with the depth 

of the tree so as to keep the depth small. Weighting rule for UNION(x, y): If the number of 

nodes in tree with root x is less than the number in tree with root y, then make y the parent of 

x; otherwise, make x the parent of y. 

 procedure UNION(x,y) 

  z = parent(x) + parent(y) 

  if parent(x) > parent(y) then  

   parent(x) = y 

   parent(y) = z 

  else  
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   parent(y) = x 

   parent(x) = z 

   end if 

             end UNION 

 To implement weighting rule there is a need to keep the number of nodes in 

every tree in the parent field of the root as –ve numbers.  

 

Path Compression 

 Reduces the complexity of FIND algorithm. This is done by collapsing nodes in a tree. 

Collapsing rule: If x is a node on the path from y to its root and parent[y] ≠ root[y], then 

set parent[x] to root[y]. The idea is that, once we perform a FIND on some element, we 

should adjust its parent pointer so that it points directly to the root; that way, if we ever 

do another FIND on it, we start out much closer to the root.  

      function FIND(x) 

  y = x 

        while parent(y) > 0 do 

       y = parent(y) //Find root 

  z = x 

  while z ≠ y do //collapse nodes from z to root y 

   t = parent(z) 

   parent(z) = y 

   z = t 

         return y 

            end FIND 

Exercise:  

Given S1= {3,4,6},S2 ={1,7,8,9} & S3 = {2,5,10}, represent them using disjoint set tree? 
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Graph 

Graph Interpretations 

 The use of a graph may be an easy simplification for a problem. 

 Example: Apartment Blueprint: The vertices could represent rooms in a house, and the 

edges could indicate which of those rooms are connected to each other. 

  

 Friendship Graphs: Each vertex represents a person, and each edge indicates that the two 

people are friends. 

  

Graph Definitions and Types 

 A graph G is a pair, G = (V, E), where V is the set of vertices and E is the set of edges that 

link together the vertices.  The degree of a vertex is determined by the number of distinct 

edges that are incident to it.  

Types of Graphs 

Simple Graphs 

A simple graph G is a pair (V, E), where V is a set of vertices (representing the objects) and E is 

a set of edges, where each edge in E is a set of 1 or 2 vertices (representing the links between 

vertices). 

  

Multigraphs 
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A multigraph G is a pair (V, E), where V is a set of vertices (representing the objects) and E is a 

bag of edges, where each edge in E is a set of 1 or 2 vertices (representing the links between 

vertices). 

  

 A bag, or multi-set, is a set in which repeated elements are allowed 

Directed Graphs 

A directed graph G is a pair (V, E), where V is a set of vertices (representing the objects) and E 

is a set of edges, where each edge in E is an ordered pair of vertices (representing the links 

between vertices). 

  

Complete graphs 

A complete graph is one where every vertex is adjacent to every other vertex. 

                              

Vertex degree 

The degree of a vertex, v, is the number of times edges are incident on v (where an edge from v 

to itself counts twice) 
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o The degree of vertex a is 2, and degree of vertex b is 4. The function deg:VN returns 

the degree of any vertex. 

Forms of a Graph 

Directed and undirected graphs:  

 A directed graph (digraph) is one in which the direction of any given edge is 

defined.  

 In an undirected graph, G, one can move in both directions between vertices. The 

pairs (u, v) and (v, u) represent the same edge 

Weighted or unweighted graphs:  

 A graph is said to be weighted if each edge has an associated number (weight). 

Otherwise, it is unweighted graph. 

               

a) Undirected and un-weighted                              b)  directed and weighted 

Graph Representation 

Adjacency Matrix 

 Let G be a graph with n vertices, where n > 0.  

  

 

o The adjacency matrix AG is a two-dimensional n×n binary matrix such that 

matrix[i][j] storing whether there is an edge between the i
th

 vertex and the j
th

 vertex 
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o Matrix AG=[aij], where aij is 1 if there is an edge {vi, vj}, 0 otherwise 

 

   

 

Exercise: what about for G1 

Adjacency Lists 

  In adjacency list representation, corresponding to each vertex, v, is a linked list such that 

each node of the linked list contains the vertex u, such that (v, u)   E(G). Array, A, of 

size n, such that A[i] is a pointer to the linked list containing the vertices to which vi is 

adjacent. Each node has two components, (vertex and link) 

 

  

Exercise: (1) what about for G1  

(2) Can you suggest a better representation  that solves drawback of Adjacency List? 

 

Adjacency multilist 

 In the adjacency multilist representation of a graph G 

o There will be one list for each vertex in G.  

o Each list has one node for each edge in G 

o The node represents the edge that has vertices Vi and Vj incident to a specific 

edge. Thus each node will be a member of two lists; one a member for vertex Vi 

and one for vertex Vj.  

o It has the following structure: 
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Exercise 

Represent the given graph using the following techniques: 

a) Adjacency matrix     b) Adjacency list   c)  Adjacency multilist 

                      

i)   ii) 

Graph Traversals 

 Given a graph, one of the fundamental graph problems is to traverse every edge and 

vertex in a graph so as to: 

o count the number of edges 

o Identify connected components of a graph. 

 Goal: visit all (or some) vertices and edges of the graph using some strategy (the order of 

visit is systematic) 

 Depth First Search (DFS) and Breadth First Search (BFS) are examples of graph 

traversals. The order of exploring the vertices depends upon the data structure used:  

Queue: by storing the vertices in a queue, BFS explores vertices following FIFO 

order. Thus, it explores starting the initial vertex level by level.  
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Stack: by storing the vertices in a stack, DFS explores vertices following LIFO order. 

Thus, it constantly visits a new neighbor depth-wise. 

 Some shortest path algorithms and spanning tree algorithms have specific visit order. 

 In DFS, as each vertex v is visited,  all of it‟s children are  added to front for immediate 

processing. Use of a stack leads to a depth-first visit order. Stack is used to keep track of: 

nodes to be visited next, or nodes that we have already visited. 

 In BFS, as each vertex v is visited all of its unvisited children are kept in a waiting list. 

Use of a queue leads to a breadth-first visit order. Queue is used to keep track of: nodes 

to be visited next, or nodes that we have already visited. 

                

Depth-First Traversal 

 Strategy: Go as far as you can (if there is unvisited node depth-wise); otherwise, go back 

and try another way 

                            

 The depth-first traversal visits the nodes in the order -  

c, a, b, d 

Remark: 

 A depth-first traversal only follows edges that lead to unvisited vertices. If we omit the 

edges that are not followed, the remaining edges form a tree.  

DFS: Algorithm  

procedure  DFS( v ) 
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visited (v) = 1;  //Mark v as visited 

For each vertex u adjacent to v do 

If (visited (u) = 0) then      //if vertex u is unvisited 

DFS(u) 

 end  

 

procedure  GraphTraversal()  

for i = 1 to n   // n is the number of vertices v 

visited(vi) = 0;   //Mark v as unvisited 

for i = 1 to n  

 if (visited(vi) = 0) 

 DFS(vi) 

 end  

Breadth-First Search (BFS) 

 In DFS, we choose the most recently visited vertex to expand. Whereas, BFS explores the 

vertices in the order of their distance from the start vertex level-wise.  

o BFS examines every path of length i before going on to paths of length i+1. 

              

          BFS visits the nodes in the order: a, b, c, d 

BFS: Algorithm  

procedure  BFS( v ) 

visited (v) = 1; //Mark v as visited 
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enqueue(v) 

do{ 

for all vertices u adjacent to v do 

If visited(u) = 0 

visited(u) =1 enqueue(u) 

v = dequeue() 

}while queue is not empty 

end  

 

procedure  GraphTraversal()  

initialize visited(v) = 0;  //Mark v as unvisited 

for i = 1 to n // n is the number of vertices v 

 if (visited(vi) = 0) 

 BFS(vi) 

 end  

Time complexity 

 Proof: Depending on the graph representation, time complexity for DFS and BFS is the 

same: 

o If Adjacency matrix : O(V
2
) 

o If Adjacency list : O(V + E) 

Exercise 

1) Show the order of traversing the following graphs using DFS and BFS starting from node 1 
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Review Exercise 

1) Find the order of traversing the following graphs using DFS and BFS 

                 

Chapter 4 

The divide-and-conquer strategy 

Open problem 

o Given a sequence of n numbers, A = <a1, a2… an> and a value Key, write a code 

for linear search, which scans through the sequence, looking for Key, and returns 

one or more position i such that Key = A[i]? 

Floor and Ceiling Functions 

 The floor function, also called the greatest integer function or integer value gives the largest 

integer less than or equal to ⌊x⌋. Ceiling function ⌈x⌉, gives the smallest integer ≥ x, For all 

real x, x-1 < ⌊x⌋ ≤ x ≤ ⌈x⌉ < x+1 

Techniques for the Design of Algorithms: 

 General approaches to the construction of efficient solutions to problems. Such methods are 

of interest because:  
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o They provide templates suited to solving a broad range of diverse problems which 

can be precisely analyzed.  

o They can be translated into common control and data structures provided by most 

high-level languages.  

 Although more than one technique may be applicable to a specific problem, it is often the 

case that an algorithm constructed by one approach is clearly superior to equivalent solutions 

built using alternative techniques.  

o The choice of design paradigm is an important aspect of algorithm analysis 

Divide-and-Conquer Strategy 

 Divide and Conquer is a general algorithm design paradigm that has created such efficient 

algorithms as Merge Sort, Binary Search… 

 This method has three distinct steps: 

Divide: If the input size is too large, divide the input into two or more sub-problems. That 

is, divide P     P1, …, Pk, If the input size of the problem is small, it is solved directly 

Recur: Use divide and conquer to solve the sub-problems associated with each one-k
th

 of 

the data subsets separately, That is, find solution for S(P1), …, S(Pk) 

Conquer: Take the solutions to the sub-problems and combine (“merge”) these solutions 

into a solution for the original problem. That is, Merge S(P1 ), …, S(Pk) S(P) 

Implementation: suppose we consider the divide-and-conquer strategy when it splits the input 

into two sub-problems of the same kind as the original problem. 

 If the input size of the problem is small, it is solved directly.  

 If the input size of the problem is large, apply the strategy: 

o Divide: divide the input data S in two disjoint subsets S1and S2 

o Recur: Solve each half of the sub-problems associated with S1 and S2 

o Conquer: combine the solution for S1and S2 into a solution for S 

General Algorithm 

procedure DCS (P) 

   if small(P) then      

       return S(P) 
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   else  

       divide P into smaller instances P1, P2 …, Pk 

       apply DCS to each of these sub-problems 

       return (combine(DCS(P1), DCS(P2), …, DCS(Pk)) 

   end if;  

end DCS; 

Complexity:    f(n) {   f(n)                         n small  

          aT(n/b) + g(n)        otherwise,  where: 

o b be the ways we divide the problem at each step  

o a be the number of sub-problems we solve at each step; i.e. n/b. 

o T(n) be the time needed to solve the problem with input of size n 

o g(n) be the time for dividing the problem and for combining solutions to sub-

problems 

o f(n) be the time to compute the answer directly for small inputs 

Divide-and-Conquer Technique 

 

 

o In general it leads to a recursive algorithm with complexity T(n) = 2 T(n/2) + g(n) 

Solving Recurrence Relation 

 One of the methods for solving recurrence relation is called the substitution method. This 

method repeatedly makes substitutions for each occurrence of the function T(n) until all such 

occurrences disappear. 

Exercise: solve the following recurrence by substitution 
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Example of Recursion: SUM A[1…n] 

Problem: Write a recursive function to find the sum of the first n integers A[1…n] and 

output the sum  

o Example: given k = 3, we return sum = A[1] + A[2] + A[3] 

     given k = n, we return A[1] + A[2] + … + A[n] 

o How can you define the problem in terms of a smaller problem of the same type? 

1 + 2 + … + n = [1 + 2 + … + (n -1)] + n  

for n > 1, f(n) = f(n.1) + n 

o How does each recursive call diminish the size of the problem? It reduces by 1 the 

number of values to be summed. What instance of the problem can serve as the 

base case?    n = 1 

o As the problem size diminishes, will you reach this base case? Yes, as long as n is 

nonnegative. Therefore the statement “n >= 1” needs to be a precondition 

               algorithm LinearSum(A, n)      

// Input: an array A with n elements 

// Output: The sum of the first n integers in A 

if n = 1 then  

   return A[0] 

 else 

  return LinearSum(A, n - 1) + A[n] 

                 end algorithm 
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Binary Recursive Method 

 Binary recursion occurs whenever there are two recursive calls for each non-base case. 

          Algorithm BinarySum(A, i, n): 

                    if n = 1    then 

   return A[i ] 

            return (BinarySum(A, i, n/ 2) + BinarySum(A, i + n/ 2, n/ 2)) 

  end algorithm 

                              

Binary search 

 Binary Search is an algorithm to find an item in a sorted list. 

o very efficient algorithm for searching in sorted array 

o Limitations: must be a sorted array 

Problem: determine whether a given element K is present in the given list or not 

Input: Let A = <a1, a2, … an> be a list of elements that are sorted in non-decreasing 

order.  

Output: If K is present output its position. Otherwise output “Not Found”. 

Implementation: 

 Pick the pivot item in the middle: Split the list in two halves (size n/2) at m so that  

  A[1], … A[m], … A[n]. 

o If K = A[m], stop (successful search);   



Page 39 of 71 
 

o Otherwise, until the list has shrunk to size 1 narrow our search recursively to 

either the top half of the list : A[1..m-1] if K < A[m] or  the bottom half of the list:  

A[m+1..n] if K > A[m] 

Example 

 Binary Search for 64 in the given list A[] = {5 8 9 13 22 30 34 37 41 60 63 65 82 87 90 91} 

1. Looking for 64 in this list. 

2. Divide the list into two (1+17)/2 = 9        

3. Pivot = 38. Is 64 < 38? No. 

4. Recurse looking for 64 in the list > 38. 

5. etc. 

  

Binary Search Recursive Algorithm 

 Four Questions in designing recursive algorithm : 

o How can you define the problem in terms of a smaller problem of the same type? 

Look at the middle of the list. Then recursively search the top or bottom half, as 

appropriate. 

o How does each recursive call diminish the size of the problem? It cuts the size of the 

list in half (roughly). 

o What instance of the problem can serve as the base case? Base case = 1. 

o As the problem size diminishes, will you reach this base case? Yes, A list cannot have 

negative size. 

procedure BSearch(A, low, high, key)  

    // A is sorted array. Low =1, high = n 

    if low = high  then 

  if key = A[low] then return low 

    else return “Not Found”; 
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  end if 

    else 

  mid = (low + high)/2; 

  if key > A[mid] 

   return BSearch(A, mid+1, high, key); 

  else   

   return BSearch(A, low, mid-1, key); 

  end if 

    end if 

           end algorithm 

Binary Search Iterative Algorithm 

  Procedure BinarySearch(A, n, key) 

 low  1;   high  n; 

 while low  high do 

  mid  (low+high)/2  

      if  key = A[mid]  then 

   return mid 

      else if  key < A[mid]  then  

   high  mid-1 

      else  low  mid+1 

 return “NotFound” 

end 

Analysis: considering the number of element comparison, the worst-case recurrence is: 
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Finding the minimum & maximum 

 Let there are n elements < a1, a2, … an>. The problem is to find max and min elements in a 

set. 

Straightforward algorithm  

procedure max_min(A, n, max,min) 

    max = min = A[1] 

    for i = 2 to n do 

  if A[i] > max then 

   max = A[i] 

  if A[i] < min then 

   min = A[i] 

end procedure 

Analysis: there are 2 (n-1) numbers of element comparisons in the best, worst and average 

cases. Can you suggest any improvement in the max_min algorithm? 

Divide and conquer for finding min & max 

 Recurrence relation: 

o If n =1, both max and min are the same. max = min = a[1] 

o If n =2 the problem can be solved by making one element comparison a[1] > a[2] or 

a[1] < a[2] 

o If n > 2 divide < a1, a2, … an> into two instances a[1..n/2] and a[n/2+1…n] and solve 

the sub-problems recursively. 

Example: find the maximum of a given set of n numbers a[] = {29 14 15 1 6 10 32 12}  
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Solution:        

Recursive algorithm 

              procedure max_min(A, low, high, max, min) 

   if low = high then 

   max = min = A[1] 

  else if low = high – 1 then 

   if A[low] < A[high] then 

    max = A[high]; min = A[low] 

   else 

    max = A[low];  min = A[high]; 

   end if 

  else  

   mid =  (low+high)/2  

   max_min(A, low, mid, max, min); 

   max_min(A, mid+1, high, max2, min2); 

    if max < max2 then   max = max2; 

    if min > min2 then    min = min2; 

  end if 

                end procedure 

Time complexity 
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 Analysis: considering the number of element comparison, the worst-case recurrence is: 

                     

Merge sort 

 Given a set of n elements A = < a1, a2, … an>, design an algorithm which sort them in non-

decreasing order.  

Implementation: 

o Split the list in to two halves and sort each half 

o Merge the two halves as follows: 

 Repeat the following until no elements remain in one of the arrays: 

 compare the first elements in the remaining unprocessed portions of the 

arrays 

 copy the smaller of the two into A, while incrementing the index 

indicating the unprocessed portion of that array  

 Once all elements in one of the arrays are processed, copy the remaining 

unprocessed elements from the other array into A. 

Example: consider array of ten elements: a[1:10]=(31,28,17,65,35,42,86,25,45,52) 

Merge sort Execution Example 
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Merge-Sort Execution Example 

  

 Merge Algorithm 

procedure merge(low, mid, high) 

 h  low;   i  low; j  mid+1; 

 while h  mid and j  high do 

  if A[h]  A[j] then 

   B[i] = A[h]; h = h+1 

  else B[i] = A[j];  j = j+1 

   i = i+1   

 if h > mid then 

  for k = j to high do 
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    B[i] = A[k];  i = i+1 

 else 

  for k = h to mid do 

    B[i] = A[k];  i = i+1 

 endif 

 for k = low to high do 

  A[k] = B[k]; 

end 

Merge sort Algorithm 

    procedure mergesort(low,high) 

   if low < high then //if there are more than one element 

  mid  (low+high)/2  

      mergesort(low, mid) 

      mergesort(mid+1, high) 

  merge(low,mid,high) 

    end if 

end 

Analysis: considering the number of element comparison, the worst-case recurrence is: 
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Chapter 5 

Greedy Algorithms 

The greedy method 

 An optimization problem is one in which you want to find, not just a solution, but the best 

solution. A “greedy algorithm” works well for most optimization problems. Greedy method 

suggests that one can devise an algorithm that works in phases:  

o At each phase, take one input at a time (from the ordered input according to the 

selection criteria) and decide whether it is an optimal solution.  

Feasible vs. optimal solution 

 Greedy method solves problem by making a sequence of decisions. 

o Decisions are made one by one in some order. 

o Each decision is made using a greedy criterion. 

o A decision, once made, is (usually) not changed later. 

 Given n inputs we are required to obtain a subset that satisfies some constraints 

o Any subset that satisfies the given constraints is called a feasible solution 

o A feasible solution that either maximizes or minimizes a given objective function is 

called an optimal solution.  

Greedy algorithm 

 To apply greedy algorithm 

o Decide optimization measure (maximization of profit or minimization of cost) 

 Sort the input in increasing or decreasing order based on the optimization measure 

selected for the given problem 

o Formulate a multistage solution 

 Take one input at a time as per the selection criteria 

o Select an input that is feasible and part of the optimal solution 

 from the ordered list pick one input at a time and include it in the solution set if it 

fulfills the criteria 
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Greedy Choice Property 

o Greedy algorithm always makes the choice that looks best at the moment with the hope 

that a locally optimal choice will lead to a globally optimal solution. It says that a 

globally optimal solution can be arrived at by making a locally optimal choice  

 Locally optimal choice  globally optimal solution 

The Problem of Making Coin Change 

o Assume the coin denominations are: 25, 10, 5, and 1. 

o Problem: Make a change of a given amount using the smallest possible number of coins  

           Example: make a change for x = 92.  

 Mathematically this is written as  x = 25a + 10b + 5c + 1d 

                      So that a + b + c + d is minimum & a, b, c, d ≥ 0. 

Greedy algorithm for coin changing  

o Order coins in decreasing order 

o Select coins one at a time (divide x by denomination) 

o Solution: contains a = 3, b = 1, c = 1, d = 2.  

Algorithm 

            procedure greedy (A, n) 

                    Solution ← { };    // set that will hold the solution set. 

                     FOR i = 1 to n DO 

              x = SELECT (A) 

             IF FEASIBLE (Solution, x) THEN 

                  Solution = UNION (Solution, x) 

              end if 

          end FOR 

        RETURN Solution 

   end procedure 

SELECT function:  

 Selects the most promising candidates from A[ ] and removes it from the list.  
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FEASIBLE function:  

 a Boolean valued function that determines whether x can be included into the 

solution vector.  

UNION function:  

 combines x with the solution 

Algorithm for Coin Change 

 Make change for n units using the least possible number of coins. 

Algorithm MAKE-CHANGE (C, n, A) 

    //C ← {50, 25, 10, 5, 1} 

     //A is the amount to be changed  

                 Sol ← {}        // initialize Sol 

                 rem = A 

               WHILE rem > 0 & i < n DO 

   Sol[k++] = rem / C[i++] 

           rem = rem mod C[i++]  

  end while 

      RETURN Sol 

         end algorithm 

Knapsack problem 

 In a knapsack problem, we are given n items (where i =1, 2 . . . n) and a knapsack. Item i 

has weight wi > 0 and the knapsack has a capacity of W.  

 If a fraction xi, 0 ≤ xi ≤ 1 of item i is placed in the knapsack, then a profit of pixi is earned. 

 The objective is to obtain the filling of the knapsack that maximizes the total profit 

earned. That is,  
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 Thus a feasible solution is any set (xi, i = 1… n) satisfying (2) and (3). An optimal solution is 

a feasible solution that maximizes (1). 

Greedy Algorithm 

Example: consider the following instances of the knapsack problem. 

 n=3, W=20, (p1, p2, p3) = (25, 24, 15), and (w1, w2, w3) = (18, 15,10) 

 Three measures can be applied to find the solution 

o Profit of items 

o Weight of items 

o Ratio of profit to weight of items 

  procedure Greedy-knapsack (w, x, W, n)  

   //w[i] is sorted array in decreasing order of pi/wi 

     FOR i =1 to n do 

       x[i] =0 

     capacity = W;      i = 1 

    WHILE w[i] < capacity & i ≤ n do 

        IF capacity ≤ w[i] then  break; 

         x[i] = 1 

        capacity = capacity - w[i++] 

    end while 

     IF i ≤ n then 

         x[i] = capacity / w[i] 

end procedure 

 If the items are already sorted into decreasing order of Pi / wi, then the while-loop takes a 

time in O (n). Complexity of greedy algorithm including the sort is in O(n log n). 

Analysis of Knapsack problem 

 Is the algorithm correct?  
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o If the algorithm is correct it halts with the right answer or optimal solution. The optimal 

solution to this problem is obtained by sorting items by the ratio of profit to weight of 

items.  

o Optimal solution fills the knapsack completely. Because we can always increase the 

contribution of some object i by a fractional amount until the total weight is exactly W. 

Proof (by contradiction):  

o That greedy method generates an optimal solution to the given instance of the 

knapsack problem. 

Minimum Spanning Trees 

Problem: Laying Telephone Wire and Minimize the total length of wire connecting the customers. 

  

 Assume you have an undirected graph G = (V,E) with weights assigned to edges. The 

objective is “use smallest set of edges of the given graph to connect everything together”. 

How? A minimum spanning tree is a least-cost subset of the edges of a graph that connects 

all the nodes. It is a sub-graph of an undirected weighted graph G, such that: 

o It is a tree (i.e., it is acyclic) 

o It covers all the vertices V 

o contains |V| - 1 edges 

o The total cost associated with tree edges is the minimum among all possible spanning 

trees 

 Applications of MST is: 

o Network design, road planning, etc.  

How can we generate a MST? 
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 A MST is a least-cost subset of the edges of a graph that connects all the nodes. A greedy 

method to obtain a minimum-cost spanning tree builds this tree edge by edge. The next edge 

to include is chosen according to some optimization criterion. 

 Criteria:  to choose an edge that results in a minimum increase in the sum of the costs of the 

edges so far included.  

General procedure: 

o Start by picking any node and adding it to the tree 

o Repeatedly: Pick any least-cost edge from a node in the tree to a node not in the tree, 

and add the edge and new node to the tree 

o Stop when all nodes have been added to the tree 

Prim‟s algorithm 

Prim‟s: Always takes the lowest-cost edge between nodes in the spanning tree and nodes not yet 

in the spanning tree.  

 If A is the set of edges selected so far, then A forms a tree.  

o The next edge (u,v) to be included in A is a minimum cost edge not in A such that A 

υ {(u,v)} is also a tree, where u is in the tree & v is not.  

Property: At each step, we add the edge (u,v) s.t. the weight of (u,v) is minimum among all 

edges. This spanning tree grows by one new node and edge at each iteration. Each step maintains 

a minimum spanning tree of the vertices that have been included thus far. When all vertices have 

been included, we have a minimum cost spanning tree for the graph 

Example: find the minimum spanning tree using Prim algorithm 

  

 

Prim‟s Algorithm 

procedure primMST(G, cost, n, T) 
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   Pick a vertex 1 to be the root of the spanning tree T 

   mincost = 0 

   for i = 2 to n do  near (i) = 1 

   near(1) = 0 

    for i = 1 to n-1 do 

 find j such that near(j) ≠ 0 and cost(j,near(j)) is min 

 T(i,1) = j;   T(i,2) = near (j) 

 mincost = mincost + cost(j,near(j)) 

 near (j) = 0 

 for k = 1 to n do 

     if near(k) ≠ 0 and cost(k,near(k) > cost(k,j)  then 

  near (k) = j 

 end for 

    end for 

    return mincost 

end procedure 

 

Correctness of Prim‟s 

 If the algorithm is correct it halts with the right answer or optimal solution. Optimal solution 

is obtained if: 

o  Prim algorithm adds n-1 edges (with minimum cost) to the spanning tree without 

creating a cycle 

 

Kruskal‟s algorithm 

 Kruskal algorithm: Always tries the lowest-cost remaining edge. It considers the edges of the 

graph in increasing order of cost. In this approach, the set T of edges so far selected for the 
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spanning tree may not be a tree at all stages in the algorithm. But it is possible to complete T 

into a tree.  

o Create a forest of trees from the vertices 

o Repeatedly merge trees by adding “safe edges” until only one tree remains. A “safe 

edge” is an edge of minimum weight which does not create a cycle 

 Example:   

                                

 

Kruskal Algorithm 

     procedure kruskalMST(G, cost, n, T) 

   i = mincost = 0 

   while i < n – 1 do 

    delete a minimum cost edge (u,v)  

     j = find(u) 

 k = find(v) 

 if j ≠ k then 

       i = i +1 

      T(i,1) = u;   T(i,2) = v 

       mincost = mincost + cost(u,v) 

       union(j,k)  

 end if 

     end while 
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     if i ≠ n-1 then return “no spanning tree” 

    return mincost 

end procedure 

o After each iteration, every tree in the forest is a MST of the vertices it connects 

o Algorithm terminates when all vertices are connected into one tree 

o Running time is bounded by sorting (or findMin): O(n
2
) 

Correctness of Kruskal 

 If the algorithm is correct it halts with the right answer or optimal solution. Optimal solution 

is obtained if: 

o  Kruskal algorithm adds n-1 edges (with minimum cost) to the spanning tree without 

creating a cycle 

Dijkstra‟s shortest-path algorithm 

 Dijkstra‟s algorithm finds the shortest paths from a given node to all other nodes in a graph. 

Always takes the shortest edge connecting a known node to an unknown node. 

  Initially,  

o Mark the given node as known (path length is zero) 

o For each out-edge, set the distance in each neighboring node equal to the cost (length) 

of the out-edge, and set its predecessor to the initially given node 

 Repeatedly (until all nodes are known), 

o Find an unknown node containing the smallest distance 

o Mark the new node as known 

o For each node adjacent to the new node, examine its neighbors to see whether their 

estimated distance can be reduced (distance to known node plus cost of out-edge) 

 If so, also reset the predecessor of the new node 

  PROCEDURE shortestPath(v,COST,DIST,n) 

   start with V1(s) 

   FOR i = 1 to n DO  //initialize S and DIST 

         S(i) = 0;   DIST(i) = COST(v,i); 
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    END FOR 

    S(v1) =  1  

    FOR num = 2 to n-1 DO 

        choose vertex u such that S(u) = 0 and DIST(u) is min 

         S(u) = 1 //put u in S 

        FOR each w adjacent to u with S(w) = 0 DO 

     IF DIST[w] > DIST[u] + COST(u,w)  THEN 

    DIST[w] = DIST[u] + COST(u,w); 

          END FOR 

     END FOR 

END PROCEDURE 

Huffman Coding 

 The problem: Given a set of n messages and their weights (or frequencies), construct a 

set of code words so that the expected decoding time per symbol is minimized. Each code 

is a binary string that is used for transmission of the corresponding message.  

o At the receiving end the code is decoded using a decode tree. A decode tree is a 

binary tree in which external nodes represent messages. 

o The binary bits in the code word for a message determine the branching needed at 

each level of the decode tree to reach the correct external node. 

How to minimize decoding time? 

 The Huffman encoding algorithm is a greedy algorithm 

o You always pick the two smallest numbers to combine 

o Example: given the following, apply the Huffman algorithm to find an optimal binary 

code: 

 Character: b e c a d t 

 Frequency: 5 10 12 16 17 25 

Algorithm  
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procedure HuffmanCode(L,n) 

    for i = 1 to n-1 do 

  r = new Nodetype 

  rlchild = least(L) 

  rrchild = least(L) 

  rfrequency = rlchildfrequency + rrchildfrequency 

  insert(l,r) 

   end for  

    return (least(L)) 

end procedure 

Chapter 6 

Dynamic programming 

Divide & Conquer vs. Dynamic Programming 

 Both techniques split their input into parts, find sub-solutions to the parts, and combine 

solutions to sub-problems. In divide and conquer, solution to one sub-problem may not affect 

the solutions to other sub-problems of the same problem. In dynamic programming, sub-

problems are not independent. Sub-problems may share sub-sub-problems 

Greedy vs. Dynamic Programming 

 Both techniques are an algorithm design technique for optimization problems (minimizing or 

maximizing), and both build solutions from a collection of choices of individual elements. 

The greedy method computes its solution by making its choices in a serial forward fashion, 

never looking back or revising previous choices.  

 Dynamic programming computes its solution forward/backward by synthesizing them from 

smaller sub-solutions, and by trying many possibilities and choices before it arrives at the 

optimal set of choices. There is no a priori test by which one can tell if the Greedy method 

will lead to an optimal solution.  

 By contrast, there is a test for Dynamic Programming, called The Principle of Optimality 

The Principle of Optimality 
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 In DP an optimal sequence of decisions is obtained by making explicit appeal to the 

principle of optimality. 

Definition: A problem is said to satisfy the Principle of Optimality if the sub-solutions of an 

optimal solution of the problem are themselves optimal solutions for their sub-problems.  

 In solving a problem, we make a sequence of decisions D1, D2,..., Dn. If this sequence is 

optimal, then the k decisions also be optimal 

Examples: The shortest path problem satisfies the principle of optimality.  

 This is because if a, x1, x2,..., xn, b is a shortest path from node a to node b in a graph, 

then the portion of xi to xj on that path is a shortest path from xi to xj.  

 DP reduces computation by: 

o Storing solution to a sub-problem the first time it is solved. 

o Looking up the solution when sub-problem is encountered again. 

o Solving sub-problems in a bottom-up or top-down fashion. 

Dynamic programming (DP) 

 DP is an algorithm design method that can be used when the solution to a problem can be 

viewed as the result of a sequence of decisions. 

Example: The solution to knapsack problem can be viewed as the result of a sequence of 

decisions. We have to decide the values of xi, 1 ≤ i ≤ n. First we make a decision on x1, then x2 

and so on. 

 For some problems, an optimal sequence of decisions can be found by making the decisions 

one at a time using greedy method. For other problems, it is not possible to make step-wise 

decisions based on only local information.  One way to solve such problems is to try all 

possible decision sequences. However time and space requirement is prohibitive. 

 DP reduces those possible sequences not leading to optimal decision. 

Dynamic programming approaches 

 To solve a problem by using dynamic programming: 

o Find out the recurrence relations.  

 Dynamic programming is a technique for efficiently computing recurrences 

by storing partial results.  

o Represent the problem by a multistage graph. 

o In summary, if a problem can be described by a multistage graph, then it can be 

solved by dynamic programming 

Forward approach and backward approach: 
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o If the recurrence relations are formulated using the backward approach, then the relations 

is solved beginning with the last decision. 

o If the recurrence relations are formulated using the forward approach, then the relations 

are solved starting from the beginning until we each to the final decision 

              Example: 0-1 knapsack problem 

0-1 Knapsack problem 

 The problem is called a “0-1” problem, because each item must be entirely accepted or 

rejected. Just another version of this problem is the “Fractional Knapsack Problem”, where 

we can take fractions of items. 

 Given a knapsack with maximum capacity W, and a set of n items with weight  w1, w2, , wn 

and benefit value p1, p2 , …,  pn (all wi, pi & W are integer values), the problem is: 

o How to pack the knapsack to achieve maximum total value of packed items? That is: 

  

0/1 Knapsack: Brute-force approach 

 In solving this problem with a straightforward algorithm, for the n items, we consider 2
n
 

possible combinations of items. We go through all combinations and find the one with the 

best benefit/profit and with total weight less or equal to W 

o Running time - O(2
n
) 

Can we do better?  

 Yes, with an algorithm based on dynamic programming approach such as backward or 

forward. Assuming Si(W) is the optimal solution, we can recursively obtain S1, …, Sn 

following: 

 Backward approach: solves the recurrence relations beginning with the last decision. 

N.B. If S0(W) = 0, "w  ≥ 0 and S0(W) = -inf, "w  ≤ 0 

  Si(W) = max {Si-1(W), Si-1(W - wi) + Pi} 

Forward approach: solves the recurrence relations starting from the beginning until we 

reach to the final decision. 

  Si(W) = max {Si+1(W), Si+1(W - wi+1) + Pi+1}  
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Note: If Sn(W) = 0, "w  ≥ 0 and Sn(W) = -inf, "w  ≤ 0 

Example: consider the case in which n=3, W=6, (w1, w2, w3) = (2, 3, 4), and (p1, p2, p3) = (1, 2, 

5). 

0/1 Knapsack: DP approach 

 To solve a knapsack problem we need to carefully identify the sub-problems. If items are 

labeled 1…n, then a sub-problem would be to find an optimal solution for Sk = {items labeled 

1, 2, .. k} along with w, which will represent the exact weight for each subset of items 

 The sub-problem then will be to compute S[k,w] 

 

 

 It means, that the best subset of Sk that has total weight w is one of the two: 

First case: wk>w. Item k can‟t be part of the solution, since if it was, the total weight 

would be > w, which is unacceptable 

Second case: wk <=w. Then the item k can be in the solution, and we choose the case 

with greater value 

0-1 Knapsack Algorithm 

procedure DPknapsack(P[], w[], W, n) 

    for w = 0 to W do 

     S[0,w] = 0 

    for i = 1 to n do 

     S[i,0] = 0  

     for w = 1 to W do 

    if wi <= w then // item i can be part of the solution 

   if pi + S[i-1,w-wi] > S[i-1,w] then 

    S[i,w] = pi + S[i-1,w- wi] 

   else 
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    S[i,w] = S[i-1,w] 

    else S[i,w] = S[i-1,w]  // wi > w  

end procedure 

 Running time is reduced from O(2
n
) (brute force approach) to O(n*W) 

Example: 

 Let‟s run our algorithm on the following data: n = 4 (# of elements) W = 5 (max weight) 

Elements (weight, profit): (2,3), (3,4), (4,5), (5,6) 

   

The shortest path in multistage graphs 

 Find the shortest path in multistage graphs for the following example? 

                       

 The greedy method cannot be applied to this case:  (S, A, D, T)    1+4+18 = 23. The real 

shortest path is: (S, C, F, T)    5+2+2 = 9.  

The shortest path 

o Given a multi-stage graph, how can I find a shortest path? 

 Let p(i,j)  denote the minimum cost path from vertex j to the terminal vertex T. 

Let COST(i,j) denote the cost of p(i,j) path. Then using the 

o Forward approach we obtain: 

                     COST(i,j) = min { COST(i+1,k) + c(k,j)} 
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                                                  (j,k) Є E                       k Є Vi+1  

o Backward approach: Let p(i,j) be a minimum cost path from vertex S to a vertex j in Vi . 

Let COST(i,j) be the cost of p(i,j).  

   COST(i,j) = min { COST(i,k) + c(k,j-1)}  

k Є Vi+1 

(j,k) Є E 

Note: If (i, j) is not element of E then COST(i, j) = inf. 

Algorithm 

procedure shortest_path (COST[], A[], n)  

  //cost[i,j] is the cost of edges[i,j] and A[i,j] is the shortest path from i to j 

  //cost[i,i] is 0.0 

 for i = 1 to n do  

    for j = 1 to n do 

  A(i, j) := COST(i, j) //copy cost into A 

 for k = 1 to do  

       for i = 1 to do  

    for j  = 1 to do   

   A(i, j ) = min(A(i, j), A(i,k) + A(k,j));  

     end for 

        end for 

 end for  

 return A(1..n,1..n) 

end shortest_path  

o This algorithm runs in time O( n
3
 ) 
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String editing 

o The problem is given two sequences of symbols, X = x1 x2 … xn and Y = y1 y2 … ym, transform 

X to Y, based on a sequence of three operations: Delete, Insert and Change, so that for 

every operation COST(Cij) is incurred. 

o The objective of string editing is to identify a minimum cost sequence of edit operation that 

will transform X into Y. 

Example: consider the sequences    X = {a a b a b} and Y = {b a b b}. Identify a minimum cost 

sequence of edit operation that transform X into Y. Assume change costs 2 units, delete and 

insert 1 unit. 

 (a) apply brute force approach 

 (b) apply dynamic programming 

Dynamic programming 

 The minimum cost of any edit sequence that transforms x1  x2 … xi  into y1 y2 … yj (for i>0 and 

j>0) is the minimum of the three costs: delete, change, or insert operations. The following 

recurrence equation is used for COST(i,j). 

                   

Example 

o Transform the sequences X = {a a b a b} and Y = {b a b b} with minimum cost sequence 

of edit operation using dynamic programming approach, Assume that change costs 2 

units, delete and insert 1 unit. 
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 The value 3 at (5,4) is the optimal solution 

 By tracing back one can determine which operations lead to optimal solution 

o Delete x1, Delete x2 and Insert y4 Or, Change x1 to y1 & Delete x4. 

Chapter 7 

Backtracking Algorithm 

Backtracking 

 It is a systematic way to search for a solution to a problem among all available options in a 

search space.  It does so by assuming that the solutions are represented by vectors (v1, ..., vm) 

of values and by traversing, in a depth first manner, the domains of the vectors until the 

solutions are found.  

o Often the problem to be solved calls for finding one vector that maximizes (or 

minimizes or satisfies) a criterion function P(x1, ..., xm).  

 We build from a partial solution of length k, v = (a1, ..., ak) and try to extend it by adding 

another element. After extending it, we will test whether what we have so far is still possible 

as a partial solution.  

o If it is still a candidate solution, great. If not, we delete ak and try the next element 

from Sk:  

Backtracking approach 

 An important requirement in backtracking is that there must be proper hierarchy in 

systematically searching for solutions so that sets of solutions that do not fulfill a certain 

requirement are rejected before the solutions are produced.  

o For this reason the examination and production of the solutions follows a model of 

non-cycle graph for which in this case we will consider as a tree. 

o It is easily understood that the tree (or any other graph) is produced during the 

examination of the solutions so that no rejected solutions are produced.  

o When a node is rejected, the whole sub-tree is rejected, and we backtrack to the 

ancestor of the node so that more children are produced and examined. 

The Queens Problem 

 Consider a n by n chess board, and the problem of placing n queens on the board without the 

queens threatening one another. 
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 The solution space is {1, 2, 3,…, n}
n
. The backtracking algorithm may record the columns 

where the different queens are positioned. Trying all vectors (p1, ..., pn) implies n
n
 cases 

queens threatening one another. 

 Noticing that all the queens must reside in different columns reduces the number of cases to 

n! 

 For the latter case, the root of the traversal tree has degree n, the children have degree n - 1, 

the grand children degree n - 2, and so forth.  

  

How backtracking works 

 As a bounding function we use if (x1, ..., xi) is the path to the current E-node (node being 

expanded), then all children nodes with parent-child labeling xi+1 are such that (x1, ..., xi+1) 

represents the chessboard configuration in which no two queens are attacking.  

 Start with the root node as the only live node. This become the E-node and the path is (). 

Generate one child (say 2). The path is now (1), which corresponds to placing queen 1 on 

column 1. 

 Node 2 becomes the E-node. Node 3 is then generated. If the node is attacked by the previous 

node, the path is immediately killed. Otherwise add to the path list (1, 2) and generate the 

next node. If the path cannot lead to an answer node then backtrack and try another path. 

4 - Queens 

 The problem is to place four queens on an 4 x 4 chessboard so that 

o No two attacks, i.e. no two of them are on the same row, column or diagonal.  
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Algorithm for n-queens 

 Let (x1, ..., xn) represent a solution in which xi is the column of the ith row where the ith 

queen is placed. All xi‟s be distinct since no two queens can be placed in the same column. 

o Computing time  = 0 + 1 + 2 + … + (n-    

Algorithm  

procedure NQueens(k,n) 

 for i = 1 to n do 

  if place(k,i) then 

   x[k] = i 

   if k = n then print (x[1:n]) 

   else NQueens(k+1, n) 

  end if 

 end for 

end NQueens 

procedure place(k,i) //returns true if a queen is placed at (k,i)  

 for j = 1 to k-1 do 

  if (x[j] = i) or ((abs(x[j] - i) = (abs(j - k)) then  

   //two in the same column or in the same diagonal 

   return false 

 return true 

end place 

Traveling Salesperson Problem (TSP) 

 The problem assumes a set of n cities, and a salesperson which needs to visit each city 

exactly once and return to the base city at the end. The solution should provide a route of 

minimal length. The traveling salesperson problem is an NP-hard problem, and so no 

polynomial time algorithm is available for it.  
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o Given an instance G = (V, E) the backtracking algorithm may search for a vector of 

cities (v1, ..., v|V |) which represents the best route.  

o The validity criteria may just check for number of cities in the routes, pruning out 

routes longer than |V |. In such a case, the algorithm needs to investigate |V ||V | 

vectors from the solution space. 

  

   Traveling Salesperson    

 On the other hand, the validity criteria may check for repetition of cities, in which case the 

number of vectors reduces to |V |!.  

o That is, complexity = n! 

  

 Given the following problem, starting from city „a‟ apply backtracking algorithm to find the 

shortest path to visit all cities (and back to city a).  

  

 The route (a, b, d, c) is the shortest one with length = 51. Can we reach to this decision using 

backtracking algorithm? 

Branch and Bound Algorithm 

Approach  

o Track best current solution found  

o Eliminate partial solutions that cannot improve upon best current solution 
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o Reduces amount of backtracking 

 Not guaranteed to avoid exponential time O(2
n
) 

Example: Travel Salesperson 

 Branch and bound algorithm for TSP 

o Find possible paths using recursive backtracking 

o Track cost of best current solution found 

o Stop searching path  

 if cost > best current solution 

o Return lowest cost path  

 If good solution found early, can reduce search 

 May still require exponential time O(2
n
) 

 


