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CHAPTER-3

LIMIT STATE DESIGN OF BEAM FOR FLEXURE AND SERVICEABILITY LIMIT STATE

3.1. Basic Assumptions:
Assumption made for determining ultimate resistance of a member for flexure and axial force according to EBCS-2/95 are,
1. A section which is plane before bending remains plane after bending. This implies strains across section are linearly varying. This is true for most section of flexural member except deep beam where shear deformation is significant.
2. The reinforcement is subjected to the same variations in the strain as the adjacent concrete. This implies there is no slip between steel bars and the adjacent concrete. This is possible if adequate development length of bars and concrete cover are provided.   
3. Tensile strength of concrete is ignored. The reinforcement assumed to takes all the tension due to flexure.
4. 

The maximum compressive stain in concrete when a section complete plastic deformation is taken to be in bending (simple or compound) in axial compression
5. The maximum tensile strain in the reinforcement is taken to 0.01. This limit assumed to limit crack-width with in tension zone of section to the acceptable limit.  
6. Either idealized parabola-rectangle stress distribution or equivalent rectangle stress distribution for concrete in compression zone given by code as shown below shall be used in derivation of design equation. 
The ultimate resistance of section may be determined using equilibrium of both internal and external forces based on the stress block obtained from the basic assumption.
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                                          Analysis versus Design

Two different types of problems arise in the study of RC.
1.	Analysis: Given a cross-section, concrete strength, reinforcement size, location, and yield strength, and compute the resistance or capacity.
2.	Design: Given a factored load effects such as Msd, and select a suitable cross-section, including dimensions, concrete strength, reinforcement, and so on.

Although both types of problems utilize the same fundamental principles, the procedure followed is different in each case. Analysis is easier as all the decisions concerning reinforcement location, beam size and so on have been made and it is only necessary to apply the strength calculation principles to determine the capacity. Design, on the other hand, involves the choice of the beam sizes, material strengths and reinforcement to produce a cross-section and structural system that can resist the loads and moments which will be imposed on it. As the analysis problem is easier, most sections in this and other chapters start with analysis to develop the fundamental concept and then move to consider design.
The fundamental principles involved in the analysis and design of reinforced concrete beams are as follows.
· At any cross section there exist internal forces which can be resolved in to components normal and tangential to the section. 
· The normal components are known as the bending stresses (tension on one side of the neutral axis and compression on the other), and their function is to resist the bending moment at the section. 
· The tangential components are known as the shear stresses, and they resist the transverse or shear forces.
Basic principles and assumptions in flexure theory of RC

Although the method used in the analysis of RC beams are different from those used in the design of homogenous beam such as structural steel, the fundamental principles are essentially the same. Accordingly, the basic equations for the flexural design of beams and slabs are derived based on the following basic principles and assumptions at ultimate limit state. The derived equations are then used to develop design Tables and Charts for various grades of concrete and steel.
1. Internal stress resultants such as bending moments, shear forces etc. at any section of a member are in equilibrium with the external action effects.
2. Plane sections before bending remains plane after bending 
3. The strain in the reinforcement is equal to the strain in the concrete at the same level
4. The tensile strength of concrete is neglected
5. The stresses in concrete and reinforcement can be computed from the strains using their - curves.
6. The behavior of the concrete under compression is as shown in Fig. 3.3. The equivalent rectangular stress block as recommended by EBCS 2 is shown in Fig.  (Concrete is assumed to fail when the compressive strain reaches its ultimate value. The compressive stress-strain curve for concrete may be assumed to be rectangular trapezoidal, parabolic or any other shape,(which is easier for computation) provided that it adequately predicts the test results).
7. The stress -strain relationship of the reinforcement is as shown in Fig.3.3
8. The strain diagrams at the ultimate limit state is as shown in Fig. 3.4
a)	The maximum compressive strain in the concrete is taken to be
-	0.0035 in bending
-	0.002 in axial compression
b)	The maximum tensile strain in the reinforcement is taken to be 0.01

For manual calculation, for the sake of simplicity, the simplified rectangular stress block can be used whereas design Charts and Tables are based on the parabola-rectangle stress distribution diagram.

Strain Distribution at the Ultimate Limit State

The entire range of strain distribution at the ultimate limit state is assumed to pass through one of the three points A, B or C as shown in Fig. 3.4 (reproduce from EBCS-2). This resulted in five possible zones with respect to the limiting values of the ultimate strains in concrete and steel as shown in the same figure. 

Each zone is characteristic of the particular type of loading on the section and may be described as follows:

Zone 1 - The section is subjected to a tensile load with a small eccentricity.
Zone 2 - The section is subjected to an axial load combined with bending that will cause the strain in the steel to reach the maximum st = 0.01 while the strain in the concrete c is less or equal to its maximum value of cu = -0.0035.
Zone 3 - The section is subjected to axial load and large bending moments. The tensile steel strain is in the range 0.01  st  sy while the concrete strain reaches cu = -0.0035.
Zone 4 - The section is subjected to axial load with moderate eccentricity. The tensile steel strain is less than the yield value sy while the concrete strain reaches cu = -0.0035.
Zone 5 - The section is subjected to predominantly compressive load with small eccentricity.
[image: ]
                                          
 Fig. 3.4 Parabolic-rectangular stress-strain diagram for concrete in compression
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                                                               Fig. 3.5 Rectangular stress diagram
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                                           Fig. 3.6 Stress-strain diagram for reinforcing steel



3.2   DESIGN OF RECTANGULAR BEAMS

3.2.1 Singly Reinforced Rectangular Sections
Consider the stress & strain distribution for a rectangular cross section of singly reinforced concrete beam shown below.

 (
Figure 
3
.1
   Flexural Stress distribution
 in singly reinforced rectangular RC beam
)









In accordance with LSD method, at ULS of collapse:-	
· εcapproaches εcu = 0.0035
· The reinforcing steel shall yield first ([image: ])

	 Ductility is ensured by means of under reinforcement.
· At balanced failure simultaneous failure of the two materials (Concrete & Steel) occurs.
Let x b be the depth to the NA at balanced failure. From the strain relation,
[image: ][image: ]
		
 If x < x b  Steel yields first
 If x > x b  Crushing of concrete takes place first.
 FH = 0    Ts = CC   Asfyd = 0.8 xb b fcd
Substituting for xb and simplifying,
[image: ]   (a steel ratio for balanced case)
However, for ductility purpose the steel ratio ρ may range b/n 0.75 ρb to 0.9 ρb, and in some cases as low as 0.5 ρ b in ACI code, but in EBCS-2 ductility is ensured by keeping kx max = 0.448 for 0% redistribution or even less for redistribution > 0%.
Rewriting the force equilibrium
byfcd = Asfyd  b * 0.8x fcd  =  ρbdfyd


	Where
Mc = 0Md = Asfyd (d - 0.4x)
Substituting the value of x and simplifying
Md = 0.8 bd2fcdkx (1-0.4kx)

When the above equation is solved for kx,     
wherec1= 2.5  , c2 = 0.32fcd ,   kxmax = 0.448 for 0% redistribution.
The section capacity for single reinforcement case may be computed from  Mt = 0, when kx>kxmax
Mu  = 0.8bx fcd (d-0.4x)	x = kxmax d
	 = 0.8bd2fcdkxmax (1 -0.4 kxmax)

3.3 Tension, Compression and balanced Failure

Depending on the amount of reinforcing steel in a beam, flexural failures may occur in three different ways.

A. Tension failure 

If the steel content of the section is small, the steel will reach the yield strength fyd before the concrete reaches its maximum capacity. Such a beam is said to be under reinforced. With further loading, the steel force remains constant at Asfyd and the strains in the remaining compression zone of the concrete increases to such a degree that crushing of concrete, the secondary compression failure, follow at a load slightly larger than that which causes the steel to yield (i.e. Although failure is initiated by yielding of tension steel, the steel does not fracture at the flexural strength of the section unless the steel content is extremely small). Such yield failure is gradual and is preceded by visible signs of distress, such as the widening and lengthening of cracks and the marked increase in deflection. In the final loading stages, the beam deflected extensively and developed wide cracks. This type of behavior is said to be ductile since the moment curvature or load-deflection diagram has a long plastic region. If a beam in a building fails in a ductile manner, the occupants of the building have warning of the impending failure and hence have an opportunity to leave the building before the final collapse, thus reducing the consequence of collapse. 
 
B. Compression failure 

If the steel content of the section is large, the concrete may reach its maximum capacity before the steel yields. Such a beam is said to be over reinforced. In such a case the neutral axis depth increases considerably, causing an increase in the compressive force. The flexural strength of the section is reached when the strain in the extreme compression fiber of the concrete is approximately 0.0035. The section fails suddenly in a brittle fashion with out warning of the failure as the widths of the flexural cracks in the tension zone of the concrete are small, owing to the low steel stress. 

Compression failure through crushing of the concrete is sudden, of an almost explosive nature, and occurs without warning.

C. Balanced failure 

At a particular steel content, the crushing of concrete and yielding of reinforcement occur simultaneously. Such a beam has balanced reinforcement. This failure also exhibits a brittle type of failure which marks the boundary between ductile tension failure and brittle compression failure.

Thus it is good practice to dimension flexural members in such a manner that when overloaded, failure would be initiated by yielding of the steel rather than by crushing of the concrete.

             
                          Cover to Reinforcements
· The concrete cover is the distance between the outermost surface of reinforcement (usually stirrups) and the nearest concrete surface.
· The thickness of cover required depends both upon the exposure conditions and on the concrete quality.
· To transmit bond forces safely, and to ensure adequate compaction, the concrete cover should never be less than:
(a)  or n  ( 40mm), or
(b) ( + 5mm) or (n + 5mm) if dg > 32mm
    Where     = the diameter of the bar.
                  n = the equivalent diameter for a bundle.
                  dg = the largest nominal aggregate size.
Minimum cover
	Type of exposure
	Mild
	Moderate
	Sever

	Min. cover (mm)
	15
	25
	50



Durability and control of crack width is related with finishing and provision of adequate cover to reinforcement.  Nominal cover for structural elements located in the interior of the building with dry environment and mild condition is 15 mm, example slab; humid environment with moderate exposure is 25 mm, example beam; severe environment is 50 mm, example footing.

Spacing of Reinforcements
· The clear horizontal and vertical distance between bars shall be at least equal to the largest of the following values.
(a) 20 mm
(b) The diameter of the largest bar or effective diameter of the bundle
(c) The maximum size of the aggregate dg plus 5mm.
· Where bars are positioned in separate horizontal layers, the bars in each layer should be located vertically above each other and the space between the resulting columns of the bars should permit the passage of an internal vibrator.

Effective Span Length
· The effective span of a simply supported member shall be taken as the lower of the following two values:
(a) The distance between the center lines of supports.
(b) The clear distance between the faces of supports plus the effective depth.
· The effective span of a continuous element shall normally be taken as the distance between the center lines of the supports.
· For a cantilever, the effective span is taken to be its length, measured from.
(a) The face of the supports, for an isolated, fixed ended cantilever.
(b) The center line of the support for a cantilever which forms the end of a continuous beam.

Deflection limits are assumed to be satisfied when the minimum effective depth for a particular member is 

                            
where fyk is equal to character strength of reinforcement, Le is the effective span (the shorter span in case of two way slab), is constant, a function of restraints given below).




Table – values of 
	Member
	Simple
	End span
	Interior span
	cantilever

	Beams
	20
	24
	28
	10

	Slabs:
Span ratio 2:1
	
25
	
30
	
35
	
12

	Span ratio 1:1
	35
	40
	45
	10


       * For intermediate values – interpolation.

Design Using Chart
In the general design chart no.1 (EBSC 2, 1995), all values necessary for design are entered as a function of the relative moment about the center of the tension steel. This diagram can be used for any concrete or steel grade. In the zones of negative steel strains (sections entirely under compression), however no accurate reading is possible. For that zone the use of interaction diagrams can be used.

The following characteristic values are entered as a function of the relative moment:


 the relative neutral axis depth

 the relative lever arm b/n the internal forces

 the relative compression force in the concrete in the ultimate limit state
εc = compressive strain in outer most concrete fiber
εs1 = strain intension reinforcement
εs2 = Strain in compression reinforcement
[bookmark: _GoBack]The upper limits of the design values of the ultimate relative moment capacities (without compression reinforcement) about tension steel, for 0%, 10 %, 20%, and 30% moment redistribution are shown by the broken vertical lines μ*u,s = 0.295, 0.252, 0.205, and 0.14             respectively. Compliance with these upper limits implies compliance with the upper limit specification for the relative neutral axis depth, Kx, thus ensuring ductile response of the cross section. For the cases that μsd,s > μ*u,s, ductile behavior can be achieved by providing compression reinforcement.

The area of reinforcement required is determined from the following equations:

If  μsd,s ≤ μ*u,s  , compression reinforcement is not required and


 
If  μsd,s > μ*u,s ,  compression reinforcement is required and



 



· Starting from a strain profile in ULS: αc, kx, kz, μRd etc. are determined.
· In design the chart is entered by equating μsd = μRd, then kz is read and As1 is determined from:
                                 As1 = Msd / (kz d fyd)  
· Another advantage is the possibility of handling axial forces in addition to bending. The horizontal relative moment axis is designated as μRd,s for this reason should an axial force be present, then it is shifted to the location of tension reinforcement and the associated moment is added to Msd to give Msd,s.

 Msd,s = Msd – Nsd ye  (Nsd is +ve when tension) .



                              3.4 Doubly Reinforced Rectangular Beams

Doubly reinforced sections contain reinforcement both at the tension and at the compression face. Compression steel may be required in design for the following reasons.

a. When either architectural limitation restrict the beam web depth at the mid span, or the mid span section dimensions are not adequate to carry the support negative moment even when the tensile steel at the support is sufficiently increased. In such cases about one-third to one-half of the bottom bars at mid span are extended and well anchored at the supports to act as compression reinforcement.
b. To increase the ductility of the section at flexural strength. It is evident that if compression steel is in the section, the neutral axis depth will be smaller as the internal compressive force is shared by the concrete and the compression steel.
c. To reduce deflection of beams at service loads
d. To support the shear reinforcement (stirrups)


 Fig. 3.15 Doubly reinforced beam design

In the analysis or design of beams with compression reinforcement As’, the section is theoretically split in to two parts, as shown in Fig. 


 Fig. 3.16 doubly reinforced beam design (singly reinforced part plus contribution of compression reinforcement)

The two parts of the solution comprise:

 (1) The singly reinforced part involving the equivalent rectangular stress block with the area of tension reinforcement being (As-As’); and

 (2) The two areas of equivalent steel As’ at both the tension and compression side to form the coupleTs2 and Cs as the second part of the solution. It can be seen from Fig. that the total resistance moment Mrd = Md1 + Md2, that is, the summation of the moments for Parts 1 and 2 of the solution.

The analysis of such section is best carried out by assuming the compression reinforcement bars to be yielded and check for compatibility of strain to verify whether the compression steel yielded or not and use the corresponding stress in the steel for calculating the forces and moments. 


Let Md be the total design bending moment which this section sustains. Then
Md = Md1 + Md2
As =As1 + As2
Where Md1 = is the bending moment carried by the concrete and the corresponding steel which may be obtained using case of singly reinforced section.
Md1 = 0.8bd2fcdp1m(1-0.4p1m)   and As1 = p1bd

If the process involved is design: p1 = pmax = 0.75pb
If the process involved is analysis p1 = (As-As’) /bd < pmax
It can be seen from Fig. that the total resisting moment Mrd,t = Mrd1 + Mrd2, that is, the summation of the moments for parts 1 and 2 of the solution.

From part I: 

Force equation

T1 = C1

As1fyd = (As-As’)fyd = 0.8xfcdb


 

Moment equation

Taking the moment about the centroid of the compression zone:

Md1 = As1fyd(d - 0.4x) = (As - As’)fyd(d - 0.4x) 


Where  
From part II: 

Force equation

As’ = As2 = (As - As1)

T2 = C2 = As2fyd

Moment equation

Taking the moment about the tension reinforcement:

Md2 = As2fyd(d - d’)

Adding the moments for parts 1 and 2 yields:

Mrd = Md1 + Md2

= (As - As’)fyd(d - o.4x) + As’fyd(d - d’)

This equation is valid if As’ yields. Otherwise the beam has to be treated as a singly reinforced beam neglecting the compression steel or one has to find the actual stress fs’ in the compression reinforcement  As’ and use the actual force in the moment equilibrium equation.
  
 3.5 Flanged Beams (T and L-beams)

When concrete roofs or floor slabs are cast monolithically with supporting beams, T or L are created as shown in fig. below. Forms are built for beam soffits and sides and for the underside of slabs, and the entire construction is poured at once, from the bottom of deepest beam to the top of the slab. It is evident, therefore, that a part of the slab will act with the upper part of the beam to resist longitudinal compression. The resulting beam cross-section is T or L-shaped rather than rectangular.
[image: ]

Fig.3.17 Flanged beams

Effective flange width 

When the spacing between the beams is large, it is evident that simple bending theory does not strictly apply because the longitudinal compressive stress in the flange will vary with distance from the beam web, the flange being more highly stressed over the web than in the extremities (see Fig.) . This variation in flange compressive stress occurs because of shear deformations in the flange (shear lag), which reduces the longitudinal compressive strain with distance from the web. 

[image: ]

Fig. 3.18 Distribution of maximum flexural compressive strength.

In design, to take the variation of compressive stress across the flange into account, it is convenient to use an effective width of flange that may be smaller than the actual width but is considered to be uniformly stressed (see Fig.)




Fig. 3.19 Flexural compressive stress distribution assumed in design


Effective width, EBSC 2, 1995

According to EBCS – 2 (Art. 3.7.8), the effective width bf shall not exceed the lesser of :

For T beams:    
a) thickness of the web plus one- fifth of the effective span or
b) the actual width of the top slab (extending b/n the centers of the adjacent spans)
For L beams:    
a) thickness of the web plus one- tenth of the effective span or
b) Thickness of the web plus half the clear distance to the adjacent beam.           

For analysis when a great accuracy is not required, for example, continuous beams in buildings a constant effective width (beff) may be assumed over the whole span. 

[image: ]
The effective width for a symmetrical T- beam may be taken as :

beff = bw+1/5lo < b

And for an edge beam, that is with floor on one side only

beff = bw +1/10lo < bi + bw (i = 1 or 2)

The distance lo between points of zero moment may be obtained from the figure below for typical cases:

[image: ]

The following conditions should be satisfied

i) The length of the cantilever should be less than half the adjacent span
ii) The ratio of adjacent spans should lie between 1 and 1.5

Analysis and Design of Flanged Beams

The basic principle used for analysis and design of rectangular beams are also valid for the flanged beams. The major difference between the rectangular and flanged sections is in the calculation of compressive force Cc. Depending on the depth of the neutral axis, X, the following cases can be identified.

a) Depth of neutral axis X less than flange thickness hf, see Fig. 

This case can be treated similarly to the standard rectangular section provided that the depth 0.8x of the equivalent rectangular block is less than the flange thickness. The flange width bf of the compression side should be used as the beam width in the analysis or design.




Fig.3.20 T- beam section with neutral axis within the flange

Force equilibrium gives:

As1fyd = 0.8xfcdbf


 

Moment equilibrium gives:

Mrd = As1fyd(d - 0.4x) 


Where  
General design chart can be used.

b) Depth of neutral axis X Larger than flange thickness hf, see Fig. 

In this case, x > hf, the depth of the equivalent rectangular stress block 0.8x could be smaller or larger than the flange thickness hf. If x is greater than hf and 0.8x is less than hf, the beam could still be considered as a rectangular beam for design purpose. Hence the design procedure explained above is applicable to this case.  

If both x and 0.8x are greater than hf, the section has to be considered as a T-section. This type of T-beam can be treated in a manner similar to that for a doubly reinforced rectangular section (see Fig.).


 Fig.3.21 T- beam section with neutral axis in the web

As a computational device, it is convenient to divide the total tensile steel into two parts.

The first part, Asf, represents the steel area which, when stressed to fyd is required to balance the compressive force in the overhanging portion of the flange. Thus,

Asf* fyd = fcd (bf - bw)hf

 Asf =  fcd*hf(bf-bw)/fyd

The partial resisting moment capacity as a result of these forces:

Mult1 = Asf* fyd (d - hf/2)

The remaining steel area (As – Asf), at a stress fyd is balanced by the compression in the rectangular portion of the beam.

From force equilibrium:

 (As- Asf)fyd = fcd ( bw*0.8x)

From Moment equilibrium:

 Mult2 = (As - Asf)fyd (d - 04x)

The total resisting moment, taking moments of the rectangles about the tension steel, gives:

 Mrd = 0.8xfcdbw(d-0.4x) + fcd(bf-bw)hf(d-0.5hf)

General design chart is not applicable.

The resultant compressive force acts at the centroid of the T-shaped compressed area.

From force equilibrium

fcd(0.8xbw + hf(bf-bw)) = Asfyd



The total moment

Mrd = 0.8xfcdbw(d-0.4x) + fcd(bf-bw)hf(d-0.5hf)

Note: 
· When the T-section is subjected to bending moment and tension is produced in the flange portion, the can be considered as a rectangular with b = bw for design purpose.

· For T-beam sections, when the flexural strength is reached, the depth to the neutral axis is generally small because of the large flange area. Therefore; a tension failure generally occurs and it is usually safe to assume in analysis that fs = fyd; and ck when the flexural strength is reached check the validity of the assumption when the neutral axis depth is found.

Note: the problem at hand is one of the following

(i) Analysis:
                 As is given
                 Determine Asf
                 Determine As-Asf
                 Determine N.A depth from force equilibrium.
(ii) Design:
                      If the N.A. is within the flange 
                       Rectangular section (use the general design chart)
                      If the N.A. lies in the web:
                      Determine Asf and Mult1
                      Determine Mult2 = Msd - Mult1
                      Determine the required amount of reinforcement from the two equations.         (Unknowns are As and x.)

Note: For -ve bending moment T- beams are not analyzed. It is rather analyzed (designed) as rectangular beams.
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Figure 3.5 Flanged beams
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(b) Flexural compressive stress distribution assumed in design.
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For analysis when a great accuracy is not required, for example, continuous beams in buildings a constant
effective width (bef) may be assumed over the whole span. The effective width for a symmetrical T beam may
be taken as

1
beﬂ=bw+'5—|0 <b
and for an edge beam, that is with floor on one side only
1 H
besii = by + 10 lo < b + b, (i=10r2)
The distance |, between points of zero moment may be obtained from the figure below for typical cases:
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The following conditions should be satisfied:
@ The length of the cantilever should be less than half the adjacent span
(i) the ratio of adjacent spans should lie between 1 and 1.5

The effective span (les) may be calculated as follows
let = Ih + a3 + @

where |, is the clear distance between the faces of the supports and & and a, are as in the figure be!aow
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(d) isolated cantilever (e) continuous cantilever (f) bearing provided
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