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Preface

This book is aimed at researchers in the pharmaceutical industry and 
in academia with interest in drug development and, hence, in the 

design, conduct, analysis, and reporting of clinical trials or observational 
studies intended for regulatory purposes. As the title suggests, the primary 
focus of the book is on the intersection of statistics and regulatory affairs in 
the context of drug development. While the monograph is intended to be 
of primary interest to medical researchers and regulatory personnel, it may 
also serve as a useful reference for graduate students in the health sciences 
who wish to get an understanding of the statistical and regulatory issues 
that commonly arise in the course of drug development. The material is 
mostly written at a level that is accessible to readers with an intermediate 
knowledge of statistics.

The book consists of stand-​alone chapters and sections, with each section 
dedicated to a specific topic in regulatory affairs and statistics. In each case, 
the authors have made a conscious effort to provide a survey of the relevant 
literature and to highlight emerging and current trends and guidelines for 
best practices, when the latter were available.

Chapter  1 highlights basic statistical and regulatory issues that must 
be addressed in the design, analysis, and reporting of clinical trials. In 
particular, due attention is paid to the role of regulations and guidance 
documents, and the anticipated regulatory and statistical interactions 
throughout the drug development continuum. Reference is also made to 
the evolving role of the statistician, having increasing impact and visibility, 
in relation to the changing regulatory and healthcare landscapes. It is also 
underscored that the prevailing emphasis on Big Data, modern analytics, 
and precision medicine will continue to present interesting challenges and 
opportunities both to regulatory scientists and statisticians.

The primary purpose of Chapter  2 is to provide a thorough discus-
sion of major statistical issues that commonly arise in the course of drug 

  

 

 



   

xxii ◾  Preface

development and regulatory interactions. The section on multiplicity 
outlines measures that should be taken to ensure the validity of inferential 
results that are intended to be the basis for regulatory decision-​making. In 
a separate section, a thorough review of best practices is provided to handle 
missing values, which are ubiquitous in clinical trials, with special refer-
ence to pertinent guidelines and the emergent topic of estimands. While 
superiority trials are common to support drug approval, there are situ-
ations where it is essential to conduct non-​inferiority studies. The regula-
tory requirements and underlying principles of such trials are summarized, 
and suggestions are provided relating to the salient points to be considered 
for both efficacy and safety assessment. In light of the increasing focus to 
accelerate drug development with speed and efficiency, a summary of a few 
commonly used novel approaches is provided, including adaptive and flex-
ible designs, enrichment studies, and studies conducted under the so-​called 
master protocols. Other topics of regulatory and statistical import covered 
in Chapter 2 include Bayesian approaches, issues with subgroup analysis, 
and the assessment of benefits and risks of pharmaceutical products.

Chapter  3 highlights the role of the statistician in the course of drug 
development, with especial emphasis on the skills required to ensure 
effective interactions with regulatory and other external bodies. In addition 
to the traditional tasks they perform in the design, analysis, and reporting 
of trials, statisticians now have an important seat in strategic decision-​
making, including advisory committee meetings assembled by regulatory 
bodies, evaluation of interim data by safety monitoring groups, and port-
folio prioritization discussions by pharmaceutical executives.

Finally, the focus of Chapter  4 is mainly on trending topics in drug 
development, with emphasis on the current regulatory thinking and the 
associated challenges and opportunities. Although the experiences of 
pharmaceutical companies and regulatory bodies with some of the topics 
may be limited, there is a growing interest in embedding them in the 
current drug development paradigm. Notable examples include the role of 
patient-​reported outcomes and their use in fostering patient-​centric drug 
development, and the implication of the digital revolution toward advan-
cing personalized medicine.

While it is recognized that the various topics covered in our book may 
be available in the literature, including guidance documents issued by the 
US Food and Drug Administration and other regulatory agencies, to our 
knowledge, there is no comparable source that provides a coherent over-
view of the issues addressed in this book. It is, therefore, hoped that the 
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book will serve an essential purpose, presenting a lucid exposition of the 
interplay between regulatory science and statistics, and thereby contrib-
uting to the achievement of the overarching goal of bringing new medicines 
to patients that need them.

D.A., B.E., & M.G., Authors
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CHAP T ER  1

Fundamental Principles 
of Clinical Trials

1.1 � INTRODUCTION

As a highly regulated industry, biomedical research must meet strict 
requirements that are encapsulated in the form of regulations, guidelines, 
and best practices. The principles underlying these requirements are 
principles of good science in general and concern the advancement of public 
health through state-​of-​the-​science research, while safeguarding the rights 
and safety of study participants. In this section, we provide an overview of 
the statistical principles underpinning clinical trials intended for registra-
tion. Relevant literature on other aspects of medical research, including 
protection of trial subjects, investigator and sponsor responsibilities, 
quality assurance, and other operational requirements may be found else-
where (see, e.g., International Conference of Harmonization 1996; World 
Health Organization 2002). Although clinical trials are typically classified 
into phases I to IV, differing mainly in scope, objective, and methodology, 
they all share certain fundamental principles in terms of prespecification of 
relevant aspects of the trial in a protocol or Statistical Analysis Plan (SAP), 
data processing and analytical approaches, subject safety protection, and 
other operational procedures. Further, they all require the institution 
of quality assurance processes to guarantee the integrity of the trial and 
the accompanying results. It is also a requirement that results of phases     
I–​IV trials be appropriately summarized and interpreted in a study report, 
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highlighting the strengths and weaknesses of the trial findings, and their 
contributions to advance medical science and public health.

Phase I trials are primarily concerned with the assessment of the safety, 
tolerability, and pharmacokinetic (PK) profiles of the investigational agent 
using healthy volunteers. PK studies are especially conducted to assess 
how a drug is absorbed, distributed, metabolized, and excreted in a human 
body. In general, a key objective of Phase I research is the identification of 
the optimal doses for use in subsequent Phase II studies. The determin-
ation of a Maximum Tolerated Dose (MTD) with acceptable Dose Limiting 
Toxicity (DLT) is typically achieved using either a rule-​based or a model-​
based design. An example of the former is the conventional 3 + 3 cohort 
expansion design, in which dose escalation or de-​escalation decision is 
made with reference to the toxicity observed on the current group of three 
study participants assigned to a dose. Specifically, the dose is lowered if the 
current dose is considered toxic; otherwise, the current dose is maintained 
or escalated to the next level. On the other hand, a model-​based approach, 
such as the Continual Reassessment Method (CRM), involves fitting a dose-​
toxicity curve to estimate the MTD. Estimation of parameters associated 
with the curve may be performed either via the Maximum Likelihood (ML) 
or Bayesian framework. Although Phase I trials are relatively less complex 
than other phases, they can still pose certain operational and analytical 
challenges. Further, while the primary ethical consideration is to ensure 
that participants are not exposed to unsafe levels of the study drug, this 
assessment still involves a difficult benefit–​risk judgment. For example, in 
trials involving cancer immunotherapy, the traditional Phase I paradigms 
appear to be challenged, especially with respect to determination of patient 
eligibility, as well as the MTD and PK profiles of the drug (Postel-​Vinay 
et al. 2016).

In contrast, Phase II trials are typically conducted in a sample of the 
target patient population and aim at establishing preliminary evidence of 
efficacy and safety, and, in some cases, the optimal dose ranges. Phase II 
trials are often planned as two subphases (Phase IIA and IIB), depending 
on the complexity of the objectives and disease area. For efficiency reasons, 
Phase IIA trials may employ a single arm and a historical control group. 
This approach, while attractive, requires care to ensure minimization of 
bias associated with confounding factors and heterogeneity (Lara and 
Redman 2012). Phase IIB trials are intended to provide more definitive 
evidence to inform decisions to proceed into Phase III. As a result, a Phase 
IIB trial usually involves randomization and multiple arms, with a suitable 
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control group. In oncology, Phase II trials are customarily conducted using 
flexible, multistage designs, with prespecified minimax criteria (Kramar 
et al. 1996). Notably, while in a typical optimal two-​stage design the goal is 
to minimize the expected sample size under the null hypothesis, a minimax 
design targets minimization of the maximum sample size.

Phase III trials, generally conducted using randomized, double-​blind 
designs, are intended to provide relatively more definitive results relating 
to the short-​ and long-​term safety and efficacy of the drug under investi-
gation. Phase III trials are often referred to as confirmatory trials and are 
the critical trials in the regulatory approval process. Accordingly, these 
studies tend to be larger than the corresponding Phase I or II trials, and 
may pose additional operational and analytical complexities, depending 
on the number of participating sites, nature of study endpoints, and 
study procedures. When they are conducted in multiple centers, the 
trials require well-​established processes to ensure consistency of study 
conduct across the various sites. In particular, to ascertain the interpret-
ability of data pooled from the various centers, certain measures may 
need to be put in place, including periodic training of site personnel and 
establishment of committees charged with providing guidance for data 
collection, study endpoint evaluation, or other aspects of the conduct of 
the study.

With the ever-​rising cost of drug development, prolonged develop-
ment time, and dwindling number of new medicines achieving marketing 
authorization, there has been increased focus on novel approaches to clin-
ical development and trial design. This has particularly been the center-
piece of the Food and Drug Administration’s (FDA) Critical Path Initiative, 
launched with the aim of improving efficiency and reducing attrition rates. 
Proposed approaches under that framework include use of historical data, 
modeling and simulation, and trial designs, such as the seamless Phase II/​
III trials, having greater degrees of flexibility than those employed trad-
itionally. Although these novel approaches have tremendous potential 
to generate reliable information in a speedy manner, their implementa-
tion may require substantial quantitative work and operational efforts. 
Consequently, while there are cases of successful applications, routine use 
of the approaches has not yet been fully realized. In the traditional para-
digm, the efficacy of the drug in the targeted population along with the 
manner in which it can be safely administered should be established at 
the end of Phase III. The drug developer then submits the entire body of 
research in a New Drug Application (NDA) to the regulatory agencies.
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After a drug is approved and marketed, Phase IV trials are conducted 
to gather additional data on safety or to understand further the thera-
peutic value or alternative treatment strategies of the drug. In some 
instances, postmarketing studies may be conducted for a new indication 
or label enhancement. To achieve such objectives, which may also include 
claims about a new dosage or strength of the drug, or the way the drug is 
manufactured, the drug developer may file the so-​called supplemental new 
drug application or sNDA.

When the goal is to obtain data about a drug’s effectiveness, as used in 
the real world, or to evaluate resource utilization, non-​interventional (NI) 
studies are carried out in a naturalistic setting. In such studies the drug is typ-
ically prescribed in accordance with the approved label, and the healthcare 
providers perform only procedures required in routine practice. Thus, the 
effectiveness of a drug evaluated through NI studies can complement the effi-
cacy and safety data gathered in the restricted randomized controlled trials 
(RCTs) conducted for preapproval review by regulatory bodies. Other options 
include Phase IV studies that are intended for Post-​Marketing Surveillance 
(PMS) purposes, per regulatory requirement, and disease registries, which 
involve patients with common characteristics and collect ongoing data over 
time on selected outcomes of interest. These prospective observational studies 
can provide valuable data on various aspects of the drug, including safety and 
effectiveness, but require caution in the interpretation of the results. A major 
drawback of such studies is the potential for bias emanating from lack of 
randomization. In certain situations, large simple trials (LSTs) or pragmatic 
trials may be conducted as a hybrid between an RCT and NI study (Maclure 
2009; Patsopoulos 2011; Roehr 2013; Mentz 2016).

When it is desired to enhance administrative efficiency or minimize 
investigator bias, cluster randomization trials, in which the randomization 
unit is not the individual subject, but groups defined by suitable criteria, 
e.g., clinics or communities, have been proposed as a viable option (Donner 
and Klar 2004). From a statistical perspective, a major drawback of such 
studies is the loss in statistical precision relative to the corresponding RCT 
with the same number of subjects. Further, the analysis of data from such 
studies requires caution, since the techniques will need to take into account 
the intracluster correlation.

To ensure that the safety of study participants is protected and that the 
trial achieves the desired outcome, the sponsor should seek input from all 
applicable stakeholders, including patient advocates, key opinion leaders, 
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and drug regulatory bodies. In addition, reference should be made to rele-
vant guidance documents issued by regulatory agencies, especially when 
considering nontraditional trial designs or novel analytical approaches. 
In certain situations, it may also be essential to establish Data Monitoring 
Committees (DMCs) with a mandate to periodically assess the safety and 
scientific validity and integrity of clinical trials, or to make appropriate 
recommendations for changes in trial design or duration (Ellenberg et al. 
2002; US FDA 2006).

In the rest of this chapter, we highlight some of the general statistical con-
siderations that should be taken into account in the design, analysis, and 
reporting of clinical trials. In subsequent chapters, detailed descriptions of 
key statistical concepts will be provided, with particular reference to their 
importance in regulatory review and approval.

1.2 � GENERAL STATISTICAL CONSIDERATIONS

1.2.1  Statistical Analysis Plan

Along with the study protocol, the Statistical Analysis Plan (SAP) is an 
important document that serves a useful purpose to ensure the transparency 
and integrity of the design, analysis, and reporting of a clinical trial. While 
it is expected that every protocol will consist of a statistical methodology 
section (see, e.g., International Conference for Harmonization of Technical 
Requirements for Pharmaceuticals for Human Use [ICH] E9 1998), it is 
customary to document detailed aspects of the analytical approaches and 
the basis for interpreting the study outcome in a separate SAP.

At a minimum, the SAP should include a detailed description of the 
following elements: trial design, randomization, sample size determination, 
null hypothesis, primary and secondary endpoints, decision rules for final 
and any interim analyses, analysis populations, analysis methods, handling 
of multiplicity and missing values, and details of any additional analyses 
not specified in the study protocol (see, e.g., Gamble et al. 2017). To the 
extent possible, the SAP should be consistent with the study protocol, and 
any deviation from the protocol should be clearly stated and justified. It is 
also essential to finalize the SAP as early as possible, but no later than the 
time when clean and validated data are available for analyses.

With the growing emphasis on the transparency of the conduct 
and reporting of clinical trials, it may also be advisable, under certain 
circumstances, to make the SAP publicly available (Finfer and Bellomo 
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2009). Notably, the US National Institutes of Health Final Rule for Clinical 
Trials Registration and Results Information Submission (2016) specifically 
states the conditions under which the SAP may need to be posted. National 
Institutes of Health, Department of Health and Human Services. Final rule 
for clinical trials registration and results information submission: 42 CFR  
Part 11. https://www.federalregister.gov/documents/2016/09/21/2016-22129/
clinical-trials-registration-and-results-information-submission. Published 
September 21, 2016. Accessed August 10, 2029.

1.2.2  Trial Design

The success of a clinical trial to provide reliable data for decision-​making is 
heavily dependent on the choice of a design framework that is appropriate for 
the trial objectives, study population, operational feasibility, and the phase of 
the drug development cycle. For example, crossover designs are often desired 
in certain early-​phase trials, especially in comparative bioavailability and 
bioequivalence studies. While the main appeal of such designs is in the fact 
that each patient acts as his or her own control, their use may be limited to situ-
ations in which outcome measures can be observed in a short period of time, 
and where carryover effects may be minimal or could be managed by introdu-
cing a washout period. In later phases, the parallel group design is common, 
which invariably requires randomization, a priori specification of the mean-
ingful difference between treatments, adequate statistical power to detect that 
difference, and institution of measures to minimize any potential bias.

Novel study designs are now available to enhance the efficiency and prod-
uctivity of clinical trials. Adaptive designs permit modifications to various 
attributes of the trial based on analysis of data from subjects in the study, 
while ensuring the integrity of the trial is not compromised. The modifica-
tion may involve study procedures, including eligibility criteria, dose levels, 
duration of treatment, or statistical techniques. Some of the commonly used 
adaptive design methods include adaptive randomization, group sequential 
designs, sample size reestimation, adaptive dose-​finding designs, as well as 
biomarker-​adaptive seamless Phase II/​III trial designs (Chow et al. 2005). 
An important requirement in the implementation of these designs is the 
need to prespecify all the intended modifications and adaptations that will 
take place after the trial is initiated (see, e.g., FDA 2010 and EMA 2006). The 
areas where there is a critical need for novel design approaches include rare 
disease and oncology drug development. In oncology, for example, the so-​
called platform, basket, and umbrella studies as well as adaptive enrichment 
design strategies seem to be gaining increasing acceptance in recent times 
(Berry 2015). Such trials are intended to enhance efficiency, since they allow 
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the investigation of many combinations of drugs and targets simultaneously 
(Renfro and Sargent 2017). A detailed review of commonly used enhanced 
clinical trial designs will be provided in Chapter 2.

1.2.3  Randomization and Blinding

When implemented appropriately, randomization ensures protection 
against bias associated with systematic differences between treatment 
groups, generally arising from imbalances in confounding factors. It also 
permits application of formal statistical inference techniques to rule out 
treatment differences that are due to the play of chance. A common random-
ization approach is the so-​called fixed randomization, in which treatment 
assignment is based on sequences determined before the start of the trial. 
Fixed randomization may be simple or stratified (or blocked). While strati-
fication may appear appealing in terms of ensuring balance, the operational 
burden may make the benefits less attractive relative to simple randomiza-
tion (Schultz and Grimes 2002). In other situations, randomization may 
also be performed adaptively, adjusting for any imbalances in the course of 
the trial, using predefined prognostic factors (an approach sometimes called 
minimization). When practically feasible, blinding of the researchers and 
study subjects may be important to minimize the impact of bias associated 
with the expectations of study participants as well as investigators. Blinding 
could also improve compliance and enhance patient engagement (Schultz 
and Grimes 2002). As reported in Boutron et al. (2006), inadequate blinding 
could result in substantially large treatment effects. It is therefore essential to 
ensure that the blinding method is reliable, including, when possible, use of 
treatments identical in appearances or mode of administration.

The procedure used for randomization, and the blinding techniques 
should be explicitly stated in the study protocol and in subsequent reports 
to help regulators and readers evaluate the adequacy of the measures taken 
to minimize bias. In addition, there should be a clear statement of the pro-
cess for breaking blind, if applicable, and the accessibility of the treatment 
assignment information to various stakeholders associated with the trial.

1.2.4  Statistical Methodology

The statistical methods intended for the analysis of the primary and sec-
ondary endpoints are expected to be specified in the study protocol or SAP 
and executed as planned. In choosing a model for the primary or secondary 
analysis, several factors should be taken into account. First, the model 
should be in consonance with the study design, randomization scheme, 
and the known properties of the outcome variables. In addition, one should 
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consider the need for the inclusion of any covariates in the model; and, if so, 
how to handle interactions. Further, sufficient details should be provided 
up front about the imputation of missing values, especially when there are 
repeated measurements on the outcome variable, and any adjustment that 
may be needed to address multiplicity issues, if applicable.

In practice, there may be deviations from the assumptions underlying 
the prespecified analytical strategies. It is therefore important to plan sen-
sitivity analysis to ensure the validity of the assumptions and the robust-
ness of the findings under plausible scenarios. The approaches used for any 
sensitivity analyses should address the same underlying question or study 
objective as the initial or primary analysis.

When interim analyses are anticipated, the frequency of analysis, the 
purpose, and the approach to be used to control Type I error rates are 
important factors to consider in advance. In terms of design, it is customary 
to consider the group sequential approach, as it provides operational con-
venience and efficiency. Stopping trials early for clear efficacy should be 
considered in the context of improved estimation and additional safety 
information accrued if the trial continues. However, in certain situations, 
other adaptive approaches, such as the randomized play-​the-​winner rule, 
may also be useful (Rosenberg 1999). In any case, appropriate processes 
should be put in place for monitoring the study and review of the interim 
results to ensure the integrity of the trial and credibility of the results (see, 
e.g., Ellenberg et al. 2002; FDA 2006).

When the treatment effect is positive in a clinical trial the implied infer-
ence is about the overall population as defined in the protocol. However, 
there is growing expectation from regulatory agencies, as well as the med-
ical community and insurers for data on subgroups, defined by relevant 
patient characteristics, including sex, race, age, and other potential prog-
nostic factors. Subgroup analysis requires caution, especially in confirma-
tory trials, where the analysis is performed following positive findings in the 
overall trial population. From a statistical perspective, the main issues con-
cern false positives, the missinterpretation of positive findings in a specific 
subgroup as confirmatory of a treatment effect within that subgroup, as well 
as false negatives, due to small sample sizes within subgroups. In situations 
in which the analyses are preplanned and for confirmatory purposes, suit-
able statistical methods should be applied to address multiplicity issues. In 
addition, when there is a confirmatory objective within a subgroup, efforts 
should be made to design the study with adequate power to detect the sub-
group effect. For subgroup analyses intended to generate hypotheses or 
signal detection for further investigation, alternative approaches have been 
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proposed, including use of modern analytic techniques. A detailed discus-
sion of the approaches may be found, e.g., in Alemayehu et al. (2017) and 
Dmitrienko et al. (2016).

1.2.5  Reporting and Interpretation of Study Results

To ensure appropriate interpretation and use of trial results, good 
practices should be followed for the presentation and reporting of the 
output of statistical analyses. When presenting complex data, graph-
ical displays may be used to highlight important aspects of the findings. 
Estimated effect sizes should be presented with the associated measures 
of precision, including standard errors and confidence intervals. For 
added transparency, any known limitations of the statistical methods 
used or deviations from planned analyses should be disclosed. In par-
ticular, there should be a detailed discussion of measures taken to miti-
gate common analytical issues such as missing values, outliers, and 
potential confounding factors. Further, in reporting results from sub-
group analyses, there should be a full disclosure of whether the analyses 
were prespecified, how the subgroups were defined, and the approach 
used to handle multiplicity (Wang et al. 2007).

1.2.6  Data Quality and Software Validity

The reliability of study results is heavily dependent on the quality of data 
used for statistical analysis and inference. Therefore, appropriate processes 
should be instituted to ensure that the study is monitored, and the data 
processed with high standards throughout the conduct of the trial. When 
feasible, the data collection and transmission should be accomplished using 
suitable technology, including electronic data capture tools and modern 
analytics, to enhance efficiency as well as quality. Further, any software 
used for various data management tasks, notably data entry, cleaning, and 
storage, should have appropriate documentation to ascertain the validity 
and reliability of the trial data (see ICH E3 1996, especially Section 9.6).

1.3 � EVOLVING ROLES OF THE STATISTICIAN IN DRUG 

DEVELOPMENT

It has long been recognized that sound statistical reasoning is critical 
to ensure the integrity of a clinical trial and the reliability of the accom-
panying results (Guideline for good Clinical Practice E6 (R1), ICH 1996). 
Therefore, input from a well-​qualified statistician is a requirement in the 
design, analysis, and reporting of a clinical trial in almost every stage of a 
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clinical development program. As the paradigm for regulatory review and 
approval evolved, the role of the statistician has also advanced over the 
years, with increasing visibility and impact across the drug development 
continuum. In this section, we highlight some of the major activities of the 
statistician as an integral member of a study team and as a key player in the 
wider drug development ecosystem.

Historically, the most recognizable responsibility of the statistician, in 
tandem with data analysis, has been the determination of sample size, since 
this would have impact on important operational factors such as size of the 
study, number of participating sites, study duration, and cost. Over time, 
the statistician’s role has expanded and become indispensable in almost 
every aspect of the trial, ranging from protocol development to partici-
pation in investigators meetings and trial result reporting. Much of this 
expanded role has been driven by the increased importance of the SAP, 
which is primarily the responsibility of the statistician.

This expanded role has also created further opportunity for the statisti-
cian to collaborate with diverse stakeholders, particularly clinicians, data 
managers, statistical programmers, clinical pharmacologists, regulatory 
affairs personnel, and regulatory authorities. Accordingly, the statistician 
is expected to have a good grasp of the end-​to-​end clinical trial process 
to provide effective input and to eventually handle potential queries from 
regulatory bodies relating to relevant aspects of the trial. For example, 
the statistician’s partnership with the clinician requires a thorough 
understanding of the research hypothesis, the disease area, and the regu-
latory landscape. In addition, the statistician is expected to have adequate 
familiarity with the current literature, especially the pertinent guidance 
documents issued by regulatory bodies (Gerlinger et al. 2012).

In data management, the statistician can help ensure that the data 
will be captured and cleaned appropriately. In working with statistical 
programmers, the statistician can provide guidance in the development of 
programming specifications and codes to generate tables and implement 
statistical procedures. And, in the course of the reporting of the study 
results, the statistician can guide the interpretation of the scientific findings 
with objectivity and fair balance.

The specific roles that the statisticians play may also vary depending on 
the phase of drug development. For example, a statistician assigned to a 
Phase I trial may focus on designs appropriate for dose selection, within 
the constraints of available sample sizes. In late Phase II and Phase III trials, 
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the statistician’s responsibilities center not only on the usual tasks relating 
to trial design, analysis, and reporting, but also on the overall development 
program and submission strategies. Further, when sponsors interact with 
regulatory bodies, the statistician is expected to address statistical issues 
pertaining to almost all aspects of the study.

Besides the usual tasks of design, analysis, and reporting of clinical 
trials, statisticians also routinely contribute to other areas including pro-
cess improvement, benefit–​risk evaluation, health technology assessment 
(HTA), cost-​effectiveness estimation, business development support, and 
evaluation and implementation of new technologies. As an integral part of 
study and submission teams, the statistician is actively engaged in initiatives 
targeting efficiency, quality, and timeliness of study activities. These tasks 
may involve development of data standards, streamlining data manage-
ment operations, or automation of table and listing generation.

With regard to benefit–​risk assessment, regulators and pharmaceutical 
companies around the world frequently use qualitative and quantitative 
approaches that involve appropriate syntheses of information from clin-
ical trial and other sources in a structured manner. The assessment is often 
based on multiple factors, including the intended indication, the strength 
and limitation of the available evidence, and the uncertainties around the 
benefit and risk estimates (Smith et al. 2017). Therefore, the statistician’s 
role is critical in ensuring the appropriate selection and implementation of 
standard approaches, and in the interpretation of the results.

Complementing the usual regulatory review process, HTA has a prom-
inent place in many countries for decisions impacting the accessibility of 
a new drug to patients, especially in influencing its acceptance by payers 
and other healthcare providers. Indeed, many agencies now require formal 
submission of data on health economics and outcomes research relating to 
the value of a treatment option, taking into account such diverse factors as 
effectiveness, costs, and other measures of utility. The process may require 
application of both standard and nonstandard statistical techniques and 
data sources, which are often associated with unique and complex con-
ceptual and practical challenges. For example, in the evaluation of health-​
related quality of life (HRQOL), an important component of HTA, 
statisticians may be engaged in the development of the relevant instruments 
for capturing patient-​reported outcomes (PROs), and in addressing con-
ceptual and methodological issues specific to the PROs (Alemayehu and 
Cappelleri 2012).
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Development of biomarkers is another area that requires statistical 
expertise. Biomarkers can be used as prognostic tools, i.e., to assess dis-
ease progression in patients; or for predictive purposes, i.e., identification 
of subgroups that are more likely to benefit from treatment. Standard stat-
istical techniques are available to analyze routine biomarker data (Fleming 
and Powers 2012). However, when data cannot readily be analyzed by trad-
itional models, e.g., due to high dimensionality, statisticians can explore 
the viability of modern machine learning techniques (see, e.g., Swan 
et al. 2015).

In comparative effectiveness research, meta-​analysis and systematic 
reviews (Brown et al 2011) are often used to generate evidence in support 
of healthcare decision-​making. Traditional meta-​analytic approaches con-
sist of pooling data from two or more trials, derived from the literature 
or other sources, using suitable statistical approaches. When direct evi-
dence is not available from head-​to-​head RCTs involving all treatment 
pairs of interest, one often uses network meta-​analysis or mixed treatment 
comparisons. However, the techniques are generally based on certain 
untestable assumptions, including similarity of experimental conditions 
and consistency of effects across trials. To strengthen the rigor of the evi-
dence derived from such analyses, statisticians can contribute not only in 
the synthesis of the information, but also in the development of important 
guidelines (Liberati et al. 2009).

Regulators are now in the forefront of the efforts to transform the clinical 
development paradigm, and there are numerous efforts that are spearheaded 
by various regulatory agencies around the globe. In the US, the 21st Century 
Cures Act incorporates several provisions intended to streamline the evidence 
generation as well as the drug approval processes. The European Medicines 
Agency (EMA) has as one of its strategic goals the advancement of innova-
tive methods in the development of medicines. Unsurprisingly, the role of 
the statistician is indispensable in implementing these novel approaches. 
In adaptive trial designs, for example, whether the goal is to implement 
adaptive randomization, sample size reestimation, or seamless Phase II/​III 
trial design (Chow and Chang 2008; Stallard and Todd 2010), the effective 
implementation of the approaches requires application of sound statistical 
methods and principles. A survey reported in Elsäßer et al. (2014) showed 
that, while the EMA was generally in favor of adaptive clinical trial designs, 
there were also instances where the agency provided critical comments, 
especially concerning multiplicity and bias issues. Therefore, even in some    
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of the simpler cases, it is always advisable for sponsors to engage the appro-
priate regulatory bodies before implementing these novel approaches.

Recent developments, such as data-​sharing initiatives and the digital 
revolution, provide new opportunities for statisticians to advance evi-
dence generation for critical decision-​making. The precompetitive sharing 
of clinical trial data generated by different pharmaceutical companies can 
ensure effective use of study information by drug developers and regulatory 
agencies (Fletcher et al. 2013). In addition, use of modern analytic tools 
and Big Data can foster the efforts to realize the promise of personalized 
medicine.

The evolution of the role of statisticians over the years is particularly 
evident in their involvement in a broad spectrum of strategic tasks. The 
strategic work ranges from providing critical input in formulating clin-
ical development plans to taking an active part in decision-​making in the 
course of regulatory interactions. In many pharmaceutical companies, 
statisticians are regular participants in governance bodies and in task forces 
charged with the development and implementation of processes and best 
practices to enhance the quality and efficiency of clinical trials.

To effectively execute these enhanced roles, the statistician should develop 
correspondingly increased strategic, technical, interpersonal, and communi-
cation skills. Mehrotra and Gobburu (2016) identify four tenets of effective 
communications; namely, credibility, decision, style of communication, and 
knowing the audience. Although their proposal targets pharmacometricians, 
most of the recommendations also apply to statisticians. To establish cred-
ibility, in addition to technical skills, the statistician needs to demonstrate a 
fairly comprehensive knowledge of the risks and benefits of a whole program, 
and proven ability to actively engage regulatory bodies and other stakeholders 
to shape the drug development paradigm. Since the statistician works as a 
member of an interdisciplinary team, he or she should foster teamwork and 
cultivate a culture of operating in a matrix or cross-​functional environment. 
This requires following a style of communication that promotes collabor-
ation and understanding the audience.

In general, pharmaceutical statisticians acquire the skills that enable 
them to be effective in their expanded roles while executing the usual stat-
istical duties that are expected of them. In some instances, targeted training 
may be provided to strengthen their soft skills. The strategic roles can also 
be enhanced by developing alternative career paths, with appropriate 
rewards and incentives (Burger et al. 2012).
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1.4 � POTENTIAL STATISTICAL ISSUES IN REGULATORY 

REVIEW

There are several statistical issues that can arise in the course of the review 
of a submission for a new drug approval. To help establish a common 
understanding of expectations between regulatory bodies and sponsors, 
specific guidelines have been developed relating to statistical review and 
evaluation (FDA 2010). However, despite genuine efforts by sponsors to 
adhere to good statistical principles and relevant guidance documents, 
there are almost always questions that arise in the course of the review, 
requiring additional explanations (Chow and Song 2015). The issues range 
from data quality to the impact of protocol amendments, interpretation of 
study results, and independence of data monitoring committees. Next we 
take a high-​level look at some of these issues.

1.4.1  Data Quality

Issues that arise with regard to data quality include missing values, incon-
sistencies (especially in safety assessment), and validity of instruments 
used to capture the data. Missing data are particularly important, since the 
statistical approach used to handle them, and, hence, the reliability of the 
analysis results, are heavily dependent on the amount of missing data, the 
variables affected, and whether the missingness is random or not. In add-
ition, the validity of any instrument used to capture data, especially PROs 
can be of concern. Other data issues may include outliers, or values that are 
not plausible, and how they were handled. In some instances, fraudulent 
data may be detected, and may compromise the entire NDA submission 
(George and Buyse 2015). More generally, the documentation of the data 
quality control/​assurance procedures the sponsor puts in place may also be 
suggestive of the degree of the reliability of the data included in the submis-
sion package (see ICH E3 1996, especially Section 9.6).

1.4.2  Endpoint Definition

In many situations, such as hypertension studies, the choice of outcome 
measures may not be controversial. However, there are instances when it 
may be essential to justify the clinical relevance of the outcome measures. 
According to one study (Sacks et al. 2014), a major reason for non-​approval 
of NDA submissions is unsatisfactory use of endpoints. A  few examples 
mentioned in the paper include, timing of measurement of outcome, inter-
pretation of a successful treatment outcome, and meaningfulness of size 
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of the change. When multiple endpoints are used, lack of consistency in 
the observed results may also prevent approval. Further, if a composite 
measure is used to define the primary outcome, the appropriateness of the 
definition needs to be justified.

1.4.3  Design and Analysis Issues

As outlined in the FDA manual of policies and procedures (FDA 2012), 
examples of statistical issues that may be cause for concern include integrity 
of the blinding, randomization, or unplanned interim analyses; sample size 
and power determination; any modification or change of primary endpoint 
during conduct of the trial; dropping/​adding treatment arms; sample size 
reestimation; inconsistency of results across subgroups; handling of multi-
plicity; and justification for non-​inferiority designs.

Among the most controversial issues is one relating to inference on mul-
tiple hypotheses. According to Westfall and Bretz (2010), this may include 
adjustment for multiplicity in dose-​finding trials, excessive or inadequate 
control of the type I error probability, or choice of a family of hypotheses 
concerning primary and secondary study endpoints. The issue of multi-
plicity may also become equally important when applying a two-​stage 
adaptive design, since it may not often be clear how the overall type I error 
rate is controlled at a given level of significance.

When sponsors propose non-​inferiority designs, with an active control 
group, but no placebo arm, there are several issues that may arise in the 
course of regulatory review. One major factor is the justification for the 
determination of the non-​inferiority margin. For example, when the intent 
is demonstration of effect preservation by the experimental drug, it has 
been argued that the customary confidence interval approach cannot attain 
the intended coverage probability exactly, which tends to fluctuate with the 
sample size (Hung et al. 2003). Further, in the absence of a placebo arm, it is 
difficult to assess the constancy of the effect of the active control seen in pre-
vious trials. In addition, results based on all randomized patients, in which 
non-​compliant subjects are not excluded, could tend to be biased toward 
non-​inferiority (See Section 2.4 for a discussion of non-​inferiority designs).

As stated earlier, the use of adaptive methods in clinical development is 
actively encouraged by regulatory bodies, especially in rare disease research. 
However, there are critical statistical and operational issues that may be of 
concern at the review stage. When such designs are implemented for con-
firmatory trials, in almost all cases, one needs to address the issue of type 
I error inflation. A related concern may be the reliability of the treatment 
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effect estimate, as well as the potential heterogeneity of the patient population 
induced by the modifications of trial procedures in the course of the adapta-
tion process (Chow et al. 2005). Indeed, according to a recent study concerning 
use of adaptive clinical trial designs for European marketing authorization, 
the most frequent concerns raised by the Committee for Medicinal Products 
for Human Use/​Scientific Advice Working Party (CHMP/​SAWP) include 
inadequate justifications of the proposed adaptation strategy, the control of 
type I error rate, and the mitigation of the associated bias (Elsäßer et al. 2014). 
To facilitate the implementation of adaptive designs, Bayesian techniques are 
often proposed (Berry 2012). However, the use of Bayesian statistics in regu-
latory submissions is not very common, except in devices and early-​phase 
trials. While the computational issues that limited the wide use of Bayesian 
methods have largely been resolved, there are still no clear guidelines on the 
acceptable use of the techniques in confirmatory trials (see Section 2.6 for a 
discussion of Bayesian statistics).

1.4.4  Evaluation of Safety

Although the focus in the above section has been on efficacy results, there 
are also important issues that may arise in the approaches used to assess 
safety data. Customarily, safety results are often presented using simple 
descriptive statistics and graphical displays. Formal inference may not 
be appropriate due to lack of adequate power, multiplicity issues, or the 
post hoc nature of safety data analyses. However, descriptive results may 
lead to misleading interpretation of the findings. For example, when there 
are unequal follow-​up periods for subjects assigned to different treatment 
groups, the analysis of adverse events may lead to uninterpretable results 
(Bender et al. 2016). Meta-​analysis is often performed to synthesize safety 
data from multiple studies; however, this also requires addressing issues 
of heterogeneity and the handling of rare events. The latter is particularly 
important, since some of the adverse events may not have been observed 
in some of the studies. It is also important to keep in mind that serious 
low-​incidence adverse effects may not emerge until the drug is marketed to 
the population at large. Therefore, caution is required in the interpretation 
of safety data, balancing the potential risk vs. the imperative to bring new 
medicines to patients that need them.

1.4.5  Analysis Populations and Subgroups

Ideally, the primary analysis should be performed on all randomized 
subjects. However, that ideal may not be practical for various operational 
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or technical reasons. The study population to be used for the primary ana-
lysis may be controversial if any exclusion of patients compromises the 
benefits of the randomization or the appropriate estimation of the targeted 
treatment effect. Therefore, any exclusion of randomized patients from the 
primary analysis should be carefully justified and prespecified in the study 
protocol. Common reasons for exclusion may include major violation of 
eligibility criteria, failure to take any trial medication, or the lack of data 
after randomization. There are also situations that may require specific 
consideration for the definition of the analysis population to strengthen the 
interpretability of the results. Examples of scenarios in which patient exclu-
sion may be essential include non-​inferiority studies, safety assessment, 
and fraudulent data from certain sites.

Subgroup analyses are essential to ascertain the risk–​benefit of a new 
drug in special groups defined by demographic or baseline variables. The 
statistical issues that arise may be both in the definition of the subgroups, 
as well as in the meaningfulness of the conclusions drawn. The estimate, 
of course, will vary over subgroups and it may not often be clear if the 
subgroup-​specific estimate is better than the overall estimate for a spe-
cific subgroup. Subgroups defined by age, gender, race, or geographic 
region may be straightforward. However, when other baseline covariates, 
e.g., biomarkers, are used to define subgroups, the criteria used must be 
prespecified and the scientific rationale justified. Further, the consistency 
of the results across subgroup categories should be adequately assessed, 
and if there is no adequate sample size to do so, this should be indicated. 
Since such subgroup analyses are exploratory in nature, any intent to make 
claims based on the results may not be appropriate.

1.4.6  Assessing Interpretation and Reliability of Results

Generally, undue focus on statistical significance, without regard to clinical 
relevance, and overinterpretation of findings that are not consistent with 
trial objectives, can be causes for concern during regulatory review. Further, 
when results are sensitive to departures from model assumptions, or are 
heavily dependent on analysis populations, the reliability of the primary 
finding may be called into question. In such situations, the robustness of 
the findings may need to be justified through extensive sensitivity analyses.

1.5 CONCLUDING REMARKS

In this chapter we provided a high-​level account of the interplay between 
statistics and regulatory science. While drug development involves the 
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collaborative efforts of different disciplines, it is noted that statistics and 
statisticians play a unique role throughout the continuum of the develop-
ment and approval processes. In particular, the judicious assessment of a 
new drug with respect to its safety and efficacy requires the effective imple-
mentation of basic principles of good statistical practice, encapsulated in 
regulatory guidelines and other related documents.

In consonance with the changing regulatory and healthcare landscapes, 
the role of the statistician has evolved over the years, with increasing impact 
and visibility. In addition to their traditional tasks of designing, analyzing, 
and reporting of clinical trials, statisticians are now active partners in 
major decision-​making, ranging from formulation of development plans 
to indispensable engagement in initiatives intended to enhance efficiency 
and productivity.

The diminishing number of drugs approved, coupled with the 
skyrocketing healthcare cost, has already made it imperative to explore 
new paradigms for evidence generation and regulatory approval. Thus, Big 
Data, modern analytics, and precision medicine will undoubtedly continue 
to present interesting challenges and opportunities both to regulators and 
statisticians. In subsequent chapters, some of the topics and issues alluded 
to in this chapter will be addressed in greater detail, with emphasis on those 
areas that are deemed critical to statistics–​regulatory interaction and to 
enhancing the impact of statistics in the drug approval process.
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CHAP T ER  2

Selected Statistical 
Topics of Regulatory 
Importance

2.1 � INTRODUCTION

This chapter provides a detailed discussion of major statistical issues 
that commonly arise in the course of drug development and regulatory 
interactions. The section on multiplicity outlines measures that should be 
taken to ensure the validity of inferential results that are intended to be 
the basis for regulatory decision-​making. In a separate section, a thorough 
review of best practices is provided to handle missing values, which are 
ubiquitous in clinical trials, with special reference to pertinent guidelines 
and the emergent topic of estimands. While superiority trials are common 
to support drug approval, there are situations where it is necessary to con-
duct non-​inferiority studies. The regulatory requirements and underlying 
principles of such trials are summarized, and suggestions are provided 
relating to the salient points to be considered for both efficacy and safety 
assessment. In light of the increasing focus to accelerate drug develop-
ment by improved efficiency, a summary of a few of the commonly used 
novel approaches is provided, including adaptive and flexible designs, 
enrichment studies, and studies conducted under the so-​called master 
protocols. Other topics of regulatory and statistical import covered in 
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this chapter include Bayesian approaches, issues with subgroup analysis, 
biomarkers, and the assessment of benefits and risks of pharmaceutical 
products.

2.2 � MULTIPLICITY

The issue of multiplicity refers in general to the inflation of the Type 1 error 
in the interpretation of clinical trial results. Controlling the probability 
of falsely concluding a treatment effect is of special concern to regulators 
and hence multiplicity is often an important statistical issue in the review 
of confirmatory clinical trials. The question of multiplicity can arise in 
many ways. We will address three main areas of multiplicity in the regu-
latory setting: multiple primary endpoints and secondary endpoints with 
the potential to be included in the product label; multiple testing in the 
course of the study with the purpose to stop for positive results (interim 
analyses); and subgroup analyses. Within the multiple endpoint section, we 
will briefly discuss other aspects of a study design that can inflate the Type 
1 error rate. Further detailed discussions of multiplicity may be found, e.g., 
in Alosh et al. (2014), Dmitrienko et al. (2013), and Huque et al. (2013), 
among others.

2.2.1  Multiple Endpoints

Statistical hypothesis testing in a regulatory setting involves the calculation 
under the null hypothesis of the probability that the observed treatment 
effect on a specific variable is due to chance alone. In a randomized study, 
if this probability (p-​value) is low, the null hypothesis (usually that the 
treatment effect is 0)  is rejected and a treatment effect is established. If 
only one primary variable is used to establish a treatment effect, then the 
requirement that p < α controls the probability of incorrectly concluding 
a treatment effect at α. The issue of multiplicity of endpoints refers to the 
clinical trial setting where more than one variable is used to establish a 
treatment effect. The chances of obtaining at least one p-​value below α 
increase with the number of endpoints. For example, the probability under 
the null hypothesis that at least one p-​value is less than 0.05 for three inde-
pendent hypotheses is 1 –​ (0.95)3 = 0.14. Thus, regulators cannot accept a 
level α test for each variable if the goal is to rule out incorrectly concluding 
a treatment effect (Type I error) at an overall probability of α.

In a good clinical trial design, there should be a set of primary endpoints 
and level of significance specified in the protocol that will determine 
whether the study has met its objective or not. The set of primary endpoints 
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consists of the measures that establish the effectiveness of the drug in 
order to support regulatory action. When there is more than one primary 
endpoint and an effect on any of the endpoints is sufficient to establish the 
drug’s effectiveness, then the rate of falsely concluding the drug is effective 
is increased over the Type I error used for each hypothesis. Consequently, if 
the goal is to control the probability that a chance finding is misinterpreted 
as treatments effect at level α, then an adjustment must be made to the sig-
nificance tests of the individual variables.

There are many statistical methods to control for overall Type I error in 
the setting of multiple primary endpoints. Commonly used procedures are 
Bonferroni, Hochberg, Holms, and general sequential testing procedures. 
In the Bonferroni procedure, α is typically divided evenly among the total 
number of variables T and the individual p-​values are compared to α/​T. 
Holms and Hochberg are both multistep procedures where the observed p-​
values are compared to α/​T, α/​(T –​ 1), …, α. The Holms procedure begins 
with the smallest observed p-​value compared to α/​T and continues to 
larger p-​values until the observed p-​value is not significant. The Hochberg 
procedure begins with the largest p-​value compared to α and continues to 
lower p-​values until significance is reached in which case all variables with 
lower p-​values are also significant. General sequential testing procedures 
allow for a prespecified ordering of the variables and carrying forward any 
unused α.

Multiple-​testing procedures have been well-​described in the literature 
(e.g., Dmitrienko et al. 2013; Proschan and Waclawiw 2000) and it is not 
the purpose to review them here, or to recommend one procedure over 
the other. The multiple comparison procedure should be prespecified and 
selected in the context of the specific protocol objectives and the expected 
treatment effects on the multiple primary endpoints. In some cases there 
may be a regulatory requirement to show that the treatment is effective on 
more than one endpoint. For example, a treatment for Alzheimer’s disease 
might have to show effectiveness on both a measure of cognitive function 
and on a measure of quality of life. In this case no multiple comparison 
procedure is required.

In clinical trials it would be remiss not to assess many measures of change 
in the patient’s disease state outside of the primary endpoint(s). While these 
measures are not sufficient in and of themselves to establish effectiveness in 
the disease under study, it may be important to include them in the package 
insert given that the primary endpoint(s) have established a sufficient basis 
for approval. The analysis and interpretation of a drug’s effectiveness on 
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these secondary endpoints may also require a multiple comparison pro-
cedure to control overall Type I  error at a prespecified level. Positive 
results (nominal statistical significance) from a list of secondary endpoints 
without Type 1 error control would not be enough evidence to conclude a 
treatment effect and not likely to lead to inclusion in the package insert or 
in promotional material. There are small differences in the FDA guidance 
and the EMA guidance on Type 1 control of secondary endpoints. FDA 
guidance (FDA 2017b) states: “This includes controlling the Type I error 
rate within and between the primary and secondary endpoint families”; 
whereas the EMA guidance (EMA 2017b) states:

Including secondary endpoints in a multiple testing procedure (e.g., 
a “hierarchy”) is therefore not mandated, but permits a quantifica‑
tion of the risk of a type I error regarding these endpoints, which may 
lend support that an individual result is sufficiently reliable when 
included in the Summary of Product Characteristics.

Thus, Type 1 error control by a multiple comparison procedure on 
secondary endpoints is extremely useful from the sponsor’s perspective 
in order to potentially get the information in the package insert and is 
extremely useful from the regulator’s perspective to control the misinter-
pretation of a chance finding as a treatment effect. It is recommended that 
important secondary endpoints for potential label implications should be 
specified in the protocol along with an appropriate multiple comparison 
procedure to control Type I error at α.

Some additional important points to consider from a statistical–​
regulatory perspective regarding Type 1 error control are:

•	 The set of primary and secondary endpoints are often referred to as 
families of endpoints. While regulatory agencies require Type 1 error 
control for both the primary and secondary families (family-wise  error 
rate, FWER), a stronger study-​wide error rate may be required. This is 
accomplished by controlling both the primary-​ and secondary-​family 
error rate at α and testing the secondary family of endpoints only if 
the treatment effect is established within the primary endpoints. This 
is a specific example of the general class of “gatekeeping strategies” for 
controlling study-​wide error rate.

•	 When there is more than one primary endpoint the effect of the 
specific multiplicity procedure on power should be considered and 
included in the determination of the study sample size.
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•	 An important type of multiplicity involves the analysis of the individual 
components of composite or multicriteria endpoints. When there are 
competing outcomes of interest for use as a primary endpoint, it may 
be advisable to combine them into a single variable or score. In addition 
to avoiding multiplicity issues, the so-​called composite endpoints may 
be defined to gain power when the incidence rate on the components 
is anticipated to be low. In some cases, e.g., patient-​reported outcomes 
(PROs), a multicomponent endpoint may be collapsed into a single 
overall score using suitable summary statistics, such as the sum or 
average across the individual domain scores. Recently, alternative 
approaches have been proposed for defining and analyzing composite 
endpoints. Examples include the win ratio, proposed by Pocock et al. 
(2012), and the joint rank test of Finkelstein and Schoenfeld (1999). In 
general, when the composite endpoint is significant, it may be worth-
while to assess the effect of treatment on the components separately. 
Here a multiplicity procedure should be specified to control falsely 
concluding a treatment effect on any given component of the com-
posite endpoint. There is also the regulatory interest that the observed 
benefit of the study drug is not unduly influenced by one or more 
endpoints of lower relevance in the composite endpoint.

•	 In the above discussion, the focus has been on hypothesis testing. 
Although confidence intervals are generally used to specify the mag-
nitude of the treatment effect and the associated degree of precision, 
in some cases they may be used to test hypotheses. When that is the 
case, it would be appropriate to ensure that multiplicity issues are 
addressed accordingly.

•	 Multiple endpoints are not the only source of multiplicity in clinical 
trials that can lead to an inflated Type 1 error rate. For example, a con-
firmatory clinical trial may have more than one dose group where at 
least one dose must be significantly better than placebo. An oncology 
study could consist of more than one type of cancer or even the same 
cancer with different predetermined cell markers, and the objective 
is for approval of either type of cancer or cell type. These multiple 
objectives can inflate Type 1 error. When multiple primary endpoints 
are included in these more complex designs, the control of Type 1 
error can be more difficult. However, from the regulators’ perspective 
any confirmatory conclusion regarding an indication (or claim within 
the package insert) must have Type 1 error control to protect against 
a false positive statement.
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The above discussion on multiplicity in the context of regulatory 
decision-​making is from a hypothesis testing, frequentist approach to 
statistics, which is the viewpoint embedded in ICH E9 Statistical Principles 
for Clinical Trials (1998) and both the FDA and EMA guidance on multi-
plicity issues. While ICH E9 is dominated by the frequentist approach, it 
does not rule out Bayesian approaches. With the increasing use of more 
complex, multi-objective clinical trials, as well as adaptive and even more 
innovative clinical trial designs, the use of Bayesian methods to inform 
regulatory decision-​making may increase in the future. However, for now 
the dominant regulatory perspective is for the sponsor to control the prob-
ability of a study falsely “winning” (concluding a treatment effect) given all 
the ways of winning as defined within the protocol.

2.2.2  Multiple Testing Over the Course of the Study

Interim analyses of an ongoing clinical trial can be conducted for many 
reasons, particularly with the emerging methods of adaptive designs. We 
discuss interim analysis from the more traditional perspective of sequential 
designs where interim analyses are conducted for the purpose of stopping 
the study for a positive efficacy result. Interim analyses are another source 
of multiplicity that inflates Type I error α in clinical trials if not taken into 
account. Clearly, the more often the primary null hypothesis is tested with 
accruing data, the higher is the probability that a true null will be rejected 
leading to a false conclusion of a treatment effect. Consequently, regulators 
require that the sum of the probabilities of rejecting a true null at each 
interim analysis is ≤ α. For example, suppose the study is designed to have 
two interim analyses and a final analysis with the potential to stop the study 
at either of the two interim analyses for positive results. Let

p1 = the probability of rejecting a true null hypothesis     
at the first interim analysis

p2 = the probability of rejecting a true null hypothesis at the second 
interim analysis and that it was not rejected at the first interim analysis

pF = the probability of rejecting a true null hypothesis at the final analysis 
and that it was not rejected at the first and second interim analyses

Then a regulatory requirement for this interim analysis procedure 
is that p1 + p2 + pF ≤ α. The actual values for the probabilities should be 
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determined by the sponsor in consultation with the regulatory agencies 
based on study consideration. The methods for controlling Type 1 error 
in designs with interim analyses fall under the general terminology of α-​
spending functions.

Prior to the introduction of α-​spending functions there were specific 
group-​sequential-​testing procedures established for equal space testing. 
The equal spacing refers to the information time τi, i.e., the proportion of 
the total information at the end of the study available at the time of the 
ith interim analysis. The two prominent ones were the Pocock procedure 
(Pocock 1977) and the O’Brien–​Fleming procedure (O’Brien and Fleming 
1979). The Pocock procedure is characterized by a constant critical rejec-
tion value at each interim analysis while the O’Brien–​Fleming procedure 
is characterized by critical rejection values that are inversely proportional 
to the square-​root of the information time. Table 2.1 illustrates the Pocock 
and O’Brien–​Fleming critical values for 3 equally spaced interim analyses 
and one-​side α = 0.025.

While both procedures preserve overall Type 1 error at α, they do so in 
different ways. The O’Brien–​Fleming procedure is stricter at earlier interim 
analyses where the information fraction is relatively small, but preserves 
much of the α for the final analysis where the rejection value is close to the 
fixed-​sample-​size rejection value of 1.96. In contrast the Pocock procedure, 
with constant rejection values, allows for a better chance to reject the null 
hypothesis at earlier interim analyses but preserves a smaller amount of α 
for the final analysis.

In addition to the control of Type 1 error, two necessary features of the 
O’Brien–​Fleming, Pocock, and similar procedures are the requirements that 
the maximum number of scheduled analyses must be determined prior to 
the onset of the trial and that the interim analyses are equally spaced, with 
respect to information fraction τ. As a way to relax these restrictions as well 
as to provide a uniform way to view interim analyses and the allocation of 

TABLE 2.1  Rejection Values (RV) and Nominal p-​values for O’Brien–​Fleming and 
Pocock Procedures with 3 Interim Analyses, One-​side α = 0.025.

O’Brien–​Fleming Pocock

τ RV p RV P

1/​3 3.438 0.0003 2.289 0.0110
2/​3 2.431 0.0075 2.289 0.0110
1 1.985 0.0235 2.289 0.0110
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α, Lan and DeMets (1983) developed the method of the alpha-​spending 
function. An α-​spending function, α(τ), relates the cumulative spending 
of α as a function of the information fraction τ. At the beginning of the 
study α(τ)  =  0 and at the end of trial α(τ)  = α. Neither  the times nor 
the number of analyses need to be specified in advance. Only the func-
tional form of α(τ) must be specified. Thus, the Lan–​DeMets α-​spending 
function method generalizes the group-​sequential method that spends α 
at discrete predetermined times. The use of a prespecified continuous α-​
spending function allows for the number and timing of the interim ana-
lyses to remain unspecified.

The spending of α can be thought of as falling into two broad categories; 
conservative, which preserves much of α for the end of the trial, and 
aggressive, which spends greater amounts of α earlier in the trial. These 
approaches are exemplified by the O’Brien–​Fleming procedure and the 
Pocock procedure. Consequently, spending functions are often referred to 
as an O’Brien–​Fleming-​type or Pocock-​type spending function.

Interim analyses and the α-​spending function have to be considered 
in the regulatory context. In confirmatory clinical trials the number of 
interim analyses is often limited to a single interim analysis for the pur-
pose of stopping the trial for futility or strong efficacy results. However, it is 
often not advisable to stop a trial early for efficacy because additional safety 
data may be desirable from the regulatory perspective or more information 
regarding subgroups or secondary measures of the disease is desirable. From 
a practical perspective, the statistical planning for an interim analysis often 
reduces to selecting p1, the probability of rejecting a true null hypothesis at 
the interim analysis and then determining pF, the probability of rejecting a 
true null hypothesis at the final analysis and that it was not rejected at the 
interim analyses. If p1 + pF ≤ α, then this is a discrete spending function that 
controls Type 1 error at α. Numerical integration or simulation for discrete 
probability distributions where a normal approximation may not be good 
can be used to obtain the probability pF. The actual timing of the interim 
analysis can be decided after the trial begins. It is strongly recommended 
that the sponsor obtain agreement with regulators on any interim analysis.

2.3 � MISSING VALUES AND ESTIMANDS

2.3.1  General Considerations

Missing data invariably occur in clinical trials and are a main area of 
regulatory scrutiny in the review process. The issue of missing data has 
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recently been subsumed within the concept of an estimand, which will be 
addressed in Section 2.3.5. While there are several conditions in which 
missingness may occur, the one that we are most concerned with is the 
case involving patients who discontinue the study and are lost-​to-​follow-​
up. If not handled properly, results based on incomplete data are likely 
to be misleading, often associated with bias in favor of a new treatment 
under study (ICH E9, 1998). Excluding missing values may result in the 
underestimation of variability of estimators and reduction of the statistical 
power of tests, thereby compromising the validity of the accompanying 
inferential results. Further, arbitrarily excluding study subjects adversely 
impacts the benefits of randomization, intended to ensure compar-
ability of treatment groups as well as the representativeness of the popu-
lation defined by the protocol inclusion and exclusion criteria. In short, 
missingness is likely to be informative and consequently, efforts should be 
made to minimize the occurrence of missing data at the design and con-
duct stages of a trial, and to implement appropriate analytical strategies 
to buttress the reliability of the results. Recently, several documents have 
been issued by regulatory authorities to establish minimum requirements 
to assure the validity of trial conclusions drawn from data with incomplete 
information (see, e.g., the guidelines from European Medicines Agency 
and the US FDA-​mandated panel report from National Research Council 
(NRC) (FDA 2010)).

There are several reasons why data may be incomplete, some of which 
may be attributable to the treatment under study. Examples of the latter 
include missing data as a result of inability or unwillingness of patients to 
continue in a study because the treatment is not beneficial, lacks efficacy, or 
causes undesirable side effects. In other cases, the reason for incomplete-
ness of data may be completely unrelated to the treatment under study. For 
example, patients may drop out of a study as a result of changes in their 
physical address, family status, or other personal situation not related to 
their health. In either case, the incompleteness of the data may have consid-
erable impact on the credibility and reliability of the accompanying study 
results.

When dealing with missing values, the interrelated factors that get 
increased attention in the course of regulatory assessment include the 
reason for missingness, the proportion of missingness, the demographics 
of subjects who dropout from the study, and the approach used for the 
analysis and reporting of the data. The rigor in which missingness issues 
are addressed and the measures taken to minimize any bias favoring the 
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experimental agent are critical factors in the assessment of the strength of 
the evidence submitted in support of the benefit of the new intervention.

Depending on the assumptions made about the mechanism generating 
the missing values, there are alternative approaches for analyzing the data. 
In the choice of a suitable approach, it is generally advisable to look for 
methods that minimize potential bias in favor of the experimental drug 
and that do not tend to underestimate the variability of the treatment effect 
estimates. In most instances, the assumption the analyst makes about the 
missingness may not be objectively testable. So, irrespective of the method 
chosen, it is essential to validate the reliability of the results through appro-
priately planned sensitivity analyses.

Missing values cannot be fully avoided in clinical trials. Further, there 
is no analytical strategy that can conclusively eliminate the potential bias 
associated with the missing values. Therefore, one pragmatic approach is 
to minimize the occurrence of missing values by implementing preventive 
measures, both during the design stage and in the course of the conduct 
of the trial (Little et al. 2012). In planning mitigating measures, some of 
the factors to consider include the length of the trial, complexity of the 
protocol in terms of the schedule of study procedures, and patient adher-
ence, as well as the use of technology to capture study endpoints. Other 
relevant considerations include effective communication with investigator 
sites and study participants regarding the importance of remaining in the 
study, frequent data monitoring, and real-​time data-​quality assessment 
(O’Neill and Temple 2012).

In the rest of this section we will review the types of mechanisms that gen-
erate missing data, and summarize commonly used analytical approaches, 
with emphasis on models for longitudinal and other standard techniques. 
We will give a brief overview of the current thinking on estimands and the 
relationship to the problem of missingness, and outline pertinent aspects of 
the concept that require further elucidation.

2.3.2  Missingness Mechanisms

As pointed out earlier, the mechanism that generates missing values may 
be related to the study drug or it may be a random phenomenon. In the lit-
erature, three types of missingness mechanisms are frequently referenced, 
depending on whether the mechanism is associated with the observed or 
unobserved outcomes and other background variables (see, e.g., Diggle and 
Kenward 1994). Some of the ideas discussed below are especially germane 
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to the special case when the design of a study involves taking repeated 
measurements on subjects over time.

When the missingness is independent of the subject’s responses and 
other attributes, it is referred to as missing completely at random (MCAR). 
In this case one may assume that the subjects with missing data are a 
random sample of all the subjects. A case in point is when a study par-
ticipant is lost to follow up due to the subject’s change in location for 
reasons unrelated to the disease or treatment. On the other hand, if the 
missingness depends only on observed data, then it may be classified as 
missing at random (MAR). This arises, for example, when collected data 
suggest that the reason a patient dropped out of a study is because either 
the drug did not improve the patient’s condition, or the drug turned out 
to be toxic. When this mechanism applies, it may be safe to assume that 
the unobserved or missing data follow the same distribution as those 
observed values in subjects who have complete information and share the 
same observed measurements. The MAR assumption implies that after 
conditioning on observed variables the missingness can be assumed to be 
MCAR. When the underlying assumptions can be justified, MCAR and 
MAR scenarios, sometimes referred to as “ignorable,” permit application 
of certain statistical models that yield valid results.

A more difficult, but plausible situation, is one in which the missingness 
depends on the unobserved response measurements or cannot completely 
be characterized by the observed information. Often referred to as non-​
ignorable, or missing not at random (MNAR), this case requires caution, 
and is generally addressed by sensitivity analyses after an MAR analysis.

There is no formal approach to establish the mechanism by which 
missing values are generated. In particular, MCAR and MAR are generally 
untestable, and MNAR is purely speculative. However, as a best practice, 
one should perform exploratory data analysis to understand the pattern 
and nature of the missing values. Some simple techniques may include 
summarizing the frequency and reasons for missing values by study drug 
and over time; and evaluating and comparing outcome measures as well as 
other important factors such as demographics, for patients with complete 
data against those with incomplete observations. To identify any potential 
association between observed variables and the missing mechanism, one 
may also perform a suitable model, such as penalized logistic regression, 
with the missing indicator as the dependent variable. Potential predictors 
may include safety variables, baseline characteristics, and earlier responses.
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2.3.3  Approaches for Missing Data

There are alternative approaches for handling missing data during the ana-
lysis phase. The choice of a primary method should, however, be made a 
priori, considering the design of the study, outcome measures, and current 
regulatory requirements. In general, methods based on MCAR or MNAR 
assumptions may not be defensible for use in primary analysis. However, 
the latter may be used in sensitivity analysis concerning the robustness 
of MAR-​based methods, which are commonly implemented for primary 
analyses.

For the reasons discussed earlier, complete case analysis cannot be justi-
fied for the primary analysis, especially in confirmatory trials. It may, how-
ever, be considered in early phases of drug development for exploratory 
purposes or as supportive analysis to confirm the sensitivity of conclusions 
drawn based on other approaches.

A simple method of handling missing data is the so-​called hot-​deck 
imputation, which involves replacing a missing value with a suitable 
observed value obtained from a matched group of study subjects. Matching 
may be accomplished using predefined variables and score functions, such 
as propensity scores (Rosenbaum and Rubin 1983) and the Mahalanobis 
distance. Since this approach assumes MAR, conditional on the matching 
variables, the impact of any unobserved variables on the robustness of the 
results cannot be fully assessed. A high-​level overview of the approach may 
be found, for example, in Andridge and Little (2010).

With longitudinal data involving dropouts, an imputation approach 
is to carry forward a previously observed value. This approach was com-
monly used and accepted by regulatory authorities in the past but less so 
currently due to likely biases in the estimation. Other variations include the 
best observation or baseline observation (BOCF) or the worst observation 
(WOCF) carried-​forward schemes. When the primary objective of the study 
is to estimate a treatment effect at the end of a fixed treatment duration, 
the last observation carried-​forward (LOCF) approach is dependent on the 
assumption of constant disease status after the last observed data; there-
fore, it can only be applied in the unrealistic case of MCAR and it may lead 
to bias in cases of MAR or MNAR scenarios. However, if one is interested 
in estimating a “real-​world” treatment effect and the dropout pattern is 
assumed to represent the real-​world performance of the treatment then the 
last observation yields a valid estimate of real-​world performance. Thus, the 
clinical question being addressed relates to the emerging concept of a valid 
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“estimand” (Section 2.3.5). BOCF, which uses the baseline observation as 
the final response, is often based on the assumption that a patient with-
drew from the trial because of lack of benefit or due to treatment-​emergent 
adverse events. When there are other reasons why patients might withdraw 
from the trial, the approach would not be reliable (Liu-​Seifert et al. 2010).

In general, single imputation methods are likely to lead to incor-
rect standard errors and, hence, incorrect inferential results, since the 
error associated with the imputed values is not fully accounted for when 
performing complete case analysis with the imputed values. Therefore, it is 
customary to use alternative approaches, such as multiple imputation and 
likelihood-​based inference.

Multiple imputation, first introduced by Rubin (1987), involves 
imputing each missing value many times, with a view to generating a 
between-​imputation variance component. These data sets, consisting of 
the multiple-​imputed values, are subsequently analyzed using appropriate 
procedures for complete data. The results from the different data sets are 
then combined. The approach results in valid hypothesis tests and confi-
dence intervals, which are performed incorporating the uncertainty due to 
the imputed values.

Several methods are available for computing the imputed values in the 
above framework, depending on the variable types and missing-​data pattern. 
In general, these imputation methods depend on a MAR assumption. In 
the case of continuous data, with monotone missing pattern, for example, 
Rubin (1987) proposes the use of a parametric regression method under 
multivariate normality or a nonparametric approach based on propen-
sity scores (see, e.g., Lavori, Dawson, and Shera 1995). For a categorical 
variable with monotone missing patterns, one may implement a logistic-​
regression model or the discriminant function method. With arbitrary 
missing-​data pattern, imputation may be performed using Markov chain 
Monte Carlo (MCMC), assuming multivariate normality (Schafer 1997). 
Other approaches include a fully conditional specification (FCS) method 
(van Buuren 2007), which assumes a joint distribution for all variables.

Alternatively, likelihood-​based methods can be applied under MCAR 
or MAR assumptions, conditional on observed outcome measurements 
and baseline covariates. The approaches do not involve explicit creation 
of imputed values but involve implicit imputations for missing values. 
One such an approach is the expectation-​maximization (EM) algorithm 
(Mallinckrodt 2003), which is an iterative process involving expectation 
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and maximization steps. Informally, the algorithm consists of first esti-
mating the parameters of the model on the basis of complete data, which 
in turn is used to estimate the missing values. The process is repeated itera-
tively until convergence.

For longitudinal data, in which observations are taken repeatedly over 
time and MAR assumptions are justifiable, several models are available that 
have reasonable performance relative to simple imputation methods. When 
the outcome variable is continuous, mixed-​effect models for repeated 
measures (MMRM) can be used, with careful specification of the covariance 
matrix structure for the error term. For categorical responses and count 
data, the generalized linear mixed models (GLMM) have been proposed. 
The generalized estimating equations (GEE) approach is often used for lon-
gitudinal response data, but the method gives unbiased estimators if the 
missing-​data mechanism only depends on the covariates included in the 
model (Fitzmaurice et al. 2000). Extensions of the approach are available, 
including the work by Robins et al. (1995) and Preisser et al. (2002), who 
proposed weighting schemes for GEE models that exhibit desirable per-
formance under MAR assumptions.

There are many software programs designed to implement longitudinal 
data models under the ignorable situation. Commonly used examples 
include the R functions lme and nlme and the SAS procedures MIXED, 
GLIMMIX, and NLMIXED. However, caution should be exercised in the 
use of these models, since in the non-​ignorable case the results will be sub-
ject to bias. In the following, we review some steps that should be taken in 
order to complement and strengthen the analyses based on these models.

2.3.4  Sensitivity Analyses

Once an analysis is performed based on a certain set of assumptions about 
the missing values, the results should be supported using appropriate sen-
sitivity analyses that address the same research hypothesis. A key objective 
of the sensitivity analyses should be to evaluate how different assumptions 
influence the initial results that were obtained.

Although most primary analyses are performed under MAR assumptions, 
in general, it is not possible to rule out MNAR, and therefore the planned 
sensitivity analysis should include the scenario of MNAR. However, data 
analysis under MNAR assumptions is complex, and most of the common 
likelihood-​based methods require specification of the joint distribution 
of the data and the missing data mechanism (Ibrahim and Molenberghs 
2009). The approaches generally rely on maximum likelihood methods 
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of estimation, based on mixed-​effects models and normally distributed 
outcomes, and are intended to handle dropouts in clinical trials involving 
longitudinal data. Examples of the approaches for MNAR include selection 
models (Diggle and Kenward 1994), pattern-​mixture models (Little and 
Wang 1996) and shared-​parameter models (Little 1995; Kenward 1998). 
Shared-​parameter models take into account the dependence between 
the measurement and the missingness processes, typically using random 
effects (Wu and Bailey 1989). On the other hand, both selection models 
and pattern-​mixture models involve factoring the joint distribution of the 
full data and missing mechanism into suitable products of conditional 
distributions. For example, selection models are based on assumptions 
about the distribution of outcomes for all subjects and the distribu-
tion of missingness indicators conditional on the hypothetical complete 
outcomes. Pattern-​mixture models, which are relatively more transparent 
and clinically interpretable, involve the conditional distribution of the data 
given the missingness pattern. In this case, when the number of patterns 
for the missing data is large relative to the sample size, there may be inad-
equate data to estimate parameters with reasonable degree of precisions. 
Thus, pattern-​mixture models are not typically applied in situations with 
arbitrary missingness, but are generally restricted to cases with monotone 
missingness, where the number of patterns is manageable.

Tipping-​point analyses are performed as an alternative approach to assess 
the robustness of study results corresponding to an assumed missingness 
mechanism. The approach essentially involves performing analyses with 
a range of values and searching the tipping point that reverses the study 
conclusion (e.g., from significant to non-​significant). Since tipping-​point 
analyses require exploring alternative model assumptions and values of 
the parameter, evaluation of the results may be cumbersome. To facilitate 
the interpretation of results from tipping-​point analyses, alternative graph-
ical displays have been proposed (see, e.g., Liublinska and Rubin 2014). 
The relatively transparent MNAR methods of pattern-​mixture models and 
tipping-​point analyses are practical sensitivity models to assess the robust-
ness of the primary MAR results.

2.3.5  Estimands and Other Recent Regulatory Developments

Recently, the issue of missing values has been addressed in the context of 
the clinical question being asked and hence the quantity to be estimated, 
called estimand, and the nature of the sensitivity analyses that need to be 
performed. This was motivated by the aforementioned National Research 
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Council (NRC) report that addressed various aspects of missing data 
in clinical trials (NRC 2010). There have since been subsequent efforts 
involving diverse stakeholders to formulate a general framework to align 
trial objectives and planned inference (Akacha et  al. 2017; ICH E9 (R1) 
2017; LaVange and Permutt 2016).

The NRC report covered the underlying issues associated with missing 
data but did not give any recommendation about a specific method for 
handling them. However, it cautioned against the use of single imputation 
methods, such as LOCF mentioned earlier. The report emphasized the 
importance of sensitivity analyses, as well as the necessity of preventive 
steps that need to be taken at the design and conduct stages of a clinical 
trial. Some of the suggested measures include implementation of novel 
designs, other than the usual parallel group design; enhanced patient con-
sent; encouraging patient compliance; and making greater efforts to collect 
post-discontinuation data.

As highlighted in the NCR report, the objective of an analysis strategy 
involving data with missing values should be to rule out bias in favor of the 
experimental drug that may have been introduced as a result of missing 
information or as a consequence of the action taken to handle the missing 
values. However, decision about the choice of the methods for the pri-
mary as well as sensitivity analyses is often complicated by various factors, 
including the lack of clarity about the intended objective, the actual target 
of inference, and the patient population to be included. As a result, this has 
led to the need to establish a framework based on the concept of estimands. 
In the following, we provide a high-​level overview of the current thinking 
about estimands, while stressing the fact that the concept is still evolving 
and there are many issues that need to be addressed for effective implemen-
tation of the framework under discussion.

In a broad sense, an estimand is the quantity that is the target of infer-
ence in order to address the scientific question of interest posed by the trial 
objective (ICH E9 (R1) 2017). As such, it may be characterized by various 
attributes, including the population of interest, the variable (or endpoint), 
the handling of intercurrent or post-​randomization events, and the sum-
mary statistics associated with the outcome variable.

The population of interest typically consists of the set of all study 
participants as defined by the protocol inclusion and exclusion criteria. 
This is referred to as the intent-​to-​treat (ITT) population. Usually, the 
ITT population is used to address the primary objective of establishing a 
treatment effect. However, there may be many valid scientific questions 

 

 

  

 



   

Selected Statistical–Regulatory Topics ◾  39

each requiring its own estimand, all of which may be used by regulatory 
agencies to assess the strength of the study results. In certain cases, the 
estimand may relate only to a subset of the randomized patients satisfying 
certain criteria, including any potential intercurrent or post-​randomization 
events. In the literature this is often referred to as the “principal stratum.” 
For example, the principal stratum may be the set of patients in which 
failure to adhere to treatment would not occur. In this case, the primary 
hypothesis relates to the treatment effect in this stratum. The variables 
used to characterize the estimand may be actual assessments taken during 
the study or functions of the measurements as well as intercurrent events. 
Finally, the population-​level summary measure or statistic is a key compo-
nent in the construction of the estimand and forms the basis for treatment 
effect comparisons.

Since intercurrent or post-​randomization events can affect inter-
pretation of results, there should be a clear specification of how they 
are incorporated in the construction of an estimand. Several strat-
egies have been proposed to address intercurrent events, depending 
on the therapeutic and experimental contexts. In one approach, called 
treatment policy strategy, the value for the variable of interest is used 
without regard to the occurrence of intercurrent events. This approach 
is in alignment with the principle of ITT. However, in this strategy an 
estimand cannot be constructed with respect to a variable that cannot 
be measured after the intercurrent event. An alternative approach is the 
composite strategy, in which the intercurrent event is taken to be a com-
ponent of the variable. For example, a responder may be defined in terms 
of a composite of no use of rescue medication and a favorable clinical 
outcome. In other situations, the estimand may be defined with respect 
to a principal stratum, which may be a subset of the study population 
that did not experience the intercurrent event. In contrast to the usual 
subgroup analysis, it is noted that principal stratification is defined based 
on a patient’s potential post-​randomization events. When the design 
involves repeated measurements, one may only focus on the responses 
observed prior to the occurrence of the intercurrent event. For example, 
in this case, also referred to as while-​on-​treatment strategy, if the goal is 
to assess treatment effect on a given symptom and a patient dies, one may 
only consider the effect on symptoms before death. Lastly, the strategy 
may involve defining a hypothetical scenario in which the intercurrent 
event would not occur and formulating the scientific question under the 
putative scenario. For example, in case a rescue medication is permitted 



   

40 ◾  Selected Statistical–Regulatory Topics

in the protocol, the strategy requires assessing the outcome if no rescue 
medication was provided.

Underpinning the estimand framework is the importance of valid sensi-
tivity analyses to assess the robustness of inferences from the main analysis. 
As discussed in the previous section, this should involve a number of ana-
lyses targeting the impact of deviations from some of the relevant under-
lying assumptions. The sensitivity analysis, as well as the estimand to which 
it is aligned, should be prespecified in the trial protocol.

The ongoing effort to develop a viable framework to bring the target 
of estimation, method of estimation, and sensitivity analysis in con-
sonance with the objective of the trial can certainly lead to a better for-
mulation of research hypothesis and interpretation of results and can 
facilitate collaboration among diverse stakeholders. In particular, it ensures 
alignment between pharmaceutical companies and regulatory agencies on 
expectations about trial design, data collection, and analytical strategies. 
However, as the concept evolves, further work may be needed to address 
operational issues that may arise in the course of the implementation of the 
framework.

2.3.6  Concluding Remarks

As elucidated in this section, one of the major threats to the validity of 
evidence from RCTs is the potential for bias associated with missing 
data. Despite the availability of regulatory guidelines and novel statis-
tical approaches to address the issue, there is no silver bullet to solve the 
problem. Modern statistical analysis tools rely on untestable assumptions, 
and often require borrowing auxiliary information from experimental 
units with complete information. While sensitivity analyses are generally 
recommended as important tools to assess the degree to which results 
depend on model assumptions, the appropriateness of the approaches is 
heavily dependent on the extent of their coherence with the formulation 
of the original analysis. The only fullproof way to solve the missingness 
problem is not to have missing data. Although there are several proposed 
preventive steps that may be taken at the design and conduct stages of 
the trials to minimize their occurrence, in reality, missing values are 
unavoidable.

The recent efforts to define a framework in terms of estimands appears 
to be a step in the right direction, as that might help to enhance the com-
munication between regulatory agencies and pharmaceutical companies 
by ensuring alignment early on in the process, as well as explicitly define 
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the clinical question being addressed. From the broader perspective, the 
effort to harmonize the trial objectives with the analytical approaches and 
regulatory expectations may also contribute toward the overarching goal of 
improving the efficiency of the drug development paradigm. However, the 
concept is still evolving, and its refinement and successful implementation 
would undoubtedly require a gradual and iterative approach, involving 
inputs by all stakeholders.

2.4 � NON-​INFERIORITY STUDY

The distinguishing feature of a non-​inferiority study is that the objective 
of the study is to show that the test treatment is not inferior to the con-
trol. A non-​inferiority design can be employed in studies where the pri-
mary objective is either efficacy or safety. However, the design features and 
regulatory considerations are quite different for a study with a non-​inferior 
efficacy objective and one with a non-inferiority safety objective. The non-​
inferiority design with an efficacy objective will be discussed first.

2.4.1  Efficacy Objective

The most direct way to establish the efficacy of a treatment is to show 
it to be superior to a placebo or an active agent in a superiority study. 
A  placebo-​controlled study is not always possible; therefore, use of an 
active control, where there is no expectation that the test drug is superior 
to the active control, may be necessary. The study objective is to show 
the test treatment is non-​inferior to the active control within a protocol-​
specified non-​inferiority margin (NIM). The rationale for a non-​inferiority 
study primarily arises when the use of a placebo control is not ethical. 
The International Conference on Harmonization guidance E10: Choice of 
Control Group and Related Issues in Clinical Trials (ICH E10 2001) states 
that the use of placebo is unethical, “In cases where an available treatment 
is known to prevent serious harm, such as death or irreversible morbidity 
in the study population.” Clearly, one does not need ICH E10 guidance 
to realize that withholding the available treatment is unethical. In some 
cases, such as oncology treatments, this ethical dilemma can be avoided by 
an add-​on design in which the test drug or placebo is randomly added to 
the active treatment. However, often a direct comparison of the test drug 
to the active drug is called for, resulting in a non-​inferiority study. A non-​
inferiority design may also be chosen for less critical considerations such as 
when randomization to placebo would make informed consent or enroll-
ment problematic.
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The critical value in a non-​inferiority study is the NIM, i.e., what degree 
of inferiority must be ruled out in order to conclude non-​inferiority 
of the test treatment to the control treatment. The manner in which the 
NIM is determined, its relationship to the non-​inferior hypothesis, and its 
implications regarding study size and conclusions will be addressed next.

2.4.2  Non-​inferiority Hypothesis /​ Non-​inferiority Margin

In a superiority study the objective is to show that the test drug is superior 
to placebo or possibly an active control. In a hypothesis testing framework 
this implies,

H0: T–​P ≤ 0 vs. H1: T –​ P > 0

where T and P represent the efficacy response for the test drug and pla-
cebo, respectively. In a non-​inferiority study, the efficacy of the test drug is 
established indirectly by showing that it is not inferior to the active control 
(A) by more than a prespecified margin M (Figure 2.1). This implies a null 
and alternative hypothesis of

H0: A–​T ≥ M vs. H1: A–​T < M.

Clearly, the non-​inferiority margin M is critical. If M is small then the 
demonstration of efficacy becomes very difficult resulting in a large sample 
size to reject inferiority. Likewise, if M is large then it may be incorrectly 
concluded that T is effective or, if effective, the difference between A and T 
may be clinically meaningful. This concept of clinically meaningful diffe-
rence between A and T is an extra regulatory burden for non-​inferiority 
studies as will be discussed in the following sections. Consequently, how 

A-T<M
Reject inferiority

A-T≥M
Cannot reject inferiority

M
A-T

0

FIGURE 2.1  Schematic of Non-​inferiority Hypothesis
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M is determined and what it means to show that A-​T is less than M are the 
critical aspects of a non-​inferiority trial.

2.4.3  Determination of NIM

The determination of NIM, denoted as M above, requires clinical and stat-
istical consideration, and is established based on the effect of the active con-
trol in past studies. This implies that in order to conduct a non-​inferiority 
study there must be a suitable active control whose efficacy has been reliably 
established in previous studies. The NIM is usually not the point estimate 
of the active treatment effect in the previous studies, but rather, the effect 
of the active control, conservatively defined as the limit of the confidence 
interval closest to the null; e.g., a lower confidence bound (LCB) (typically 
97.5% or 95%, one sided) of the mean effect of the active control in the 
previous studies. This value is acceptable to regulators because it gives a 
degree of confidence that the active treatment effect would be at least this 
large (compared to the non-​observed placebo) in the non-​inferiority study. 
The conservative nature of this method of determining the NIM should 
be stressed. If the LCB is close to 0 due to variability of the estimate of 
the active treatment effect, then a non-​inferiority study to show efficacy 
of the test agent is not feasible. The concept mentioned earlier of a clinic-
ally meaningful difference between the test and the active control, which 
implies the need to preserve a given proportion of the efficacy of the active 
control is an added conservative burden imposed on many non-​inferiority 
studies. It is beneficial and useful to discuss these concepts in the context of 
a real example. This example is given in the FDA Guidance Document on 
non-​inferiority studies (FDA 2016).

2.4.4  Example: FDA Guidance Document

This example concerns the use of a non-​inferiority study for approval of a 
new thrombolytic agent for the treatment of acute myocardial infarction. 
Streptokinase was the active comparator and its effect was established by 
a meta-​analysis of placebo-​controlled trials. Streptokinase yielded a 2.6% 
benefit in mortality compared to placebo with a one-​sided 95% lower 
bound of 2.1%. The one-​sided 95% lower confidence bound of 2.1% was 
taken as the effect of streptokinase for the purposes of the NI study rather 
than the most likely estimate of 2.6% because the NI study is dependent 
on something that is not measured in the NI study, namely, the effect of 
streptokinase over placebo. Thus, the conservative estimate of 2.1% was 
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selected to increase the confidence that this effect would be present in the 
NI study. While 2.1% could serve as an acceptable NIM to show efficacy 
for the new agent, the clinical /​regulatory decision was made that the NI 
study should rule out a loss of more than half of the benefit of strepto-
kinase to be an acceptable alternative. The NI study would therefore have 
to rule out an NIM of a 1.05% increase in mortality in patients treated with 
the new thrombolytic drug compared to those treated with streptokinase. 
Figure 2.2 illustrates these values.

To rule out an increase in mortality of 1.05%, a one-​sided 97.5% upper 
confidence bound of the test drug minus streptokinase difference in mor-
tality must be below 1.05%.

2.4.5  Implications of Choice of NIM

As indicated above, there are stringent criteria for a successful NI study. An 
NI study with an NIM intending to preserve half of the effect of the active 
drug requires approximately four times the number of subjects of an NI 
study intending to show the test drug is simply better than placebo. In the 
above example, this is an NIM of 1.05% compared to an NIM of 2.1%. It 
should also be noted that this 95% lower confidence limit of 2.1% is a con-
servative estimate of the streptokinase effect.

An NI study designed to rule out the loss of a proportion of the active 
comparator benefit implies a “comparative effectiveness” standard that is 
not included in the Federal Food, Drug, and Cosmetic Act. As a result, 
the following statement was placed in the Federal Register of August 1, 
1995 (60 FR 39180 at 39181), as an FDA position by then FDA’s Deputy 
Commissioner for Policy, William Schultz:  “In certain circumstances, 
however, it may be important to consider whether a new product is less 
effective than available alternative therapies.” The two circumstances given 
are: 1. Disease is life-​threatening or capable of causing irreversible mor-
bidity (e.g., stroke or heart attack); 2. Disease is a contagious illness that 
poses serious consequences to the health of others.

0 1.0 2.0 3.0 4.0

1.05% 2.1% 2.6% 3.1%

Streptokinase Effect over Placebo

FIGURE 2.2  Effect of Streptokinase on Mortality Compared to Placebo
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Thus, the ethical reasons for the use of an active control and an NI study 
is the same as the ethical reason to assure the test drug maintains a pro-
portion of the active control’s effect. In the streptokinase example, the 95% 
lower confidence bound of 2.1% would not be acceptable because it does 
not assure any proportion of the streptokinase effect preserved in the NI 
study. Preserving 50% of the effect was selected as the NIM. However, if 
an NI design is used when the ethical imperatives do not apply, such as 
when randomization to placebo would make informed consent or enroll-
ment problematic, then according to the Act and the 1995 wording, the 
study should not have to show that the test drug maintains a proportion of 
the effect of the active control, and the 95% lower confidence limit should 
be acceptable as the NIM.

2.4.6  Strength of a Non-​inferiority Study

The regulatory strength of a non-​inferiority study depends on three critical 
conditions. Absence of any one of these three conditions would not allow 
an efficacy inference for the test drug. First, there must be reliable informa-
tion about the effect the active control drug had in past studies compared 
to placebo. A consistent positive effect of the active control is required to 
establish the NIM. Treatment in diseases where an active drug does not 
consistently show a benefit over placebo, e.g., major depression, would not 
allow for establishing an NIM and consequently would not be a candidate 
for an NI Study. In the above setting, this may be overcome by the 95% 
lower confidence limit using the A-​P historical estimate, but in the case 
where previous studies do not show a consistent effect over placebo, it is 
recommended to discuss the design with the regulators. In determining the 
NIM, study-​to-​study variability in the estimate of the active control effect 
must be taken into account in forming the NIM. This implies a random-​
effects meta-​analysis of the existing studies to estimate the mean effect of 
the active drug and the lower confidence limit of the mean. If the efficacy 
of the active control has been established in only one study, then a higher 
degree of confidence on the lower limit may be required.

The second condition is that the effect the active control drug has in 
the current NI study is similar to the effect observed in past studies. The 
validity of an NI study is dependent on assuming something that is not 
measured in the study, namely, that the active control had its expected 
effect in the NI study. This is sometimes referred to as the constancy 
assumption. This is somewhat addressed by using the lower confidence 
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bound as the estimate of the active treatment effect that leads to high con-
fidence that the effect of the active control is at least as strong in the NI 
study. In order to strengthen the constancy assumption, there should be 
similarity between the important characteristics of the current NI study 
with those of prior studies that established the efficacy of the active 
compound.

The third condition is that the NI study reliably estimates the effect of 
the test drug relative to the active control. This is predominately relating 
to the quality of the conduct of the NI study. Almost all departures from 
“quality” lead to a reduction in the estimate of the active minus test effect. In 
a superiority study this reduction is toward the null hypothesis. However, 
in a non-​inferiority study this reduction is toward the alternative hypoth-
esis and, hence, makes it more likely to reject the null and conclude non-​
inferiority. Thus, discontinuations from treatment, missing data, adherence 
to treatment, all tend to reduce treatment differences and, therefore, need 
to be assessed before concluding non-​inferiority of the test drug to the con-
trol. Due to its conservative estimate of the treatment difference, the ITT 
analysis alone is often not considered sufficient by regulators to conclude 
non-​inferiority and, hence, the on-​treatment analysis, even with potential 
bias, is important as a sensitivity analysis in an NI trial.

2.4.7  Synthesis Method for Non-​inferiority

Non-​inferiority may be established by a direct comparison of the results 
from the studies used to estimate the effect of the active control with the 
results of the NI Study (sometimes referred to as the synthesis method). 
When the parameter of interest is the mean, the effect of the active control 
compared to placebo is estimated from the existing studies by the contrast 
of means A-​P with variance V1 and the effect of the active control compared 
to the test drug from the NI Study by the contrast of means A-​T with vari-
ance V2. The combined contrast of (A-​P)-​(A-​T) yields an indirect estimate 
of the effect of the test drug compared to placebo (T-​P) with variance V1 
+ V2. The lower confidence bound on this indirect estimate of A-​T being 
greater than 0 establishes the efficacy of T.  The lower confidence bound 
by the synthesis method, e.g., one sided 95% confidence interval (CI), (A-​
T) –​ 1.645 (V1 + V2)0.5, is always greater than the lower confidence bound 
by method 1, (A-​T) –​ 1.645 (V1

0.5 + V2
0.5) and, hence, the proportion of the 

effect of A preserved by T is greater. Accordingly, one is more likely to con-
clude non-​inferiority by the synthesis method. It should be noted that all 
of the discussion above relating to the first method apply to the synthesis 
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method as well and, in particular, the assumption of a constant effect of the 
control A in the previous studies and the NI study.

2.4.8  Summary Points

•	 Superiority studies are preferable to an active-​controlled NI Study.
•	 NI studies are necessary when available treatment is known to pre-

vent serious harm, such as death or irreversible morbidity.
•	 A consistent effect shown by the active control in past studies is a 

necessary basis for an NI study and the effect of the active control is 
conservatively estimated by a lower confidence limit.

•	 A constancy of effect of the active treatment from past studies to the 
current NI study is a necessary assumption.

•	 The NIM is a crucial aspect of an NI study. This margin is often 
smaller than the effect of the active control in order to assure that a 
given proportion of the effect of the active control is preserved by the 
test drug.

•	 Similarity of important characteristics of the NI study and the past 
studies used to establish the effect of the active control, as well as the 
quality of the conduct of the NI study are important regulatory review 
criteria.

2.4.9  Non-​inferiority Study with a Safety Objective

Statistical and regulatory considerations regarding non-​inferiority studies 
with a safety objective are somewhat different from those discussed for an 
efficacy objective. These arise primarily around the determination of the 
NIM and related issues. Non-​inferiority studies designed to show efficacy 
of the test drug require an NIM based on the effect of the active control 
in past studies. This implies that the active control is consistently and reli-
ably effective in past studies. Without the NIM, efficacy cannot be inferred 
from a non-​inferiority study. A frequently occurring regulatory setting for 
a non-​inferiority safety study begins with a suspected safety issue regarding 
serious, low-​incidence adverse events of a marketed drug, e.g., the associ-
ation of cardiovascular events with nonsteroidal anti-​inflammatory drugs, 
particularly Cox-​2 inhibitors. A regulatory body may mandate a study to 
address the concern. The study may be either active or placebo-​controlled 
with the objective to show that the test drug does not have a “clinically 
unacceptable” higher incidence of the adverse experience (AE) compared 
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to the control. Typically, the actual incidence of the AE in the control group 
may be difficult to estimate. Thus, the NIM in an efficacy study, from which 
effectiveness can be inferred, is quite different from an NIM in a safety 
study, from which only an agreed-​upon level of excess risk can be ruled 
out. The concept of “clinically unacceptable” is ambiguous and subjective 
in application and consequently, while the NIM in a safety study should 
be determined in a clinically rigorous way, it is less objective than in effi-
cacy studies. In addition, in order that any excess risk of a serious AE is 
acceptable, there must be some benefit that leads to the NIM being based 
on a risk–​benefit assessment. However, safety studies can be conducted 
without establishing an NIM and can be useful for regulatory purposes, 
e.g., the Evaluating Adverse Events in a Global Smoking Cessation Study 
(EAGLES) of varenicline and serious neuropsychiatric adverse events 
(Anthenelli 2016). This raises the general question, what then is the pur-
pose of an NIM in a safety study.

The need for an NIM and the consequences of including an NIM or not 
in a safety study should be considered in the regulatory context of the safety 
issue. Prospective Randomized Evaluation of Celecoxib Integrated Safety 
vs. Ibuprofen or Naproxen (PRECISION) (Nissen 2016; Gaffney 2016) was 
a regulatory-​mandated, large non-​inferiority safety study to assess whether 
a Cox-​2 nonsteroidal anti-​inflammatory drug increased the rate of car-
diovascular adverse events compared to two traditional nonsteroidal anti-​
inflammatory drugs (NSAIDs). An NIM was used in PRECISION. Some 
rigor can be introduced by defining the NIM to be the level of increased 
risk that would be “clinically unacceptable” in the context of the “level of 
benefit” that is provided by the treatment. The PRECISION study NIM of 
1.33 was determined by considering a potential benefit of Cox-​2 on serious 
gastrointestinal events in conjunction with a clinically acceptable excess 
risk based on the expected cardiovascular event rate in the NSAID control 
group. Even when the NIM is determined by a clinical/​scientific method, it 
is still subjective. The NIM in a non-​inferiority safety study does not have 
the data-​determined objectivity that the NIM in a non-​inferiority efficacy 
study has. However, the NIM is a strong determinant of study size and, 
consequently, the cost and time necessary to ensure the reliability of the 
study results. For example, the sample size needed with an NIM of 1.33 is 
about 37% larger than the sample size needed with an NIM of 1.40. Thus, 
when an NIM can be determined by a strong clinical method and agreed 
upon with the regulatory body, it provides important scientific context for 
the design, conduct, and analysis of the study and serves the purpose of 
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ruling out a predefined unacceptable increase in risk. It also serves as an 
objective regulatory criterion that the study results have or have not ruled 
out an unacceptable increase in risk.

In contrast to PRECISION, the EAGLES study (Anthenelli 2016, Gaffney 
2016) was designed without an NIM. EAGLES was also a regulatory-​
mandated, large safety study to assess whether varenicline had an increased 
rate of serious neuropsychiatric adverse events compared to placebo and 
two other methods of smoking cessation. For many reasons it was not feas-
ible to determine an NIM by a strong clinical rationale. Without an NIM 
there is no study hypothesis. Consequently, the objective of EAGLES was 
to estimate the rate differences and the uncertainty around these estimates. 
Sample size was determined, with agreement with the regulators, by a 
prespecified width of the 95% confidence interval in estimating the rate 
differences in neuropsychiatric adverse events. However, with no agreed-​
upon unacceptable level of increased risk to rule out, the interpretation of 
EAGLES is more difficult from a regulatory perspective.

The use of the 95% CI to determine study size does not necessarily lead 
to smaller trials than NIM-​based trials, or other trials that use less rigorous 
approaches. There is a one-​to-​one correspondence between the width of 
the confidence interval and an NIM. However, the use of the 95% CI to 
determine study size may lead to a better understanding of the uncertainty 
around risk estimation and the cost to reduce the uncertainty, which may 
in turn lead to smaller trials. For example, as stated above, the sample 
size needed with an NIM of 1.33 is about 37% larger than the sample size 
needed with an NIM of 1.40. However, the upper confidence interval of the 
point estimate of the observed hazard ratio (HR) is reduced from 1.226HR 
to only 1.190HR by this increase in study size. This reduction in uncer-
tainty can be assessed relative to the increase in study cost, study duration, 
and time to clinical knowledge of the study results.

2.4.10  Summary Points

•	 The NIM in a non-​inferiority safety study does not have the data-​
determined objectivity of an NIM in a non-​inferiority efficacy study. 
While the NIM in a safety study should be determined in a clinically 
rigorous way, it is more subjective than the NIM in efficacy studies.

•	 Additional rigor can be introduced in the safety NI study by defining 
the NIM to be the level of increased risk that would be “clinically 
unacceptable” in the context of the “level of benefit” of the treatment.
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•	 When an NIM can be determined with a strong clinical rationale, it 
serves as an objective regulatory criterion that the study results have 
or have not ruled out an unacceptable increase in risk.

•	 When an NIM cannot be determined by a strong clinical rationale, a 
safety study can be sized by the width of the 95% CI.

•	 The use of the width of the 95% CI to determine study size may lead to 
a better understanding of the uncertainty around risk estimation and 
the cost of reducing uncertainty and thereby lead to smaller trials.

2.5 � INNOVATIVE TRIAL DESIGNS

Novel and nonstandard study designs are promoted both by pharmaceut-
ical companies and regulatory agencies to streamline the current drug 
development and regulatory approval processes. This is especially given 
heightened attention in research concerning rare diseases, oncology, and 
other areas with unmet medical needs. However, these designs are inher-
ently complex, and are associated with important statistical and operational 
issues that require careful considerations. Notably, a recent guidance docu-
ment from the US FDA (2018a) highlights four requirements for successful 
implementation of an adaptive design: controlling the chance of erroneous 
conclusions, reliable estimation of treatment effects, prespecification of 
relevant details of the design, and safeguarding trial integrity. Next, we give 
a summary of a few of the commonly used novel approaches, including 
adaptive and flexible designs, enrichment studies, and studies conducted 
under the so-​called master protocols.

2.5.1  Adaptive Designs

Adaptive designs permit modifications to various attributes of the trial 
based on analysis of data from subjects in the study, while ensuring that 
the integrity of the trial is not compromised. The modification may involve 
study procedures, including eligibility criteria, dose levels and duration 
of treatment; sample size; or statistical methods. Examples of adaptive 
design methods include adaptive randomization, group sequential designs, 
sample size reestimation, adaptive dose-​finding designs, as well as adaptive-​
seamless Phase II/​III trial designs (Chow et al. 2005).

2.5.2  Adaptive Randomization

In comparative trials, assignment of study subjects to treatment groups 
may be adjusted either based on baseline characteristics (covariate-​adaptive 
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treatment assignment) or comparative outcome data. The former is 
conducted with a view to achieving balance between treatment groups 
with respect to important baseline covariates. An example is the so-​called 
minimization approach, proposed by Pocock and Simon (1975), in which 
consecutive patients are systematically allocated to treatments so as to min-
imize any difference on the selected prognostic factors.

In response-​adaptive randomization, the principal goal is to increase 
the probability of success by modifying the randomization schedule as a 
function of observed treatment effect. An example is the randomized play-​
the-​winner rule, which uses an urn model for patient allocation (Rosenberger 
1999). An appealing feature of response-​adaptive randomization is that, on 
average, the more efficacious treatment arm will be studied on a higher 
proportion of study subjects. In addition, there are also situations where 
the approach may lead to efficient statistical procedures, including reduced 
variability of treatment effect estimates. The assignment probability  (πa) 
may be determined using alternative approaches. One method due to Thall 
and Wathen (2007) computes the probability as:

πa

r

r r
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where r is a positive tuning parameter, and P(T > C) is the posterior prob-
ability that the new agent (T)  is better than the control (C), based on 
accumulated data, and using the uniform prior distribution.

Adaptive randomization strategies may not be advisable in all situations. 
In fact, the added complexity, in terms of execution, analysis, and inter-
pretation, may not justify their use relative to standard trial designs. In 
particular, their application in Phase III studies may require caution due 
to the potential for bias arising from time trends associated with any prog-
nostic factors. In such cases, block randomization and stratified analysis 
approaches are recommended. Korn and Freidlin (2011) provide a discus-
sion of the pros and cons of adaptive randomization.

2.5.3  Sample Size Reestimation

In some situations, there may initially be inadequate information about 
certain parameters involved in sample size determination to achieve the 
desired power and Type I error rates. Examples of such parameters include 
the detectable effect size, measures of dispersion, or the null response rate in 
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the comparison of two proportions. Study size, therefore, may be adjusted 
based on appropriately defined sample size reestimation techniques using 
data observed during an interim period.

One of the earliest approaches proposed by Wittes and Brittain (1990) 
uses an internal pilot study. More specifically, the trial is designed using 
an initial estimate of the parameter of interest. An interim analysis is then 
performed to estimate the parameter, which in turn is used to recalculate 
the sample size. This approach typically results in small inflation of the 
Type I error rate, which may be substantial when the interim analysis is 
based on very few observations.

When there is uncertainty about the effect size, several strategies may be 
followed to achieve the desired result. An adaptive approach, often called 
unblinded sample size reestimation, consists in starting with a modest 
sample size, and then increasing the size, following an interim compara-
tive analysis. This approach has known shortcomings. First, a large sample 
size may lead to detection of clinically irrelevant effects. In addition, inad-
vertent dissemination of interim results may compromise the integrity of 
the conduct and reporting of the trial (Mauer et al. 2012). Further, without 
proper adjustment, such an approach can inflate the Type I  error prob-
ability (Proschan and Hunsberger 1995).

To control the Type I error rate, combination tests have been proposed, 
using the p-​values computed at the different stages of the trial. Specifically, 
let P1 and P2 be the p-​values associated, respectively, with the test of the null 
hypothesis at the interim look and then at the end of the trial based on the 
reestimated sample size. Bauer and Kohne (1994) propose a test defined on 
the product, T = P1P2, which has a exp(χ2

4 /​2) distribution under the null. 
One may also construct a test statistic using the inverse normal cumulative 
distribution transformation:

Z w Z w= +1 1 2 2Z

where Zi = Φ ‒1 (1 ‒ Pi), and the wi (i = 1, 2) are prespecified weights such 
that w1

2+ w2
2 = 1. Under the null, Z has a N(0,1) distribution. See also Cui 

et al. (1999) and Denne (2001), among others, for related approaches.
It may be noted that approaches based on prespecified weights are often 

criticized on the ground that they violate the sufficiency principle, and 
hence may not be efficient. Further, their dependence on nonstandard 
tests and p-​values make them less attractive. A more appealing strategy 
involves the group sequential approach, in which the trial is designed 
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with maximum sample size, and then interim analyses are performed 
with the goal of stopping the trial for efficacy or futility or adjusting the 
sample size. Notably, Mehta and Pocock (2011) proposed the promising-​
zone approach in which the sample size is increased when interim results 
appear to be promising. More specifically, at the interim analysis, the 
promising zone can be characterized with respect to the estimated con-
ditional power (CP), i.e., the probability of statistically significant result 
at the end of the trial, given the observed data, and assuming no change 
in the observed treatment effect and planned sample size. Using the 
estimated CP, the interim outcome may then be classified into unfavor-
able, favorable, or promising zones. If the interim result falls in the prom-
ising zone, the sample size may be increased, assuming plausible values 
for any relevant parameters; otherwise, there will be no change to the 
design. The approach is appealing because of its ease of implementation, 
since conventional final inference can be performed without inflating the 
overall Type I error. Indeed, Chen et al. (2004) argue that with CP >0.5, 
one can increase the sample size and use conventional test statistics while 
preserving the Type I error. However, it has been shown by Gaffney and 
Ware (2017) that the conventional statistic compared to the standard crit-
ical value (e.g., Z –​ 1.96 for α = 0.05) will be conservative.

In the above discussion, while the focus has been on preserving the Type 
I error, it should also be noted that determination of a valid point estimate 
and confidence intervals following sample size reestimation may not be 
straightforward. This is, in fact, an issue of regulatory and methodological 
importance associated with all adaptive designs, requiring caution in the 
reporting of the accompanying study results (Wassmer and Brannath 2016).

2.5.4  Sequential Designs

Sequential designs are applied in situations where the objective consists in 
early termination of a trial, either for futility or overwhelming efficacy. In 
planning such trials, it is critical to specify the purpose, frequency of ana-
lysis, and procedures to be applied to control Type I  error probabilities. 
Some of the strategies require prospective definitions of both the number 
of interim analyses and the amount of information to be observed. The 
choice of a particular strategy also depends on the intended purpose and 
operational considerations. For example, the O’Brien–​Fleming approach 
tends to require strong evidence for early stopping (O’Brien and Fleming 
1979); while Pocock’s method tends to lead to more frequent early stopping 
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(Pocock 1977). On the other hand, the general alpha-​spending approach 
provides flexibility about the number and timing of interim looks, since 
it mainly depends on specification of a function for how the Type I error 
probability is spent (Lan and DeMets 1983). However, even this approach 
may result in inflation of Type I error if the timing of interim analysis is 
based on knowledge of the observed treatment effects.

As mentioned earlier, when using group sequential designs, estimates 
of treatment effects are known to be biased, and confidence intervals do 
not have the desired nominal levels. Therefore, appropriate adjustment 
should be made to the estimates when reporting such results (Jennison 
and Turnbull 1999; Wassmer and Brannath 2016). Further, independent 
monitoring of the study is essential to safeguard the integrity of the trial 
and credibility of the results (see, e.g., Ellenberg et al. 2002).

Group sequential designs may be more efficient than sample-​size 
reestimation designs; however, depending on the circumstances, sample-​
size reestimation could still be the preferred design (Levin et al. 2013). The 
choice of the sequential design may depend on the stage of development 
and prior knowledge and expectation of the treatment effect.

2.5.5  Adaptive Designs for Dose and Treatment Selection

Modifications could also be made to treatment arms, including doses of 
the same agent, based on interim results. In early-​phase trials, adaptive 
dose-​ranging trials may be conducted to select an optimal dose or doses 
for further evaluation. An example is the Continual Reassessment Method 
(CRM), a model-​based approach discussed in Chapter 1, which involves 
fitting a dose-​toxicity curve to estimate the maximum tolerated dose for a 
new drug (Le Tourneau et al. 2009).

In late-​phase drug development, an adaptive dose-​modification design 
may allow interim selection of candidate doses from two or more com-
peting candidates, thereby permitting assignment of future patients to the 
selected treatment arms. Seamless Phase II/​III trials are sometimes used 
as a viable option when there is interest to shorten time-​to-​market of a 
new medicine, by addressing two objectives in the same study; namely, 
dose selection, at an interim analysis, and efficacy determination, at the 
end of the study. In such designs, suitable procedures should be used to 
pool information from patients enrolled before and after the adaptation to 
perform inference at the final analysis, while controlling the Type I error. 
Examples of approaches include the combination test techniques described 
earlier, or the adaptive Dunnett design (see, e.g., Stallard and Todd 2010). 
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In general, the choice of a specific approach requires a careful evaluation 
of several factors, including trial objective, outcome measure, and other 
therapeutic and practical considerations.

2.5.6  Adaptive Enrichment Designs

Adaptive enrichment designs allow modifications to the patient population 
based on comparative interim results. The final analysis may involve mul-
tiple hypotheses; thereby requiring appropriate procedures to adjust for 
multiplicity (see, e.g., Wassmer and Brannath 2016).

Enrichment designs have especially become an attractive option in 
oncology, as the focus of drug development shifted from those centered on 
cytotoxic agents (i.e., those agents that may stop cancer cells from dividing 
and growing or cause tumors to shrink) to those using molecularly targeted 
agents (which target specific molecular markers) or use a patient’s immune 
response to attack cancer cells. To implement such designs, it is essential 
to ensure that the molecular marker is well established (i.e., is strongly 
correlated with the outcome measure) and that a diagnostic tool for evalu-
ating it is available. Further, it should be ascertained that the study drug 
is not effective in the marker-​negative patients. If the latter is not known, 
the randomization should be stratified by molecular marker positivity or 
negativity or use more complex designs with a common protocol (Simon 
2017a). When enrichment designs are used in seamless Phase II/​III trials, 
the required sample size and analysis for each phase may be evaluated 
using the same or different endpoints. For example, assuming progression-​
free survival for end of Phase II and overall survival for Phase III, the 
corresponding analyses may be performed after the following numbers of 
events Ep (p = I or II) have been observed:

E
Z Z

p
p

p p=
+

∇






−4 1 α β

log

where two-​sided significance level α and higher power 1–​β are typ-
ically used for Phase III, for detecting the respective hazard ratio  ∇p 
(Schoenfeld 1983).

2.5.7  Master Protocols

Recently, more complex designs have been proposed to allow treatment arm 
selection or subgroup identification adaptively using a common protocol. 
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For example, as stated in a recent US FDA guideline (US FDA 2018b), 
first-​in-​human multiple expansion-​cohort trials involving oncology drugs 
and biologics may be conducted using a single protocol to address several 
cohort-​specific objectives, starting with an initial dose-​escalation phase, and 
including additional cohorts to evaluate different aspects of the drug. The 
latter may include assessment of safety or efficacy in specific populations or 
evaluation of the predictive value of a potential biomarker. To minimize the 
accompanying risks to patients with such trials, it is important to restrict the 
approach to patients with unmet needs, and also to have adequate infrastruc-
ture to ensure that emerging results and safety signals are communicated in 
real time to regulators and other stakeholders.

More generally, master protocols may be developed with the intent of 
designing and conducting clinical trials that address multiple objectives 
simultaneously. This may include the evaluation of more than one inves-
tigational drug or more than one cancer type within the same protocol. 
A  master protocol may be based on a fixed or adaptive design, but it is 
generally considered after the recommended Phase II dose (RP2D) has 
been established in an adult patient population. While there are alternative 
designs used in master protocols, it is noted that there is a lack of consist-
ency in the definitions of the terms for the studies. Common examples, 
discussed below, are the so-​called basket trials, umbrella trials, and plat-
form trials.

2.5.7.1  Basket Trials
In a basket trial, a master protocol may be developed to evaluate a treatment 
regimen in different subpopulations, each with a specific objective and sci-
entific rationale (Figure 2.3). The subpopulations are generally defined by 
various demographic characteristics, biomarkers, or disease attributes, 
including tumor type, number of prior therapies, or disease stage. Basket 
trials are exploratory in nature, and the substudies often involve a single 
arm. In oncology, one often aims at estimating the overall response rate 
(ORR) as a measure of drug activity in the various subpopulations, since 
survival endpoints are not feasible in such designs. Hence, the planned 
sample size may be calculated to rule out a clinically trivial response rate as 
determined by the lower bound of a 95% confidence interval.

To limit exposure to an ineffective drug, basket trials typically employ 
designs such as the approach proposed by Simon (1989). The response rate 
may be estimated both for the subpopulations as well as for the pooled 
data. Cunanan et  al. (2017) suggest an enhanced approach in which an 
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interim analysis is first performed to rule out homogeneity of the response 
rates across subpopulations. If there is evidence of heterogeneity, then sep-
arate two-​stage designs are conducted for each subpopulation; otherwise 
the usual two-​stage design is performed on the pooled data.

Statistical approaches are also available that permit borrowing infor-
mation across subpopulations. LeBlanc et al. (2009) propose a frequentist 
method, while others advocate Bayesian hierarchical modeling to imple-
ment information borrowing. One approach, due to Thall et  al. (2003), 
allows treatment effects to differ across subpopulations, while assuming 
the effects are exchangeable and correlated. According to Berry et  al. 
(2013), the Bayesian hierarchical model seems to have lower overall Type 
I error rate compared to Bayesian or frequentist approaches applied to each 
subpopulation. The power may, however, be low in situations where the 
drug is inactive in most strata. Also, the performance of the approach may 
be questionable if there is inadequate information on the outcome due to 
small sample size, which typically is the case in Phase II trials (Freidlin and 
Korn 2013).

Simon et  al. (2016) introduced a Bayesian design that requires 
prespecification of stratum-​specific prior probabilities under two 
scenarios:  homogeneous and heterogeneous responses across 
subpopulations. More specifically, a quantity λ is specified as the prior 
for homogeneity, and another prior γ  for a hypothesized response rate π1, 
considered acceptable activity. The approach can readily be implemented 
using accessible software.
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FIGURE  2.3  Schematic Representation of a Master Protocol with Basket 
Trial Design
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Some authors have proposed a hybrid approach in which a Bayesian 
hierarchical model is used in the final stage if homogeneity of effect across 
subpopulations is established at the interim analysis (Liu et al. 2017). For 
basket trials, Yuan et al. (2016) and Chen et al. (2016) propose procedures 
that ensure control of the family-​wise error rate through pruning of 
subpopulations.

2.5.7.2 Umbrella Trials
When there is interest to assess multiple treatment regimens in a single-​
disease population, umbrella trials may be conducted using a common 
protocol (Figure  2.4). Typically, such trials use randomized controlled 
designs, where the control may be the standard of care (SOC) for all 
substudies.

2.5.7.3  Platform Trials
In oncology, Simon (2017a) defines a platform trial as a single-​histology 
randomized Phase II study in which multiple biomarkers and multiple 
drugs are studied. A key feature of such a design is that there is no prior 
assumption about which treatment is appropriate for a subpopulation; 
instead treatments are randomized to biomarker strata. The randomiza-
tion may be performed adaptively, with the randomization given greater 
weights in favor of subpopulations with relatively higher response rates in 
the course of the study.

Treatment effects in platform studies may be analyzed using Bayesian 
hierarchical models. However, as noted in Simon (2017a), the approach 
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FIGURE  2.4  Schematic Representation of a Master Protocol with Umbrella 
Trial Design
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may not control the Type I error rate in the conventional sense and may 
also suffer from prognostic imbalances as a result of the adaptive random-
ization. Hobbs et  al. (2016) propose a framework for trials with binary 
endpoints using Bayesian modeling and adaptive randomization. The 
framework allows dropping poorly performing agents, incorporating new 
candidate agents, and controlling for multiplicity. In a recent paper, Kaizer 
et al. (2018) introduce a related approach with desirable power properties.

Frequentist approaches, although not common, are also available. A main 
technical issue is the computational burden associated with the extension 
of two-​arm group sequential designs to platform and related trials, while 
guaranteeing strong control of the Type1 error rate. Ghosh et  al. (2017) 
provide an efficient algorithm that can compute decision boundaries for 
adaptive designs involving multiple comparisons over multiple stages.

2.5.7.4  Regulatory and Operational Considerations with Novel Trials
Whether the goal is to implement adaptive randomization, sample size 
reestimation, seamless Phase II/​III trial design, or a master protocol, the 
implementation of the approaches requires application of sound statis-
tical methods and principles, and well-​established operational processes. 
For example, while a master protocol undoubtedly has the potential to 
enhance efficiency, it is inherently complex, and hence requires extra effort 
to ensure patient safety and quality data that is acceptable to regulators. In 
fact, without proper measures to mitigate the associated operational and 
analytical challenges, the trials may not only increase the risk to patients 
but can also cause unnecessary delay in the approval of a potentially bene-
ficial treatment option.

Operationally, basket trials may be less challenging than those using 
umbrella designs, since the former is conducted by a single sponsor. 
However, when biomarkers are used to define subpopulations, the process 
of assigning individuals with multiple biomarkers to a subpopulation will 
need clear justification.

It is always advisable to prespecify all the intended modifications and 
adaptations that will take place after the trial is initiated (see, e.g., US FDA 
2018a). Especially in confirmatory trials, careful attention should be paid 
to Type I error inflation, bias associated with treatment effect estimate, as 
well as potential heterogeneity of the patient population induced by the 
modifications of trial procedures (Chow et al. 2005). One major problem 
with adaptive designs is the issue of multiplicity. In master protocols, for 
example, frequentist inference corresponding to the various study groups 
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can potentially lead to false positive findings. Therefore, appropriate adjust-
ment should be made to ensure preservation of Type I error and reliability 
of point and interval estimates.

From the standpoint of safety reporting, the issues include the difficulty 
in the prompt identification of adverse events, in the face of the rapid enroll-
ment of study subjects in the various substudies or study stages. Therefore, 
these designs require the establishment of independent data monitoring 
committees, to ensure real-​time review of serious adverse events, and to 
make decisions regarding study modification or termination.

Bayesian adaptive designs are frequently used in informing decision-​
making, at times borrowing information from external sources for 
informative priors. In such cases, controlling Type I  error probability at 
a conventional level may eliminate the benefits of borrowing. In practice, 
although the Bayesian approach is used for study design and computing 
probabilities, regulatory requirements relating to Type I and Type II error 
must be satisfied using extensive simulation. As highlighted in a recent FDA 
guideline, “any clinical trial whose design is governed by Type I error prob-
ability and power considerations is inherently a frequentist trial, regardless 
of whether Bayesian methods are used in the trial design or analysis” (US 
FDA 2018a).

In summary, with any complex adaptive or other novel designs, it is 
prudent to have early discussion with the appropriate regulatory bodies to 
ensure alignment on the intended strategy. To facilitate the effectiveness 
of the FDA evaluation of such designs, sponsors should provide adequate 
documentation, including design selection rationale, adaptation strategy, 
roles of data monitoring groups, prespecified statistical methods, and 
details of any simulation experiments (see, e.g., US FDA 2018b). Finally, it 
is important to note that, regardless of trial design, regulators still require 
substantial evidence of efficacy and safety in a well-​defined patient popula-
tion for approval. Thus, in most cases, it is not surprising to see trials being 
conducted using a conventional design at the confirmatory stage.

2.6 � BAYESIAN ANALYSIS IN A REGULATORY FRAMEWORK

2.6.1  Introduction

As mentioned elsewhere in this monograph, the importance of Bayesian 
statistical methods in drug development has garnered increased attention in 
recent years, thanks in part to the role they play in areas where application 
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of frequentist approaches may be challenging or may not be as effective. In 
the frequentist paradigm, historical information is generally considered infor-
mally, and even then, only at the design stage, such as when performing sample 
size determination or study subject selection and recruitment. In contrast, a 
major appeal of Bayesian techniques is that they enhance decision-​making 
not only at the design stage of a trial, but also during the conduct and analysis 
phases. The techniques are especially suited in trials involving adaptive and 
other flexible designs in which historical or accumulating evidence can be 
leveraged to modify certain aspects of the trials, with a view to accelerating the 
process of generating evidence relative to the risks and benefits of a new agent.

A central concept of both the frequentist and Bayesian approaches is the 
likelihood principle, which states that the likelihood function contains all 
the information generated by an experiment about a parameter of interest. 
In a typical inference problem, the frequentist perspective is hypothesis 
testing of a claim about the null parameter and an acceptance or rejection 
of the claim based on the observed data only. The frequentist approach is 
concerned with the likelihood of the data given the parameter, whereas 
the Bayesian approach is concerned with the likelihood of the parameter 
given the data. In the Bayesian framework, previous data or even subjective 
considerations are used to form a prior distribution of the parameter. The 
likelihood function from the experimental observations is used to update 
the prior distribution of a parameter, resulting in the posterior distribution. 
As such, Bayesian conclusions are drawn only based on the posterior distri-
bution. An important quantity obtained from a posterior distribution is the 
predictive probability, i.e., the conditional chance of an unobserved out-
come, such as a trial being successful, or a clinical outcome being positive, 
given the observed data. Bayesian decisions are often made with respect 
to the magnitude of the posterior probability. For example, a Bayesian 
hypothesis testing problem may be formulated in terms of the conditional 
probability that a specific claim is true, given the observed data.

Historically, two major constraints have limited the wide use of Bayesian 
statistical techniques in drug development, namely the choice of appro-
priate priors and computation of posterior probabilities. The compu-
tational issue has largely been solved thanks in part to the availability of 
efficient computational algorithms and high-​speed computers. Notably, 
the introduction of the Markov chain Monte Carlo method (MCMC) 
(Gelfand and Smith 1990), and the development of the BUGS (Bayesian 
inference using Gibbs sampling) software (Lunn and Spiegelhalter 2009) 
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were instrumental in promoting the routine application of the procedure. 
Nonetheless, since most Bayesian analyses tend to use computer-​intensive 
algorithms or rely on extensive simulations to estimate trial-​ and model-​
operating characteristics, the implementation of the approaches may still 
be more cumbersome than the corresponding frequentist strategies. When 
appropriate, the computational burden may be minimized through use of 
conjugate priors or other techniques that are computationally less intensive 
(see, e.g., variational methods as used in Lee and Wand [2015]).

The second issue is the choice of appropriate priors. When the prior 
information is based mainly on subjective or personal opinion, the Bayesian 
approach may be controversial (FDA 2010). In drug development, it is now 
customary to inform the choice of the prior distribution based on data 
from previous trials or observational studies. A key assumption underlying 
the use of historical data to complement prior information is that of trial 
similarity or exchangeability. The assumption is not directly testable but 
requires careful assessment to ensure the appropriateness of the histor-
ical data to inform the construction of the prior distribution. This requires 
inputs from various stakeholders, including clinicians and statisticians, to 
ascertain that there are no substantial differences among the trials. It is espe-
cially important that if any deviation from exchangeability is suspected, use 
of suitable statistical models should be considered to perform appropriate 
correction (FDA 2010). For example, if the inter-trial difference is driven 
mainly by covariate imbalances, patient-​level data, if available, may be used 
in the models to adjust for covariate imbalance (Pennello and Thompson 
2008). In this setting, Bayesian hierarchical models are commonly used to 
provide estimates of parameters using data from heterogeneous sources 
(Braun and Wang 2010; Kwok and Lewis 2011).

Bayesian methods are useful to the sponsor earlier in the drug develop-
ment process to arrive at go/​no-​go decisions. In this case a non-​informative 
prior can be used to integrate with the likelihood. The posterior distribu-
tion can be used to make Bayesian probability statements on the parameter 
of interest to determine the go/​no-​go decision. This internal sponsor deci-
sion is not a regulatory concern.

In the following, we highlight a few relevant aspects of the application 
of Bayesian statistics in drug development, with special emphasis on the 
associated challenges in regulatory reviews.

2.6.2  Potential Areas of Application

In the recent past, Bayesian methods have been applied in the design and 
analyses of clinical trials in every stage of clinical development. The impact 
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has especially been visible in areas where it is critical to enhance efficiency 
or when there are unmet medical needs.

In early development phases, Bayesian approaches are often used to imple-
ment adaptive dose-​finding study designs, as opposed to the customary 
Phase I  dose-​escalation studies. One common approach in this regard, 
discussed elsewhere in this monograph, is the Continual Reassessment 
Method (CRM), which enables the estimation of the Maximum Tolerated 
Dose (MTD) using historical data, and data accumulated from previously 
studied doses (O’Quigley et  al. 1990). Although the approach requires 
defining and implementing a suitable model to characterize the dose–​
response relationship, it is often preferred to rule-​based methods, which 
may lack the rigor and reliability of CRMs.

Another potential application of Bayesian approaches is in the design 
of proof-​of-​concept studies, used in making important decisions about 
subsequent stages of a drug development program. Traditional Phase IIA 
trials often involve either a single arm, comparing a new drug against his-
torical references, or a randomization scheme comparing the new drug 
with the standard treatment or placebo. Such fixed designs may not only 
unnecessarily expose patients to ineffective or toxic doses, but may also 
prolong the time to make go/​no-​go decisions. Bayesian adaptive designs 
may become viable options by allowing the use of accumulating data to 
inform decision to stop or continue a study in a stepwise fashion (Chung 
and Schultz 2007).

When there is interest to accelerate the drug development process, it is 
often proposed to integrate Phase II and Phase III programs seamlessly. 
This may be achieved using adaptive procedures to modify various aspects 
of the trial design, including doses, sample size, as well as development 
objectives (see, e.g., Schmidli et al. 2007). One feature of a seamless Phase 
II/​III study design is that the final analyses will be based on data from both 
stages, typically in a Bayesian framework (Kimani et al. 2012). However, in 
the current regulatory framework it would be essential to ensure that the 
overall Type I error rate is controlled, and that there is strong evidence in 
support of the decision made at the end of the confirmatory stage.

As discussed in Section 2.5, adaptive designs are useful to enhance the 
efficiency of clinical trials, by incorporating flexibility in the design and 
conduct of the trial. One appealing feature of the Bayesian approach is the 
ability to incorporate accumulating or historical data to inform actions 
about various aspects of an ongoing trial while adhering to prespecified 
plans (FDA 2010). However, caution should be exercised in the implemen-
tation of these designs to mitigate the potential for operational bias. In 
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particular, special effort should be made to ensure protection of type I error 
rates through extensive simulations (see, e.g., Spiegelhalter et al. 2000).

Evaluation of the safety of a drug based on postapproval data is often chal-
lenging due to the observational nature of the data, its high dimensionality, 
and the need to synthesize information from disparate sources. Bayesian 
approaches have been proposed as viable options for postapproval drug-​
safety signal detection, as they permit information borrowing from 
preapproval as well as across data sources and drug-​adverse-​effect com-
binations (Madigan et al. 2010). In addition, Type  I error is not a concern 
in postapproval safety monitoring. However, Bayesian approaches are not 
solutions to other issues with such data, including confounding and other 
sources of bias.

In comparative effectiveness research, traditional and network meta-​
analysis methods are routinely used, since it is essential to combine studies 
from two or more trials to improve the precision of estimates of treatment 
effects or to perform indirect comparisons in cases where data from head-​
to-​head RCTs is not available. Bayesian approaches have found appeal in 
such cases, since they permit the combining of information in a natural 
way (Greco et al. 2015).

2.6.3  Regulatory Considerations

Although the frequentist approach is predominantly used in trials intended 
for regulatory submissions, the role of Bayesian statistics in drug devel-
opment is widely recognized by regulatory bodies (FDA 2010; ICH E9 
Expert Working Group 1999). However, for a successful implementation of 
Bayesian methods in clinical trials, there should be upfront discussions and 
agreements between sponsors and the regulatory bodies about pertinent 
aspects of the approach, including the choice of priors, exchangeability of 
trials, and control of Type I error rates.

While the idea of controlling Type I error rates is central to the frequentist 
paradigm and is not an explicit feature of Bayesian decision-​making, it is still 
of regulatory relevance, especially when informative priors are constructed 
using external information. Simulation experiments are generally required 
to assess Type I error rates, taking into consideration the pertinent features 
of the study design, including prior information, sample size, and any 
interim analyses planned or performed. It is generally recommended that 
the simulation involve alternative scenarios to provide adequate assurance 
about the estimated Type I error rate. In the event of inflated Type I error 
rate, it may be appropriate to take corrective measures, such as increasing 
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the predictive probability of success, increasing the sample size to miti-
gate the influence of the prior, reducing the number of interim analyses, or 
discounting the prior information (see, e.g., FDA 2010).

The choice of priors is another cause for concern by regulatory agencies 
and advisory committees. Generally, subjective priors are difficult to jus-
tify. When historical data is used to inform priors, it is important to ensure 
that there is no selection bias in the choice of the data source. In some 
cases,  the historical data may have been selected omitting unfavorable 
data for the study drug. This may be due to logistical constraints, espe-
cially when there are legal constraints to obtain prior information or pos-
sibly a publication bias, if data are taken from the literature. When the 
information from historical data appears to be dominant, it may be worth-
while to discount the prior through suitable criteria. Some approaches for 
discounting priors include increasing the sample size of the new trial, 
reducing the number of patients “borrowed” from the historical control, 
weighting the historical data, and employing hierarchical models with 
conservative hyper parameters (FDA 2010). An alternative strategy, is the 
use of the power prior, which incorporates a parameter κ (0 < κ < 1) that 
is intended to adjust the influence of the external information, especially 
in situations where there is imbalance in sample sizes or heterogeneity 
among studies (Zellner 1988). Technically, the power prior distribution 
is a product of the prior before the historical data was collected and the 
likelihood function of the historical data, the latter raised to the power of 
κ. Since the choice of κ requires a thorough understanding of the influ-
ence of the external information, it is good practice to perform extensive 
sensitivity analyses in order to understand the impact of different values 
of κ, ranging from 0 (non-​informative) to 1 (full borrowing). Detailed 
discussions of various aspects of power priors may be found, among 
others, in Ibrahim et al. (2015).

The assumption of exchangeability or consistency between the current 
study and historical studies is not directly testable, and it may not be straight-
forward to validate. This is especially concerning when using hierarchical 
models in which prior information is obtained from only one historical 
study, since it is not possible to get an estimate of inter-​study variability. 
As reported earlier, if the various sources of data are not exchangeable, 
the consequence might be reduced power, inflation of Type I  error rate, 
or biased estimates (Viele et  al. 2014). Typically, exchangeability should 
be assessed at the planning stage based on various statistical, clinical, 
and manufacturing considerations. For example, one statistical approach 
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involves computing the posterior predictive probability of observing a dis-
crepancy in the value of a given outcome between the current study and 
historical studies at least as large as that observed, under exchangeability 
(Pennello and Thompson 2008).

2.6.4  Challenges with Bayesian Statistics

One of the major impediments for wider use of Bayesian methods in drug 
development is the lack of a clear regulatory framework for its acceptance 
in the drug-​approval process. While there are positive steps in that dir-
ection, such as the FDA guideline for use of Bayesian statistics in devices 
(FDA 2010), most of the widely referenced guidelines, including ICH E9 
(ICH E9 Expert Working Group 1999), give greater emphasis to frequentist 
approaches.

Bayesian trials also have certain inherent difficulties that may make them 
less appealing to clinical trialists. For example, it may require substantial 
effort to prespecify some important decisions at the design stage, including 
the choice of the prior information, and how it would be incorporated 
with the trial data. Further, despite the considerable progress made in the 
implementation of Bayesian models, the approach is still computationally 
intensive compared to corresponding frequentist techniques, especially 
the requirement to perform extensive simulations to assess the operating 
characteristics of the procedure. Nevertheless, Bayesian reasoning parallels 
human thinking, i.e., what we know about the parameter of interest 
going into an experiment and how the experimental results change our 
knowledge.

2.6.5  Concluding Remarks

Despite the growing interest in Bayesian statistics, the broader application 
of the approach has not been fully realized. In this section, we highlighted 
some of the opportunities and challenges from regulatory and drug-​
development perspectives. With the increasing focus on enhancing the effi-
ciency of clinical trials, Bayesian methods will arguably continue to garner 
acceptability, especially given their role in facilitating decision-​making 
through use of historical and accumulating data.

2.7 � SURROGATE ENDPOINTS AND BIOMARKERS

2.7.1  Introduction

The FDA-​NIH Biomarker Working Group (2016) defines a biomarker 
as a “characteristic that is measured as an indicator of normal biological 

 

 

 

 

 

 

 

 

 

 

 

 



   

Selected Statistical–Regulatory Topics ◾  67

processes, pathogenic processes, or responses to an exposure or interven-
tion, including therapeutic interventions.” It is noted that there is a clear 
distinction between biomarkers and clinical outcome assessments (COAs), 
which typically relate to how an individual feels or functions, or how long 
the person lives. COAs are measured using a report generated by a clin-
ician, patient, non-​clinician observer, or a performance-​based assessment, 
and, unlike biomarkers, can be used to quantify treatment effect in a clin-
ical trial. Different types of biomarkers may be defined, depending on their 
intended use. For example, the so-​called predictive biomarkers help to 
identify patients that are likely to benefit from or be harmed by a treatment 
option. On the other hand, prognostic biomarkers help to assess the like-
lihood of a clinical event, including disease recurrence or progression. In 
certain situations, pharmacodynamic biomarkers may be used to deter-
mine the occurrence of a biological response to treatment in an individual. 
Other categories include predisposition or susceptibility biomarkers, used 
in the determination of the risk of developing a disease; and diagnostic 
biomarkers, concerned with the identification of individuals with the dis-
ease or condition of interest. The development of biomarkers involves 
adherence to strict regulatory requirements. This entails obtaining quali-
fication that is based on robust evidence that demonstrates the biomarkers 
are fit for purpose in drug development and evaluation. Once a biomarker 
is qualified, it has the potential to provide critical information to enhance 
clinical-​trial design and facilitate the regulatory review process.

In personalized medicine, certain molecular targeted therapies tend to 
involve a high cost of delivery. In such instances, use of biomarkers that 
predict response may be a viable alternative to gain efficiency. This is espe-
cially attractive, provided the cost associated with the use of companion 
diagnostics, which involves testing before giving treatment, is not in excess 
of the savings obtained by tailoring treatment only to the target patient 
population.

Surrogate endpoints relate to a small class of biomarkers that serve as a 
substitute for clinical outcomes, which directly measure how patients feel, 
function, or survive. Surrogate endpoints are particularly preferred when 
the desired clinical outcomes are not readily obtainable for practical or 
ethical reasons. Thus, the primary function of a surrogate endpoint is to 
predict, but not measure, clinical benefit or harm. However, the validity 
and reliability of a surrogate endpoint must first be established before it 
can be used in medical research or clinical practice. This requires extensive 
testing to see how well they predict, or correlate with, clinical benefit. In 
general, the predictive capacity of a surrogate endpoint is evaluated based 
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on data from a variety of sources, including epidemiologic, therapeutic, 
pathophysiologic, or other scientific experiments. Depending on the level 
of clinical validation, surrogate endpoints may be classified as candidate, 
reasonably likely, or validated. Surrogate endpoints are considered can-
didate when they are still under evaluation for their predictive ability, 
whereas reasonably likely surrogate endpoints require support based on 
strong mechanistic and/​or epidemiologic rationale.

In general, there is no definitive way of establishing the validity of a 
given biomarker as a surrogate endpoint. However, there are a few sur-
rogate endpoints that are now in routine use, both in the context of drug 
approval and medical practice. Examples include HbA1c, a measure of gly-
cemic control, which is a surrogate for disease severity and outcomes of 
morbidity and mortality in patients with diabetes; and serum cholesterol 
levels (e.g., LDL-​C), which serves as a surrogate for similar cardiovascular 
outcomes.

In the following sections, we highlight statistical and regulatory issues 
that are of relevance to the use of biomarkers and surrogate endpoints in 
drug development. Special emphasis is given to the requirements for val-
idating and qualification of biomarkers and surrogate endpoints, and the 
resources available to facilitate the development of biomarkers by sponsors.

2.7.2  Statistical Considerations

From a statistical perspective, the analysis of biomarkers and surrogate 
endpoints is associated with several challenges, including the assessment of 
the validity and clinical utility of the marker, as well as the handling of high 
dimensionality and multiplicity issues. Recent advances in modern analytic 
methods and new-​generation sequencing appear to address some of the 
issues, but this is an active area of research with considerable opportunities 
to advance drug development and evidence-​based medicine (Matsui 2013).

When dealing with one biomarker at a time, traditional univariate 
techniques can serve as screening tools. Advantages of such approaches 
include ease of implementation of the procedures and interpretation 
of the results. A  major drawback is the inability to utilize the potential 
correlations among biomarkers. Therefore, it may often be essential to 
use more sophisticated multivariate methods when dealing with several 
biomarkers. Most traditional approaches may not be suitable to handle 
multivariate biomarker data, especially when dealing with such issues 
as the high dimensions, missing values, multicollinearity, and multipli-
city. Accordingly, modern analytical approaches, including penalized 
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regression, decision trees, and neural networks, may need to be considered 
(see, e.g., Hastie  et al. 2009). In genomics, for example, hierarchical models 
can be used, since such models draw strength by incorporating informa-
tion across comparable genes (see, e.g., Speed 2003).

After a promising set of genes or markers is identified, one may then 
assess the diagnostic potential of the markers using alternative models, 
while incorporating additional clinical information. Lu et al. (2013) report 
results that are based on the use of a penalized-​regression approach to ana-
lyze data from an AIDS trial. In DeRubeis et al. (2014), a linear regression 
model has been applied to develop an individual treatment rule utilizing 
data from an RCT.

In association analyses involving many markers, one needs to control the 
possibility of false positives. Traditional approaches, such as the Bonferroni 
method tend to be too strict and may lead to many missed findings. The 
false discovery rate (FDR), defined as the expected proportion of incor-
rectly rejected null hypotheses among the declared significant results, was 
introduced by Benjamini and Hochberg (1995) as an attractive alternative 
to the more conservative traditional methods for simultaneous inference. 
Subsequent enhancements of the FDR include the positive false discovery 
rate (pFDR) and the q-​value, which is a measure of significance in terms of 
the FDR rather than the usual false positive rate associated with traditional 
p-​values (Storey and Tibshirani 2003).

As pointed out earlier, before a biomarker can be used in practice, its 
validity and reliability have to rigorously be assessed and established. 
A common approach, often referred to as analytical validation, is to use 
a gold standard to determine the reliability of the assay and the sensitivity 
and specificity of the measurements (Chau et al. 2008). In contrast, clin-
ical validity relates to the assessment of the predictive value of a biomarker 
for disease prognosis or treatment effect. When the focus is on prognostic 
biomarkers, clinical validation requires the determination of the strength 
of correlation between biomarker values and a clinical endpoint.

In the context of randomized controlled trials (RCTs), clinical validity 
of a predictive biomarker may be evaluated with respect to the degree of 
significance of the treatment-​by-​biomarker interaction in a suitable model. 
Further, it is important to establish the clinical utility of the biomarker, i.e., 
whether the use of the biomarker in clinical practice has benefits. This is 
often accomplished through suitably designed clinical trials. One approach 
involves randomizing patients either to a standard of care therapy or to a 
strategy in which a biomarker-​based treatment assignment is used. In other 
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cases, enrichment designs may be employed in which treatment effect is 
assessed using only patients who are predicted to be responders based on 
the biomarker under consideration (Matsui 2013; Simon 2010).

When the intent is to determine whether biomarkers can serve as a 
surrogate for a clinical endpoint, it is essential to evaluate a number of 
conditions with the help of suitable statistical techniques. The exercise typ-
ically involves an assessment of the effect of the drug on the biomarker, 
the effect of the drug on the clinical endpoint of interest, and the associ-
ation of the surrogate biomarker and the clinical endpoint. In a seminal 
work, Prentice (1989) introduced an approach under the assumption that 
“a response variable for which a test of the null hypothesis of no relation-
ship to the treatment groups under comparison is also a valid test of the 
corresponding null hypothesis based on the true endpoint.” Implicit in the 
criterion is that the surrogate response variable captures all the information 
pertaining to the relationship between the treatment and the true endpoint. 
In other words, given the surrogate endpoint, the impact of treatment is 
conditionally independent of the true endpoint. One of the drawbacks of 
Prentice’s approach is its reliance on untestable assumptions. Clearly, con-
ditioning on the surrogate, which is obtained posttreatment, is noncausal. 
Further, as argued in Berger (2004), the criterion provides a necessary, but 
not sufficient, condition to infer a treatment effect on the true endpoint.

Since Prentice’s idea of perfect surrogacy is unrealistic, Freedman et al. 
(1992) and Wang and Taylor (2003) introduced an approach based on the 
proportion of treatment effect explained. However, the approach still relies 
on conditioning on a posttreatment marker, and it may also lead to ratio 
estimates that may lie outside the acceptable limits of 0 to 1 and having 
high variability.

An alternative strategy involves combining information from sev-
eral trials, with a view to assessing the “trial level association” between 
the treatment effect on the surrogate and the treatment effect on the true 
endpoint (Buyse et al. 2015). An example of the application of the meta-​
analytic approach may be found in Paoletti et al. (2013), in which results 
are reported concerning the validity of progression-​free survival as a surro-
gate for overall survival in advanced/​recurrent gastric cancer trials.

Although the meta-​analytic approach appears attractive, in practice it 
may not be feasible to get data from multiple sources on a biomarker and a 
new treatment. Therefore, ongoing research is still needed for establishing 
the reliability of surrogate markers intended for use in drug development 
and clinical practice.
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2.7.3  Regulatory Considerations

The importance of qualified biomarkers to provide valuable information 
that can help reduce uncertainty in regulatory decisions is well-​recognized. 
Accordingly, regulatory agencies have established strict guidelines for the 
qualification process of biomarkers. In the US, the 21st Century Cures Act 
describes the process to develop a biomarker for regulatory use. To help 
sponsors with the development of biomarkers, the US FDA also has several 
resources, including the Biomarker Qualification Program, through which 
developers may request regulatory qualification of a biomarker for use in 
drug development (FDA 2018a).

When a new biomarker is proposed for use as a surrogate endpoint, the 
US FDA uses the type C meeting process to engage sponsors in discussions 
around the feasibility and limitations of the surrogate as a primary effi-
cacy endpoint. Incidentally, the FDA is required by law to make public a 
list of “surrogate endpoints which were the basis of approval or licensure 
(as applicable) of a drug or biological product” (FDA 2018a). The infor-
mation, which is updated periodically, is expected to facilitate discussions 
between sponsors and the FDA on the use of potential surrogate endpoints. 
It should be underscored that a surrogate endpoint that is validated for a 
specific pharmacologic class of treatment regimens is not necessarily valid 
as a surrogate endpoint for other classes of drugs. Indeed, the acceptability 
of a surrogate marker is context-​dependent, relying on several factors, 
including the disease, patient population, therapeutic mechanism of action, 
and availability of current treatments (FDA 2018a).

The US FDA relies on the accelerated-​approval regulatory process to 
enhance the accessibility of medicines to patients with unmet needs, espe-
cially for conditions leading to death or serious illness. The process involves 
granting approvals to market interventions that demonstrate strong effects 
with respect to reasonably likely surrogate endpoints, i.e., reasonably likely 
to predict a clinical benefit. This implies that the evidentiary strength of the 
effect of treatment on the surrogate must be strong. The approval is granted 
with a requirement that the sponsors also conduct postapproval clinical 
trials to show that these markers can be relied upon to predict, or correlate 
with, clinical benefit. However, as argued in Fleming (2005), the use of such 
surrogate markers in accelerated approvals requires addressing important 
operational challenges, including timely completion of the postapproval 
commitment trials, to protect the best interest of public health.

The European Medicines Agency (EMA) also provides several guidelines 
relating to the qualification of biomarkers, highlighting important points 
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to consider that have been identified as common and major challenges and 
limitations (EMA 2017a). A successful qualification process presupposes 
adequate demonstration of diagnostic and prognostic performance, pre-
dictive value for clinical outcome, as well as sensitivity to detect change 
reflecting the clinical status of patients. In addition, the guidelines stress 
that the study design and statistical methodology to be used must be 
prespecified, and that the clinical utility and the appropriateness of the ana-
lytical platform should be justified.

2.7.4  Concluding Remarks

The development of reliable and valid biomarkers is a critical component 
of drug development and regulatory review. In this section, we highlighted 
several statistical and regulatory issues associated with the development 
and qualification of biomarkers. When used as a surrogate endpoint, a bio-
marker serves as a substitute for a clinical endpoint, which directly quanti-
fies clinical benefit or harm. Therefore, the development of a biomarker as 
a surrogate endpoint should also undergo a process consisting of analytical 
validation based on extensive documentation, and subsequent qualifica-
tion by a regulatory body.

While the main emphasis in this section is on biomarkers that can be 
used as surrogate endpoints, there is also a growing interest in the use of 
biomarkers to enrich clinical trials, with a view to enhancing the efficiency 
of drug development and advancing the field of precision medicine. Such 
strategies may restrict inclusion of patients with a specified biomarker (to 
reduce variability), patients in high risk categories (prognostic enrich-
ment), or patients who are more likely to respond to the study drug (pre-
dictive enrichment) (FDA 2019).

Finally, under certain circumstances, especially in the absence of evi-
dence on relevant clinical endpoint that directly measures clinical benefit, 
surrogate endpoints can be acceptable for relative effectiveness assessment 
(REA) in pricing and reimbursement negotiations. As outlined in a 
recently issued guideline, acceptability of surrogate endpoints for REA 
requires equally rigorous scientific and clinical knowledge for the quali-
fication of biomarkers as surrogate endpoints (EUnetHTA 2013). This 
includes demonstration of the relationships between the surrogate and the 
clinical endpoint based on biological plausibility and empirical evidence. 
In addition, the guideline recommends that the level of evidence, the 
associated uncertainties, and any limitations of their use should be expli-
citly explained. Further, it is noted that if a surrogate endpoint has already 
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been adequately validated, it is not essential to carry out additional valid-
ation just for REA purposes.

2.8 � SUBGROUP ANALYSES

2.8.1  Introduction

The analysis of subgroups in confirmatory clinical trials encompasses 
many statistical and regulatory issues. These issues include multiplicity, 
inflation of Type 1 error, estimation and interpretation of treatment effects 
in subgroups, ad hoc nature of some subgroup findings, and the regulatory 
requirement to assess the consistency of the treatment effect within the 
study population. These issues are clearly interrelated and sometimes at 
odds with each other from both statistical and regulatory perspectives. The 
issue of subgroup analyses also touches on the important area of innova-
tive clinical-​trial designs; for example, within oncology, analyses informed 
by biomarkers or targeted therapy based on a specific genetic mutation 
among a larger class of tumors. The growing trend toward personalized 
medicine and targeted therapies, as well as the prescription and payment 
of treatments by physicians and insurers, respectively, all make subgroup 
design and interpretation one of the more important current areas of stat-
istical and regulatory interaction. European Medicines Agency (2019) has 
issued guidance specific to subgroup analysis in clinical trials. While FDA 
has not issued a general subgroup guidance, it has issued one specific to clin-
ical trials for medical devices pertaining to age, race and ethnicity (see FDA 
2017a). FDA has also released a guidance on medical communications that 
are consistent with the FDA-​required labeling that recognizes the import-
ance of communication of subgroup results (FDA 2018b). The various 
issues around subgroup analyses will be discussed from the traditional per-
spective and from the changing regulatory landscape.

2.8.2  Subgroup Analyses in the Traditional Confirmatory     
Clinical-​Trial Setting

The traditional clinical trial is designed to show a treatment benefit 
in a target population. This target population is comprised of clinic-
ally important subgroups; for example, sex, race, age, baseline disease 
severity, etc. There is a regulatory imperative to assess the consistency of 
the treatment effect across important subgroups. This can be addressed by 
an analysis of the interaction effect for subgroup by treatment or analyses 
of the treatment effect within subgroups or both. While there is a need 
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to address consistency, the definition of consistency and the interpret-
ation of results are ambiguous. The regulatory purpose of these analyses 
is to provide support to the conclusion of an overall significant treatment 
effect in the population of interest and to assess whether there are any 
subpopulations in which the treatment may not be effective, for example, a 
qualitative interaction of treatment with baseline severity.

A confirmatory clinical trial is powered to detect a treatment effect in 
the overall target population. It is not powered to detect interactions or to 
detect treatment effects within subgroups, unless the subgroup is intended 
to be part of the approved label as discussed in the next section. These 
subgroup analyses conducted under the regulatory imperative are descrip-
tive rather than inferential from a statistical perspective, even though 
regulators may draw inferences in the review process. Thus, the issue of 
multiplicity and the need to specify a multiple-​testing procedure are not 
typically applicable at the design stage for this category of subgroup ana-
lyses. However, the estimation and interpretation of treatment effects in 
subgroups are important to the proper interpretation of the clinical trial 
results. The prespecification of specific subgroups in the protocol should be 
limited to those where there is some apriori evidence of clinical importance. 
By default, any ad hoc findings in subgroups outside of the prespecified 
set are only exploratory findings and have to be interpreted with a great 
deal of caution. Estimates of subgroup treatment effects should not be 
interpreted on their face values. Even with the subgroup being prespecified, 
there remains the question of whether the subgroup-​specific estimate or 
the overall population estimate is the better estimate of treatment effect 
within the subgroup. It is well-​known that estimates can vary considerably 
over subgroups given the same underlying treatment effect. To address the 
potential of overinterpretation of subgroup differences, the magnitude of 
the difference, the biological and mechanistic plausibility of the difference, 
and the clinical importance of the difference should be considered. In add-
ition, estimation methods, such as empirical Bayes that takes into account 
the overall-​population treatment effect in the estimation of the subgroup 
effect, should be considered.

2.8.3  Statistical Approaches

Traditional subgroup analysis typically involves the use of linear or 
generalized linear models to test the interaction between treatment 
and a subgroup as well as the significance of the treatment effect within 
the subgroups (Pocock et  al. 2002). When the treatment-​by-​subgroup 
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interaction is significant, it is customary to assess the nature of the inter-
action, i.e., whether it is qualitative or quantitative (Gail and Simon 1985). 
In the case of the former, in which the treatment effect varies both in mag-
nitude and direction in the various subgroups, a general statement cannot 
be made about the overall result. However, caution should still be exercised 
in presenting an estimate of an overall treatment effect even when the inter-
action is of a quantitative nature, since the degree of benefit or harm may 
not be similar across subgroups.

The reliability of results based on linear or generalized linear models 
is heavily dependent on the plausibility of the underlying assumptions, 
including the functional form, absence of multicollinearity, and parsimony 
of the model relative to the available sample size. To mitigate some of the 
associated issues, alternative techniques have been proposed, including 
classification and regression trees (CART) and penalized regression.

CART and other recursive-​partitioning approaches are typically used 
for exploratory analyses and are appealing in that they do not require spe-
cification of the usual linear-​model assumptions (Breiman et al. 1984; Su 
et  al. 2009). More recently, subgroup identification methods have been 
proposed that are based on differential-​effect searches (see, e.g., Foster 
et al. 2011). In the presence of multicollinearity and model sparsity, alter-
native penalized-​regression approaches have been proposed, including 
least absolute shrinkage and selection operator (LASSO) and other related 
techniques (Hastie et al. 2009).

As reported in a recent study (Alemayehu et al. 2018), the performance of 
the techniques is dependent on a number of factors, including sample size, 
correlation among covariates, subgroup sizes, and interaction magnitudes. 
For most practical applications, especially those involving regulatory 
submissions, the traditional approaches are adequate. However, looking 
forward on the regulatory landscape, in situations where the dimension 
of the predictors is large relative to the sample size, modern techniques, 
particularly machine learning and other data-​mining methods, may be 
required. For exploratory analyses, where prespecification is not practical, 
data-​driven strategies may be utilized to select the most appropriate tech-
nique for a given situation.

2.8.4  Reporting and Interpretation of Subgroup Results

In view of the inherent issues with subgroup analyses, including multipli-
city and power, results should be interpreted with caution, and reported 
with full transparency and fair balance (Wang et al. 2007). When the results 
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are based on prespecified analyses, all favorable and unfavorable findings 
should be provided, accompanied by details of the statistical approaches 
employed, including multiplicity adjustment, magnitude of treatment 
effects, and sample size.

When interesting results are observed from ad hoc analyses, it is crit-
ical to disclose the total number of analyses performed, the comparability 
of treatment groups within subgroups with respect to relevant prognostic 
factors, and the consistency of the findings with other similar trials or the 
known mechanism of action or biology of the drug or therapeutic area.

2.8.5  Subgroup Analyses in the Changing Clinical-​Trial and 
Regulatory Setting

The importance of subgroup analyses has increased due to heightened 
interests by regulators, healthcare providers and payers, patients and patient 
advocacy groups, and researchers and medical journals. This heightened 
interest is motivated by basic biological research that has led to the recogni-
tion that the true treatment effect may be quite different among subgroups 
even to the extent of working in only one subgroup. Consequently, the rela-
tively new concepts of targeted therapies and personalized medicine have 
emerged in drug development. This is particularly prominent in cancer 
therapy in which specific biomarkers or genetic mutations are used for 
targeted therapies. The importance of identifying, say in a breast cancer 
study, a patient who responds to treatment, or conversely who does not, is 
obvious. Regulators need to properly label the treatment; prescribers and 
payers want to know the type of patient with an expected benefit from the 
treatment; and, certainly, the individual patient wants to know whether the 
treatment has been shown to be effective in their tumor. Thus, subgroup 
analyses are essential to interpret the results of clinical trials in which the 
treatment may or may not be effective in the overall disease population. 
However, to establish efficacy within a subgroup with a particular bio-
marker or genetic mutation out of a more general tumor-​type in the same 
clinical trial, or to establish efficacy in more than one cancer site requires 
prespecification of hypotheses in the protocol along with a multiple-​testing 
procedure to control Type 1 error (see Section 2.1 for more discussion on 
multiplicity).

These issues can be addressed more efficiently in innovative clinical-​
trial designs, such as basket trials or platform trials.  For example, there 
may be multiple cancers with the same molecular target, where within each 
basket (subgroup) a different tumor site is studied within the same trial. It 
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is evident that there are multiple pathways across subgroups to a positive 
trial and that the use of such a design for a confirmatory trial requires a 
clear analysis plan and control of Type 1 error (see Section 2.5.2 for more 
discussion on basket trials).

The importance of subgroup findings is also motivated by the desire of 
patients, prescribers, and payers to have adequate knowledge of the efficacy 
and safety of a drug in patients with specific characteristics. For example, 
one may be interested in understanding how the treatment performs in an 
elderly population or with severe disease. In multiregional studies, FDA or 
EMA would be interested in how the treatment performs in subgroups of 
patients within the scope of their regulatory authority. Clinical trials are 
not generally designed with sufficient power to address these questions 
definitively, nevertheless, the results may be informative. FDA has released 
a guidance, “Medical product communications that are consistent with 
the FDA-​required labeling” (FDA 2018b), which recognizes that sponsors 
want to promote data about approved uses of their products that are not 
contained in the product labeling and that this promotion is useful. An 
area specifically addressed in the document is patient subgroups. This 
guidance indicates greater acceptance by FDA of subgroup findings that do 
not generally rise to the level of the new drug-​approval standard of “sub-
stantial evidence.” However, any presentation of subgroup results will be 
scrutinized under the “misleading impression” criterion. Furthermore, 
the findings or conclusions cannot be overstated or fail to disclose their 
material limitations. Without the requirement of substantial evidence, the 
contextual language is very important in order that subgroup results be 
viewed as descriptive rather than inferential.

2.8.6  Conclusion

The efficacy and safety of a treatment in subgroups of the population for 
which the drug is approved is important. There is a regulatory requirement 
to assess the consistency of a treatment’s performance within important 
subgroups. There is a growing recognition that the knowledge of subgroup 
findings is desired by patients, prescribers, payers, sponsors, and regulators. 
The statistical issues with subgroup analyses are well-​known and include 
multiplicity and effect-​size estimation. With multiple subgroup analyses, 
the play of chance is large, and the interpretation of subgroup effects must 
keep chance in mind so as not to overinterpret subgroup findings. The 
magnitude of the difference in the subgroup, the biological and mech-
anistic plausibility of the difference, and the clinical importance of the 
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difference should also be considered. In general, subgroup results should 
be viewed as descriptive and not inferential. Of course, there may be the 
goal of establishing efficacy in a targeted subgroup among a larger popu-
lation in a confirmatory clinical trial, as may be the case in some innova-
tive designs. In this case the prespecification of hypotheses in the protocol 
along with a multiple-​testing procedure to control the overall Type 1 error 
is required for inferential purposes.

2.9 � BENEFIT–​RISK ASSESSMENT

2.9.1  Introduction

Following the approval of a new drug by regulatory authorities, the evalu-
ation of the benefits and risks continues throughout the lifecycle of the 
product. This typically consists of a transparent synthesis and communica-
tion of data from diverse sources relating to the drug’s effectiveness, safety, 
tolerability, and patient preference. Since the effort involves extracting 
and integrating information from a large amount of heterogenous data, 
regulatory agencies have established guidelines and other appropriate 
mechanisms to ensure appropriate analysis, interpretation, and commu-
nication of the benefit–​risk profiles of authorized drugs, with a view to 
protecting public health and advancing health outcomes (Guo et al. 2010).

There have also been parallel initiatives undertaken by the pharmaceut-
ical industry to align with the expectations of the regulators with respect 
to the enhancement of the approaches for assessment of the benefit–​risk of 
medicines. In the US, the Pharmaceutical Research and Manufacturers of 
America (PhRMA) initially developed the so-​called Benefit–​Risk Action 
Team (BRAT) Framework, which was eventually transferred to the Centre 
for Innovation in Regulatory Science (CIRS), a neutral independent UK-​
based subsidiary company (Levitan 2012). Efforts have also been underway 
to establish good-​practice guidelines for conducting agencies to aid 
healthcare decision-​making (Thokala et al. 2016).

Despite the numerous efforts and initiatives by both regulators and 
pharmaceutical companies, there is still a demand for a standard tem-
plate to harmonize the evaluation of the benefit–​risk profiles of drugs 
and the documentation and communication of decisions. The Universal 
Methodologies for Benefit–​Risk Assessment (UMBRA) is an example of 
a framework proposed by representatives of regulators and the pharma-
ceutical industry, with the aim of establishing common elements of an 
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overarching, internationally acceptable, standardized benefit–​risk approach 
(Centre for Innovation in Regulatory Science 2012).

In this section, we highlight pertinent methodological and regulatory 
issues relating to the benefit–​risk assessment of medicinal products and 
provide a summary of selected tools that are currently accepted for use by 
sponsors and regulatory agencies.

2.9.2  Methodological Considerations in Benefit–​Risk Analysis

Broadly, benefit–​risk assessment may be carried out either in a descrip-
tive/​qualitative or quantitative framework. Descriptive approaches typic-
ally use metrics for structuring relevant benefits and risks and involve a 
thorough assessment of treatment performance data on benefits, risks, and 
convenience of use, without applying weights. On the other hand, quanti-
tative approaches aim at combining data on treatment effectiveness, safety, 
and ease of use, with stakeholder preference information, typically using 
a weighting scheme for various benefit and risk criteria. Preference-​based 
approaches are generally applicable in complex situations involving several 
criteria and multiple treatment options. Some of the widely used quantita-
tive approaches permit integration of data into a single measure, thereby 
facilitating and ensuring transparent communication of benefit–​risk 
decisions. However, these quantitative methods may obscure the under-
lying data and may not be necessary if the more direct qualitative and 
graphical summaries are clear.

Development of a quantitative model requires determination of appro-
priate benefit and risk criteria, which relate to distinct and nonoverlapping 
clinical outcomes of interest for the treatment options under consideration. 
Estimates of drug performance on each criterion should then be obtained, 
including the associated measures of uncertainties of the estimators. When 
data comes just from a single RCT, the performance measures may be 
computed and analyzed with either a frequentist or Bayesian approach. In 
certain cases, data may be available from multiple trials, in which case the 
relevant information may be combined using methods for standard meta-​
analysis or network meta-​analysis, depending on whether a common com-
parator is available or not.

A major issue associated with the analysis of data to establish the benefit–​
risk profile of a drug is the quantification of the uncertainty and the clinical 
relevance of the observed effect sizes. This in part is because the data used 
in benefit–​risk assessment may come from diverse sources, including RCTs, 
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epidemiology studies, literature review, or spontaneous adverse reports. 
Further, the uncertainty may arise in at least two other ways, namely, in the 
subjective choice of the criteria, or as a consequence of sampling variability. 
In the latter case, the handling of sampling variability requires application 
of suitable statistical methods. On the other hand, subjective uncertainty 
generally requires execution of extensive sensitivity analyses.

A commonly used quantitative approach for benefit–​risk assessment 
is the multiple-​criteria decision analysis (MCDA) method, introduced by 
Keeney and Raiffa (1976). It involves a decision-​making process that brings 
together different options on multiple criteria of benefits and risks into an 
overall assessment, through scoring and weighting. The purpose of scoring 
is to quantify each criterion into a common scale, while weighting ensures 
comparability of the units on the criteria so that they can be combined 
into an overall scale. More specifically, suppose the mean of the ith criterion 
is denoted by μi, with an associated score function and weight, si and wi, 
respectively. Then a measure of an overall assessment is given by:

ϑ µ= ∑ ( )w si i i

Inference about ϑ  can be made by replacing μi with a suitable estimator. 
Approximate confidence intervals and test statistics may be constructed 
using the central limit theorem or via simulations.

An attractive feature of the MCDA approach is that it permits com-
bining the subjective value judgments and the clinical evidence in a trans-
parent fashion. However, its limitations include the fact that it does not 
handle uncertainties of outcomes and, most importantly, that it requires 
exact specification of the values of the preferences and weights.

To mitigate the limitations of the standard MCDA method, enhanced 
approaches have been proposed, assuming distributions, rather than point 
values, for the weights and score functions. One example is the approach 
proposed by Tervonen et  al. (2011), dubbed the stochastic multicriteria 
acceptability analysis (SMAA), which is intended to account for the uncer-
tainty in the criterion measurements as well as preferences information. 
More specifically, the approach assumes the weights and the criteria are 
random variables with joint density functions. A rank acceptability index is 
then computed as a multidimensional integral over the criteria distributions 
and the favorable rank weights.
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In the above SMAA framework, estimation of the distribution of the cri-
teria is often challenging. Waddingham et al. (2016) proposed an approach 
that involves a synthesis of the evidence from other studies. Saint-​Hilary 
et  al. (2017) provided a method for constructing the weight space of 
SMAA. More recently, Li et al. (2018) introduced a framework in which 
Bayesian meta-​analysis and SMAA are jointly used to synthesize accumu-
lating evidence from early stages of the clinical development to late stages 
in benefit–​risk assessment.

Software programs are available for implementation of some of the 
abovementioned techniques. In R, the CRAN packages, hitandrun and 
SMAA can be used to implement the methods. In addition, the Aggregate 
Data Drug Information System (ADDIS) software can be used for both 
SMAA and MCDA (van Valkenhoef et al. 2013).

In addition to the structured qualitative and quantitative approaches 
mentioned above, there are several semi-​quantitative techniques that are 
in routine use, depending on the scenario at hand. Examples include such 
procedures as number needed to treat (NNT), number needed to harm 
(NNH), decision trees, and Markov models. While NNT and NNH are 
measures that are apparently easy to interpret, they are based on the inverse 
of the risk difference with often wide upper-​confidence bounds and thus 
should not be presented without the confidence limits. A detailed descrip-
tion of the approaches may be found, e.g., in EMA (2010a).

Lastly, as pointed out earlier, sensitivity analyses are an essential com-
ponent of benefit–​risk assessment to establish the robustness of the results 
against the treatment performance or preference estimates. This may 
involve either evaluating one parameter at a time or several parameters 
simultaneously. The latter often entails defining suitable distributions to the 
parameters, as is the case in the SMAA approach described above.

2.9.3  Regulatory Perspectives

One of the most important aspects of regulatory decision-​making is the 
assessment and communication of the risks and benefits of medicinal 
products in a transparent and structured manner. This is highlighted in the 
recent guidance formulated by the International Council for Harmonization 
of Technical Requirements for Pharmaceuticals for Human Use (ICH), as 
part of the revisions to its guidance document M4E: The CTD –​ Efficacy 
(ICH 2016). The updated document provides flexibility and general 
recommendations for formatting and structuring benefit–​risk assessments, 
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without any explicit suggestion for or against specific methodologies or 
approaches.

In 2005 the US FDA issued a framework for the pharmaceutical industry 
that consisted of guidelines for premarketing risk assessment, development, 
and use of risk minimization action plans, and good pharmacovigilance 
practices and pharmacoepidemiologic assessment (Guo et  al. 2010). 
Subsequently, the agency developed an enhanced framework for benefit–​
risk assessment to provide a “structured, qualitative approach focused on 
identifying and clearly communicating key issues, evidence, and uncertain-
ties in FDA’s benefit–​risk assessment and how those considerations inform 
regulatory decisions” (FDA 2013). As depicted in Figure 2.5, the Benefit–​
Risk Framework (BRF) outlines the critical elements that are relevant for 
the benefit–​risk assessment and provides specifications for describing the 
evidence and uncertainties as well as the conclusions and reasons for each 
dimension. Further, it gives an integrated summary of the assessment, with 
a succinct explanation and rationale for regulatory decisions.

On behalf of the European Medicines Agency (EMA), the Committee 
for Medicinal Products for Human Use (CHMP) has also issued similar 
guidelines, including an assessment of the potential value of existing 
benefit–​risk models and methods (Guo et  al. 2010). In 2010, the EMA 
sponsored the Benefit–​Risk Methodology Project, which reviewed sev-
eral qualitative and quantitative approaches, and proposed PROACT-​URL 

Benefit-Risk Integrated Assessment

Benefit-Risk Dimensions

Dimension Evidence and Uncertainties Conclusions and Reasons

Analysis of
Condition

Current Treatment
Options

Benefit

Risk and Risk
Management

FIGURE 2.5  FDA Benefit–​Risk Framework

Source: www.fda.gov/​media/​112570/​download (Accessed on June 9, 2019)
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(Problem formulation, Objectives, Alternatives Consequences, Tradeoffs, 
Uncertainties, Risk tolerance, Linked decisions) (EMA 2010a). The 
agency’s emphasis on benefit–​risk assessment was further reinforced in the 
so-​called Roadmap-​to-​2015 framework, in which the benefit–​risk balance 
assessment model was identified as one of the strategic areas (EMA 2011). 
A related unit that the EMA coordinates is the European Network of Centers 
for Pharmacoepidemiology and Pharmacovigilance (ENCePP), which pri-
marily focuses on the strengthening of the evaluation of the benefit–​risk 
balance of medicines through the conduct of high-​quality observational 
studies.

The EMA introduced the so-​called Effects Table with a view to enhan-
cing the consistency, transparency, and communication of benefit–​risk 
assessments (EMA 2015). The table, displayed in Figure 2.6, presents effects 
and information for the benefit–​risk balance, and allows incorporation of 
results based on quantitative methods.

Efforts are also under way in other countries, such as Australia, to 
develop a framework for effective assessment and communication of 
benefits vs. risks of medicines.

Recently, regulatory bodies have shown keen interest in incorporating 
patient preferences in making decisions. In the US, there are several FDA 

Effect Short
Description

Unit Treatment Control Uncertainties/
Strength of evidence

References

Favourable

Unfavourable

FIGURE 2.6  EMA Effects Table

Source: EMA. Guidance document on the content of the Rapporteur day 80 critical-​
assessment report. Overview and lists of question. 2015. EMA/​90842/​2015. Available 
from www.ema.europa.eu/​docs/​en_​GB/​document_​library/​Regulatory_​and_​procedural_​
guideline/​2009/​10/​WC500004800.pdf.
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guidance documents that provide specific suggestions on integrating 
patient preferences into benefit–​risk assessments. Further, the 21st Century 
Cures Act and the Prescription Drug User Fee Act, Revision VI (PDUFA VI) 
of the FDA Reauthorization Act highlight the importance of considering 
the patient experience during the drug-​development process. In Europe, 
similar initiatives are under way, including a collaborative project known as 
The Pharmacoepidemiological Research on Outcomes of Therapeutics by 
a European Consortium (PROTECT), which is concerned with the explor-
ation of how preferences can be incorporated into the decision-​making 
process (Hughes et al. 2016).

2.9.4  Benefit–​Risk in Health-​Technology Assessment

Some of the approaches, including the MCDA, have also been applied 
in health-​technology assessment (HTA) decisions. HTA is a framework 
employed in several countries for the purpose of making reimbursement 
decisions for new technologies, applying agreed-​upon principles and cri-
teria. HTA bodies in several countries, such as Germany, England, Australia, 
and Thailand, leverage MCDA approaches in coverage decision-​making 
(Thokala et al. 2016). Although the approaches tend to differ among the 
various HTA systems, there are certain elements that are common to many 
of them, including the incorporation of data on effectiveness, patient need, 
and burden of disease.

One area that seems to be a point of contention is the consideration of 
cost and budget impact as factors in the implementation of MCDA models 
in HTA. In addition, the quantitative incorporation of patient preference 
data in HTAs is not as well-​established as it is in benefit–​risk assessment 
(Mott 2018). This is often attributed to the limitations of the commonly 
used methods in HTA, such as cost-​utility analysis, which only focus on 
eliciting health-​state utilities from patients. In this respect, MCDAs may 
provide an attractive alternative (Angelis 2017).

2.9.5  Concluding Remarks

In this section, we provided a high-​level overview of benefit–​risk assessment 
methods and the associated issues. A balanced assessment of the benefits 
and risks of a drug presupposes a synthesis of stakeholder preference 
with quality evidence on effectiveness and safety and communicating 
the results in a transparent and succinct manner. Accordingly, there have 
been important achievements in recent years by regulators that include 

 

 

 

 

 

 

 

 



   

Selected Statistical–Regulatory Topics ◾  85

frameworks to enhance the process of benefit–​risk decision-​making. In 
addition, pharmaceutical companies routinely institute risk evaluation and 
mitigation strategies for their prescription drugs, and coordinate efforts 
with regulatory bodies to align approaches.

Notwithstanding the availability of guidelines and reporting tools, 
there is still a need to develop a harmonized framework to enhance the 
assessment and communication of benefits and risks. Although, qualitative 
approaches appear to be preferred by some regulatory bodies and other 
stakeholders, the role of quantitative approaches is expected to continue 
to evolve as more experience and confidence are accrued in the operating 
characteristics of the methods and interpretability of the associated results.
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CHAP T ER  3

Statistical Engagement 
in Regulatory 
Interactions

3.1 � INTRODUCTION

It is indisputable that the discipline of statistics is quite important in many 
interactions between pharmaceutical companies and regulatory agencies 
regarding drug development, drug approval, and drug promotion (Lewi 
2005). This importance may be due to the statistical methods applied to the 
raw data and/​or the interpretation of the analyzed results (Marquardt 1987). 
This is true whether the application of statistics concerns randomized trials 
or observational databases for real-​world evidence and cost-​effectiveness 
evaluation. This points to a prominent role of the statistician within these 
activities. This role is often recognized within the pharmaceutical com-
pany and among regulatory agencies, as can be inferred from the various 
guidance documents and reflection papers issued by the US Food and 
Drug Administration (FDA), the European Medicines Agency (EMA), and 
the International Council for Harmonization of Technical Requirements 
for Pharmaceuticals for Human Use (ICH).

The design of studies is typically a joint activity between the statistician 
and the clinician, but the analytical methods are almost exclusively the prov-
enance of the statistician. The interpretation of the results is also strongly 
influenced by the methods used in the analysis and the conclusions of the 
statistician. This prominent role of the statistician does not always extend 
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to a strategic role within the company or to a broader representative role 
in regulatory interaction. Ideally, the statistician should think strategically 
about the totality of the data and thereby have a wider role than a purely 
statistical one internally and in regulatory interaction (Rockhold 2009). 
This is less about the definition of roles or overcoming barriers or the need 
to sell the statistical profession (Grieve 2002). Those are past battles that 
have been largely won. This is more about behaviors and knowing when to 
insert oneself into the game (Emir et al. 2013; Grieve 2005; Unwin 2007). 
Specific areas of statistical activity are examined in this chapter with the 
focus on highlighting behaviors to enhance the strategic and representative 
roles of the statistician in regulatory and other external interactions.

3.2 � INTERNAL BEHAVIORS

The statistician’s ability to be influential directly in regulatory interactions 
must first be established and recognized within the pharmaceutical com-
pany itself. Thus, the behaviors begin at home. Even the prominent internal 
role of the statistician in the design, analysis, and interpretation of study 
results is often not enough to consider the statistician as more than a sup-
portive role in direct interaction with regulators. Access to the process as 
a strategic player often happens as a result of behaviors and successes on 
past projects. Statisticians should look to make presentations within the 
pharmaceutical company to non-​statistics groups (e.g., regulatory, clin-
ical, marketing, or outcomes research) relating statistical methods and 
principles to regulatory topics. For example, the concept of “estimands” is 
a statistical issue with a strong regulatory impact. Statisticians should take 
the initiative on explaining this concept and its application to clinical trial 
analysis and interpretation. Thus, when the inevitable regulatory issue of 
estimands arises in the design and/​or analysis of clinical trials, the statisti-
cian should be perceived as the critical person to represent the company in 
the interaction with regulators.

Statisticians should also be well-​versed in applicable regulations and 
review and comment on draft regulatory guidance. For example, in June 
2018 the US FDA issued a guidance for industry titled, “Medical product 
communications that are consistent with the FDA-​required labeling” (FDA 
2018). This guidance recognized that sponsors have additional infor-
mation about approved uses of their products that is consistent with the 
label, and communication of this information to patients and prescribers 
is helpful. The guidance deals with how FDA evaluates consistency of a 
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product communication with the product’s labeling and gives general 
recommendations for conveying information in a truthful and non-​
misleading way. While not overtly statistical in nature, the guidance does 
rely on the concept of “false and misleading.” To avoid being false and 
misleading there should be scientifically appropriate and statistically sound 
support for the promotional communication. The guidance points out that 
findings or the conclusions that can be drawn from supportive data should 
not be overstated. The communication requires proper contextual lan-
guage including “limitations of the strength of evidence.” The statistician 
is the most appropriate person to make sure these criteria are satisfied, but 
regulatory and marketing groups within a pharmaceutical company may 
not recognize this. However, a statistician who takes the initiative to sum-
marize the guidance and what communications may or may not satisfy the 
“false and misleading” criterion from a statistical perspective will enhance 
his/​her strategic value.

Some external activities can also lead to a bigger strategic role in regula-
tory interaction. Publications on statistical methodology, applied to clinical 
trials or any other field in general, is one such activity. Making presentations 
at scientific meetings and serving on joint regulatory and industry working 
groups are others. However, because these activities may not be fully known 
or appreciated by senior management and do not include direct interaction 
between the project teams and the statistician, the influence of external activ-
ities may be limited. The direct, internal strategic activities are more effective 
in establishing the strategic role of the statistician in regulatory interaction. 
As discussed in the next section, with the extensive use of external Data-​
Monitoring Committees on important clinical trials, the role of the inde-
pendent statistician in such committees offers another way to increase the 
strategic role of the statistician within the pharmaceutical company.

3.3 � DATA MONITORING COMMITTEE

Data Monitoring Committees (DMCs) are utilized by pharmaceutical 
companies to monitor unblinded the accumulating data in a clinical trial 
(Ellenberg et al. 2002; Herson 2009). The purpose of a DMC is to ensure the 
safety of the participants in the trial and to ensure the quality and integrity 
of the trial. The DMC is usually comprised of outside experts in the disease 
area, clinical trial methodology, and statistics (DeMets et al. 2006).

The trials that require DMCs often deal with mortality/​morbidity 
endpoints and are critical to the regulatory success of the treatment. Thus, 
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these trials have high visibility and importance for the sponsor and for the 
external medical and regulatory environments. There are different DMC 
models acceptable to regulatory authorities (FDA 2006). It is not the pur-
pose here to contrast the strengths and weaknesses of the various models. 
However, one model is to have the sponsor serve as the data coordinating 
center (DCC), i.e., the sponsor is responsible for data collection, establishing 
the database, and preparing the periodic review tables for the DMC. In this 
model the independent statistician, i.e., the statistician responsible for the 
preparation of review tables and presentation of data at the closed DMC 
meeting, comes from the sponsor. Thus, this is a critical role with high 
visibility that can lead to a greater strategic and representative role of the 
statistician in regulatory interaction.

The responsibilities of the independent statistician, whether employed 
by the sponsor or has no direct affiliation with it, include detailed know-
ledge of the review tables and often to present these tables to DMC members 
in the closed meeting. To do this effectively, the independent statistician 
should be well-​versed in the study protocol and statistical analysis plan as 
well as the review tables. While the independent statistician is not typically 
a member of the DMC, he or she may be asked to guide the DMC discus-
sion of the tables and should be alert to any misinterpretation of the table 
contents. In short, a good independent statistician facilitates the work of 
the DMC, while ensuring that the integrity of the study is preserved. By the 
end of the study the independent statistician will be knowledgeable about 
all aspects of the study conduct and analysis. In addition, the independent-​
statistician role allows the statistician to interact with internal study lead-
ership and external members of the DMC. This positions the statistician to 
take on a strategic role in any ensuing regulatory interaction regarding this 
study and drug.

From a methodological point of view, the role of the statistician 
extends to ensuring that appropriate measures are in place to protect 
against Type I  error inflation as well as any potential bias that may 
arise as a consequence of the activities of the DMC. For example, even 
when the mandate of a DMC is to evaluate safety, and not to monitor 
the primary endpoint to recommend study termination for futility or 
evidence of efficacy, there may be a need to look at unblinded efficacy 
data to assess the relative risks and benefits of the drug to guide the 
DMC recommendations. In such cases, the statistician should formulate 
effective justifications about whether Type I error adjustment is neces-
sary or not (see, e.g., EMA 2005).

 

 



   

Statistics in Regulatory Interactions ◾  101

3.4 � REGULATORY MEETINGS AND ADVISORY 

COMMITTEE MEETINGS

This section will deal with the strategic role of the statistician in regula-
tory interactions in general and in Advisory Committee (AC) meetings, 
specifically.

Sponsor statisticians can add strong strategic value in preparation for 
and direct participation in meetings with regulators. Company statisticians 
are always part of the preparation for external regulatory interaction. 
Consequently, the opportunity is there to be more influential than their 
traditional role as a technical expert. The statistician should seize the 
opportunity to think strategically as well as technically to contribute more 
generally than just playing a purely statistical role. An example of strategic 
thinking might be to recommend that the company concentrate their pos-
ition on selected studies that address the issue at hand more directly than 
other studies. This selection, of course, would not be based on which studies 
have favorable results, but could possibly be based on design features that 
make the study able to address the issue at hand. These distinctions are 
often subtle, but the statistician may be the best person to recognize them.

More generally, the statistician should insert him/​herself into forming 
and developing the logic of the company’s position. The strength of the 
company’s position rests on the robustness of the study results, on the data. 
Consequently, the statistician should assess the strengths and weaknesses 
of the position. Knowledge of study results may not be sufficient to do 
this. Rather one must be thoroughly versed in all aspects of the issues at 
hand. The strategic statistician should anticipate and formulate responses 
to regulators’ criticisms of study design, analytical methods, and strength 
of results. Armed with this preparation, the company statistician should 
not hesitate to jump into the discussion during the regulatory meeting. 
These meetings are almost always non-​confrontational and quite cordial 
with both the regulators and sponsor looking for resolutions. In this spirit 
the sponsor statistician should look to be proactive and a strong participant 
to achieve the meeting goals. Simply providing a clarifying role and waiting 
to be invited into the discussion is not adequate statistical representation 
of the sponsor.

One of the more visible and important FDA interactions for the sponsor 
is an FDA Advisory Committee meeting. Advisory Committees consist of 
outside experts independent from FDA. These committees are convened by 
FDA to provide guidance and recommendations to FDA regarding the topic 
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at hand. The topic is typically on a sponsor’s application to market a new 
drug or on an important safety issue that has emerged post-​approval for a 
specific drug or a class of drugs. FDA seeks guidance from the committee in 
the form of committee discussion and answers to specific questions posed 
by FDA. The sponsor is invited by FDA to present the data and any relevant 
information to the AC from the sponsor’s perspective. Other regulatory 
bodies, such as EMA, have similar guidance mechanisms. Although our 
discussion of the statistician’s role will be in the context of FDA Advisory 
Committee meetings, it is applicable to other regulatory settings.

The company statistician should have a prominent role in preparing for 
and participating in an FDA Advisory Committee meeting. The primary 
activities by the sponsor in preparation for an AC meeting is the prepar-
ation of the sponsor’s Briefing Document (BD), the sponsor’s presentation 
at the meeting, and responses to potential questions by the committee. The 
sponsor’s BD contains all the data and information from the sponsor’s per-
spective. The BD is submitted to FDA who then distributes it to the AC. 
Some recommendations for strategic statistical behavior in preparation for 
an AC meeting are.

•	 The statistician should strongly influence the presentation of the stat-
istical results in the BD.

•	 The statistician should participate in formulating the sponsor’s 
message and to assure that everyone is clear on the message to be 
delivered by the sponsor regarding statistical results/​data.

•	 The statistician should study the BD and develop a framework to 
interpret its strengths and weaknesses. The statistician should be the 
internal expert on the company’s briefing document.

•	 The statistician should endeavor to interact with and influence the 
leadership of the team rather than just defending top-​down positions 
that may not be optimal.

•	 When outside experts are engaged by the company, the statistician 
should be proactive in briefing them on the critical issues and results.

•	 In preparatory meetings the statistician should bring up perceived 
weaknesses in the company’s position, be it due to statistical methods/​
results or from a more general perspective. If the sponsor recognizes 
weaknesses and realizes that the statistician can articulate responses, 
then the role of the statistician at the AC meeting will be more 
prominent.



   

Statistics in Regulatory Interactions ◾  103

Sponsors often utilize mock AC meetings to prepare for the actual AC 
meeting. Internal and external experts form the mock panel, which is 
conducted in a manner similar to the real AC meeting. The sponsor makes 
its draft presentation and the panel asks questions to which the sponsor 
practices responses and the ability to call-​up slides  in support of the 
responses. This is often followed by a session where the internal and external 
panel members critique the presentation and responses to questions in order 
to make the sponsor aware of weaknesses and to strengthen the sponsor’s 
position. This activity leads to an additional set of recommendations for 
strategic statistical behavior in preparation for an AC meeting.

•	 The statistician should develop his/​her own set of statistical questions 
(e.g., weaknesses in statistical methods or ambiguity of results). The 
statistician should have answers to these statistical questions and 
practice delivering them clearly and succinctly.

•	 The statistician should realize that most questions have a statistical 
component to some extent and prepare answers for the statistical 
component in the context of the question.

•	 The statistician should take the initiative to conduct any additional 
analyses that may be needed at the actual AC or for the statistician’s 
own additional understanding.

•	 The statistician should influence the development of answers to 
questions that are more in the clinical or regulatory domains. As 
recommended above, a framework to interpret the strengths and 
weaknesses of the BD will be helpful.

•	 The statistician should be assertive at the mock by being the person to 
answer questions related to statistics.

•	 In the post-​mock critique session, the statistician should have their 
own recommendations for improvement and the rationale, and clarify 
important misperceptions by committee members or in sponsor 
answers. Often, the statistician is aware of weaknesses that others are not.

A strong role by the statistician during preparation should lead to a 
stronger formal presentation by the sponsor and stronger responses to 
potential committee questions to the sponsor.

At the actual AC meeting, the sponsor’s statistician may make a formal 
presentation if statistical issues have been identified. If so, the statistician 
should be prepared to address clarifying and challenging questions on the 
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presentation. Even in the absence of a formal presentation, most ACs will 
have at least one question that the statistician is the appropriate person to 
answer. If the proper up-​front work has been done, the statistician should 
be identified as the person to respond. The sponsor statistician should be 
mindful that an AC statistician and an FDA statistician will also be present 
at the meeting. Often the FDA statistician will present his/​her assessment of 
the sponsor’s statistical methods and conclusions and may also present alter-
native analyses. The statistician on the AC is usually an academic statistician 
with expertise in clinical-​trial methods. The AC statistician does not make 
a formal presentation but often takes a strong role in AC discussions. This 
leads to a final set of recommendations for the statistician at the actual AC.

•	 Sponsors spend a great deal of time preparing answers to poten-
tial questions at the AC. However, the actual questions are almost 
never the precise questions that were anticipated and prepared for. 
Therefore, instead of using a prepared answer, it is important to 
understand the question from the perspective of the AC member. 
It is advisable to use the framework of issues derived from the BD 
to answer the question in an informational manner, emphasizing 
strengths but not overlooking weaknesses.

•	 Related to point 1, the statistician should answer the question that 
is being asked in a succinct and precise manner, without offering 
answers to questions that are not asked or speculating. However, the 
statistician should not hesitate to put his/​her answer in a broader 
positive context.

•	 If the question is related to differences between the sponsor and FDA 
analytical methods, it is prudent to try to show that the analyses are 
complimentary rather than in conflict, particularly if there are no 
substantive differences in conclusions.

•	 The statistician should refrain from statistical jargon, even if 
addressing a question from the AC statistician, since the intended 
audience is the entire AC committee. The statistician should put 
the question and the answer in terms readily understandable by all 
committee members. In particular, the statistician’s demeanor should 
never be contentious, but informative and collaborative.

•	 Most questions at an AC meeting have a statistical component, but the 
statistician is not the primary responder for the sponsor. These questions 
can sometimes turn into a statistical discussion. The statistician should 
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not hesitate to attempt to clarify the discussion. The proper way to do 
this is by alerting the main sponsor representative who will then ask the 
AC chair if the sponsor statistician can address the committee.

•	 The statistician must remember that there is a protocol that governs 
AC meetings regarding who can speak and when. The set of questions 
addressed to the sponsor directly after the sponsor presentation is the 
primary time, if not the only time, that the sponsor can make points 
to the committee. Consequently, any important statistical points that 
the sponsor wants to make must be made during this time.

Three actual examples are described briefly to illustrate some behaviors 
recommended in this section.

Example  1. This AC meeting addressed whether a large, long-​term 
randomized study looking at cardiovascular events should be stopped. 
Since the time the study began, additional information from an indirect 
meta-​analysis of randomized studies along with studies from observational 
databases seemed to indicate that one study drug was safer than the two 
other drugs in the study and thus the study should be stopped. In prepar-
ation for the AC meeting the sponsor statistician made the point that the 
meta-​analysis did not support the safety of one drug due to the indirect 
nature of the comparisons, and that the results of observational studies 
were not supportive of stopping the ongoing study. As a result, the statisti-
cian made a formal presentation at the AC meeting that equipoise remains 
among the three study drugs and that the study should not be stopped. This 
led to an active interaction between the sponsor statistician and the AC and 
with the AC voting to continue the study. The large randomized study was 
continued to completion and the final analysis did not support the results 
of the meta-​analysis or the observational studies.

Example 2. This AC meeting addressed the association of serious neuro-
psychiatric events with treatment for smoking cessation. A large randomized 
trial of three active treatments and placebo was conducted. The focus of 
the AC meeting was on a particular treatment of smoking cessation. The 
sponsor’s conclusion was that there was no association between the neuro-
psychiatric events and the sponsor’s treatment. Prior to the meeting the 
sponsor received the FDA briefing document that indicated that the FDA 
statistician conducted an analysis using different methods than the sponsor 
that might cast doubt on the sponsor’s conclusion. The sponsor statistician 
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recognized that this difference in methods could lead to a discussion at the 
AC meeting and constructed a rationale showing that the analyses were not 
in conflict but were complementary. In addition, the statistician anticipated 
that, if not the treatment, it would be effective to identify the determinants 
of these events in patients attempting to quit smoking and to show they are 
the same for placebo and active-​treatment patients. At the AC meeting, the 
statistician made both presentations that were helpful in an AC vote in the 
sponsor’s favor.

Example 3. This AC meeting addressed the approval of a treatment for 
Post-​Traumatic Stress Disorder (PTSD). The sponsor’s studies showed 
that the treatment was efficacious in women with PTSD, but not men. 
Although there were two positive studies overall and the treatment-​by-​sex 
differential was a secondary finding, the sponsor statistician anticipated 
that this treatment-​by-​sex interaction could become an AC meeting 
issue. The statistician, as due diligence, conducted many additional ana-
lyses exploring possible reasons for this interaction. No strong reason was 
found but there was some evidence of efficacy in men for whom sexual 
abuse was the predominantly precipitating traumatic event. The statisti-
cian was called upon at the AC meeting to present many of these explora-
tory analyses. The treatment was approved without a labeling restriction 
to women.

3.5 � STATISTICAL ROLE IN PROMOTIONAL MATERIAL AND 

MEDICAL COMMUNICATION

An important activity for both the pharmaceutical company and the 
regulators is product promotion and medical communication. This activity 
is highly regulated and highly scrutinized. If not done properly there can be 
major consequences to public health and to the reputation of the company, 
as well as financial penalties. On the other​hand, clinical trials contain much 
information outside of the primary endpoint and it is helpful to prescribers, 
payers, and patients to communicate this information. This point of view 
has been recognized by FDA in their 2018 guidance, “Medical product 
communications that are consistent with the FDA-​required labeling.” This 
guidance reduces the degree of support for a promotional piece from “sub-
stantial evidence” to “sufficient evidence” that is “scientifically appropriate 
and statistically sound.” However, the material will be judged as not accept-
able if it leaves a misleading impression. The need for statistical input in 
this area is self-​evident. The following are general statistical points that 
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should be considered on review of promotional material in order to assess 
whether the material could be considered misleading.

•	 The treatment effect or information that is promoted should be 
derived from all studies that address the research question, i.e., it is 
not seen in a single study if more than one study addresses the issue –​ 
inclusive, not selective of positive findings. Of course, there may only 
be one study that addresses the issue in which case it should be statis-
tically strong.

•	 The effect among the studies should be consistent, i.e., heterogeneity 
of effect is small. One should consider whether the material is con-
sistent with the totality of the sponsor’s data.

•	 To address the potential for the criticism of post hoc analyses, in the 
case of multiple secondary endpoints, there should be an appropriate 
multiplicity procedure to control the overall Type I error, which is a 
major regulatory concern.

•	 If there is no multiplicity issue for a particular finding, then the clin-
ical importance of the finding and any prior justification or informa-
tion to support the finding would support the promotional material. 
In this regard, the results are clinically important (informative to pre-
scriber, patient, payer) and hence statistically stronger (viewed as less 
post hoc) if the analyses address, for example, aspects of the primary 
endpoint, components of a composite primary endpoint, depend-
ence of response on disease severity, onset/​duration of effect, or the 
treatment effect in clinically important subgroups. Although FDA has 
frowned on the promotion of subgroup effects in the past, the current 
guidance specifically allows for subgroup results under certain 
circumstances. This is consistent with the development of targeted 
therapy, for example, in oncology, where the results in tumors with or 
without a genetic marker would be important.

•	 In reviewing promotional material, the statistician should be cogni-
zant of the clinical context and prior justification for the material, so 
it is not criticized as data mining.

In the guidance, for promotional material to be not misleading, FDA 
stresses that product communications should not overstate the findings or 
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the conclusions that can be drawn from such studies or analyses. The pres-
entation requires proper contextual language including limitations of the 
strength of evidence (FDA 2018). This is where statistical input is critical to 
get the context correct.

3.6 � CONCLUDING REMARKS

The main purpose of this chapter is to describe behaviors that can lead 
to a strong strategic role for the statistician internally and in regulatory 
and other external interactions. The statistician should establish a stra-
tegic and influential role internally so that there is a natural inclusion of 
the statistician as a strategic player in regulatory interaction. While the 
recommendations given in this chapter are intended to have general appli-
cation, the statistician should interpret them in the context of the specific 
regulatory setting. As indicated in the introduction, the importance of 
statistics and statisticians has been firmly established in the pharmaceut-
ical industry. It will benefit the drug-​development process to extend that 
importance into the regulatory sphere.
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CHAP T ER  4

Emerging Topics

4.1 � THE USE OF RWE TO SUPPORT LICENSING AND 

LABEL ENHANCEMENT

4.1.1  Introduction

Regulatory agencies rely mostly on data from randomized controlled trials 
(RCTs) to make major decision relating to the safety and efficacy of alter-
native treatment options. As pointed out in earlier sections, this is in part 
due to the internal validity of RCTs, relative to non-​randomized studies. 
However, there are situations where RCTs may not be appropriate for oper-
ational or ethical reasons. Under such circumstances, it may be necessary 
to use information from observational studies.

Real-​world data (RWD) has been defined as “data relating to patient 
health status and/​or the delivery of health care routinely collected from a var-
iety of sources,” while real-​world evidence (RWE) pertains to the “evidence 
about the usage and potential benefits or risks of a medical product derived 
from analysis of RWD” (US FDA 2019b). Historically, RWE from observa-
tional studies has been typically used by regulators for post-​approval safety 
monitoring and regulatory decisions. Healthcare providers employ RWE in 
the assessment of benefits and risks from pharmacoeconomic perspectives 
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in order to support coverage decisions and guidelines for use in clinical 
practice. More recently, pharmaceutical companies have been using RWD 
to generate RWE to support additional efficacy or safety labeling for the 
therapeutic product label. Thus, with progress in health information tech-
nology and modern analytics, RWE can now be used to address important 
regulatory questions and to demonstrate the value of medical products. 
As a result, regulatory agencies have begun formulating programs to pro-
mote the application of RWE. A  case in point is the 21st Century Cures 
Act of 2016 intended to establish a framework for use of RWE in regula-
tory decision-​making in the US (Public Law No: 114–​255 (December 13, 
2016)). In addition, FDA has issued important guidance on the topic of 
RWD and RWE (see, e.g., FDA 2018b and FDA 2018c)

On the other hand, there are many limitations of observational studies, 
especially in the context of regulatory use. Although randomization 
can be employed in real-​world settings (Sherman et  al. 2016), observa-
tional studies are non-​interventional and hence randomization is absent. 
One inherent major problem of nonrandom assignment of subjects to 
treatment is the likely bias in the assessment of treatment comparisons. 
Biases arise from the lack of comparability among treatment groups with 
respect to known and unknown confounding factors (Deeks et al. 2003). 
Other shortcomings include data quality, accessibility of data sources, 
and the protection of privacy and confidentiality of patients (Alemayehu 
and Mardekian 2011). Recent studies also suggest that results of observa-
tional studies tend to depend on trial design, data source, and analytical 
procedures (Madigan et al. 2013a). This goes to the heart of the general-
izability of results of observational studies. Bartlett et al. (2019) presented 
research results on the feasibility of RWD to replicate RCTs using US-​based 
clinical trials published in high-​impact journals in 2017. Their study, which 
had certain limitations, reported that only 15% of the clinical trials could 
be replicated using currently available RWD.

As a result, there has been a growing body of literature on approaches 
to maximize the value of real-​world evidence (RWE) in healthcare 
decision-​making, both from the methodological as well as the operational 
perspectives (Berger et al. 2014; Rosenbaum and Rubin 1983; Waning and 
Montagne 2001). Unsurprisingly, regulatory agencies are also in the pro-
cess of evaluating the potential of RWE in drug development and approval 
(FDA 2018c; Sutter 2016).

In this chapter, we summarize some of the statistical and regulatory 
issues with the use of RWE in drug development, with particular reference 
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to recent developments in the US and other regions. A  brief outline is 
provided regarding the common approaches used in the design analysis 
and reporting of observational studies. In addition, selected examples are 
provided to highlight the current regulatory viewpoints pertaining to the 
role of RWE in drug development.

4.1.2  Methodological and Operational Considerations

In the literature, a confounder is defined as a variable that is associated both 
with the response and the treatments under study. In RCTs, randomization 
ensures comparability of treatment groups with respect to observed as well 
as latent confounders (Collins and Lanza 2009). In the absence of random-
ization, it is generally impossible to eliminate the impacts of all potential 
confounders. In some cases, such as confounding by indication, which is 
common in drug safety studies where the indication is also a risk factor for 
the outcome, the associated bias cannot be completely removed by design 
or modeling, when no control exists for the underlying condition (Bosco 
et al. 2010; Psaty and Siscovick 2010). Therefore, best practices should be 
used in the design and analysis of data from observational studies, and 
caution should be exercised in the interpretation of the accompanying 
results.

Alternative design options are available for observational studies. 
Prospective cohort studies are often used to compare treatment regimens 
based on subjects that use the drug of interest and others that use a suit-
ably chosen comparator, both prospectively identified with respect to pre-
defined criteria. The subjects are then followed over time and the outcome 
of interest compared in the two groups, using models that adjust for rele-
vant confounders. Such designs tend to be resource-​intensive and gener-
ally require lengthy time for data collection, particularly for rare events. 
In some cases, retrospective cohort studies, which are relatively less costly, 
may be executed; however, such studies may be limited by the availability 
of data for analysis (Kleinbaum et al. 2013).

Matched case-​control designs often prove to be appealing since they 
are cheaper and less time-​consuming than prospective cohort studies. In 
such designs, subjects having a given outcome (cases) are matched to those 
without the outcome (controls) according to a prespecified matching cri-
terion. The rates of exposures in the two groups are then compared using 
analysis methods that take into account the potential correlation introduced 
by the matching. The selection of a suitable control group is essential to 
obtaining valid results. Case-​control studies tend to suffer from selection 
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bias, and lack of generalizability of the results, since study subjects are 
selected according to the outcome values (Kleinbaum et al. 2013; Madigan 
et al. 2013b).

A common approach for handling observed confounders is the use of 
traditional models, such as the standard linear model, generalized linear 
models, or a Cox proportional hazards model, in which the confounders are 
included as covariates. While these procedures have many desirable prop-
erties, including ease of interpretation, they can be sensitive to departure 
from model assumptions. For example, they may lead to misleading results 
in the presence of multicollinearity or influential points. They may also 
lead to inefficient estimators when the number of covariates is large relative 
to the number of observations. Recent approaches that involve regulariza-
tion, including ridge regression and the lasso (Tibshirani 1996) have been 
proposed as viable solutions to mitigate some of the issues (see, e.g., Hastie 
et al. 2009). However, the results based on regression approaches cannot be 
fully relied upon to address confounding issues.

The propensity-​score technique, introduced in Rosenbaum and Rubin 
(1983), is one of the most widely used methods for handling observed 
confounders. The underlying principle is based on the concept of counter-
factual causality (Heckman 2005). More specifically, given two treatment 
groups, denoted by Z, having a value of 1 if the subject is exposed, and 0 
otherwise, the propensity score (PS) for an individual is defined as the con-
ditional probability of being treated given the covariates:

pi = Pr(Z = 1| covariates for subject i).

The propensity scores are typically estimated using standard logistic-​
regression models. The estimated individual subject propensity scores can 
then be used in 1:1 or M:1 matching, grouping subjects with respect to 
their PS values (D’Agostino 1998). A drawback of matching is a potential 
loss of observations if there are not suitable matches at the low or high 
end of the PS. The observations are then trimmed, and the remaining 
matched subjects are analyzed. As in the case of matching by individual 
characteristics, the PS matching will introduce correlation into the matched 
observations that should be taken into account in the analysis.

Alternative approaches are available to perform analyses involving PS 
matching. In some applications, the estimated propensity score is included 
as one of the covariates in the model. However, this approach has been 
shown to give biased estimates (Austin 2009a; Imbens 2004). Another 
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approach concerns stratification, in which subjects are categorized into 
disjoint subsets based on prespecified PS thresholds. A method proposed 
by Cochran (1968) consists in dividing subjects into five equal-​size groups. 
In this framework, the analysis may be performed by pooling stratum-​
specific estimates by weighing the stratum-​specific estimates by the inverse 
of their variances or using standard techniques, such as analysis of vari-
ance (ANOVA), logistic regression, or Cox proportional hazards models, 
with the PS strata included as a stratification term in the model. If each 
treatment group is not adequately represented in each stratum, the method 
may suffer from loss of information. Stratifying by PS groups has also been 
shown to be a good diagnostic method to assess effect modification as well 
as residual confounding and to elucidate the treatment effect with respect 
to the original confounding variables (Gaffney and Mardekian, 2009).

A method that involves assigning each subject a weight equal to the 
inverse of the probability of receiving the treatment the subject actually 
received is the so-​called inverse probability of treatment weighting (IPTW). 
In the abovementioned notation, the weight for individual i is given by:
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Inference about δ may be performed using suitable estimates of the 
standard error of δ  (Lunceford and Davidian 2004). One limitation of the 
IPTW approach is that weights may be unstable for subjects with small 
values of the PS (Robins et al. 2000). The rationale for the IPTW analysis is 
that subjects with a relatively high pi are overrepresented in the treatment 
group and thus their observations are down weighted while the reverse is 
true for the control subjects.

The pros and cons of the abovementioned procedures may be found 
in Austin (2007; 2009b). It is noted that in certain settings PS matching 
may not be always preferable compared with conventional multivariable 
methods (Sturmer et al. 2006), and that the performance of the method is 
in general dependent on the appropriateness of the variables included in 
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the construction of the scores. Further, in the face of high dimensionality 
and collinearity, the models may not perform adequately (Schneeweiss 
et al. 2009). For a discussion of use of modern analytic approaches, see, 
e.g., Setoguchi et al. (2008).

Instrumental variable (IV) techniques are often used to handle unmeas-
ured confounders in observational studies (Newhouse and McClellan 
1998). An unmeasured confounder may simply be a confounder such as 
disease severity at the time of treatment initiation, which is not captured 
in the RWD or, more subtly, it may be the reasons why the prescriber 
decides to select one treatment over the alternative for a given subject. That 
is, clinical judgment often leads to confounding that cannot be controlled 
for by any measured subject characteristics. To be implemented reliably, 
an IV must satisfy two conditions: (1) it must be strongly associated with 
treatment; and 2) it does not have a direct effect on the outcome variable, 
but only through the treatment variable. An example of an IV construction 
may be interruptions in medical practice, which may be a consequence 
of an important innovation. Another involves treatment preference, inde-
pendent of patient factors. Instances of the latter may include distance to 
specialists (McClellan et  al. 1994); geographic areas (Stukel et  al. 2007); 
physician prescribing preference (Brookhart et al. 2006); and hospital for-
mulary (Schneeweiss et al. 2007). The IV is included in the analysis as a 
covariate or stratification variable to adjust for unmeasured confounders. 
However, one can never be certain that unmeasured confounding has been 
adequately addressed and it remains a limitation to the analysis of obser-
vational data. An alternative method to address unmeasured confounding 
is by a tipping point analysis. In this approach the amount of unmeasured 
confounding that would be required to change the study conclusion is 
estimated.

In addition to the methodological issues discussed above, effective use 
of data from observational studies requires addressing important oper-
ational challenges. Since healthcare data may come from different sources, 
including electronic health records (EHRs) and claims databases, they typ-
ically require special provisions for data storage, computing environment, 
data standards, and protection of privacy and confidentiality (Alemayehu 
and Mardekian 2011). Depending on the sources, different nomenclatures, 
coding conventions, and units are often used for medical terms. Since data 
collection is not performed for the purpose of research, data entry errors are 
common, often leading to such issues as miss-​classification, missing values, 
and outliers. In addition, most of the available data may be unstructured. 
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As a result, concerted efforts are required by various stakeholders to estab-
lish a framework for the harmonization of healthcare data. Recent activities 
in this regard include increased use of the International Classification of 
Diseases, Ninth Revision, Clinical Modification (ICD-​9-​CM) to code and 
classify diagnoses from inpatient and outpatient records. The National 
Drug Code (NDC) scheme, which is maintained by the US Food and Drug 
Administration (FDA), is another tool for coding prescription drugs and 
insulin products. In addition, some initiatives are underway in the US to 
harmonize data collection across states (Porter et al. 2015).

4.1.3  Current Regulatory Landscape

Despite the growing attention given to the potential use of data from obser-
vational studies in evidence-​based medicine, the regulatory requirement is 
still an evolving concept. Some of the important guidelines relating to the 
design, analysis, and reporting of observational studies have been issued 
by professional societies and other stakeholders. Notable examples include, 
the recommendations of the International Society for Pharmacoeconomics 
and Outcomes Research (ISPOR) (Berger et al. 2009); the STrengthening the 
Reporting of OBservational studies in Epidemiology (STROBE) statement 
(von Elm et al. 2008); and other resources for evaluating nonrandomized 
studies of comparative effectiveness (Deeks et al. 2003).

In the US, following the promulgation of the 21st Century Cures Act 
of 2016, the FDA has issued a framework for the use of RWE in regu-
latory decision-​making (FDA 2018b). Key aspects of the framework 
include developing guidelines relating to:  a) Whether the RWD are fit 
for use; b) Whether the trial or study design used to generate RWE can 
provide adequate scientific evidence to answer or help answer the regu-
latory question; and c) Whether the study conduct meets FDA regulatory 
requirements (e.g., for study monitoring and data collection).

With respect to effectiveness objectives, regulators are reluctant to 
draw a causal inference when treatment assignment is due to phys-
ician judgment, rather than randomly. FDA has stated that this must 
be addressed to support the acceptability of observational studies for 
effectiveness decisions (FDA 2018b, 2018c). There are examples of con-
cordance between randomized trials and observational studies reaching 
similar conclusions about treatment effect (Anglemyer et al. 2014; Benson 
and Hartz 2000); however, there are also examples of discordant results 
(Cooper et  al. 2014; Guadino et  al. 2018; Hemkens et  al. 2016). There 
have been recent efforts to use rigorous design and statistical methods 
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to replicate randomized trial results with observational studies and to 
develop general rules to strengthen the validity of results in observational 
study designs (Franklin and Schneeweiss 2017). However, because of 
the discordant results given above and the uncertainty of the validity of 
observational results, it is unlikely that regulators will rely on results from 
observational studies for the purpose of effectiveness, except in certain 
special situations.

One important area of interest relates to enhancing non-​randomized, 
single-​arm trials through the use of external controls. Although the 
external control arm could use data from past RCTs, suitably chosen 
RWD might also be used to construct external controls. However, as 
highlighted elsewhere in this monograph, external controls have their 
own limitations, including lack of comparability of patient populations, 
lack of standardized diagnostic criteria, dissimilarity of outcome 
measures, and variability in follow-​up procedures. The FDA Framework 
is anticipated to provide further guidance on the use of RWD to gen-
erate external control arms, complementing the ICH E10 guideline 
(ICH 2000).

Earlier, the US FDA issued a guidance document pertaining to the use 
of RWE to support regulatory decision-​making for medical devices (FDA 
2001). The document addresses important issues that arise in the evalu-
ation of real-​world data, including methodological rigor and data quality. 
More recently, a related guidance was issued, including recommendations 
for evaluating data sources used in pharmacoepidemiologic safety studies 
(FDA 2013).

There is a growing interest in pragmatic clinical trials, which involve 
randomization, and are typically integrated into routine clinical care. The 
study protocols for such trials specify minimal inclusion and exclusion cri-
teria, and no treatment requirement other than the randomized assignment 
to one of the groups. Such trials may use EHRs or claims data to capture 
primary and secondary endpoints (see, e.g., Hernandez et al. 2015) or may 
be registry-​based (e.g., Fröbert et al. 2013).

Incidentally, there are several examples of RWE use in regulatory settings, 
including label expansion for new indications, fulfilling postapproval 
commitments, and even initial approval based upon external controls, espe-
cially in areas of high unmet medical need (Baumfeld Andre et al. 2019). 
Some use cases relate to label expansion based on EHRs, or postmarketing 
reports of claims databases. A recent example is the approval of palbociclib 
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(Ibrance) for the treatment of male breast cancer, expanding the earlier 
indication for the treatment of HR+, HER2-​ advanced/​metastatic breast 
cancer in females (FDA 2019a). The approval was based on post-​marketing 
reports and EHRs as part of the totality of evidence. Real-​world data from 
EHRs showed encouraging signals of response rates with Ibrance, a CDK4/​
6 inhibitor in combination with an aromatase inhibitor or fulvestrant in 
the male patient population. The data also suggest that the safety of Ibrance 
in male patients was consistent with the tolerability observed in female 
patients who received palbociclib.

An example of label expansion using a pragmatic study concerns 
paliperidone palmitate, originally indicated for the treatment of schizophrenia 
in adults and treatment of schizoaffective disorder in adults as monotherapy 
and as an adjunct to mood stabilizers or antidepressants (Alphs et al. 2016).

Approvals have also been granted based on historical controls. An 
example is the accelerated approval of eteplirsen for Duchenne muscular 
dystrophy. The approval of eteplirsen used data on a historic control arm 
from a registry database (Mendell et al. 2016). In another case, label expan-
sion was granted for blinatumomab based on the results of a single-​arm 
trial supported by RWE to include indication for patients with minimal 
residual disease in which cancer cells are present at a low level that cannot 
be detected microscopically (Gokbuget et al. 2018).

4.1.4  Concluding Remarks

In this chapter, we considered some of the issues associated with the use 
of RWE in regulatory settings, and highlighted steps that need to be taken 
to maximize the evidentiary value of such data in drug development. 
Although the traditional RCT paradigm is the default approach for regu-
latory decision-​making, there are considerable opportunities for RWE 
in label expansion and even initial approvals. With the growing cost of 
conducting RCTs, and the infeasibility of generating the requisite evidence 
for rare diseases, observational studies and RWD have garnered increased 
attention to support regulatory decision-​making.

Historically, RWE from observational studies has been routinely accepted 
for satisfying postapproval safety commitments. With the development of 
guidelines and best practices, and gradual evolution of regulatory opinions, 
examples now abound illustrating regulatory decision-​making based 
on RWE. Hybrid designs that incorporate randomization and minimal 
protocol requirements can be used to generate regulatory-​grade evidence, 
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especially in areas of unmet medical needs. In other cases, external controls 
involving RWD can be used to buttress single-​arm trials.

Despite the various examples of approvals using RWE, the regulatory 
landscape pertaining to such data is by and large an evolving process. The 
onus is first on the sponsor to assess the appropriateness of the use of RWD 
from an observational database for the sponsor’s specific research purpose 
and that the results will have scientific rigor. There are myriad medical, 
statistical, regulatory issues to consider, as well as the nature of the obser-
vational database itself. An observational study should never be conducted 
simply because it may be more expedient than a clinical trial. Therefore, it 
is essential for sponsors to engage regulatory authorities early and obtain 
alignment of expectations. To facilitate the discussion with regulators and 
maximize the possibility of positive outcome, sponsors should apply best 
practices for study design, methodological rigor, and data quality. Special 
attention should also be paid to regulatory requirements for record reten-
tion, auditing, patient privacy, clinical endpoint validity, and reporting 
of study results. Sponsors should also put in place standard operating 
procedures to ensure transparency, including prespecification of protocols 
and analysis methods, data-​quality assurance, and registration of studies 
and study results.

4.2 � PATIENT-​REPORTED OUTCOMES IN REGULATORY 

SETTINGS

4.2.1  Introduction

According to a recent guidance document issued by the US FDA, patient-​
reported outcomes (PROs) are defined as “any report of the status of a 
patient’s health condition that comes directly from the patient, without 
interpretation of the patient’s response by a clinician or anyone else” (FDA 
2009). Thus, PROs may include a range of such subjective outcomes as 
symptoms (e.g., pain, fatigue, nausea, or vomiting), functioning (physical, 
emotional, or social), health-​related quality of life (HRQOL), or preference 
about a given treatment (Drummond et al. 2005). PRO data is captured dir-
ectly from the patients using a suitable instrument, which consists of a ques-
tionnaire and accompanying instruction and documentation in support of 
its use. While a PRO is typically measured by self-​report, in some situations 
it may be captured by interview, in which case the interviewer is expected 
to record only the patient’s response. It is noted that certain symptoms or 
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other concepts that are known only to the patient (e.g., pain severity) can 
only be measured using PRO instruments.

Pharmaceutical companies and regulatory agencies pay due attention 
to the collection, analysis, and reporting of PROs (see, e.g., Alemayehu 
and Cappelleri 2012; 2014). The importance of PROs stems from the fact 
that there is a growing focus on patient-​centric healthcare system. The US 
FDA acknowledges that evidence from a well-​defined and reliable PRO 
instrument collected through an appropriately designed investigation 
can be used to support a claim in medical product labeling (FDA 2009). 
In the European Union (EU), the EMA has recognized the fact that the 
“experience of patients of how a treatment impacts on their well-​being and 
everyday life is an important aspect of the evaluation of the clinical benefits 
of new medicines” (EMA 2016). In addition, PROs can be used as evidence 
to support health-​technology assessment (HTA) decisions and payer nego-
tiations (Zagadailov 2013). PROs are, therefore, routinely included as an 
integral component of most drug-​development plans, often starting in 
early-​phase trial designs (Basch 2016).

Since PROs are subjective in nature, their acceptance as a basis for the 
assessment of the relative benefits and risks of alternative treatment options 
is dependent on the validity and reliability of the instruments used to gen-
erate the data. In addition, it is essential to ensure that PROs are developed 
following standardized approaches, so that results can be compared or 
synthesized across measures, and that the burden on patients is reduced 
to a minimum. The Patient-​Reported Outcome Measurement Information 
System, or PROMIS (Cella 2007), which was launched in 2005 through a 
National Institutes of Health (NIH) Roadmap Initiative, is an example of 
ongoing efforts intended to enhance the development, use, and interpret-
ation of PROs (see, e.g., DeWalt 2007).

In the following, we provide a high-​level summary of pertinent aspects 
of PRO-​instrument development as well as data collection, analysis, and 
reporting, with emphasis on the issues that are germane to their effective 
use in clinical trials and regulatory submissions. For a more in-​depth dis-
cussion of these issues, the reader is referred to Cappelleri et al. (2013).

4.2.2  Development and Validation of PRO Instruments

The development of a PRO instrument that is intended to be used to gen-
erate evidence for regulatory or other healthcare decision-​making requires 
a rigorous evaluation process, involving both qualitative and quantitative 
methods. The initial step often comprises a thorough review of the available 
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literature to confirm the need for a new instrument and to understand the 
nature of the measures that are already in use for related purposes. The next 
step would be development and assessment of a conceptual framework that 
guarantees that the issues of most relevance to the patient are captured. 
The concept of interest may involve a single item (e.g., pain intensity), or 
require multiple items (e.g., physical function). In the case of the latter, it 
is critical to establish how individual items are associated with each other 
and each domain, and how domains are associated with each other and the 
general concept of interest. Figure 4.1 adapted from FDA (2009), illustrates 
the interrelationships of items and domains in a conceptual framework of 
a PRO instrument.

Once the conceptual framework is confirmed, other properties of the 
instrument will need to be established, including content validity, reli-
ability, construct validity, and ability to detect change.

The assessment of content validity, which requires evidence that the 
instrument measures the concept of interest, includes analyzing data 
collected from focus groups (Patrick et  al. 2011a; 2011b). Content val-
idity depends on a number of factors, including whether item generation 
includes input from the target patient population; appropriateness of the 
recall period for the instrument; the mode of administration (i.e., whether 
self-​administration, interview, or both); relevance of the response options 
(e.g., visual analog scale, Likert scale, etc.); scoring of items and domains; 
and respondent burden.

Construct validity involves establishing whether observed relationships 
between measures gathered using the instrument and results gathered 
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FIGURE 4.1  Illustration of a Conceptual Framework of a PRO Instrument
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using other measures are in congruence with preexisting hypotheses about 
those relationships (i.e., discriminant and convergent validity), as well as 
whether the instrument can differentiate between clinically distinct groups 
(i.e., known groups validity). In addition, an instrument’s floor/​ceiling 
effects are assessed to determine the appropriate use of the instrument for 
a given condition. The ability of the instrument to discriminate among 
patients is characterized by assessing the variability in responses when 
the instrument is administered. Further, an instrument’s ability to capture 
responsiveness to meaningful change may be determined by comparing 
the change in PRO scores against the change in other similar measures or a 
gold standard (criterion validity).

The assessment of the reliability of an instrument consists in evaluation 
of its ability to yield consistent, reproducible results. This may include deter-
mination of reproducibility (e.g., test-​retest reliability), internal consistency 
(e.g., agreement among the observed responses to different questions), as 
well as inter-​interviewer reproducibility, if applicable. Internal consistency 
is assessed with respect to item-​to-​item correlations (often using Cronbach’s 
alpha), whereas test-​retest reliability may be assessed based on an analysis 
of variance involving repeated measurements on the same set of subjects.

4.2.3  Statistical Considerations

From a statistical perspective, the analysis and reporting of PRO data 
require tackling considerable challenges, including handling of missing 
values and multiplicity of endpoints, as well as determination of interpret-
able response criteria.

In PRO data, missingness may occur in a variety of ways. As in other 
clinical endpoints, the data may be missing for an entire visit due to loss to 
follow up or other reasons. In other cases, data may be missing for certain 
components of a multi-​item instrument (item-​level missing). In the latter 
situation, some instruments may have accompanying documentations 
for handling the missing items (Cappelleri et al. 2013). In general, alter-
native strategies may be employed to impute the missing values, under 
various assumptions about the mechanism that generated the missingness. 
A common approach is to use single-​imputation methods for missing item-​
level data (Fairclough 2010). However, even when the assumptions about 
the missing-​data mechanism are satisfied, such techniques tend to under-
estimate the variability of the estimators of interest, thereby invalidating 
the accompanying inferential results. When the assumption of missing at 
random (MAR) is satisfied, multiple-​imputation techniques or, in the case 
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of longitudinal data, mixed models for repeated measures (MMRM) may 
be used (see, e.g., Carpenter and Kenward 2013).

In practice, it may not be possible to verify the assumption of MAR. 
It is therefore critical to confirm the results under MAR using alterna-
tive sensitivity analyses corresponding to the same parameter of interest 
(Little and Rubin 2002). For longitudinal data, some of the commonly used 
approaches include pattern-​mixture models (Little 1993) and selection 
models (Little and Rubin 2019). Selection models, which specify the joint 
distribution of the outcome and missing-​data mechanism as a function of 
the marginal distribution of the measurements and the conditional distri-
bution of the missing data given the measurements, are highly dependent 
on strong assumptions about the model and dropout patterns. In contrast, 
pattern-​mixture models, which express the joint distribution in terms of 
the marginal distribution of the missing data and the conditional distri-
bution of the measurements given missing data, tend to rely on classifica-
tion of individuals based on time of dropout. A key limitation of the latter 
approach is under-​identifiability, since some parameters cannot be directly 
estimated due to inadequate information.

An approach that is gaining popularity involves performing a series of 
analyses searching for a tipping point that reverses the study conclusion 
(see, e.g., O’Kelly and Ratitch 2014). The intended purpose of this approach 
is to assess the degree of departures from the missingness assumption that 
would overturn the findings obtained using MAR-​based models.

Since there is no universally accepted approach to handle missing values 
at the analysis stage, it is highly recommended to minimize the occurrence 
of missing data by employing best practices at the design and conduct 
stages of the trial. To the extent possible, a minimally required number 
of instruments should be included in the study, and the frequency of 
data collection from the participants should be limited to the time points 
that are absolutely necessary to address the research hypothesis. Further, 
automated data collection tools, such as ePROs, should be used, if avail-
able. During the conduct phases, several proactive measures may be taken, 
including training investigators, implementing incentives to investigators 
and participants, and maintaining contact information of participants for 
potential follow-​up.

As mentioned above, for longitudinal PRO data, suitable linear models 
may be implemented (see, e.g., Cappelleri et  al. 2013; Fairclough 2010; 
Fitzmaurice et  al. 2011; Hedeker and Gibbons 2006; Singer and Willett 
2003). In addition, other nonstandard techniques may also be used, 
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including item-​response theory (IRT), discussed earlier (Cappelleri et al. 
2013; de Ayala 2005; Hambleton et al. 1991; Hays et al. 2000).

Since PRO analyses typically involve multiple endpoints, appropriate 
methods should be prospectively specified and implemented to control 
the Type I  error rate. If PROs are considered secondary endpoints, the 
additional endpoints may be tested sequentially following a significant 
test on the primary endpoint, each at the usual alpha = 0.05 level of stat-
istical significance. In cases where the primary analysis concerns two or 
more primary endpoints, a suitable statistical procedure should be applied 
for multiplicity adjustment, including a gate-​keeping strategy involving a 
hierarchy of comparisons that should first be satisfied before others are 
considered for testing. Other more conventional approaches that may be 
used when a restriction of the hierarchy is not feasible or practical include 
such conventional methods, as Bonferroni, the step-​down or step-​up tests, 
and prospective alpha allocations schemes. In certain situation, in which 
it is reasonable to combine individual items, composite endpoints may be 
employed to avoid multiplicity issues.

A commonly used psychometric approach for the assessment of val-
idity involves the use of exploratory and confirmatory factor analyses. The 
former is used to generate hypotheses about the concepts represented by 
the various items, and to guide decisions about the items that are conceived 
to be of relevance. In confirmatory factor analysis, the goal is to establish 
the acceptability of a prespecified hypothesis about various aspects of the 
measure. Alternatively, IRT may also be used to assess validity. In this 
approach, the probability of response to an item is expressed as a function 
of certain latent attributes and parameters. Other ways of assessing val-
idity, mentioned earlier, may include demonstration of correlations with 
existing measures that address the same concept (convergent validity), or 
that assess other concepts (divergent validity).

4.2.4  Regulatory Considerations

As pointed out earlier, the US FDA generally accepts evidence from a 
well-​defined and reliable PRO instrument in appropriately designed 
trials to support a claim in medical product labeling. The role of a 
PRO endpoint (i.e., whether primary, key secondary, or exploratory) 
should be clearly prespecified in the trial protocol, including the stat-
istical methods that would be used to analyze the data. Some of the 
characteristics of PRO instruments that are routinely reviewed by the 
US FDA include:  instrument’s measurement properties; the concepts 
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being measured; number of items, medical condition, and population 
for intended use; data collection method; respondent burden; recall 
period; and translation or cultural adaptation availability, among others 
(FDA 2009).

Definition of an appropriate PRO endpoint may involve a fixed time point 
or a suitable summary statistic across time points. The defined endpoint is 
expected to reflect the objective of the given analysis and will determine 
the type of statistical procedure to be used. For example, an ordinal or con-
tinuous PRO score at a fixed time point in an RCT may be analyzed using 
standard parametric (e.g., two-​sample t-​test or analysis of variance) or 
nonparametric (e.g., Wilcoxon rank-​sum test or Kruskal–​Wallis test) ana-
lyses. In situations where it is desired to adjust for potential imbalances in 
baseline scores, alternative approaches may be employed, including com-
putation of the change from baseline or the percentage change from base-
line for each patient, with subsequent comparison between arms based on 
an analysis of covariance (ANCOVA). Similarly, binary PRO scores at a 
fixed time point may be analyzed using chi-​squared or similar tests, or a 
logistic regression incorporating relevant covariates.

Suitably defined summary measures can serve several purposes, 
including facilitating interpretation, selecting analytical approaches, and 
reducing dimensions by combining data across scales and/​or time points 
into a single score. However, the choice of the summary measures should 
be done judiciously, taking into account the impact of any missing values 
and the potential loss of information in the process of constructing the 
measures. Commonly used examples include, the average, maximum, min-
imum, or last observed postbaseline score; slope across postbaseline scores; 
within-​subject area under the curve (AUC); and within-​subject time to 
reach a prespecified value.

In the interpretation of results on PRO endpoints, statistical signifi-
cance alone may not be meaningful. Therefore, the claims about treatment 
benefits should be accompanied by a well-​justified responder defin-
ition and other data-​presentation tools. To facilitate the interpretation of 
results from the analysis of PRO data, alternative approaches have been 
proposed, including the anchor-​based and distribution-​based approaches 
(see, e.g., Cappelleri et al. 2013; Marquis et al. 2004; McLeod et al. 2011). 
An anchor-​based approach attempts to link the targeted concept that the 
PRO is intended to measure to an anchor measure or indicator that is inter-
pretable itself or lends itself to interpretation. Thus, while the anchor may 
or may not be another PRO measure, it is required to meet at least two 
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criteria: viz., be correlated with the targeted PRO, and be easy to interpret 
relative to the PRO of interest. Anchor-​based methods include percentages 
based on thresholds. For example, when using incontinence diaries that 
also collect the number of incontinence episodes, the mean change in PRO 
scores corresponding to a 50% reduction in episodes may be used to define 
a responder. Similarly, when patients are blinded to treatment assignment, 
their assessment of change recorded at different times may be used to define 
a responder. Specifically, the difference in PRO scores corresponding to the 
change in ratings (better/​same vs. worse) can serve to define a responder 
(FDA 2009).

Distribution-​based approaches, often used as supportive tools, typically 
relate to the magnitude of a treatment effect, both at the individual and 
group levels (Alemayehu and Cappelleri 2012). Examples of distributed-​
based approaches for a group of patients include standard error of 
measurements (SEM), and cumulative distribution of response curves 
(FDA 2009). The US FDA encourages the use of the cumulative distribu-
tion function (CDF) of responses between treatment groups, including an 
application of the responder definition along the CDF curve at each level 
of response (FDA 2009).

Figure 4.2 illustrates a CDF plot in which the solid and dashed curves 
denote the distributions for the two treatment groups. Assuming negative 
change scores indicate improvement, for example, at a change score of –​2 
(i.e., a 2-​point improvement), where higher scores represent worse condi-
tion, the difference in the corresponding percentage of subjects is Δ = 25%.
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FIGURE 4.2  Illustration of a CDF Plot
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When composite endpoints are constructed combining the scores from 
multiple items or domains, there should be clarity about the interpret-
ation of the associated results, since the results may depend on the relative 
importance of the components and the corresponding effect sizes. When 
a composite endpoint shows favorable results, the component-​wise results 
should be presented to indicate the relative contributions to the favorable 
result.

In certain situations, PRO instruments can be used to capture safety 
data, especially when it is deemed important to elicit the information 
from the patient perspective. In cancer trials, there have been ongoing 
efforts to streamline and harmonize the collection of safety data as a cen-
tral PRO concept. This includes the concept proposed the FDA Office of 
Hematology and Oncology Products (OHOP) (Kluetz et  al. 2016), and 
the National Cancer Institute’s Patient-​Reported Outcomes version of the 
Common Terminology Criteria for Adverse Events (PRO-​CTCAE). The 
latter is especially considered a useful tool to standardize the assessment of 
symptomatic AEs from the patient perspective (NIH NCI 2019).

4.2.5  Concluding Remarks

PROs have attracted considerable attention from regulatory agencies, 
payers, and pharmaceutical companies. Traditional clinical trials, which 
rely upon observer-​reported outcomes, often fail to take into account the 
patients’ perspective and experience. As patients get more involved in 
clinical trials and in their own healthcare, they will seek to have greater 
voice and greater access to data from other patients on trials to make 
informed decisions about their treatment. Thus, collecting reliable data 
that reflect the patients’ perspectives is a critical component of drug 
development.

From a regulatory perspective, evidence gathered using a well-​defined 
and reliable PRO instrument in appropriately designed trials can be used 
to support labeling claim. However, development and validation of a PRO 
instrument requires strict regulatory and psychometric requirements, 
which involve demonstration of the instrument’s ability to reliably measure 
the claimed concept in the patient population enrolled in the clinical trial. 
Another issue of concern, especially in oncology, is the reliability of PRO 
data from open-​label studies. As a consequence, despite the growing focus 
on the importance of PRO data, there is some variation in the degree to 
which regulatory agencies view the acceptability of such evidence for label 
claims. For example, according to a recent study, compared to the US FDA, 
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the EMA tends to be more likely to accept data from open-​label studies 
and broad concepts such as health-​related quality of life (Gnanasakthy 
et al. 2019).

One major barrier that limits the wider use of PROs by healthcare 
systems in general is the scarcity of best practices in the use of validated 
instruments, especially when the comparability of data collected from dis-
parate sources is desired. One framework, mentioned earlier, is the Patient-​
Reported Outcomes Measurement Information System (PROMIS), which 
aims to enhance and standardize measurement of several selected PROs. 
While the PROMIS network is growing, and actively developing and val-
idating PROs in several new domains, it is still far from getting acceptance 
by regulatory agencies.

4.3 � ARTIFICIAL INTELLIGENCE AND MODERN ANALYTICS 

IN REGULATORY SETTINGS

4.3.1  Introduction

It is widely acknowledged that the digital revolution has considerable 
potential to transform medical research and drug development, as has been 
the case in other areas of human endeavors (Alemayehu and Berger 2016; 
Mayer-​Schönberger et  al. 2014). Smart algorithms and powerful com-
puting resources are now available to process and analyze huge volumes 
of data collected from diverse sources and in a variety of forms to address 
important medical problems, especially those related to personalized and 
precision medicine (Panahiazar et  al. 2014; Teli 2014). Unsurprisingly, 
the complexity, speed, and size of the data, as well as the new computing 
approaches, have presented unprecedented challenges and opportunities 
for drug development, regulatory reviews, and healthcare utilization and 
decision-​making (Roski et al. 2014).

According to McCarthy (2007), artificial intelligence (AI) is  "the science 
and engineering of creating intelligent machines," and may be viewed, in a 
broad sense, as the marriage of modern statistical predictive models with 
expert systems and machine-learning (ML) algorithms. AI has come a 
long way since its inception by Turing (Turing 1950), with a wide range of 
applications, including image recognition, speech detection, and robotics. 
A  major factor in the success of AI in medical research is the advance 
made in the development of powerful predictive models (Emir et al. 2017). 
Figure 4.3 depicts the ML prediction paradigm, which involves an iterative 
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process of model development and validation, using training and test-​data 
sets (Hastie et al. 2009; Shmueli 2010).

Interestingly, the methodological development in ML has been driven 
not just by statisticians and mathematicians, but also by researchers in 
other disciplines, including computer scientists and software engineers 
(Goodfellow et  al. 2016). Classification and regression trees, including 
random forests (Breiman 2001a; 2001b), as well as penalized-​regression 
methods (Hastie et al. 2009), are now in routine use in medical research. 
Other analytic tools include k-​nearest neighbors (Dixon 1979), neural 
networks and deep learning (inspired by Rosenblatt (1958) and enhanced 
by Rumelhart et al. (1986)), and support vector machines (Vapnik 1995).

Deep learning models have especially been used in various applications 
in medical research. Notable architectures of such models include 
Convolutional Neural Networks (CNNs), restricted Boltzmann machines 
(RBMs) such as deep belief networks (DBNs), stacked Autoencoders, and 
recurrent neural networks (RNNs). The range of applications also includes 
bioinformatics (e.g., cancer diagnosis, gene classification, drug design, etc.), 
medical imaging (e.g., tissue classification and tumor detection), predic-
tion of disease, and study of infectious disease epidemics (Ravi et al. 2017).

In this section we provide some potential use cases of AI in drug develop-
ment, including approved examples of algorithms that have gone through 
FDA reviews. Since the use of real-​world evidence in a regulatory setting is 
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FIGURE 4.3  ML Model Development Paradigm
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discussed elsewhere in this monograph, the focus in this section will be on 
specific applications of AI and ML tools.

4.3.2  AI in Drug Development

In the face of increasing costs of research and development (R&D), 
a major concern of the pharmaceutical industry is to explore ways of 
enhancing productivity and efficiency. Pharmaceutical companies are, 
therefore, attracted by the recent advancements in AI technology to trans-
form the drug-​development process, from early discovery through loss of 
exclusivity.

In the initial steps of drug development, ML algorithms can help in 
the identification of new or novel compounds with interesting biological 
activities. Modern predictive models permit incorporation of information 
from high-​dimensional data, including genomics and relevant biochemical 
features (see, e.g., Wang et al. 2017). The approach can also be used for drug 
repurposing, in which an existing treatment option is considered to treat a 
new disease. As an example, in one instance an AI system involving neural 
networks was used to classify drugs into categories defined by transcrip-
tional profiles (Aliper et al. 2016).

A promising area of application of AI and ML is prediction of the 
outcomes of drug-​development programs to support go/​no-​go decisions, 
especially in the early phase, using preclinical or Phase I data, as well as 
other relevant data from the literature or available in the public domain. 
In a recent publication, Beinse et al. (2019) demonstrated the performance 
of an ML algorithm in predicting the time to FDA approval in oncology 
right after Phase I. Similarly, reliable prediction of toxicity in the preclinical 
phase may help to make informed decisions about the need to run subse-
quent clinical trials. As reported in Wu and Wang (2018), ML methods, 
such as deep learning, random forests, k-​nearest neighbors, and support 
vector machines, have been applied to toxicity prediction, employing data 
not only from chemical structural descriptions, as is done customarily, but 
also genetic and other information.

A potential application of AI is in precision medicine, which requires 
the integration of data from diverse sources, including patient, drug, and 
environmental factors. Advanced machine learning models will enable use 
of the vast digital information to transform medical practice, by tailoring 
treatment of individual patients. While the application is still at the concept 
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stage, there are efforts to accelerate use of the available AI tools and digital 
data to advance precision medicine (see, e.g., Kim et al. 2019).

AI has also applications in enhancing operational aspects of clinical 
trials, including site and patient selection, risk-​based monitoring, and pro-
actively assessing data-​quality issues. For example, inclusion of patients 
in the trial may be based on reliable biomarkers that are identified using 
modern analytic tools. In one application, a novel AI platform has been 
implemented to monitor patient compliance (Bain et al. 2017).

4.3.3  Regulatory Experience with Machine Learning and     
Artificial Intelligence

Regulatory agencies have recognized the significance of AI and ML in pro-
viding new and important insights in the delivery of healthcare and are 
in the process of formulating relevant framework for the proper use of 
these technologies. A case in point is the recently proposed framework that 
the US FDA issued relating to AL/​ML-​based software as a medical device 
(FDA 2019b). The agency has also outlined good ML practices, as a total 
product lifecycle regulatory approach to continually improve the perform-
ance while limiting degradations (FDA 2019b).

In the EU the EMA has highlighted, among the strategic goals it 
formulated recently, the exploitation of the digital technology and artificial 
intelligence in decision-​making (EMA 2018). As part of the scheme, the 
agency recommends, among others, the establishment of an AI laboratory 
and the building of capabilities in relevant areas, such as cognitive com-
puting, that have applications in the regulatory system.

The US FDA has accepted use of certain AI algorithms for medical 
devices. Topol (2019) provided a list of at least fourteen approvals in 2017 
and 2018 in several therapeutic areas. For example, in ophthalmology, FDA 
approved an autonomous AI system to detect diabetic retinopathy using 
data from a prospective trial conducted in primary-​care settings compared 
to the historic gold standard (Abramoff et al. 2018). In cardiology, Apple 
received FDA approval for their electrocardiogram (ECG) algorithm 
used with the Apple Watch Series 4 and 5 to detect signs of arrhythmias 
for those older than 22 years (Victory 2018). However, it is not intended 
to provide a diagnosis (Buhr 2017; Fingas 2018). In pathology, QuantX 
was approved by the FDA as a platform that uses AI as an adjunct tool for 
assisting radiologists to analyze the breast ultrasound images of patients 
with soft tissue breast lesions (www.accessdata.fda.gov/​cdrh_​docs/​reviews/​
DEN170022.pdf).
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The standard practice for glucose monitoring in diabetic patients is 
the use of an invasive procedure. In September 2017 the FDA approved a 
continuous glucose monitoring system, in which the sensor continuously 
measures the glucose level every minute and can also provide graphics and 
summary statistics for glucose history through a handheld device (Bolinder 
et al. 2016).

Finally, signal detection is an important framework for identification of a 
risk for developing a drug adverse event after being exposed to it. vigiRank 
is a predictive model for emerging safety signals using the VigiBase (Caster 
et al. 2017). Ordinarily the disproportionality analysis  is based on assessing 
disproportionality in pharmacovigilance data by observed-​expected ratios 
(Zink et al. 2013). Caster et al. (2017) showed that vigiRank has outper-
form disproportionality analysis in real-​world pharmacovigilance signal 
detection. Similarly, the European Medicines Agency developed a pre-
dictive signal-​detection algorithm and applied to the EudraVigilance data-
base that showed encouraging results (Pinheiro et al. 2018).

4.3.4  Concluding Remarks

With recent improvements in computer algorithms, many activities 
in our daily lives are increasingly relying on AI and ML applications. 
Unsurprisingly, regulatory bodies and pharmaceutical companies have 
begun to recognize the potential of the rapidly growing technology to 
enhance drug development and medical research. However, unlike in 
other industries, AI and ML appear to play very limited roles in the drug 
development and approval space. The recent approvals by FDA of limited 
algorithms in medical devices are examples of the degree of interest of the 
agency in the new technology.

With the skyrocketing cost of drug development, pharmaceutical 
companies are aggressively looking into the possibility of leveraging AI 
technology to improve productivity and efficiency. Advanced predictive 
models, coupled with rich databases, could be used to inform decision-​
making about drug discovery, continuation of development programs, or 
planning clinical-​trial operations. In addition, there is considerable poten-
tial to advance the field of precision medicine, which depends on synthe-
sizing vast digital information to tailor treatment to individual patients.
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