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About This Book 

What Does This Book Cover? 
Regulatory agencies for the pharmaceutical and medical device industries have released several guidelines 
to promote the use of elements of Quality by Design (QbD).  Technical professionals have great interest in 
QbD, but many are unsure of where to start. This book is a guide for using data visualization and statistical 
analyses as elements of QbD to solve problems and support improvement throughout the product life cycle.  

The book includes three areas of general focus for the topics contained. The first several chapters focus on 
the type of data that is available for current commercial production of healthcare products. The book then 
focuses on the tools and techniques that are useful for product and process development. The final chapters 
are more specialized and deal with utilizing data visualization to solve complex problems, as well as special 
topics that are unique to healthcare products. 

In chapters 1 through 5, technical professionals learn how to use JMP to obtain visualizations of their data 
by using the Distribution platform and the Graph Builder. The powerful, dynamic nature of the data 
visualizations is highlighted so that readers can easily extract meaningful information quickly. Techniques 
for including a time element for effective visualization and identification of trends is covered as well. 
Methods for comparing trends in the data to specification limits are covered, enabling you to diagnose the 
performance of a process and effectively communicate the findings to the stakeholders of an improvement 
project. The stream of topics moves on to the utilization of data from a random sample to make precise 
estimates (via statistical inference) on an entire population of units produced. Statistical inference is 
expanded to analyze for relationships and differences between two variables, utilizing the rich set of 
techniques available in the Fit Y by X platform.   

Chapters 6 through 12 begin with applications that help the reader justify why structured, multivariate, 
experimental designs must be used to develop robust products and processes. Comparing designs created 
through the Design of Experiments (DOE) platform to the typical approach that uses one factor at a time 
(OFAT) clearly shows the advantages of structured, multivariate, experimental designs, especially in QbD 
era. Examples focus on effective techniques for analyzing measurement systems and quantifying how 
measurement variability may affect analysis results. Various modeling techniques are covered so that you 
know how to utilize available historical data to use resources efficiently in experimental designs. The DOE 
platform is extensively utilized to teach you how to create effective experimental designs for both materials 
and processes. The section is rounded out with analysis techniques for completed experiments as well as 
simulation tools that you can use to include known process variation and simulate likely results. Simulation 
can save a development team time, money, and increased credibility due to the potential to mitigate future 
mistakes. 

The context in chapters 13 through 17 expand on the predictive modeling techniques presented in section 
two by including predictive models that can detect inputs that have subtle influences on outputs. Basic 
mixture designs are covered to help you effectively deal with three-component proportional mixes of 
materials. Many aspects of pharmaceutical products show trends in outputs that include rates of change as a 
function and that cannot be studied with typical linear modeling. Examples of non-linear modeling help 
you gain understanding about such applications. Analyses of measurement systems from the second section 
is expanded on with an example of how you can use a structured, multivariate, experimental design to 
support analytical method development. The section wraps up with the specialized topic of stability 
analysis vis a tool provided in the Degradation platform. The stability analysis techniques follow 
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International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals 
for Human Use (ICH) guidelines regarding how to identify the likely shelf life of products. Using these 
techniques to dig deeper into the modeling details provides insight that is unparalleled. 

The book does not offer a deep, theoretical understanding of the concepts or detail about the computational 
methods used by JMP to create the output. There are several references to the Help menu in JMP 
throughout the chapters so that you can find this detail if you are interested. 

Is This Book for You? 
I have read many instructional texts for data visualization and statistics. Most begin with the identification 
and discussion of a statistical topic or technique, followed by examples intended for readers to use to add 
practical ability. The typical flow of such textbooks creates barriers to technical professionals who want to 
efficiently apply the knowledge to solve problems involving data. They are often under time pressures and 
struggle most with trying to find the statistical technique that will work to extract the information they need 
from data. This book is written from a technical professional point of view to match the flow of work that 
occurs in the real world of the pharmaceutical and medical device industries. Each chapter involves a 
technical professional facing a problem that could benefit from the use of JMP.  

Each chapter describes the problem at hand, followed by hands-on work in JMP. Examples include relevant 
screen shots of the JMP interface, along with figures, notes, and explanations of results. The data sets are 
based on actual problems in an attempt to make the examples reflect the real world. Many of the problems 
involve data preparation steps and table manipulation before analysis can be done, which is another issue 
that technical professionals encounter in the real world. Chapters culminate with practical conclusions that 
help the reader summarize the key points of the analysis. Most chapters include exercises for additional 
hands-on practice.   

Scientists, engineers, and technicians involved throughout the pharmaceutical and medical device product 
lifecycles will find this book useful. The reliance upon principal science and professional experience for 
product development can combine to yield a batch that passes requirements. The use of JMP to apply data 
visualization and statistical modeling will create a product that robustly meets requirements for the entire 
life cycle. The trends in the inputs and outputs of processes are easy to explore from the creation of simple 
graphs to model analysis with simulations used to estimate the defect rate of a future product. The analysis 
completed in JMP provides a great foundation for regulatory submissions of products and processes. 
Submissions supported with robust statistics tend to have fewer deficiencies. Regulatory deficiencies that 
occur can be better answered with data visualizations and statistics, which tend to also increase the speed of 
product approvals.  

JMP includes the versatility to be used to solve problems throughout the life cycle of a product. Quality 
control can monitor and assess processes through the use of control charting and capability studies. Filling 
processes can be optimized through the dynamic function of the distribution platform as well as predictive 
modeling, Stability studies are easy to create in JMP and offer the insight needed to predict the expected 
shelf life for multiple packaging configurations. Physical features of medical devices can be studied and 
optimized to ensure that variation in products is mitigated and customers are likely to enjoy consistency in 
the use of a product. The measurement systems used to quantify a physical or chemical attribute can be 
studied using JMP to ensure the highest levels of accuracy and precision in data obtained.  

Products developed through the use of JMP DOE tools can reach the market in half the time required for 
development using principal science and experience alone. The resources required to get a product to 
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market are greatly reduced as models are utilized to find the optimum input settings to meet all product 
requirements simultaneously. Fewer developmental batches need to be run and the potential for making 
costly mistakes is greatly reduced. This book offers more than instruction on the use of JMP; it is also a 
guide for saving time and money.  

What Are the Prerequisites for This Book? 
This book makes a few assumptions about its readers. It is assumed that you possess a general 
understanding of the relevant scientific and technical concepts for the pharmaceutical or medical device 
industries. By following the examples, you will be able to fill in any details that you are not already 
familiar with. Some initial familiarity with JMP is helpful. You can use the JMP website to become 
familiar with JMP: https://www.jmp.com.  

What Should You Know about the Examples? 
This book includes relevant examples from the target industries for you to follow in order to gain hands-on 
experience with JMP. 

Software Used to Develop the Book's Content 
The book uses JMP 14.0 for the majority of content and JMP Pro 14.0 for a few high-level concepts. The 
screen shots used to demonstrate navigating the JMP menus are captured using JMP Pro, and most have the 
same look as what is seen with JMP. Other versions of JMP might not have the same options or have 
slightly different menu options. 

Example Code and Data 
It is intended that you work on the examples as you read through each chapter. The exercises at the end of 
most chapters provide an extension of this work by either expanding on the chapter examples or by using 
new data sets with similar problems. A set of additional materials including the data sets used throughout 
the book is available for download. You can access the example code and data for this book by visiting the 
author page at https://support.sas.com/lievense.   

Where Are the Exercise Solutions? 
A full set of solutions for the end-of-chapter exercises is available on the author page at 
https://support.sas.com/lievense.  
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Overview 
Pharmaceutical product and medical device manufacturing are complex subjects that involve a significant 
amount of data on a multitude of subjects. Leaders in such organizations deal with a seemingly endless 
stream of challenges that must be dealt with quickly and effectively. Technical professionals contend with a 
constant flow of data that must be converted to information so that the best possible decisions are made. 
The idea of using statistical analysis to deal with regular problems might not be popular due to concerns 
over the assumed amount of time and resources required. Professionals need a tool that can efficiently 
handle many types of data with the ability to easily visualize a problem and identify the best course of 
action. JMP and JMP PRO include powerful data visualization tools that are extremely easy for non-
statisticians to master. The best decisions result from data that is analyzed at a simple, high-level view, with 
more complex analyses completed as more information is needed. In many cases, the visualization of a 
single variable can offer significant amounts of information. This first chapter deals with two common 
problems involving the visualization and analysis of a single random variable. A problem involving 
measurable data from a pharmaceutical manufacturing setting is analyzed as well as a problem involving 
discrete data from a medical device manufacturing facility. 

The Problem: Overfilling of Bulk Product Containers 
The story opens with Suzanne, a manager of a facility that produces containers of a bulk, dry 
pharmaceutical product. Suzanne has been under increasing pressure to continue to maintain the highest 
standards of quality while finding ways to reduce costs. The pharmaceutical industry is becoming 
increasingly competitive, and the profit margins that have been enjoyed are taking some hits. Suzanne is 
faced with the reality of needing to make improvements as soon as possible to ensure that her facility 
remains viable.  

Suzanne knows that her fill lines have demonstrated a robust ability to meet the label claim for product in 
the containers. Containers that come off the line must have an average fill that is no less than the claimed 
weight printed on the product label. The quality team has been very satisfied with the fill crews who do 
their best to make sure that each container has plenty of product. The teams’ only known upper limit for 
fills is to make sure that the tops of the containers can be applied. The new focus must be on increased 
precision as the fill lines are required to robustly meet quality standards while performing consistently to 
maintain the least possible amount of overfilling. Suzanne knows that she will need to collect data on the 
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fill process in order to measure the extent of the fill range, which can lead to the identification of possible 
improvements by the operations and engineering teams. 

Suzanne is a brilliant manager and has a few advantages up her sleeve that she can use to ensure success in 
improvement projects. She has JMP software licenses among the tools available for the team, and she is 
resourceful in researching best practices for data visualization and analytics. Suzanne assembles key 
members of the fill process, which will enable her to plan and execute the most effective improvement 
process.  

Collect the Data 
The team knows that first they need to capture the current state of the fill process as a baseline. The fill 
lines have an accurate and precise digital scale used to weigh in-process samples for regular quality checks. 
Suzanne works with the team to pick a target product fill line to represent the process. The team determines 
that a sample of 50 in-process checks will be chosen from the process records. Each in-process check event 
involves collecting weights for 5 tubs of product; therefore, the data sheet includes 250 individual weights.  
A team member is chosen as a project lead for producing the data for analysis. Everything is in place and 
Suzanne is optimistic because her planning has enabled a good start on the project. 

The data is in Figure 1.1, which has been compiled into a Microsoft Excel worksheet that is highly 
formatted. Suzanne is impressed by the time and effort that was put into the data sheet. However, she is 
unable to get much more out of it than what was already known. The line is consistently filling containers 
to more than the 500-gram fill weight claimed on the product label. Suzanne is not sure how to proceed. 
However, she will easily be able to extract valuable information from her data with JMP.   

Figure 1.1: Data Sheet Provided in a Formatted Excel Spreadsheet 

 

A great deal of information for getting started on a project is available through the JMP website. Suzanne 
uses the JMP website (https://www.jmp.com/en_us/home.html) to explore the information available on the 
Learn JMP tab, including an on-demand webcast focused on importing Excel data into JMP. 
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Import Data into JMP 
You can easily import data from Excel sheets into JMP by using the Excel Import Wizard. The process that 
Suzanne used to import data from Excel is described in the following steps. With JMP open, select  
File  Open and choose the Excel Files option (Figure 1.2) to choose the file location for the initial fill 
data report.xls file. Leave all other options to the defaults, and then click Open to open the file in JMP. 

Figure 1.2: Open Data File Dialog Box Window 

 

Figure 1.1 is an Excel sheet with highly formatted data. Title information, product and batch information, 
and group summaries are also present in the sheet. Suzanne is interested in starting her data visualization as 
simply as possible. She is not interested in the products or lots, or in looking at the data by the date and 
time of the in-process checks. The good thing is that the Excel Import Wizard, which enables the user to 
select the data of interest to extract into a JMP data file. Figure 1.3 displays the initial page of the wizard. 
The wizard can handle an Excel file with multiple worksheets. However, this file does not contain multiple 
worksheets. The Data Preview shows the entire Excel sheet initially, which will not work for our 
purposes. 



4  Pharmaceutical Quality by Design Using JMP 

 

Figure 1.3: JMP Excel Import Wizard 

 

The options within the wizard enable you to selectively focus on the rows in which the actual data values 
begin. For this example, the Column headers start on row value is 9 and the Data starts on column 
value is 2 in order to eliminate information that is not needed. Click Next to go to the next set of options 
for importing the data. 

Figure 1.4: JMP Excel Import Wizard: Choice of Data Start 
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The summary statistics for each of the 50 in-process checks are not needed for this project. Figure 1.5 shows 
that the Data ends with row value is 14, which cuts off the summary statistics from the data set. No other 
options are required. Click Import to complete the process of importing the data to JMP. 

Figure 1.5: JMP Excel Import Wizard: Choice of Data End 

 

Change the Format of a JMP Table 
Suzanne is impressed with how quickly she has been able to convert the highly formatted Excel sheet to a 
JMP data set using the Excel Import Wizard (Figure 1.6). The data is now in an unstacked format; the 
sampling groups (times of checks) are in individual columns with each of the five observations presented in 
rows. There is a bit more work needed to get the data into its most useable form.  

To start, the first column sample time should be changed to sample by clicking on the column header and 
changing the column name. The weight information now must be converted into a single column, which is 
a stacked data set. 
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Figure 1.6: Initial Fill of JMP Data Table 

 

The Tables menu includes all of the tools needed to manipulate the data table into the format that works 
best. The following steps reformat the data sheet: 

1. Select Tables  Stack. The window shown in Figure 1.7 appears.  

2. Select all of the time columns, and move them to the Stack Columns section.  

3. Deselect the Stack by row check box, and type stacked initial sample weight in the Output 
table name  field. 

4. Deselect the Stack By Row check box. The default setting is to stack the observations across the 
columns in row order. This default option would take the data out of the date groups, which is not 
acceptable for the subject analysis.  

5. Enter weight in the Stacked Data Column field and sample time in the Source Label Column 
field. 

6. Click OK to execute the stacked data table. 
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Figure 1.7: Stacked Tables Window 

 

The stacked data is shown in Figure 1.8, and is almost ready for analysis. There is one more thing that is 
needed to maintain the organizational structure of the data since the sample time is not of interest at this 
time. A new column must be added to create a numbered sample group for each of the 50 process checks 
chosen at random for the analysis.  
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Figure 1.8: Initial Fill of Stacked Data Table 

 

Start a new column by using the Cols menu or by right clicking on the open column to the right of weight. 
Name the new column sample group. Then, click Missing/Empty and select the Sequence Data option.  

Figure 1.9: Column Properties Window 
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In Figure 1.10, the value for Repeat each value N times is 5, which causes  each group number to be 
repeated for the five weight observations of the group. Click OK to complete the table. Figure 1.11 shows 
the resulting table. 

Figure 1.10: Column Properties Window with Initialize Data 

 

Figure 1.11: Initial Fill of Stacked Data Table Complete for Analysis 
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Explore Data with Distributions 
The data set is formatted and ready for analysis. It is best practice to start with a basic look at the data in 
order to understand where the data set is located on the infinite scale of values, the extent to which the data 
is spread out, and the shape of the data spread. JMP enables you to easily gain a great deal of information 
by selecting Analyze  Distribution, as shown in Figure 1.12. 

Note: When you hold your pointer over your selection, information describing the analysis choice appears. 
Such help is another useful hidden feature offered by JMP to make it easy for novice users to choose the 
most appropriate menu options. 

Figure 1.12: Create a Distribution 

 

The Distribution window appears, as shown in Figure 1.13. All of the variables of the data sheet are listed 
in the Select Columns section. Move the weight variable to the Y, Columns box for the analysis.  

Options are available to provide weighting for variable groups, add a variable that includes frequency 
counts, and for the ability to split distributions by a grouping variable. These options are not needed for the 
initial analysis and are explored in later chapters. 
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Figure 1.13: Distribution Window 

 

Click OK to display the Distribution Output window (Figure 1.14). The initial output includes a histogram, 
outlier box plot, Quantiles table, and Summary Statistics table. JMP output typically initiates in a stacked 
format. You can change this format to a view that offers optimum usability.  

Figure 1.14: Distribution Output 
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The red triangle menu located to the left of each analysis heading, shown in Figure 1.15, provides you with 
many custom options for extracting the maximum amount of information from the data. The examples in 
this book use the red triangle menu to add detail to plots and analyses. 

Figure 1.15: JMP Hotspot 

 

Click the red triangle menu beside the Distributions heading to change the output so that it is organized 
across the screen. Select the Stack option, shown in Figure 1.16. The result can improve the usability of 
the output for a single variable distribution. 

Figure 1.16: Distribution Red Triangle Menu 

 

The distribution output in Figure 1.17 reveals some significant outliers in the set of data, as shown by the 
black dots in the outlier box plot above the histogram. JMP uses the Tukey method to illustrate outliers. 
The method uses the inner quartile range (IQR), which is the distance between the 25th percentile and 75th 
percentile of the data, and is shown as the box of a box plot. The IQR is multiplied by 1.5 because it is 
expected that random variation includes observations that are within 1.5 times IQR above and below the 
median. Any observation that is beyond this range of expected random variation is identified on the plot as 
a black dot. To select the two outliers, above and below the high frequency bar, hold the control button and 
click the outliers in question.  

Figure 1.17: Distributions Output 

 

The data table shown in Figure 1.18 illustrates the dynamic features of JMP. Each of the rows with outlier 
values is shaded in blue, and the number of rows indicated as Selected appears in the Rows panel at the 
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bottom left of the table. The left side of the Home window in JMP includes three panels. The top panel 
includes table information, the middle includes columns information, and the bottom panel includes row 
information. 

Figure 1.18: Initial Fill Stacked Data Table with Outliers Selected 

 

Right-click Selected in the Rows panel of the data table and choose Data View to create a new data table 
with the selected outliers, as shown in Figure 1.19.  

Figure 1.19: Creating a Data View from a Selection 
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Figure 1.20 shows the outliers, which were found to be typographical errors due to incorrect decimal 
placement. The selected values in the original data table are corrected in the stacked data table to be 514.0 
and 510.12 respectively. Close the outlier data table after the corrections have been made. 

Figure 1.20: Outlier Data Table 

 

Many time saving features are embedded in JMP that might not be immediately evident. The red triangle 
menu options beside the Distributions header enable you to choose from the Redo options. The Redo 
Analysis option works best to quickly repeat the Distributions for the corrected data, as shown in Figure 
1.21.  

Figure 1.21: Redo Analysis of Corrected Data in Distributions 
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The Distributions plot from the corrected data shown in Figure 1.22 includes a limited number of minor 
high outliers. The values were matched with actual entries in the source data. Therefore, the extreme data 
values should not be discarded. 

Figure 1.22: Distributions of Corrected Output 

 

The interpretation of the Distributions analysis provides a great deal of information about the fill process. 
The default plots available in JMP enable the user to find anomalies more quickly than is possible by 
studying an Excel spreadsheet full of numbers. The minimum value of just over 505 grams provides 
evidence that none of the containers studied is at risk for not meeting the minimum label claim fill of 500 
grams. Containers can be significantly overfilled, as identified by the maximum fill of 547 grams of 
product. The median value tells us that 50% of the containers include 519.7 grams or more material.  

Research was completed by Suzanne’s team into the production control system parameters of the product. 
The enterprise resource planning (ERP) system was set up with the expectation of a typical 3% overage. 
This means that commercial production plans for containers to be over the 500-gram label claim by 3%, 
which is 515 grams. The quantiles from the plotted sample distribution indicate that the current fill process 
exceeds the expected fill roughly 75% of the time. The practical implications of this mismatch are a 
cascading waterfall of system adjustments that must be completed to manage product output, caused by the 
following issues: 

● The inventory of empty containers will continue to grow as product output does not use the 
expected volume of containers.  

● The customer planning schedule also becomes a complex nightmare. Drop in production orders 
will take place regularly as the volume of completed product is regularly less than what the system 
expects.  

● Raw materials ordering will be off, resulting in potential shortages and the need for regular 
inventory and adjustments. 

An organization invests a significant amount of money to implement ERP systems with the expectation of 
saving more money through automated resource planning. The manual adjustments to the system needed to 
correct the overfilling problem create added costs due to lost efficiency. These costs are typically even 
more than the cost of the extra product provided in each container and are a significant problem. 

The summary statistics provide additional information about the general trends of the fill process. The 
average for the random sample is a container fill of just over 521 grams, with a standard deviation of 8.6 
grams. Nearly all the individual results for a distribution are contained by +/- 3 standard deviations of the 
mean, which is the empirical rule for a Normal distribution. The random sample includes a staggeringly 
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wide amount of variability—the range of fills is over 50 grams, more than 10% of the label claim target! 
Suzanne now knows that with the level of variation present in the fill process, it will be impossible to 
reduce the target fill of the equipment and maintain the minimum label claim of 500 grams. JMP quickly 
pinpointed the extreme need to reduce variation in the fill process. Suzanne will share the results of the data 
visualization in JMP, justifying to leadership why it is important to provide resources in support of an 
improvement project for the fill process. 

A Second Problem: Dealing with Discrete Characteristics of Dental 
Implants 

Data comes in many forms. JMP identifies each variable by data type and modeling type to best represent 
the data. Data type refers to the general structure of the information, which determines the format in the 
data grid, how the column’s values are saved internally, and whether the column’s values can be used in 
calculations. The types are described briefly as follows: 

● Numbers are numeric.  

● Text is character.  

● Row state describes attributes of the data, such as if a row is selected, excluded, hidden, or labeled, 
as well as graph marker type, color, shape, or hue. 

● Expression is used for pictures, graphics, and functions. The variables can be identified as 
characters, numerical values (continuous or discrete), or expressions.  

The initial container fill problem involved data that is measurable and can be meaningfully divided, which 
is a numeric data type with a continuous modeling type. The column properties of each variable (column) 
can be manipulated to properly identify the data. This problem involves data with discrete categories. 
However, JMP can analyze the different data types with similar tools. 

The modeling type of a column indicates to JMP the type of anaylsis that can be done on the information. 
Data that is either entered or imported into JMP is categorized as a modeling type by default. For instance, 
a column of numbers defaults to continuous (numeric) data and can be analyzed with statistically 
appropriate techniques. A user cannot create a bar chart (appropriate for discrete data) with a continuous 
modeling type. Additional information about the many modeling types is easily available through the Help 
menu.  

This section describes a problem that includes variables that are discrete to use for data visualization in 
JMP. 

Ngong is a process engineer for a facility that manufactures dental implants. The dental implants are made 
up of various components, including a threaded implant (inserted into the bone), an abutment (essentially a 
machine screw with a flat vertical projection at the top), and a permanent crown (to be attached to the flat 
surface of the abutment). The components are illustrated in Figure 1.23. 
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Figure 1.23: Implant Components 

 

Figure 1.24: Implant Cross Section 

 

Ngong has received information from the customer services group regarding complaints from dentists who 
have been experiencing difficulties in starting the threading of the abutment into the implant on some 
procedures. Their records indicate no significant complaints for this problem until the last 14-18 months. 
Additional information has come from the field representatives who have narrowed down the cause of the 
threading difficulty to a minimal chamfer on the implant. Implants are manufactured with a machine that 
cuts the internal threads of the implant. The technical specifications require that “a chamfer is present” at 
the top of the threaded hole, as shown in the cross-section view shown in Figure 1.24. Information from the 
field identifies that chamfers of less than 0.75mm in depth can be problematic for starting the threads of the 
abutment.  

Ngong holds a meeting of the operations team, and a plan is put together for measuring random samples of 
implants from the facility. There are four machining centers, so the data collection protocol requires that at 
least 400 samples from each machine be collected at random and sent to the quality team for measurement. 
Any implant that has a chamfer of less than 0.75mm is to be considered “minimal chamfer”, otherwise the 
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sample is to be identified as “good chamfer”. The data was collected and placed into a stacked format, as 
shown in Figure 1.25. A good first step is to use the graph builder to view the data. 

Figure 1.25: Stacked Implant Data Table 

 

Open dental implant data.jmp. Select Graph  Graph Builder and drag inspection result from the list 
in the upper left of the window to the X drop zone in the graph to visualize the data, as shown in Figure 
1.26.  
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Figure 1.26: Graph Builder with Discrete Data 

 

The initial view is a dot plot of the observations for each of the two categories. The default setting in JMP 
is to show the points jittered to better illustrate the density of observations. Most implants have a good 
chamfer as the mass of points is dense and black. 

A better summary view can be had by clicking the bar chart icon that is roughly in the middle of chart style 
icons displayed across the top of the window. The control panel in the lower left of the graph builder adapts 
to the style of plot chosen. In the control panel, change the Label choice to Label by Value to show the 
counts for each of the categories, as shown in Figure 1.27. 

Figure 1.27: Graph Builder with Discrete Data 
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The plot shows information that identifies the clear majority (ngc=1595) of implants as having a good 
chamfer and a small number as having minimal chamfer (nmc=65). Through the analysis, the problem 
seems to be limited to only a small number of implants produced. However, we need more information to 
help narrow the focus. The control panel of the graph builder is open, and the results are categorized by 
each of the four machines that make implants. Ngong decides to choose the machine variable, located in 
the upper right of the graph, and move it to the wrap drop zone to get the final plot shown in Figure 1.28.  

Figure 1.28: Graph Builder with Discrete Data Wrapped with the Machine Variable 

 

The bar charts of inspection results, wrapped by machine, adds an important dimension to the visualization 
of the data. It is very clear that machine B has a much higher count of implants with a minimal chamfer 
than the other three machines combined. Ngong is interested in using this chart format throughout the 
improvement project and does not want to have to remember all the options he had to choose to create it. 
JMP provides the efficient ability to save each analysis as a script, which can be run later to produce the 
exact same chart format. The script even works if more data is added to the table and an update is needed. 
Click the red triangle menu next to the Graph Builder header and choose the Save Script>To Data 
Table… option, as shown in Figure 1.29. There are many other options for saving a script, which are 
explored later in this book. 
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Figure 1.29: Creating a Script from a Plot 

 

In Figure 1.30, the green triangle to the left of the name shows that the new script named “inspection result 
wrapped bar chart” is now available to run.  

Figure 1.30: Script for Plot Saved to Data Table 
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You can create a more detailed look at the inspection results data by looking at Distributions using the 
following steps: 

1. Select Analyze  Distribution. 
2. Drag inspection result over to the Y, Columns box in the Distribution window. 

3. Drag machine to the By box. 

4. Once the Distributions output is created, choose the red triangle menu next to the Distributions 
machine=A header while pressing the control key to display all plots shown in the Stacked 
format, as seen in Figure 1.31. 

Figure 1.31: Distributions of Inspection Results by Machine 

 

Machine B produced implants that have a 14.5 % probability of including a marginal chamfer, and 
conversely an 85.5% probability of making implants with a good chamfer. Machines A, C, and D produce 
marginally chamfered implants at a rate of between 0.2% to 0.5%. Ngong has enough information from the 
data to narrow the team’s focus to the study of Machine B so that they can determine what is different 
compared with the other three machines. Operations and quality leadership are very pleased because the 
chances of reducing complaints from their dentist customers have improved greatly with the help of the 
data visualization results. 
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Get More Out of Simple Analysis with Column Formulas 
Suzanne needs to persuade leadership with the information about overfilling occurring within the fill 
process to ensure that resources are available to make improvements. The data is compelling. However, 
work must be done to define the financial implications of the overfilling. The product cost is known to be $ 
0.08 per gram. It is also known that the annual volume for the product is 50,000 dozen containers, which is 
600,000 individual containers. JMP allows for calculated variables that can quickly illustrate the fixed 
materials cost of overfilling. 

She creates a new column (variable) by selecting Cols  New Column or by right-clicking on the header 
of the next unnamed column, as shown in Figure 1.32. This new column will be used to calculate the 
difference between the actual fill weight and the 515-gram baseline used for planning purposes, named 
“difference from baseline” shown in Figure 1.33. 

Figure 1.32: Create a New Column (variable) 
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Figure 1.33: New Column Window 

 

The following steps creates a calculated variable with a formula: 

1. Select the Column Properties options and choose Formula to define the calculation. 

2. The formula for the difference between the actual weight and 515 grams is created with the 
formula window shown in Figure 1.34. 

3. Click Apply to activate the formula. The column shows the calculated values. If the values are not 
correct, you can change the formula and and click Apply until the calculated values meet your 
needs. 

4. Click OK to complete the calculated column values. 

Figure 1.34: Formula Window 

 

A second new column is created for the “annual cost of difference”. Use the formula editor to 
multiply the difference at baseline by the $0.08 cost per gram of product and by the 600,000 unit 
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annual volume, as shown in Figure 1.35. It might be helpful to change the Format value 
Currency to emphasize to the observer that the data is illustrating financial costs. 

Figure 1.35: New Column Window 

 

The final step is to create a distribution for the annual cost of product, as shown in Figure 1.36.  

Figure 1.36: Distribution Window for Annual Cost of Difference 

 

Practical Conclusions 
The default settings of the Distributions output provide a great deal of information about the annual cost of 
excess materials that result from overfilling of containers. The summary statistics indicate that excess 
materials cost an average of more than $292,000 per year. The pattern of the annual excess costs can be 
used to explain the average overage more precisely than the point estimate for the average. Suzanne can 
confidently explain (with 95% confidence to be exact) to her leadership that the team is shipping at least 
$241,000 on average of “free” product per year, which may be costing as much as $344,000!  
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Why can Suzanne be “confident”? 

The concept of confidence is one of the least understood by “consumers” of statistical analysis. It is 
also one that is not so easy to explain. However, it is important to be precise as to the likely population 
summary measure from a sample summary value.  

Random variation is present among subjects for all but a uniform distribution (all values are the same). 
Samples of the same size taken from a population yield sample averages that differ at random. 
Eventually, once enough samples have been taken, the sample summary values form a bell-shaped 
distribution. The distribution of sample summary values is known to have the population average for 
the summary value, known as the grand average. The bell-shaped curve that forms this sampling 
distribution varies above and below the population average in a known and controlled pattern. The 
analyst needs to choose the level of precision desired so an estimate can be made for the range of 
values that are likely to contain the actual population average.  

Resources are always limited and it is highly impractical to assume that leadership will support the 
expensive endeavor of taking many samples to create a sampling distribution. In general, one sample 
of subjects is taken (at random) with summaries made from the data. Statisticians have been basing 
estimates on the properties of sampling distributions for over 100 years, and the process is known to be 
quite robust. The “confidence” we have is in the process of using a sampling distribution to make the 
interval estimate of the summary value. The example deals with an average cost of the difference in 
container fill. By default, the summary statistics give the 95% confidence estimates (low and high) for 
the population average cost difference. Suzanne has confidence that if she were to have collected 100 
samples of the same size, 95 of the intervals calculated would contain the real population average 
value, and 5 will not. 

The hardest part of understanding a confidence interval is that there is no way to tell if the one interval 
made from the one sample is from the 95 that contain the population average, or if it is within the 5 
intervals that do not. All values between the high and low limits have the same likelihood of being the 
population mean. Therefore, the interval is treated as if it is a single value. There is no way to calculate 
the probability of any value being the true population average. You can, however, be confident in the 
process of making an interval estimate of where that value is likely to be located in the distribution. 

The cost of product is only one aspect of increased costs that result from overfilling of containers. Other 
areas of increased costs are likely to include but are not limited to: inventory adjustments required for 
materials and containers; added overtime as the team has immediate drop-in orders due to low yields of 
filled container batches; opportunity costs as the line cannot be used to make additional products; and 
especially the loss of customer credibility as product shipments are delayed or quantities are reallocated due 
to the fill process not meeting the ERP expectations. When data can be aquired for each cost, JMP can be 
used to visualize the information. 

Suzanne has been successful using JMP to measure the amount of overfilling that is occuring in the 
process, as well as quantifying the financial impact to the organization. The leadership can bank on an 
annual savings of at least $240,000 in materials as well as all other quantifiable costs that result from 
overfilling the containers. Quality leadership will also be concerned about the excess variability present in 
the fill process. The result of Suzanne’s work with JMP is that she has garnered the support of leadership to 
provide the resources necessary to execute an improvement project for the process. The improvement stage 
of her work is covered in chapter 14 as an evolutionary process study is completed. 
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Ngong has been able to utilize simple data visualizations with the Graph Builder to narrow the focus of the 
marginal chamfers to one of the four machining centers. The Distribution plots add detail that is used to 
quantify the extent of the problem of malformed chamfers within the implant. The time spent to quickly 
visualize the implant data provides great value as planning for continuous improvement resources can be 
focused to the machine that is the most likely source of the issue rather than working to improve the 
process of all four machines. 

Exercises 
E1.1—A manufacturing facility for surgical tubing contacts you to help them justify an improvement to 
their process that allows for a faster feed rate for tubing extrusion. They have data on two different tubing 
sizes from the current process and from the new process. The quality team requires that a validation run is 
completed and analyzed because they have voiced concerns over an increased rate of tube defects (tubes 
with an outside diameter that is outside of the internal limits). When internal limits are surpassed, 
technicians must stop the process and re-adjust parameters until tubes are acceptable. 

1. Open surgical tubes.jmp.   

2. Stack the tables as a multiple series stack of 3 that is contiguous and not stacked by row. This will 
stack the data for the new and old process for each of the three tube sizes. 

3. Rename each of the data columns to 1.5mm OD, 3mm OD, and 5mm OD respectively. 

4. Select the Label column. Use Cols  Recode to identify the groups as current and new to 
create a new column. Name the new column process. 

5. Delete the three remaining label columns. 

6. Create a new column named OOL 3mm. Create a formula with the conditional IF and comparison 
functions (shown in Figure 1.37) to identify each OD value outside the +/- 0.1mm internal limit as 
“pass” and “OOL” otherwise. 

Figure 1.37: Formula Editor 
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7. Repeat by creating the new columns OOL 1.5mm and OOL 5mm for the respective internal limits 
of +/- 0.05 and +/-0.15. Hint: Use 1.4499 and 4.8499 for the low values of the comparison 
formula. 

8. Use the distributions function to visualize OOL 3mm, OOL 1.5mm, and OOL 5mm by process to 
determine whether the new process is adding risk. 

9. How would you summarize the process validation run to the quality team and management? 

E1.2—You are working with a materials team of a pharmaceutical research and development group. They 
are involved with a drug formula that has a specification on the d(0.9) of the particle size distribution for an 
active pharmaceutical (API) ingredient. The producer of the API is located on the other side of the world 
from the facility that receives lots of material. This material is sampled and tested for acceptable particle 
size. The material typically travels by ship. However, there have been several air-shipped containers of API 
due to high demand for the drug product in the first campaigns of production. The quality team has noticed 
that there have been an increased number of lots that are very close to not being accepted due to small 
d(0.9) values. The producer of the API has noticed no difference in the typical average and variation in 
particle size. The goal is to visualize the data to determine if any difference exists in the d(0.9) particle size 
values. 

1. Open the API lot data.jmp data set. Use the stack tables function and drag the four columns 
other than lot to the stack columns window. 

2. Deselect the Stack by row check box, and click OK to get the table shown in Figure 1.38. 

Figure 1.38: Stacked Data Table 

 

The information in Label is combined into three important elements, which need to be separated 
for useful analysis. JMP includes a text-to-columns option to easily create three new variables.  
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3. Click on the Label column header. Select Cols  Utilities  Text to Column to open the Text 
to Columns window. Type “  “ as shown in the following figure to use a blank space as the 
delimiter to break the information into three columns.  

Figure 1.39: Text to Columns Dialog Box 

 

4. Change the column names as follows: 
a.  Label 1 to lab. 
b. Change Label 3 to shipping mode. 
c. Change Data to psd d(0.9). 

5. Create a distribution of psd d(0.9) to visualize the overall pattern of the data. 

6. With the psd d(0.9) distribution plot open, click the red triangle next to Distributions and select 
Redo  Relaunch.  

7. Add lab as a By variable. Does the By variable help visualize and compare the data? 

8. Click the red triangle next to Distributions to select Redo  Relaunch to change the By variable 
to shipping mode. 

9. How would you summarize this information to the stakeholders of the project? 
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E1.3—A quality control laboratory contacts you about a test method with results that are concerning. The 
team believes that variation in results may occur due to the analyst involved. A data set of test results has 
been compiled along with meta data including the sample set identification, analyst, and system name. The 
first task that needs to be completed is to visualize the data to see if any trends are present. 

1. Open the Analytical Data.xlsx file directly into JMP by choosing the file type Excel Files (*.xls, 
*.xlsx, *.xlsm). Use the Excel Import Wizard to include the appropriate row for column headers 
and to start the data on the row immdiately underneath the headers. The imported data creates the 
following JMP data sheet: 

Figure 1.40: Downloaded Analytical Data Table 

 

2. Use the dynamic functionality of the distribution plots to look for any visible trends that might 
suggest relationships between the high or low end of the response range and the metadata (plot by 
test method, analyst, and system). 

3. The two test methods were developed with the expectation that similar results will be produced 
regardless of the method used. Use the graph builder to look at the response data by the test 
method and determine whether the visualized data matches what is expected. 

4. The methods should be robust to the analyst who is testing. Use the graph builder to determine 
whether there are any analysts who have results that seem to be very diferent from others. 

5. Use the appropriate analysis to determine the 95% confidence limits for what can be expected for 
the average response of the population of results. 

6. How would you summarize this information to the stakeholders of the project? 
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Overview 
Pharmaceutical organizations have rigid controls on information to ensure that it can be tracked by date and 
time. The traceability of information provides evidence of data integrity. Date and time coupled with the 
entries of the subject data provide evidence of extemporaneous documentation. A project team can evaluate 
how the data changes over time with time-based plots. JMP offers an array of options to investigate trends 
over time including simple plots, progressing to more complex quality control charting techniques. The 
ability to identify and separate changes in data that occur over time from random variation present in all 
data provides a great deal of helpful information.   

The Problem: Fill Amounts Vary throughout Processing 
The fill team collects fill weight data during in-process checks of five containers every 15 minutes of 
operating the equipment. Suzanne’s improvement project team was able to provide visual evidence of the 
overfilling problem by utilizing plots of summary data in chapter 1. The team has the sampling date and 
time within the data set of random checks, and the data is already in chronological order. One step to a 
better understanding of the overfilling problem is to determine whether there are any patterns in fill weight 
variability that occur over time. Suzanne needs to provide an update to the stakeholders on how fill weight 
is changing over time in order to convey a better picture of the filling process. 

Visualize Trends over Time with Simple Plots in the Graph Builder 
Data was collected over several days including the two shifts of operational crews. JMP includes many 
tools to use summary analysis data and create a new table of data that is in chronological order, allowing 
for the ability to explore trends over a period of time. The initial fill weight data is already sorted according 
to the time that each group of containers was collected from the fill line. If this was not the case, the data 
could be easily sorted by using the tables menu options. Later chapters describe sorting data tables.  

The ability to quickly create excellent graphs and visualize data is a compelling reason to use JMP. The 
Graph Builder is an excellent tool that gives the user a dynamic interface in which to create a graphic from  
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data. Open stacked initial sample weight.jmp and select the Graph  Graph Builder, as shown in 
Figure 2.1. 

Figure 2.1: Graph Builder Initiation 

 

The Graph Builder window shown in Figure 2.2 is an open canvas where the user paints a picture of 
visualized data. Recall that Graph Builder was first used in chapter 1 to create a basic view of the dental 
implant data.  

Figure 2.2: Graph Builder Window 
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The quickest way to select variables for graphing is to click on a variable and drag it onto the Graph 
Builder drop zones. Notice that the Graph Builder window includes the Dialog button in the top left. Click 
Dialog to graph multiple variables at the same time in a graph matrix. A graph matrix is further explored in 
the exercises at the end of this chapter. The example utilizes the drag and drop functionality of Graph 
Builder. Select weight and drag it into the drop zone in the middle of the space for a quick look at response 
data over time. While in the Graph Builder window, select sample group and drag it into the X drop zone 
to organize the results by sampling order. 

In Figure 2.3, the general trend of container weights from the samples taken over time is represented by the 
default blue smoother line. The black dots represent individual container weights. Vertical distances among 
the dots at each sample illustrate the amount of variability in the fill weights. Explore the graphical options 
at the top of the window to get different views of the data and find the best visualization for the intended 
audience. There are additional options underneath the Points header, as well as the Smoother that enables 
you to adjust the view of the data.  

Figure 2.3: Graph Builder Window with Data 

 

The Smoother can be adjusted to make the line more or less sensitive to variation in the data. The simple 
plot shows that the fill process seems to be stable over time because the smoother line is close to horizontal 
and the spread among samples looks to vary at random. Figures 2.4 and 2.5 illustrate the extremes of 
smoother sensitivity by adjusting the Lambda slider. The lambda value is a tuning parameter in the spline 
formula used to create the smoother line. As the value of λ decreases, the error term of the spline model has 
more weight and the fit becomes more flexible and curved. As the value of λ increases, the fit becomes stiff 
(less curved), approaching a straight line. 
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Figure 2.4: Smother Adjusted to High Sensitivity 

 

Figure 2.5: Smother Adjusted to Low Sensitivity 
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More Detail for Time-Based Trends with the Control Chart Builder 
The simple plot created with Graph Builder provides a glimpse of any possible trends over time. Large-
scale trends were highlighted by the dots and the blue smoother line. However, shifts that occur over 
shorter periods of time and shifts in averages do not stand out.  

The purpose for gathering the fill data is to measure the extent of the overfilling problem. Suzanne needs to 
use tools that allow the fill process to “talk” by explaining trends in the average and variation within results 
as samples are taken over time; this is known as the voice of the process. The stakeholders of the process 
are likely interested in the amount of random variation expected, as well as observations that might exceed 
the bounds of randomness. Observations that are more extreme than what can be expected as random 
variation might be due to a special cause and are worth further exploration. For instance, one might identify 
extreme results occurring at regular intervals that might correlate with a change in shifts, material lots, or 
other identifiable factors. A trend in variation that occurs over time as big shifts from one time point to 
another can also suggest the presence of special causes. Quality control charts offer illustrations of trends 
over time, which include statistically calculated limits set on the edges of the zone of expected random 
variation. The overall average is also included on the charts to illustrate how trends over time relate to the 
center expectation of the process. JMP includes popular quality control charting techniques that assess the 
voice of the process. You can create a control chart for the fill process by selecting Analyze  Quality 
and Process  Control Chart Builder, as shown in Figure 2.6.  

Figure 2.6: Selecting Control Chart Builder 
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The control chart builder window shown in Figure 2.7 looks similar to Graph Builder. In the Control Chart 
Builder window, select weight and drag it into the Y drop zone.  

Figure 2.7: Control Chart Builder Window 

 

The default chart shown in Figure 2.8 is an Individual and Moving Range (I-MR) chart. JMP assumes that 
the samples were taken in row order as individual observations.  

Figure 2.8: Control Chart Builder Window with Data 

 

Control charts provide information regarding trends of data over time. The lower, moving range chart in 
Figure 2.8, known as a dispersion chart, illustrates the amount of change between a previous observation 
and the next. Notice that the first plotted point of moving range is at the second time point. The trend in the 
moving range of the process over time is a highly sensitive initial indicator of possible trends. The upper 
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chart illustrates changes in the observations over time, providing evidence of the expected span of values 
from the process over the time period. A green line indicates the overall average for the period studied; on 
the upper chart, it represents fill weight average, and on the lower chart it represents the average moving 
range. The red lines provide information about the limits to random variability and are referred to as control 
limits. Control limits are calculated statistically, which is very different from the specifications set for the 
attribute measured. (Details about the formulas are available in the book Quality and Process Methods, 
accessible from the Help menu.) The moving range chart contains four points that are above the upper 
control limit, which might be due to a special cause. Each point that is beyond the limit represents a 
difference between two observations that exceeds the amount of difference that can be expected due to 
random variability. It is noteworthy that the extremes of the individual observations in the individuals chart 
correlate with the extremes of the moving range chart. The control charting technique is powerful since the 
observer focus on a few observations rather than research the entire set of 250 observations. 

Because of the large amount of variation present among individual observations, using I-MR control charts 
for trend analysis is not always optimal. Extreme values might be evident but other trends over time might 
be difficult to interpret because the trends look so busy. Operational stakeholders would like to know 
whether the process is stable over time. A stable process includes a pattern of points that do not have a 
discernable slope, with data increasing or decreasing over time. The individual fill weights seem to follow a 
flat line over time, but the excessive variability make it difficult to really assess the stability of the process. 

Additionally, the in-process checks did not involve just one container pulled from the line at each time 
point; checks were completed by pulling five containers and noting the average weight for each of the 
sampling points. Control Chart Builder can easily accommodate a chart based on averages of subgroups of 
observations taken at each time point. An X-bar and R chart includes group averages and ranges of values 
within subgroups. It is a popular control-charting technique for subgrouped data. Choose Sample group as 
the subgroup field and drag it onto the X axis of the plot to reflect the sample averages in an X-Bar and R 
chart shown, as shown in Figure 2.9. 

Figure 2.9: Control Chart Builder Window with Averages and Ranges 

 

The lower chart in Figure 2.9 shows trends in the range of values within the subgroups of the process over 
time, which is a sensitive indicator of process trends. A green line indicates the average for the entire 
period studied; note that the process average is no different in the X-bar chart as compared to the previous 
I-MR chart. The green line in the lower chart represents the average range of values within the subgroups, 
which is almost double the previous average moving range chart. There are no out of control points evident 
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in the X-bar and R charts, which indicates an average level of control for the process. The chart contains no 
definable trends among successive points on either chart; the variation is random. The X-bar and R charts 
made from the subgrouped data suggest that the process is functioning with only random variation. 
Improvements to the process are not likely to come from addressing a special cause situation. Reduction in 
the variability of the fill process must occur for improvements to be made.  

Interpretation of control charts can be a bit of an art form. Different types of trendsindicate non-random 
patterns of interest, and various alert levels can be included to test for such patterns.  The pattern of the 
averages over time looks to be relatively flat so the team need not be concerned that the process is not 
stable over time. You can select details in control panel of the Chart Builder as well as by clicking the red 
triangle menu at the top of the chart output header. (Several excellent books have been written regarding 
effective interpretation of control charts, with Juran’s Quality Handbook one of the most classic of 
references.) 

The control chart of the average fill weights includes a random pattern of variation with no definable trends 
over time. The expected population average fill is 521.1 grams but the statistical control limits specify that 
sample averages are expected to vary between 509.2 grams and 533.0 grams. The range of fill weights 
within each group of five containers is expected to be 20.6 grams on average and could be up to 43.5 
grams. The information extracted from the data using JMP clearly illustrates that the fill process is highly 
variable.  

Dynamically Selecting Data from JMP Plots 
The data were collected randomly from the in-process check weight records. Suzanne decides to dig into 
the details of variability to compare the extreme high sample average weights with the extreme low sample 
average weights. She can easily accomplish this by using the dynamic features of JMP graphics.  

Press the Ctrl key while selecting the points that represent the five highest weight averages. Figure 2.10 
shows the selected points with black dots. All other points and the trend line fade to gray to show that they 
are not part of the selection. The individual observations that make up the selected average weights show as 
blue highlighted rows in the data table shown in Figure 2.11. The Rows panel in the lower left of the data 
table specifies that 25 rows of data have been selected because each point represents the average of five 
weights due to the choice of the 5 average points on the control chart plot.   
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Figure 2.10: Control Chart Builder Window with (High Weight) Selected Points 

 

Figure 2.11: JMP Data Table With (High Weight) Selected Rows 
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Now, press the Ctrl key and select the lowest average weights, as shown in Figure 2.12. Figure 2.13 
indicates that 50 rows have been selected, reflecting the total of the highest and lowest weight averages. 

Figure 2.12: Control Chart Builder Window with High and Low Weight Selected Points 

 

Figure 2.13: JMP Data Table with High and Low Weight Selected Rows 

 

Place your pointer over Selection in the Rows panel, and then right-click to get a list of detailed options. 
Select Data View. JMP creates a subset table including only the 50 selected rows shown in Figure 2.15. 
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Figure 2.14: Row Selection Options 

 

Figure 2.15: Data Table of Selected Rows 

 

Creating Subset Tables 
JMP users quickly realize that many options are available to get desired results. This is true for narrowing 
focus from a large table of data to a selected number of observations that are of specific interest to the user. 
An alternate way to create a data table of selected data uses the Tables menu options. Select your rows of 
interest, and select Tables  Subset,as shown in Figure 2.16. By default, the Subset window specifies 
Selected Rows, as shown in Figure 2.17. Click OK to create a subset table of the 50 selected rows. The 
table is shown in Figure 2.18. 
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Figure 2.16: Tables Menu  

 

Figure 2.17: Subset Window 
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Figure 2.18: Subset Table of Selected Rows 

 

The subset of data with the five highest and five lowest average fill weights has been created from the 
original set of random data. Sample time is a variable in the data. However, categorizing the sample groups 
by work shift helps determine whether the extremes have a specific shift in common. You could do this by 
creating a new variable named “shift” and manually typing the shift that correlates with sample time, but 
that would be tedious for the set of 50 observations. A more efficient technique uses the columns recode 
feature. Each time point includes five replicates so it will be easier to change 10 values verses the 50 
observations in the data table. Complete the following steps to create a shift variable. 

1. Select Cols  Recode to open a window that enables you to change the old values to new 
values.  

2. Utilizing each of the two shift start and end times (shift 1: 6:00 to 17:59; shift 2: 18:00 to 23:59), 
enter the appropriate shift as a new value for each observation.  

3. Enter “shift” as the name for the new column, as shown in Figure 2.19. (By default, in JMP 14 
creates a new column for the recoded data.)  

4. Click Recode to execute the new column of recoded values.  
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Figure 2.19: Subset Table of Selected Rows with shift Variable 

 

The extreme sample averages for fill weights categorized by shift can be studied with data visualization to 
explore for potential trends. It is typical for data visualization to start at the highest level, focusing on 
interesting aspects of the data. The large set of tools available in JMP make the practice of digging into data 
easy and efficient. 

Using Graph Builder to View Trends in Selected Data 
The versatility of Graph Builder allows for efficient visualization of data to look for various trends. Select 
Graph  Graph Builder. In the Graph Builder window, select weight and move it to the Y drop zone, 
move sample group to the X drop zone and move shift to the Group X drop zone. The smoother line is 
not needed, so click the graph icon above the plot to show only the points. 

Figure 2.20 shows the individual product weights. The interpretation of the plot seems to suggest that the 
first shift might have more variability within the sample groups and that the weights seem to be higher. 
Select Mean in the Points/Summary options located in the lower left of Graph Builder to convert the plot 
to show average weights, as shown in Figure 2.21. 
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Figure 2.20: Plot of Individual Product Weight Values by Sample Group and Shift 

 

The interpretation of the plot in Figure 2.19 is more clear. It shows that the first shift tends to have the 
highest average weights and the second shift tends to have the lowest. The fill weights from shift 1 also 
seem to have more variability because they are more spread out than the averages from shift 2. 

Figure 2.21: Plot of Average Product Weight Values by Sample Group and Shift 
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Practical Conclusions 
Analysis of data over time is a common technique for visualizing trends in a process. The Graph Builder 
provides a flexible format for looking at variables over a time axis. The central trend is shown by the 
smoother line, which can be adjusted for a desired amount of sensitivity to shifts. An understanding of 
trends in variation is shwon by the spread in points.. Often, using the plot enables teams to uncover changes 
in process data that can be traced back to events that occured at specific times.   

Control charting of data over time includes the dimension of statistical control limits that define the zone of 
random variation for changes between samples, as well as the variability within samples. Points that are 
extreme can be selected for further study in subset tables so that the project team can use them to  
determine the cause of the variation in fill weights. The information provided with the JMP plots is crucial 
for the team as they investigate relationships between operational information and variability in fill weight.  

Suzanne’s improvement project team has been able to focus effort from the confusing entirety of the 
process data to the trends of extreme fill weights by shift with a minimal amount of work. A more 
comprehensive set of data labeled by shift might help the team to better understand variation in weights 
over time by shift. Investigation into time-based trends is of great value for many sources of data obtained 
from manufacturing operations. Time-based plots can offer many interesting clues to relationships among 
operational aspects and to variation in the data. Dynamic features that are built into JMP plots allow for a 
great deal of exploration into trends to extract useable information. 

Exercises 
E2.1—Uniformity of dosage requirements depends on processes that remain stable over time. Compressed 
tablets must be made out of a blend of materials that is consistent, with no increasing or decreasing trends 
of the amount of API over time. You have been asked to use JMP to evaluate a set of individual tablet 
assay data from a confirmation batch of tablets to determine whether a trend over time can be detected in 
the data. 

1. Open the data table individual tablet assay.jmp. 

2. Stack the table so that there is a location column (numeric, continuous) and an assay column 
(numeric, continuous). 

3. Use Graph Builder to visualize the assay data by location. Is a trend present in the data? 

4. Create a control chart of the assay averages by location. What are the upper and lower control 
limits? Are there any extreme values outside of the control limits? Is the process stable (no large 
scale increasing or decreasing trends over time)? 

5. Create an executive summary of the information for the project stakeholders, listing the three most 
important aspects of the plots. 
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E2.2—A medical device manufacturer creates sterile surgical kits that are hermetically sealed by a 
plasticized foil induction that is sealed to a plastic tray. The process is monitored by five kits pulled off the 
line every hour and pressure tested to check the strength of the seal. The seal must survive exposure of up 
to 36,000 ft above sea level, which is a seal strength that resists at least 23 inches of mercury. The testing 
device slowly increases pressure inside the sealed tray and records the point at which seal failure occurs, in 
inches of mercury.  

1. Open the data table burst testing.jmp. 

2. Use Graph Builder to visualize the burst test results by date and time. Are any trends present in the 
data?  

3. Create an X-bar and R control chart of the burst test results by date and time. What are the upper 
and lower control limits? Is there any risk of not meeting the minimum seal strength of a burst test 
result of 23 inches of mercury? 

4. Use the red triangle menu in the Variables Control chart header, and select the Redo and 
Relaunch options to create an additional chart. 

5. Use the shift variable in the By box to get control charts for each shift. Do the control limits 
indicate a potential trend? 

6. How would you summarize the information into a report to the project stakeholders? 
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E2.3—Pharmaceutical products go through an annual review process for all of the critical quality attributes 
(CQA). The data for the first year of production of a new capsule drug product has been compiled, and you 
are to look at the CQA’s to determine whether there are any non-random trends over the span of the year. 
The table includes a total of 62 commercial batches that have been made in the calendar year. 

1. Open the data table capsule APR data.jmp. Each row of the data table includes results for four 
of the five CQAs. Use Graph Builder to plot the five CQAs on a graph matrix.  

2. The Dialog button in Graph Builder was mentioned previously as a way to create a graph matrix. 
Figure 2.22 shows the window with the choices needed to obtain a graph matrix for all five CQAs 
by batch. 

Figure 2.22: Using the Dialog Button in Graph Builder 

 

3. Click Dialog in Graph Builder, hold the Shift key, and select all five CQAs. Drag the selection 
into the Y box, and drag batch to the X box. 

4. Select the Graph Matrix check box, and click OK to create the plot. 

5. Change the Points() detail in the lower left of the control panel of the plot for content uniformity 
(capsule), dissolution in buffer, dissolution in acid, and uniformity of beads CQAs. 
Summarize each CQA for the mean, with confidence interval error bars. 

6. Adjust the smoother of the five CQAs as appropriate to highlight any non-random patterns if 
present. 

7. Create appropriate control charts for the five CQAs with batch on the X axis. 

How would you summarize the information into a report to the project stakeholders? 
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Overview 
Manufacturers of pharmaceutical and medical device products must plan in order to produce products that 
comply with specifications and ensure high levels of quality. Descriptive statistics and time-based plotting 
provide useful information about the processes, but neither can adequately summarize the performance of 
the process to specifications and estimate robustness. The previous chapter discussed analysis of a process 
to determine whether outputs are stable over time, since only stable processes should be analyzed for 
capability. Capability studies are a priority for the manufacture of high-quality products to quantify the 
performance of the process with detailed summaries. Stakeholders utilize the results to determine the risk 
of producing products that are outside of specifications. The studies can also help differentiate the sources 
of risks that originate from excessive variability, improper targeting, or both. This section uses sample data 
with capability studies to provide a comprehensive understanding of the robustness of a process and the 
products made from it. 

The Problems: Assessing the Capability of the Fill Process and the 
Dental Implant Manufacturing Processes 

Until now, the fill weight team has used data visualization techniques to describe the overfilling problem in 
great detail. The previous chapter focused on using time-based graphics to illustrate the “voice of the 
process”. The average results and the spread in results over time explain the process as though it is talking 
to the analyst. Process data over time yields statistical limits for fill weight, which tell us the spread of 
random variation for the in-process averages that can be expected throughout commercial production. 
Suzanne is asked by leadership to identify how well the fill process can meet the label claim of 500 grams, 
which is the lowest average amount allowed. The team needs to demonstrate how capable the fill process is 
at meeting the label claim quality requirement in order to answer the question.  
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Ngong’s improvement team determined that a specific machining center is producing implants that result in 
complaints from the dental customers. They collected a random sample of 200 implants with measurements 
of two physical attributes documented in a data set. The team needs to quantify the robustness of the 
process and gain information about where improvements are needed. Capability studies for the measured 
attributes will provide the needed information in a concise analysis summary. 

One-Sided Capability Analysis for Fill Weight 
The study of the capability of a process involves tools that compare the summary of the process 
measurements with the specification limits. With respect to the label claim for the amount of product 
customers can expect in a container, the fill process involves a single lower specification. The expectation 
is that the distribution of results meets or exceeds the label claim minimum fill weight. A sample with a 
distribution of weights with an appreciable density above the lower specification represents a population 
that can be expected to be increasingly capable of meeting the specification. 

One way to visualize this problem is to think in terms of playing tennis. Figure 3.1 shows three different 
tennis players and the distributions of their forehand shots. Player A is very consistent, as shown in the 
tight spread of shots in Figure 3.1 A. The average of the shots is located at a distance from the net that 
ensures that the spread of all shots made will go over the net; the capability of player A is very good. Player 
B also has a consistent spread of shots, but the location of the average is precisely on the net limit. The 
capability is not very good because roughly half of the shots will not make it over the low specification (the 
net). It could be argued that player C has good capability for playing tennis because all of the shots make it 
over the net. The problem is that the consistency of player C is not as good as A or B, as can be seen by the 
wide distribution of shots. It is clear that player C is more capable than player B, but slight reductions in the 
average height could result in balls that go into the net.  

Figure 3.1: Spread and Location in Tennis 

A B C 

   

 

            

There are practical costs for the high capability of Player C, as she has had to compensate for the lack of 
consistency by adjusting the average higher on the net than the other two players. As a player hits the ball 
in higher arcs over the net, the speed of the ball is reduced giving, the opponent more time to set up for a 
shot. The cost to player C for the high target is a reduction in competitive advantage.  If you have ever 
played tennis against a power player delivering consistently fast and flat shots, you will agree with the 
superior results of player A.  The need for an adjusted target above a minimum specification as shown by 
these players illustrates the overfilling issue perfectly.  
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The best first step in capability analysis is to use simple, descriptive statistics to visualize and summarize 
the distribution of results. Open initial fill weight data.jmp and select Analyze  Distribution, as shown 
in Figure 3.2, to get the initial visualization of the weight distribution. 

Figure 3.2: Fill Weight Distribution 

 

Suzanne knows that visualizing the distribution of a variable is always a great first step for deeper analysis. 
The weight data looks to be relatively normal with the exception of a skew toward higher values. Further 
diagnostics are suggested to determine whether assumptions are met for the use of the default capability 
tools. 

Checking Assumptions for Fill Weight Data 
The first thing to consider is whether the distribution of results can be studied with the default capability 
analysis based on parametric statistics, which are based on a normal distribution. Distributions with skew 
might not be good candidates for parametric statistics, especially if the sample size is small. A distribution 
illustrates skew when there are extreme values either to the lower or upper end of the range of values, 
which creates a long tail. The direction that the tail is pointing is the direction of skew, shown in Figure 3.3. 
(The histogram in Figure 3.2 illustrates a skew toward high fill values.) 

Figure 3.3: Distribution Skewness  

 

The sample of fill events includes 250 observations. Through the central limit theorem, we know that large 
sample sizes (n>50) tend to create sampling distributions that are of a normal shape, even when the 
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distribution of the sample is not exactly normal and symmetric. The large number of observations can 
somewhat mitigate the effect of the error that comes from skewed data when using parametric statistics. 
However, additional diagnostics can help determine whether the skew might be detrimental.  

Click the red triangle meu next to the weight header and select Normal Quantile Plot for an additional test 
of the normality of the distribution, shown in Figure 3.4. 

Figure 3.4: Fill Weight Distribution 

 

The normal quantile plot displays the trend of a normal distribution as a solid red upwardly diagonal line. 
The 95% confidence interval about the normal model line is reflected by red segmented lines on either side 
of the solid diagonal line, forming an hourglass pattern. The user looks for points that fall within the 
confidence interval to visually assess the normality of a distribution. The plot shows that a large number of 
observations follow the normal model line very closely with a few observations on the extremes that stray 
marginally away from the line. All of the observations fall within a 95% confidence interval for a normal 
distribution. The large sample size and the normal quantile plot correlate with evidence that the weight 
distribution can be considered good data for the use of parametric statistics, which are the default for 
capability studies. 

Capability Studies from the Distribution Platform 
Chapter 1 described some of the many dynamic analysis options that are available in the JMP red triangle 
menu. The red triangle menu is located within an analysis header. Click the red triangle next to the weight 
header, and select Capability Analysis, as shown in Figure 3.5. 
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Figure 3.5: Distribution Red Triangle Menu Capability Analysis Option 

 

To create a capability study, complete the following steps: 

1. Enter the lower specification limit for the 500-gram label claim in the Capability Analysis 
Setting Specification Limits ‘weight’ window, shown in Figure 3.6.  

Figure 3.6: Entering Specification Limit 

  

2. Deselect the Long Term Sigma check box since the sample represents a short-term pull of the fill 
process.  

3. Select the Short Term Sigma, Grouped by Fixed Subgroup Size check box, and ensure that 
the number of observations is 5, representing the five units measured at each in-process check.  
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4. Leave the other default values.  

5. Click OK to get the results added to the Distributions window, shown in Figure 3.7. 

Figure 3.7: Distributions with Capability Analysis 

 

The capability analysis option is added to the Distributions window. The normal quantile plot has been 
removed for clarity. Fill weight has the one-sided minimum label claim used to assess the quality 
performance of the process. Many options are available to customize the analysis, including the ability to 
specify a  sampling distribution used for making estimates of the population. This example uses the default 
values for simplicity since the assumptions of the fill data being a normal distribution have been met. 

Figure 3.8 provides a larger view of the analysis details. Practical interpretations of the analysis are 
typically of great interest to stakeholders and are covered here first. The percent of actual observations that 
are outside of the minimum specification (% Actual) gives the JMP user with the good news that the 
process determined that 0% of the actual in-process checks are below the label claim specification limit of 
500 grams. The remainder of the capability study information now involves estimates of the trends in the 
population of fill results. 

Figure 3.8: Capability Analysis Details 

 

Capability indices are a collection of values that describe how well the distribution of results fits within 
specifications. In our fill weight case, we are dealing with a single, minimum specification and working to 
determine the portion of the fill weight distribution that exceeds it. JMP uses “within” capability as the 
default. The capability index is Cpk, which is a single value that reflects the proportion of the distribution 
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values that are likely to exceed the minimum specification. The fill weight data involves five observations 
at each check interval. The within estimate of standard deviation refers to the variability of weights for the 
five observations taken at each subgroup. Targeted capability (CpK) = the difference between the process 
average and the label claim   the statistically expected amount of spread within the in-process checks. 

Through the empirical rule, Suzanne can estimate that almost all values of a distribution are likely to fall 
within an interval that is +/- 3 units of the sample standard deviation from the mean. Targeted capability is 
typically applied to an outcome that includes both a higher and lower specification. The targeted capability 
index that reflects the worst case is used as a summary. The fill weight process is subject to only a 
minimum specification, which makes things a little easier for the team. Basically, the distance of the 
sample mean from the minimum specification is divided by 3 units of within standard deviation to estimate 
the number of distributions of results that will exceed the low specification. The statistical interpretation of 
the results gives more detail on the performance of the process.   

            x  sample average of in-process weight checks (521.09) 
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ܭ݌ܥ = 521.09 − 500(3 ∗ 8.967)  

ܭ݌ܥ      = 21.09/26.901 
ܭ݌ܥ      = 0.784 

 

The fill process has achieved a CpK of 0.784, explaining that a little less than the one distribution of fill 
weight results (78.4%) is likely to exceed the low specification. The statistic assumes that the fill weights 
are behaving as a normal distribution with a single high frequency peak (the mean), and symmetric tailing 
of frequencies above and below the mean. The fill data has a slightly higher potential to contain a few 
results that are very high as opposed to extremely low results. The capability analysis assumes an equal 
likelihood for a few extreme high and low results. Therefore, the capability statistics based on a normal 
distribution will be conservative.  

The output provides the quantification of potential risk for the population of results relative to the minimum 
specified fill weight (or label claim). The fill process might contribute up to 0.9% of average weights that 
are less than 500 grams, as seen in the lower rows of the output. The estimate of just under 1% of fill 
weight averages not meeting the label claim is practically higher than the actual risk due to the shape of the 
fill weight distribution. This outcome is to the result of the conservative nature of the parametric estimate. 
It is reasonable to expect that for every million in-process checks executed, there is a chance than just over 
9,000 might have an average weight than is less than 500 grams. The distribution includes nearly 4 units of 
standard deviation that will exceed the label claim, noted by the sigma quality level of the process. The 
higher the sigma level, the more likely it is that the results will meet and exceed the specification. 

The improvement team is utilizing the capability analysis to create a baseline for comparison. JMP 
provides additional tools to find a continuous distribution that has a better fit to the fill weight data and that 
obtain a statistically precise result. The downside of the added precision is that the model becomes more 
complex, which is more difficult to explain to the stakeholders of the project. Suzanne decides to postpone 
the more precise analysis and keep the improvement team focused on the goals of reducing the variability 
in fills and reducing the average fill target if possible. 



56  Pharmaceutical Quality by Design Using JMP 

 

Two-Sided (Bilateral) Capability Analysis for Implant Dimensions 
Process monitoring often involves using subgrouping to track average results from intervals involving 
multiple individual values. Chapter 1 analyzed discrete results of dental implants collected from dental 
customers. Recall that the manufacturer of the implants is responding to customer complaints regarding 
difficulties in getting the abutment threaded into the implant. The initial analysis resulted in tracking a 
chamfering problem back to one of the several machining centers used for manufacturing. The 
improvement project team discovered that quality checks for the manufacturing process are limited to the 
ability of the operators to start a test abutment into the threaded implant. The current check method is not 
adequate because it does not mimic the angles dentists deal with for the installation of an abutment into an 
implant when it is within a patient’s mouth. More data is needed to adequately study the problem. 

The project leader, Ngong, worked with the engineering team and learned that an inadequate depth of the 
chamfer is the likely cause of the threading problem. A chamfer is a lead-in angle that is machined at the 
top of the threaded portion of the implant. The engineers design a fixture to be able to accurately gather 
data on the actual depth (in mm) of the chamfer as well as the overall depth of the threaded hole of the 
implant. Measurement systems analysis was completed prior to the initiation of the new in-process checks 
for the machining center to ensure the highest level of accuracy and precision in the measurements. (Details 
on how to run measurement systems analyses are included in chapter 7.) A sample of in-process checks 
involves the operator grabbing five implants at a specified process interval and measuring them; the results 
are shown in Figure 3.9. The sample variable illustrates the grouping of in-process checks as a series of five 
repeat values as the sample interval value increases. 

Figure 3.9: Implant Dimensional Data 

 

A design review of the components was completed and a specification limit for adequate chamfer depth is 
defined as between 0.60 mm and 0.80 mm. The threading depth of the hole must be between 2.0 mm and 
2.8 mm. Ngong is interested in using JMP to run capability studies on the data so that the team can better 
understand how well implants from the subject machining center meet the specifications for chamfer depth 
and threading depth.  
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Get started by opening dental implant dimensional checks with speeds.jmp. Select Analyze  
Distribution  to view the pooled data for chamfer depth and threading depth, as shown in Figure 3.10. 

Figure 3.10: Distributions of Implant Measurements 

 

Checking Assumptions for Implant Measures Data 
The histograms show that the data for each of the measurements is normally distributed (symmetric). A 
quick check of normality involves the comparison of the means and medians, which are similar in value 
confirming the symmetry of the data. If skew were present, the mean of the distribution would follow the 
tail of the distribution and differ from the median. Since the data are normally distributed, the typical 
parametric statistics are appopriate to analyze capability. The chamfer depth minimum of 0.46 mm is 
clearly less than the 0.60 mm minimum specification, and the maximum depth of 0.76 mm is well within 
the upper specification of 0.80 mm. The threading depth looks to be within the specifications, although it is 
difficult to determine how well the process performs to maintain proper threading depth by studying the 
distribution summary alone.  

Capability Analysis from the Quality and Process Options 
Ngong could use the Distributions hot spot for capability study of each measurement, but the team would 
like to get a comprehensive view of dimensional capability for the implant with both measurements. Dental 
implant data is known to be stacked, with each group of five measurements in the order referenced by 
sample; knowledge of this data structure is important because it is the basis for how the data will be 
subgrouped. The analyze menu includes a capability studies option within the quality tools of the analysis 
menu. The following example provides the steps necessary to get the needed output and the interpretation 
of results. 
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Select Analyze  Quality and Process  Process Capability to initiate the analysis, as shown in 
Figure 3.11. 

Figure 3.11: Initiating a Process Capability Study 

 

1. In the Process Capability window, select chamfer depth and threading depth, and move them 
to the Cast Selected Columns into Roles box for the analysis. 

2. Click on the gray arrow next to the Process Subgrouping header to view options. 

3. Select Subgroup ID Column. 

4. Press the Shift key, and then click sample in the Select Columns section and click chamfer 
depth and threading depth in the Cast Selected Columns into Roles section. 

5. Click Nest Subgroup ID Column to complete the subgrouping, shown in Figure 3.12.  

Figure 3.12: Process Capability Window 
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6. Click OK to open the Set Specification Limits window, shown in Figure 3.13. 

Figure 3.13: Specifications Window 

 

7. Enter 0.6 as LSL and 0.8 as USL for chamfer depth and enter 2.0 as LSL and 2.8 as USL for 
threading depth. Then, click OK for results.  

The default capability plots illustrate display the information that results from the capability analysis. The 
goal plot shown in Figure 3.14 provides information about the capability values respective to the goal of 1 
PpK. The default index for this problem differs from the Cpk capability that was used with the fill weights 
problem. Overall capability involves a variability term calculated from the entire sample of the data, 
resulting in the Ppk value. Within capability creates a summarized standard deviation representing the 
amount of variation within the subgroups, resulting in a Cpk value. In general, overall capability is more 
sensitive to shifts in average results between subgroups and is typically lower than within capability.  

In a goal plot, a point that is vertically distant from the red goal triangle has excessive variability. A point 
that is horizontally distant from the goal triangle has a mean value that is shifted away from specifications. 
Chamfer depth is high and to the left of the goal triangle, which means that excessive variation and a low 
mean shift combine to result in a low capability value. The goal can be adjusted with the slider to represent 
higher or lower targets for capability, depending on organizational requirements. 
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Figure 3.14: Process Capability Output: Goal Plot 

 

The middle plot of the default window, shown in Figure 3.15, contains standardized box plots used to 
compare capability. Notice that chamfer depth has a wide box and tails and is shifted toward lower values. 
The shape of the box plot indicates excessive variability and shift of the mean toward lower values. The 
same conclusions can be made from the interpretations of the goal plot and the box plots. The differing 
views of the results provide variety for reporting purposes. 

Figure 3.15: Process Capability Output: Box Plots 

 

The lower plot shown in Figure 3.16 is limited to illustrating the value of the capability indices (Ppk) on a 
vertical axis and does not provide much information as to why the results might be lower than what is 
desired. 
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Figure 3.16: Process Capability Output: Index Plot 

 

The plots provide a compelling picture of the comparative process capability for each of the measurements. 
Options are available for adding detail to the analysis, which can complement the value of the analysis.  

Select the red triangle menu next to the Process Capability header, and select Summary Reports  
Within Sigma Summary Report and Summary Reports  Overall Sigma Summary Report, as 
shown in Figure 3.17. The summary reports are added to the output. 
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Figure 3.17: Choosing Summary Report Options 

 

Capability Analysis Summary Reports 
The overall sigma capability summary shown in Figure 3.18 was created from a pool of the data that does 
not take group size into account. As noted previously, overall capability tends to be more conservative than 
within capability since the variability used in calculations includes both mean shifts between groups as well 
as the variability within groups. The dental implant data include bilateral specifications, so more 
information is given regarding the performance of the process than what resulted for fill weight. The 
targeting of the distribution is assessed for both the lower and upper specifications (Ppl and Ppu) with the 
minimum chosen as the targeted capability (Ppk) of the process.  

Figure 3.18: Summary Report 
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Overall Capability for Threading Depth 
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The Ppk index identifies that a small portion of the chamfer depth distribution is likely to be within the 
specifications (Ppk=0.154). Process difficulties in making acceptable implants are likely to be present. 
Slightly more than a full distribution of threading depth will be within the specifications (Ppk=1.037), 
which is a decent result. The practical interpretation of the machining process is that 35% of the observed 
implants have chamfer depth values that are below the 0.60 mm limit. The long-run expectation of the 
process suggests that approximately 32% of the population values are expected to be less than 0.60 mm. 
The threading depth of the implant has a Ppk index that indicates minimal risk (<1/10th of a percent) for 
parts that do not meet the specifications.  

An additional index is apparent in the overall capability report: potential capability. Pp is an index that 
indicates potential capability of a process based solely on variability. The value treats the mean of the data 
as if it is in the middle of the specification, so it is perfectly targeted. Potential capability is useful because 
it provides the best possible result that can be achieved without putting forth effort to reduce variation in 
the process. It is typically much easier to shift the mean of a process than it is to reduce variation. Mean 
shifts are usually achieved through simple adjustments of the process inputs. Variation reduction typically 
involves engineering efforts and the allocation of significant resources in an attempt to improve a process.  

Overall Potential Capability for Chamfer Depth         Overall Potential Capability for Threading Depth 

                                           

                                                                

                                                                      
 

The potential capability summaries (Pp) are roughly the same values as the actual capability (Ppk). This 
result is good in that the process seems to be stable regarding mean shifts over time. There is no point in the 
team attempting to achieve robust process capability of chamfer depth through simple adjustments in the 
process inputs. Too much variation is present in the results to achieve a minimum process capability. The 
minimum process capability is one distribution of results that are within the specifications, shown in the 
summary as a Ppk of 1.0. The capability for thread depth is marginally acceptable and will not be the focus 
of process improvements. It is entirely possible that improvements to the process to gain acceptable 
chamfer depth capability will also have beneficial effects for threading depth. The team needs to prepare 
for work on the process to reduce variation in chamfer depth. 

Sampling intervals that involve multiple units allows for additional capability analysis. The within sigma 
capability report gives information that is focused on the amount of variability present within the five 
samples. Within capability focuses on repeatability of the process among the subgroups of data collection. 
Recall that within capability summaries should be applied only to processes that have demonstrated 
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stability over time. Therefore, you typically need to use control charting to establish that a process is stable. 
The within sigma capability report is shown in Figure 3.19. 

Figure 3.19: Summary Report 

 

In JMP, there are three possible approaches for calculating within sigma. (Detail about the within sigma 
calculations is available in the Quality and Process Method book available in the Help menu.) The report 
indicates that the overall capability performance is slightly better than the within capability.  

The summary capability reports provide so much detail that the stakeholders cannot use it as a report to the 
stakeholders of the project team. Ngong would like to reduce the reports and include only the desired detail. 
He does not want to get side-tracked into an explanation of values that do not add to the message that 
resources need to be allocated for machining process improvement. 

Place the pointer on the report, right-click, and select Columns, as shown in Figure 3.20. The columns 
Target, Stability Ratio, Cpm, Observed % Outside, Observed % Below LSL, and Observed % 
Above USL are deselected to clean up the report. The abridged report is shown in Figure 3.21. The 
abridged report provides the concise information that will be published to the project stakeholders. The 
outputs can easily be copied and pasted for reporting purposes. 

Figure 3.20: Column View Options 
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Figure 3.21: Summary Report 

 

To obtain a copy of the report that you can paste into a document or slide presentation, position your 
pointer on the grey arrow to the left of the report header, right-click, and select Edit  Copy Picture.  

Capability Analysis for Non-normal Distributions  
The information about capability studies has involved parametric statistics. Therefore, sample data must 
meet the assumptions for a normal distribution. There are many situations that either involve normally 
distributed data or data that can transformed to conform to a normal distribution. Samples that have some 
non-normal tendencies and that are of a very large size can be studied with parametric statistics. Averages 
taken from samples of the same size randomly selected from a population form a normal distribution. This 
sampling distribution takes on a normal shape more readily for large samples, even if the samples are not 
themselves distributed normally. The central limit theorem is the basis for the use of parametric statistics 
with non-symmetric distributions that include many samples; you can use the Help menu to explore these 
concepts. The fill weight data is known to have minor skew toward high values, but the large sample size 
allows for the use of typical parametric statistics.  

Small samples that have non-normal tendencies are more challenging. The application of parametric 
statistics in such cases is likely to include an unacceptable amount of error. JMP includes a number of 
continuous distribution options to deal with small samples that are not symmetric in shape. This example 
uses a small subset of the fill-weight data (n=25) to illustrate the use of capability studies calculated for a 
continuous distribution that is not normal. 

1. Open Subset of initial fill weight data.jmp.  

2. Select weight, and then select Analyze  Distribution to visualize the sample. 

3. Use the red triangle menu beside the weight header to select Normal Quantile Plot (Figure 3.22). 
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Figure 3.22: Distribution Summary of Fill Weight Subset 

 

The distribution of the fill-weight subset is clearly skewed to high values, with points that stray 
significantly away from the normal model line in the Normal Quantile plot. The small sample size might 
contribute to error in capability based on parametric statistics. JMP includes a useful tool to automatically 
fit a number of continuous distributions and rank them by fit statistics.  

Use the red triangle menu next to the weight header to select Continuous Fit  All. Then add continuous 
fit detail to the Distributions output, as shown in Figure 3.23. 
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Figure 3.23: Distribution Summary with Continuous Fit Detail 

 

JMP tried to fit the data to 11 continuous distributions. The results are sorted by AICc fit statistic, as shown 
in the Compare Distributions table. Lower values for the fit statistic indicate better fits of the data to the 
function. The best fit distribution is the Johnson Sl transformation with the lowest AICc fit of 175.3. It is 
worth noting that the normal distribution ranks 7th with an AICc fit of 191.4. JMP automatically provides 
the parameters of the best fit distribution and illustrates the function on the histogram plot. You can select 
different distributions, multiple distributions, or both in order to compare results. In general, small 
differences in fit statistics are not practically relevant. Therefore, a less complex distribution with fewer 
parameters might be a better choice for similar fit statistics. The normal distribution seems to be quite 
different, and the capability study will include the best fit Johnson Sl distribution to mitigate error by 
completing the following steps: 

1. Use the red triangle menu next to weight and select Capability Analysis. The Capability 
Analysis, Setting Specification Limits ‘weight’ window appears, as shown in Figure 3.24. 
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Figure 3.24: Capability Specification Setting 

 

2. Enter 500 for the Lower Spec Limit. 

3. Change option in the drop-down field from Normal to Johnson Sl.  

4. Since subgroups are no longer relevant in the subset, the deep the Long Term Sigma check box 
selected.  

5. Click OK to get the output shown in Figure 3.25. 

Figure 3.25: Capability Summary of Johnson Sl Distribution 
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The capability results of the fill weight for the Johnson Sl distribution shown in Figure 3.25 is excellent 
with a Cpk of 2.2. Results like this make sense for the process since procedures and controls are in place to 
ensure that the risk of underfilling to the label claim is minimized. Quality requirements have been met 
with little regard to the business costs of allowing overfilling of units. The Johnson Sl distribution is 
skewed toward higher weights and truncated in variation for lower weights. Therefore, the risk of not 
meeting the label claim is minimal. To compare these results to normal capability estimates  that can 
highlight the amount of error possible due to a poor fit of the distribution to the sample, complete the 
following steps: 

1. Use the red triangle menu next to weight and select Capability Analysis. 

2. Leave the default Long Term Sigma check box selected. 

3. Enter 500 for the Lower Spec Limit.  

4. Keep the Normal distribution selected in the drop-down options. 

5. Click OK to get the output, shown in Figure 3.26.  

Figure 3.26: Capability Summary of Normal Distribution 

 

The capability based on a normal distribution is much lower and indicates a far greater risk of units than 
might be produced with weights less than the label claim. The results indicate that 3.3% of units will be 
outside of the label claim minimum. A normal distribution includes symmetric tails, so the distance of the 
extremely high observations from the mean creates the expectation of a similar distance of extreme low 
observations from the mean. This is the reason that the result is so much lower than the Johnson Sl 
capability result. The Johnson Sl distribution is a better representation of the actual process regardless of 
sample size.  

Go back to the full set of fill-weight data and run the capability for the best fit continuous distribution. 
Determine which capability analysis provides the best representation of the process. Suzanne needs to 
consider this information and whether it would change the summary that is reported to the stakeholders of 
the fill-weight improvement project. 
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Practical Conclusions 
Capability studies are very useful for comparing the voice of the process with specifications for the results. 
Robust quality control plans typically include regular intervals of capability study, along with time-based 
charting, to ensure that processes produce products that consistently meet and exceed specifications. 
Interpretations from capability studies can vary in the level of detail provided due to organizational needs 
and business concerns. JMP provides the necessary tools to optimize the message to be conveyed by the 
analyst. 

The fill-process improvement project utilizes single specification studies to determine the robustness of the 
process while illustrating the extent of variation in the process. Capability studies provide quantifiable 
evidence of the overfilling problem to the stakeholders of the improvement project. The project team is 
interested in reducing the variation in filling to enable them to shift the target fill and mitigate overfilling. 
The studies are useful to communicate with the quality team and get them on board so that business needs 
can be better met without adding the risk of not meeting the minimum fill specification. The overall goal is 
to maintain adequate capability, without adding to the costs of production through overfilling. At a 
minimum, the team should try to obtain capability values that are over the default goal of Ppk= 1.0 in order 
to meet both the quality and business goals of the organization. 

Bilateral specifications are used for the key physical features of the dental implants. The goal of the 
engineering improvement project is to reduce customer complaints through improvements in meeting the 
specifications of the key features. The highest targeted capability values are desired to ensure that the 
machining processes are producing implants with chamfer depth and threading depth that are centered 
within specifications with the least possible variation. Increases in targeted capability for bilateral 
specifications typically improve both quality compliance and business results. Parts that robustly meet 
specifications create happy customers who buy more product as well as maintain low quality costs. 

Observations over time should be analyzed through control charting to establish it to be stable and free of 
non-random trends prior to running capability analysis. Although not shown in this chapter, control charts 
that you run from the Analyze  Quality and Process menu include a check box option in the window 
where you set up the analysis. This is not available through the Control Chart Builder; you must choose a 
specific chart design to be able to add a capability study. Be sure to explore the option for an efficient 
combination of studies.  

Exercises 
E3.1—The annual product review (APR) data for a capsule drug product were analyzed for trends over 
time in chapter 2. Use this set of data with the specifications below to determine the capability for each of 
the five critical quality attributes (CQAs).  

Product Release Specifications for Product Z54AC 
Uniformity of Beads 90% to 110% of label claim, RSD < 5% 

Dissolution in Acid No more than 10% of label claim 

Dissolution in Buffer No less than 75% of label claim in 60 minutes 
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Product Release Specifications for Product Z54AC 
Content Uniformity (capsules) per USP <905> (Acceptance Value <= 15) 

Assay 90% to 110% of label claim 

 

1. Open the data file capsule APR data.jmp. 

2. Create a summary table to check capability for the uniformity of beads RSD and content 
uniformity (capsules). 
a. Select Tables  Summary to get the coefficient of variability (CV, aka RSD%) for 

uniformity of beads, and the mean and standard deviation of content uniformity 
(capsules), grouped by batch. 

b. Create a new column named k with the constant value 2.4 for all rows. 
c. Create a new column named M and use the formula for a set of conditional IF statements with 

Figure 3.27 shown as the example. 
i. For 98.5< mean(content uniformity(capsule))<=101.5, keep the mean(content 

uniformity(capsule)). 
ii. For mean(content uniformity(capsule))<98.5, assign the value 98.5. 

iii. All else, assign the value 101.5 . 
 
Figure 3.27: Formula Editor Window 

 

d. Create a new column named AV and include the following formula: 
              

))(_(_*))(_( capsuleuniformitycontentDevStdKcapsuleuniformitycontentmeanM   

e. Select Process  Analyze  Quality and Capability Studies on the CV(uniformity of 
beads) and AV variables per the specifications listed in the table at the beginning of this 
exercise. 
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3. Select Analyze  Distributions for the remaining four CQAs to check for normality and to run 
capability studies by using the hotbox option for each variable. 
a. The Normal quantile plot illustrates the potential normality. 
b. Use the red triangle menu and select Continuous Fit  All to determine the appropriate 

distribution for the non-normal variables. 
c. Use the red triangle menu option to run Capability for each with the appropriate distribution.  

4. How would you summarize this information to the group of stakeholders? 

E3.2—The surgical tubes data analyzed in the chapter 1 exercises enabled visualization of the units that 
were outside of internal limits for outer diameter for three sizes of tubes. With capability studies, you can 
use the distribution of actual values to gain a more precise estimate of the likelihood for tubes to be outside 
of limits.  

1. Open the data file surgical tubes.jmp. 

2. Select Analyze  Quality and Process  Capability Studies to calculate capability for the six 
tube size variables to the internal specifications noted (3 mm tubes +/- 0.1, 1.5 mm tubes +/-0.05, 
5 mm tubes +/-1.5 mm). 

3. Do the capability studies provide a different estimate than the OOL proportions in chapter 1? 

4. How would you summarize this information to the group of stakeholders? 

E3.3—A liquid medication manufacturer is responding to the challenge of ensuring that the dosage cups 
used are accurate for the medications they produce. Previous cups included a printed scale for the dose 
level and were found not to be accurate enough for all suggested dosages of the medication. A supplier has 
developed a new dosage cup with the dosage scale molded into the side of the plastic cup. All calculations 
were based on the volume of deionized water held at each dose level. with conversions made for the density 
of the actual product. The supplier just pulled a random sample of 50 dosage cups from an early run of the 
molding tool and sent them to the analytical laboratory to test the amount of medication delivered for the 
three dose levels: 2.5 ml, 5 ml, and 10 ml. The standard of accuracy is that the dose must be within +/- 10% 
of the target dose amounts to be acceptable. 

1. Open the dosage cups.jmp data file. 

2. Use Analyze>Distribution to determine whether the results for the three dosage levels meet the 
assumptions of normality needed for typical, parametric capability studies. 

3. Select Analyze  Quality and Process, and then run capability studies in either the 
distributions platform or the capability analysis function. 

4. How would you summarize the overall capability to the stakeholders of the new dosage cups 
project? Is the cup design ready to be approved? 

E3.4—The medical device manufacturer has data about the seal strength of surgical kit trays over time. The 
managers of the product line are interested in how capable the trays are in exceeding the minimum 
requirement of exposure to 23 inches of mercury. They want to know whether they might be able to change 
to a thinner foil or plastic laminate seal to save money on costs per unit. The data from the study of random 
sample testing over time can be used again to estimate the overall capability of the kits. 

1. Open the burst testing.jmp data file. 

2. Use the distribution platform to analyze burst test results inHg. Use the red triangle menu 
options to test capability. 
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3. Is the product capable of meeting the pressure requirements and exceeding them enough to reduce 
the thickness of the foil or plastic laminate s? 

4. The data over time indicated that there are differences in seal strength possible between the three 
production shifts. Select Tables  Split to create a new table of burst test results inHg split into 
three columns by shift. 

5. Run capability studies to determine whether a difference exists in overall capability between 
shifts. 

6. How would you summarize this analysis to ensure that the best decisions can be made? Is it 
appropriate to move forward with the cost savings project? Is there a call to action needed due to 
the results? 
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Overview 
JMP is an invaluable tool for building a technical understanding of your work from a set of data. Previous 
chapters demonstrated the power of data visualization through plots and tables that are easy to create. Even 
though a great deal of information is available, the interpretations are limited to the trends inherent to the 
set of sample data used for the analysis.  

Information about a sample is interesting, but many projects strive to gain knowledge about all possible 
results of a process. Inferential techniques extend the interpretation of analyses beyond the sample with 
statistical tools to provide precise estimates for the population of interest. Knowledge about the population 
parameters enables decision makers to achieve higher levels of success by taking inferential estimates into 
account. This chapter is an important link between descriptive statistics and inferential techniques.  

The Problems: A Possible Difference between the Current Dissolution 
Results and the Historical Average 

Sudhir is faced with the concern that 45-minute dissolution testing for a tablet formula differs due to a 
recent change in the source of an active pharmaceutical ingredient (API). The historical average for 45-
minute dissolution is 90% for batches made with the previous API source. Results from testing 12 months 
of product batches, including the newly sourced API, are available. Batches are selected from the order in 
which they have been made to make the sample. A random number generator is used to ensure that 
potential bias is mitigated for these batches. Inferential statistics are used to determine whether a significant 
difference in 45-minute dissolution exists, as compared with the prior historical average.  

Steps for a Significance Test for a Single Mean 
Random samples of data, representing a population of interest, can be explored with distribution tools in 
JMP. As noted in previous chapters, summary statistics and data visualization of the distribution of results 
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is a good first step. The summaries that come from a sample are point estimates that offer only a gross 
approximation of the population parameters. Continuous data can be summarized for both location 
(median, mean) and spread (range, standard deviation) to describe the distribution. Point estimates of the 
population parameters are not precise because the estimates vary randomly from sample to sample. 
Inferential statistics provide for robust estimates of the population since both the sample location and 
spread are involved. Statistical tools used for inferential estimates are based on a sampling distribution, 
which is the theoretical distribution of a summary statistic made from many identically sized samples 
chosen from the same population. There are many statistical models that use a sampling distribution as a 
model to estimate the parameters of a population. Sampling distribution theory is not covered in this book. 
However, the book Practical Data Analysis with JMP by Robert H. Carver includes an excellent chapter on 
the subject.  

Making estimates with inferential statistics is very easy to do in JMP. Analyses are completed, and results 
generated in an instant. However, the practical value of the information is directly proportional to the 
quality of the thought and structure that go into the work. You should think about the appropriate level of 
precision required for a problem before delving into analyses of data. Statistical techniques that are used to 
make estimations of a population are based on a specific level of precision, known as the level of 

significance (). The context of the problem and the associated consequences of making an incorrect 
estimate must be considered to ensure that the level of significance is appropriate. You can think of this as 
the shower valves vs heart valve consideration. The tolerance for making a mistake when dealing with 
average failure rates of heart valves is extremely small since a mistake can be lethal for a patient. An 
incorrect estimate made for the average rate of failure of shower valves is not as critical, so a larger level of 
significance can be used. Keep in mind that as significance levels decrease, more precision is required, and 
so the sample size must be increased to meaningfully estimate the mean. The default level of significance 
used by JMP and most other statistical software applications is a tolerance of making an incorrect estimate 
5% of the time. A 5% level of significance equates to a 95% level of confidence.  

It is important to focus on the statistical principles for making inferences and ensure minimal error. A 
structured, stepped process helps keep you from making costly errors. The structure preferred by the author 
to execute the inferential statistics of hypothesis testing is built on five steps (Gabrosek and Stephenson 
2016).  

First step: Gather the details necessary to define the purpose of the work with regard to the population of 
interest and the sample selected. As noted previously, the quality management team of a pharmaceutical 
manufacturing company notices that a number of out-of-specification dissolution results have been 
occurring in lab testing over the last six months. The team is interested in making estimates for the 
population of all tablets produced and marketed for the subject product. The team studied tablet product 
that was made in three separate facilities in order to obtain the 45-minute dissolution values, so the sample 
collected includes batches from all three. This sampling method ensures that there is an equal chance that 
any tablet sample comes from one of the three because samples are randomized per facility.  

Second step: Put some thought into the guess about the population parameter prior to the analysis. This 
guess can come from prior historical information or could be a claim from an authority on the subject. The 
45-minute dissolution data has a historical average of 90%. If the sample average is close to 90%, you 
would not expect that a true difference exists beyond random variability. Random variability is always 
present among the averages of many samples of the same size chosen from the population. No change to 
your guess about the population parameter is stated as the null hypothesis: ܪ௢: ሺ݈݈݊ݑ ℎݐ݋݌ݕℎ݁ݏ݅ݏሻ μ = 0.90  
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A change from the guess about the population can take one of three different scenarios: the population 
mean is different from the guess; the population mean is less than the guess; or the population mean is 
greater than the guess. The context of the problem provides you with the information needed to test for the 
desired outcome. In the case of 45-minute dissolution, the team is interested in the existence of a simple 
difference. A change to the guess about the population parameter is stated as the alternate hypothesis: 

:௔ܪ                     ሺ݈ܽ݁ݒ݅ݐܽ݊ݎ݁ݐ ℎݐ݋݌ݕℎ݁ݏ݅ݏሻ µ ≠ 0.90 

Third step: Check the assumptions that must be met in order to utilize the statistical methods selected for 
the inferential test and determine the test statistic from the inferential model. Since the team is dealing with 
dissolution measurements that are continuous random variables, a parametric model is the default option 
for inferential statistics. Parametric models for making inferences of a single mean involve a normal 
distribution—a single peak of high frequency with symmetric tailing of values for the upper and lower 
sides of the peak (a bell-shaped curve). Selecting Analyze  Distribution results in a plot and a table of 
descriptive statistics that provide quick information about the behavior of the sample. A symmetric 
histogram with a median that is similar to the mean justifies that the distribution is approximately normal. 
The sample size also provides information regarding the meeting of assumptions; large samples are not as 
sensitive to the shape of the distribution due to the central limit theorem. Large samples are defined as 
consisting of approximately more than 30 observations for a sample distribution with a single peak, some 
skew, and few extreme outliers existing on one side of the curve. Samples with greater than 50 observations 
allow for meeting assumptions of a parametric test when more skew is present in the distribution.  

The test statistic indicates a standardized distance between the sample mean made from the inferential 
model and the value of the population mean obtained from process history. Sample means chosen from a 
population vary randomly about the population parameter, but most are located relatively close to the 
population mean. The bell-shaped sampling distribution model includes the guess of the population 
parameter at the peak with random variation about the mean, defined as two standard deviations for a 95% 
confidence level. The frequency of sample means is reduced as the distance increases from the population 
mean, as shown in Figure 4.1. The test statistic is the standardized distance from the mean expressed in 
units of standard deviation. The parametric model used for one mean is the t-distribution. A t-distribution 
can be explained as a standard normal distribution with the spread of the function corrected for sample size. 
Small sample size inferences (n<=30) are made from a t-distribution that is spread out more widely than 
inferences made for large samples (n>30). The t-distribution becomes the standard normal distribution (Z) 
for large sample sizes. 
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Figure 4.1: Sample Means 

 

Fourth step: Consider whether the difference between the sample mean and the null mean is statistically 
significant. A summary value used for the distance is the test statistic. A single mean hypothesis test 
involves the Student’s t distribution as a model. The mean distance of the sample to the null is expressed in 
t units of standard deviation for the model. As the absolute value for the t-statistic becomes large, the 
percentage of data that might be contained in the tail or tails becomes small.  

Recall that the alternate hypothesis noted in the second step is chosen from the three possible scenarios in 
order to match the context of the problem. The alternate that involves a simple difference allows for the test 
mean to be either smaller or larger than the guess for the population parameter; for this reason, the test is 
two-tailed. If the alternate is testing for a difference of either less than or greater than the guess of the 
population parameter, the test is considered one-sided. You must choose from the results for all three 
alternate hypothesis scenarios that are generated by JMP. 

The probability value for each test result is the amount of the model distribution that has as much or more 
difference from the guess for the population mean. The probability is the area of the data that is left in the 
tail or tails of the population distribution. The practical interpretation of the significance is represesnted by 
a p-value, which is the chance that the estimated mean could be as distant from the guess for the population 
parameter due to random variability. As the p-value gets smaller, the chance that the estimated mean comes 
from the population described by the guess of the population parameter is reduced. When the p-value of the 
t-test is equal to or less than the level of significance, determined in the first step, the assumption that the 
guess of the population parameter is true is rejected. Evidence of a significant difference exists between the 
estimated mean and the guess for the population parameter when the null hypothesis is rejected. JMP color-
codes significant results by making the p-value red or orange. 

Fifth step: The final step of the inference test is to explain the results in common terms for the stake holders 
of the project. When the p-value of the t-test is smaller than the significance level, it is said that “significant 
evidence exists” of a difference between the sample mean and the population parameter. Large probabilities 
indicate that “no significant evidence exists” of a difference. Differences that are statistically significant 
might not be of practical relevance. For instance, a sample with minimal variability might show 
significance with little difference between the sample mean and the null. Significant results should always 
be interpreted with the help of subject matter experts to determine the practical relevance of the results. 
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Importing Data and Preparing Tables for Analysis 
Sudhir had a random sample collected of 45-minute dissolution results from 10 batches that were made 
after a change in the source for the active pharmaceutical ingredient (API) was implemented. The source 
change was implemented to realize significant cost savings in making the product. The procurement team 
worked to gain quality approval for the change, and testing was completed by analytical research and 
development to demonstrate chemical similarity. Dissolution data collected from actual batches produced 
provides the best evidence for practical similarity to or difference from the historical average. Sudhir 
receives the data as a formatted Excel spreadsheet, and he is concerned about the amount of time it will 
take to organize the data in a format that can be used by JMP. Sudhir learns of the Excel Import Wizard and 
decides to give it a try on the data sheet seen in Figure 4.2. 

Figure 4.2: Dissolution Data Sheet 
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Select the Excel file type, and click File  Open to locate the Excel sheet disso 45 data raw.xlsx in the 
file directory (see Figure 4.3). The default settings are appropriate, so click Open to use the Excel Import 
Wizard. 

Figure 4.3: Data Open Window 

 

The Excel sheet includes multiple tabs with different types of analytical data for the sample of 10 batches. 
Select the worksheet disso data raw is selected in the Worksheets section of the window, as shown in 
Figure 4.4. The Data Preview portion of the window helps you visualize what the data will look like when 
it is imported into JMP. Modify the options in Individual Worksheet Settings until the headers and data 
rows in the preview are appropriate for the import. More detail is available for additional options by 
clicking Next. However, this data set is simple and can be imported with the choices shown. Click Import 
to create the JMP data table shown in Figure 4.5. 
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Figure 4.4: Excel Import Wizard Window 

 

Figure 4.5: JMP Data Table 

 

Figure 4.5 that the imported data sheet is in an unstacked format with column names that include the date 
of manufacturing (DOM) with the batch number separated by a hyphen. The 45-minute dissolution values 
for each of the 12 individual tablets per batch make up the rows of the raw data table. Dissolution is 
measured as a batch average summary value. The table can be easily manipulated using the Tables menu to 
create a table of average 45-minute dissolution for each of the 10 batches. Figure 4.6 illustrates the use of 
Tables  Summary to initiate the process.   
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Figure 4.6: Tables Menu 

 

In Figure 4.7, the 10 data columns are highlighted, and Mean Summary is selected in the Statistics drop-
down list. The DOM-tab column is not needed because the individual tablet values are not of interest. You 
can select Keep dialog open so that you can redo the summary selections in case the summary table that 
results from the action is not satisfactory. Click OK to obtain the table of average dissolution values by 
DOM/batch, shown in Figure 4.8. 

Figure 4.7: Summary Dialog Box 
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Figure 4.8: Summary Data Table 

 

The data table must be rearranged so that average dissolution is a column variable, with batch and date of 
manufacturing (DOM) as grouping variables for the inferential analysis. Use the transpose function within 
the tables menu to fine-tune the table format. Figure 4.9 shows that selecting Tables Transpose creates 
a stacked table with one row of batch dissolution means. All but the N Rows variable are chosen in order 
to make the transpose table shown in Figure 4.10. Click OK to get the stacked data table shown in Figure 
4.11. 

Figure 4.9: Summary Table Menu 
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Figure 4.10: Transpose Dialog Box 

 

Figure 4.11: Summary Stacked Data Table 

 

The team could use the summary data table as is. However, the Label variable has the previous column 
names combined with the grouping variable, which is confusing to the team. You use column utilities in 
JMP to improve a table for clear analysis output. Select Cols  Utilities  Text to Columns, as shown in 
Figure 4.12, to separate the Label variable with open and closed parentheses included as delimiters, shown 
in Figure 4.13. 
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Figure 4.12: Text to Columns Utility 

 

Figure 4.13: Text to Columns Dialog Box 
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Figure 4.14: Data Table with Separated Columns 

 

The summary data table with separated columns is shown in Figure 4.14. However, more work is needed to 
get the DOM separated from the batch number. Use Cols  Utilities  Text to Columns on the Label 2 
variable with a hyphen as thedelimiter to obtain the data table shown in Figure 4.15. Add the column names 
for DOM, Batch, and 45 minute disso by specifying values in Column Properties for each. Then, delete 
the surplus variables to get the completed summary table shown in Figure 4.16. 

Figure 4.15: Data Table with Second Set of Separated Columns 
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Figure 4.16: Completed Summary Data Table 

 

Practical Application of a t-test for One Mean 
The data is in stacked format for the random sample of 10 batches of dissolution results. The sample mean 
will be compared to the historical average of 0.90, which is the best guess for the population mean. The test 
results are used to determine whether there is significant evidence of an average difference. Sudhir will use 
the five-step structure to maintain focus and mitigate the potential for error. 

First step: The population of interest includes all commercial batches of the subject tablet product. The 
sample is the random selection of 10 batches that have been tested since the change was made to the source 
of the API. 

Second step: The team needs to define the condition of no change, which is the null hypothesis. They 
expect that the population of results represented by the random sample of 10 batches is the same as the 
population of historical results from all batches made with the prior source of the API. Recall from the 
problem description that Sudhir could determine that the population mean for all 45-minute dissolution 
testing completed with the prior supplier of API is 90%. A change of average results is the alternate 
hypothesis; basically, they want to know whether the batches made from the new API source have a 
different average dissolution test value.   

Third step: The sample information must be analyzed to determine whether the assumptions are met for the 
inferential technique that is being used. Select Analyze  Distribution and create a distribution for the 45-
minute disso. Use the red triangle menu next to the 45-minute dissolution header, and select Normal 
Quantile Plot to create the output shown in Figure 4.17.  
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Figure 4.17: 45-Minute Disso Summary 

 

The histogram and outlier box plot show that the 45-minute dissolution averages have a distribution that is 
slightly skewed toward higher values. The descriptive table includes the median of 91.5, which is close to 
the mean value of 92.5; recall that a normal distribution has a mean and median that are approximately 
equal. The normal quantile plot illustrates some deviation of the points from the normal model line, but all 
points are within the red segmented confidence interval lines. The sample size is small, and the distribution 
marginally meets the assumption of normality. The team decides to test the mean to get initial results even 
though the assumptions are marginally met. 

The following steps explain how to test the mean. 

1. In the Distributions analysis, use the red triangle menu options to select Test Mean.  

2. Enter the guess for the population parameter (90) into the Specify Hypothesis Mean field 
(Figure 4.18).  

3. Select the nonparametric test option (Wilcoxon-Signed Rank Test) to address the marginal 
assumptions for the test based on normality of the distribution. 

4. Information about the standard deviation of the 45-minute dissolution averages is lacking, so leave 
that field blank. 

5. Click OK to get the output. 
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Figure 4.18: Test Mean Dialog Box 

 

Figure 4.19 lists the parametric test statistic (t=1.99, df=9), which indicates that the estimated mean of 
92.54% is two units of standard deviation greater than the 90% population parameter guess. The 
nonparametric signed-rank test has a test statistic of 16.5. The signed-rank test statistic is more difficult to 
interpret in simple terms. The test sample is 16.5 units of signed-rank away from where it is expected to be, 
due to simple random variability. 

Figure 4.19: Test Mean Output 

 

Fourth step: The goal of the subject inferential test is to determine whether the population of test results 
from batches made with the new API source differs from the population of results collected from batches 
made with the previous API source. The probability value for a simple difference is Prob > |t|=0.08. 
Obtaining a sample average result that is as much as 2.5 percentage points distant from the expected 
population mean (92.5% - 90.0%) can happen 8% of the time when random samples of size 10 are selected. 
This is not considered significant to the default significance level limit of 5% or less. There is insufficient 
evidence to reject the null hypothesis of the population mean being 90%. Statistics always involve some 
amount of error in the conclusions made. You must keep in mind that the possibility that a true difference 
exists, and that you might not have enough information to conclude the difference to be statistically 
different.  

The nonparametric test results are evaluated due to the slight asymmetry of the distribution small sample 
size (n=10). The nonparametric signed-rank test provides insufficient evidence (Prob >|t|=0.08) of a 
difference between the estimated median and the guess of the population parameter. Sudhir could go with 
either option (parametric or nonparametric) since the conclusions of the test are the same and the 
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assumptions are met. The p-value of 0.08 is not much different from the significance level of 0.05, and the 
data includes some skew.  

Fifth Step: The last major step of hypotheses testing typically involves a practical conclusion made from 
the significance test results. Before Sudhir draws a conclusion from the inferential testing, he decides to ask 
the analytical team to randomly choose five more batches of data from their records and repeat the 
inferential test to hopefully gain a more robust result.  

This process continues into the next section. 

Using a Script to Easily Repeat an Analysis 
The first and second steps for hypothesis testing of 45 minute dissolution data have not changed due to the 
desire to collect a larger sample. The plan to repeat the analysis on a larger set of data can be quickly 
carried out by saving the current analysis as a script to the data table. Use the red triangle menu next to the 
Distributions header, and select Save Script To Data Table, as shown in Figure 4.20. 

Figure 4.20: Distributions Red Triangle Menu Options 

 

Sudhir adds five new rows of 45-minute dissolution means to the table of data. Open updated disso 
summary data.jmp, shown in Figure 4.21, to view the data set including 15 batches. You can also see the  
saved script for Distribution of 45-minute disso in the data table options list in the upper left of the table 
view. Click on the green arrow next to Distribution of 45-minute disso to execute the script, repeating the 
mean testing with the updated data table. If you are using a JMP version earlier than JMP 13, you must 
select the run option to execute the script. 
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Figure 4.21: Updated Data Table 

 

Figure 4.22: Distributions Output 

 

Third step (redone for the larger sample size): JMP runs the inferential test for one mean with the settings 
that the team specified in the previous steps to automatically generate the output. Notice that the five 
additional batches helped mitigate the nonsymmetric distribution of the dissolution results. The mean of 
92.59% now differs very little from the median of 91.87%, indicating a symmetric distribution. The normal 
quantile plot also has an improved trend over the 10-batch sample. The parametric test now indicates a test 
statistic that is greater than the original test (t=2.56, df=14) with more degrees of freedom to add robustness 
to the test. Nonparametric testing has a signed-rank test statistic of 37.5, which is very different from the 
initial sample of 10 batches. The added data helps ease the lacking assumptions, but more detail is needed 
to ensure that the parametric result is appropriate. You can gain more definitive detail by using the red 
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triangle menu next to 45-minute disso and selecting Continuous Fit  Normal. The Fitted Normal 
analysis is added to the Distribution output. In the red triangle menu to the left of the Fitted Normal 
output, select Goodness of Fit, as shown in Figure 4.23.  

Figure 4.23: Fitted Normal Analysis 

 

The required detail regarding the assumptions for using the parametric test is shown in Figure 4.24. The 
significance value of the goodness of fit test (Shapiro-Wilk W=0.924, Prob<W=0.23) leads to the 
conclusion that insufficient evidence exists that the distribution differs from a normal function. JMP utilizes 
the Shapiro-Wilk to test normality for samples that have up to 2000 observations. A goodness of fit test is a 
type of significance test; the null hypothesis is that the distribution can be described using a given 
distribution (in this case normal), the alternate hypothesis is a lack of fit. Using a significance level of 0.05, 
it is clear that the data can be considered as distributed normally. If the p-value were to be 0.05 or less, a 
non-normal distribution would be the conclusion. The added batches meet the assumption of being 
distributed normally; therefore, the use of the more powerful parametric test is used for the inferential test 
for a difference. 

Figure 4.24: Fitted Normal Analysis/Goodness of Fit 

 

Fourth step (redone for the larger sample size): Results for the sample of 15 randomly selected batches, 
shown in Figure 4.25, now show a small p-value (Prob > |t|=0.022). It is appropriate to reject the null 
hypothesis idea that the sample of batches come from the historical distribution of results that have the 90% 
average.  
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Figure 4.25: t-Test Output (n=15) 

 

Fifth step (redone for the larger sample size): The inferential test results have robust, significant evidence 
that an average difference exists between the population of dissolution results obtained from the batches of 
the new API source and the previous historical distribution with the mean of 90%. This result is based on a 
significance level of 5% (

Sudhir completed the analysis and summarized the information in a report to the stakeholders of the 
improvement project.  The JMP output, with a p-value much smaller than 0.05, clearly shows significant 
evidence that the average 45-minute dissolution differs from the previous average of 90%. He knows that 
this conclusion is robust since the data met the assumptions to be able to use powerful parametric statistics 
for the inference on the population. The chemical testing indicated equivalence between the API regardless 
of source. However, differences in analytical results were uncovered through hypothesis testing. 

The question “how different is the current average 45-minute dissolution from 90%?” came up during the 
peer review of the work. A confidence interval provides a practical interpretation of the inference made of 
the population mean. JMP answered the question before it was asked through the output in the summary 
statistics table shown in Figure 4.23. The team can be 95% confident that the population mean for 45-
minute dissolution is between 90.4% and 94.8%. The lower limit of the interval exceeds the 90% guess for 
the population parameter and concurs with the significant difference noted previously. 

Practical Application of a Hypothesis Test for One Proportion 
The management team is impressed by the detailed information provided by Sudhir’s analyses. The 
presentation of the hypothesis test results is clear and understandable because it uses JMP output. Previous 
concerns that a change in 45-minute dissolution results has occurred since the API source change are now 
confirmed. The quality manager wants to know whether the increase in dissolution results has had any 
effect on the level of quality for the tablet product. 

The dissolution requirements are historically based on a sample of 24 tablets from a batch, but staged 
testing is allowed by regulatory authorities (USFDA). Testing the product in stages enables producers to 
utilize smaller sample sizes while testing to tightened acceptance criteria. Products that have CQAs that 
perform on target with minimal variability will regularly pass the tightened criteria. Staged testing is 
popular among drug manufacturers because it saves costs and resources. Sudhir researches the lab 
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information and determines that there were 35 batches that did not meet the stage 1 testing requirements out 
of 293 batches manufactured with the newly sourced API (12%). The proportion of recent batches in the 
sample, which did not pass stage 1 testing, is to be compared to prior knowledge of the commercial 
population.  Process records indicate 15% of the batches made from the previously sourced API did not 
pass stage 1 testing. Inferential statistics for one proportion will enable the team to determine whether the 
proportional difference is significant. 

Create a new table by selecting File  New  Data Table in the JMP menu. The count of batches for 
the out of specifications is entered on row 1. The count of acceptable batches is entered on row 2, noted as 
pass.  Add a new column variable named dissolution test result to type OOS in the cell of row 1. Type 
pass in the cell of row 2. The data sheet with batch counts by dissolution test result categories is shown in 
Figure 4.26. 

Figure 4.26: New Table of Stage 1 Acceptance Data 

 

The population the team expects to explain includes all batches of the subject product that were tested for 
45-minute dissolution. The sample includes the 293 test results that have been completed for batches made 
since the source change of the API. 

If there is no significant change in the stage one testing, you can expect that the sample came from the 
population of prior batches that had the OOS rate of 15%. The team is interested in the possible change of a 
lower stage 1 OOS rate since the average 45-minute dissolution is of a significantly greater mean than the 
prior historical average. The quality specification for 45-minute dissolution is only a minimum. 

Assumptions for the testing of one proportion are simple because they involve checking the sample size 
with the null proportion as well as with the alternate. The null value of 15% is multiplied by the sample size 
to determine whether the product is at least 5 (n*po>=5); the complement of the null value is also 
multiplied by the sample size to see if the product is at least 5 (n*[1-po]>=5). The products of 44 and 249 
are much greater than 5. Therefore, the assumption of adequate sample size has been met.    

In JMP, it is easy to perform inferential testing for proportions. The test is to determine if the proportion of 
OOS batches tested from product with the new source of API differs from the prior history. Select Analyze 
 Distribution to obtain the statistics for the sample of 293 batches that were tested. Specify distribution 
test results in the Y,Columns dialog box and batches in the Freq dialog box shown in Figure 4.27.  
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Figure 4.27: Sample Statistics for Stage 1 Testing 

 

The proportion of nearly 12% stage 1 failures for the sample is less than the 15% failure rate realized in 
prior history, but is it different enough to be statistically significant?  

Use the red triangle menu options next to dissolution test result, select Test Probabilities. Complete the 
information in the Test Probabilities dialog box by entering 15% as the hypothesized probability and 
selecting the option probability less than value, as shown in Figure 4.28. Click Done to get the results. 

Figure 4.28: Test Probabilities Dialog Box 

 

The results shown in Figure 4.29 point out that there is no significant evidence that the stage 1 reject OOS 
rate has been reduced with a p-value of 0.08. The team cannot reject the hypothesis that the sample comes 
from the prior history distribution of stage 1 test OOS failures that are 15%.  
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Figure 4.29: Test Probabilities Results 

 

There is no significant evidence that the stage 1 OOS rate has been reduced since the API source changed. 
A conclusion for the potential significant difference of the stage 1 OOS proportion that offers more 
practical value is a 95% confidence interval for the true proportion. Use the red triangle menu options next 
to Stage 1 Dissolution Testing and select Confidence Interval  0.95 to obtain the 95% confidence 
intervals about the OOS proportion.  

The precise estimate for the true proportion of OOS events at stage 1, shown in Figure 4.30, is between 
8.7% and 16.2%, which includes the historical parameter of 15%. Since the prior parameter is within the 
95% confidence limits, you cannot say that the change in API source is affecting the number of batches 
likely to be outside of the stage 1 specifications.  

Figure 4.30: 95% Confidence Intervals 

 

It is easy to run hypothesis tests for one proportion in JMP. However, confidence intervals are a more 
popular option in industry. The practicality of having a range of values about the location of the proportion 
parameter gives consumers of inferential statistics a better mental picture of the situation. This is due to the 
restricted domain for proportions between 0 and 1 (0% to 100%), which differs from continuous variables 
with an unlimited range of values. Hypothesis testing tends to be a more common initial technique when 
dealing with one mean; confidence intervals tend to be the initial approach for proportions. 

Practical Conclusions 
The inferential tests have given Sudhir valuable information about the change in the API source and the 
effects on 45-minute dissolution. The team is able to report to the leadership team the significant evidence 
that the average 45-minute dissolution differs from the average realized with the previous API source. The 
evidence indicates that the sample taken after the API change is from a different population than the 
previous data. Even though the population average differs significantly from the historical parameter, the 
effect of the change is insignificant with regard to reductions in the proportion of stage 1 test results that are 
outside of specifications. Sudhir knows that the evidence-based conclusions that he shared regarding the 
effects of the API source change are robust because the statistics support his claims. JMP has become an 
invaluable tool for the team to be able to easily determine real changes in the population from random 
variation that is present among samples. This information provides for better decisions and improved focus 
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of resource allocation, so the team can reduce wasted time chasing trends in random variation and more 
time getting results by focusing on significant trends. 

Exercises 
E4.1—A packaging plant has a new piece of equipment on the bottle filling line that is designed to re-
torque the twist on caps after each bottle passes under the induction sealer (to weld the foil liner in the cap 
to the bottle rim). The technical information for the equipment indicates that the settings used during 
equipment qualification (EQ) resulted in completed bottles with an average removal torque of 8.5 inch 
pounds. The unit has been running for several weeks, and the packaging team collected data from several 
days of random samples to determine whether the results have changed since the unit was installed. You 
have been asked to use the data to compare to the sample to the initial average expected for the population 
of results identified during EQ. 

1. Open the file retorquer data.jmp. 

2. Use the Distributions platform to visualize removal torque (in-lbs). 

3. Create a normal quantile plot to determine whether the data looks normal. 

4. Use the red triangle menu options to test the mean against the 8.5 in-lbs hypothesized mean. 

5. Is there significant evidence of a change in performance in the equipment over the time period? 

6. How would you present your findings to leadership? 

E4.2—The annual product review was prepared for the previous year for a capsule drug product. A slight 
change in processing has taken place and the manufacturing order has been revised. The first 25 batches 
have been processed under the new revision, and quality leadership wants to confirm that the critical 
quality attributes have not changed. This is not a random sample, but the team needs to use it to determine 
whether any significant differences are present. 

1. Open the file capsule APR data.jmp and run the distributions script to get the summary 
statistics. 

2. Open the file capsule data new revision.jmp. 

3. Use the Distributions platform to evaluate the normality assumption for content uniformity 
(capsule). 

4. Use the red triangle menu options to test the mean against the hypothesized mean from the 
summary statistics that are found in the capsule APR data.jmp. Is there significant evidence that 
the content uniformity changed? 

5. Run tests on the other CQAs. You need to use the test information for distributions that cannot be 
considered normal on some of the CQAs. 

6. Different is not always bad. Summarize the information for quality in the terms of overall risk for 
being outside of specifications for the CQAs. 
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E4.3—Burst testing of sealed surgical trays was analyzed over time in chapter 2. The project stakeholders 
explain that the design is expected to have a seal strength that will burst on average at 25 inches of 
mercury. The data is collected from all three shifts of the manufacturing operation because there is interest 
in testing for a significant difference from the expected population average for each shift’s results. 

1. Open the file burst testing.jmp. 

2. Use the Distributions platform and the By box to create a distribution of results for each shift. 

3. Use the red triangle menu options to test the mean against the hypothesized mean of 25 inches of 
mercury. 

4. Do any of the shifts produce trays that have significantly less burst strength than what is expected? 

5. What will you report to the stakeholders? Be sure to include any suggestions for additional study. 
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Overview 
Technical professionals regularly deal with problems that involve more than one variable. It is typical for a 
team to be interested in either a relationship between two measurable entities or in a measurable entity that 
might come from two groups. The pharmaceutical and medical device industries typically do not lack data. 
Information about several aspects of the production of products is collected regularly for evidence of 
quality and compliance. Comparisons of the sample information are useful because they provide a rough 
estimate of possible relationships. The visualization of the data and related summary statistics offer good 
sample information, but they do not offer precise estimates for the operational trends of all products 
produced. The Fit Y by X platform in JMP offers a rich array of options to visualize data and run inferential 
tests for the robust determination of comparative relationships and trends in the population of all products 
produced.  

The Problems: Comparing Blend Uniformity and Content Uniformity, 
Average Flow of Medication, and Differences Between No-Drip 
Medications 

Kim is a quality engineer who oversees annual product reviews for a pharmaceutical manufacturer. She is 
working on a tablet product that has been commercially produced over the last year. The quality controls 
for the product include analytical tests for both the uniformity of the blend and the content uniformity of 
the compressed tablets. Regulatory requirements for content uniformity are in place that require evidence 
that tablets produced throughout the batch are uniform with regard to the amount of active pharmaceutical 
ingredient (API) contained in each dose. Tablets are collected into a large sample bag from in-process 
checks occurring every 15 minutes. The tablets from the bag are dumped out onto a large tray in the quality 
control lab, and 10 random tablet samples are chosen to be individually tested for API content.  

Blend uniformity is expected to be a predictive check that represents the content uniformity that can be 
expected from the batch. Mix samples containing 1 to 3 times the tablet dose by weight are collected with a 
sample thief from 10 tote locations in three replicates. The 10 blend samples are then tested by the quality 
control lab. The blend uniformity sampling and testing has been problematic and complicated because it is 
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extremely difficult to obtain good samples from the powder bed of mix while not interfering with later 
samples.  

The team noticed that the results of the content uniformity differ from the blend uniformity results 
regularly. Kim would like to compare the results to determine just how predictive the blend uniformity 
results are for the expected content uniformity. Blend uniformity is tested with the assumption that batches 
lacking a uniform amount of active in the blend will be detected prior to compressing tablets. This ideal is 
not currently realized as tablets from batches with suspect blend uniformity are regularly compressed at 
risk. The compression of suspect blends into tablets typically results in content uniformity that is well 
within specifications. 

Hue is working with a development team on a medical device that meters regular dosage events of a thick, 
liquid medication delivered to the patient through a feeding tube. Multiple doses need to be delivered 
throughout a 24 hour period, and each is followed by a feeding event. The surgical tubing used is specified 
by the outside diameter (O.D.), and a couple of different sources of tubes are being considered. Hue is 
concerned that the flow of the medicine might be altered by the inner diameter of the tubing.  

The last problem involves a liquid medication applied by a metered spray device. The product will have a 
no-drip claim on the label because patients need the sprayed dose to stay on the skin after application to 
ensure that the full dose is received. Tanya is a Senior Statistician working with the scientific team to 
analyze data from a new test method that measures the percentage of the dose retained within an inverted 
test tube after a sprayed dose has been added. The project stakeholders are interested in whether a 
difference exists between candidate formulas, and between candidate formulas and a regular, existing 
product that does not have a no-drip claim. 

Comparison of Two Quantitative Variables 
The quality control team has compiled a set of lab data for several batches, including both the blend 
uniformity (BU) and content uniformity (CU) results for each batch. Open B26 API Test Data.jmp to 
access the data. Select Tables  Summary to get the summary statistic of the mean for B26 API blend 
uniformity % and B26 API tablet content uniformity % grouped by Lot. Figure 5.1 shows the summary 
table, which includes 4 columns and 46 rows of data. Save the summary table of results as B26 API Test 
Data By (Lot).jmp before using it for further analysis. Close the B26 API Test Data.jmp file to avoid 
confusion. 
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Figure 5.1: Summary Table of Test Results 

 

Be sure that the summary table B26 API Test Data By (Lot).jmp is open, and select Analyze  Fit Y by 
X. Move Mean(B26 API blend uniformity %) into the X, Factor box and Mean(B26 API tablet content 
uniformity%) into to the Y, Response box. Click OK to launch the analysis. Figure 5.2 shows a simple 
scatter plot of the location of each lot for the BU and CU results.  

Figure 5.2: Scatter Plot of BU and CU 

 

The scatter plot is not showing much of a trend between the two continuous variables. You would expect 
that increases in BU would be related to increases in CU. An example of this lack of trend are the three 
points that have CU values just under 102 that are in a horizontal orientation across the plot. The BU results 
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range between 101.5 to 105.5. However, you would expect that the three would be clustered closely about a 
single value of BU.  

One argument for the lack of a relationship between BU and CU is that the test results for each variable 
have some kind of unnatural skew in the distribution of results that interferes with the trend of a 
relationship that is expected. You can add histograms to the axis to visualize the distributions of BU and 
CU and assess this possibility. Use the red triangle menu to the left of Bivariate Fit of Mean to create 
histogram borders on the plot, as shown in Figure 5.3.  

Figure 5.3: Scatter Plot of BU and CU with Histogram Borders 

 

The distributions of the variables have a single, centered peak with symmetrical reductions in frequency as 
distance from the mean increases on either end of the distribution. The shape of the distributions is not 
likely influencing the analysis results since they are symmetric. Futher analysis can be completed without 
concern for error due to distribution shape. Use the red triangle menu again to deselect Histogram 
Borders and select Fit Line to obtain the linear regression analysis, shown in Figure 5.4. 
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Figure 5.4: Linear Regression Analysis 

 

There is no obvious pattern of fit that can be seen in the scatter plot, which now includes the sum of squares 
linear model as the bold red line. The Summary of Fit table shows the Rsquare fit 0.0343, which means 
that the linear model explains only 3.4% of the variability in content uniformity. Basically, the blend 
uniformity values cannot be used to predict the content uniformity results and offer little value as an 
upstream check of the content quality of the tablets produced.  

The information indicates that the strength of the linear model for the 45 batches studied is very poor, 
providing doubts about the predictive value of blend uniformity%. Inferential techniques are included in the 
output, enabling you to determine how the linear model might work to estimate the population of values for 
the commercially produced batches of the tablet product. The five-step guideline for inferential testing can 
help to organize your thoughts, possibly preventing embarrassing mistakes.  

First step: The population of interest is all batches of the tablet product that will be produced in commercial 
production. The sample for the test includes analytical testing data for 45 batches that have been randomly 
selected from the annual product report that was created for the first year of commercial production.  
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Second step: The null hypothesis is that there is no relationship between blend uniformity% values and 
content uniformity% values. The null hypothesis can also be defined as the slope of zero for a linear model. 
The alternate hypothesis is that there is a quantifiable relationship between blend uniformity% and content 
uniformity%. A slope that is greater than zero is expected since the relationship will likely be increasing 
content uniformity% as blend uniformity% increases. 

Third step: The assumptions of a linear model have a more complex form than the simple distribution 
checks that you completed for means. The linear model is created about the cloud of points. Calculations 
find the line representing the least squares distance between actual observations and a model line. The least 
squares line minimizes the average distance (in the Y axis) between all points and the line. In the scatter 
plot, a roughly equal number of points are located above and below the red model line. The vertical 
distance of a given point from the model line is defined as a residual and is illustrated in Figure 5.5. 

    residual=actual observed value – linear model estimate (at the same x value) 
)ˆ( yyresidual   

Figure 5.5: Residual Illustration 

 

The behavior of the residuals provides the information needed to test the assumptions for using the 
inferential test. The model line is expected to split the cloud of observation points equally, and the relative 
distances of the points from the line (residuals) should have a random pattern. Use the red triangle menu 
located to the left of Linear Fit under the scatter plot, and select Plot Residuals.The result is shown in 
Figure 5.6.  
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Figure 5.6: Linear Regression Diagnostics 
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The Residual by Row Plot and the Residual by X Plot both have a mean of zero, indicating an equal sum of 
positive and negative residuals. The Residual by X Plot illustrates a random pattern of residuals about the 
span of predicted values with a distribution that is of a normal shape. An important aspect of this plot is that 
the width of the residuals across the range for the mean is constant; if a cone shape were present, it would 
indicate changes in variance. Constant variance mitigates error in predictions made from a linear model. 
The Residual Normal Quantile Plot confirms that the residuals fit the assumption of normality extremely 
well because points are mostly along the red normal model line and are well within the parabolic 
confidence interval illustrated by the red segmented lines in an hourglass shape. If there were questions 
regarding the assumption of normally distributed residuals, the Residual by Row Plot and Residual by X 
Plot can help identify the observations that are causing the problem. 

Since the assumptions for the inferential tests have been met robustly through residual analysis, the test 
statistic for two techniques can be identified. Figure 5.4 includes an Analysis of Variance table and a 
Parameter Estimates table to interpret the inferential test results. The ANOVA test statistic of F=1.53 and 
the slope parameter estimate of 0.110 are the values of interest from the output. The intercept of the linear 
model has no practical value because it is used to test against the null value of 0 for the y-intercept. 
Because you cannot ever obtain a blend uniformity% (X axis) value of zero, there is no need to test for the 
significance of the intercept. 

Fourth step: The significance value from the ANOVA table and the Parameter Estimate table slope give the 
same result of Prob>F=0.2234. There is insufficient evidence to reject the null hypothesis (no relationship 
between the variables) due to a p-value that exceeds the default significance level of 0.05. The minimal 
slope of 0.011 seen in the linear fit analysis is close to zero and can occur due to random variation of 
sampling data from the population more than 22% of the time. 

Fifth step: There is no significant evidence of a relationship between blend uniformity% and content 
uniformity% for the tablet product. The conclusions from the inferential test of the linear model confirm 
what is seen in the scatterplot. Blend uniformity values offer very poor, unreliable predictions for content 
uniformity due to the insignificant relationship between the two. 

Comparison of Two Independent Means 
The example project for this section is the thick liquid medication that must flow through surgical tubing. A 
set of data has been compiled by the project leader. Hue needs to analyze the results for evidence of a 
difference in the flow of the liquid medicine due to two unique sizes of tubing.  

The tubing manufacturers maintain tight controls on the O.D., but the inside diameter (I.D.) is known to 
vary. A comparative test involving inferential statistics is very useful in this case in order to determine 
whether there is evidence of a significant difference in the average inner diameters between the sources. 
Hue needs to obtain robust information regarding possible differences in I.D. to determine whether the 
device needs to include the capability to adjust flow based on the tube source used to ensure the 
consistency in the delivery of the medication. A data file was created from a random sample of 3 mm O.D. 
tubes grouped by source. JMP makes it very easy to analyze for differences between the means of two 
groups by using Fit Y by X with a discrete group variable as X and a continuous variable as Y.  
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Open surgical tubing.jmp and select Analyze  Fit Y by X. Move tube ID to the Y,Response box and 
source to the X, Factor box. Click OK to get the output shown in Figure 5.7. 

Figure 5.7: Initial Oneway Analysis 

 

A dot plot of tube ID by source group is the initial output. The horizontal line in the plot represents the 
overall mean regardless of group. The spread of the dots shows the amount of variability in I.D. 
measurements within each group. It is difficult to tell by the plot alone if the amount of overlap in points 
indicates that a difference is likely for the population of tubes produced. An inferential test comparing the 
two group means can provide the clarity needed to determine whether the difference is significant. The 
five-step process for hypothesis testing helps keep the analysis organized and on track. 

The population of interest includes all 3 mm OD tubes available from both sources. The sample is the 
random collection of 48 tube sections from source A and 33 tube sections from source B.  

The null hypothesis is that no difference exists between the mean ID parameters of the two sources. The 
alternate hypothesis is that the mean ID parameters that differ.  

The information needed for the hypothesis test is obtained by using the hotbox options. The detail is 
conveniently added to the basic output of the Fit Y by X platform. Use the red triangle menu next to the 
Oneway Analysis header and select Quantiles, Means and Std Dev, and t-Test for the inferential 
testing.  
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Figure 5.8: Expanded Oneway Analysis 

 

The assumptions for a test of two independent means includes independent groups as well as sample data 
that follows a normal distribution, adequate sample size, or both. Hue’s team can clearly define the 
independence between the sources because the tube sections differ in color. The red box plots in Figure 5.8, 
which provide added detail about the shape of distributions, were added to the Oneway Analysis Plot by the 
Quantiles option. The output in Figure 5.8 shows  the symmetry of the box plots as well as medians that 
are equivalent to the means for each group. The sample sizes of more than 30 are more than adequate for 
the distributions in I.D. that are generally normal.  

The t-test table of the output includes the test statistics for the difference in means of t = (-2.63). The t-test 
provides results that are not dependent on the assumptions that the variances in I.D. results are equal for the 
two groups. The red triangle menu option Means/ANOVA/Pooled t is selected to obtain the results. 
However, the need to provide evidence of equal variance creates the potential for error. It is always best 
practice to start with the t-test that allows for unequal variance in order to mitigate the potential for error. 

The t-test table indicates that an average difference of (-0.15) exists between the I.D.s of the samples, with 
a standard error for the difference of 0.058. The amount of difference is statistically significant (Prob > 
|t|=0.0114). In other words, Hue can expect the amount of difference only 1.1% of the time due to random 
sampling alone when the null hypothesis is true. The null hypothesis of no difference between the means 
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should be rejected with such a low probability. If you place your pointer over the subject significance value 
and move it back and forth slightly, additional detail for the interpretation of the significance value appears, 
as shown in Figure 5.9. 

Figure 5.9: Pop-Up Help 

 

There is significant evidence of an average difference between the I.D.s for each of the tube sources. The 
information from the comparative testing of I.D.s indicates a result that is of statistical significance, but the 
team is unsure that the average difference will create a practical difference in the flow of medicine that is 
delivered by the device. The practical difference is the range of values included in the  95% confidence 
intervals for the difference in means included in the results.  

The output for the inferential test comparing the two means, shown in Figure 5.8, includes a 95% 
confidence interval for the difference. The team can expect that the tubes from source B will be between 
0.04 mm and 0.27 mm smaller in I.D. than the source A tubes. Hue shares the range of expected differences 
for the population with the engineering team. They use the expected difference interval values to calculate 
the resulting flow rate differences. The flow rate difference for tubes that differ by as much as 0.27 mm in 
I.D. is not enough to change the dose delivered by enough to be practically meaningful. In short, the 
consistency of tube I.D. within the sources is much better that expected, and there is no need to make flow 
adjustments based on the source of the tubes. 

Unequal Variance Test 
The t-test compares average results of two independent groups to determine whether significant evidence of 
a difference exists. Another aspect of difference that could be relevant to project stakeholders involves the 
variation within each group. If the variation within each group is significantly different, a conclusion on 
differences in the means might be prone to error. You can add a test for unequal variances to the output by 
using the red triangle menu next to Oneway Analysis of tube ID By source and selecting Unequal 
Variances. The output is shown in Figure 5.10. 
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Figure 5.10: Unequal Variances Analysis 

 

The population and sample have been defined previously for the t-test and do not be repeated here. 

The null hypothesis for an unequal variance test is that the standard deviations for the groups are equal. The 
alternate hypothesis is that the standard deviations differ. 

The unequal variance test includes the same assumptions as the t-test for means. It has been previously 
established that the data are distributed normally, are of adequate sample size, and the groups are known to 
be independent. The Tests that Variances are Equal plot provides a comparative view of the standard 
deviation of each group compared with the pooled standard deviation for all of the data.The results of 
several tests are provided in the summary table below the plot. To see detailed information about the 
output, press the Shift and ? keys on your keyboard to change the pointer to a question mark. Then position 
the pointer over one of the tests, and left-click to see detailed information from the JMP documentation. 
This quick reference is available in JMP for the output of all analyses.  

The Levene test works well for the example, which indicates a test statistic of F=8.2988 with 1,79 degrees 
of freedom for the respective numerator and denominator. The numerator is the number of group 
comparisons; the denominator is the number of comparisons of individual observations after group 
comparisons are subtracted. The Levene test has a small significance value (p=0.0051); therefore, the null 
hypothesis is rejected. There is evidence of a significant difference in variances in the inner diameters of 
tubes for source A and B.  

The Welch’s test adjusts for the unequal variance and indicates evidence (p=0.0114) of a significant 
difference between the inner diameters of tubes for source A and B. The conclusion of the significance test 
for a difference between means does not change since the unequal variance did not change the amount of 
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evidence that resulted from the test. This is not always the case and running a test for unequal variance is 
best practice for analysts to mitigate the potential for statistical error. 

Matched Pairs Tests 
The report leads to additional work by the engineering team to identify whether the differences in tube 
sources result in relevant flow differences. The team used a target medicine formula for the flow 
calculations, but there are formulas with varying physical properties that are used with the device. The 
differences in physical properties of the medicine will likely change the flow characteristics of the liquid 
moving through the tubes. A very effective way to test for an average difference in flow is to test a sample 
from each tube source with each formulation and determine the differences in flow. The team obtained 35 
samples that represent the population of liquid medicines dosed by the device. A tube from source A that 
has an I.D. of 1.83 mm and a tube from source B with an I.D. of 1.68 mm are selected. The tubes are 
cleaned with a flush of water before the trials to remove all residue from the flow trials. The order in which 
the tubes are used is random to mitigate the potential for error due to order of treatment.  

The following steps use data from flow testing to create a distribution of differences in flow between the 
tube sources for various liquid medications. 

1. Open the data set flow testing of medicines.jmp to visualize the average difference in flow that 
exists between the tubes for the various medicines.  

2. Select Cols  New Columns  to add a column to the table. Type the variable name difference in 
the Column Name field.  

3. Click on the Column Properties box to access the Formula Editor. 

4. Set up the formula to get the difference between tube A flow and tube B flow, as shown in Figure 
5.11. 

Figure 5.11: Formula Editor 

 

  



112  Pharmaceutical Quality by Design Using JMP  

 

The difference column provides information about the difference in flow between tube sources for each of 
the 35 formulations. Select Analyze  Distributions and the Stack red triangle menu option to obtain the 
distribution of the differences, as shown in Figure 5.12. 

Figure 5.12: Formula Editor 

 

The visualization of sample differences shows that the distribution is basically normal since the median of 
2.5 is very similar to the mean of 2.2 and the histogram is symmetrical. The team can be  95% confident 
that the expected average difference for the population is between 1.6 and 2.9. The extremes include a flow 
for tube A that is 6.3 units greater than tube B, as well as a tube A flow rate that is 1.2 units less than tube 
B. Using the distributions platform to visualize the sample before inferential testing is started is always 
good practice since you can use it to test assumptions. 

The flow in each tube is likely to be dependent on the medicinal formula due to changes in physical 
properties. Inferential testing for an average difference of two dependent groups is known as a Matched 
Pairs test. The groups are the two sources of tubes. Working through the five steps of a hypothesis test 
keeps the team organized to ensure that error is minimized. 

The population is all medications that will be metered through the device using both tube sources. The 
sample includes 35 random samples of the different medicinal formulas. 

The null hypothesis is that zero average difference in flow exists between tube sources for the population of 
medicines that will be metered by the device.  

0)(_: do MdiffmeanH  

The alternate hypothesis is that an average difference other than zero exists (either negative or positive)  for 
the population of medicines that will be metered by the device. 

0)(_: da MdiffmeanH  

The team can use the information in Figure 5.12 to check assumptions, which are the same as they are for a 
test for a single mean,  covered in chapter 4. The distribution of the sample should be normal or have a 
large sample size. The median difference of 2.49 is similar to the mean of 2.24, the histogram and box plot 
display symmetry, and the sample size of 35 is adequate for the shape of the distribution that is close to 
normal with no outliers. With assumptions met, obtain the test statistic by selecting Analyze  
Specialized Modeling  Matched Pairs, which creates the output shown in Figure 5.13. The test 
statistic of t = (-7.18) is obtained for the sample average difference of (-2.2361) and standard error for the 
difference of 0.3115 for the flow of tube A subtracted from tube B.  
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Figure 5.13: Formula Editor 

 

The value of (Prob > |t| <0.0001) for an average difference existing between the tubes for the population of 
all medicinal formulas is highly significant. Therefore, the null value of no difference can be rejected.  

There is significant evidence of an average difference in flow for all medicines that will be used by the 
metering device. The practical interpretation of the difference can be completed using the 95% confidence 
interval for the difference. The entire range of differences is negative indicating that source A tubes have a 
larger inner diameter than source B tubes. It is reasonable to expect that tubes from source B have an inner 
diameter that is between 1.6 mm and 2.9 mm smaller than source A tubes. 

More Than Two Groups 
Situations arise regularly involving measurable data that contains more than two groups. An example is the 
manufacture of a pharmaceutical product that involves outcome measurements that come from any of four 
units of processing equipment. Tanya is working with the scientific team responsible for the no-drip drug 
formulation project involving multiple groups. Stakeholders of such projects typically want to determine 
whether a real difference exists in outcomes between the groups. If differences exist, the amount of 
difference needs to be known. The example explored in this section includes data from a liquid product that 
is applied to a patient’s skin with a metered spray. The product label includes a no-drip claim since the dose 
is designed to cling to the skin surface. The team has data from multiple candidate formulas and is 
interested in running a statistical test to determine whether a difference exists. 

The first inclination might be to run several comparisons between two groups and compile the information. 
The problem is that the level of significance used to detect evidence of a difference applies to one 
comparison. The default of 0.05 was used in the previous examples as the level of significance. When more 
than two groups are involved, each group involves more than one comparison. The 0.05 level of 
significance can suggest evidence of significance that is in error for multiple groups because it is too high 
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for multiple comparisons. The problem of detecting significance in error for several comparisons is called 
multiplicity. A more appropriate technique for comparing more than two groups is analysis of variance 
(ANOVA). 

ANOVA is a popular technique. This example uses the simplest type of the technique known as oneway 
ANOVA. Oneway refers to one type of grouping variable, which is product candidate in the example. If the 
team were interested in the product candidate and the shift of production, the technique would be a twoway 
ANOVA. ANOVA compares the average amount of variability present within each group as a result of  
differing individual observations to the variability between the group averages. Evidence of significance 
builds as the variability between groups exceeds the average variability within the groups. The Help menu 
in JMP includes information about the topic; just search for oneway analysis. 

The analysis for evidence of a significant difference in percentage retained between the candidate drug 
groups starts by opening liquid no drip testing.jmp shown in Figure 5.14. 

Figure 5.14: Data Table for No Drip Testing 
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Notice that the data table excludes the observations for the group D1. The Rows panel at the lower left of 
the data table indicates that 10 of 40 rows have been excluded and hidden from the analysis. Make sure that 
the data table has the exclusion present before continuing. 

It is advisable to perform high-level exploration of the data by selecting Analyze  Distribution, 
including the test product grouping variable and the % retained data. However, this discussion does not 
include that exploration for brevity’s sake. The data is in a stacked table format, which is suitable for 
running the oneway ANOVA. Select Analyze  Fit Y by X to open the dialog box shown in Figure 5.15. 
Another quick way to launch Fit Y by X is to click on the icon under the main menu that includes a Y- and 
X-labeled axis. 

Figure 5.15: Fit Y by X Dialog Box 

 

A quick guide is located in the lower left of the dialog box to indicate the type of analysis that will be 
launched based on the column types of the X, Factor and the Y,Response. Note the blue ramp indicator 
of a continuous modeling type shown as a response in the upper half of the vertical axis of the guide. The 
red bars indicator of a nominal modeling type is shown in the right half of the horizontal axis as the factor. 
The upper right cell of the guide indicates that a oneway analysis is used. Move % retained to the 
Y,Response box and test product to the X, Factor box, and click OK to get the oneway dot plot shown 
in Figure 5.16. 



116  Pharmaceutical Quality by Design Using JMP  

 

Figure 5.16: Oneway Analysis 

 

Use the red triangle menu next to the Oneway Analysis of % retained By test product header to select 
the Means/Anova option. Use the same red triangle menu again to select the Means and Std Dev option 
to get a table of group means and standard deviations. An updated oneway dot plot and summary of fit 
results are shown in Figure 5.17. 

Figure 5.17: Oneway Plot and Summary of Fit Table 

  

A set of diamonds is added to the dot plot to represent the group mean as the middle horizontal line, with 
95% confidence interval horizontal lines at the vertical edges of the diamond. Overlap of the confidence 
intervals for the groups is a quick visual indicator of a lack of difference between the group averages. The 
Summary of Fit results indicate how well the groups explain the variation in the % retained output; an 
Rsquare of 0.53 is a 53% explanation of variation. The adjusted Rsquare is used to compare models of 
differing numbers of groups on the % retained output, which is not needed in the example. The average of 
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% retained regardless of groups is 92.7, the amount of variability is the root mean square error of 5.4, and 
30 observations are included in the analysis. The table of group means and standard deviations is shown in 
Figure 5.18. 

Figure 5.18: Oneway Plot and Summary of Fit Table 

 

The five-step method for hypothesis testing applies for oneway ANOVA. The population of interest for the 
example is all commercially produced batches for the three candidate formulas. The sample includes ten 
product units that have been tested from each of three candidate batches, which totals 30 observations. The 
null hypothesis is that the averages of % retained for the three candidate formulas are equal. The alternate 
hypothesis is that at least one of the candidate batches has an average % retained that differs from the 
others. The most important assumption for ANOVA is that the group variances do not differ. A quick check 
of the equal variance assumption reveals that no standard deviation for any group is more than two times 
more than the others. The means and standard deviations table includes the smallest standard deviation for 
ND3 of 4.3. The largest standard deviation of 6.3 for the ND1 group is less than two times the standard 
deviation for ND3, so the assumption is not violated. The test statistic and evidence of significance are 
shown in Figure 5.19. 

Figure 5.19: ANOVA Table and Means Table 

 

The first line of the Analysis of Variance table includes details on the variance between the groups. The 
degrees of freedom value is calculated by the number of comparisons minus 1, which is 2 for the three 
groups compared. The sum of squared differences of the two comparisons between group means is 873.6, 
and the mean square is 436.8. The second line of the table includes detail for the within groups variability, 
which is also known as the model error. The total degrees of freedom is the sample size minus 1, which is 
29. The within term of the analysis is the difference between the total degrees of freedom and the degrees 
of freedom for between group comparisons, which is 27. The within sum of squares is 787.73 and the mean 
square for within variability is 29.2. The test statistic for the hypothesis test is the F ratio, which is 
calculated from the between mean square divided by the within mean square, which is 14.97. The evidence 
of significance increases as the F ratio increases. However, the F distribution is dependent on the between 
and within degrees of freedom. The Prob>F value is the probability that the difference between sample 
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means of the groups is extreme as it is, and you can expect the population to have equal means, which is 
<0.0001. The result indicates that there is highly significant evidence that at least one of the group means 
differs from the other group means. The means and standard deviations table indicates that ND1 has less 
average % retained than the other two groups. Keep the oneway analysis open for the next analysis. 

The data table includes a candidate formula that is not expected to meet a no-drip label claim. Tanya 
expects that the average percent retained of the three no-drip formulas differ from the regular formula. The 
next analyses involve running ANOVA on four groups to investigate differences. Position the pointer over 
the lower row options triangle shown in Figure 5.20, and right-click to get the options. 

Figure 5.20: Quick Access to Row Options 

 

Select the Clear Row States option to clear away the excluded rows of the D1 group, as shown in Figure 
5.21. 

Figure 5.21: Available Row Options 

 

The full data table is used to repeat ANOVA to determine whether evidence of a significant difference 
exists between the group means. Open the oneway analysis output and use the red triangle menu next to 
Oneway Analysis of % retained By test product to open the analysis options shown in Figure 5.22.  
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Figure 5.22: Analysis Options  

 

Select Redo  Redo Analysis to get a new oneway analysis for the full data table with four groups, 
shown in Figure 5.23.  
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Figure 5.23: Oneway Analysis of Four Groups 

 

The first two steps of the hypothesis test are the same as the analysis of three groups. The main assumption 
for ANOVA of equal variance is not met. The largest standard deviation of 19.5 for the D1 group is nearly 
five times larger than the standard deviation of 4.3 for group ND3. Since the assumptions are not met, the 
remaining analysis output might lead to incorrect conclusions. More detail is available to continue the 
analysis. Use the red triangle menu next to Oneway Analysis of % retained By test product and select 
Unequal Variances, as shown in Figure 5.24.  



Chapter 5: Working with Two or More Groups of Variables   121 

 

Figure 5.24: Unequal Variances Analysis Option  

 

The unequal variances detail is added to the analysis output, as shown in Figure 5.25. 

Figure 5.25: Unequal Variances Analysis Detail  
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The output for unequal variances includes a plot of the standard deviations with a horizontal segmented 
decision limit line. Notice that the marker for D1 exceeds the decision limit by a large amount. The table 
underneath the plot lists the summary information used for the four tests of significance in the table below 
the summary information. There are specific scenarios intended for each of the significance tests; you can 
access these through the Help menu. All four tests indicate significant evidence that at least one of the 
variance values for at least one group differs from the others. The Welch’s test is included below the 
unequal variance output.  

The Welch’s test includes an adjustment for unequal variances for the F test for differences between the 
group means. The adjusted F Ratio of 17.2 for a test with 3 degrees of freedom used for between 
comparisons and 19.14 degrees of freedom for within comparisons yields a highly significant Prob>F of 
less than 0.0001. Regardless of unequal variances, there is highly significant evidence of a difference 
between the group means.  

Project stakeholders are most interested in a difference between the regular product and the no-drip formula 
candidates. Analysis to compare means can provide the needed detail. Use the red triangle menu next to 
Oneway Analysis of % retained By test product, and select Compare Means  Each Pair, 
Student’s t to get the detail added to the oneway analysis output, shown in Figure 5.26.  
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Figure 5.26: Compare Means Detail   

 

The team uses this wealth of information to fully explore the differences between the means. The team 
includes two of the more basic analyses to communicate the results to stakeholders. The oneway plot with 
the Each Pair Student’s t 0.05 is an easily interpreted graphic used to show that the regular product has 
significantly lower % retained than the no-drip candidate formulas. The Connecting Letters Report 
includes additional detail indicating that the regular product has a lower average % retained than the no-
drip candidates because it is the sole member of C. The groups ND2 and ND3 are identified as having the 
highest average % retained noted by A.  
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Practical Conclusions 
Inferential tools in JMP easily provide robust conclusions about relationships between variables. The color 
highlighting of the significance values and the Help pop-up information provide details to aid in the 
interpretation of the results. Kim has been able to obtain robust results for the lack of any relationship 
between the blend uniformity % and the content uniformity% for the tablet formula. The evidence refutes 
the regulatory expectation that a blend can be sampled and tested to predict the uniformity of active 
ingredient in the tablets. Kim’s team used the robust statistics from JMP to justify the elimination of the 
ineffective blend uniformity testing for the product. JMP provided the tools needed for the team to realize a 
significant reduction in quality costs; the request to eliminate blend uniformity testing was approved by the 
regulatory agency. The down side to this finding is that the operations team has no predictive indicator 
from the blend intermediate material, which could be used to save on tablet compression resources for 
product batches that do not meet specifications. The team will be better served by using the strategies and 
tactics outlined in this book to study the process and remove as much variability as possible and eliminate 
the potential to make bad batches of product. This is the essence of Quality by Design.  

Hue provided a report to the design team of the medical device used to meter the liquid medication in 
feeding tubes. The significant evidence of an average difference in tube I.D. between sources is an 
important consideration to ensure that the device operates consistently regardless of the tubes that are 
available to the patient care teams who use the device. The follow-up study for medicine flow involving a 
matched pairs design provides robust evidence that the differences in I.D. result in an average difference in 
flow for the population of medicine formulas that the device is intended to meter. The design team must 
ensure that they deal with the differences so that customers realize consistent delivery of medicines for 
patients. The engineering team challenged their initial conclusions by including the expected source of 
variability due to physical properties differences (that is, viscosity). Hue is learning that the best solutions 
come from sound statistical analyses complemented by subject matter expertise to mitigate error as findings 
are applied in the real world. 

Tanya was able to quickly analyze the % retained data to conclude that a significant difference exists 
between the four drug candidate groups. The stakeholders now have confidence that two no-drip drug 
candidates have higher performance that relates to the no-drip claim and are worthy of further 
development. All no-drip formulations have significantly higher % retained than the regular product, which 
confirms the robustness of the formula candidates. The information contains great commercial value to 
quantifiably justify the no-drip claim. The output from the oneway analysis is added to the product 
submission to mitigate any questions about the no-drip claim that might come from the regulatory agencies. 
Mitigation of risk through sound statistical analysis is the definition of Quality by Design. 
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Exercises 
E5.1—The analytical data used for an exercise in chapter 1 includes two different test methods that are 
explained to be equivalent. Big mistakes can be made when assumptions are accepted without using 
analysis to confirm. You want to use the techniques learned in this chapter to test for a difference in the 
response between the two techniques. 

1. Open the file analytical data.jmp. 

2. Use the Fit Y by X platform to run a pooled t-test (within the hotbox options) and test for 
differences between the two methods. 

3. The pooled platform assumes that the variances of responses within each method are equal. Use 
the unequal variance test (within the hotbox options) to confirm. Do the results of this test change 
your conclusions? 

E5.2—You have been involved with a surgical tray manufacturer regarding the seal strength of the units 
quantified by the amount of pressure that each withstood before bursting. There is evidence of a difference 
in the results based on manufacturing shift. The techniques of this chapter can provide the evidence needed 
to determine of the differences in pressure at seal failure are significant. 

1. Open burst testing.jmp. 

2. Use the Fit Y by X platform to test for burst test results in Hg due to shift. 

3. Compare the means with the Each pair, Student’s t option to explain which shifts differ and by 
how much. 

4. There has been talk that the day of the week might influence results. Create a new variable named 
“day of week” and use the formula menu for Date and Time to find the Day of the Week 
function and calculate for date and time. The user assigns 1 for Sunday and number the days 
consecutively ending with 7 for Saturday in the formula. Change the column properties to 
Numeric, Ordinal for analysis. Run Fit Y by X to test for a difference in burst test results in Hg 
by day of week. 

5. How would you summarize the results for both statistically significant differences and differences 
of practical relevance? 

E5.3—The API test data comparison between blend uniformity and content uniformity was completed in 
this chapter. Another relationship is assumed because the average content uniformity is expected to be 
related to the composite assay values. The method for composite assay involves a random collection of 10 
tablets from in-process samples collected throughout the run of the tablet manufacturing process. The 
samples are ground up and dissolved into a solution, and an aliquot is removed for chromatography testing. 
It is reasonable to expect that the average of the 10 individual tablet assays will be strongly related to the 
composite assay.  

1. Open the file B26 API Test Data.jmp. 

2. Create a summary set of data by using the Tables  Summary menu. Choose B26 API tablet 
content uniformity and B26 API assay % with Mean as the statistic and grouped by Lot. The 
assay will be a mean of 1 entry and will be the same value as the parent table; you can use column 
properties to eliminate Mean( ) from the column name to keep things clear.  
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3. Analyze the two variables for a relationship between the mean of content uniformity and 
composite assay. Is there significant evidence of a relationship? How strong might the relationship 
be between the two variables? 

4. How would you report the findings to the leadership teams of the quality and analytical groups? 

E5.4 — Implant data were studied in chapter 3. The conclusion was that chamfer depth is not capable to the 
minimum depth specification. The operations team researched their records and was able to find machine 
data on the RPM of the machining tool for each of the samples. A great first step in unlocking the clues as 
to why capability is suboptimum is to test for a relationship between the speeds and the depth results.  

1. Open the file dental implant dimensional checks with speeds.jmp. 

2. Analyze the data to test the mean chamfer depth for differences due to the speed setting 
groups. 

3. Would any differences in variation within groups interfere with your ability to test for a significant 
difference? 

4. How would you summarize the results of your analysis to project stakeholders? 
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Overview 
Development of new products and processes is the life blood of a healthy organization. The pharmaceutical 
industry has gone through a revival since guidelines promoting Quality by Design (QbD) were published 
by the International Council on Harmonisation (ICH), a consortium of regulatory bodies from around the 
world. ICH E8 and ICH E9 guidelines were published to promote risk-based development practices with 
evidence-based justifications for the identification of the design space to be studied for products and 
processes. Product development teams must demonstrate how to produce a product with robust processes.  

The data-driven tools needed to achieve QbD goals have been a mainstay for many other industries. The 
techniques have been used and greatly developed over the last 40 years for industries including automotive, 
aerospace, and semiconductor manufacturing. It is more important than ever for industries to adopt data-
driven practices to understand the causational relationships between process inputs and outputs. The 
modernization of the development process for pharmaceutical products requires teams to utilize data 
visualization techniques as well as planned, structured, multivariate experiments to understand the design 
space well enough to create effective quality controls. JMP provides a rich set of data visualization and 
analysis tools in an easy-to-use package that is uniquely qualified to meet the demands of product 
development through QbD practices. 

This chapter emphasizes the value and importance of structured, multivariate experimentation. The term 
structured, multivariate experimentation is favored over design of experiments (DOE) because it is specific; 
DOE is a term that has been inappropriately applied to cover all kinds of experiments. You should be able 
to answer the question of why leadership should support structured, multivariate experimentation to 
efficiently learn about processes at the earliest possible stage of development. 
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The Problems: Developmental Experiments Lack Structure 
Jorge is a senior scientist and the lead for a development team involved in a creating a new product. He 
obtained a JMP license and has taken advantage of training on both QbD and the use of structured, 
multivariate experimentation. Jorge knows that the management team has been directing teams to include 
elements of QbD into drug applications. Unfortunately, leadership continues to embrace experiments that 
are based solely on principal science and experience; teams find settings that get results for one output at a 
time. Current practices are outcome-based; inputs are manipulated randomly until the outputs meet 
established goals. The trial and error involved can and does extend development times, making it very 
difficult to estimate when development will be completed.  

Jorge knows that he can dramatically reduce the development cycle while optimizing outputs by 
incorporating the structure of multivariate designs. This chapter deals with the challenges of working 
against a developmental culture that is based on unstructured, outcome-based experimentation by justifying 
the hidden value of structured, multivariate experimentation to leadership. 

Why Not One Factor at a Time? 
Scientific experimentation, throughout the academic career of a technical professional, is taught by 
manipulating one input (factor) at a time (OFAT) while all others are held constant. Science educators 
stress this concept with the hope that the student will stay on task troughout the “scientific journey”and not 
lose track of the relationships between the manipulations of each input and the changes in outputs. While 
this methodology sounds reasonable for empirical science, it is lacking and inefficient with regard to the 
analysis of the data. The comparison of a small, three-input hierarchical experiment to a multivariate design 
quickly illustrates the shortcomings of OFAT. 

Figure 6.1 includes the table of values from a design that is intended to explore a pharmaceutical process 
involving the spray rate of a liquid solution on a bed of powder, the amount of airflow used to fluidize the 
powder, and the temperature that is set and controlled by the equipment. Each of the inputs is studied at low 
(-1), medium (0), and high (1) settings. The output is a critical quality attribute (CQA), which is expected 
to be maximized in value for best results. The team decides to start experimenting in a sequential set of 
steps for each factor. The best result will be retained and passed on for the study of the other two factors. 
For instance, run 1 includes the low level of spray rate with the air volume and temperature at medium 
values. Run 2 includes the medium level of spray rate with the other two held at the medium level. Run 3 
includes the spray rate at the high level with the other two remaining at medium. The best result from the 
first three runs came from the high spray rate, so the high spray rate is fixed for the remainder of the runs. 
This sequence is repeated for the air volume and temperature variables.The last run includes settings that 
are estimated to have produced the highest CQA output of 13.66. 
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Figure 6.1: 3-Factor, 10-Run OFAT Data 

    

An alternate design including a multivariate structure is shown in Figure 6.2. This design also includes 10 
runs, but JMP software is utilized to find a randomized set of factor levels that best explore the 10-run 
space. Notice that the combinations of factor levels vary randomly throughout the 10 runs. The best result 
from the set of experiments is 13.67, which admittedly does not seem much different from the OFAT 
design. The subtle details of how the inputs work to change the CQA will come from the statistical analysis 
of the data. This is where the issues of the OFAT design are brought into the light of day.  

Figure 6.2: 3-Factor, 10-Run Multivariate Custom Design Data 

 

Before the team works to detect the differences in design, it will be helpful to list the basic concepts of 
what is being studied. All possible inputs at all possible levels make up the universe of possible studies that 
can be designed for a subject process. Development teams must narrow down factors in this space to a 
small number through principal science, professional experience, and industry knowledge in order to assess 
quality risks and mitigate them. There is a balance between the amount of information desired from the 
experiments and the amount of resources available for experimentation. This balance is reflected in how 
many factors and runs can be incorporated.  
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The experiments are intended to study the space created by the number of factors and levels included in the 
design plan. This space is a portion of the infinite universe of possible factors and levels and is known as 
the design space. A good experimental design should provide robust information about how changes in the 
factors affect changes in the output for a large proportion of the design space. The ultimate goal of 
experimentation for a commercial product is to find the optimum combinations of factors and ranges of 
settings within the factors that are likely to produce robust results that meet and exceed all requirements. 
The optimized combination of process factor settings typically forms the process recipe documented for 
manufacturing. An experimental design that limits the amount of information that can be gained adds risk 
and uncertainty to the process and will likely produce process controls that are not optimum. A 
suboptimized process is likely to add cost to production and increase the potential for products that do not 
meet requirements. Added risk and uncertainty in the highly regulated pharmaceutical and medical device 
industries is always problematic. 

One simple way for a team to assess how well an experimental design covers the design space is a 
scatterplot matrix. The following steps create the plot: 

1. Open the data set OFAT 3F 10R.jmp. 

2. Select Graph  Scatterplot Matrix. Move the variables spray rate, air volume, and 
temperature into the Y,response box, and click OK to activate.  

3. Double-click the title Scatterplot Matrix and change it to “OFAT 3F 10R – Scatterplot Matrix.” 

4. Open the data set multivariate custom design 3F 10R.jmp and create a scatter plot as in step 2. 

5. Double-click the title Scatterplot Matrix and change it to “multivariate custom design 3F 10R – 
Scatterplot Matrix.” 

6. There is a checkbox with a black downward arrow located in the lower right corner of plots that is 
used to arrange plots. Click on the checkbox of the multivariate custom design 3F 10R – 
Scatterplot Matrix window to select it. 

7. Open OFAT 3F 10R – Scatterplot Matrix to add a check in the checkbox and to click on the 
downward arrow at the lower right of the plot to view the arrange options. 

8. Select the Combine Windows… option to get the Combine Windows dialog box window used 
to create a dashboard of plots. 

9. Use the default options of the Combine Windows dialog box window, and click OK to get the 
combined scatterplot, shown in Figure 6.3. 
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Figure 6.3: Comparative Scatterplot Matrices 

 

Figure 6.3 includes a comparative set of scatter plots for the OFAT and multivariate custom design. The 
team does not need a graduate-level statistician for them to quickly identify the shortcomings of the OFAT 
design. Large areas of the design space have no factor combination points in the OFAT design, and the 
multivariate custom design space covers all but a relative few factor combinations. The design space is 
used to make predictions on how the inputs studied have an effect on outputs. Prediction error is greatly 
reduced as more of the design space is covered by the set of experiments. Moving forward with a marginal 
design space is likely to add significant error to the conclusions made by the scientific team and should be 
avoided. 

The analysis of statistical models is covered in detail in later chapters. However, the simple model plot and 
effect summary for each design are relatively easy to interpret and provide detail regarding the model 
comparison. The following steps create a model with the OFAT data: 

1. Make sure that OFAT 3F 10R.jmp is the open and active window. 

2. Select Analyze  Fit Model to open the Model Specification window.  

3. Select CQA and drag it to the Y box.  

4. Select spray rate, air volume, and temperature; move all three to the Construct Model Effects 
box, as shown in Figure 6.4.  

5. Leave the default options in place, and click Run to get the output. 
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Figure 6.4: Model Specifications 

   

The Actual by Predicted Plot illustrates the strength and direction of the influence of the model on the CQA 
output. The model output is summarized in Figure 6.5 to illustrate the fit (r-square = 0.77), significance 
(p=0.026), and the effects of the three process inputs and of the CQA output.  

Figure 6.5: OFAT Model Results 
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Next, the team creates a model for the multivariate custom design. The OFAT data includes only enough 
information to study individual inputs. The design includes enough information to study the individual 
inputs as well as the combined effects for two variable combinations (two-way interactions).  

1. Make sure that multivariate custom design 3F 10R.jmp is the open and active window. 

2. Select Analyze  Fit Model to open the Model Specification window.  

3. Select CQA and drag it to the Y box.  

4. Select spray rate, air volume, and temperature so that they are shaded in blue. Select Factorial 
to degree in the Macros drop-down box so that the individual inputs and interactions show in the 
Construct Model Effects box, as shown in Figure 6.7.  

5. Leave the default options in place, and click Run to get the output. 

Figure 6.6: Model Specification Window with Macros Listed 
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Figure 6.7: Model Specification Window with Individual Inputs and Interactions 

 

Figure 6.8: Multivariate Model Results 
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The multivariate model output is summarized in Figure 6.8 to show the fit (r-square = 0.99), significance 
(p=0.0068), and the effects of the three process inputs and of the CQA output.  

The comparison of the two models illustrates the value of the multivariate approach. The fit of the models 
provides the first advantage of using the multivariate custom design: OFAT modeling explains 77% of the 
variability in the CQA, and the multivariate custom design explains 99%. With the same number of runs, 
the multivariate custom design explains nearly 30% more of the variation in CQA, which is much more 
efficient. The OFAT design allows for the team to study only the three individual factors; the multivariate 
custom design studies the three individual factors as well as the interactions between factors. The spray rate 
in the OFAT design is shown as providing the most influence (PValue=0.021, significant) on CQA, 
followed by air volume (PValue=0.078, marginally significant) and temperature (PValue=0.709, no 
significance). The results of the multivariate custom design analysis indicate that the interaction between 
spray rate and air volume is the most influential factor affecting the CQA. The interaction (PValue=0.0025) 
is 10 times more significant than the spray rate factor identified by OFAT. Incorrectly focusing on 
changing the spray rate to optimize the CQA will not be reliable without understanding the influence of air 
volume. Costly errors are much more likely to occur from reliance on OFAT as opposed to the multivariate 
custom design. More detailed comparisons are available and are discussed in future chapters. The  full 
diagnosis of experimental models is discussed in chapter 9 and analysis of experimental data in chapter 11. 

Data Visualization to Justify Multivariate Experiments 
Justification for using multivariate experiments should include data visualization to illustrate the value that 
will be added to the product development process. One way to accomplish this task is to collect information 
on a sample from the historical records of development projects and compare that to the what can be 
expected once multivariate methods are utilized. The data for projects utilizing multivariate experiments 
can be actual results from studies that are part of a phase-in strategy. Another option is to choose data from 
a small number of projects and simulate the use of multivariate studies through the experimental design 
plans. The retrospective approach can quantify a reduction in the number of experiments possible to gather 
the same amount of or more information than was found with the previous OFAT development strategy. 
JMP includes a seemingly infinite number of graphical options to illustrate the trends; the following 
example below is only one set of techniques. 

The data set development overview.jmp includes a random sample of 26 projects with a product type 
variable, the number of batches made by developmental stage, a variable to note which projects used 
multivariate experimentation, and the total weeks that elapsed during the product development process. 
Open the development overview.jmp data set in JMP and select Cols  New Column to create a new 
column. Type Batches Made as the Column Name, and select Column Properties  Formula to open 
the Formula Editor. Enter the formula to add the following columns together: Lab Batches + Scale Up 
Batches + Confirmation/Validation Batches. 

It is useful to group the data into the type of product for the visualization. The data does not include product 
type, but the projects variable includes the name of project with the product type. You can recode the 
variable to create a new column that groups the three products by type. Click on the project column to 
highlight it. Then, select Cols  Recode to open the recode dialog box. Leave the default for New 
Column, and change the Name by entering product type. Use the red triangle menu next to the projects 
header to select Split On, as shown in Figure 6.9, to get the Split On options window. Select the Last 
Word radio button and Recode to execute the choice, as shown in Figure 6.10. The new grouping is 
shown in Figure 6.11. 
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Figure 6.9: Column Recode Options 

 

Figure 6.10: Split On Options 
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Figure 6.11: Recode Window Ready to Execute 

 

The data now includes a grouping variable that identifies the three product types developed by the R&D 
team. A simple graphic of the differences between the number of experimental batches as well as develop 
time (in weeks) by the product type helps to illustrate the value of structured, multivariate experimentation. 
Use the Graph Builder to create a graph matrix by completing the following steps: 

1. Select Graph  Graph Builder.  

2. Click Dialog to open the dialog window shown in Figure 6.12.  

3. Select the Graph matrix check box in the Options area.  

4. Move Weeks of Development and Batches Made into the Y box, move Product Type to the 
Group X box, and move Multivariate Experiments into the color box. 

5. Click OK to produce the plot shown in Figure 6.13. 
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Figure 6.12: Graph Builder Dialog Box 

 

Figure 6.13: Graph Builder Plot 
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The color is more vivid in the JMP application. But there is value in identifying batches made with 
multivariate experimentation. You can customize the points in the plot with unique shapes to clarify the 
interpretation of the plot regardless of where it is published. Place your pointer on no in the Multivariate 
Experiments legend and right-click to get options. Select Marker, and then select the open circle shape 
shown in Figure 6.14.  

Figure 6.14: Changing Markers 

 

Place your pointer in the white space of the plot, press the Ctrl key, and right-click to access additional 
options for the entire graph matrix. Select Graph  Marker Size  XXXL to enlarge the marker 
(observations) of the plot, shown in Figure 6.15. This change will make the differences as clear as possible 
for leadership regardless of how the plot is published.  

Figure 6.15: Changing Marker Size 
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Figure 6.16: Customized Matrix Plot 

 

The customized matrix plot shown in Figure 6.16 provides to leadership a picture illustrating the value of 
using multivariate experimentation to reduce both development time as well as the resources needed to 
create batches. It is clear from the plot that the projects involving multivariate experimentation result in 
between 50% to 70% fewer batches required than the OFAT projects. The weeks of development are 
reduced by at least 43%.  

Using the Dynamic Model Profiler to Estimate Process Performance 
The value of multivariate experimentation becomes very clear when you use the profiler options available 
in JMP. Once a model has been created for each of the outputs of interest, you can use the profiler to gain 
insights on what can be expected from the population of batches that will be made for commercial scale. 
You can explore a seemingly infinite number of input combinations without using the extensive resources 
required to make actual batches of product. Utilization of an experimental model in this way is the most 
efficient way to optimize products and processes.  

A desirability function in the profiler offers a practical interpretation of the space where a process is likely 
to provide the best results. This section returns to the simple, experimental model for a granulation process 
introduced in the first section of this chapter. This example shows the value of the functions from the 
perspective of leadership. More detail on how to incorporate the demonstrated functionality of the profiler 
is included in later chapters.  

The goals of the development efforts and random variation of process inputs are added to the prediction 
profiler of the model to fine tune the visualization to be representative of the real world of the operational 
process. This example uses results of the executed set of granulation experiments to explore the profiler. 
Open multivariate custom design 3F 10R outputs.jmp and click on the green arrow to the left of the Fit 
Least Squares script to run the model analysis, which are shown in Figure 6.17. 
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Figure 6.17: Model Profiler with Simulation Options 

 

The plots above illustrate the model of the process set to the input targets in the middle of the design space. 
The desirability indicates how well all of the output goals are met at the set combination of inputs. Note 
that the process set to target values leaves much to be desired; the desirability value 0.1517 indicates that 
only 15% of the goals can be met. In addition, the profiler indicates that with random variation added to the 
process, the target settings are likely to create batches out of specifications 86% of the time.  

The profiler output is dynamic. You can change the red input settings in one of two ways: select the 
numeric value and enter a new value; or right-click on the vertical red segmented line and drag it to higher 
or lower input amounts. Project leadership is interested in the optimum results as defined by the highest 
amount of desirability and lowest predicted rate of defects.  

JMP offers options for the profiler to maximize the model and optimize the desirability for all outputs. 
Click on the red triangle menu to the left of the Prediction Profiler header, and select Optimization and 
Desirability  Maximize Desirability. The input settings automatically change to illustrate the 
combination that will result in the highest level of desirability, as shown in Figure 6.18.  
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Figure 6.18: Modeling Profiler with Simulation (Maximized Desirability) 

 

The profiler now displays the result of the maximized models with a desirability value of 0.8288, which 
indicates that 83% of the goals can be met. The optimized process is predicted to yield less than 6% of 
future batches produced that are out of specifications. The profiler, augmented with the desirability 
function and simulated view of the process, can save time by enabling you to analyze an infinite number of 
factor combinations. The model simulations guide leadership with information from early in the process so 
that they can make decisions that are critical to the development process.  

The results of the modeling reduce the potential that unforseen challenges occur when the operations team 
is ramping up commercial production to meet customer demand. Risks to production at the early 
commercial stage are expensive, extremely disruptive, and can risk the loss of credibility with customers 
caused by product shortages. Modeling with simulation adds value by supporting better decisions made 
from the information gathered during developmental experimentation. The upcoming chapters provide the 
details needed to implement structured, multivariate experiments, as well as the dynamic profiling of the 
process. 
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Practical Conclusions 
There is a wealth of evidence in support of structured, multivariate experimentation (design of experiments 
[DOE]) from several industries. The pharmaceutical and medical device industries have begun to realize 
the value of incorporating DOE into the product development process through QbD initiatives. The 
International Council on Harmonisation (ICH) promotes the use of sound DOE practices to study a design 
space and the use multivariate models of materials and process inputs to determine robust controls to 
reduce quality risks. The QbD elements promoted through ICH E8 and ICH E9 can be easily developed 
from tools and techniques inherent to JMP.  

The first step to creating value through structured, multivariate experimentation is to justify the concept to 
leadership. This chapter provides a few examples that can be utilized to gain acceptance and support of the 
practice. Resources are always in limited supply, and incorporation of the methodologies noted are proven 
to efficiently develop robust processes. The excellent graphics provided by JMP are easily produced and 
should be used to guide management to embrace the value of structured, multivariate experimentation. 
Regular use of the tools shown will greatly improve the processes and support a robust developmental 
culture in an organization.  

Exercises 
E6.1—There is a constant theme of leadership strategy for new product development within the 
pharmaceutical and medical device industries: the desire to get products to market as fast as possible with 
the fewest resources expended. A proposal involving structured, multivariate experimentation is often met 
with resistance due to the multiple batches involved early in the development cycle. Reliance upon 
principal science and experimentation falsely appears to be a more expedient approach since leadership 
lacks a comprehensive view of all the batches that need to be made to get to a robust product. Researching 
the developmental history generally provides a large amount of useful data. Visualization of the data is 
used to gain support for structured, multivariate experimentation. Be sure to consider the following: 

1. Review lab notebooks and operational records for a feasible number of recent new products.  

2. Record the start date of development and the date when operational batches were able to be run in 
a routine manner with regularly acceptable results for all critical quality attributes CQAs. 

3. Create groups for experimental batches made through structured, multivariate experiments (if any) 
and unstructured experiments. 

4. Use the tools noted in the chapter to create visualizations of the developmental trends for the 
organization to illustrate where improvements can be made. 

5. Pay special attention to deviations and other problems encountered in scale up and early 
commercial production. Which problems could have been mitigated through improved knowledge 
of the design space? 

6. Share this information with colleagues and work to use plots for communicating to the leadership 
team. 
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Overview 
This book is about helping JMP users to visualize data and use statistical techniques to gather insight about 
problems and solve them. People often assume that data collected from an instrument is the actual 
measurement of interest. However, the value obtained is just a representation of the actual value. This 
representation can vary due to limitations of the instrument, the methods utilized for measurement 
practices, and the environmental conditions present during the time of the measurement trials. Teams 
should always assume that the values in a data table include some level of uncertainty due to the 
measurement system. Uncertainty can originate with variance in the instrument, methods, and environment. 
The calibration of an instrument and the manufacturer’s certified amount of instrument accuracy does not 
ensure that the data collected is “error-free”. It is important to procure evidence from a study performed for 
onsite use of the instrument to represent the population of actual results. Such a study quantifies the quality 
of the measurements obtained from a measurement system for real-world use. This chapter deals with a few 
basic ideas of how technical professionals can study measurement systems with JMP to determine the 
quality of data obtained from an instrument. 

The Problems: Determining Precision and Accuracy for Measurements 
of Dental Implant Physical Features 

Chapter 1 includes the problem of reported difficulties in the threading of dental implants and the collection 
of dimensional data to determine where improvement is needed. Ngong is the processing engineer directing 
efforts that have indicated that an insufficient chamfer feature is the source of the problem. Ngong realizes 
that no evidence is on record regarding the quality of the measurement system used to gather data on 
chamfer and threading depth of the tiny implants. Time and resources are in short supply (as always) and 
the team decides on the simple plan of including replicate measurements on some of the implants to get a 
basic idea of measurement quality. 

Sudhir is working on dissolution analytical data for tablet products. Analytical results rely upon accurate 
and precise measurements of the weight of a tablet to ensure that the test values appropriately reflect 
reality. Digital scales are utilized in the quality laboratory to obtain weights. A detailed analysis of 
measurement systems is planned and executed by Sudhir’s team to ensure the highest possible level of 
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quality for tablet weights. The study focuses on the repeatability of the measurement system as well as on 
reproducibility. Repeatability is obtained by measuring the same tablet multiple times. Reproducibility is 
the ability of multiple analysts to get measurements of the same sample that are equivalent. There are other 
factors that could be studied such as various instruments or various days. However, the available resources 
result in factors limited to replicates and analysts because they are of the highest priority to the team. 

Qualification of Measurement Systems through Simple Replication 
A quick and easy way to estimate the uncertainty in measurement is to include replicate measures. 
Replicates added randomly to the data collection plan allow for the comparison of multiple measurements 
of the same observational unit to illustrate the variability in the measurement process. In chapter 3, a set of 
measurement data from dental implants was analyzed to determine how capable two key dimensions were 
to meeting specifications. Recall that the chamfer feature of the implant was found to have poor capability. 
The capability analysis assumes that the measurement values in the data are an accurate representation of 
the specific physical feature of the implant.  

For the purposes of this chapter, the clock is rolled back to the early stages of the proposed data collection 
plan. The team discuss the challenges in measuring the features of such a small object and the need to study 
the measurement system. A detailed measurement systems analysis cannot be done at this time, so they 
decide to randomly include replicate measurements of the same object within the plan for comparisons. The 
variability among the replicate measurements is analyzed to give the team objective evidence of how well 
the measurement system is working. Open Subset of dental implant dimensional check.jmp to initiate 
the analyses. 

The data set is shown in Figure 7.1 and includes 85 measurements that have been broken up into 17 
sampling events. The technicians who measure the parts have listed the implant ID along with the two 
measurements for each unit. The replicate column is included to identify the units that have replicate 
measurements. 
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Figure 7.1: Implant Data Table 

  

A plot and summary statistics for measurements without replicates illustrates the location (mean), spread 
(standard deviation), and shape of the measurements from independent samples. The following steps 
provide the required plot and summary statistics. 

1. Select Analyze  Distributions to move chamfer depth and threading depth to the Y, 
Columns box.  

2. Move replicates to the By box to get separate results for measurements with and without 
replicates.  

3. Use the red triangle menu next to the Summary Statistics header under Distributions 
replicates=no/ chamfer depth. Press the Ctrl key, select Custom Summary Statistics, and then 
select the Variance check box.  

4. Click OK to add Variance results to all of the Summary Statistics tables for later use.  

5. Use the red triangle menu next to Distributions replicates=no header, right-click and select 
Stack to stack the output. Figure 7.2 shows the distribution of measurement results without 
replicates. 
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Figure 7.2: Distributions of Implant Measurements 

 

The non-replicated results provide a useful summary of the location and spread of chamfer and threading 
depth measurements. The chamfer depth average is 0.636 with a standard deviation of 0.0467, and the 
threading depth average is 2.476 with a standard deviation of 0.109. The shape of both distributions is 
symmetric with no outliers, meeting the normality assumption.  

It is reasonable to expect that the replicate measurements come from the same population and have a 
location and spread that is very similar to the non-replicate distribution. The measurements with replicates 
provide information about the variability present when the same implant is measured multiple times. It is 
likely that some variation will be present between replicate measurements. However, the amount of 
variation among replicates should be much less than the variation between implant units. When the 
variation among replicate measurements is large with respect to variation between different units, the 
robustness of the measurement system is questionable. The next set of steps filters the table on replicate 
measurements for a comparison between implant ID units. 

1. Click the Data Filter icon, or select Row  Data Filter and select replicates as a filter column 
and click Add. 

2. Click yes for the presence of replicates in the data filter window. 

3. Select the Show and Include check boxes to ensure that only the replicate measurements are used 
for the analysis. 

4. Select Analyze  Fit Y by X. Move chamfer depth and threading depth to the Y,Response 
box, and move implant ID to the X, Factor box. 

5. Click OK to get the output shown in Figure 7.3. 
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Figure 7.3: Oneway Plots of Implant Data 

 

Plots of the five units with replicate measurements of chamfer depth and thread depth are shown in Figure 
7.3. The view of the measurements illustrates the replicate variability of chamfer depth and threaded depth 
by the vertical spread of black dots for each implant ID. The team is interested in evaluating measurement 
uncertainty and in additional analysis of measurement variability.  

Analysis of Means (ANOM) for Variances of Measured Replicates 
The dot plots from the Fit Y by X platform indicate the presence of measurement variability. More detailed 
analysis is beneficial to interpret the variability and the potential effect on error included in the implant 
data. Analysis of means allows for the comparison of the variance in measures for each unit back to the 
summary variance. Initiate the analysis by pressing the Ctrl key and clicking the red triangle menu option 
next to Oneway Analysis of chamfer depth By implant ID header. Select Analysis of Means Methods 
 ANOM for variances to add to the output shown in Figure 7.4.  
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Figure 7.4: ANOM for Variances Plot for Chamfer Depth 

 

The Analysis of Means for Variances plot expresses the information about replicate variability in units of 
standard deviation. The root mean standard error (RMSE) is a summary of the replicate variability for all 
groups. The green dots with vertical lines originating from the RSME represent the standard error in 
measurement within each group and the distance each is from the RMSE. The light blue shaded region 
extending equally above and below the RMSE represents the amount of random variability that can be 
expected for +/- 2 standard deviations, which is a significance level of 0.05. There is no evidence that the 
variance for any of the five groups is significantly more than the RMSE. 

The comparison of the within variance to the between variance converted to a percentage provides a 
useable summary to use as a simple estimate of measurement robustness. The scale of the analysis of 
means plot must be changed to variance to allow for the comparison. Use the red triangle menu beside the 
Analysis of Means for Variances header and select Graph in Variance Scale. The plot changes to that 
shown in Figure 7.5. 

Figure 7.5: ANOM for Variances Plot for Chamfer Depth (in Variance Scale)  

 

As noted previously, it is reasonable to expect that a robust measurement system will have variance within 
repeated measurements that is less than the variance between implants measured without replication. It is 
highly desirable for the variance within replicate measurements to be as small as possible compared to the 
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non-replicate variance between implant IDs so that the system can precisely detect real differences between 
individual units.  Recall from Figure 7.2 that the non-replicated chamfer depth measurements have a 
variance of 0.0021843. The mean standard error (MSE) from the analysis of means plot is compared to the 
variance of the non-replicate subgroup in order to create an estimate for the percentage of uncertainty that 
is present in the measurement process. The following calculations below are used estimate measurement 
uncertainty.  ܧܵܯ௥௘௣௟௜௖௔௧௘௦݁ܿ݊ܽ݅ݎܽݒ௡௢௡௥௘௣௟௜௖௔௧௘௦ ൌ 0.00140.0022 ݕݐ݊݅ܽݐݎ݁ܿ݊ݑ ൌ 0.636 

ݕݐ݊݅ܽݐݎ݁ܿ݊ݑ%    ൌ 0.636 ∗ ݕݐ݊݅ܽݐݎ݁ܿ݊ݑ% 100 ൌ 63.6% 

The replicate variance for chamfer depth is approximately 64% of the variance between non-replicate 
measurements. With such a large amount of uncertainty present in the measurement system, it is very 
difficult to obtain a measurement value that accurately represents the physical feature of chamfer depth.  

The concern over the ability to measure chamfer depth accurately has been noted. The team is interested in 
using the technique to evaluate the threaded depth measurements. The team repeats the analysis of means 
for threaded depth by using the same process they used for chamfer depth. The results are shown in Figure 
7.6. 

Figure 7.6: ANOM for Variances Plot for Threaded Depth  

 

The Analysis of Means for Variances plot provides evidence that the variance in threaded depth for the Z80 
implant ID is significantly less than the RMSE. The result is worth noting, but it is not likely to interfere 
with the quick estimate of %uncertainty. Use the red triangle menu beside the Analysis of Means for 
Variances header, and select Graph in Variance Scale. The plot changes to that shown in Figure 7.7. 
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Figure 7.7: ANOM for Variances Plot for Threaded Depth (in Variance Scale)  

 

Recall from Figure 7.2 that the non-replicated threaded depth measurements has a variance of 0.0119705. 
The %uncertainty estimate indicates that the replicate variance for chamfer depth is approximately 0.5% of 
the variance between non-replicate measurements. The measurement system used for threaded depth has 
minimal uncertainty and can be considered robust. 

Measurement Systems Analysis (MSA) 
The simple check of the measurement system used for the dental implants indicates issues present with the 
chamfer depth. However, the analysis did not include enough data to gain details about the excessive 
measurement uncertainty. JMP offers multiple analysis options for measurement systems analyses in the 
Quality and Process submenu in the Analyze menu. The team uses systems analysis (MSA) techniques 
on data that is from a digital scale used to measure tablet weight in the quality control laboratory.  

Accurate and precise tablet weight is required in order for the laboratory to calculate the dissolution critical 
quality attribute CQA with minimal measurement error. The team created a set of ten tablets with weights 
that are known to vary beyond the manufacturing specifications. This is very important because the 
measurement system must be able to detect tablets that are within specifications as well as outside of 
specifications. If specifications are not known, the objects measured should have outputs with the widest 
span of values possible to ensure that the system evaluation represents the entire population of subjects. 
Each tablet sample is given an identity value and is measured with three replications by three different 
technicians. Results from the study will illustrate the repeatability of measurements (replicate to replicate) 
as well as the reproducibility (technician to technician). The team was careful to include technicians who 
perform typical lab testing, and they designed a randomization plan to ensure that the order of the tablets is 
randomized for each trial. This example uses the data set Tablet Scale MSA.jmp. 

Data has been provided and is in the proper structure for immediate analysis, as shown in Figure 7.8. 
Notice that a stacked table format is used with variables for the trial, standard order, randomized run order, 
tablet ID, and operators. Results for each combination of variables are noted in the weight column. The 
team uses JMP to create a design for an MSA by using the Design of Experiments platform. Chapter 9 
provides detail for creating experimental designs, which is not discussed in this chapter.  
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Figure 7.8: Tablet Scale MSA data 

 

Start by making sure that Tablet Scale MSA.jmp is open. Select Analyze  Quality and Process  
Measurement Systems Analysis to open the EMP Measurement Systems Analysis window, shown 
in Figure 7.9. Move weight to Y, Response; tablet ID to Part; Sample ID; and operators to X, 
Grouping; and click OK. There are many options available in the Measurement Systems Analysis 
window, but the default settings are used for the remaining options. 
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Figure 7.9: EMP Measurement Systems Analysis Window 

 

Figure 7.10: Measurement Systems Analysis for Weight Plots 
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The initial plot of the measurement systems analysis output is of the averages of the measurement (weight) 
by part (tablet ID), grouped by operator. The figure shows the initial output for the MSA, but much more 
detail is available via red triangle menu options. 

The expectation for the average chart is that most of points will be located outside of the zone of random 
variation, noted by the blue shaded area. The differences due to tablet ID should be significantly greater 
than random variation. If this is not the case, the measurement system includes excessive variation within 
replicates.  

The range chart provides a large amount of information: the amount of variation within replicates; 
comparison of variation in results across the tablet IDs; and comparison of variation trends between 
operators. It is expected that the range of replicate values is minimal, so the values obtained represent real 
results. The average range in values is approximately 0.003, and the majority of measurements for 
operators one and two have less range than the summary average. It is clear that 4 of the 10 measurements 
taken by operator 3 include a range that is twice as much as the average range. 

Interpretation of the results concludes that the trend in average weights for each tablet can be reproduced 
reliably, with an exception being tablet 8. The ranges in weights for the third operator indicate an inability 
to measure with precision similar to that of operators 1 and 2. Utilization of analysis options provides 
greater detail for diagnosing the measurement system. Use the red triangle menu option on the Average 
Chart and select Show Data to add individual measurements to the plot, as shown in Figure 7.11.  

Figure 7.11: MSA Average Chart 

 

The plot with individual values enables the team to visualize data for both average values and the spread 
among values for each tablet ID. It is clear that differences are likely among the operators. Another option 
provides additional detail for the analysis. Use the red triangle menu option on the Measurement 
Systems Analysis for weight header and select Parallelism Plots. The resulting plot is shown in Figure 
7.12.  



156  Pharmaceutical Quality by Design Using JMP 

Figure 7.12: Parallelism Plots 

 

The parallelism plot is an overlaid comparison of the average values of the tablet IDs by operator. The plot 
in Figure 7.12 illustrates that tablet 8 has averages that differ between operators more than any other tablet.  
The average obtained by operator 1 is approximately 0.01 greater than the average from operators 2 and 3.    

Detailed Diagnostics of Measurement Systems through MSA Options 
One of the most valuable summaries is the plot of Variance Components. Use the red triangle menu option 
on the Measurement Systems Analysis for weight, and select Variance Components to obtain the 
plot shown in Figure 7.13.  

Figure 7.13: Variance Components  

 

The variance components explain the source of the spread in measurement values. The variance component 
for parts (Tablet IDs) of 0.00012940 is 95% of the total of 0.00013600. The Within component represents 
the overall precision of tablet-to-tablet variation among replicate measurements and is 3.1% of the total. 
The operators and interaction of operators*parts make up 0% and 1.8% respectively. A high-
performance measurement system can be identified by having the clear majority of variance among the 
parts and minimal variation among the measurement system components. The measurement system used to 
obtain tablet weights looks to be robust. 

Evaluation of the Measurement Process (EMP) is the default technique of measurement systems analysis 
utilized by JMP. The technique is largely based on the methods presented in Donald J. Wheeler’s book 
EMP III Using Imperfect Data (2006). The EMP method provides the information needed to get optimal 
performance from a measurement system. Another popular technique is Gage Repeatability and 
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Reproducibility, which is available by using the red triangle menu options on the Measurement Systems 
Analysis for weight header. You are encouraged to research the information about the techniques that is 
available in the JMP documentation and elsewhere to better understand the merits of each option. The 
following example uses EMP for the analysis. Use the red triangle menu next to the Measurement 
Systems Analysis for weight header, and select EMP Results to gain additional detail.  

Figure 7.14: EMP Results 

 

The EMP results provide diagnostic information about the measurement system. Intraclass correlation is 
the proportion of variation in results that can be attributed to the part, which is the true measurement value. 
The intraclass correlation (with bias and interactions) of 95.2% indicates that the measurement system for 
tablet weight is very precise and accurate. The probable error explains that a measured weight value is 
likely to be approximately 0.0014 off from the true physical weight, which is a very small amount of error. 
The classification of the system (based on Wheeler’s detection tests) is first class since less than 5% of the 
variation in measurement values can be attributed to the measurement system. The team now has detailed 
statistical proof that the tablet weights used for analytical calculations are contributing very little to overall 
error even though differences are known to exist among operators (lab analysts). 

Variability and Attribute Charts for Measurement Systems 
The tablet weight measurement can be used for the intended purpose without concern for measurement 
error, but this does not mean that the system is perfect. Opportunities exist for improvement even in high-
performing systems. The tablet weight data has been augmented with the standard weights of tablets that 
have been obtained by a digital scale known to have accuracy of two more significant digits than the bench 
scale unit used in the MSA. Standard measurements are not always available due to the expense of  
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extremely accurate instruments, but should always be considered to add the important dimension of bias to 
the analysis. Open Tablet Scale MSA Data with Standard.jmp for the next set of steps. 

1. Select Analyze  Quality and Process  Variability / Attribute Gauge Charts.  

2. Move weight to Y, Response; operator to X, Grouping; Tablet ID to Part, Sample ID; and 
standard weight to Standard in the Variability / Attribute Gage. 

3. Use the defaults for all other options, and click OK to get the output shown in Figure 7.15. 

Figure 7.15: Variability Plots 

 

The Variability Gauge plots for weight and standard deviation provide similar information to the plots seen 
in the previous examples. One thing is very clear: improvement to the measurement system might be 
possible if the team can investigate and determine why the difference in variability exists between operator 
3 and operators 1 and 2.  

The trend in bias among measurements is obtained with a bias report. Use the red triangle menu option to 
select Gauge Studies  Bias Report to obtain the output seen in Figure 7.16 
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Figure 7.16: Measurement Bias Report 

 

The minimal amount of bias is desired for the measurements with results as close to 0 bias as possible. The 
average bias indicates that the system tends to measure weights that are slightly below the standard (-
0.001). The Measurement Bias Report by Standard plot illustrates that tablets with a standard weight of 
0.099 have the most negative bias and might be influencing the average. Tablets with standards lower than 
0.099 tend to measure a bit higher than the standard weight.  

Further investigation might provide opportunities for improved accuracy through reductions in bias. It 
would be very helpful to know the Tablet ID of the measurements with the most bias since some tablets 
share the same standard weight. The following steps differentiate the observations by using the row legend 
trough graphic options. 

1. Right-click in the white space of the Bias by Standard plot and select Row Legend. 

2. Select the tablet ID column and notice that the points are colored with the JMP default color 
scheme. Use the drop-down menu to choose an optimum color scheme, and explore the markers to 
best define the points. The example uses the default options. 

3. Click Make Window with Legend to define the colors by Tablet ID. The example uses options 
that allow for visual differentiation in this book.  
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Figure 7.17: Measurement Bias Report with Tablet ID Colors 

 

The low bias for tablet 3 was identified by discussions with the technicians who executed the studies. The 
technicians explained that the tablet was dropped to the table surface during initial handling of the 
specimen, and it is expected that a small chip on the edge of the tablet might have resulted from handling 
damage after the standard weight was taken. The reason for the positive bias for the lighter weight tablets 
could not be determined. 

Through further investigation, the team found out that operator 3 uses a sonicating mixer that is located on 
the bench top near the scale to enable efficient multitasking. Operators 1 and 2 did not use as they weighed 
the tablets. The team moved the mixer to another location in the lab as a preventive action to improve 
precision in weights. The team had operator 3 repeat the weight trials and noted a pattern that now matched 
operators 1 and 2, confirming the improvement. 

Practical Conclusions 
It is tempting for teams to assume that the measurement values obtained from instrumentation accurately 
and precisely represent the true physical value. Without knowledge of MSA, technicians explain that the 
instruments are calibrated and assumed to be free of measurement error. Measurement systems analysis 
involves both the instrument or device as well as the environment and methods utilized to obtain values and 
is a more reliable gage of measurement performance. It is always a best practice to ensure that 
measurement systems are at least verified through replication or are run through a full MSA to make sure 
that conclusions made from the measurement data do not include excessive measurement uncertainty and 
error.  

The tablet weight example illustrates that even a good measurement system can be improved. The EMP 
results illustrate that the system is acceptable even though error was identified for tablet 8 and for the 
replicates of operator 3. The team was able to make significant improvements to the measurement process 
through the details offered by MSA.  

JMP offers many tools for a team to easily quantify the amount of error and variability that are inherent to a 
measurements system and that qualify the system for use to make the best decisions possible. All data 
collection events should include planning for verification of a measurement system.  
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Exercises 
E7.1—A project is coming up in later chapters involving a thin, plastic molded cover that provides a sterile 
barrier to surgical handle covers. A technique was developed for technicians to follow so that they can 
obtain the minimum wall thickness of covers. The timing is very tight for the improvement project that 
oversees the manufacturing process for the handle covers. A world-class measurement system includes 
10% measurement uncertainty; an acceptable measurement system might have up to 25% measurement 
uncertainty. A random sample of 42 handle covers was collected from the process and labeled as test units. 
Twelve of the test units were measured four times each to obtain some replicate values.  

1. Open surgical handle thickness measurements.jmp. 

2. Use the analysis that was completed for the dental implant measurements to determine the % gross 
uncertainty.  

3. How would you present this information to the project stakeholders who are very motivated to 
move forward with improvements? 

E7.2—A new drug product is in the late stages of development, and production readiness activity for the 
line that fills bottles with capsules is ongoing. The process includes a checkweigher device to ensure that 
no bottles get through that have fewer capsules than the count noted on the label. Ten bottles were marked 
and added to the flow of the process just ahead of the checkweigher. Bottles are retrieved and run through 
at random until each bottle has gone through the weigher at least three times. The average weight of a 
capsule is 900 mg, and each bottle includes a count of 50; the target weight of a filled bottle with 50 
capsules is 66 grams. Four of the bottles were intentionally manipulated to either contain one or two 
missing capsules or one or two extra capsules to ensure that the full range of possible measurement is 
explored. Each bottle was weighed by a high-precision digital scale in the analytical laboratory to record a 
standard weight.  

Use the file bottle checkweigher data.jmp for this problem. 

1. Use the Distribution platform to get an overall view of test weight. What is the location and 
spread of the weights? 

2. Select Analyze  Quality and Process  Variability Charts to study the measurement 
process. Be sure to include std weight as the standard. Is there excessive variability for any of the 
bottle numbers? Is the bias excessive? Which of the bottle numbers were the ones with extra or 
missing capsules? 

3. Select Analyze  Quality and Process  Measurement Systems Analysis to run an EMP 
study. Keep in mind that because the feed of the checkweigher is automated, there is no 
reproducibility involved, so the reproducibility value is 0. 

4. Divide the probable error and by the capsule weight. The goal is to ensure that the system can 
detect a bottle with a missing capsule. How would you use the probable error as a percent of 
capsule weight as evidence of a robust measurement system? 
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E7.3—We have been studying differences in the outer diameter (O.D.) of surgical tubes in previous chapter 
exercises. There is concern that variation in the measurement process could be creating bias in statistical 
analysis. Technicians report that the toughest tube to measure is the 3 mm O.D. tube. Running a 
measurement systems analysis on the 3 mm O.D. tube will provide the most conservative results, so it is 
used as the basis for the study. Process technicians worked with the engineers to produce two tubes at the 
extremes of the range of O.D. values. The extreme tube samples have an O.D. that is a span that is 125% of 
the specification limits. Two other tubes are mad e with an O.D. that is at the minimum O.D. specification 
and maximum. The six remaining tubes are selected at random from production. The engineered and 
randomly selected tubes represent the range of measurement studied includes O.D.s that are within and 
outside of the 3.0 mm +/- 0.1 mm O.D. specifications. 

1. Open surgical tube OD measurements.jmp. 

2. Run measurement systems analysis by using the EMP techniques and grouping on technician. 

3. How would you present the results to the project stakeholders? 

4. Are there any additional evaluations that you can suggest that will result in the most precise and 
accurate measurement system possible? 
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Overview 
Structured, multivariate experimentation allows for the study of many inputs and outputs simultaneously to 
efficiently gain insight into a process. The Design of Experiments (DOE) platform offers many powerful 
options for statistical methods used to execute randomized experiments. The major drawback of structured, 
multivariate experimentation is the amount of planning and resources needed to design and run the 
experiments. Teams are often faced with many more inputs of potential interest than can be studied with a 
reasonable amount of resources. This chapter covers the use of predictive modeling of observational 
process data to narrow down the number of input variables for further study. There are many techniques for 
predictive modeling available in JMP. A few of the more common approaches are examined for the 
purpose of variable reduction. 

The Problem: Thin Surgical Handle Covers 
Michelyne works within the medical device industry and is managing a project involving surgical kits used 
by hospitals and surgical clinics. The kits include thin, disposable plastic sterile covers that go over the 
handles of surgical lamps. Her team has been alerted to a growing number of complaints received from 
customers who report that lamp handle covers are not staying in place as designed. A cover that is easily 
detached from the handle creates unacceptable risk to patients because it can drop onto them during a 
procedure, and at minimum it will break the sterility barrier.  

Examination of customer returns identifies that the bad handle covers have areas of wall stock that are 
thinner than the minimum specification of 0.50 mm. Many of the handle covers split in the thinned areas. 
Therefore, the quality team has identified the root cause for the loose covers as thin material. Michelyne 
has contacted the thermoforming facility that manufactured the covers to request a set of random process 
data. The team plans to use the data from several process inputs to create predictive models for material 
thickness. The hope is that the modeling results will narrow the list of inputs to a reasonable number so that 
structured experimentation can be designed and run. The manufacturer has a growing interest in process 
improvements because they must pay for containment measures to protect against more covers with thin 
material from being received by customers. 
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Data Visualization with Dynamic Distribution Plots 
The surgical handle cover manufacturer submitted a table of more than 110 random in-process samples 
with information about 14 process inputs. Open the file Surgical handle cover data.jmp to see the table 
shown in Figure 8.1. 

Figure 8.1: Surgical Handle Cover Data Table 

 

The column properties include the option to set specifications for a variable, which is a time-saving feature. 
Once specifications have been set, they show up on plots that are made for the variable. Minimum 
thickness has only a lower specification, which is set by selecting min thickness. The variable column will 
be shaded, and the column header will be bright blue in color when selected. To access column options, 
right-click in the column. Select Column Properties  Spec Limits and type 0.48 in the Lower Spec 
Limit box located in the lower right of the min thickness window. Be sure to select the Show as graph 
reference lines check box, and then click OK to confirm. Alternatively, you can select Cols  Column 
Info,  and then select Column Properties  Spec Limits to enter the limit. 

A great first step for analyses is to visualize the data with the Distributions platform. Use the dynamic 
linking in JMP to identify non-random patterns in the plots by completing the following steps.  

1. Select Analyze  Distributions to open the Distributions window. 

2. Move the output variable min thickness to the top of the Y, Columns box so that it is the first 
plot.  

3. Move all of the remaining variables to the Y, Columns box so that they are below min thickness. 

4. Select the Histograms Only check box for clarity of the information shown, and then click OK to 
get the output. 

5. With the Distributions output in view, use the red triangle menu options next to the Distributions 
header to select Arrange in Rows. 

6. Enter 5 to get all histograms in view on the plot. 
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7. Press the Ctrl key while sizing the frames of the histograms to size all 15 plots at the same time. 

8. Select the bars that are at and below 0.50 mm from the min thickness histogram by holding the 
Shift key while clicking the bars.  

Figure 8.2: Distributions 

 

Figure 8.2 illustrates the result of dynamic linking. All 14 process inputs have the portions of the 
histograms darkened with diagonal lines that relate to covers made with a min thickness that is 
0.50 mm or less. The goal of this high-level analysis is to determine whether there are any non-
random patterns in the process input histograms. The first one you notice is the thermoform line 
histogram; line C produced almost no covers with substandard minimum thickness. Another 
possible pattern is in the plug depth histogram; higher percentages seem to capture most of the 
thin covers. An example of a histogram with a random pattern of darkened bars and of no interest 
is DOM month.  
The results of visualizing the data using dynamic linking and the Distributions platform offers 
information yet is subjective. A non-random pattern interesting to one person might not be of 
interest to another person due to the perceived magnitude of the trend. An advantage of using 
Distributions to visualize data is the ability to see the general pattern of each variable. Outlier 
results, skewed distributions, and unequal proportions are quickly evident to the analyst. The data 
collected for the thermoforming process inputs that were monitored is relatively free of these 
patterns. 
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The data visualization exercise illustrates that thin covers might be related to the thermoform line, 
cycle time, and plug depth. Many options in JMP can provide more detailed statistical evidence of 
potential relationships through predictive modeling. The following sections are limited to a few 
approaches. However, you are encouraged to explore the rich resources offered through JMP and 
beyond to gain confidence in using other techniques. The field of predictive modeling is 
advancing rapidly, and new releases of JMP and JMP Pro are likely to provide additions to the 
brief coverage of topics in this book. 

Basic Partitioning 
Data visualization provided some clues to the process inputs that might be related to changes in thickness 
of the surgical handle covers. The partition technique in JMP offers a powerful, flexible set of tools that 
allow for exploration of wide data sets. Wide data sets include multiple variable columns and a relatively 
limited number of rows. One of the best features of partitioning is the fact that it works for both discrete 
and continuous variables in one model. The file Surgical handle cover data.jmp includes a few rows that 
are missing values, such as row 76 of the plug temperature variable. Partitioning allows for the use of the 
full set of data values by including an algorithm that estimates the value for the missing observation. The 
feature is particularly useful for large sets of process data. Select Analyze  Predictive Modeling  
Partition to obtain the Partition window shown in Figure 8.3. 

Figure 8.3: Partition Window 
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The following steps set up a partition model. 

1. Move min thickness to the Y, Response box. 

2. Move all other variables into the X, Factor box. 

3. Be sure that the Informative Missing check box in the Options area is selected. 

4. Figure 8.3 illustrates the JMP Pro functionality that lets you choose the method. The default 
method is decision tree. 

5. Click OK to get the output shown in Figure 8.4. 

Figure 8.4: Partition Output 

 

The initial output includes the average of 0.55 mm for the min thickness, with each observation noted as a 
black dot. The minimum observed value is around 0.37 mm and the maximum value is just over 0.70 mm. 
Place the pointer over each observation to see the row number label. The table below the plot provides 
model fit values that initiate as r-square = 0. At the bottom of the output, the decision tree is initiated as an 
All Rows box. As you click the Split button, the partition algorithm utilizes all the data to detect a variable 
that is related to the biggest average difference in min thickness. Click Split once to get the output in Figure 
8.5, which detects the input of the model related to the largest difference in min thickness.  
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Figure 8.5: Partition with a Single Split 

 

The single split in the output is illustrated by two horizontal lines added to the dot plot. The observations 
are grouped by the plug depth input: greater than or equal to 88.7%, and less than 88.7%. The r-square = 
0.163 model fit indicates that the split explains 16.3% of the variation in min thickness. The split includes a 
root mean standard error (RMSE) of 0.057. Hence, the random noise in the data is minimal. The decision 
tree node for higher percentages of plug depth includes 68 observations and a mean min thickness of 0.528 
mm. The node for lesser values of plug depth includes 45 observations and a mean min thickness of 0.580 
mm. The difference in average min thickness between the nodes is 0.052, large enough to be considered 
practically relevant by the subject matter experts.  

Additional splits provide detail for the potential for other inputs to have an effect on min thickness. 
Continue to click Split until no further splits occur. The modeling of this data set results in a maximum of 
17 splits. Use the red triangle menu options by the Partition header to select the Display Options  Show 
Tree (Show Tree is enabled by default, so this action disables Show Tree) to condense the output. Use 
the red triangle menu options to select Split History. The result is shown in Figure 8.6. Figure 8.7 provides 
the model fit information for the 17-split partition. 
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Figure 8.6: Split History of Partitioning 

 

Figure 8.7: Partition Model with 17 Splits 

 

The split history plot shows how the r-square fit of the model increases as more splits are added to the 
decision tree. Figure 8.7 indicates that the 17-split model explains approximately 64% of the variability in 
min thickness (r-square = 0.637), and the fit improves steadily from 1 to 17 splits. The root mean square 
error has decreased to 0.037 for the 17-split model. Use the red triangle menu options one more time to 
select the Column Contributions plot in Figure 8.8. 
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Figure 8.8: Basic Partition Column Contributions 

 

The column contributions plot provides a summary of the 14 process inputs used within the model in order 
of their contribution to explaining changes in min thickness. Plug depth contributes 30.7% of the portion of 
variation in min thickness that can be explained by the model and is the input of greatest interest. Vacuum 
timing contributes a 19% portion of the variance that can be explained with the model. Five of the 14 
processing inputs have no detectable influence on min thickness and are not of much interest for further 
study.  

Partitioning has quickly and easily reduced the number of process inputs that might have influence on min 
thickness. The column contributions tell us that the top four process inputs add to a proportional 
contribution that is more than 75% of the amount of change in min thickness explained by the model. The 
proportion contributed relates to the fit of the overall model. Therefore, the 75% portion contributed is 
multiplied by the 64% fit, indicating that four inputs explain up to 48% of the changes in min thickness. 
Michelyne and her team have a much better chance of convincing the manufacturer to provide resources to 
study four process variables rather than a large study of 14. Given the cost and severity of the problem at 
hand, the team uses simple tools to double-check the model and ensure that the estimates are not overfit to 
random changes in inputs that really have little to do with changes in min thickness. 

Partitioning with Cross Validation 
One way to adjust a predictive model for potential overfitting is to use the cross validation technique. Cross 
validation splits the observations randomly into a given number of subgroups (K). A model is created for 
using each subgroup as a validation set and the remaining data as a training set. The model with the best 
validation statistic is used as the final model. The process is used to mitigate the potential of overfitting of 
the model to random variation. Use the red triangle menu option by the Partitioning header to select K 
Fold Cross validation. Keep the default value of 5, and click OK to add it to the output. 
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Figure 8.9: Partition with K-fold Cross validation 

 

Cross validation indicates that the overall model with 17 splits is overfit; the folded fit of r-square = 0.52 is 
ten percentage points lower. The split history plot does not change when cross validation is added to an 
existing partition model, but JMP includes a shortcut to do this. Complete the following steps to update the 
split history plot with cross validation. 

1. Click the red triangle menu for the Partitioning output. 

2. Select Redo  Relaunch Analysis. 

3. Do not change the columns in the Y, Response or X, Factor boxes, and click OK.  

4. In the Partition for min thickness window, use the red triangle menu to select Split History and 
K-fold Cross validation. You can deselect all the display options for clarity. 



172  Pharmaceutical Quality by Design Using JMP 

 

5. Click Go to proceed and obtain the output in Figure 8.10. 

Figure 8.10: Partition with Automated K-fold Cross Validation 

 

Your output will vary each time you use the technique because each cross validation trial is a randomized 
subgrouping of the data. The automated cross validation you initiate by clicking the Go button stops splits 
when the separation in trends between the two models is significant. The min thickness model with 14 
splits is optimum in this example. There is evidence of overfitting since the overall model r-square = 0.60 
and the folded model r-square=0.43. The Split History figure illustrates that a model with no more than six 
splits can have the least amount of overfitting. Mitigation of overfitting comes at a cost since a six-split 
model has a reduced r-square value of less than 0.50. The next point of interest is the amount of change 
contributed by the inputs for min thickness. Use the red triangle menu options to select the Column 
Contributions plot and add it to the output of the 14-split model. 

Figure 8.11: Partition (K-fold Cross validated) Column Contributions 
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The plot of column contributions for a cross validated model includes the same top four inputs as did 
previous modeling. The portion fit differs for the inputs with the cross validated technique. The portions of 
contributions of the top four inputs total 81%, and the folded model fit is r-square  = 0.43. The largest 
amount of change in min thickness that can be explained by the four top inputs is 35% for a 14-split cross 
validated partition model.  

Partitioning with Validation (JMP Pro Only) 
Another method that is used to mitigate the potential for overfitting is holding back a portion of the data set 
for validation. The subset is run as a separate partition model that is compared to the remaining data set 
(referred to as the training set; the validation subset is also known as the test set).  

To begin, click the red triangle menu for the Partitioning output and select Redo  Relaunch Analysis. 
Notice that there is a Validation Portion field in the Options section. You could use an infinite number of 
potential proportions for validation. This example uses the proportion 0.15 (15%), as shown in Figure 8.12. 
Click OK to get the partition model output. 

Figure 8.12: Partition Dialog Box with Validation Portion 

 

JMP Pro also includes the Validation Proportion field for column selection.  In JMP Pro, there is the 
possibility of creating a validation column by using the random functions of column properties. Once a 
validation variable is set up within the set of data, move it over to the Validation column selection for a 
validated model. The validation process automatically creates an increasing number of splits for the data 
until the model fit statistics for the training and test sets start to differ significantly. The split history plot 
illustrates why the number of splits has been attained. More than six splits reduces the model fit statistic 
dramatically. Use the red triangle menu beside the Partition header, select Split History and deselect 
Display Options  Show Tree to condense the output. Click Go to automatically create the optimum, 
validated partition model shown in Figure 8.13. 
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Figure 8.13: Partition (with Validation) Split History 

 

The validation algorithm creates an optimum model by stopping the splits when the validation set stops 
adding to the r-square fit statistic. Your results will differ from the example because validation is a 
randomized subset that differs every time it is selected. The pattern of how the r-square fit changes as splits 
increase shown in figure 8.13 is very different than the crossfit model because the fit is based on a 
relatively small number of observations. This pattern will change as various proportions are used for the 
validation set. Use the Redo shortcut to experiment with different sizes of validation sets. The validated 
partition model with six splits has a model fit r-square = 0.39. The model explains 39% of the variation in 
min thickness. Notice that the fit of the training set is approximately the same for six splits. Therefore, 
overfitting is mitigated.  

  



Chapter 8: Using Predictive Models to Reduce the Number of Process Inputs for Further Study   175 

 

The contributions of the inputs listed in order of influence is evaluated next. Use the red triangle menu to 
select the Column Contributions plot, shown in Figure 8.14. 

Figure 8.14: Partition (with Validation) Column Contributions 

 

There are nine inputs that have no detected influence on min thickness, which is more than the cross 
validated model. There are four process inputs with portions greater than 10%. However, the inputs are 
different than previous models since cycle time has made it to the top four. The proportion contributed by 
the four leading inputs differs from previous models; the total has increased to 92%. The portion 
contributed multiplied by the r-square fit lets us know that the six-split model can explain 36% of the 
influence on min thickness. The validation seems to do a good job of choosing important inputs while 
mitigating over fitting of the model.  

Stepwise Model Selection 
Partition modeling is an excellent technique for reducing to inputs that are worthy of further study. One big 
limitation of partitioning is the lack of ability to identify whether relationships might exist in combinations 
of process inputs and the output of interest. A way to analyze a wide set of data with the ability to detect 
interactions among inputs is a stepwise selection model. The stepwise model can handle individual inputs, 
interactions, and even squared terms. Squared relationships are common in chemical processes because the 
rate of change is not constant across the range of input levels. The team limits interest to two-way 
interactions and individual inputs because they think it unlikely that squared relationships exist in the 
thermoforming process. Start by selecting Analyze  Fit Model to open the Fit Model window. Move 
min thickness to the Y (output) box, as shown in Figure 8.15. 
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Figure 8.15: Fit Model Dialog Box 

 

The output has been selected and the model needs to be identified for the analysis. The 14 processing 
variables are added with all the two-way interactions. Press the Shift key and select the 14 input variables 
until they are shaded in blue. Leave the default value 2 for Degree ; there is no interest in higher-order 
terms involving interactions of three or more inputs. JMP provides a shortcut to include all possible 
interactions of degree 2.Click Macros and select Factorial to degree, as shown in Figure 8.16. 

Figure 8.16: Fit Model Dialog Box (Inputs with Two-Way Interactions) 

 

The individual process inputs and two-way interactions automatically populate the Construct Model 
Effects box. The default personality is a standard least squares model for the data to determine the leverage 
of the effects. The 113 samples collected is not enough data to analyze a wide model with 14 individual 
inputs and all two-way interactions. JMP would run the model and immediately alert you to singularity 
issues, which indicates the lack of data to estimate leverage and model predictions for the large number of 
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inputs and interactions. You could manually run a large number of models, alternating the inputs and 
interactions of each to find the optimum. The stepwise personality is a powerful tool that automatically 
reduces the model by using an algorithm that provides results quickly and easily. Change the Personality 
in the upper right of the dialog box to Stepwise, and then click Run to get the initial output shown in 
Figure 8.17. 

Figure 8.17: Stepwise Personality Window 

 

The stepwise fit output requires you to select a technique to execute the stepwise selection. You can 
explore the many options available in the JMP documentation to determine the most appropriate model for 
the goal of the analysis. For simplicity’s sake, this example uses the default options Minimum BIC 
(Bayesian Information Criterion), Forward, and Combine rules. These default settings provide results for 
this analysis that are reasonably robust. Click the Step to iteratively evaluate the different models and 
detect the inputs with the highest likelihood of having influence on min thickness. Click GO to efficiently 
execute the process by letting JMP automate the model selection. A portion of the long list of current 
estimates output is shown in Figure 8.18, with the step history shown in Figure 8.19. 
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Figure 8.18: Stepwise Model Selection 

 

Figure 8.19: Step History 

 

The fit of the final model from the stepwise process is the adjusted r-square =0.44. The adjusted r-square 
value allows for the comparison of models that include different numbers of inputs. The amount of random 
error is the root mean square error = 0.047, which compares similarly to the previous partition models. The 
current estimates illustrate the input predictors that are included in the model with inputs noted by the 
selected checkboxes located in the left columns of the table shown in figure 8.18. The step history 
illustrates the forward selection algorithm; up to 28 predictors were iteratively added to explore model fit 
statistics. The model with 12 predictors is chosen as optimum.  

The output includes a Make Model and a Run Model button in the upper right of the output. These 
buttons enable you to analyze the model directly from the stepwise selection results. Click Make Model to 
open the Stepped Model dialog box, shown in Figure 8.20. 
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Figure 8.20: Stepped Model Dialog Box 

 

The vertical slider function of the Construct Model Effects box can be manipulated to see all of the many 
listed individual inputs and interactions that were determined to be important. You can add or delete model 
effects, but keep in mind that both of the individual variables for two-way interactions must be included 
even if they are not significant. Click Run to get the model output shown in Figure 8.21. (You can skip the 
review of the model and click Run Model in the stepwise window.)  

Figure 8.21: Stepwise Reduced Model Results 

 

The results of the stepped model indicate that the model explains just under 50% of the variation in min 
thickness (r-square=0.49). The effect summary in the model output provides information that is similar to 
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the column contributions of partitioning. The difference is that a LogWorth value is used to weight the 
effects instead of proportion of influence contributed. The more complex model has uncovered the potential 
for some interactive effects that were not previously evident. 

The utilization of various modeling techniques to determine which inputs are likely to be related to changes 
in min thickness provide different results. The question that must be answered from predictive modeling is: 
Which inputs are of the greatest interest for further study? 

The confusion of different results can be cleared up somewhat by creating a summary table from the 
various outputs. The information in Table 8.1 indicates that the modeling consistently narrows to plug 
depth, vacuum timing, cycle time, and nominal film thickness as the few variables that are worth further 
investigation. JMP Pro offers a model comparison feature to explore the models efficiently. 

Table 8.1: The Four Process Inputs of Greatest Interest 

Input 
 

Basic 
Partition 

Partition 
(K-fold) 

Partition 
(validation) Stepwise Model 

r- square 0.64 0.45 0.39 0.49
Plug 
Depth 

 30.7% 31.1% 47.6% 6.6* Interaction 
2.7* 

Vacuum 
Timing 

18.9% 19.2% 22.0% 2.7* 

Cycle 
Time 

8.7% 8.2% 10.9% -  

Nominal 
Film 
Thickness 

13.3% 13.5% - - 

*In LogWorth values 

You might recall that the thermoform line was a potentially strong contributor because line C had very few 
issues with thin covers. A significant benefit attained from the organized study of process monitoring 
information is that the teams have heightened focus on the process. The processing identification mark for 
the lines was found to be misleading and a cause for mixed labeling of in-process samples. The processing 
mark was made more definitive, and further study of a random sample of covers found an equal number of 
thin results among the three lines. The input was removed from consideration once the side study 
conclusions were reported. 

Practical Conclusions 
The pharmaceutical and medical device industries deal with complex problems on a regular basis. These 
problems involve multiple material and process inputs and can involve multiple outputs. Simple data 
visualization tools and basic statistical tests might not be suitable for extracting the information required to 
address such problems. Structured, multivariate experimentation techniques offer the power and efficiency 
needed to gain this information. However, resources are typically limited and teams must be able to narrow 
the possibilities down to inputs that offer the greatest chance of having relationships with the outputs of 
interest. JMP offers several predictive modeling techniques, which can be effectively used to model 
historical data and limit the scope of the inputs utilized for experimental designs. JMP Pro adds to the 
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modeling options with a larger variety of predictive modeling tools to mitigate the chance of overfitting and 
provide the predictor inputs of the highest potential value.  

This chapter touches on a few techniques that are easy-to-use so that teams can justify how they were able 
to choose the inputs for further study. You should invest some time to research the topic of predictive 
modeling and take full advantage of JMP documentation, including several excellent books, the Help 
documentation provided with a license, on-demand webcasts, and by visiting the JMP user community 
available at www.jmp.com. 

Exercises 
E8.1—You have been working with technicians and engineers involved in improving the sealed film that is 
applied to plastic trays that contain surgical kits. The seal is critical because it maintains the sterility of the 
instruments and materials packaged in the tray. Previous data visualization has identified differences by 
shift, and the team has been able to obtain a sample of data for 50 individual kits that were removed from 
the line for burst testing. Process data was recorded for nine factors. The team needs to optimize the 
process and is interested in limiting focus to the smallest number of potential influential factors.  

1. Open burst testing with process factors.jmp. 

2. Start the analysis with distributions of the output and nine inputs. Use the dynamic features of 
JMP to look for possible trends and relationships. 

3. Run predictive modeling to determine which potential factor should be included in future studies. 

4. How would you summarize the analysis to the project stakeholders and suggest factors to be 
included in structured experimentation? 

E8.2—A new tablet formulation is being developed, and the team needs to determine how to target tablet 
hardness and minimize variation in hardness. A small number of batches have been made during scale-up 
of the process. The presses used are of a two-sided design; each side has independent controls (other than 
turret speed) and is treated as a unique observational unit. Predictive modeling is to be completed to 
determine whether the inputs can be narrowed down to allow for a set of structured experiments that 
conserve resources.  

1. Open mix and compression process data.jmp. 

2. Run partitioning of the data to detect important inputs to tablet hardness and tablet hardness range; 
each is a separate model. Hint: There are many inputs that are either duplicate information or 
information of little predictive value. Mesh screen measurements of particle size are not as 
accurate as methods that estimate the d (0.1), d (0.5), and d (0.9) particle size values. Dates are 
also of little importance for modeling. 

3. Which inputs would you suggest for further study? How would you summarize this information to 
the project stakeholders? 
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Overview 
Experimental design is a vast subject that should not be approached without a great deal of thought and 
reliance on process expertise to ensure that the results are of value. JMP provides an excellent platform to 
guide a novice and eliminate a great deal of stress and frustration for people who are learning the 
techniques. As with any new endeavor, it is good practice to start with simple problems and basic designs 
to gain knowledge and understanding of experimental design and execution. The information in this chapter 
is written with the assumption that the reader is not well versed in design of experiments (DOE). The 
techniques are basic and not intended to be the most precise for minimizing experimental error. Technical 
professionals who learn and use multivariate, structured experimentation realize vast improvement in 
process knowledge over one factor at a time (OFAT) experimentation. Evan low-powered, minimal designs 
can be augmented with additional runs to mitigate random error and gain stronger signals from the inputs. 
Augmentation of designs is especially useful in the highly regulated pharmaceutical and medical device 
industries because the likelihood of equivalent processing conditions for the augmented runs is generally 
good due to the standard operating procedures and work instructions endemic to the industries.   

The Problem: Designing a Formulation Materials Set of Experiments 
Sudhir was able to convince management in the value of using structured experiments to optimize an 
extended release formula. The risk assessment for the formula identified that there are 3 materials 
considered as critical materials attributes (CMA). The CMAs exert likely influence on the critical quality 
attributes (CQA), which define the performance of the formulation. The team is most concerned about 
meeting the goals for tablet dissolution at 4 hours and plans to experiment with 3 materials: a disintegrant, a 
diluent, and a glidant. Finding the right balance for the amounts of each material is crucial to the success of 
the formula. The total amount of the three materials is known to be fixed as the weight of the tablet has 
been established and cannot be changed. The amount of diluent in the target formula is higher by volume 
than the release controlling agent or glidant. Other materials in the mix include a fixed amount of the active 
pharmaceutical ingredient (API) and lubricant. This chapter explores two major types of experimental 
designs for materials. 
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The Plan 
The materials of a formulation need to be determined early in the development process for a new tablet 
product. A great deal of work goes into the principal science to determine the types of materials needed to 
robustly meet the goals for CQAs. Sudhir’s team has been able to produce the desired results with a target 
formula shown in Table 9.1 but obtaining acceptable results one time does not ensure that the formula is 
robust. 

Table 9.1: Formulation Plan 

Material 
Target 
(mg/tab) 

Percent 
of Total 

Low Value 
(mg/tab) 

High 
Value 
(mg/tab) Factor Type 

API 1 100.0 19.6%  Fixed 
API 2 225.0 44.1% Fixed 
Diluent 126.0 24.7% Changes are random, 

complimentary amounts 
to make up for other 

materials

Continuous 
Slack 

Disintegrant 32.0 6.3% 20 44 Continuous 
Independent 

Glidant 18.5 3.6% 13 24 Continuous 
Independent 

Lubricant 8.5 1.7%  Fixed 
Total Tab 510.0 100.0% 

 

JMP includes an entire suite of tools in the DOE menu that are used to quickly create robust experimental 
designs. The goal for the experimental activity is to determine which materials have effects on outputs, 
based on a limited list of candidates. The tablet weight is established as 510 mg, dictated by the required 
size and shape of the tablet noted by the marketing team. Only three materials are allowed to vary within 
the powder mix. The team has been through extensive planning to ensure that the processing attributes are 
controlled to fixed levels as much as possible. Members of the team will be working with manufacturing to 
ensure that all have an acute awareness of the need for minimal variation in processing. The control of the 
process is indented to ensure that the variability from materials can be detected as clearly as possible. 

One way to create an experimental plan is to treat the materials inputs as independent factors. The plan will 
allow for only two of the three changing materials to be modeled; the third variable will be used to make up 
the slack created by independent combinations of the two factors. The principal science and experience of 
the formulation scientists was utilized to select the diluent as the slack variable. Slack variables randomly 
make up the difference to ensure that a fixed tablet weight of 510 mg is maintained. A drawback to the 
independent factors design with a slack variable is the inability to detect a signal from slack material. It is 
possible that differences noted due to changes in the factors are due to changes in the slack material that 
create errors in the model. The large percentage of the material in the formulation (24.7%) is believed to be 
enough to not result in changes to outputs due to the small random changes used to make up the slack.  

A great deal of discussion went into the levels of the factors that are to be studied. Best practices include 
utilizing the largest increments as possible for the experimental factors. Big changes increase the potential 
that the signal from changes in the factors will overcome the noise of random variation, given the relatively 
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small number of runs that are included in the model. A change of just over 37% for the disintegrant and a 
change of roughly 30% for the glidant are believed to be appropriate.  

The design plan is deceivingly quick and easy to create. The diligence expended in the planning of the set 
of experiments is directly proportional to the robustness that might result from the analysis results. The 
custom designer in JMP is an excellent first step to rely on regardless of whether you are at a novice or 
expert level. The designer utilizes extremely powerful algorithms that optimize designs based on the details 
you enter to specify the model. Technical professionals no longer need to pour through experimental design 
textbooks to find a model that creates a palatable compromise between real world needs and limitations and 
the analysis model needed to produce reasonable results.  

Using the Custom Designer 
The initial goal of formulation development is to detect the material inputs that are related to changes in 
outputs. There is also interest in quantifying the effect of the predictor material inputs. Optimal 
experimental designs are based on criteria that relate to the experimental goal. The D-optimality criterion 
focuses points at the outer edges of a design space to emphasize the detection of the inputs that are related 
to changes in outputs. The I-optimality criterion locates points throughout a design space to emphasize the 
quantification of the amount of effect that inputs have on outputs so that accurate predictions can result. 
Other optimality criteria are available for more complex goals. You are encouraged to research the 
information in the Design of Experiments Guide in the JMP user documentation for additional information. 

The default of the custom designer is the D-optimality criterion to prioritize the detection of which inputs 
affect outputs. Predictions can be made to quantify the effects when using D-optimal designs; however, 
more error is likely than a model produced using an I-optimal design. Start the experimental design for 
materials by selecting DOE  Custom Design to get to the Custom Design window, shown in Figure 
9.1. 

Figure 9.1: The Custom Designer 
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Several outputs will be measured for each of the experimental runs, which you can include in the responses 
box. It is typical to leave the responses blank during the design phase because they might not be known. 
For the subject formulation in this example, the responses are added later in the design process, and the 
limits are defined between the time that the experiments are designed and the results are analyzed.  

The inputs of the model are added as factors to build the design. Enter 2 in the Add N Factors box for the 
two inputs being studied, and select Continuous in the Add Factor field, as shown in Figure 9.2. 

Figure 9.2: Adding Inputs (Factors) in the Custom Designer 

 

The values of -1 is for the low level and 1 is for the high level of each factor are added as defaults by the 
platform, as shown in Figure 9.3. The design can be developed with the default factor level values before 
the actual input values have been settled upon by subject matter experts. Sudhir was able to define the 
factor levels of each input prior to initiating the design. The default factor level values are changed by 
selecting each coded value and typing the new value in its place. Having actual factor values included in 
the design helps the subject matter experts to interpret the experimental plan in practical terms. 

Figure 9.3: Factors of Experiment Shown in the Custom Designer 
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The actual values are known for the experiment (shown in Table 9.1) and are included to add useful 
information for the team. Modify the coded levels of each input in the Factors box with the values shown 
in Figure 9.4. Click Continue to add detail to the design. 

Figure 9.4: Uncoded Factor Levels 

 

The basic model has been defined but more detail is needed to qualify the materials inputs (factors). At the 
top of Figure 9.5, the Define Factor Constraints options enable you to fine-tune for combinations of 
factor levels that are known to be a high risk for a functional failure. For instance, the highest level of one 
material input combined with the highest level of another might deplete the diluent (slack) variable so 
much as to interfere with lubrication and cause tablets to stick onto tooling. The planning for levels already 
took the risk of sticking into account, so further restrictions are not necessary. Adding a factor constraint 
might allow for wider levels of factors to be studied. However, a design with limits on all combinations 
adds complexity, increasing prediction variance. The default level of no factor constraints is utilized for the 
project.  

There is a good chance that a change in the output is due to a combined effect among two or more 
variables—an interaction. Interactions should be included in the factor details to ensure detection of the 
phenomenon. Click Interactions and select 2nd, shown in Figure 9.5.  This option includes in the model the 
interaction between the two inputs. Interactions are possible for more than two inputs. However, the 
example can include only a 2nd order interaction since only two inputs are considered in the design. 

Figure 9.5: Defining the Model 
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The Design Generation section of the window utilizes the model options to guide you to the number of 
runs that should be included in the plan. The team is interested in a run to represent the target formula, 
which means that a center point is needed in the model. Including the center point also provides an ability 
to determine whether the model results are not linear. Enter 1 in the Number of Center Points box. 
Number of Runs includes radio buttons for the Minimum and Default number of runs that are calculated 
from the algorithm that the Custom Designer uses. In the User Specified box, you can enter any number 
of runs greater than the minimum. For this example, select Minimum runs first to create a model with the 
least amount of resources required, as shown in Figure 9.6. Click Make Design to create the design shown 
in Figure 9.7.  

Figure 9.6: Options to Generate the Design 

 

Figure 9.7: Minimum Size Custom Design of Five Runs 
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Using Model Diagnostics to Evaluate Designs 
The minimum design with five runs is shown in Figure 9.7. This section describes the diagnostic tools that 
are used for evaluating the quality of the model. Significance might be incorrectly detected from a model 
that was made with insufficient runs. An important diagnostic is a measurement of the ability to mitigate 
the mistake of detecting a significant relationship due to a lack of runs. The term used for this measurement 
is statistical power, which can be between 0% and 100%.  

Power is influenced by the balance struck between the influence from inputs that explain changes in an 
output and the random variation of a model. The factor influence can be thought of as a signal from a 
model and the random variation as noise. Figure 9.8 assumes that a good level of power is to be 
maintained, which is typically 80%. The balance on the left represents a model with a large amount of 
noise and a subtle signal; many runs are needed to maintain good statistical power. The balance on the right 
represents a model with minimal noise and a strong signal; fewer runs are needed to maintain good power. 

Figure 9.8: Visualization of Statistical Power  

 

 

 

 

 

 

The calculation of statistical power is 1 minus the probability that the model does not conclude significance 
when a significant relationship exists in real life. Basically, power can be defined as the likelihood that a 
significant relationship exists in real life for the population of batches that is produced.  

The diagnostic tools for the model give an estimated value for power, which is based on the following 
factors:  

● The desired significance level; 0.05 is the default used by JMP.  

● The amount of random variation that can be expected; JMP uses one unit of random mean square 
error (RMSE) as the default. 

● The RMSE is the variation that can be expected in the outputs regardless of changes that occur 
with the inputs. 

● If information is available from previous studies, the expected RMSE can be included to make the 
model evaluation more precise. However, updating the RMSE should be done in concert with 
expected values for the input coefficients. 

● The amount of change in the output that can be expected from the inputs; JMP uses one unit of 
change in the output as the default. 

● Prior studies can be utilized to extract anticipated coefficients that differ from the one-unit default. 

● If the anticipated coefficients are changed, it is good practice to also include the related random 
variation value (RMSE). 

● The sample size for the power calculations is derived from how you defined the model in the 
Custom Designer. 

NOISE SIGNAL NOISE SIGNAL 

NOISE

SIGNAL

Root Mean Standard Error 
(RMSE) 

Coefficients of Inputs 

Experimental Run 

80% 

90% 

100% 

70% 

60% 

100% 

90%

80%

70%

60%



190  Pharmaceutical Quality by Design Using JMP 

 

Figure 9.9: Design Evaluation (Statistical Power) 

 

The Custom Designer creates models through the use of random selection. The diagnostics of each trial of 
creating a model will differ. The examples in this section are not likely to match your results due to the 
randomness of the technique.  

The power calculations for the 5-run model do not look very promising, given the default values used for 
the calculations. The estimated power is between 12.6% and 14% out of a possible 100%. The actual power 
will likely change because the actual random variation and the actual coefficients for the inputs are likely to 
differ from the one-unit default. There is no way to predict whether the power values will be higher than 
the estimates or lower until the analysis of results is completed.  

The next aspect of diagnosing the model is estimating the amount of variance that can be expected for the 
design space used, shown with Figure 9.10.  

Figure 9.10: Design Evaluation (Prediction Variance) 
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The structure of the model comes from the allocation of runs among the factor combinations. Ample runs 
allow for a balanced number of runs among input combinations, reducing the amount of prediction variance 
expected from the model. Flat, bowl-like curves are desired for the individual inputs of the variance profile. 
You can manipulate the red segmented slider to see how the variance changes for different levels of the 
materials inputs. The variance is always highest at the extremes (high and low) and minimal in the middle 
of the design space. The shape of the variance profiles is the reason the widest possible levels are desirable 
for model planning.  

The Fraction of Design Space plot provides a detailed illustration of the design space of all inputs from the 
center out to the extreme levels. The flattest rate of growth for the variance is desired in the plot, with the 
50% value typically used as a standard of comparison among multiple potential models. The 5-run design is 
expected to have roughly 0.38 units of variance at 50% of the design space. You can get more detail by 
evaluating the Prediction Variance Surface plot, shown in Figure 9.11.  

Figure 9.11: Design Evaluation (Variance Structure) 

 

The plot offers a dynamic 3-dimensional view of the model variance. A symmetric bowl shape is desired 
for the variance structure, with a circular grid showing up as the response grid slider. The Estimation 
Efficiency table provides estimates for the amount that the prediction variance of the model structure is 
likely to inflate confidence level estimates made from the analysis of the completed model. The smallest 
values possible are desired. 

One of the most important aspects of model design is the potential for inputs and interactions that “blind” 
each other due to aliasing and correlations, as shown in Figure 9.12. Each diagnostic is set up as a matrix, 
which is obvious because the disintegrant is 100% aliased and is correlated with itself. The comparison of 
disintegrant with the other input and the interaction between the two have no aliasing or correlation. The 
alias table indicates 0 aliasing; the correlation matrix illustrates no correlation between inputs since the 
comparison cells have no color. The correlation plot in Figure 9.12 uses the white-to-black color scheme 
for presentation in this book; the default of the platform is a red-to-blue color scheme. 
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Figure 9.12: Design Evaluation (Correlations) 

 

The 5-run model requires minimal resources and has no correlation among inputs and the interaction, 
which are positive aspects of the diagnostics. The limitations of the model are the likelihood of low power, 
relatively high prediction of variance, and a variance structure that is not completely balanced and 
symmetric. The great thing about JMP is that it is very easy to evaluate many options for the number of 
runs within a very short period of time. 

Before you create a new model, click the Make Table button located at the bottom of the Custom Design 
window, below the Diagnostic Evaluation, to create a 5-run data sheet. Keep the randomization default 
values; you want a completely randomized design. Save the data sheet as “Custom Design 5R CP.” 

Go back to the Custom Design dialog box, and click Back to create a new model. Choose the Default 
choice to create a model with 12 runs, and click Make Design to create the design. The design evaluation 
for the 12-run design is shown in Figure 9.13.  



Chapter 9: Designing a Set of Structured, Multivariate Experiments for Materials   193 

 

Figure 9.13: Design Evaluation for 12-Run Model 

 

The estimated power has increased dramatically to more than 80%. The prediction variance is half of what 
is produced by the minimal design. A small amount of correlation is present among the inputs, and the 
interaction as combinations of input levels cannot be completely balanced with a multiple of 12 runs.  
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A third option is to create and evaluate a design with a number of runs that is between the minimal and 
default designs. Click Make Table below the Diagnostic Evaluation to create a 12-run data sheet. Save 
the data sheet as “Custom Design 12R CP.” 

Go back to the Custom Design dialog box, and click Back to create a new model. Select the User 
Specified option to create models with various numbers of runs. This example uses a 9-run design as a go 
between for the 5- and 12-run options. Click Make Design to create the design. Figure 9.14 shows that the 
9-run design has a greater issue with correlation than the 5- or 12-run designs.  

Figure 9.14: Design Evaluation of 9-Run Model with Correlation 

 

You could fully explore the diagnostics of the 9-run model and compare them to the other models. 
However, JMP includes an easy way to compare models. Create and save the data sheet as “Custom Design 
9R CP”. 
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Compare Designs – An Easy Way to Compare Up to Three Designs (JMP 
Pro Only) 

The Compare Designs platform efficiently compares model diagnostics for up to four designs. The three 
design data sheets that you have saved (5-run, 9-run, and 12-run) must be open in order to run the design 
comparison. This example uses the minimal 5-run design as the standard of comparison. Be sure that the 5-
run design is on top. Select DOE  Design Diagnostics  Compare Designs, as shown in Figure 9.15. 

Figure 9.15: Comparing Designs 

 

A dialog box opens where you can set up the comparison of the three models that you created. Press the 
Ctrl key and select the other two models by clicking on the data sheets in the Compare ‘Custom Design 
Materials 5R CP’ With box. Those sheets appear in the Source Columns boxes, as shown in Figure 9.16. 
Select disintegrant in each of the three models, and click Match. Do the same for glidant. Then, click OK 
to obtain the output.

Figure 9.16: Compare Designs Setup 

 

The Factors indicate the inputs of the designs, which are shown with uncoded levels regardless of the 
actual levels that you entered in the Custom Designer. The defaults shown in the model box include the 
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factors and interactions that were identified in the original designs. You can select different options by 
using the model buttons. In this example, the default model is of interest to the stakeholders of the project, 
which is shown in Figure 9.17. 

Figure 9.17: Compare Designs Model Description 

 

Comparisons of the statistical power for the three candidate models is the first set of diagnostics, shown in 
Figure 9.18. You can alter the options for RMSE and the amount of the anticipated coefficients with values 
from previous studies if they are known. This example uses the 1-unit default for RMSE and anticipated 
coefficients. The estimated power values, a comparative clustered bar chart, and a line plot are included for 
the models that differ only by the number of runs. The line plot is not included if other differences in 
modeling are present, such as comparing a custom design to a fractional factorial design. The diagnostics 
clearly illustrate the superior power of the 12-run design with a center point. 
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Figure 9.18: Compare Designs (Statistical Power) 

 

Figure 9.19 provides the output for comparisons of prediction variance and estimation efficiency among the 
models. You have seen the Fraction of Design Space plot before. Now, however, you see an overlaid plot 
of the three models, which clearly indicates the minimum prediction variance of the 12-run design with a 
center point. The values shown on the relative estimation efficiency reflect a comparative ratio. Values less 
than 1.0 indicate lower values compared to the reference design, values greater than 1.0 illustrate greater 
amounts than the reference design. JMP enhances interpretation by color-coding the numbers according to 
the Good-Bad legend. Since the 5-run design is the reference, the estimation efficiency ratios not as high as 
what is offered by the larger designs. The bright red numbers illustrate that the 5-run design is 61% worse 
than the 12-run design.    
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Figure 9.19: Compare Designs (Prediction Variance and Estimation Efficiency) 

 

Figure 9.20 provides information about correlations and design diagnostics. The 5-run and 9-run models 
have no correlations among individual inputs and the interaction. The 12-run design with a center point 
cannot have runs allocated equally among the input combinations and has less than 10% correlation 
present. Adding a 13th run or dropping the center point eliminates correlation for a new design. The color 
maps for correlation present the same information in a plot that is easy to interpret.  

Figure 9.20: Compare Designs (Correlations and Efficiency) 
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Comparing design through the diagnostic tools of JMP makes the job of balancing the need for information 
with resources that are easy to interpret, which is especially helpful for decision makers who might not be 
familiar with statistics. The design comparison helps people to visualize the balance between the 
information required from the experimental model and resource requirements.  

The Data Collection Plan 
The team used the comparative information to decide on a 9-run design with a center point. Low power and 
high prediction variance inherent in the 5-run design is not acceptable, and the need to conserve resources 
pushed the team to the 9-run design. The great benefit of utilizing structured, multivariate experimentation 
is the ability to augment models as needed. If the results of the 9-run design do not offer clarity of 
information, a JMP user can quickly augment a design by adding runs to further mitigate random 
variability. Augmentation is discussed later in this chapter. 

You can easily update the fully randomized experimental design provided in the 9-run data sheet to create a 
design plan that can be used to execute experiments and collect data. Figure 9.21 presents the final design 
plan, which includes the following changes: 

● new columns are created for fixed materials (mg/dose) 

● new columns are created with formulas to show material proportions (%) 

● new columns are created to determine the amounts needed from the slack variable (diluent) to 
balance out the total materials for each run 

● new columns are created to convert the material proportions to the amounts needed (kg/mix) for 
each run 

Figure 9.21: Design Plan  

 

You can save a JMP file that is the design plan in various formats as a data collection plan. The optimum is 
keeping the information as a JMP data sheet so analysis can be carried out easily with the default scripts.  
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Some organizations that Sudhir depends on do not yet have JMP available for all functional groups. The 
pilot plant that Sudhir will use for experimentation prefers to collect data in an Excel sheet. He quickly 
creates the Excel version of the plan by using the file save options. Select File  Save As and change 
Save As Type to Excel Workbook (*.xlxs, *.xls). Name the file “Custom Design Materials 9R CP Data 
Collection Plan”, choose the location where you want to save the file, and click Save. The Excel version of 
the data collection plan opens, shown in Figure 9.22. The columns other than the amounts needed for the 
operations team are hidden for simplicity. Sudhir saves the final version and sends it to the team who will 
be executing the work. 

Figure 9.22: Design Plan (Excel Version) 

 

The team can enter the output results in the Excel sheet and easily update those changes to the JMP data 
sheet for analysis when all runs are completed. 

Augmenting a Design 
The team collects data for the Hausner Ratio in order to execute the 5-run design, as shown in Figure 9.23. 
The Hausner Ratio is a measurement of the potential flow of the powder and is important for a robust tablet 
compression process. Analysis indicates that the disintegrant input is marginally significant, but the power 
calculation indicates only 67% power. The analysis team is concerned that too much random variation is 
present in the data to robustly detect the significant input from the minimal 5-run design.  
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Figure 9.23: Initial Results for 5-run Design 

 

Adding runs is an option since the procedural control of the process mitigates the risk of a lack of 
reproducibility. There is no guarantee that the added runs will improve the power of a significant result. 
However, larger designs represent the population more precisely. The end result could be that materials 
combinations include a large amount of variability for the Hausner Ratio output and do not add to the 
evidence of a significant relationship. It is decided to augment the design to strengthen the reliability of 
conclusions made from the analysis of the model. 

Open the file Custom Design Materials 5R CP with results.jmp to get started. Select DOE  
Augment Design. In the Augment Design window, set up the task. Move Hausner Ratio to the 
Y,Response box, and move disintegrant and glidant to the X, Factor box, as shown in Figure 9.24. 
Click OK to get to the next window (shown in Figure 9.25) where you select the best augmentation option. 

Figure 9.24: Augment Design Setup 
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Figure 9.25: Augment Design Window for Choosing Augmentation Choices 

 

You can choose from several techniques to augment a design. The following augmentation options are 
available in the Augment Design window shown in Figure 9.25: 

● Replicate makes a copy of the runs of the initial design. If enter 2 for replicates, in the result is a 
pooled design of 10 runs.  

● Use Add Centerpoints to focus the model on the midpoint between extremes, which can reduce 
variability. Recall that the goal of the experiments is to detect the important inputs. Therefore, a 
concentration of points in the middle of the design space is not a good strategy.  

● Use Fold Over to create a fold-over design, which mitigates the correlation between the 
individual inputs and interactions. Because the initial design has no correlation issues, this design 
does not meet the needs of the team. 

● Add Axial and Space Filling are options that create points to fill within and outside of the design 
space of the initial experiments. Each is a good option for adding runs to a D-optimal design so 
that analysts can improve the predictions made from significant factors. The options do not 
necessarily meet the goal of detecting important inputs and are not used for the example. 

● Augment is a simple option to utilize the plan for the initial experiments and randomly add more 
runs to hopefully improve power by reducing random error. This is the option chosen by the team. 
Click Augment to get to the window used to add detail and run the augmentation, shown in 
Figure 9.26. 
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Figure 9.26: Augment Design Window for Adding Options and Making the Design 

 

The default of 13 runs is provided by JMP at the bottom of the window. You can change the number, but 
the team decides to use the default. If the team wants to detect a difference that could be due to the two 
experimental campaigns, they could select the Group new runs into separate block check box. It is not 
selected in this example keep the analyses simple. Click Make Design to create a new model with the five 
existing runs and eight added runs. Next, evaluate the model diagnostics by opening the options underneath 
the Design Evaluation outline header in the output journal, shown in Figure 9.27. Click Make Table to 
create the data sheet shown in Figure 9.28.  

Figure 9.27: Augmented Design Model Details 

 



204  Pharmaceutical Quality by Design Using JMP 

 

Figure 9.28: Augmented Design Model Data Collection Plan  

 

The team sends the new data collection plan to the pilot plant for eight new experiments to pool into a 13- 
run set of experiments. 

Practical Conclusions 
The DOE platform tools in JMP can help a novice obtain expert results. Experimental planning used to 
require a DOE textbook to select a specific design with the subject matter manipulated to fit the model 
structure. You can run such classic designs can be run in JMP if you want to, but JMP can make things so 
much simpler. The Custom Designer enables an analyst to simplify work by including the inputs intended 
for the study and the amount of resources available for the experiments to create a design that specifically 
meets the experimentational goal. Algorithms within the designer utilize optimality criteria to find the best 
possible structure for the number of runs that can be afforded.  

This chapter involves determining how changes in two key materials might affect critical quality attributes 
and important process attributes. A slack variable used with the two independent random inputs easily 
obtains knowledge of material influence on responses of interest. The designer must be tolerant of 
experimental error and the potential for confounding that is present due to the random slack variable used 
to make up the total of materials in the mix. If changes in the slack variable are affecting a response, it will 
appear to be due to leverage exerted by one of the experimental variables. Subject matter expertise is 
extremely important; evidence of principle science and experience is needed to justify the assumption that 
the slack variable is not likely to create influence on outputs. A different approach involving a mixture 
design is described in chapter 14. 

The design diagnostics provide required information for teams to find the right balance between 
information gained from a model and the resources required to run experiments. The goal of this example is 
limited to the detection of the important factors. Therefore, the resource needs are less than what is required 
for quantifying effects and making predictions. Even minimal structured, multivariate experiments can be 
augmented to expand on the original goal or to pursue a more complex goal. The strict procedural 
environment utilized in the manufacturing of pharmaceutical and medical device products makes 
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augmentation a great option. Care must be exercised to ensure that each experimental campaign is as 
similar as possible to mitigate the risk of additional experimental error.  

Sudhir led the formulation team to quickly create D-optimal designs with the Custom Designer and 
compare them with the Compare Designs platform. A 9-run, completely randomized design with two 
material inputs and one interaction should provide the required information while using a manageable 
amount of resources. This design is formalized into a design protocol to list all inputs, controls, and noise 
factors, with the randomized set of runs as the data collection plan. The structure of the experimentation is 
far superior to a trail-and-error approach, and the team looks forward to the analysis of the results. 

Exercises 
E9.1—Create a set of structured, multivariate experiments. Use the results of the predictive modeling from 
exercise problem E8.2 with treatment ranges that are slightly wider than the ranges determined from the 
sample data. There are enough materials to make 18 more batches of product, so be sure to retain enough 
material to include an adequate number of confirmation batches. 

1. Create two comparative designs with the intent of finding the best balance between the 
information desired and the available resources. Keep in mind that there is a possibility that curved 
effects are present. 

2. Create a report that includes a comparison of a good design with the best design, and be prepared 
to explain the balance between information and resource requirements. 

E9.2—You are working with a formulation team as they try to find the right materials mix for a new 
extended-release tablet formula. The materials that have the highest potential for affecting dissolution 
results over time include a super disintegrant, a fast-acting release controlling agent, a slower acting release 
controlling agent, and a diluent. The formula also includes a filler material that aids the compression 
process and makes up a large proportion of the dose.  

1. Create a slack variable set of structured experiments for materials for the following levels: 
Filler (slack variable)   330mg target 
Super disintegrant  20mg to 28mg 
Fast-release control agent 42mg to 54mg 
Slow-release control agent 26mg to 36mg 

2. Create at least two comparative designs to balance out the desired information with resource 
requirements. 

3. Create a report that includes a comparison of a good design with the best design, and be prepared 
to explain the balance between information and resource requirements. 
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E9.3—A set of experiments for the study of a formulation has been designed and saved as a JMP table. The 
table includes all materials in the blend. However, the interest of the study involves the proportional mix of 
two grades of diluent, the amount per dose of a glidant, the amount per dose of a micronized grade of 
glidant, and the amount of a disintegrant. The initial goal of the design has been to mitigate correlation 
between inputs and to include at least 80% estimated statistical power. The leadership team is interested in 
what will be given up in information if the minimum number of 12 runs for the experiments is chosen over 
the 16 runs in the current plan. 

1. Open Custom Design Materials 5F 16R CP.jmp. 

2. Use the Evaluate Design script to look at the design evaluation. 

3. Use the Scatterplot Matrix script to view how the design space is filled with observational points. 

4. Use the DOE Dialog script to open the design journal. 
a. Click the Back button at the bottom of the journal. 
b. Redo the Design Generation with 12 runs to create a new design table that includes 12 runs. 
c. Select DOE  Design Diagnostics  Compare Designs for a view of comparative 

diagnostics for the 16- and 12-run designs. 

5. How would you present the information to leadership so that they can make the best decision on 
how to study this important new product? 
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Overview 
The requirement to have a robust manufacturing process is growing in importance for all industries who 
want to remain competitive. It is especially true with pharmaceutical and medical device manufacturing as 
regulatory agencies pursue Quality by Design (QbD) initiatives. Regulatory guidance typically notes the 
need for robust processes and suggests that elements of QbD need to be included in product submissions. 
Structured, multivariate experimentation is the gold standard for providing useful information about the 
relationships between process inputs and outputs. JMP includes an excellent Design of Experiments (DOE) 
platform for you to easily design a set of experiments and provide the best possible balance between 
available resources and information about the process. This section expands on previous chapters and 
provides more guidance for basic materials experiments to develop a design to screen out the critical 
process parameters (CPPs), as well as a design that is used to accurately quantify the influence of CPPs on 
multiple outputs of interest.  

The Problems: A Thermoforming Process and a Granulation Process, 
Each in Need of Improvement 

Chapter 8 worked through a set of historical process data from a plastic thermoforming process utilized to 
make surgical handle covers. Michelyene has been notified of customer complaints regarding covers that 
split or stretch and are at risk for falling off the handle. This is a big concern because they are a component 
of the sterile barrier needed in an operating room. Through predictive modeling, her team focused on a 
narrow set of process inputs that might be related to thin minimum wall thickness. The thin minimum wall 
thickness is the root cause for the loose handle covers. The team decides that a screening DOE is needed to 
determine the significant process inputs so that they can focus improvement efforts. 

The second example involves a pharmaceutical manufacturing process development team lead by Emily. 
She has been tasked to figure out the process settings needed from four key process inputs for a high-shear 
wet granulation process and to ensure that goals will be met for five outputs measured from the completed 
granulation. The task seems daunting, but the team recently acquired JMP licenses and received training on 
how to use the DOE platform. They will use the Custom Designer to find the balance between the 
information needed by the stakeholders of the project and the amount of resources that are required. 
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Screening Experimental Designs for the Thermoforming Process 
Process experiments often involve the goals of determining the most influential process inputs from a list of 
several. Screening designs are efficient at limiting the scope of further study to include only the process 
inputs that have statistically significant influence on an output. These examples show three design 
alternatives that can be used to screen the inputs. The design evaluation results for the three models are 
used to justify the best choice for the experimental goals. 

In chapter 8, you learned how Michelyne utilized predictive modeling techniques on a collection of all 
measured inputs from the thermoforming process. The modeling was used to determine the inputs with the 
strongest potential of having relationships to changes in minimum thickness. Predictive modeling is an 
effective technique for planning structured experimentation by limiting the scope of study to the inputs of 
greatest potential.  

The Custom Designer in the DOE menu is a great tool for designing an efficient experimental model with 
the high potential inputs. Start by selecting DOE  Custom Design. In the Custom Design dialog box, 
enter 6 in the Add N Factors box, and click Add Factor to see the menu list shown in Figure 10.1. Select 
Continuous; the process inputs Michelyne plans to study are of this type. 

Figure 10.1: Custom Designer: Adding Factors 

 

The Factors portion of the Custom Design window lists variables X1 through X6. To add the names of 
the process inputs, double-click on each variable to select it and enter the name in the box over the 
nondescriptive X variable. Enter low and high values so that the table of factors looks the one in Figure 
10.2. 
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Figure 10.2: Custom Designer: Defining Factor Levels 

 

The custom design is not the only model we intend to explore. The Design Evaluation results in the model 
output is used to evaluate multiple designs. Saving factors as a data file is good practice, and it allows for 
multiple designs to be created very quickly. Click on the red triangle menu next to Custom Design and 
select Save Factors, as shown in Figure 10.3. Select File  Save As and name the file “Thermoform 
Process Factors.” Now, save the file to the location of your choice. 

Figure 10.3: Custom Designer: Save Factors 

 

The factors are now named, and the levels are noted and saved. The goals of the experiments can now be 
reflected in the model portion of the Custom Design dialog box. Since the model is to be used for screening 
purposes, the default values for the main effects are all that will be used. 
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Figure 10.4: Custom Designer: Model Specification 

 

The default process for design generation is an experimental plan that is randomized, which matches the 
goal of the team. In regulated industries, it is good practice to randomize based on a seed value so that the 
plan can be replicated. A randomization seed is a number used as the base for the randomization engine 
within JMP. A randomization seed works very well for the purposes of this book because the data table you 
obtain from following the instructions matches up with the example shown in the book. To set a 
randomization seed, click on the red triangle menu next to Custom Design and select Set Random 
Seed, as shown in Figure 10.5. Enter 2018 as the randomization seed and click OK. 

Figure 10.5: Custom Designer: Setting Random Seed 

 

Use the Default value of 12 runs in the Design Generator, and click Make Design (shown in Figure 
10.6). The design shown in Figure 10.7 is added to the Custom Design window.  

Figure 10.6: Design Generation 
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Figure 10.7: 12-run Randomized Design 

 

The design table contains the 12 runs with all factor combinations, but the runs are not randomized. The 
design diagnostics are available for review once you have created the design, but this example compares 
the evaluation of three competing designs. Comparative evaluations are very helpful to illustrate the 
advantages and disadvantages of each design and enable a team to achieve an optimum balance between 
resources and information.  

Data table options are available, but this example does not use them for the sake of clarity. Click Make 
Table to create the JMP data sheet that contains a randomized set of runs, shown in Figure 10.8. Save the 
new JMP file as “Custom Design 12R Main Effects Thermoform Process” and leave it open. 

Figure 10.8: Randomized Data Table for 12-Run Custom Design 

 

The next design to consider is a classical screening design, extracted from DOE textbooks. Initiate the 
design by selecting DOE  Classical  Screening Design, as shown in Figure 10.8. 
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Figure 10.8: Classical Screening Design 

 

The saved factors file makes the task of creating a new design simple. Use the red triangle menu beside the 
Screening Design header to select Load Factors, as shown in Figure 10.9. Open thermoform process 
factors.jpg to add them to the model. When the factors are loaded, the Screening Design window 
appears, as shown in Figure 10.10. Click Continue to add the screening type choices to the output. 

Figure 10.9: Loading Factors 
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Figure 10.10: Screening Design: List of Factors 

 

Figure 10.11 shows the Choose Screening Type radio buttons in the output window. Select Construct 
from a list of fractional designs to get a list of classic design options, and click Continue. This example 
does not use the main effects screening option because it defaults to the D-optimal design feature used 
previously. 

Figure 10.11: Screening Design: Screening Types 

 

The classic designs differ from the custom designs in that each has a resource requirement for the number 
of runs. The flexibility is reduced since an optimality algorithm is not utilized. Use the Design List to select 
the design shown in Figure 10.12. By selecting the Plackett-Burman design with the same number of runs 
as the custom design, the goal of detecting main effects is maintained.  
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Figure 10.12: Screening Design: Design List 

 

Select the 12-run Plackett-Burman option to study the main effects. The Plackett-Burman main effects 
design is described as a Resolution 3 design. A Resolution 3 design can be used to detect the main effects 
of the individual inputs. A note of caution is that two-factor interactions might confound the main effects. 
Confounding of effects is explained as one effect blinding a portion of another effect. Therefore, the 
analysis results with a significant main effect could actually be the influence of a combination of two 
effects. Click Continue to add the design to the output, as shown in Figure 10.13. 

Figure 10.13: Screening Design: Design Detail 

 

Use the Design Evaluation details to review the options such as power, prediction variance, and 
confounding of factors. Once the team has created the three designs in the example, they will complete a 
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comparison of the designs to help the team determine the best choice. Detailed review of the design 
evaluation will be held off until the comparison is explained. 

The randomization seed needs to be set so that the output matches this example. Click the red triangle menu 
next to Custom Design and select Set Random Seed. Enter 2018 as the randomization seed and click 
OK. Click Make Table to create a randomized table of runs for the design, shown in Figure 10.14. The 
pattern of the design is shown, as well as the randomized list of 12 runs in the data table. Select File  
Save As to save the data as “Plackett-Burman 12R Thermoforming.” 

Figure 10.14: Randomized Plackett-Burnham Design 

 

The next model to create is a Definitive Screening Design (DSD). DSDs are relatively new and offer 
several advantages over other models. The models work best when you include at least six inputs in the 
study and the expectation is that only a few of the inputs will have a significant effect on the output. A 
small number of significant effects out of a large number of candidate factors is known as a parsimonious 
model.  

The thermoforming process experimentation plan works well for a DSD because the team wants to study 
six continuous variables as inputs. The information from the predictive modeling indicates that three of the 
inputs are likely to make up between 63% and 81% of the influence on the minimum thickness output. For 
this reason, the model is likely to be parsimonious. Initiate the design by selecting DOE  Definitive 
Screening  Definitive Screening Design, as shown in Figure 10.15. 

Figure 10.15: Definitive Screening Design 
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Use the red triangle menu by the Definitive Screening Design header to select Load Factors. The 
process is the same as it was for the classic screening design. Select thermoform process factors.jpg 
from the appropriate directory and load the factors as shown in Figure 10.16. Click Continue to change the 
output so that you can specify the design. 

Figure 10.16: Definitive Screening Design: Defining Factor Levels 

 

This example requires a basic DSD. For Design Options, select No Blocks Required and enter 0 in the 
Number of Extra Runs box, shown in Figure 10.17. Click Make Design to add the design to the DSD 
output. 

Figure 10.17: Definitive Screening Design: Design Options 
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The design shown in Figure 10.18 quickly illustrates one of the most compelling reasons why the DSD 
should be considered when the number of runs is minimal. A DSD, without added blocks or runs, includes 
two times the number of factors plus one center point run. The 13-run design is shown and has not been 
randomized. You should review the design evaluation options. Review the design evaluation results of the 
three model options to evaluate all three designs. 

Figure 10.18: Definitive Screening Design 

 

Set the randomization seed by clicking the red triangle menu next to Custom Design and selecting Set 
Random Seed. Enter 2018 as the randomization seed and click OK. Click Make Table to create the data 
table for the 13-run DSD, shown in Figure 10.19. Select File  Save As to save the data as “DSD 13R 
Thermoforming.” 

Figure 10.19: DSD Data Table 
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Compare Designs for Main Effects with Different Structures (JMP Pro 
Only) 

You can review the design diagnostics of each model by running the Evaluate Design platform in the open 
experimental model plan output. In later versions of JMP, model creation automatically creates a script that 
enables you to easily evaluate the design by running it from the saved data sheet. The Compare Designs 
platform offered starting with JMP Pro 13 is used to evaluate the diagnostics of all three designs. Complete 
the following steps to efficiently compare the three designs: 

1. Be sure that all three design files are open: 

◦ Custom Design 12R Main Effects Thermoform Process.jmp 

◦ Plackett-Burman 12R Thermoforming.jmp 

◦ DSD 13R Thermoforming.jmp 

2. Make sure that the design you want to use as the standard of comparison is open as an active 
window. The DSD 13R Thermoforming.jmp is the standard of comparison for the example. 

3. Select DOE  Design Diagnostics  Compare Designs to start the comparison. 

4. In the Compare Designs window, press the Ctrl key while selecting the Custom Design 12R 
Main Effects Thermoform Process and Plackett-Burman 12R Thermoforming files. 

5. Select the matching inputs and use Match Columns to ensure that all six inputs are a highlighted 
selection for the three designs. You do not need a y output variable to make the comparisons. 

6. Click OK to get the design comparison output shown in Figure 10.20. 

Figure 10.20: Compare Designs: Power  
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The first question is whether a model can incorrectly indicate an input as significant when it is not 
significant in the actual population. A relationship that is significant in the actual population is also noted 
as a real effect. The comparisons of statistical power show no great difference in statistical power among 
the three models. The custom design and Plackett-Burman screening design have slightly more power than 
the DSD. However, a difference of less than 4 percentage points of power is of no practical relevance. 
Small differences in power can result from minimal differences in the effect size or from random variation. 
The experiments are one sample from a population, and it is known that effect size and random variation 
differ minimally for each random sample pulled from the population. Analysts and consumers of statistical 
studies tend to consider power differences to be relevant when they are at least 5%. This is why the 
minimal difference in estimated power is not relevant to the team.  

The next goal is to determine how much error is likely to be included in predictions made from each model. 
Figure 10.21 provides comparative information about the structure of prediction variance for each model.  

Figure 10.21: Compare Designs: Prediction Variance Structure 

 

The prediction variance profile of the six inputs (main effects) for the three models illustrates symmetric 
concave shapes, which are desirable. The Fraction of Design Space plot shows that the DSD has slightly 
more prediction variance. The difference throughout the design space is no more than 1/10th of a unit of 
prediction variance. The minimal amount of difference might be due to random sampling error and is not 
enough to be of practical value. 

The comparison of the estimation efficiency of the custom design and the Plackett-Burman screening 
design to the DSD is shown in Figure 10.22.  
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Figure 10.22: Compare Designs: Estimation Efficiency 

 

The comparison value of 1 indicates a 1:1 ratio of difference between models, which means that the models 
are equivalent. The comparative estimation efficiency of 0.913 between the custom design and Plackett-
Burnam to the DSD indicates a difference of no practical value. 

The three models look to have very similar statistical power, prediction variance, and estimation efficiency. 
You might be thinking at this point that model choice is irrelevant and that a 12-run model would be the 
best choice to save at least 1 run of resources. The alias matrices and absolute correlations shown in Figure 
10.23 prove the great benefit of a DSD.  

Figure 10.23: Compare Designs: Alias Matrix and Correlations 

 

As mentioned in the design creation steps, the 12-run designs for the custom design and the Placket-
Burman design are focused on detecting the main effects of individual inputs. Aliasing is an amount of 
estimation bias present for a given effect that is due to another effect. Mitigation of bias is a goal for 
experimental design. A team might have tolerance for some bias presence for a screening design because 
they want to minimize resources. The alias matrix indicates that the 12-run designs have portions of the 
individual inputs that are biased by other terms (from 24% to 32%). The DSD has no aliasing for any of the 
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six inputs. This means that the evidence of significance for an individual input is independent of the 
evidence of significance for any other input and interactions.  

The Absolute Correlations summary provides an average correlation value for each of the three models in 
three different tables. The terms included in the model correlated to other model terms is shown in the 
Model x Model summary; this is the only one that is shown if no aliasing exists. None of the three models 
include an average correlation among the comparisons of 15 pairs made from the six inputs. The Model x 
Alias summary includes the average correlations between model terms and alias terms. The DSD has zero 
average correlation between the pairs of the six individual inputs as well as all interactions making up 60 
pairs. The 12-run models have an average correlation of 22%. The Alias x Alias summary contains the 
average correlations between alias terms and other alias terms. The DSD has 34% average correlation 
between the pairs made from the interactions making up 45 pairs. The 12-run models have an average 
correlation of 13% among the pairs of interaction alias terms. The DSD does not perform as well among the 
pairs of interaction terms that alias the individual inputs. However, correlation among interactions is not of 
great interest for the goal of screening for important process inputs. 

The correlation maps shown in Figure 10.24 are great for visualizing the amount of independence present 
for all effects.  

Figure 10.24: Compare Designs: Color Map on Correlation 

 

Both of the 2-run designs include up to 50% correlation (medium, gray blocks) between the main effects 
and the interactions. The DSD illustrates that the main effects have no correlation between main effects and 
interactions; this is made evident by the white “stripes” of blocks for main effects and interaction 
combinations running across the top of and down the left side of the matrix plot. The DSD does include 
moderate correlation among the interactions. Minor higher-order correlations among interaction are not 
problematic for a goal of screening effects since the team is not primarily focused on minimizing prediction 
error for making estimates. 
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Design diagnostics comparing the efficiency of designs is shown in Figure 10.25.  

Figure 10.25: Compare Designs: Design Diagnostics 

 

The efficiency of the DSD is slightly less than the two 12-run designs, but the amount of difference is 
minimal and is of no practical value. You might have realized by now that the 12-run default of the custom 
design created a Plackett-Burman factorial design. The custom design algorithm generally suggests a 
default model that includes enough runs to be orthogonal and might very well match a classic design model 
classic design models are based on orthogonality).  

The DSD is superior for obtaining clean signals from the process inputs. The trade-off is one more run of 
resources for the team to be able to obtain such robust information from their set of structured experiments. 
The DSD has become a very popular option largely due to this fact, but there are even more benefits to 
consider. 

Adding Interactions to Compare Designs (JMP Pro Only) 
The goal of the thermoforming experiments is to screen the process inputs to determine which have the 
most influence on the minimum thickness output. The 12-run, Resolution 3 designs are developed to 
provide evidence on the main effects only, but you know that interactions between inputs might influence 
results due to confounding. In this section, you use the Compare Designs platform to see how interactions 
might be influence the minimum thickness. Complete the following steps to add interactions and compare 
the three designs: 

1. Make sure that the files for the three designs are open and that the DSD design is the active one.  

2. Select DOE  Design Diagnostics  Compare Designs.  

3. In the Compare Designs window, press the Ctrl key and select the screening and Plackett-
Burman models. Match all the input columns as you did previously. 

4. Under the Model heading, click Interactions and select 2nd for the interactions between two 
inputs as shown in Figure 10.26. 

5. Click OK to get the model comparison output. 
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Figure 10.26: Compare Designs: Add Interactions 

 

The power values change dramatically when the interactions are included in the model, as shown in Figure 
10.27. The relatively small number of runs planned for in the designs are not enough to obtain adequate 
power to detect the significant factors because the highest estimated power is no more than 20%. 

Figure 10.27: Compare Designs: Power with Interactions 
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The prediction variance, relative estimation efficiency, alias matrix summary, and design diagnostics are 
shown in Figure 10.28.  

Figure 10.28: Compare Designs: Variance Structure, Aliasing, and Design Diagnostics 

 

The Fraction of Design Space Plot illustrates that the three models have different patterns of prediction 
variance across the design space. The overall amount of prediction variance when interactions are included 
is more than double that of the main effects models, especially at the extremes of the treatment levels of the 
inputs. Differences among the models are also much more prevalent and it is clear that using the DSD is an 
advantage; the curve is the lowest of the three and the flattest for most of the space. Estimation efficiency 
of the DSD is between 2% and 250% better than the 12-run designs when you account for the potential 
effects of interactions. Notice that many of the comparative values show up in green font, which highlights 
the advantages of the DSD for making estimations from the model.  

This is a great example of the balance between the information gained from the experiments in aliasing 
amounts and the resources required in the number of runs required. Many of the aliasing values for the 12-
run designs are highlighted in red due to the likelihood for error that is included in the analysis results. The 
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alias tables provide more evidence on the superiority of the DSD because no aliasing is possible for the 
main effects. The efficiency for the algorithm to be able to find optimality for the criteria is not practically 
different among the models. 

Even though interactions between the inputs are not of primary interest for the goal of the experiments, it is 
well worth the time to use the tools in JMP to evaluate how much they might contribute to error in the 
analysis of the results. The structure of the DSD and related advantages become clearer as interactions are 
considered. It is a best practice for the designer of structured experiments to evaluate both the primary 
goals as well as all possible sources of model error so that stakeholders can best weight the amount of 
resources to provide with the information desired from the activity. 

Visualizing Design Space with Scatterplot Matrices  
The concept of design space is important for all stakeholders of an experiment. As noted before, the area 
within the levels of all inputs makes up the design space for a set of experiments. It is easy to conceive of 
the space when inputs are limited to two since a simple x,y plot can illustrate the space. You can also view 
three inputs as a 3-dimensional cube. When a set of experiments involves more than three inputs, the task 
of conceptualizing the space is much more difficult. You can easily view this space = with a scatterplot 
matrix available in the Graphs menu in JMP. Making a scatterplot matrix with continuous variables results 
in points that are on top of each other, which hides duplicate runs. When continuous variables are involved, 
you can copy them and change to a nominal modeling type. This gives you the ability to visualize each run 
in the design. Start by pressing the Shift key while clicking the column variables for all inputs to select 
them. While the column variables are shaded as selected, choose Edit  Copy with Column Names, as 
shown in Figure 10.29. 

Figure 10.29: Selecting and Copying Column Variables 
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Complete the following steps to change the attributes of the variables: 

1. Click on the header of the first unused column to the right of the Y column to select it so it is 
highlighted in blue. 

2. Select Edit  Paste with Column Names. Note that the copied variables are pasted with a “2” 
to the right of the names as a default. The pasted columns are automatically shown as shaded and 
selected. 

3. With the columns selected, select Cols  Standardize Attributes, as shown in Figure 10.30. 
(Alternatively, right-click in one of the selected columns and select Standardize Attributes. 

Figure 10.30: Standardize Attributes 

 

In the Standardize Columns Attributes dialog box, click Attributes and change the Modeling Type 
from Continuous to Nominal, as shown in Figure 10.31. Click Apply and OK to execute the modeling 
type changes. 
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Figure 10.31: Set Modeling Type 

 

With all six inputs copied and changed to a nominal modeling type, the scatter plot matrix will clearly show 
individual runs. Select Graph  Scatterplot Matrix and move the six nominal inputs to the Y, Columns 
box. Click OK to get the plot. 

The plot shown in Figure 10.32 is the matrix of all 2-variable combinations with each run jittered so that it 
can be viewed easily. The matrix makes it clear to project stakeholders that in spite of limited resources, the 
design space is well covered by the design. All of the extreme lows, extreme highs, and centers of the 
combinations have multiple observations. Figure 10.33 is included to illustrate the space coverage when the 
original variables (continuous modeling type) are used. The theoretical coverage of the design is evident, 
but multiple observations are represented by the black dots. 
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Figure 10.32: Scatterplot Matrix: Definitive Screening Design Space 

 

Figure 10.33: Scatterplot Matrix: Definitive Screening Design Space (Continuous Variables) 

 

Figure 10.34 is the scatterplot matrix for the continuous variables of the custom design. The plot clearly 
illustrates that the corners of the design are covered, but no observations are located in the center of the 
space. An advantage of including the center point is the ability for the model to identify whether there 
might be model effects that include a rate of change (non-linear). The single, added run provides yet 
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another level of error detection and can greatly benefit the analysis by reducing the potential for making 
prediction errors. The DSD structure automatically includes a center point. However, you can specify a 
center point when you use the Custom Designer. It is good practice to re-evaluate model diagnostics; added 
center points will change things and some trial and error might be needed to find the optimal number of 
runs to meet experimental goals. 

Figure 10.34: Scatterplot Matrix: Custom Design Space 

 

Michelyne could easily communicate with stakeholders throughout the design process through use of the 
excellent graphics and diagnostic tools in JMP. Good experimental design is typically iterative as the 
designer clarifies the need to strike the right balance between allocated resources (runs) and the information 
needed from the analysis. The project stakeholders are extremely pleased because the DSD has provided 
“clean” information about main effects and has also mitigated error by detecting the potential effects of 
interaction and curved terms.  

Experimental Design for a Granulation Process with Multiple Outputs 
Emily’s team has been charged with developing a high-shear, wet granulation process that robustly meets 
five outputs of interest. She has had some experience visualizing data with JMP and knows that structured 
experiments can be easily designed with the excellent set of tools available in the DOE platform. JMP 
handles multiple outputs easily because you create a model for each, and there is a comprehensive profiler 
to determine whether the inputs can be optimized to meet the requirements for all outputs. There is no need 
to specify outputs in the design phase because you can add any number of outputs later, prior to the 
analysis of results. Outputs must be considered in discussions about experimental planning because the 
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goals of experimentation result from the behavior that is seen in the outputs. This example involves the 
specification of outputs during the design phase; the outputs are well known to the stakeholders of the 
experiments. 

JMP enables you to enter responses, specify the specific goals (including limit values), and set the 
importance of each. The detail entered for the responses will influence the type of model used for the 
analysis as well as provide structure for the profiler to determine the optimum settings for the inputs. This 
detail ensures that experimental goals can be met through predictions of the range of responses likely to 
represent the population of the end process. Start by selecting DOE  Custom Design. Complete the 
following steps to enter the responses and inputs as shown in Figure 10.35: 

1. Click Add Response for each response and specify the Goal of each. 

2. Enter values for the Upper Limit and Lower Limit. Keep in mind that the Minimize and 
Maximize options are one-sided and use only the appropriate single limit for optimization. 

3. The default value for Importance will result in the optimization of each response equally. You 
can specify the most important outputs (for example, CQAs) by entering values greater than 1. 
You can also minimize the importance of an output by entering values that are less than 1.  

4. Keep in mind that you can leave the limits and importance blank during the design phase. The 
Goal, Lower Limit, Upper Limit, and Importance can be specified at the time of analysis of the 
results. 

5. Enter 4 in the Add N Factors box and click Add Factor. 

6. Choose Continuous to add factors X1 through X4 to the window. 

7. Click on each factor to rename it and enter the limit Values as shown. 

8. Click Continue to proceed to the model specification part of the design. 

Figure 10.35: Custom Design  
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The purpose of the granulation experiments is to be able to accurately estimate the amount of effect that the 
inputs have on the multiple responses. The information needed for this design is much greater than the 
information required for the previous screening design. The stakeholders need to be prepared to allocate a 
greater amount of resources (runs) than what is required for a simple screening study. The example 
assumes that the need for information is high enough for the design to include the main effects and 
interactions, and the potential for curved terms. This response surface design can be easily included by 
using the RSM choice available in the model specifications.  

1. In the Custom Design dialog box, click the RSM button located underneath the Model header to 
see all the individual inputs (main effects), combinations of 2 inputs (interactions), and each input 
crossed with the same input (squared terms) shown in Figure 10.36. 

2. You can change Estimability from Necessary to If Possible so that fewer runs are required. 
However, the default value best meets the goals of experimentation. 

3. Underneath the Design Generation header, change the Number of Center Points to 1 since the 
team believes that non-linear effects are possible and they want to add to the ability to detect them. 

4. The Default number of runs is maintained at 21 for the design. You are encouraged to experiment 
with different numbers of runs to see how the design diagnostics change. However, this example 
uses the default number. 

5. Click on the red triangle menu next to Custom Design header and select Set Random Seed.  

6. Enter 2017 as the randomization seed, and click OK. 

7. Click Make Design to get the design plan data table. 

Figure 10.36: Custom Design: Model Specification and Design Generation 
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The 21-run design is shown in Figure 10.37. The high and low combinations of the four inputs are shown in 
the runs, as well as the center point value (run 21). There are also values between the high and low levels of 
the inputs that are necessary to be able to quantify the amount of change that can be expected from the 
inputs, interactions, and squared terms; that is the purpose of a response surface model.  

Figure 10.37: Custom Design with 21 Runs and CP 

  

The diagnostics for a response surface model involve a different optimality algorithm than what is needed 
for the screening design. The power analysis is shown in Figure 10.38. 
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Figure 10.38: Custom Design: Power Diagnostics 

 

The power analysis continues to use the default values of 1 unit for RMSE and 1 unit for each of the 
anticipated responses. However, the model creates a table of anticipated responses listed by each input, 
including various values. The anticipated responses are typically not known unless there is reliable previous 
modeling that can be used to input the values. The estimated power is very good for main effects (~80%), 
good for the interactions (66% to 73%), and marginal for the squared terms (33% to 42%). The team might 
decide to go back and increase the estimated power by adding replicate runs, which can expand resources 
very quickly. In general, the estimated power seems adequate to move forward; actual power might 
increase if factors have stronger signals, and there is always the potential to augment a design to improve 
power. 
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The prediction variance trend is shown in the Fraction of Design Space Plot in Figure 10.39.  

Figure 10.39: Custom Design: Variance Structure 

 

The Fraction of Design Space Plot illustrates a very flat prediction variance function over the design space. 
A flat function for variance from center point to the extreme levels indicates a minimal rate of increase in 
prediction variance over the design space, which is desirable. The added observations of levels within the 
extreme high and low levels really helps minimize prediction variance. This is one of the main reasons that 
an RSM is much better at making accurate predictions than is a screening design.  

It is good practice to look at the prediction variance surface of the various two-way combinations to 
determine whether the allocation of runs for the RSM provides for symmetric error. Figure 10.40 shows the 
surface of prediction variance between the spray rate and percent fluid.  

Figure 10.40: Custom Design: Variance Surface 
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The 3-D surface was rotated to illustrate that the model does not perform as well for predictions made from 
the high level of fluid due to heightened prediction variance for the region. The options available to deal 
with this scenario include: 

a. Go back to the custom model designer to add more runs to reduce the asymmetric prediction 
variance. 

b. Maintain the model without change to accept regions of increased prediction variance. The 
risk associated with this option manifests if the results of the analysis indicate that the highest 
amount of fluid provides the best average results for the various outputs. The study 
stakeholders will need to be prepared to either augment the design or run multiple 
confirmation runs in order to ensure that the results are repeatable and robust.  

The team is not prepared to ask for more resources than the 21 runs for this design and accepts the potential 
for increased prediction variance to mitigate resources. It is good practice to look at the prediction variance 
surfaces for all six of the combinations of the four inputs. This scenario is not included here for brevity. 

The estimation efficiency and correlation map are shown in Figure 10.41.  

Figure 10.41: Custom Design: Estimation Efficiency and Correlation Map 
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Estimation efficiency is often used to compare the merits of various designs. It can be used here to 
communicate to stakeholders the limits on information that will be gained from analysis to ensure that the 
best decision is made for the structured experiments plan. The correlation color map generally illustrates 
low correlation values for much of the space with light grey colored squares. There is a higher potential for 
the higher-order terms (interactions and squared terms) to correlate with each other. Typically, correlation 
among higher-order terms is not considered an issue unless the information from the analysis is expected to 
be extremely precise.  

There are no needs voiced by stakeholders for an extremely high level of precision, and the team believes 
the model to be adequate to meet the goals of the project. The default values for the Data Table Options, 
shown in Figure 10.42, are used with the Randomize run order. Click Make Table to create the data table 
for the 21 runs of the experiment. 

Figure 10.42: Output Options 

 

The data table shown in Figure 10.43 created in the Custom Designer illustrates a random allocation of the 
21 runs of the I-Optimal set of experiments. Keep in mind that the allocation of runs is likely to change 
each time a table is created in the designer when runs are randomized.  

Figure 10.43: Custom Design: Data Sheet 
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The inputs of the model were copied and changed to the nominal data type using the steps that produced 
figure 10.30 and the related scatterplot earlier in the chapter. A scatterplot matrix for the inputs for this 
example is shown in Figure 10.42. The I-optimal design utilized for the RSM saturates observations at both 
the outer corners and within the design space to allow for good quantifiable estimates of the effects of 
changes in the inputs. The more that the design space is represented by runs, the better the estimates will be 
that come from the model. 

Figure 10.44: Scatterplot Matrix: View of Design Space 

 

The project stakeholders are extremely pleased with the information presented regarding the model design. 
The tablets and plots provided from the JMP output enabled the team to understand the balance between 
available resources and the information desired from the analysis of the model. Everyone feels that the 
information that comes from the efforts is far better than utilizing OFAT designs to try to get acceptable 
results for each of the five outputs. The design is analyzed in a future chapter, that emphasizes the full 
value of using a structured experimental model to determine the optimal set of process controls to ensure 
that the goals for all outputs can be met simultaneously. 

Practical Conclusions 
Structured, multivariate experiments offer the most efficient method to answer questions about causational 
relationships between the inputs and outputs of a process. Planning starts by establishing the goal of the 
experiments. Screening for important inputs requires fewer resources than does establishing a response 
surface for accurately predict the amount of influence each input might have on outputs of a process. 
Teams might be reluctant to support the use of multivariate experimentation due to the amount of resources 
required. It is of the upmost importance to utilize the evaluation of designs to explain the quality of the 



238  Pharmaceutical Quality by Design Using JMP 

 

information that will be gained from the number of runs that must be executed. JMP offers a wide variety 
of design evaluation tools to estimate statistical power, measure the amount of variance expected in 
predictions, and establish the robustness of the effects.  

The DOE platform continues to expand as research continues and new models are added. The number of 
options available can be daunting for a novice working to find the right balance between the information 
provided and the resources required for a given model. Planning a set of experiments historically involved 
searching through DOE texts to find a classical model that seemed to fit the experimental scenario as 
closely as possible. A DOE practitioner needed to possess sufficient knowledge of statistics to guard 
against choosing an inadequate design. JMP has changed the planning process by incorporating the 
statistical knowledge within the DOE tools and supporting the user with easily accessible documentation 
integral to the software application. You can quickly create and evaluate multiple models by using the DOE 
options. The evaluation tools include both summary metrics and high-quality graphics to compliment the 
ability of non-statisticians to interpret the information. Stakeholders gain confidence in the methodology of 
choosing an appropriate model through the comparative design evaluation. This is due to quality of 
information that is likely gained from experimentation based on the resources that were planned for. The 13 
runs required for the definitive screening design provide for robust experimentation to detect the important 
process inputs for the thermoforming process that ensures that surgical handle covers have adequate wall 
thickness. The 21 runs of the I-optimal response surface design set of experiments will work very well to 
define the design space of the wet granulation process. 

You should exercise caution when designing and evaluating experimental designs. The evaluation activity 
is based on assumptions made about the degree of effects and amount of random variation expected in the 
model. Historical information can help teams to adjust the assumptions to be as accurate and precise as 
possible. Regardless of the effort expended to improve assumptions, the analysis of the actual results could 
erroneously indicate that an effect is significant. The default level of significance of 0.05 might need to be 
reduced if the process being studied is critical and the tolerance for error is low.  

There is no substitute for careful planning of structured experiments. Teams must expend as much effort as 
possible to ensure that the variables studied are appropriate and all that other potential variables are either 
held as fixed controls or monitored and measured to later test for possible influence. Too much control can 
create a synthetic environment; too little control can result in a large amount of random variability. 
Experimental planning is somewhat of an art form because the set of experiments must be designed to 
represent the population of interest as closely as possible. 

Exercises 
E10.1—Use the results of the predictive model from exercise problem E8.1. Use treatment ranges that are 
slightly wider than the ranges determined from the sample data to create a set of structured, multivariate 
experiments. Management has allocated enough resources to be able to produce and test no more than 15 
variants of the surgical tray sealing process.  The team is most interested in a design that includes both the 
main effects and the interactions of the process. There is no expectation that terms more complex than 
interactions are present (curved terms). 

1. Create your plan. You will likely want to have enough resources available to make a minimum of 
four confirmation runs, so plan wisely. 

2. Create a report that includes a comparison of a good design with the best design, and be prepared 
to explain the balance between information and resource requirements. 
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E10.2—A set of structured experiments has been designed for the study of the tablet compression process 
involving four inputs. Leadership exerted a significant amount of pressure to keep the resource 
requirements at a minimal level, which means that a 6-run design has been created.  

1. Open Custom Process Design 4F 6R CP.jmp. 

2. Use the Evaluate Design script to go through the design evaluation. 

3. Use the DOE Dialog script to open the design journal. 
̶ Click Back button at the bottom of the journal.  
̶ Create new designs with the design generator to add interactions to the model. 
̶ Use the minimum number of runs to create a new design with interactions. 

4. Compare the initial 6-run design to the minimum-run design with interactions. 
̶ How did the new design affect expected statistical power? 
̶ How did the new design affect the prediction variance profile? 
̶ How did the new design affect correlation (use the color map to visualize)? 

5. How would you present this information to leadership (you have a strong suspicion that 
interactions might exist)? 

E10.3—You are working on an injection molding process used for critical components of a medical device 
that delivers a dose of an inhaled drug. There are a large number of process inputs including the following: 
back pressure, holding pressure, injection time, open mold time, shot size, clamping pressure, injection 
pressure, screw speed, and boost cut off. Several outputs will be measured from the parts, including part 
weight and key dimensions from physical features of the plastic part.  

1. Select DOE  Custom Design to create a design. 
̶ All factors are continuous (use default coded levels of -1, 1). 
̶ Include main effects and interactions. 
̶ Save the factors as a table with the design red triangle menu options. 
̶ Make a table with the minimum number of suggested runs. 
̶ Name the “Table 9F Custom Design.” 

2. Select DOE  Classical  Full Factor to create a design. 
̶ Load the factor table that you created in the custom design. 
̶ Make a table with the suggested number of runs. 

3. Use DOE  Definitive Screening to create a design. 
̶ Load the factor table created in the custom design. 
̶ Select the design option for adding blocks with additional runs to estimate quadratic 

effects. 
̶ Make a table with the suggested number of runs. 

4. (JMP Pro Only) Select DOE  Design Diagnostics  Compare Designs to create output that 
compares the three design options. 

5. How would you present the comparison, considering the balance between information provided 
and the resource requirements? Which option is the most feasible in the commercial operations 
environment of molding plastic parts?  
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Overview 
The designs of chapter 10 were formed through detailed collaboration and communication with project 
stakeholders and subject matter experts. The designs developed in JMP were carefully executed in 
compliance with an experimental protocol. The protocol was clearly documented, approved by leadership, 
and supported by resources provided by the project team and the operations group conducting the 
granulations. The randomization plans were followed in the exact order noted in the data collection plans. 
The output values entered in the data sheet were confirmed to be precise and accurate. This chapter 
explains how to use JMP to efficiently analyze the experimental models to provide evidence in support of 
the goals for each project. You will see the comparisons between the information provided by a simple 
screening design and a high-resolution response surface model with multiple outputs.  

The Problems: A Thermoforming Process and a Granulation Process, 
Each in Need of Improvement 

Michelyne’s team is charged with quickly identifying the process inputs that influence the thinning of the 
material thickness of surgical handle covers so that customer complaints can be corrected as soon as 
possible. The project stakeholders prefer speed and decisive action over the obtainment of detailed 
knowledge of the thermoforming process. The definitive screening design (DSD) used for the experiments 
met the goal of the stakeholders and even provides a glimpse into the amount that various factors affect the 
handle thickness. 

The granulation process being studied by Emily’s team is more mature than the thermoforming process 
being studied by Michelyne’s team. The project stakeholders have run enough prior experiments to identify 



242  Pharmaceutical Quality by Design Using JMP 

the process inputs that have a significant effect on outputs. The problem involves multiple outputs that must 
be met robustly through control of four process inputs. The goal of the team is to quantify the effects of 
changing inputs so that the optimum settings can be identified. This information is crucial for the 
manufacturing team to have the best chance of robustly obtaining good product. The response surface 
model designed for the experiments provides a high resolution of information that will exceed the 
expectations of the team. 

Execution of Experimental Designs 
The team charged with addressing the incidence of cracked and loose surgical light handle covers created 
an experimental plan to screen for significant thermoforming process inputs in chapter 10. Michelyne found 
that the definitive screening design, exclusive to JMP, provides an extremely efficient set of experiments to 
screen to a limited number of process inputs. The main advantage of the DSD is a model that mitigates the 
typical correlation that is found between the individual inputs and the interactions. The small number of 
runs was very appealing to the project stakeholders because results can be obtained very quickly and with 
controlled expense. Additional advantages of the DSD is the detection of interactions and squared (non-
linear) terms that might leverage the output.  

The design of experiments (DOE) explained in chapter 10 is only a small part of the effort required to 
execute a set of multivariate structured experiments. The statistical analysis of an experimental model 
assumes that most of the variation in the output is due to changes in the inputs studied. All other potential 
sources of variation to the output must be discussed and appropriately controlled. The inclusion of controls 
to the process is easier said than done in most cases. The design team must include subject matter experts 
from the operations area to discuss the needed process controls before the experiments are executed. It is 
extremely important for the team to go into such meetings with healthy pessimism to ensure that all sources 
of potential variability are identified. These sources can include, but are not limited to, variations in the 
physical environment (temperature, humidity, air circulation), changes in people (operators, technicians, 
leadership), changes in the machines (warm up, continued wear and tear, automatic controls adjustments), 
and changes in materials (amount of incoming material, changes in physical characteristics, changes in 
lots).  

Each potential influence should include a control as well as a team member responsible for ensuring that 
the control is in place as experimental runs are executed. There are some sources of variability that the team 
will decide to not control in order to ensure that the set of experimental runs adequately represent the 
population of process results being modeled. For instance, the operational facility might experience 
fluctuations in ambient temperature that range between 68 degrees F to 82 degrees F during typical 
processing. If the experimental environment were to be controlled to a rigid control of 70 degree F +/- 1 
degree, the resulting model might not contain the amount of random error expected in ambient conditions 
and could provide misleading results. Operations would need to invest a significant expense to mimic a 70-
degree F +/- 1-degree environment, which is highly unlikely.  

There is a very high likelihood that the execution of a set of experimental runs will not go perfectly. An 
experimental model can extract the highest-value information when levels chosen for the design are pushed 
out as far as possible to the extreme low and high ends of the operational range. With wide process levels, a 
risk exists for the inability of the process to create a sufficient output with the most extreme combinations 
of input levels. This can be especially problematic if the process is unable to create an output several runs 
into the design plan. It is highly recommended that the design team discuss the plan with subject matter 
experts (SMEs) in order to identify any runs that are at high risk for an inability to create an output. For 
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instance, a surgical handle might not adequately form with the shallowest plug depth (0.82), shortest 
vacuum time (4), and coolest tool temperature (180). The DSD plan from chapter 10 does not included a 
run with the noted extremes. However, one of the runs is very close. It is good practice to make the highest-
risk run the first run executed in the plan. This violates the concept of a completely randomized design 
slightly.  If the process is unable to produce a viable output, the design team can quickly adjust the levels in 
the design and add a run to replace the failed first run. Front-loading the highest-risk run can help maintain 
the intended number of runs. The movement of one run does not interfere with the assumption of 
randomness of runs enough to be practically relevant in most cases. If a failed processing attempt occurs 
late in the design plan, the team will need to exclude the run or scrap the effort and develop a new plan. 
Either option is very disruptive and costly, not to mention the loss of credibility that can occur with 
stakeholders of the project.   

Analysis of a Screening Design 
Michelyne assigned a member of the team to upload the outputs collected from the set of experiments to 
the design plan that they created in chapter 10. There are great advantages to using the original design plan 
created in JMP; scripts are created to make the job of analysis much easier for the analyst. Open 
Thermoforming DSD Results.jmp to view the data table shown in Figure 11.1.  

Figure 11.1: Thermoforming Experiments Results 

 

The fit definitive screening script in Figure 11.1 will be used to execute the analysis. However, it is good 
practice to visualize the data at a high level before completing a detailed model analysis. Select Analyze  
Distributions and move the variables to the Y,Columns box with the response on top and the six inputs 
underneath, as shown in Figure 11.2. Click OK to get the output. 
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Figure 11.2: Distribution Setup Window 

 

The output for the seven variables takes up a large amount of space and includes information that is not 
important. Press the Ctrl key and click the gray arrow next to the Quantiles header underneath min handle 
thickness to hide the quantiles summary for each variable. Press the Ctrl key and click the gray arrow next 
to the Summary Statistics header underneath min handle thickness to hide the summary statistics for 
each variable. Click on the gray arrow next to Summary Statistics underneath min handle thickness to 
unhide Summary Statistics for only the output. The summary statistics of the inputs are irrelevant since 
fixed levels were chosen when the model was designed. Lastly, use the red triangle menu next to 
Distributions to select Arrange in Rows, and enter 4 to display the output in two rows, as shown in Figure 
11.3. 

Figure 11.3: Distribution Output 
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The average minimum handle thickness for the set of experiments is 1.74 mm and the standard deviation is 
0.67 mm. The reasonable expectation for average minimal thickness for a population of handles made with 
the ranges of input changes is noted by the 95% confidence interval of 1.33 mm to 2.15 mm. The three 
levels explored for each process input are obvious since each distribution plot includes three bars. The 
dynamic functionality of distributions is used to determine whether any relationships are obvious. Notice 
that the min handle thickness plot seems to illustrate two groups of results. Press the Shift key and click 
on the lower group bars of min handle thickness to get the output shown in Figure 11.4. 

Figure 11.4: Distribution Output with Dynamic Selection 

 

The lower group of min handle thickness results seem to relate to the high level of plug depth since the 
majority of the high bar is highlighted. Low cycle time has a larger portion of the bar highlighted, but is not 
as convincing a pattern as plug depth. The four other variables do not illustrate as much of a pattern. Try 
other dynamic selections to look for potential patterns in the model data. Patterns in distribution plots offer 
a high-level view of possible relationships. However, the analysis of the model includes detail needed to 
quantify the level of significance for process inputs that influence min handle thickness. Go back to the 
Thermoform DSD Results.jmp table shown in Figure 11.1, and click the green arrow beside the Fit 
Definitive Screening script to get the output shown in Figure 11.5. 
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Figure 11.6: Thermoforming DSD Initial Analyses 

 

The analysis relies on a unique model selection algorithm, which detects for significant inputs in two stages 
(1-main effects, 2-interactions). The Stage 1 – Main Effects Estimates in the Fit Definitive Screening 
for min handle thickness window provides information about the inputs that have significant evidence of 
influence. The root mean square error of the model is 0.3334, which is relatively high compared to the 
overall range of thickness results of 0.7 mm to 2.8 mm. The 4 degrees of freedom relates to the number of 
inputs that were not selected as a main effect for a simple DSD without replicate center points or a blocking 
term.  

The plug depth is highly significant (p=.004) in reducing the minimum thickness output. The estimate of 
the effect (-0.63) means that a 0.63 mm average reduction in thickness for every percent increase in plug 
depth can be expected. This estimate of change in minimum thickness due to plug depth is only 4/10ths of a 
percent likely to have come from random variation. The cycle time has a minimally significant evidence of 
influence on minimum thickness (p=0.066). This means that the estimate of a 0.27 mm average increase in 
thickness for every second of increase in cycle time identified by the model is 6.6% likely to have come 
from random variation. The DSD algorithm utilizes a p-value threshold for selecting main effects that is 
based on the degrees of freedom in the error term of the model. This is why it is possible for selected main 
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effects to have a p-value higher than the 0.05 level of significance. (You can find additional technical 
details about selecting main effects for a DSD in the Design of Experiments Guide, available in the Help 
menu.). None of the remaining four inputs seem to have significant influence on minimum thickness.  

The second stage is used to detect for significant interactions. The minimum resource DSD with no 
replicate runs, no blocks, and no extra center runs does not offer enough runs to gain the highest level of 
robustness in sensitivity to higher order factors. The results indicate a significant intercept, which means 
only that the response value of linear model is not zero when the explanatory value is at zero. There is no 
useful practical interpretation of the intercept value. The lack of any other terms in the Stage 2 analysis 
indicates that the influence on minimum thickness is limited to main effects.  

Combined model parameter estimates are derived from the typical least squares analysis of the model. With 
the 10 degrees of freedom used for model selection, the significance of the plug depth and cycle time is 
stronger than the results of the specialized DSD main effects modeling. The slope of the blue model lines in 
the main effects plots of plug depth and cycle time indicate evidence of significant influence on min 
handle thickness because they are the two with the steepest slopes. In addition, the small distance 
between the observation points and the plug depth effect line also emphasize the strength of the significant 
relationship. The observations located about the cycle time effect line illustrate a similar pattern of a strong 
relationship. However, the greater distances between the points and the line illustrates the marginal 
significance of the effect.  

The Prediction Profiler provides for a dynamic view of the effects of plug depth and cycle time on 
minimum thickness. Click on the vertical red segmented line of plug depth, and drag horizontally along 
the range of values to estimate the minimum thickness. Repeat the dynamic estimation of min handle 
thickness with cycle time. To estimate the minimum handle thickness with an exact numeric value, click 
on the red input value for plug depth and enter 0.9. Repeat with other values for plug depth and cycle time 
to see how the estimates change. It is clear that minor changes in plug depth have a larger effect on 
minimum thickness than changes in cycle time. Basically, plug depths that are 0.9 or greater estimate a 
minimum thickness that is less than the 1.5 mm low specification. In addition, excessive plug depth 
(>=90%) with longer cycle times exacerbate the risk of producing handles that have minimum wall 
thickness that is below the minimum specification.  

Detailed Analysis of the DSD Model 
The next step is to run the model to get additional details of the analysis. Click Run Model in the Fit 
Definitive Screening for min handle thickness window to get the model output shown in Figure 11.7. 
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Figure 11.7: Thermoforming Reduced Model 

 

The Actual by Predicted plot enables you to see the relationship between actual and predicted values, 
indicated with a solid red line. The 95% confidence interval for the mean effect is illustrated with a shaded 
red area about the model line. The pattern of the predicted results by actual results of the individual runs is 
shown by the black circular markers. The relationship seems reasonable due to the evidence that the linear 
model is highly significant (p<0.0001). The model explains 86% of the changes in minimum thickness (r-
square = 0.86), and has a relatively small amount of random error (RMSE=0.2758). The effect summary 
lists plug depth and cycle time as significant effects, (p=0.00003) and (p=0.01219) respectively.  

The lack of fit tests are used to detect whether there are observations that have a poor fit to the model, even 
if the overall trend is of high significance. Notice that there are a limited number of observations that are 
outside of the shaded confidence interval region. If the observations were within the trend of the interval, 
the maximum r-square fit of 0.9556 would be achieved. The lack of evidence that poor fitting observations 
are within the experimental results is noted by the p-value of 0.3805. In general, the model for the two 
significant thermoforming process variables is very robust. 

The use of residual analysis is shown in Figure 11.8.  
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Figure 11.8: Thermoforming Reduced Model Residual Diagnostics 

 

Residual analysis adds detail to the diagnostics of the robustness of the model. The random pattern of the 
residuals illustrated in the Residual by Predicted plot is highly desirable. If a cone pattern or other non-
random pattern were evident in the plot, the conclusions of the model might be suspect due to the potential 
for error. The Studentized Residuals plot provides a reference for the user vis the red decision lines at the 
studentized residual values of +/- 4. None of the observations are beyond the decision lines. Therefore, the 
residual analysis provides further evidence of a robust model. 

The output provided by JMP has justified that the model formed through the two significant process 
variables of plug depth and cycle time is robust. The goal of the set of experiments has been met. The 
analysis was used to narrow the improvement efforts in controlling the minimum handle thickness by 67% 
(two of the six inputs can be manipulated to better control the output). The set of structured, multivariate 
experiments enabled the team to achieve the goals quickly and efficiently, but even more useful 
information is available. Effects and predictions can be made from the model to provide additional 
direction for the team. Michelyne needs to use the information with caution because there is typically an 
inadequate number of runs included in a screening design to precisely quantify the effects. The parameter 
estimates are shown in Figure 11.9.  

Figure 11.9: Thermoforming Reduced Model Analysis Interpretation 
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The parameter estimates indicate that an approximate 0.63 mm decrease in minimum thickness is expected 
as plug depth is increased one unit of standardized increase (standardized to the design space). This unit of 
increase is either between the low limit (0.82) and center point (0.88), or between the center point and the 
high limit (0.94). A one-unit of standardized increase in the design space of cycle time results in an 
approximate 0.27 mm increase in minimum thickness. The Prediction Profiler in Figure 11.10 is a dynamic 
illustration of how changes in the two process inputs of the model relate to changes in min handle 
thickness. 

Figure 11.10: Thermoforming Reduced Model Prediction Profiler 

 

The Prediction Profiler provides a dynamic plot in which the analyst can try different values of plug depth 
and cycle time by sliding the vertical segmented red slider lines. You should consider general relationships 
because prediction accuracy might be lacking. The practical interpretation of the limits on prediction 
accuracy is evident in the 95% confidence limits of the minimum thickness prediction at the center point of 
the design space, as shown in the profiler. The average minimum thickness predicted is shown in red as 
1.74 mm. However, the value could be as low as 1.57 mm or as high as 1.91 mm, as indicated by the black 
values for the confidence interval. Michelyne can guard against inaccurate conclusions made by project 
stakeholders by sticking with the interval estimates in all communication. The report on the analysis might 
include the statement “For the process set at a plug depth of 88% and a cycle time of 9 seconds, we can 
expect that the handles produced will have an average minimum thickness of between 1.57 and 1.91 mm”. 
If the stakeholders want increased precision in the estimates, they will need to support the project with 
more resources for further study. 

Use of the Fit Model Analysis Menu Option 
The previous example went through the model analysis that is run from scripts that are automatically 
created when you make a table for a DSD model. There might be times when the data from the experiments 
was not collected via the JMP table, or the person doing the analysis has a JMP license that is a version  

  



Chapter 11: Analysis of Experimental Results   251 

prior to 13.0. In such cases, you can complete the analysis of experimental data from a DSD by using the 
Fit Model platform. Complete the following steps to set up the model analysis:  

1. Open Thermoform DSD Results.jmp, and select Analyze  Fit Model.  

2. In the Model Specification window, make sure that min handle thickness is selected as Y, 
Response. 

3. Select all six process inputs in the Columns box, click Macros, and then select Response 
Surface, from the options shown in Figure 11.11. 

Figure 11.11: Thermoforming Full Model Creation 

 
 

4. Make sure that the Degree box includes the default value 2 so that only the two-way interactions 
and squared terms are included in the model. 

5. Click Run to get the model output. 

Singularity 
The thirteen runs of the model are not enough to be able to detect all six individual inputs, all interactions, 
and all squared terms. When there are more terms than runs in a model, the output includes singularity 
details. The singularity details in Figure 11.12 indicate that the response surface model does not have 
enough degrees of freedom for estimating the effects of the 21 factors.  
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Figure 11.12: Thermoforming Full Model Singularity 

 

The model must be updated to reduce terms down to the number of factors that can be estimated with the 
degrees of freedom available from 13 runs. The Effect Summary information in Figure 11.13 lists the 
factors with singularity without the LogWorth or PValue information. You could go back to the Model 
Specification window for a trial and error set of model selections. However, JMP provides an easy tool to 
reduce the model within the analysis output. Work from the bottom of the list upwards by selecting plug 
depth*vac timing and clicking Remove to eliminate it from the model. The model is reduced by the 
selected factor, and the analysis is redone automatically. Select multiple factors and click Remove until 
the remaining factors match the six that are included in Figure 11.14. (A more efficient method for 
reducing multiple factors from a model uses stepwise regression. Details about this method are more 
complex than the manual method. The topic is covered in chapter 13.)    

Figure 11.13: Thermoforming Full Model Effect Summary 
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Figure 11.14: Thermoforming Partially Reduced Model 

 

The Effect Summary includes a threshold value for detecting important factors, which is shown as a 
vertical blue line on the LogWorth horizontal bar chart. The effect summary horizontal bar chart illustrates 
that the plug depth and cycle time are the only factors that have enough evidence of influence to be 
considered significant to changes in minimum thickness. The model with the six factors also indicates that 
interactions are not likely to be of significant influence; the tool temp*nominal film thickness interaction 
has a LogWorth value that is very small (0.661) with an insignificant PValue of 0.218.  

Analysis of a Partially Reduced Model 
The model summary shown in Figure 11.15 includes additional factors as compared with the Fit Definitive 
Screening analysis.  

Figure 11.15: Thermoforming Partially Reduced Model Fit  
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Notice that the model fit of Rsquare =0.95 is better than the fit of the 2-factor DSD reduced model fit of 
Rsquare = 0.86. In addition, the amount of random error in the model decreased from an RMSE of 0.2758 
to 0.2232 by including four additional factors. The basic conclusion has not changed; the plug depth is the 
most significant factor and cycle time the only other significant factor. The four additional factors explain 
more of the random error, but the signals are too weak to be significant. The analysis provides some hints 
that further study could offer additional value for the team to optimize the process. It is also possible that 
the model with additional factors is overfit, so adding runs might not provide useable information. 

The team must keep in mind that the DSD provides the best results in defining which of the six process 
inputs has significant influence on min handle thickness. Even though the analysis tools allow for some 
interpretation of how much influence is exerted, the model lacks enough runs to provide robust estimates. 
Runs can be augmented easily for more detailed focus on plug depth and cycle time so that the amount of 
influence can be robustly quantified.  

The results of the model analysis are enough for leadership to decide to take quick action. The process 
controls are changed so that plug depth does not exceed 90% and the maximum cycle time does not exceed 
9.5 seconds. The action will immediately reduce the risk of producing thin handles, but the team will not be 
able to robustly estimate the effectiveness of the actions prospectively. Enhanced process monitoring must 
be initiated for a period that is sufficient to represent the population of all commercial production. The 
minimum thickness data collected from in-process checks is to be assessed for capability (chapter 3) and 
tested for significance to the distribution of data from parts produced prior to the improvement (chapter 4) 
to ensure that the changes have been effective.  

Management has the option for further study of the process at any time to obtain additional improvement 
by augmenting the DSD model. Augmentation of an existing model requires that the process environment 
is equivalent to that which was in place for the initial experiments. Adding runs to the model can be a cost-
effective way to improve the predictive nature of the model. The risk involved for augmentation is that 
more resources are added with no additional information extracted from the model. 

Analysis of a Response Surface Model with Multiple Outputs 
The stakeholders in the next set of experiments have a different set of goals. The high-shear granulation 
process, which is the subject of the study, has four process inputs that were found to exert significant 
influence on outputs of the process. Erica, the team leader, faces the challenge that the process must 
perform well for multiple outputs. JMP is an invaluable tool for the exploration of a process involving 
multiple inputs as well as multiple outputs. More resources are required for such experiments since the 
analysis will be used to quantify the levels of inputs that will be included in the manufacturing order 
protocols to get optimal results. Erica gained the support of leadership to include an adequate number of 
runs and robustly quantify the effects of the inputs. The response surface design from chapter 10 is 
complete and the data is ready for analysis. Open Granulation Process Experiment Results.jmp, shown 
in Figure 11.16.  
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Figure 11.16: Granulation Process RSM Data 

  

Prior to initiating the model analysis, a high-level look at the data using the distributions platform is 
appropriate. Select Analyze  Distributions and move the variables to the Y,Columns box with the five 
responses on top and the four inputs underneath, as shown in Figure 11.17. Click OK to get the output. 

Figure 11.17: Distribution Platform Window  

 

The output needs to be formatted for the best visualization of the experimental data. Press the Ctrl key and 
click on the gray arrow next to the Quantiles header underneath PSD d(0.5) to hide the quantiles 
summary for each variable. Click on the gray arrow next to each of the four inputs to hide the summary 
statistics. If capability studies are automatically added due to the response limits, use the red triangle menu 
of each to deselect the Capability Analysis option and remove the output. Lastly, use the red triangle menu 
next to Distributions to select Arrange in Rows. Enter 5 to arrange the output into two rows, as shown in 
Figure 11.18. 
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Figure 11.18: Distributions Output  

 

Use the dynamic features of the Distributions platform to look for high-level patterns of potential 
relationships among the inputs and outputs. The visualization is basic because interactions and squared 
terms cannot be viewed. Note any non-random pattern that you observe so that you can explore it with the 
detailed model analysis. Multivariate analysis can be used as an efficient way to look for relationships 
among several variables and is explained in a later chapter. With Granulation Process Experiment 
Results.jmp open and in view, click on the green arrow beside the Model script to run it. The Model 
Specification window appears, as shown in Figure 11.19. The column properties were previously set in the 
data table to identify the five outputs and to include response limits for each. Notice that the outputs are 
selected automatically and moved into the Pick Role Variables box in the Model Specification window 
due to the column property settings.  
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Figure 11.19: Model Specification for Granulation Process RSM 

  

You can manually select the outputs if the data was not collected into the JMP design table or if you used a 
JMP version earlier than JMP 13: 

1. Select Analyze  Fit Model to open the Fit Model window.  

2. Press the Shift key and select the five output variables. Drag the selections to the Y box in the 
Pick Role Variables section.  

3. Press the Shift key, select the four input variables, and click Macros (keep the default value of 2 
in the Degree box). Select Response Surface to create the model effects. 

4. The Construct Model Effects section lists all individual inputs, two-way interactions, and 
squared terms, as shown in Figure 11.19 

The Model Specification window is complete with the desired outputs and inputs to study a response 
surface model (RSM). The default Personality value Standard Least Squares is used. However, you 
should change the Emphasis to Effect Leverage for an RSM. Click Run to get the analyses output shown 
in Figure 11.20. 
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Figure 11.20: Effect Summary for Granulation Process RSM 

 

The Effect Summary is at the top of the analysis output, which examines the significance of the factors 
regarding influence for all five outputs combined. A significance threshold represented by the vertical blue 
line adjusts for the number of factors being compared. Five experimental factors have strong enough 
influence to be significant for all outputs: 

● Spray rate with a LogWorth of 4.745 and highly significant PValue of 0.00002 

● Impeller RPM with a LogWorth of 3.781 and highly significant PValue of 0.00017 

● The interaction of spray rate*wet mass time with a LogWorth of 3.683 and highly significant 
PValue of 0.00021 

● The interaction of impeller RPM*wet mass time with a LogWorth of 3.252 and highly 
significant PValue of 0.00056 

● The squared term of wet mass time*wet mass time with a LogWorth of 2.735 and significant 
PValue of 0.00184 

It is clear that the team needs to ensure that the manufacturing limits for spray rate, impeller RPM, and wet 
mass time are set to obtain robust results. Other factors might be important to specific outputs and will be 
explored within the experimental models for each output. The analyses of the individual models must be 
completed next.  

Examination of Fit Statistics for Individual Models 
Figure 11.21 provides detailed information about the model of the physical attribute particle size d(0.5).  
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Figure 11.21: Model Fit for Granulation Process RSM 

 

The RSM model exerts a high level of significant influence on particle size (p=0.0002). Changes in the 
factors of the RSM model explain 99% of the changes in particle size (r-square=0.99). The amount of 
random variation in the model is limited to 2.65 microns (RMSE=2.6549), which is very small relative to 
the scale of changes in the outputs approximately 45 microns. The pattern of observations in the predicted 
plot tightly follows the red model line, with a narrow 95% confidence interval indicated by the red shaded 
area about the model line.  

The next evaluation is the lack of fit test, shown in Figure 11.22.  

Figure 11.22: Lack of Fit for Granulation Process RSM 

 

The test indicates that a significant lack of fit is present within the model (Prob > F = 0.0057). It is 
important to keep in mind that the fit of the model is extremely good. Therefore, individual observations 
that are a small distance from the model line can result in significant lack of fit. The Actual by Predicted 
plot in Figure 11.21 has one observation that is just below the 95% confidence interval at the approximate 
prediction of 126 and actual value of approximately 123. Residual analysis can help the analyst better 
visualize the points contributing to lack of fit. 
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Model Diagnostics through Residual Analysis 
Figure 11.23 includes the residual plots used to further analyze and diagnose the fit of the model.  

Figure 11.23: Model Residual Diagnostics Granulation Process RSM 

 

The Residual by Predicted plot illustrates a random pattern that is desired for a robust model. However, 
there are a few points that have residual values that are more extreme than the other observations. An 
observation with a predicted value of 126 microns has a residual of -3, indicating that the model 
overpredicted. An observation with a predicted value of 134 has a residual of 4, indicating that the model 
underpredicted.  

The Studentized Residuals plot has no observations that are outside of the decision limits, which are 
illustrated by red horizontal lines above and below the studentized residual average of 0. The decision 
limits are adjusted for the number of factor comparisons included in the model. The Studentized Residual 
plot including all points that are well within the statistical limits provides evidence that the significant 
result for the lack of fit test is not likely to create prediction error large enough to be of practical relevance 
for the information gained. 

If you are especially concerned about reductions in the precision of estimates due to lack of fit, you can 
filter to exclude the runs that contribute to lack of fit, and then run the model analysis with the remaining 
data. If the conclusions from the analysis of filtered data do not change enough to be practically relevant, 
the original model with the lack of fit is further supported. Running models with excluded observations 
should be done with caution. It is possible that the exclusions might not clear up the lack of fit, and the 
results might change the conclusions that come from the analysis. Other issues for filtered models include 
lack of power, changes in the structure that might increase correlation and confounding of factors, and 
reductions in statistical power. In general, it is typically best to note the lack of fit in assumptions for 
models that have a good overall fit to ensure that details are fully disclosed to the consumers of the 
information. 
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Parameter Estimates  
The summary values of model fit and residual analysis help you determine that the model is adequate to 
explain changes that occur in PSD d(0.5). Parameter estimates shown in Figure 11.24 are the part of the 
analysis that provide a great deal of information about the design space.  

Figure 11.24: Parameter Estimates for Granulation Process RSM 

 

The first term of the parameter estimate list is the intercept. There is significant evidence (p<0.0001) that 
the intercept of the model is not zero (intercept =125.63), which is information of no practical value for the 
context of the granulation study. 

It is good practice to evaluate the effects of the complex factors before the main effects. There are two 
interactions and one squared term that have significant leverage on changes in PSD d(0.5): 

● The interaction of spray rate*wet mass time is estimated to significantly increase PSD d(0.5) by 
an average of 7.3 microns for each unit increase of the factor (p=0.0002). 

● The interaction of impeller RPM*wet mass time is estimated to significantly increase PSD 
d(0.5) by an average of 5.7 microns for each unit increase of the factor (p=0.0006). 

● The curved effect of wet mass time*wet mass time is estimated to significantly decrease PSD 
d(0.5) by an average of 7.9 microns for each unit increase of the factor (p=0.0018). 

The presence of highly significant two-way interactions and a curved effect provide evidence of a complex 
design space. The stakeholders of the developmental drug product could not have identified the real cause 
of changes in various responses without the use of the multivariate, structured experiments. The results of 
this example emphasize the quintessential reason why international regulatory agencies have emphasized 
Quality by Design (QbD). The knowledge of the cause and effect model relationships are used to set robust 
process controls. Such controls are not possible when teams use the one factor at a time (OFAT) methods. 

The main effects are the last to be evaluated in an RSM. There are two significant main effects that also 
have a part in the interactions noted above: 

● A unit increase in spray rate significantly increases PSD d(0.5) by 9.9 microns (p<0.0001). 

● A unit increase in impeller RPM significantly decreases PSD d(0.5) by 6.3 microns (p=0.0002). 
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Refer to the model evaluation to determine the amount of correlation present between significant 
interactions and significant main effects to determine the practical relevance of the individual inputs. You 
can quickly explore the model evaluation by using the scripts that have been automatically added to the 
data table during the design phase. With Granulation Process Experiment Results.jmp open and in 
view, click on the green arrow beside the Evaluate Design script. Color Map on Correlations appears. 
Place your pointer over each cell of the matrix and move it slightly until a note appears with the amount of 
correlation present. Figure 11.25 shows the highest amount of correlation between a significant individual 
input and a significant two-way interaction. Spray rate is 12% correlated with the interaction of spray 
rate*wet mass time.  

Figure 11.25: Color Map Analysis 

 

The low correlations of 6% to 12% are not of great concern. The evidence of a significant effect from the 
two individual inputs, two interactions, and the squared term can be included in the conclusions of the 
analysis. A mention of the low correlation between factors is advised to ensure that consumers of the 
analysis have all the important details.  

Detailed Analyses of Significant Factors with Leverage Plots 
The goal for the set of experiments is to obtain high-resolution information so that robust predictions can be 
made for how changes in the process inputs affect the outputs. The experimental design with a response 
surface model includes individual inputs as well as complex terms to aid the goal. You might have noticed 
that the model output for each response includes a set of Leverage plots, located to the left of the Prediction 
plot for the full model. Leverage plots isolate the effect of each factor on the output in the presence of the 
influences of all other factors. The Leverage plot shown in Figure 11.26 provides detail about the amount 
of leverage that results from the curved effect of wet mass time.  
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Figure 11.26: Leverage Plot of (Wet Mass Time)2 for PSD d(0.5) 

 

The squared term factor exerts highly significant (P=0.0018) leverage on PSD d(0.5). The power for the 
curved wet mass time factor exerting significant influence on PSD d(0.5) is 32.5%, as estimated during the 
design phase (Figure 11.27). The estimate is based on one unit of experimental error (RMSE) and a one-
unit anticipated coefficient for the factor. 

Figure 11.27: Estimated Model Power from the Experimental Design (from Chapter 10) 

 

The analysis of the PSD d(0.5) model is complete. It is good practice to obtain the actual statistical power 
for the significant factors of the model and compare that with the estimates used to justify the design 
chosen. The power is easily calculated from the leverage plots by completing the following steps: 

1. Click on the red triangle menu next to the wet mass time*wet mass time plot header. 

2. Select the only available option for the plot, Power Analysis. The Power Details window shown 
in Figure 11.28 appears. 
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Figure 11.28: Power Details Window 

 
 

3. The significance value standard deviation  , the size of effect to be detected , and sample size 
Number have been automatically included by JMP. There is no need to alter the given values for 
power to be calculated. 

4. Select the Solve for Power check box.  

5. Click Done to add the Power Details underneath the leverage plot, as shown in Figure 11.29.  

Figure 11.29: Power of the (wet mass time)2 Significant Leverage on PSD d(0.5) 

 

The results shown in Figure 11.29 indicate that the significant effect of wet mass time*wet mass time on 
PSD d(0.5) is more than 99% likely to be a real effect for the population of granulations represented by the 
design space explored by the set of experiments. Power increased dramatically from the design estimates 
largely because the magnitude of the amount of change in the output levered by the factor is larger than the 
random error represented by the standard deviation. Put simply, the signal is large as compared with the 
small amount of noise. The significance level of 0.05 and the sample size could affect power but neither 
changed between the design phase and the analysis of the experiments. There are four other significant 
effects that should be analyzed for statistical power and included somewhere in the details of an analysis 
report provided to the project stakeholders. There is no need to analyze power for the factors that lack 
evidence of significance; the definition of power is a value that explains the likelihood that a significant 
effect will be real for the population represented by the experimental sample.    

Visualization of the Higher-Order Terms with the Interaction Plots 
The analysis of the effects provides robust numeric evidence of how the factors affect the PSD d(0.5). 
Numeric estimates are very useful but interpretation is confusing with relationships that are known to be 
complex. JMP always includes excellent graphics to help people visualize results and interpret trends with 
ease. The Interaction Profiler is a tool that breaks down complex relationships for sound understanding, 
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even for people who are not well versed in statistics. Click on the red triangle menu next to the Response 
PSD d(0.5) header in the analysis output. Select Factor Profiling  Interaction Plots option to get the 
plot shown in Figure 11.30. 

Figure 11.30: PSD d(0.5) Interaction Profiles  

 

Trend lines are illustrated with blue and red colors for the noted levels, which is not evident in the plot 
converted to black and white for publishing. This text references the colors for ease of understanding.  

The complex relationship for spray rate and wet mass time appears in the top right plot of the matrix. 
The curvature of the profiles illustrates the significance of the wet mass time*wet mass time factor. The 
blue profile shows that PSD d(0.5) increases at a steep rate of growth for the highest spray rate (10). The 
red profile illustrates that the PSD d(0.5) decreases at an increasing rate as wet mass time is increased and 
spray rate is at the lowest level (6). The differing profiles provide robust graphical evidence of the 
presence of the highly significant interaction. The plot in the lower left corner of the matrix illustrates the 
same interaction. However, wet mass time is shown in the fixed low and high values, with the spray rate 
indicated as the explaining variable along the X axis. The plot just below the wet mass time*spray rate 
plot examines the effect of wet mass time*percent fluid. Notice that the curved profiles are parallel to 
each other. The parallel profiles illustrate the lack of a significant interaction. There can be no argument 
that the model created from the set of experiments provides a great deal of useful information about the 
PSD d(0.5) response. Each of the five outputs will have a unique model included as outline headers in the 
analysis output. The model for the Hausner ratio is examined next. 
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Examination of an Insignificant Model 
Figure 11.31 provides information to assess the fit of the model for the Hausner ratio.  

Figure 11.31: Model Fit for Hausner Ratio  

 

The model is insignificant for providing information about the Hausner ratio (PValue=0.77). Changes to 
the inputs of the model explain 60% of the changes in Hausner ratio (Rsquare = 0.60). The RMSE of 1.36 
is compared with the overall range in output values of approximately 3.7 and is sizeable. The shaded area 
of 95% confidence interval widens dramatically about the center point of the predicted values, also known 
as centroid. The actual observations are scattered widely about the model prediction line  

The information provided by the Actual by Predicted plot tells you that the effect on the Hausner ratio is 
very subtle or insignificant. Therefore, the detailed analysis of the Hausner ratio is pointless. JMP 
calculates values for residual analysis and model effects, but the detail is not needed for an insignificant 
model. 

Dynamic Visualization of a Design Space with the Prediction Profiler 
The detailed analysis of the remaining three outputs is left up to you to explore. The Prediction Profiler is 
an extremely useful tool for examining the dynamic relationships among all the inputs and the outputs 
simultaneously. This powerful tool typically becomes available by default when you run the model script. 
If the profiler is not initially visible, you can easily add it to the output. Click on the red triangle menu 
located to the left of the Least Squares Fit header, and select Profilers  Profiler to add it to the bottom 
of the analysis output, as shown in Figure 11.32. 
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Figure 11.32: Granulation Process RSM Model Profiler  

 

The profiler is a dynamic matrix plot of all inputs as columns and outputs as rows. Recall that the curved 
term of wet mass time*wet mass time is significant for several of the output models. The curvature of 
the model profile lines illustrates the non-linear responses of the model effects. The gray regions about the 
profiler lines show the 95% confidence interval for the average response and are illustrative of prediction 
error. The horizontal, segmented red lines indicate the average response for the chosen levels of the inputs. 
The vertical, segmented red lines are dynamic sliders that  you can click and drag to explore the dynamic 
changes that take place in the outputs.  

Notice that the slope of some profiles change as you manipulate the slider of an input between low and high 
values. Move the slider to represent changes in wet mass time to watch the slope change in impeller 
RPM for various outputs. Changing slopes indicate that significant interactions are present; vertical shifts 
indicate independence among inputs. You can also click on the red numeric value of an input to enter a 
specific value. The red numeric value for the output is the average prediction, and the black numeric values 
are the low and high 95% confidence limits for the prediction. It is best practice to focus on the 95% 
confidence intervals for the most precise predictions.   

Recall that the responses modeled include both a goal and specified limits. The goal can be to match a 
target, or to minimize or maximize results. The profiler includes functionality to indicate how well the 
models meet the goals for all responses. The desirability function accounts for the goals of all responses. 
The range of desirability is between a minimum of 0 and a maximum of 1 to explain how well the models 
will meet goals. The higher the value, the more likely that all goals will be met satisfactorily. Click on the 
red triangle menu next to the Prediction Profiler header, and select Optimization and Desirability  
Desirability Functions to get the plot shown in Figure 11.33. 
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Figure 11.33: Granulation Process RSM Profiler with Desirability Function 

 

The peaked desirability for PSD d(0.5) and core disintegration time reflects the goal to match a target. The 
small squares located on the lower and higher tails of the function indicate the limits; the square on the 
peak is the target. The downward sloping desirability functions for relative span, Hausner ratio, and Carr 
index reflect the goal to minimize. The small square located at the highest point of the function is the upper 
limit, and the middle and lower squares reflect the median and minimum predicted values for the output. 
The mid-point settings for the four process inputs reflected in the profiler yield a relatively low desirability 
of 0.256. The analyst can manipulate each of the inputs to obtain higher desirability, but the function shape 
changes dynamically as inputs change. JMP provides an algorithm that quickly finds the optimum settings 
to get the highest possible level of desirability automatically. Click on the red triangle menu next to the 
Prediction Profiler header, and select Optimization and Desirability  Maximize Desirability to get the 
plot shown in Figure 11.34. 



Chapter 11: Analysis of Experimental Results   269 

Figure 11.34: Granulation Process RSM Profiler Optimized  

 

The highest possible desirability is 0.598, which is more than double the value obtained by the mid-point 
settings. The team can obtain the best possible results with a high spray rate (9.4), least amount of percent 
fluid (0.2), moderately low impeller RPM (45.3), and least amount of wet mass time (2). Stakeholders can 
expect the following outputs: 

● PSD d(0.5) of between 116.7 and 127.1 microns 

● Relative span maximum of 2.7* 

● Hausner ratio maximum of 3.3* 

● Carr index maximum of 23.2 

● Core disintegration time of between 43.6 and 52.0 seconds 
*Model not significant 

Elimination of Insignificant Models to Enhance Interpretation 
It is very important to present a clear message to the project stakeholders. There is no requirement for the 
number of words in business; in fact, less is always more. There is little point in providing detailed results 
and predictions for models that you know to be insignificant. The analysis of all five outputs is an 
important step in the process of discovery. The analyst should save the analysis as a script so that it can be 
pulled up as needed at any time. Complete the following steps to create a new set of analyses limited to the 
significant models. The result provides the clarity needed to share results with the stakeholders. 
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1. Click on the red triangle menu next to the Least Squares Fit header. 

2. Select Save Script  To data table to save the 5-output script. 

3. In the Save Script As window, click to the right of the Fit Least Squares Name and enter “5 
outputs” so that the name of the script is clear. 

4. Click OK to save the script to the data table. 

5. Notice that other options exist for saving scripts. Explore these options to find the one the best 
meets the needs of your organization. 

6. Click again on the red triangle menu next to the Least Squares Fit header. 

7. Select Redo  Relaunch analysis to get to the Model Specification dialog box. 

8. Press the Ctrl key or the Shift key, and click Relative Span and Hausner Ratio to highlight 
them in blue in the Pick Role Variables box. 

9. Click Remove, and then click Run to get the analysis output for three responses. 

10. Click on the red triangle menu next to the Least Squares Fit header. 

11. Select Profilers  Profiler to add it to the bottom of the analysis output.  

None of the models change. However, the effect summary shown in Figure 11.35 changes slightly because 
the LogWorth values are calculated for three models instead of for the original five.  

Figure 11.35: Granulation Process RSM Profiler Optimized (Significant Models Only) 

 

The profiler in Figure 11.36 illustrates an increased desirability for the inputs set to the mid-point values 
(desirability = 0.43). This makes sense because it is much easier to meet the goals for a reduced number of 
outputs (responses).  
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Figure 11.36: Granulation Process RSM Profiler Optimized (Significant Models Only) 

 

Use the red triangle menu options of the profiler to maximize the desirability of the three output models. 
Figure 11.37 indicates that the analysis can achieve an excellent desirability of 0.917.  

Figure 11.37: Granulation Process RSM Profiler Reduced and Optimized  

 

The settings listed in Table 11.1 are the most likely values needed for the granulation process to achieve all 
the experimental goals. 
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Table 11.1 Granulation Process RSM Profiler Reduced and Optimized 

Input 
Settings Outputs 

95% 
Low 

95% 
High 

Spray 
rate at 
8.3 

PSD d(0.5)  115.7 125.0 

Percent 
fluid at 
0.2 

Carr Index  16.6 

Impeller 
RPM at 
55.4 

Core 
Disintegration 
Time 

42.6 50.0 

Wet 
mass 
time at 
10.2 

 

The results for the RSM have provided a great deal of information. It is good practice to save the analyses 
for the reduced set of models to the data file as a final step. Click on the red triangle menu next to the 
Least Squares Fit header, and select Save Script  To data table to save the 5-output script. In the 
Save Script As window, click to the right of the Fit Least Squares Name and enter “3 outputs” so that 
the name of the script is clear. Click OK to save it to the data table. 

Practical Conclusions 
The stakeholders for both projects enjoy a rich amount of information, providing detail about how the 
experimental goals have been met through the use of structured, multivariate experimentation. Michelyne’s 
team tasked with the problems of surgical light handle covers with thin walls quickly found that they can 
focus on changing only two of the six process inputs. They quickly confirmed the results of the new input 
requirements with a few confirmation runs and immediately incorporated them into the manufacturing 
order process controls. Erica’s team, studying the granulation process, used the detailed analysis outputs to 
create a set of process input controls that have the highest likelihood of producing robust results for three 
important outputs. The two outputs that had insignificant models are not critical. The team decided to 
monitor the uncontrolled outputs and determine whether further study might be necessary to determine 
whether controls are possible. Structured, multivariate experimentation provides the highest value 
information to incorporate as elements of QbD for the planned submission package in order to gain 
regulatory approval and achieve the highest level of quality in the drug product produced. 

The resources required to design and execute the sets of experiments might have seemed daunting at first as 
compared with utilizing hierarchical or OFAT experimentation. However, the amount of information 
provides for great confidence in decisions made to ensure the highest level of robust output from each 
process. This chapter might paint a somewhat unrealistic picture, since a single set of experiments was 
executed for each problem. Use of these techniques can best be described as a journey of enlightenment 
about the process studied. There will be times when a single, well-designed set of experiments provides the 
information needed by the stakeholders. It is more likely that one set of experiments answers many 
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questions yet initiates more detailed questions as layers of understanding are achieved through analysis of 
results. The wonderful aspect of the utilization of the techniques is the structure provided, which you can 
use throughout the lifespan of a process. If problems arise in commercial production, teams can use the 
models to focus efforts on the most likely contributing factors for unsatisfactory results. JMP provides a 
nearly infinite amount of design and analysis options within the DOE and Analysis platforms, which you 
can easily employ to facilitate the study of all types of processes. 

Exercises 
E11.1—The project to improve the film seal on the surgical trays is progressing quickly since the team 
started using JMP. Predictive modeling narrowed the scope from nine process inputs to three: line speed, 
dwell time, and head energy. Leadership has asked the team to define how each of the influential predictors 
is affecting the seal strength of the film. Each of the inputs can be easily changed for each run, and the 
project team was able to get agreement to study the process with a response surface design. The custom 
designer in the DOE platform included 16 runs as the default size of the experiment, which the team 
executed. 

1. Open Burst Testing Experiments 3F 16R CP.jmp. 

2. Use the Model script to launch the analysis. This script is available since the responses were 
added to the JMP data table that was created during the experimental design phase of the project. 

3. In the Model Specification dialog box, change Emphasis to Effect Leverage before you run the 
analysis.  

4. Summarize the results into a report , and share only the most important information Be sure to 
quantify the random error for the model. 

̶ Is the model fit strong enough to suggest a robust model?  
̶ Is the model significant? 
̶ Is there an issue with lack of fit? 
̶ Are the residuals indicating a random pattern? 
̶ Which are the significant parameter estimates and how much does each affect seal 

strength? 
̶ Use the red triangle menu options for each Leverage plot to get the actual power for the 

significant effects. Is there enough sample size for a robust model? 

5. Use the red triangle menu next to the Response burst pressure (in Hg) and select Factor 
Profiling  Interaction Profiler to visualize the interactions. Explain them in the report. 

6. How important was it to include squared terms?  
̶ Go to the Effect Summary header near the top of the analysis and select the three 

squared terms to remove them from the model. 
̶ Compare and contrast the fit statistics, model significance, and random error to determine 

the importance of including the squared terms. 
̶ Click Undo to add the squared terms back to the model. 

7. Use the red triangle menu next to the Response burst pressure (in Hg) and select  Factor 
Profiling  Profiler to use the model profiler. 

̶ Use the red triangle menu options to maximize the model. 
̶ Make a table of the settings required to get the best seal strength. 
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E11.2—A minimal screening study with six experimental runs was developed for the tablet compression 
process in the previous chapter. A pressing concern is to determine whether any of the process inputs are 
related to lowered tablet hardness and changes in variability. The technical operations team utilized pilot 
scale equipment to execute the set of six experiments and collected the results of mean tablet hardness 
(SCU) and the variability in tablet hardness (%RSD). The information is available in the Excel spreadsheet 
tablet compression study results.xlsx.  

1. Open the Excel data sheet in JMP and utilize the effect screening emphasis of fit model to analyze 
the data. 

2. Use the output to summarize the fit of the model and the evidence of model significance. 

3. Utilize the residual plots to diagnose the health of the model. 

4. What conclusion would you provide to project stakeholders? 

E11.3—The injection molding process was modeled with a definitive screening design due to the large 
number of process inputs and the likelihood that influence on the outputs of part width and part weight is 
limited to a few of the ten inputs. The molded part is a trigger for the inhaler assembly and must have a 
width of between 11.75 mm and 12.25 mm in order to have the needed clearance to operate as designed. 
The weight of the molded trigger is designed to be between 3.05 g and 3.35 g in order for the return spring 
to work properly. Operations and engineering worked together to execute the set of experiments and collect 
the data from the parts made. The project stakeholders need to know the inputs that affect the outputs so 
that the team can quickly optimize the process and immediately improve the quality of parts made.  

1. Open inhaler molded component process study DSD 26R.jmp.  

2. Use the Fit Definitive Screening Design script to get a summary of the important factors. 

3. Click Run Design to obtain the detailed analysis for each of the outputs. 

4. Create a summary report with practical conclusions that you would present to the project 
stakeholders. Be sure to include a table of the optimized process with expected results in the 
summary report. 

̶ What is the fit of each model? Do you expect that the models will product robust 
estimates for the two outputs? 

̶ Which of the process inputs have the most influence? Is there a presence of combined 
effects (interactions) or complex (non-linear effects) of inputs? 

̶ Are there any risks of parts that might not function properly for the combination of inputs 
studied? 

̶ What can be expected for the average part width and average part weight of the 
population of all parts that are made at the optimized input settings? 
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E11.4—A materials study design was initiated in the chapter 9 exercises involving three materials inputs 
and one slack variable to make up the total weight of a dose. Mixes were made and test batches completed 
for the 12 runs of the experiments. The team collected data on six outputs: tablet assay, content uniformity 
(acceptance value of 10 tablets), average dissolution at 1 hour, average dissolution at 4 hours, and the 
variance within the six dissolution tablets tested for both 1 and 4 hours. Project stakeholders are interested 
in the effects of the changes in materials as well as any combined effects (interactions).  

Goals for the outputs are as follows: 

 Assay     90% to 110% 
 AV10 (content uniformity) NMT 15 
 Dissolution at 1 hour  25% to 50% 
 Dissolution at 4 hours  60% to 85% 
 Variance in 1-hour dissolution NMT 10 
 Variance in 2-hour dissolution NMT 10 

 
1. Open formulation materials study results.jmp. 

2. Run the analysis of the models for the six outputs. 

3. Create a summary report of the analysis to present to the project stakeholders. Can the goals be 
met robustly? 
a. Be sure to comment on any limitations to the design. 
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Overview 
The use of structured, multivariate experimentation is growing by leaps and bounds in the medical device 
and pharmaceutical industries. Analysis of a statistical model typically involves predictions made from 
specific point settings of the process inputs to better understand relationships and trends. The amount of 
resources required to execute a good set of structured experiments is not trivial. Therefore, the analysis of 
results should be utilized to extract the most useable information possible. This information enables teams 
to make optimal decisions and to illustrate quantifiable reductions in the risk of producing products that are 
inferior or that fail to meet customer demands. This chapter takes advantage of the excellent set of tools in 
the Prediction Profiler, which add detail to the model analysis and make the results practically applicable. 
You can think of the model analysis as the academic portion of the experimental journey, while the tools in 
this chapter help teams to apply the knowledge in order to gain the most possible value.  

The Problems: Statistical Modeling Are Needed to Gain Detail About A 
Thermoforming Process and a Granulation Process  

The results of the screening study for the thermoforming process are now available. Michelyne’s team 
needs to quickly provide a new set of process controls that will reduce the risk of producing surgical light 
handle covers that are too thin. The Prediction Profiler in JMP can provide the set of tools necessary to 
visualize the model while working with the subject matter experts on updates to the production controls 
needed for robust product output. 

Erica’s team analyzed the response surface model for the granulation process. The analysis provides 
detailed information for optimizing the results of the three outputs. Her team is interested in digging deeper 
into the results so that they can accurately and precisely predict the population of batches made by the 
granulation process. The detailed analysis is needed to quantify the risks so that the product can move to 
the next phase of development. Addressing product risks, by development in accordance with international 
guidance on Quality by Design (QbD), will speed the approval process for the product submission.  



278  Pharmaceutical Quality by Design Using JMP 

Identification of a Control Space from the Thermoforming DSD 
The modeling of the thermoforming process, utilizing a definitive screening design (DSD), provides clarity 
for two process inputs that have significant influence on the minimum thickness output. Michelyne used the 
results of the analysis to inform the project stakeholders about the adoption of a robust strategy to update 
the controls for plug depth and cycle time. The model profiler results from chapter 11 provide evidence 
indicating that a shallower plug depth and lengthened cycle time will mitigate excessive thinning of the 
surgical light handle covers. Thin areas of plastic are associated with cracked and loose handle covers 
reported by customers. Screening designs do not provide for the most precise predictions, but a good 
control space can be determined from the results of the model analysis. The team plans to define an 
adequate control space with the model and include confirmation runs to ensure that actual results fall within 
the intervals for the model predictions. Define the control space by completing the following steps:  

1. Open Thermoforming DSD Results with confirmation.jmp.  

2. Select rows 14 through 20 so that they are highlighted in blue. Right-click in the highlighted area, 
and select Hide and Exclude to filter out all but the DOE rows.  

3. Run the Fit Definitive Screening Design script. 

4. In the Combined Model Parameter Estimates window, click Run. Remember, if you are using 
a version of JMP earlier than JMP 13, you need to manually create the model by selecting 
Analyze  Fit Model.  

5. Use the red triangle menu next to the Response min handle thickness header, and select 
Factor Profiling  Contour Profiler to get the output in Figure 12.1. 

Figure 12.1: Contour Profiler 

 

The contour profiler illustrates the relationship between the plug depth and cycle time inputs on min 
handle thickness. The midpoint of the min handle thickness output is automatically indicated by the red 
model line in the plot. The cube to the right of the plot illustrates the minimum thickness response surface 
plane from the two inputs. The red dots to the immediate left of the model line in the main contour plot 
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indicate the upslope of the model response plane. The black cross hairs indicate specific levels of the two 
inputs, with values shown in the Current X boxes at the top of the output. You can dynamically click and 
drag the crosshairs to see the Current Y values for an infinite combination of input values. You can enter 
exact values for the inputs in the Current X boxes for specific predictions. You can also select different 
combinations of radio buttons to swap the inputs respective to the X and Y sides of the plot.  

The midpoint model gives some information, but the team needs more information in order to determine a 
reasonable control space in which to operate the process. You can add gridlines to the plot to help visualize 
the design space with better resolution. Use the red triangle menu next to the Contour Profiler header, and 
select the Contour Grid option. The Please Enter Values dialog box appears with default values. Change 
Low value to 0.50, and change Increment to 0.25. There is no need to change High value. Click OK to 
get the output shown in Figure 12.2. 

Figure 12.2: Contour Profiler with Grid Lines 

 

The settings create contour lines that start at 0.50 mm and cover the space for every 0.2 5mm change in 
thickness. Grid lines added to the plot provide a great deal of additional information. The minimum 
thickness clearly increases from the lower right corner of the contour plot up to the upper left corner. The 
even spacing of the gridlines indicates that the increases are at a constant rate.  

The goal of the project is to ensure that the minimum handle thickness does not fall below 1.5 mm. Adding 
the value as a lower limit provides more clarity to the design space. Enter 1.5 into the Lo Limit box for the 
response to get the output shown in Figure 12.3. 
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Figure 12.3: Contour Profiler with Grid Lines and Lo Limit 

 

The contour profiler with gridlines and the shaded rejection region clearly show the operational space that 
must be maintained in the non-shaded region. The improvement team provides the plot to the subject matter 
experts in operations as a framework for determining the process control space that is satisfactory. The 
recommendation from the discussion is to control the plug depth from 0.825 to 0.875 and the cycle time 
from 8.5 to 9.5. Add a shaded box to the contour profiler by completing the following steps to provide 
visual representation of the control space:  

1. Move the pointer to the shaded blue bar above the analysis output to show the main menu. 

2. Select Tools  Simple Shape in the main menu. Alternatively, click the ellipse icon on the tool 
bar. 

3. The pointer changes to an ellipse with an arrow. Draw the shape by clicking on the plot close to 
the point on the plot with a plug depth of 0.825 and cycle time of 9.5. Drag the pointer down to the 
point with a plug depth of 0.875 and cycle time of 8.5. You can make final adjustments to the 
shape later.  

4. A blue circle with an adjustment border is drawn on the profiler. Right-click inside the blue 
adjustment border (Hint: The pointer is an arrowed cross hair.), and select Shape  Rectangle 
to change the shape. 

5. Right-click in the blue adjustment border and select Color. Select the green color to get the output 
shown in Figure 12.4. 
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Figure 12.4: Contour Profiler with Grid Lines, Lo Limit, and Proposed Control Space 

 

Verification of a Control Space with Individual Interval Estimates 
The control space in the Contour Profiler seems to be reasonable for the team to protect against an average 
handle thickness of falling below the 1.5 mm limit. It is good practice to run a small number of confirmation 
runs based on the control space to ensure a high chance of success. Michelyne is concerned about the lower 
right corner of the proposed control space since it is close to the shaded region of results that are outside of the 
specification. She knows that the process includes variability and that the models provided information only 
about mean results. Will this space be robust enough to protect the customers from a few handles with thin spots 
that are less than 1.5 mm?  

The model is used to understand the potential for extremely thinned individual parts by using a prediction 
interval for individual results. The small number of runs utilized by the screening model yield higher prediction 
error than what is obtained from a response surface model. Recall that additional resources are needed to create 
a response surface model. Knowing the limitations, the team defines a control space based on the individual 
interval limits. Go to the red triangle menu next to the Response min handle thickness header, and select 
Save Columns  Individual Confidence Limit Formula, as shown in Figure 12.5. 
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Figure 12.5: Creating Individual Confidence Limits 

 

When you save the individual confidence limit formula, press the Shift key to specify the alpha value that 
you want (the default is an alpha of 0.05 for a 95% confidence level). Two columns are added to the data 
table, including the low and high individual confidence limits. Notice that the corners of the proposed 
design space are included as rows 14 through 17. The individual confidence limits for corners 3 and 4 
include values that are indeed below the 1.5 mm specification limit.  

Table 12.1: Proposed Control Space with Verification 

control space 
corner plug depth cycle time 

actual 
minimum 
handle 
thickness 

95% low limit 
for individuals 

95% high limit 
for individuals 

C1 0.825 8.5 1.8 1.5 2.9 

C2 0.825 9.5 2.0 1.8 3.1 

C3 0.875 8.5 1.7 1.0 2.3 

C4 0.875 9.5 1.9 1.3 2.6 

The proposed control space will be a significant improvement, but the intervals indicate that there might 
still be some risk. Michelyne utilizes the individual interval formulas to determine how much to contract 
the control space so that all limits are greater than 1.5. Rows 18, 19, and 20 of the data table include the 
tightened control space. The tightened control space is shown in Figure 12.6. 
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Figure 12.6: Tightened Control Space Based on Individual Confidence Estimates 

 

The formal control space that the team chooses will be determined from discussions with the subject matter 
experts who are responsible for the process. If the tolerance for risk is low, the operations team will need to 
maintain a tightened control space; moderate tolerance for risk allows for a widened control space. A wide 
control space is typically coupled with increased process monitoring. The samples from the process 
monitoring are used to assess the probability of producing a handle that is below the minimum thickness 
level of 1.5 mm. A capability study, explained in chapter 3, confirms that the space chosen is robust enough 
to produce handles of acceptable thickness. 

Using Simulations to Model Input Variability for a Granulation RSM 
The analysis of the response surface model for the granulation process created a model for the two 
significant inputs and three outputs. The Prediction Profiler can generate a large amount of detailed 
information from the statistical modeling. Open the Granulation Process Experiment Results 
Simulation.jmp file, and run the Fit least squares 3 outputs script to open the model analysis output. 
Utilize the red triangle menu next to the Least Squares Fit header, and select Profilers  Profiler to get 
the output shown in Figure 12.7. 
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Figure 12.7: Granulation Experiments Prediction Profiler 

 

The Prediction Profiler illustrates the trends of influence that each of the inputs has on the outputs as well 
as the band of random error that is expected. The profiler is an excellent, dynamic tool for optimizing a 
process to achieve goals for multiple outputs.  

The optimization completed with the Prediction Profiler is based on the assumption that the inputs are 
controlled to a single value. It is clear to subject matter experts that each of the inputs is likely to vary 
randomly about a setpoint. You can set the spray rate to 8 but the amount of spray measured from run to 
run, and even within each run, varies. The actual value is between 7.8 and 8.1. The actual values for a spray 
rate set to 8 form a distribution about the target setpoint. It might be unlikely that the subject matter experts 
will know the process settings with such detail as to know the distribution of values. Including this 
variation in the analysis makes the results much more representative of the actual population of batches that 
will be produced from the process. Representative simulations with the expected variation from the process 
inputs provides practical predictions on how well that the process goals will be met for the real process. 
Use the red triangle menu next to the Prediction Profiler header to select Simulator and obtain the output 
shown in Figure 12.8. 
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Figure 12.8: Granulation Experiments Prediction Profiler with Simulator 

 

The default for the simulator function is 5,000 runs, which is adequate to estimate populations of drug 
products and medical devices. The simulator changes the profiler output by adding boxes to the right of the 
desirability plots and including a Simulate button. Notice that choice boxes appear underneath each of the 
inputs as well. The default setting models an input as a fixed value, as shown in Figure 12.8.  

Creating variability for the process inputs can be as detailed as you want. However, a great deal of 
information will be needed on patterns of variability as the complexity increases. This example assumes 
that each of the inputs has a normal distribution of variability. The subject matter experts provide the range 
of values for each of the inputs based on the monitoring of the process, the technical information from the 
equipment manufacturer, or both.  

The spray rate has been identified to have a variability of +/- 0.6 for the range of settings studied by the 
experiments. A simple way to include this variability in the model estimates is to take the full range of 
variability (1.2) and divide by 6 to get an estimate for standard deviation (0.2). Recall that the empirical 
rule states that 99.7% of values from a normal distribution is captured with 6 standard deviations. The 
assumption made for each of the inputs is that the highest frequency of actual values is very close to the set 
point, with low frequency of values tailing in either direction forming a normal distribution.  

There are more than 20 options within the random function used to simulate variability for each input. You 
can also simulate the variability by using an expression or through multivariate estimates; however, this 
example uses the random function for simplicity. Use the function boxes underneath each of the first three 
inputs to select Random  Normal option and enter the values shown in Figure 12.9. Use the red triangle 
menu next to the Simulator header to select the Spec Limits option. Enter the goals of the optimization in 
the LSL (lower spec limit) and USL (upper spec limit) cells of the table, and click Save. 
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Figure 12.9: Granulation Experiments Prediction Profiler with Simulator Input Values 

 

The model includes the expected variability for each of the inputs to compare to the specification limits and 
determine the percentage of the simulated population (n=5000) that might be outside the requirements. 
Make sure that the Prediction Profiler is set to the center values for each input shown in Figure 12.9. Click 
Simulate, located in the middle far right of the output, to get the simulated population of results shown in 
Figure 12.10. 
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Figure 12.10: Prediction Profiler with 5000 Simulated Runs 

 

In Figure 12.10, the location of the Simulate button is highlighted with a black outlined arrow. The boxes 
above the button now show the distribution of the 5000 simulated runs, which includes variation in three of 
four inputs of the process. The segmented horizontal lines illustrate the specification limits, and the green 
histograms illustrate the expected results. Below the Simulate button is a table of summary results. With 
the process running at the center targets for all inputs, the likely percentage defect is 0. This confirms that 
the team created a process that is properly targeted. The mean results of the simulation are nearly identical 
to the profiler mean results for the outputs for the fixed input settings, which are the red values to the left of 
the profiler matrix.  

The simulator can be run for an infinite number of adjustment settings for the inputs. Figure 12.11 
illustrates the results after spray rate, percent fluid, and wet mass are adjusted lower, and impeller RPM 
is adjusted higher. This might be a case when the team is trying to shorten process time and conserve 
materials to reduce processing costs. Click the Simulate button after you adjust the profiler settings. A new 
set of 5000 runs is created “behind the scenes” by JMP for analysis. 
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Figure 12.11: Prediction Profiler with 5000 Simulated Runs and Adjusted Inputs 

 

The more aggressive process settings now hold the potential to yield a defect rate of around 8.6%. The Carr 
Index, a value that estimates the potential compressibility of the mix going through a tablet press, is the 
lowest performing output of the process. Since the index is not a critical quality attribute (CQA) and is not 
necessarily definitive of potential compressibility problems, the team might choose the more aggressive 
settings to minimize production costs. You can study an unlimited number of process scenarios with 
simulations to predict the risks compared to the practical value of the results. The profiler with simulations 
is an extremely valuable tool for assessing and quantifying risks, which is the essence of QbD.  

There is another important aspect of prediction profiler simulations. The model might indicate process 
settings that exceed the normal operating range for the processing equipment. The impeller speed is a great 
example since high speeds might be possible but are not recommended for extended production. The high 
speeds consume excess energy and accelerate the wear of the equipment. The profiler enables you to fix 
one or more inputs and optimize the model for the remaining variable inputs.  

Complete the following steps to fix an input and redo the model optimization: 

1. In the Prediction Profiler, enter 53 for the impeller RPM setting. 

2. Press the Ctrl key, and right-click on the desirability plot for impeller RPM. The Factor Settings 
dialog box appears. 
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3. Select the Lock Factor Settings check box shown in Figure 12.12, and click OK. 

Figure 12.12: Locking Factor Settings 

 
 

4. Click Simulate, located in the middle far right of the output, to get a new simulated population of 
results for the three variable process inputs. 

5. Use the red triangle menu next to the Prediction Profiler header, and select Optimization and 
Desirability  Maximize Desirability to get the output shown in Figure 12.13. 

Figure 12.13: Profiler Simulation Maximized with a Fixed Factor 

 

Using a fixed factor provides the application of an additional level of reality to the results. The profiler with 
the simulated results indicates that spray rate is best at the target level, percent fluid is best at the lowest 
setting, and wet mass time is best at around 10 minutes. The likely results of the process are excellent 
since the expected rate of defect for the granulation process is 0. 
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Including Variations in Responses Within RSM Simulations 
The team used the simulator to evaluate the effect of variability of the input settings on the expected 
population of process results. Simulation modeling gives a realistic picture of risks that are inherent to the 
process, but one aspect of variability is missing from the simulated population. You know that the 
measurement process is not perfect and includes variability. Analytical methods are developed with rigor 
and evaluated for precision before a test method is released for quality control. The measurement process 
for physical attributes might not be viewed as critical as analytical methods, yet it should be analyzed for 
measurement uncertainty. The expected amount of measurement error can be included as variation in the 
responses if it is quantified. It is highly recommended to explore the measurement processes with the 
methods noted in chapter 7 at minimum to quantify the measurement error and include it in the simulation 
process to gain the most representative results from modeling. 

The team identified that PSD d(0.5) has a measurement standard deviation of 0.05 and that the Carr Index 
has a measurement standard error of 0.08. They complete the following steps to include the known 
measurement error for simulations:  

1. Go to the Responses header within the Simulator tools.  

2. On the PSD d(0.5) line, click the No Noise drop-down menu and change the value to Add 
Random Noise. 

3. Enter 0.05 as the Std Dev. 

4. Do the same for the Carr index and enter 0.08 as the Std Dev. 

5. There is no data on the measurement error for core disintegration time so leave that as the default 
value No Noise, as shown in Figure 12.14. 

6. Click Simulator to update results. 

Figure 12.14: Profiler Simulation with Response Noise Added 

 

The random noise option is the simplest way to add the expected measurement error to the simulated 
results. You might have noticed that weighted random noise and multivariate noise options are available; 
you should explore these options to determine how different values affect the results. The basic options are 
the easiest for explaining results to high-level decision makers. Complex options need to be fully 
researched to ensure that you can answer all potential questions. It is good practice to compare a simulation 
run with basic random noise options to more complex options in order to mitigate error and better 
understand the value of the added complexity. If the higher level of complexity offers little practical value 
to the results, it is best to default to the simplest options for ease of understanding.  
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Making Detailed Practical Estimations of Process Performance with a 
Table of Simulated Modeling Data 

The simulation has the options required to offer a realistic picture of what can be expected from the 
granulation process used by the operations team. The summary results for the simulation offer excellent 
insight to the risks for producing defects. The team might want an additional level of detail to be able to 
fully communicate expected risks to the quality team in terms that they understand. It is time to bring the 
simulated data out from behind the scenes and create a data table. Click on the arrow to the left of the 
Simulate to Table header and click Make Table to create a new data table including 5000 simulated runs 
(shown in Figure 12.15). The simulated data shown in this chapter is different from your results since your 
output is created with a different seed from a random number generator within JMP. The summary results 
of the simulated data are not significantly different, so the differences in simulated data are not of great 
concern. 

Figure 12.15: Simulated Process Data Table  

 

The table of 5000 hypothetical runs of the process includes the variation in three of the inputs and the 
random noise for two of the three outputs. The data set can now be used for the typical analyses that would 
be done on real production data to gain more detail on process performance. The capability studies shown 
in chapter 3 are to be applied to the data to illustrate the quality aspects of the proposed process. 

1. Save the open table as granulation process simulation.jpg in a file location of your choice. 

2. With the simulated data table open, select Analyze  Quality and Process  Process 
Capability.  

3. Select all three outputs and move them to the Y, Process box in the Process Capability dialog 
box. Click OK to launch the capability output.  

4. Use the red triangle menu options to select Summary Reports  Overall Sigma Summary 
Report. 

5. Right-click in the body of the Overall Sigma Capability Summary Report and select the 
Columns option. 
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6. Deselect the columns that are not in the output shown in Figure 12.16. You need to repeat the 
previous step and this step until all undesired columns are deselected. 

7. Change the view options by hiding output headers to match the output shown.  

Figure 12.16: Simulated Process Data Capability Studies 

 

Creating a PowerPoint Presentation from JMP Results 
The condensed capability report provides the information in the format that is the most pleasing to the 
quality group that Erica is working with. She can use an infinite number of options to ensure that the output 
to be shared contains the desired amount of information. Erica knows that the quality team responds well to 
information provided with Microsoft PowerPoint slides, although she is not sure why this is the case. 
Regardless, she decides to save the output as a PowerPoint file so that she can create a presentation of the 
results. With the output of capability studies open, position your pointer on the bar just underneath the 
window header until it is highlighted in blue. Click on the highlighted blue bar to see the base menu bar, 
and select File  Save As. In the Save Report As dialog box, change File Name to “Granulation 
Potential Process Capability” and change Save As Type to PowerPoint Presentation (*.pptx). Specify a 
file location and click Save to execute. 
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Figure 12.17: Save as a PowerPoint Presentation 

 

The output converts to an opened PowerPoint presentation. The graphics differ from the format seen in 
JMP because they have been converted to the format used by Microsoft Office. This example uses the 
Office 365 version of PowerPoint; your results might differ  based on the version of Microsoft Office that 
you are using. The final version requires some format changes regarding font size, colors, and sizes of 
outputs.  

Practical Conclusions 
The Prediction Profiler provides a large amount of practical information that is extracted from a set of 
experiments. The analyst should consider the fit of the model, the expected power, and the structure of the 
prediction variance to understand the limitations that exist. The topics covered in this chapter come from 
models that are robust to the diagnostics used, so you can be confident that error is mitigated. Simulation 
greatly expands the usefulness of a model. The practical realities of variation in process inputs as well as 
measurement error of outputs are incorporated to increase the precision of modeling, making it more likely 
to represent real trends in processing.  

Another potential benefit to the modeling of input variability is the ability to analyze the potential effect of 
equipment upgrades. Subject matter experts must convert technical information to the range of values that 
are expected for process set points. Once the tightened variability from upgraded equipment is plugged into 
the modeling simulation, the stakeholders can obtain a realistic estimate of the benefits that might result 
from the investment. A reduction in defect rates that resulted from the simulation can be quickly converted 
to annualized savings for a robust projection of the return on the investment.  

The amount of information that can be extracted from modeling is limited only by the quality of the model, 
the accuracy of the information gained on input and output variability, and the creativity and skill of the 
JMP user. Astute users will catalog the value provided by the JMP tools demonstrated in this chapter, 
ensuring that high-level decision makers are continuously sold on the value of structured, multivariate 
experimentation. 
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Exercises 
E12.1—Open the file Granulation Process Experiment Results Simulation.jmp used in this chapter 
and create the least squares model for the three process inputs. The goal of the analysis is to define a 
process that provides a PSD d(0.5) of 110 to 130 microns, a Carr index less than 25, and a core 
disintegration time between 30 and 60 seconds. Utilize overlaid contour plots to define an appropriate 
control space for the granulation process.  

E12.2—The definitive screening design for the injection molding process of the plastic trigger for an 
inhaler helped the team to narrow 10 process inputs to four individual inputs, one interaction, and one 
squared effect, including the following process inputs: 

● Injection time 

● Clamping force 

● Cooling time 

The project stakeholders are very interested in determining a control space for the process to ensure that the 
goals for part width and part weight are met.  

1. Open inhaler molded component process study DSD 26R.jmp.  

2. Select Analyze  Fit Model to create a response surface model for the three inputs noted above, 
with two-factor interactions and squared terms. 

3. In the Effect Summary section of the model output, remove the unimportant factors until the 
models are reduced to include only the following: injection time, clamping force, injection 
time*clamping force, and clamping force*clamping force. 

4. Add the contour profiler to the output, and add appropriate contour lines. Enter the part width 
limits of 11.9 to 12.1 and part weight requirements of 3.1 and 3.3. Define a robust control space 
for the process for the combinations of the two process inputs. 

5. Confirm that the points used to create the control space will likely produce good parts. 

6. Use the red triangle menu options to save the model analysis as the script “reduced model with 3 
inputs.” 

E12.3—Utilize the techniques covered in this chapter to define an adequate control space for study results 
of the surgical tray sealing process that are captured in Burst Testing Experiments 3F 16R CP.jmp. The 
process validation reports indicate that the actual line speed varies normally about the input setting with a 
standard deviation of 1.7, and head energy varies normally about the setting with a standard deviation of 
0.8.  

1. Use the simulator red triangle menu option in the Prediction Profiler to estimate the settings 
needed to ensure that the sealed trays resist at least 20 inHg before bursting.  

2. Create a set of PowerPoint slides that you can use to present the information to the project 
stakeholders. 
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E12.4—The process engineers monitored the process records for the plastic injection molding of the inhaler 
trigger. Their findings indicate that the actual injection time varies normally about the set point with a 
standard deviation of 0.03, and actual clamping force and cooling time have respective standard deviations 
of 3 and 0.5. The stakeholders of the medical device project are interested in the robustness of the process 
set to the optimal input levels.  

1. Open inhaler molded component process study DSD 26R.jmp.  

2. Run the reduced model with 3 inputs script to get to the model output. 

3. Utilize the profiler simulator to estimate the robustness of the process for meeting the part width 
and weight requirements noted in exercise E12.2 for the optimized settings, as well as the edges of 
the control space defined. 

4. How would you summarize this information to the project stakeholders? 
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Overview 
We live in a period when the practice of data analysis is exploding. Businesses maintain and enhance 
success by collecting data from operations for analysis to increase the level of intelligence for all processes. 
This intelligence is practically applied as continuous improvement to meet increasing demands on the 
business. The pharmaceutical and medical device industries are late comers to the use of analytics, but 
changes are occurring rapidly in each industry. Organizations find it increasingly difficult to remain 
competitive without embracing analytics. JMP and JMP Pro are leaders in the field for providing predictive 
modeling techniques that are easy to use with graphics that are easy to interpret. Basic predictive modeling 
techniques were introduced in chapter 8 to help narrow down a large number of potential process inputs for 
the design of multivariate, structured experimentation. This chapter provides some review of predictive 
modeling techniques and expands on the concepts to further illustrate the value offered.  

The Problem: A Shift in Tablet Dissolution 
Sudhir’s team is faced with the reality that a shift in dissolution values has been noticed for recent batches 
made for a commercial extended release tablet product. The team is charged with determining the 
influences on dissolution trends so that the technical team can find ways to mitigate the shift. There is a 
great deal of processing data available, which the team analyzes with predictive modeling techniques in 
order to detect the inputs that have the greatest influence on changes in dissolution results. 

Preparing a Data Table to Enhance Modeling Efficiency 
The road from raw materials to tablets is complex for the subject product. Raw materials are mixed and 
passed through a high-shear, wet-granulation process and dried in a fluid bed dryer. A high-shear 
granulator is a type of industrial mixer that incorporates a solution spray during mixing to build the size of 
particles and blend materials together. The equipment is available in various sizes and configurations.  

A cross section of a high high-shear granulator with an impeller at the bottom of the powder bed is shown 
in Figure 13.1. The granulation process includes a dry bed of powder materials charged into the unit. A 
large impeller rotates to move the powder while a spray of solution is added over the powder bed. A small 
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chopper is located underneath the spray to declump the material and spread the fluid equally throughout the 
charge of material.  

Figure 13.1: High High-Shear Granulator Cross- Section 

 

Once the wet granulation is completed, the charge of material is placed in a dryer until the material is at the 
desired moisture level. The type of unit used in this example is a fluid bed dryer, which pumps hot air from 
underneath the charge of material so that it fluidizes and dries. Figure 13.2 is a cross-sectional schematic of 
the drying process.  

Figure 13.2: Fluid Bed Dryer Cross Section 

 

The dried granulation is typically milled to the final size and added to a final blend of materials for table 
compression. The inputs to the final blend include two granulations, multiple lots of active pharmaceutical 
ingredient (API) and polymer, and various physical properties of the materials involved. Table 13.1 
includes descriptions of the input variables: 

Table 13.1: Input Variables 

Variable Details
Moisture of granulation 1 after drying % moisture sampled from powder bed
Moisture of granulation 2 after drying % moisture sampled from powder bed



Chapter 13: Advanced Modeling Techniques   299 

 

Variable Details 
Hold minutes for granulation 1 start time – end time of granulation process 
Hold minutes for granulation 2 start time – end time of granulation process 
API age 1 DOM-time of use for first lot of API used 
API age 2 DOM-time of use for second lot of API used 
API weighted avg of d(0.1) Weighted average based on % use of d(0.1) 
API weighted avg of d(0.5) Weighted average based on % use of d(0.5) 
API weighted avg of d(0.9) Weighted average based on % use of d(0.9) 
Weighted avg of polymer A curve @ 
target time 

Weighted average based on % use of polymer A 
lots for rheology value at target time 

Weighted avg age of polymer A Weighted average based on % use of age DOM - 
time of use for first lot of API used 

Weighted avg age of polymer B Weighted average based on % use of age DOM - 
time of use for first lot of API used 

The 12 process inputs are studied to determine whether any have influence on changes in the dissolution 
profile. The raw data set shown in Figure 13.3 includes all 12 variables, outputs, and other metadata 
collected from the processing records.  

Figure 13.3: Raw Data Table 

 

Multiple modeling techniques are to be explored in this chapter. The grouping of the 12 input variables 
from Table 13.1 will create efficiency for the analysis. Press the Ctrl key and select the 12 column variables 
for the inputs of interest, as shown in Figure 13.4. 
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Figure 13.4: Input Variable Selection 

 

Select Cols  Group Columns to complete the grouping of the columns, as shown in Figure 13.5. 

Figure 13.5: Grouping Columns 
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The data table contains an outlined arrow in the Columns list for the group, as shown and highlighted in 
Figure 13.6. 

Figure 13.6: Columns with a Group 

 

With the 12 inputs of interest grouped, it is easy to try different modeling techniques without the possibility 
of inadvertently missing an input. 

Partition Modeling  
In chapter 8, predictive modeling was utilized to identify potential influential inputs from the surgical 
handle cover processing data that suggest further study via structured experimentation. The partitioning 
platform proved to be a simple and effective method for modeling a data set with multiple inputs. The 
advantage of predictive modeling is that you don’t have to assess the assumptions for the type of 
distribution that results from the output. To investigate the partitioning technique, open predictive 
modeling data.jmp, and select Analyze  Predictive Modeling  Partition. The Partition dialog box 
appears, as shown in Figure 13.7.  
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Figure 13.7: Partition Dialog Box  

 

In the Partition dialog box, move Mean(1hr) to the Y, Response box and move moisture after dry g1 
etc. (grouped variables) to the X, Factor box, as shown in Figure 13.8. Notice that the individual input 
variables appear in the X, Factor box when you choose a group. 

Figure 13.8: Partition Dialog Box 
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Click OK to get the output shown in Figure 13.9. 

Figure 13.9: Partition Initial Output 

 

The basic partition plot is the starting point in the modeling journey. Predictive modeling includes the risk 
of overfitting the model to random variation in results. A great way to mitigate this risk is to include the K-
fold cross-validation technique. This technique breaks up the set of data into a finite number (K) of subsets 
known as folds. The first fold is a small random selection held back from the data. A model is created using 
the remaining observations, and the model predictions are checked against the fold to determine accuracy. 
The remaining folding process repeats with a new randomly selected fold, a model made from the 
remaining data, and model predictions checked with the fold.  The results for predictability of the folds are 
averaged to evaluate the model fit (Rsquare) and compare with the fit of the original model. A stopping rule 
is built into the algorithm to stop optimization of the fold modeling when the improvement in fit is 
minimal. Complete the following steps to run partitioning with K-fold cross-validation: 

1. Use the red triangle menu next to the Partition for Mean (1hr) header and select K Fold 
Crossvalidation from the list of options. 

2. In the dialog box, you request the number of folds. This example uses the default value 5. Click 
OK to set the folding parameter. 

3. Note that the partitioning control buttons located underneath the dot plot now include a Go button 
next to the Split and Prune buttons. 

4. Click Go to get the output shown in Figure 13.10. (Alternatively, you can iteratively click Split 
until the best model fit (R square) is obtained. This example uses the quicker Go button.) 
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Figure 13.10: Partition Output with Cross-Validation 

 

The partitioning with 5-fold crossvalidation resulted in five splits of the data. The split history illustrates 
that the crossvalidation model obtains the maximum Rsquare fit of 52% at the stopping point. The overall 
model has an Rsquare fit of 70% fit at the stopping point. The difference between the cross-validated model 
and the overall model indicates that overfitting is present. As the fit between the overall and folded model 
diverges, more risk of overfitting is present. The K-fold cross-validation algorithm stops the splits when 
additional splits of the cross-validated model add minimally to the Rsquare model fit.  

The details in the split tree explain the potential relationships that exist between the various inputs and the 
1-hour average dissolution results. The first split indicates that the batches with API d(0.10) smaller than 47 
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microns tend to have 1-hour dissolution results that are more than six percentage points higher than batches 
with a larger API d(0.5). The second split indicates that batches with API d(0.10) less than 47 microns yield 
1-hour dissolution results even greater for API lots that are 159 days or older at the time of tablet 
manufacturing. An efficient summary of the inputs that might have the most influence is obtained as a table 
of column contributions. Use the red triangle menu next to the Partition for Mean (1hr) header, and select 
Column Contributions from the list of options. The plot illustrating the contribution of each column in 
order of the amount of influence on the result is shown in Figure 13.11. 

Figure 13.11: Column Contributions 

 

The column contributions table ranks the portion of potential influence determined through the sum of 
squares difference (SS). The API weighted average d(0.10) has the highest portion of influence at 
49.3%. Keep in mind that the amount of influence is a portion of the Rsquare fit of the entire model. Using 
the conservative estimate provided by the folded model of 52%, you can conclude that the API weighted 
average d(0.10) has approximately 26% total influence on the 1-hour average dissolution; 0.52 total 
model fit multiplied by 0.493 portion from the API weighted avg d(10) column. The age of the API used in 
the first granulation makes up a 32.2% portion and 16% of total influence. The weighted average of the age 
of polymer B has a 9% portion and 4% influence on the dissolution results.  

The amount of influence the three input variables have might not seem to be very high. However, you can 
expect that there is a large amount of random noise in the model due to the weighted averaging of measures 
from multiple granulations and multiple lots. It is possible that the influence is greater than what the 
predictive modeling can provide.  

You can save model predictions as formula variables and use them to make estimations of the output. The 
predictions will provide value later in the chapter when you compare models. Use the red triangle menu 
next to the Fit Group header, and select Save Columns  Save Prediction Formula. A column of 
model predictions is added to the data table, as shown in Figure 13.12. 
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Figure 13.12: Predictive Modeling Data with Partitioning Predictor 

 

The study is observational by design, which offers much more limited information than what structured, 
randomized experimentation can provide. The partition technique provides one limited view into potential 
relationships. Predictive modeling tends to work best when the analyst employs different techniques to look 
for inputs that are found to have common influence. Save the data table with the prediction columns to 
ensure that it is available for model comparisons. Select  File  Save As and save it as “granulation 
process models with predictions.JMP” to a location of your choice. You don’t need to close the table since 
you will use it later in the chapter.  

Another technique to try is the stepwise selection technique that is available in the fit model platform.  

Stepwise Models 
The stepwise technique is located in the Fit Model platform. Stepwise modeling involves the repeated 
creation of models using different numbers of factors, based on a set of rules. One option is to start with 
one factor and build the number of factors until the best model fit is attained; this technique is known as 
forward selection. Backward selection starts with a model that includes all factors. Then, you repeatedly 
create models, reducing the number of factors each time, until you obtain the best model fit. The platform 
even allows for a combination of forward and backward selection. The data table granulation process 
models with predictions.jmp is used again for this technique. Open that data table, and select Analyze  
Fit Model to get to the Model Specification dialog box, shown in Figure 13.13. 
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Figure 13.13: Model Specification Dialog Box 

 

Move Mean(1hr) to the Y box in the Pick Role Variable section, and move moisture after dry g1 etc. (a 
group) to the Construct Model Effects box. Change the Personality to Stepwise, and then click Run to 
get the output shown in Figure 13.14. 

Figure 13.14: Stepwise Fit Dialog Box 

 

As noted previously, the stepwise technique includes options for stopping as well as for the direction of the 
steps. By default, the algorithm uses forward selection building factors until the Bayes Information 
Criterion (BIC) is minimized, indicating an optimum model fit. Up to five options for the stopping rule are 
available. The Help menu within JMP provides detail about each rule and the considerations for each. You 
can use forward, backward, or mixed direction. This example uses the default values, but you should try 
different combinations to compare results.  
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Like partitioning, the stepwise technique enables you to manually step through the process to see the 
iterative changes in the model. This example uses the automated stepwise technique; the steps 
automatically run until the stopping rule goal of the minimized BIC is reached. Click Go to use the 
automated stepwise process. The results are shown in Figure 13.15. 

Figure 13.15: Stepwise Model at Best Condition  

 

The Stepwise Fit for Mean(1hr) dialog box window shows the step history as models with a different 
number of predictors are created and assessed for fit. The list indicates that 11 steps were executed to 
reduce the BIC to 227.638. The third step of the process created a model with four parameters and the best 
fit of all. The four parameters consist of the model intercept and the three significant factors. It is useful to 
run the model to summarize the results for interpretation. Click Run Model switch from the stepwise 
output to a least squares model of the best fit option. You can also use the Make Model to add additional 
customization before you run the model; this is not required for this example. The output shown in Figure 
13.16 has been manipulated to hide all but the analysis of variance table. 
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Figure 13.16: Model Fit Results 

 

Prior to evaluation of the model, the robustness of the three input model is assessed with a review of the 
residuals. The Residual by Predicted plot is an easily interpreted graphic used to assess the model. Use the 
red triangle menu next to the Response Mean(1hr) header, and select Row Diagnostic  Plot Residual 
by Predicted to add the plot to the output as shown in Figure 13.17.  

Figure 13.17: Residual by Predicted (QQ) Plot 

 

The plot illustrates a random pattern of residuals across the Mean(1hr) Predicted axis. Therefore, the 
assumptions of equal variance have been met to ensure minimal error in the results. If a curved or cone 
pattern was evident in the plot, using this model would be risky due to the high potential for statistical 
error. Residual diagnostics indicate that assumptions for modeling are met. The output shown in Figure 
13.18 has been manipulated to hide all but the lack of fit and summary of fit results. 

Figure 13.18: Reduced Model Results 
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The lack of fit detail for the reduced model created by stepwise regression indicates no evidence that 
observations of extreme value outside of the model trend are present. The Rsquare adjusted statistic of 
0.414 is interpreted as the model explaining just over 41% of the variability in average 1-hour dissolution. 
The adjusted value must be used when you use multiple modeling techniques in an attempt to find the best 
possible fit. The fit statistic is adjusted for the number of inputs included in the model, which might differ 
depending on technique. The model analysis indicates that the technique has produced a reasonable model. 
Therefore, the effect summary shown in Figure 13.19 is likely to provide information that is not highly 
biased.  

Figure 13.19: Reduced Model Results 

 

The Effect Summary for the reduced model is reasonable for explaining differences in the average 1-hour 
dissolution. The inputs of the API weighted average d(0.10) and the weighted average age of polymer B are 
like the partitioning results. Moisture after drying is an input with potential influence that was not detected 
by partitioning.  

Continue the good practice of adding the model predictions to the set of data. Use the red triangle menu 
next to the Fit Group header, and select Save Columns  Save Prediction Formula. A column of 
model predictions is added to the data table, as shown in Figure 13.20. 

Figure 13.20: Predictive Modeling Data with Stepwise Predictor 
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Save the data table with the prediction columns to ensure that it is available for model comparisons. Select 
File  Save to ensure that the predictions are retained. Don’t close the table; you will use it later in the 
chapter.  

The next modeling technique to explore is the neural network model. 

Neural Network Models 
A neural network model is much more complex than the partition or stepwise regression techniques. The 
model involves a hidden set of flexible nonlinear functions that are set up in a network of up to two layers. 
Neural networks work well for detecting important predictors when you are not interested in describing the 
relationship between the inputs and outputs. The neural network is more fully explained in the Predictive 
and Specialized Modeling book, which is available through the Help menu. Users of JMP should 
familiarize yourself with the details before using the technique.  

The following example is a very basic use of a neural network using JMP. Neural network modeling is 
available in JMP Pro, which includes many ways to customize the model. Make sure that granulation 
process models with predictions.jmp is open. Get started by selecting Analyze  Predictive Modeling 
 Neural to open the Neural window shown in Figure 13.21.  

Figure 13.21: Neural Network Selection Dialog Box 
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Move Mean(1hr) to the Y,Response box, and move moisture after dry g1 etc. (a group) to the 
X,Factor box. Click OK to get the dialog box shown in Figure 13.22. 

Figure 13.22: Neural Network Model Launch 

 

Available for neural network models include the percentage of data that is to be held back for model 
validation, the ability to set a randomization seed, and the ability to specify the number of hidden nodes. 
For simplicity, the default options are used for this example. Click OK to launch the model and get the 
results shown in Figure 13.23. 

Figure 13.23: Neural Network Model Results 

 

This neural network model has decent fit; the training set model explains 57% (RSquare = 0.567) of the 
variability in an average 1-hour dissolution. The validation set model explains a similar amount; 62% of the 
variability in the output. The actual fit is likely to be somewhere between the two fit values. Model 
diagnostics obtained through residual analysis can help you determine whether the assumptions for model 
use have been met. Use the red triangle menu next to the Model NTanH(3) header to select Plot Residual 
by Predicted and get the set of residual plots shown in Figure 13.24. 

Figure 13.24: Neural Network Model Results 
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The Residual by Predicted (QQ) plot is added to the output. The random pattern of residuals across the 
Mean(1hr) Predicted axis for both models indicates that the assumption of equal variance is met. The next 
step is to evaluate the inputs in order to detect the ones with evidence of leverage on the average 1-hour 
dissolution; the Profiler plot is a visual representation of leverage. Click on the red triangle menu next to 
the Model NTanH(3) header to select Profiler and get the output shown in Figure 13.25. 

Figure 13.25: Neural Network Prediction Profiler 

 

Each of the twelve model inputs has a profile for the average 1-hour dissolution. The profiles with the 
steepest model lines exert more influence than the others. The following inputs have the most potential 
influence: 

● API weighted average d(0.50)* 

● API weighted average d(0.90) 

● API weighted average d(0.10) 

● weighted average polymer A curve @ target time 

● moisture after dry of granulation 1* 

*Noted in other predictive models 

The neural network model detected more potential leveraging inputs than did the previous techniques. Save 
the predictions from this model to the set of data. Use the red triangle menu next to the Model NTanH(3) 
header and select Save Formulas. A column of model predictions is added to the data table, shown in 
Figure 13.26. 

Figure 13.26: Predictive Modeling Data with Neural Network Formulas 
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The neural network includes formulas for the portions of the network as well as a predicted value column. 
Select File  Save to ensure that the predictions are not lost. You don’t need to close the table because 
you will use it later in the chapter.  

The next modeling technique to explore is the bootstrap forest model, which is available only in JMP Pro. 

Advanced Predictive Modeling Techniques (Bootstrap Forest) (JMP Pro 
Only) 

One of the most important advantages to having a JMP Pro license is the ability to run cutting-edge 
predictive models that include statistical simulations. Advanced modeling involves algorithms that can 
perform complex, recursive functions that offer increased sensitivity to inputs of moderate influence. This 
section includes the popular bootstrap forest model. By default, the bootstrap forest model creates 100 trees 
using the 12 process inputs. Essentially, several random selections from the data run partitioning with at 
least 10 splits. The 100 partition models are averaged together to form a comprehensive model. Users of 
JMP should read about bootstrap modeling in the Predictive and Specialized Modeling book, which is 
available through the Help menu, before using the technique. 

Make sure that granulation process models with predictions.jmp is open. Select Analyze  Predictive 
Modeling  Bootstrap Forest to get the dialog box shown in Figure 13.27.  

Figure 13.27: Bootstrap Forest Model Specification 

 

You can explore the many options that are available to tune the model for best results. This example uses 
the default settings. Click OK to get the output shown in Figure 13.28. Keep in mind that the bootstrap 
forest model is randomized every time you use it. Therefore, your results will not match the output shown 
in this example.  
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Figure 13.28: Bootstrap Forest Model 

 

The results indicate a good fit (Rsquare = 0.623) to explain variation in the average 1-hour dissolution 
results. The random variability present in the model is relatively low compared with the average results 
(RMSE = 3.19). Column contributions verify the increased sensitivity offered by advanced modeling. The 
five inputs with the highest potential to influence an average 1-hour dissolution include:  

 API weighted average d(0.10) [14.6%] 

 weighted average of polymer B age [11.9%] 

 API age from granulation 2 [10.4%] 

 hold minutes for granulation 1 [10.1%] 

 moisture after dry for granulation 1  [9.7%] 

The technique yields influence of inputs that is subtler and shared among additional inputs. Use the red 
triangle menu next to the Bootstrap Forest for Mean(1hr) header and select Save Columns  
Save Prediction Formula. A column of model predictions is added to the data table, shown in Figure 
13.29. 
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Figure 13.29: Predictive Modeling Data with Bootstrap Forest 

 

The bootstrap forest data set includes predicted value columns. Select File  Save to ensure that the 
predictions are retained. You don’t need to close the table because you will use it later in the chapter.  

You have created several models and evaluated each one. The next section explains how you can evaluate 
all models together with a model comparison, available in JMP Pro. 

Model Comparison (JMP Pro only) 
This chapter has explained four predictive modeling techniques used to detect important predictors of 
average 1-hour dissolution from 12 potential process inputs. The data table granulation process models 
with predictions.jmp includes predictions from the following modeling techniques: 

● Partitioning (five important inputs detected) 

● Stepwise Regression (three important inputs detected) 

● Neural Network (five important inputs detected with other subtle inputs) 

● Bootstrap Forest (five important inputs detected with other subtle inputs) 

You can access the mathematical details for each technique by selecting the column to use for a specific 
prediction and opening the formula in the column properties. However, the complex techniques of neural 
networking and bootstrap forest are very difficult to interpret from the formulas that are included.  

Make sure that granulation process models with predictions.jmp is open in order to use the model 
comparison tool. Select Analyze  Predictive Modeling  Model Comparison to get the dialog box 
shown in Figure 13.30.  
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Figure 13.30: Model Comparison Setup 

 

Move each of the predictor columns for the four modeling techniques to the Y, Predictors box, and click 
OK to get the output shown in Figure 13.31. 

Figure 13.31: Model Comparison Output 

 

The Measures of Fit for Mean(1hr) summary provides comparisons with multiple fit statistics. The Rsquare 
values noted are adjusted for the number of inputs that were included in each model and are evaluated first. 
The highest Rsquare fit of 63.8% was obtained by the partition technique. The square root of the mean 
square prediction error (RASE=3.12) is lowest for the partition model, which is evidence of increased 
precision in estimates from reduced random variability. The average absolute error (AAE=2.47) is also 
lowest for the partition model and is evidence of increased precision.  

Next, look for the random spread of points needed to meet modeling assumptions by looking at residual 
plots. Use the red triangle menu next to the Model Comparison header and select Plot Actual by 
Predicted and Plot Residual by Row to get the output in Figure 13.32. 
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Figure 13.32: Model Comparison Diagnostics 

 

In the residual plots, all four techniques are identified by color and symbol as defined by the legend to the 
right of the plots. To highlight the residual pattern for a specific technique, click on the marker in the 
legend that corresponds to that technique. The selected technique shows up in full color, with the markers 
for all other techniques muted. The pattern of residuals for all techniques does not indicate non-random 
patterns. Therefore, residual analysis cannot be used to deselect specific models. 

Now, evaluate the prediction profiler for the four models. Click on the red triangle menu next to the Model 
Comparison header and select Profiler to get the output in Figure 13.33. 

Figure 13.33: Model Comparison Profiler 
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The model profiler offers a view of the potential influence for each of the inputs across the four techniques. 
The inputs with influence across all techniques include the weighted average of API d(0.10) and the 
weighted average of age of polymer B. Moisture after drying of granulation 1 indicates potential influence 
across three techniques. Other inputs have been detected as important by specific models and are not 
commonly shared. Shared influence among multiple modeling techniques adds to the robustness of 
conclusions that are made from the analysis. 

Practical Conclusions 
Predictive modeling provides a robust method to analyze observational data that includes several inputs. 
The technique does not require the data to be from a specific distribution shape and there can be more input 
variables than the number of observations (which causes significant issues for typical least squares 
modeling). A significant challenge for predictive modeling is the potential for overfitting. Overfitting is 
when the technique is so sensitive that random variability falsely indicates that an input is important. 
Validation techniques available in JMP help mitigate overfitting as well as support the use of multiple 
techniques. Another method that mitigates overfitting is to obtain new data for the process and repeat 
modeling techniques to determine whether similar results are obtained. Model results that are free of 
overfitting enable the analyst to make appropriate conclusions about important predictors for the output. 

Sudhir utilized four different techniques and found that there are between two and three inputs that have a 
high potential for influence on changes in average 1-hour dissolution. This is great news since the team 
started by needing to consider 12 input variable that might have influence. Focusing on a small number of 
high-potential contributing factors greatly enhances the efficiency of the process of investigating trends and 
determining preventive and corrective action.  

It is clear from the results that efforts need to be put into evaluating the API source, specifically to looking 
for changes in the particle size distribution. The team presented the information to the API source and 
learned that changes in the process were implemented recently to improve yield. The changes to the process 
were believed to be minor and were not formally reported. However, the modeling results now provide 
strong evidence of a related change in a critical quality attribute for the end tablet product. 

The age of polymer B is another input that required further investigation. The team found that the 
procurement group negotiated a deal with the supplier, reducing costs by increasing the size of the 
containers used and amount shipped. Sudhir’s team worked with the analytical group to determine that the 
rate of activation of the polymer after water is added slows as the age of the material is increased. The team 
worked with the quality assurance team to shorten the retest period for stored lots to increase monitoring 
for changes in activation.   

Exercises 
E13.1 — A new tablet formula has been developed and scaled up to be ready for commercial production. 
Unfortunately, the hardness of the tablets has dropped in recent batches and is becoming a quality concern. 
Process data has been compiled for several batches of the two tablet products with formulations that differ  
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only by flavor. You have been asked to analyze the information for relationships between the inputs and the 
average tablet hardness and range in tablet hardness outputs. 

1. Open tablet production data.jmp. 

2. Select the columns product, type of batch, batch size, lube time, mix room temp (F), mix 
room RH%, tote used, hold time (days), press speed (RPM), weight range (g), pre-
compress thick, and side of press to group them together. 

3. Use the techniques described in this chapter to create predictive models for average tablet hardness 
and tablet hardness range. 

4. Create a summary to explain the chosen model, why you feel it is robust, and which inputs should 
be focused on to make improvements in tablet hardness outputs. 

E13.2 —  Basic predictive modeling was executed in chapter 8 to determine which process inputs have the 
highest potential of a relationship to the variation in the outputs. Run the predictive models again with the 
new techniques noted in this chapter and determine whether the advanced predictive models provide more 
reliable information than the basic models. 

1. Open burst testing with process factors.jmp. 

2. Run the advanced predictive modeling techniques noted in this chapter. 

3. Compare the results to the model analysis from chapter 8. How might you update the report of 
results made to the project stakeholders? 

E13.3 —  Repeat predictive modeling for the data in mix and compression process data.jmp by using 
the neural network modeling technique. 

1. What is the AICc statistic? Is there evidence that the neural network model is better than the basic 
partitioning (smaller value for AICc)? 

2. Is the list of most important inputs the same as the basic partitioning? 

3. Does the neural network model add any robustness to specific inputs? 

4. How would you update the project stakeholders with this information? 
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Overview 
A simple materials experiment was executed in chapter 9 that involved the study of materials variables as 
independent factors and that used a slack variable to maintain a fixed amount of total materials. Such 
designs are easy to design, analyze, and interpret. However, the chance for error is increased because you 
can never know whether the changes are due to the model or the varying amounts of the slack variable. 
Mixture designs offer an approach that deals with materials variables as proportions of the total mix. A 
change of the proportional amount of one variable requires changes in other variables to maintain the 
proportional materials total of 100%.  

Variables in mixture designs are named mixture components because dependency among the components is 
assumed. The simplest of mixtures involves three mixture components, each allowed to vary from 0% to 
100%. Such designs are rare in the pharmaceutical industry because each material tends to contribute a 
specific property to a formula, so materials can rarely be allowed to vary the full range. This chapter 
explains a design that includes limits on the minimum and maximum proportional levels for each mixture 
component. Such designs are referred to as extreme vertices designs and are relatively easy to set up and 
execute in JMP. 

The Problem: Precipitants in a Liquid Drug Solution 
The consumer’s affairs group of a pharmaceutical manufacturer has growing concern over a liquid drug 
solution product. Customer complaints have been received regarding solid precipitants forming on the 
bottom of the bottle. The problem seems to be at its worst after being refrigerated; the product is supposed 
to be stored at room temperature but apparently some people refrigerate it. Jon is the manager of a group of 
formulations scientists assigned to reformulate the product in order to address the problem. Based on years 
of experience and subject matter expertise, the scientific team narrowed down a three material solvent 
system that meets all requirements of the product. Each of the three materials of the solvent system are 
known to affect the amount of active ingredient that remains in solution, which is measured with assay 
values. Jon knows that the total of the three ingredients must be fixed per unit volume since the dose 
amount (in ml) is to remain constant. The team will create solutions that have the maximum amount of 
dissolved active ingredient pharmaceutical ingredient (API) in solution and then evaluate changes in the 
assay values, which are expressed as a percentage of the theoretical full amount. A mixture design will 
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offer a powerful analysis to determine how proportional differences between the three materials might be 
related to changes in assay for product stored at both room temperature and in refrigerated environments 
for 24 hours.  

Design of Mixture Experiments 
Previous chapters provided step-by-step instructions for how to create an experimental design via the 
custom designer in the design of experiments (DOE) menu in JMP. The team must define the outputs and 
inputs to the study before they create the experimental design. 

The outputs of interest for the set of experiments include the following: 

assay RT 
the percentage amount of active ingredient measured from the drug solution kept at real-time 
conditions (temperature of 72o F/~22o C), with the goal of maximizing the amount 

assay cool 
the percentage amount of active ingredient measured from the drug solution kept at refrigerated 
conditions (temperature of 38o F/~3o C), with the goal of maximizing the amount 

density 
the density of the solution in mg/ml, with the goal of matching a target amount 

The materials inputs, known as mixture components when using mixture designs, for the set of experiments 
are listed below. The viable ranges are based on subject matter expertise and experience of the scientific 
team. 

purified water 
the amount can be varied between 0% and 75% of the mixture 

solubilizer 
the amount can be varied between 0% and 65% of the mixture 

surfactant 
the amount can be varied between 0% and 35% of the mixture 

There is one special consideration for two of the materials:  

design constraint 
the combined amount of water and surfactant must be no less than 75% of the mixture for the active 
ingredient to go into solution properly  

You have learned that controls are very important to successfully execute a set of structured experiments. 
The list of controls can be extensive, but the following are the two most important controls: 

process settings 
an equivalent process must be in place for all runs 

lots of materials 
all mixes come from the same lot of the API, and from the same lot of each of the mixture components 
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The outputs, inputs, and controls for the project have been defined. The JMP Home window must be open 
to get started. Select DOE  Classical  Mixture Design and enter the responses and the factors shown 
in Figure 14.1. 

Figure 14.1: Mixture Design Dialog Box 

 

Each of the responses have a target value of interest and can vary above and below the target. The limits are 
not known at the time of the design and will be added during the analysis of results. The factors (mixture 
components) are the defined amounts included in Figure 14.1.  

It is good practice to save the responses and factors as data files in case you need to explore more model 
options due to feedback on the design from subject matter experts. Use the red triangle menu next to the 
Mixture Design header and select Save Responses to create a data file. Select File  Save As, name 
the file “liquid mixture responses,” and save it to a location of your choice. Use the red triangle menu next 
to the Mixture Design header and select Save Factors to create a data file. Select File  Save As and 
name the file “liquid mixture factors”. Go back to the Mixture Design dialog box and click Continue to 
add the design type choices to the output, as shown in Figure 14.2. 
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Figure 14.2: Choose Design Type 

 

The output includes three available options for the example mixture design. The limits to proportional 
changes for the mixture components can be studied with an extreme vertices design. Another option is a 
space filling design, which involves multiple observations spread evenly throughout the design space in 
order to make the most accurate predictions. Jon decides to utilize the optimal design since it requires the 
fewest resources and meets the needs of the project team. The goal for the experiments is to determine 
whether a difference exists between the product solutions stored in room temperature and those in the 
refrigerated environments. Click the Optimal button in the Choose Mixture Design Type area of the 
dialog box, shown in Figure 14.2. 

Recall the special consideration of the total amount of water and surfactant, which must be at least 75% of 
the total mix. Such a consideration is added to the model design as a linear constraint. Select the radio 
button option Specify Linear Constraints, and click Add. Enter 1 in both the purified water and 
surfactant boxes. Click  ≥  and enter 0.75, as shown in Figure 14.3. 

Figure 14.3: Design Factor Constraints 

 

The constraints have been entered to the model designer output, it is good practice to save them in case 
future designs must be considered. Use the red triangle menu next to the Mixture Design header and select 
Save Constraints to create a data file. Choose File  Save As and name the file “liquid mixture 
constraints” saved to a desired location.  
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The total number of effects for the model must be determined. The simplest form is given as the default, 
which includes the three main effects of the mixture components. Recall that interactions for an experiment 
with independent factors, studied in Chapter 13, are included as factors to check for dependent relationships 
among two or more inputs. The inputs of mixture models are defined as dependent by design; therefore, the 
interactions are not needed to check for dependency. Interactions of a mixture model identify complex, 
non-linear trends in outputs. Significant mixture interactions are illustrated in the profiler plots as curved 
contours, since the response surfaces are non-planer. Jon has reason to believe that curved contours might 
be present in the response surfaces. Curved contours represent interactions of materials in the model that 
are significant. In the Model box shown in Figure 14.4, click Interactions, and select 2nd to add them to 
the model. 

Figure 14.4: Model Designation 

 

The model is well-defined and ready for generation. The optimal design provides resource options that are 
similar to those in the custom designer. The team decides that they want a center point for the model and 
that the 12-run default number of runs is acceptable for the resources available. Enter 1 in the Number of 
Centerpoints box in the Design Generation dialog box, and click Make Design. 

Figure 14.5: Design Generation 

 

JMP runs a model optimization algorithm behind the scenes to create a randomized model for the three 
mixture components that include the least amount of experimental error. A dialog box opens as the designer 
is running. The amount of computer processing time required by the optimization algorithm to create a 
model depends upon the complexity of the model. When the analysis is complete, the model of 12 runs 
displays within the designer journal. The last thing to do is to review the design and create the data table 
needed to execute the experimentation.  

Independent factor models typically involve the review of design diagnostics to help you fine-tune the 
design to ensure that goals are likely to be met without correlation and excessive error. Mixture designs are 
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unique and cannot be evaluated via typical design diagnostics. Statistical power has little meaning and 
checking for correlations makes no sense for the dependent mixture components. The prediction error is the 
only diagnostic worth reviewing in the diagnostic results to ensure the minimum amount possible.  

The amount of available resources and desire for information mitigates the potential to fine-tune with other 
modeling options to reduce prediction error. The design will work for the team and needs to be generated. 
Use the red triangle menu next to the Custom Design header, select Set Random Seed, and enter 2018 
so that the data table produced matches the table shown Figure 14.6. Leave the default value Randomize 
in the Run Order drop-down options, select the Include Run Order Column check box, and click Make 
Table to get the data table shown in Figure 14.6. 

Figure 14.6: Mixture Design Data Table 

 

The data table includes a randomized set of 12 experimental runs, which should match your results since 
you entered the randomization seed of 2018.  

Ternary Plots for Model Diagnosis 
Once the team has created the model table, they can create a visualization to evaluate the specialized design 
space of a mixture model. Recall that independent factor designs include a cubic three-dimensional design 
space. The mixture design differs in shape due to the dependency among the inputs and is rendered as a 
triangular design space. If there are no restrictions on proportional amounts of the mixture components (0% 
to 100%), the three points represent runs that include 100% of each mixture component. Models with 
restrictions in the proportional levels of materials include more than three points and are referred to as 
extreme vertices designs.  

The project is limited to three materials inputs, so the design space includes one triangle. The plot of the 
triangular design space is known as a ternary plot. A design might include more than three mixture 
components. Such designs have multiple ternary plots to illustrate two of the mixture components with all 
others as the three sides of the triangle. It is very easy to create by using the Graphs menu options in JMP. 
Select Graphs  Ternary Plot to get the dialog box shown in Figure 14.7.  



Chapter 14: Basic Mixture Designs for Materials Experiments   327 

Figure 14.7: Ternary Plot Set Up 

 

Move the mixture components purified water, solubilizer, and surfactant to the X, Plotting box, and then 
click OK to get the output shown in Figure 14.8. 

Figure 14.8: Ternary Plot (Design Space) 

 

The ternary plot contains a space that includes four vertices within the triangular simplex. The proportional 
amount of purified water is the axis across the base of the triangle, with 0% at the right vertex and 100% 
toward the left. The solubilizer is the axis on the left face of the triangle, with 0% at the base and 100% at 
the upper vertex. Surfactant makes up the right axis, with 0% at the top vertex and 100% at the right base 
vertex. The restrictions do not allow for any solutions to be made with 100% of any of the three 
ingredients, so the dark gray areas of the simplex are not relevant. The linear constraint of water and 
surfactant totaling more than 75% of the mix is shown in light gray. The unshaded design space includes 
the dark black dot markers representing each run studied in the design.  
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Eight markers are shown on the plot, which means that replicate runs are included in the 12 runs. 
Replicates work to minimize the amount of random error included within the model. The space is defined 
with at least one run at each of the vertices. The optimizer placed the runs per the algorithm shown, with 
two edges of the space that include a point in the middle. The team decides that the 12-run design is likely 
to be adequate and moves on the execution portion of the project. 

Analysis of Mixture Design Results 
The 12 runs of the design have been created and the testing has been done to get the room temperature and 
refrigerated assay results as well as the density of each. Jon determined that the relative cost of each of the 
solutions would be easy to calculate based on the price of each of the three materials by the proportional 
weight for each run. Adding a cost output helps teams to determine the differences between the costs of a 
current formulation and the potential cost of an optimized formulation. The results from the experimental 
campaign have been added to the end of the data table. Open liquid mixture design 12R results.jmp to 
view the design with results, as shown in Figure 14.9. 

Figure 14.9: Mixture Design Results Table 

 

Tables of results that come from the designs that you create with the DOE platform include a model script 
to easily kick off the analysis. The cost function column has been added to the data table to include as an 
output of the mixture model. It is a good idea to check the Column Properties  Response Limits of 
cost function to make sure that Output Goal is set to Minimize. Run the Model script in the upper left 
area of the data table by clicking on the green arrow next to it. The Model Specification dialog box 
includes all but the cost function response, which you must add to the Pick Role Variables box. The 
completed Model Specification dialog box is shown in Figure 14.10. 
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Figure 14.10: Mixture Model Specifications 

 

You can analyze data that is collected and provided without the use of the JMP design table by selecting 
Analyze  Fit Model to get the Model Specification dialog box. Move the assay RT, assay cool, 
density, and cost function role variables (outputs) to the Y box. Click the mixture components purified 
water, solubilizer, and surfactant and drag them to the Select Columns box. Select all three so that they 
are highlighted in blue, click Macros, and select Factorial to degree. The result will be the same as in 
Figure 14.10. 

The model specifications have been completed and the analysis is ready to run. Click Run to get the 
analysis output. 

The model analysis output includes multiple outline headers. The analysis sections of greatest influence are 
shown individually to allow for a detailed explanation of each figure. The first section to interpret is the 
Effect Summary, shown in Figure 14.11.  

Figure 14.11: Effects of the Mixture Models 

 

The summary ranks the factors in top to bottom order by the amount of influence they have on all the 
responses. The vertical blue line is a decision line for determining the evidence of significance for the 
inputs, which is adjusted by the number of inputs included in the models. Four of the six factors listed have 
significant influence on all outputs, noted by the bars that pass to the right of the decision line. The next 
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step of the analyses is to evaluate the model detail for each of the outputs. For brevity’s sake, the assay for 
room temperature solutions is explained based on the Actual by Predicted plot, shown in Figure 14.12. 

Figure 14.12: Plot of the Assay RT Model 

 

The plot of actual values of assay of room temperature solutions by model predictions contains points that 
generally follow the model prediction line. The fit of the model is very good, shown by the Rsquare of 
0.85. There is evidence that the mixture model has significant influence on assay RT, noted by the Pvalue 
of 0.0172. Basically, there is only a 2% chance that changes in assay RT are due to random variation. The 
relatively small amount of variability in results is defined by the RMSE of 6.0126. The overall average 
result in assay RT of 80 is illustrated by the horizontal blue line.  

The next detail to review is the set of residual plots to investigate for non-random patterns, shown in Figure 
14.13. 

Figure 14.13: Residual Plots 
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Residuals indicate a random pattern for both plots. No cone shaped or curved patterns are evident. 
Therefore, the variability is expected to be constant across the predicted values, which meets assumptions 
for modeling. 

Parameter estimates are shown in Figure 14.14. They indicate which of the model effects have significant 
influence on the assay RT results. 

Figure 14.14: Estimates of Model Parameters 

 

The mixture components of purified water (Prob>|t|<0.0121) and solubilizer (Prob>|t|=0.0131) have highly 
significant influence on assay RT. The interaction of purified water*solubilizer shows strong evidence of 
significance (Prob>|t|<0.0066). The input with the highest estimate of influence on assay RT is the 
interaction of purified water and solubilizer, with an estimate of 1135.3. None of the remaining estimates 
have significant influence on assay RT.  

The remaining models need to be analyzed and interpreted, with special attention given to comparing 
differences in significance and estimates. You should do this on your own in order to understand the 
individual models before you practically apply the information to the formulation with the model profilers. 

Model Profiler 
A Prediction Profiler for the model is at the bottom of the model analyses output. Use the matrix of plots to 
visualize the influence of the mixture components for each of the four outputs, as shown in Figure 14.15. 

Figure 14.15: Mixture Model Prediction Profiler 
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The influence of mixture components is illustrated by the steepness of the profile shown for each cell plot. 
The complex, curved shape of the profiler plots is indicative of the significant mixture interaction term 
noted previously. The default for the profiler includes all mixture components set to near the middle of the 
proportional range. Explore the plot by clicking on the vertical red segmented line of a mixture component 
and manipulating it to lower and higher proportions. The other two mixture components will move in 
concert with the manipulation of one component due to the requirement that the total must always be 
100%.   

Previous chapters about structured experiments provided detail about the function of the prediction profiler 
and interpretation of results. Mixture designs offer a unique profiler that is based on the ternary plot. Use 
the red triangle menu next to the Least Squares Fit output header to select Profilers  Mixture Profiler 
from the list of options to get the output in Figure 14.16. 

Figure 14.16: Mixture Design Profiler 

 

Response surface curved contours are shown for the four model outputs by colored lines, which are defined 
in the Response legend above the plot. The dots next to the profile indicate the direction of increase for 
the output being modeled. Subject matter expertise indicates that the assay values below 55% are 
undesirable because they indicate the point at which it is possible for the API to have fallen out of solution 
as precipitants that collect at the bottom of the product container. The low limit needs to be added to the 
profiler so that the desirable design space can be illustrated. Enter 55 as the Lo Limit for both the assay 
RT and assay cool outputs. 



Chapter 14: Basic Mixture Designs for Materials Experiments   333 

Figure 14.17: Mixture Design Profiler (with Limits) 

 

The shading at the lower left of the design space shown in Figure 14.17 reflects the results that are less than 
the 55% lower limit for assay RT. It is light gray because it is overlaid with the shading of the results less 
than 55% for assay cool. The density and cost function outputs have no specifications and are included in 
the model for additional information. 

More detail for the two assay outputs is available by defining the contour grid lines for each. Use the red 
triangle menu next to the Mixture Profiler header to select Contour Grid. Select assay RT as shown in 
Figure 14.18. Utilize the option to modify the contour grid lines 3-6 to change assay cool to the same 
gridline settings. 

Figure 14.18: Gridlines: Select Response 
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Enter 55 as the Low value, and change Increment to 10, as shown in Figure 14.19. Click OK to add the 
gridlines for assay RT to the mixture profiler.  

Figure 14.19: Gridlines: Enter Values 

 

Repeat the process of adding contour gridlines for assay cool. Enter 40 as the Low value, change 
Increment to 10, and click OK to add the gridlines for assay cool to the mixture profiler shown in Figure 
14.20.  

Figure 14.20: Mixture Profiler (with Limits and Gridline Detail) 

 

The Mixture Profiler with limits and gridlines for the most important outputs provides a great deal of 
practical information. It is very clear that the changes in assay for the room temperature and refrigerated 
conditions follow very different response surfaces. It is also clear that the refrigerated solutions are much 
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more likely to create precipitants than the room temperature solutions. The best results for assay tend to be 
at the mid-top of the design space, indicating that a purified water proportion of around 65% and solubilizer 
proportion of around 20% provide the best functional results. The Mixture Profiler is great for visualizing 
the trends from the models and determining a design space. The Prediction Profiler provides additional 
value because the models can be maximized for best results.  

The Practical Application of Profiler Optimization 
The Prediction Profiler provides a great deal of information about how proportional changes in the mixture 
components affect changes in all the responses. The next set of steps enables the team to convert the 
significant experimental results to practical applications that have the greatest potential for value. Recall 
that the non-linear profiles shown in Figure 14.21 are due to the inclusion of mixture interactions in the 
model. 

Figure 14.21: Prediction Profiler  

 

Use the red triangle menu next to the Prediction Profiler header to select Optimization and Desirability 
 Maximize Desirability and get the output shown in Figure 14.22 
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Figure 14.22: Prediction Profiler (with Desirability Function Maximized) 

 

The Prediction Profiler indicates that solutions are likely to have the highest concentration with 63.5% 
water and the maximum amount of solubilizer of 15.4%. The cost of the solution is relatively low since 
water makes up the majority of the solution and is the cheapest of the three mixture components. It is 
possible to add water and reduce the cost minimally, but the primary goal of maintaining the API in 
solution would be compromised.  

The modeling can be adjusted to add weight to certain outputs as well as to include specification limits and 
run simulations by using the steps explained in chapter 13. The dynamic nature of the modeling output 
provided by JMP allows for an unlimited amount of exploration of a design space without having to make 
actual batches and submit them for analytical results.  

It is good practice to use the profilers to find mixtures that surround the optimized settings to create a 
control space. A control space for a campaign of process experiments was explained in chapter 13. The mix 
of materials used to formulate a drug product are typically expressed as fixed amounts, not ranges that are 
typical for process settings. Slight variations in the actual amount of each material per batch will occur in 
the commercial population since it is impossible to include exactly the same amount of material for every 
batch. The team makes three or four confirmation batches from material input amounts that surround the 
optimum mix and compares them with the model predictions. Go back to the output for the model analysis 
to create prediction variables for each output. Use the red triangle menu next to assay RT to select Save 
Columns  Prediction Formula, as shown in Figure 14.23.  
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Figure 14.23: Saving a Prediction Formula 

 

Repeat the process of saving a prediction formula for the three other outputs: assay cool, density, and 
cost function. The data table liquid mixture 12R results.jmp shown in Figure 14.24 contains the four 
newly created model prediction columns. Select File  Save As to save the updated data table as “liquid 
mixture 12R results with predictions”. 

Figure 14.24: Data Table with Prediction Formulas 

 

The team used the dynamic profilers to create three confirmation runs shown in Table 14.1. 

Table 14.1: Confirmation Runs 

 actual results 

run purified water solubilizer surfactant assay RT assay cool density 

13 0.635 0.211 0.154 84.8 79.3 0.88 
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 actual results 

14 0.620 0.207 0.173 85.3 82.9 0.89 

15 0.645 0.193 0.162 88.1 81.4 0.87 

Enter the input settings of the three confirmation runs to the data table with prediction formulas as runs 13, 
14, and 15. The formulas of the predictions will have a value added as soon as all three inputs have values 
entered. 

Figure 14.25: Data Table with Confirmation Predictions 

 

The comparison of the predicted to the actual values indicates that the model slightly overpredicted the 
assay RT by approximately 0.8. Assy cool values were overpredicted by approximately 2.5. The density 
values have no practically relevant difference since variation in density of +/-0.01 is minimal.  

Practical Conclusions 
Jon and the formulation team were smart to utilize a mixture design as the search for the best solution to 
rectify the issues of API precipitants falling out of solution in cold conditions. The mixture profiler and 
prediction profiler are invaluable tools for the team to simulate an infinite amount of variations in the 
model. Work in the virtual space of JMP models is an extremely efficient way to create robust products.  

Three confirmation runs yield actual values that are very close to the actual analytical results. Jon’s team 
utilizes the model results with confirmation to explain to the project stakeholders and assure them that the 
optimal settings will robustly produce product. 

Jon intentionally held back the actual materials values for the current product from the scientists who ran 
the model analysis to mitigate the potential for bias. The actual mix of 50% purified water, 16% solubilizer, 
and 34% surfactant was added to the data prediction table. The problem of precipitating API in cool storage 
is evident with the predicted assay cool of under 61%. The predicted assay RT of 85% illustrates why the 
problem was not evident in the batch retains that are stored in room temperature conditions.   

The product formula is updated to the optimized settings of purified water at 63.5%, solubilizer of 21.1%, 
and surfactant of 15.4% and submitted for approval. The customer complaints have been eliminated with 
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the new knowledge of the changes in assay likely once the product is cooled by refrigeration. Adding to the 
value of the structured experimentation is the fact that the new formulation includes 30% more water 
resulting in reduced costs significantly. 

Exercises 
E14.1—You are working on a team involved in formulating a new liquid solution for a drug product. 
Through risk analysis it has been determined that the proportional mix of the 3-component base is likely to 
have an effect on the CQA of soluble solids. The base includes water, sorbitol, and glycerine; which have 
no restrictions on the amount of each in the base. 

1. Select DOE  Classical  Mixture Designs to create a simplex mixture design.  

2. Add the three components and use the red triangle menu options to save a factor table named 
“base factors.” 

3. Create a data collection plan table with the Optimal mixture design type. Use the default number 
of runs, and save the table as “optimal base mixture.” 

4. Repeat steps a-c to create a Simplex Centroid and a Space Filling design with the default 
number of factors. Save them as “simplex centroid base” and “space filling base”, respectively. 

5. For each of the design plans, select the three mix component columns. Right-click inside the 
columns, and select Standardize Attributes.  Change the Modeling Type to Nominal. 

6. Make ternary plots of each by selecting Graphs  Ternary Plot. 

7. Make scatterplot matrix plots of each by selecting Graphs  Scatterplot Matrix. 

8. How would you summarize the robustness of each of the models and the potential for useable 
information by comparing the plots in a report to the stakeholders? 

E14.2—The simplex centroid design was executed on the mix factors of the liquid base obtained in 
exercise E14.1. Analyze the design to determine the relationship of the mix components to the variability in 
soluble solids. 

1. Open simplex centroid base.jmp. 

2. Select Analyze  Fit Model to create output for a least squares statistical model for the main 
effects. 

3. Create a report using the output options that are described in this chapter to present the results to 
the project stakeholders. 

4. What is recommended for the proportional mix of the three materials to achieve the soluble solids 
of 33% to 39%? 
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E14.3—The Quality by Design process of evaluating risk has identified that the soluble solids have high 
risk for maintaining the API within the liquid solution. The project team is justified for allocating more 
resources to the experimentation on the base to get the most precise information possible. This precise 
information enables the team to have the best chance at hitting the optimum mix of materials with the 
liquid base. A space filling design has been executed and requires analysis. 

1. Open space filling base.jmp. 

2. Select Analyze  Fit Model to create output for a least squares statistical model for the main 
effects as well as the input interactions. 

3. Create a report using the output options that are described in this chapter to present the results to 
the project stakeholders. 

4. What is recommended for the proportional mix of the three materials to achieve the soluble solids 
of 38% to 46%? 

5. Compare and contrast the space filling analysis report with the simplex centroid analysis report to 
prepare for questions from the project stakeholders. Was the allocation of additional resources 
justified? 
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Overview 
Technical professionals working in the pharmaceutical industry regularly deal with data that have trends 
that are not linear. These trends involve rates of change, and they create challenges in the interpretation of 
results. It might be possible to transform the data or the axis used to plot the data as a linear trend. 
However, you must remember to use the right formula to decode results for practical application. JMP 
provides excellent tools for detailed exploration of trends modeled by functions that are more complex than 
linear models. This chapter provides an overview of some of the more common aspects in the study of non-
linear models common to the pharmaceutical industry. 

The Problems: Comparing Drug Dissolution Profiles and Comparing 
Particle Size Distributions 

Heinz is a Senior Scientist working on a solid drug formulation for an extended release formula that is a 
generic equivalent to a branded product. The development team must have a drug release profile that is like 
the target drug. Candidates for the final formula include tablets made from two unique granulations that 
include materials intended to form a polymer matrix for control of the release. The final blends were 
compressed into tablets of various hardness levels. Six sample tablets were pulled at random from each 
developmental batch and tested in discriminatory media over a 14-hour period, with results compiled for 12 
time segments. The brand target has been established by using equivalent methods. It is critical that the 
team provide robust evidence that a developmental candidate is equivalent to the target dissolution profile. 

Sudhir is managing a team that has been utilizing structured experimentation to optimize a granulation. The 
team has five lots of granulates; three that are known to have desirable physical characteristics, and two are 
considered at risk. The project is nearing commercial production, and the development team must develop 
process monitoring so that teams can determine whether commercial granulations will have acceptable 
particle size profiles. The instrument used for manufacturing is a Ro-Tap Sieve Shaker; it is easy to use and 
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provides relatively repeatable results. A stack of 12 sieves made up of screen mesh that moves from coarse 
to fine are used to capture percentages of a 100-gram sample and characterize the particle size profile. 
Nonlinear modeling will work exceptionally well for the team to narrow down to the best target screens for 
determining good granulations from those that might be at risk due to particle size trends.  

Formatting Data for Non-linear Modeling 
The dissolution testing has been completed and checked with the results posted. The JMP file was prepared 
from the posted data and represents the stacked data format needed to efficiently run analyses. Open 
Stacked disso data.jmp to see the data table shown in Figure 15.1. 

Figure 15.1: Analytical Report Dissolution Data File 

 

Notice that the data includes a time of zero with % release output of zero for each of six tablets. We do 
not expect any amount of drug to be released into the media at the exact time that the tablet enters a 
dissolution well. However, the zero values will help anchor the mathematical function used for non-linear 
modeling. The data includes a column for the number of tablets tested, the elapsed minutes for the 12 times 
that the medium in the dissolution well is sampled, the test result in % release for each row, and the 
grouping column that includes the number of the developmental batch and the amount in pounds force used 
for main compression of the tablets. 

The target drug is noted as rld, which means reference listed drug. An rld is typically the original brand 
drug used as a comparator for over the counter and generic drug development. The dissolution data for the 
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target drug was tested several weeks prior and is in the separate data file rld dissolution data.jmp, which 
is in an unstacked format. Open rld dissolution data.jmp to see the file shown in Figure 15.2. 

Figure 15.2: Dissolution Data File for Target Drug 

 

An unstacked format arranges the results in multiple columns that identify the column name by group. The 
rld example data groups results by tablet. The rld results need to be added to the batch test data file 
Stacked disso data.jmp, but the format must be changed into a stacked format. With rld dissolution 
data.jmp as the active view, select Tables  Stack to get the dialog box shown in Figure 15.3. Select the 
columns rld 1 to rld 6 and click Stack Columns. Enter % release for the name of the Stacked Data 
Column and tablet sample for the name of the Source Label Column. Deselect the Stack by Row 
check box and click OK to execute. 

Figure 15.3: Stack Table Dialog Box 
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The new data file is shown in Figure 15.4.  

Figure 15.4: Stacked Target Dissolution Data 

 

The file is generated as “Untitled##”; the number symbols are used because the value assigned by JMP 
varies from what is shown in in this example. The name of the file is changed. You don’t need to change 
the name since it will be added to the test data in Stacked disso data.jmp.  

The table for the rld is now in the correct format, but the tablet sample column includes both the group 
identity and the tablet number. Use the column utilities to split the information into two columns. Select 
Cols  Utilities  Text to Columns, as shown in Figure 15.15. 
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Figure 15.5: Re-code the Tablet Sample Column 

 

The Text to Columns dialog box is shown in Figure 15.6. Type open quotation marks, enter a space, and 
type closed quotation marks in the Delimiter box. The delimiter separates the group of “rld” and number of 
the tablet sample into separate variables. Click OK to see the output shown in Figure 15.7. 

Figure 15.6: Options for Text to Columns 
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Figure 15.7: Data Table with New Columns 

 

The table is almost ready to add to the stacked rld data table. However, more work is needed to clean up the 
table by completing the following steps:  

1. Click to highlight the tablet sample column.  

2. Right-click in the column and select Delete Column. 

3. Right-click in the tablet sample 1 column and select Column Info. Change the column name to 
“batch and force.”  

4. Right-click in the tablet sample 2 column and select Column Info. Delete “2” from the column 
name so that the name is “tablet sample.” 

5. Select tablet sample and select Cols  Reorder Columns  Move Selected Columns to 
make the columns the first columns in the table.  

6. Select batch and force and select Cols  Reorder Columns  Move Selected Columns so 
that the columns are located to the right of tablet sample, matching the table format shown in 
Figure 15.8. 
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Figure 15.8: Correct Format and Order of Target Dissolution Data 

 

The target data is stacked with the order of columns matching stacked disso data.jmp. The Concatenate 
option in the Tables menu enables you to quickly combine the tables. Select Stacked disso data.jmp to 
be in view and select Tables  Concatenate. The Concatenate dialog box is shown in Figure 15.9.  

Figure 15.9: Concatenate Tables 

 

In the Concatenate dialog box, select Untitled ## (recall that the numerical value in your dialog box will 
not match the one shown in this example) in the Opened Data Table box so that it is highlighted. Click 
Add to add the stacked target data table. Select the Append to first table check box and click OK to 
execute. 
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Figure 15.10: Concatenated Stacked Disso Data Table 

 

The stacked disso data table is now in the proper stacked format and includes all the dissolution results for 
the development batches and the target. It is now time to visualize the dissolution profiles to determine 
whether any of the candidates are like the target. 

Making a Simple Plot of Dissolution Profiles 
The theme of this book is to start with a simple visualization of the data and add detail as needed to extract 
information. Heinz plans to start with the Graph Builder in order to picture the trends of drug release over 
time for the various groups. Complete the following steps: 

1. Make sure that Stacked disso data.jmp is open and select Graph  Graph Builder. 

2. Drag % release to the main drop zone in the Graph Builder window. 

3. Drag minutes to the X drop zone. 

4. Drag batch and force to the Overlay box. 

5. Click Done to get the output shown in Figure 15.11. 
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Figure 15.11: Concatenated Stacked Disso Data Table 

  

The plot provides the first visualization of the various dissolution trends. Each group is assigned a color 
automatically by JMP; the example plot was modified to differentiate the trends by gray-scale coloration 
and line style. The rld target dissolution profile is shown with a thin gray line, which is the profile at the 
lower middle of the plot. The target profile does not stand out from the seven other profiles. Using the 
graphics options to highlight the target profile will help the stakeholders of the project see the comparisons 
better. The example run that you create will use different colors used for each batch and force, but the 
instructions in the following steps will work as explained. Right-click on the line segment next to rld, and 
select Line Color to get the color pallet shown in Figure 15.12. 

Figure 15.12: Graph Builder Color Pallet 

  

Click the black box in the upper left corner of the line color matrix. Right-click on the line segment next to 
rld again, select Line Width, and then select 6, as shown in Figure 15.13. 
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Figure 15.13: Graph Builder Line Width 

 

The line is now thicker so that it stands out as the target profile, as shown in Figure 15.14.  

Figure 15.14: Dissolution Plots with Highlighted Target Profile 

  

The results of the changes in the graphics options provide a clear comparison of the dissolution profiles for 
the various candidates with the target profile. There are clear differences among the candidates. At least 
two of them look to be very like the target. However, the overlap of profiles makes it a bit tough to 
determine which candidate is best. You can use the line options to change color, thickness, style, or 
transparency, which help you differentiate the profiles. In addition, the visualization is limited to a 
subjective comparison. Heinz needs a more detailed comparison with objective measures to justify the 
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choice of a final formula to the stakeholders and for product filing purposes. Non-linear modeling will 
provide everything he needs to gain objective evidence. 

Creating a Non-linear Model of Dissolution Profiles 
The Graph Builder started our quest to find a candidate with a granulation and tablet hardness that creates a 
similar dissolution profile to the target. The expectation is that a similar in vitro dissolution profile will 
reflect in vivo extended drug release that is bioequivalent to the rld target. Evaluation of profiles via a non-
linear function is one approach to obtain objective evidence of similarity. A model-based approach is not 
necessarily the most popular for the pharmaceutical industry due to a regulatory guideline that favors the 
similarity criterion (F2) approach. The use of non-linear modeling includes diagnostics to determine the fit 
of the dissolution results and how well assumptions are met.  

Heinz decides to try both the non-linear modeling and similarity criterion approach in parallel to compare 
the information provided by each. With Stacked disso data.jmp open, select Analyze  Specialized 
Modeling  Nonlinear to get the Nonlinear setup window shown in Figure 15.15. 

Figure 15.15: Nonlinear Dialog Box 

 

Move % release to Y, Response; minutes to X, Predictor Formula; and batch and force to Group. 
Click OK to get the output shown in Figure 15.16 
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Figure 15.16: Fit Curve Output 

 

The pooled observations are shown in the first plot, which gives the analyst an idea of the general pattern 
for the dissolution profile. Each group is plotted separately below the pooled plot, so some visual 
comparisons can be made. The general pattern indicates a fast rate of increase early in the dissolution 
profile with an inflection to a more gradual rate of increase for later times. It is good practice to always start 
with the simplest function and add complexity sparingly to ensure that interpretation of results is robust for 
all stakeholders. A linear model is the most basic of models, so try that first. 

1. Use the red triangle menu to the left of the Fit Curve header to see the basic model options that 
are available. 

2. Select Polynomials  Fit Linear to get the output shown in Figure 15.17. 
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Figure 15.17: Linear Model Detail 

  

The linear model has a moderate fit noted by an R-square of 0.81. The interpretation of the fit is that 81% 
of the variation in dissolution values can be explained by the model lines. The overlaid model lines are 
plotted with a legend to define the profiles, which is located to the right of the plot. A visual indicator that a 
linear model might not offer the best fit is the y-intercepts of each model that are significantly greater than 
0. We do not expect that the method will be able to detect any of the active ingredient in the media solution 
until the tablet starts to disintegrate, which happens after time 0. The eight plots below the overlaid model 
plot further illustrate how many observations do not follow the linear model. Estimations made from linear 
modeling include more error than desired due to the poor fit of linear models. Therefore, a more complex 
model function is needed.  

Many of the trends in the testing of pharmaceutical products are known. Dissolution profiles of extended 
release formulas tend to show the % release building up rapidly at early time points, with an inflection to 
slower growth at later times. This makes sense because the tablet formulation is designed to build to a 
therapeutic level as quickly as possible in a patient, with slower release needed to maintain the level over 
time as the body metabolizes the drug. A logistic function or exponential function typically fit dissolution 
profiles very well.  

Exponential functions tend to be a bit better for in vitro testing since the very early release of a drug must 
reach a level that can be detected in solution (limit of detection), which nullifies the initial inflection of a 
logistic function. Use the red triangle menu next to the Fit Curve header and select Exponential Growth 
and Decay  Fit Exponential 3P to get the output shown in Figure 15.18.  
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Figure 15.18: Three-Parameter Exponential Model Detail 

  

The output includes the overlay plot of the three-parameter exponential function, with the linear plot hidden 
for clarity. The Model Comparison at the top of the output provides summary statistics for the linear and 
exponential models. The fit of the three-parameter exponential function is much better than the linear 
function, as noted by an R-square of 0.99. The RMSE for the Exponential 3P model is five times less than 
the linear model. The model profiles fit the actual observations extremely well. Each model originates very 
near 0% release at time zero, which makes sense for actual trends expected for dissolution. The added 
complexity of the three-parameter exponential function adds a great deal of practical value for modeling the 
dissolution profiles.  

It is easy to double-check how well the model performs by plotting the actual values against the predicted. 
Use the red triangle menu next to the Exponential 3P header and select Plot Actual by Predicted to get 
the output shown in Figure 15.19. 
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Figure 15.19: Exponential 3P Actual by Predicted Plot 

 

The actual dissolution values create a tight linear pattern along the prediction model line, which is highly 
desired. There is a group of points at zero that do not follow the plot. However, the 0 entered for each 
group to anchor the model lines are not real values and should not be considered for the robustness of the 
fit. 

This exponential model has three parameters. It is helpful to understand what each of the parameters 
represent. Figure 15.20 illustrates the model parameters of Asymptote, Scale, and Growth Rate. 

Figure 15.20: Exponential 3P Parameters 

 

Asymptote: This is where the model terminates at and beyond the maximum time of observations. Drug 
dissolution typically ends up with complete release, which is approximately 100%. 

Scale: Scale is the magnitude of how much the function stretches along the X axis 

Growth Rate: The growth rate is the approximate slope set before the trend inflects and reaches the 
asymptote. 
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The next step in the analysis is to evaluate the candidates by each of the model parameters. Use the red 
triangle menu next to the Exponential 3P header and select Compare Parameter Estimates to get the 
output shown in Figure 15.21. 

Figure 15.21: Parameter Comparison for Exponential 3P Modeling 

 

Parameter plots include a pooled average parameter and a blue-shaded zone that represents the random 
variability expected due to the variation in observations. Non-random differences are highlighted with a red 
point to illustrate a significant difference from the pooled average. 
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The rld group illustrates the parameters for the target dissolution profile. The goal is to find a candidate 
group that has parameter estimates that are closest to the rld parameter estimates. When analyzing 
parameters for dissolution profiles, the asymptote typically offers information of practical value, unless 
candidate groups are not fully releasing active ingredient to 100%. The estimates for the asymptote in the 
example include very little variation.  

The scale estimate is important because it is an analog for the length of time that the tablet continues to 
dissolve, and that drug product is releasing active into the media. The rld target has a scale that is smaller 
than the pooled average. Two of the candidate groups have a scale estimate that is like that of the rld target: 
Z2017345g, 6000 and Z2017345g, 7000.  

The growth rate parameter is the most important of the three for dissolution profile comparisons since it 
describes the speed of release. There is much more differentiation for the estimates of growth rate. The 
target profile can be considered statistically similar to the pooled average since it is basically in the middle 
of the plot. There are three candidate groups with growth rate estimates that are close to the target: 
X2017135d, 4000; X2017135d, 4500; and X2017135d, 5500. The analyst can look more deeply into 
parameter estimates. Use the red triangle menu next to the Exponential 3P header and select Make 
Parameter Table if actual numerical estimates are desired to further support the graphical evidence. 

Equivalence Testing of Dissolution Profiles 
The problem with comparing parameter estimates is that all are compared to a pooled average. Heinz’ team 
needs to know which of the candidate profiles is the closest match to the target profile. JMP includes a red 
triangle menu option for an equivalence test, which enables you to choose the target profile as the basis of 
parameter comparisons. Use the red triangle menu next to the Exponential 3P header, select the 
Equivalence Test option, and then select rld as the reference group, as shown in Figure 15.22. Then, click 
OK.   

Figure 15.22: Reference Group Selection 

 

Seven Equivalence plots are added to the output in order to compare the rld to each candidate batch, 
including a ratio comparison to the rld target profile estimates. The plots of the best and worst candidates 
are shown in Figures 15.23 and Figure 15.24 respectively. 
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Figure 15.23: Equivalence Test (Best Candidate Profile) 

 

The equivalence plot for the best candidate shows the equivalence of the group X2017135d, 3500. The 
asymptote and scale parameters have the ratio value of approximately 1.0 with very tight confidence 
intervals, indicating robust equivalence to the target. The growth rate is less than the target, with the lower 
portion of the confidence interval just outside of the blue-shaded zone of random variation. The slight 
departure of the growth rate might cause some concern. However, you must keep in mind that testing for 
parameter equivalence tends to be conservative. 

Figure 15.24: Equivalence Test (Worst Candidate Profile) 

 

The candidate group Z2017345g, 3000 is the worst regarding equivalence to the target profile. The 
asymptote and scale parameters are equivalent to the target, but the growth rate is greater to a high degree 
of statistical significance. The entire confidence interval is significantly distant from the decision zone of 
random variation. Go back to the Exponential 3P overlay plot in figure 15.18 to see the functional 
difference in growth rate and compare the candidates with the best and worst equivalence results. 

Comparisons of Dissolution Profiles with the F2 Similarity Criterion 
The comparison of dissolution profiles via model-based methods requires that stakeholders understand the 
mathematical function used and the meaning of the parameters. You cannot explain the relationship 
between the candidate groups without using multiple parameter comparisons, which can be confusing. A 
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method was developed that simplifies comparisons into a single value. This value is known as the F2 
similarity criterion and is used by regulatory agencies to justify the choice of a candidate dissolution 
profile. The F2 value is calculated by a log-based function that is calculated from the sum of squares 
difference between the candidate and target for each time point.  

The goal is an F2 value of at least 50, which signifies a 10% average difference between the candidate and 
target profiles. The data you have worked with in this chapter includes six individual tablet values for both 
the target profile and the candidate groups. The application of F2 involves mean values for both the target 
and the candidate groups, so the data set must be summarized. The data table has been prepared by 
summarizing each group and formatting the data back to an unstacked table. Open mean disso.jmp to see 
the summary data table shown in Figure 15.25. 

Figure 15.25: Summary Unstacked Dissolution Data 

 

Summary target values include the average % release of the rld group for each time point. The summary 
target values are used to calculate the sum of squares difference for all time points. The F2 formula 
involves the squared difference (SSQD) between the % released and the average % release of eight time 
points from 30 to 480 minutes. Complete the following steps to add the calculated SSQD column to the 
data table:  

1. Create a new column to the right of the 840 column by selecting Cols  New Columns. 

2. Enter SSQD as the name of the new column. 

3. Click Column Properties and select the Formula option. 

4. Enter the formula shown in Figure 15.26, and click OK to execute. 
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Figure 15.26: Sum of Squares Difference Formula (Comparing to “rld”) 

 

The SSQD variable is the variable portion of the F2 similarity calculation, shown in Figure 15.27. 

Figure 15.27: F2 Similarity Criterion 

 

Add another column to the data table for the F2 similarity criterion. Create a new column to the right of the 
SSQD column by selecting Cols>New Columns and entering F2 as the name of the new column. Click 
Column Properties, select the Formula option, and enter the formula shown in Figure 15.27. You must 
use the Transcendental functions within the formula editor to get Log 10 into the formula. Click OK to 
execute and get the data table results shown in Figure 15.28. 
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Figure 15.28: Dissolution Profile Data Table with F2 

 

The F2 similarity criterion values are added to the end of the dissolution data table. It is not clear that there 
are three candidate groups with an F2 that is above the acceptance level of no less than 50. Since a data 
table is not the best way to visualize data, use a simple Graph Builder plot. Select Graph  Graph 
Builder to get to the Graph Builder dialog box. Drag F2 to the main drop zone, and drag batch and force 
to the X drop zone. Click Done to get the plot in Figure 15.29. 

Figure 15.29: F2 vs. batch and force plot 
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The plot now provides visual evidence of the candidate groups that have acceptable similarity to the target 
profile. Use the axis settings to clarify the plot by shading the undesirable zone for F2. Complete the 
following steps: 

1. Right-click on the F2 axis to get to the Y axis settings shown in Figure 15.30. 

2. In the Reference Lines area of the settings, select the Allow Ranges check box. 

3. Enter 20 for the Min Value, and enter 50 for Max Value. 

4. Click on the black Color field and select deep red from the color pallet. 

5. Click Add. A preview of the shaded plot appears to the right of the dialog box. 

6. Click OK to execute the shaded area of the plot. 

Figure 15.30: Y Axis Settings  

 



Chapter 15: Analyzing Data with Non-linear Trends   363 

Figure 15.31: F2 Plot with Shaded Zone of Undesirability 

 

The result provides simple, graphical evidence that three of the seven candidate groups have F2 values that 
are between 60 and 61. A valid critique of using F2 for comparing dissolution profiles to target is that the 
single value has no predictive value. Since you know that variability is inherent to analytical testing, you 
cannot be sure that an F2 value of 60 will not be 50 or below on a repeat dissolution test of the same group. 
The model-based testing has a big advantage since the parameter estimates are predictive by nature.  

Making F2 Similarity Predictive 
You can make F2 similarity predictive. Each tablet in a group is dissolved in a unique well of an analytical 
instrument. Therefore, the results over time are dependent on the individual tablet. You can use a table of 
individual tablet values, with the same calculations, to get F2 values. Use JMP to plot the groups of F2 
values with statistical error to provide stakeholders with a visualization of similarity.  

1. Open individual disso.jmp to see results for each tablet over time in an unstacked format.  

2. Go back to the mean disso.jmp table that includes the SSQD and F2 columns.  

3. Right-click on the SSQD column, and select Formula. Right-click on the formula and select 
Copy.  

4. Go to individual disso.jmp. 

5. Create a new column to the right on the 840 column by selecting Cols  New Columns. 

6. Enter SSQD as the name of the new column 

7. Click Column Properties and select the Formula option.  

8. Paste the copied formula, and click OK to execute.  

9. Repeat steps 2–8 to create an F2 column and to copy and paste the formula. The resulting table is 
shown in Figure 15.32. 
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Figure 15.32: Individual Disso Table with F2 

 

The individual disso table now contains 52 F2 values for each tablet tested. The Graph Builder is an 
important tool for the team to get a summary view of the results. Complete the same steps as you used for 
the mean dissolution to get the graph shown in Figure 15.33. 

Figure 15.33: Graph Builder for F2 Individuals by batch and force 

 

The markers indicate the individual F2 results of each batch. A summary view is better to show the range 
predicted from the data. Under the Points header, change the Summary to Mean, and Error Bars to 
Confidence Interval, as shown in Figure 15.34. 
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Figure 15.34: Graph Builder Points Edits 

 

Click Done to get the plot in Figure 15.35. 

Figure 15.35: Graph of Predictive F2 

 

The F2 calculations for individual values provide some inference as to the robustness of the similarity of 
candidate groups to the target profile. It is clear in the plot that the X2017135d formula is the best for being 
like the target dissolution profile regardless of the tablet hardness (noted by compression force in the 
groups). There was more variability for tablets produced at 4500 pounds of force. However, this could be 
due to something other than the tablet compression process. The plot suggests that the population of tablets 
made for any of the three candidates will have no less that an F2 of 58. Heinz can guide the team to make a 
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robust choice for the formula and compression forces needed to have the best possible chance of having an 
equivalent drug release to the target product. 

Using Non-linear Models for Mesh Testing of Particle-Size Trends 
Non-linear modeling is well suited to the study of cumulative distributions. Particle-size study of solid 
materials used in pharmaceutical applications typically involves the analysis of the amount of material 
retained over a stack of increasingly dense mesh screens. The percentage of total weight of material 
collected on each screen creates a particle-size distribution. Mesh screens are used regularly because that 
method does not require specialized analytical equipment or a laboratory environment.  

The pilot plant technicians completed Ro-Tap particle-size testing with a 12-screen stack for five 
developmental granulation batches. Three of the five batches have desirable particle size characteristics. 
The goal of the team is to have a limited number of target screens that can be used to effectively 
differentiate particle size trends. The screens will be used for the in-process testing of future granulation 
batches to identify extremes. The data has been compiled in the stacked table format required to run non-
linear models. Open particle.jmp to see the data shown in Figure 15.36.  

Figure 15.36: Particle Data File 

 

Non-linear modeling provides an excellent overlaid plot to visualize trends. Select Analyze  
Specialized Modeling  Nonlinear to open the Nonlinear dialog box shown in Figure 15.37. 
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Figure 15.37: Nonlinear Dialog Box 

 

In the Nonlinear dialog box, move cumulative percent retained to the Y, Response box, mesh screen 
to the X, Predictor Formula box, and lot to the Group box. Click OK to get the output shown in Figure 
15.38. 

Figure 15.38: Fit Curve Output 
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The pooled and individual group patterns in the plots follow a peaked pattern. There are two options for 
peaked models within the list of nonlinear modeling options: Gaussian Peak (Normal Bell Curve) and 
Lorentzian Peak. Both options need to be evaluated for fit to determine whether additional analysis is 
appropriate. Use the red triangle menu next to the Fit Curve header to select Peak Models  Fit 
Gaussian Peak, as shown in Figure 15.39. 

Figure 15.39: Fit Curve Red Triangle Menu List of Models 

 

Use the red triangle menu again to select Peak Models  Fit Lorentzian Peak. The Gaussian Peak and 
Lorentian Peak models are added to the Fit Curve output, as shown in Figure 15.40. 
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Figure 15.40: Peaked Non-linear Models 

  

Each plot of the peak models illustrates a moderate fit to the percent retained observations. The models 
explain roughly 80% of the variability in percent retained results, and some of the lots are not well 
represented by a peak model (especially 2016V24C and 2016V24E).  

Modeling the cumulative particle size output might yield better fits. The cumulative model is more 
representative of how target screens are used during operations, which makes interpretation of results 
practically applicable. Use the red triangle menu next to the Fit Curve header to select Redo  Relaunch 
Analysis. Remove percent retained from the Y, Response box and replace with cumulative percent 
retained. Click OK to get the output shown in Figure 15.41. 
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Figure 15.41: Fit Curve for Cumulative Percent Retained  

 

The plot of cumulative percent retained includes trends of observations that start out flat initially, inflect to 
a steep growth rate, and inflect again to an asymptote for the larger number screens. The pattern described 
seems to be of a logistic function, which is one of the model choices in the Nonlinear platform. Use the red 
triangle menu next to the Fit Curve header to select Sigmoid Curves  Logistic Curves  Fit Logistic 
3P to get the output shown in Figure 15.42. 

Figure 15.42: Fit Curve for Three-Parameter Logistic Model  
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The three-parameter logistic models have an excellent fit to the cumulative screen results data, with the R-
square of 0.983. The three-parameter logistic model explains 98.3% of the variability in the screen testing 
observations. You should try logistic models with additional parameters to see the differences in results. It 
will become quite clear that the simple three-parameter model fits the data very well and is the easiest to 
interpret and explain.  

Comparing model parameters provides insight into where the lots vary significantly. Use the red triangle 
menu next to the Logistic 3P header to select Compare Parameter Estimates and add the parameter 
comparison to the output, as shown in Figure 15.43. 

Figure 15.43: Fit Curve for Three-Parameter Logistic Model  
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Significant differences in the inflection points between the batches are present. Batches 2016X24A and 
2016X24D have inflection points that are located at much higher number mesh screens than the other three 
batches. The overlay plot for the logistic 3P models illustrates a function for the two batches that is much 
flatter. A flat logistic function for particle size indicates high variability in sizes throughout the distribution.  

The growth rate of batch 2016X24B differs significantly from the other batches. Fast growth of a 
cumulative particle-size distribution can be interpreted as one that has less spread in size amounts than 
others. Significant differences in the parameters of non-linear functions for physical properties can be a 
clue to differences in the function of the granulations. It is wise for teams to track trends in physical 
properties and relate them to differences in analytical results in order to better understand the effects of the 
process. 

Differences in the asymptote are not expected to be significant. Screen test results have a fixed weight of 
sample that is placed onto the top screen of the test instrument. The cumulative total of all screens should 
always be close to 100%. A significant difference in the asymptote of a batch might indicate testing error 
and loss of portions of the sample during testing. 

Augmenting Non-linear Plots by Using Axis Settings 
The rate of increase of the logistic 3P function for the cumulative particle size of the batches is steepest at 
the inflection point. A minor shift in the inflection point on the mesh screen axis between batches results in 
a big change on the percent retained axis. Target screens proposed for in-process monitoring of 
granulations must be located away from the inflection point to be the most discriminative. Target screens 
chosen within this zone of high variability for percent retained are not likely to detect true differences in 
particle size profiles.  

Add two mesh screens within this zone near the inflection point to the plot to illustrate the point. Right-
click on the mesh screen axis, and select Axis Settings. Add the detail shown in Figure 15.44 to create 
lines for the 60M and 80M screen mesh sizes on the plots. Line styles differentiate the lines for this 
example, but colors are typically used as the default. 

Figure 15.44: Axis Settings  
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Leave all other options unchanged, and click OK to get the plot shown in Figure 15.45. 

Figure 15.45: Fit Curve with 60M and 80M Screens  

  

The overlay plots with reference lines illustrate large differences in cumulative percent retained among all 
five lots as vertical shifts of the functions. The amount of random variability creates great difficulty for the 
team to attempt to set specifications that will be utilized by operations as acceptance criteria for granulation 
particle size. The team needs to pick screens that are further away from the inflection point without 
including the asymptotes on either end of the function to effectively control particle size for granulations. 
Right-click on the mesh screen axis again, and select Axis Settings. Select each of the 60M and 80M 
reference lines, and enter the values 40M and 120M, respectively. Click Update for each change, and then 
click OK to get the plot shown in Figure 15.46.  

Figure 15.46: Fit Curve with 40M and 120M Screens  
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Using the 40 M and 120 M screens as targets for in-process monitoring of particle size is more reasonable 
than using the 60 M and 80 M screens. The lots known to have good physical characteristics (2016X24A, 
2016X24D, and 2016X24E) are differentiated from the two that are known to be less desirable due to 
excessive variation in particle size. The 120 M screen is located closer to the curve, representing a slowing 
growth rate for the function, which yields reduced random variability. One challenge is that a 120 M mesh 
screen was not included in the stack used to create the data. The next section makes specific predictions of 
%retained values for a 120 M screen. The predictions help justify the obtainment of a 120 M mesh screen 
for in-process testing. Reduced variability is also shown for the 40 M screen located close to the curve, 
representing a quickening growth rate. The best choice for target screens justified by the overlay plot are 
the 40 M and the 120 M screens.  

Making Predictions with Non-linear Models 
The focus of this analysis turns to creating reasonable specifications for material that indicate good physical 
characteristics. Having a good fitting functional model for the cumulative particle-size distribution is 
extremely beneficial since you can use the model to make robust predictions. The predictions enable you to 
study a large number of scenarios without the need to make physical batches of granulations to get actual 
results from particle-size testing.  

Save the prediction formula variable by using the model options and use it to provide the needed 
information. Use the red triangle menu next to the Logistic 3P header to select Save Formula  Save 
Prediction Formula. A new column is added to the end of the table. This column is automatically named 
cumulative percent retained Predictor and is shown in the data table in Figure 15.47. 

Figure 15.47: Particle Table with Predictions  
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Once you have added a prediction formula variable to a data table, you can create new predictions by 
adding rows with the desired input values. Scroll down the table to row 60, which is the last value of the 
original table. Right-click in the cell for the 60th row, and select Add Rows. Enter 5 for the number of rows 
to be added after row 60, and click OK. Rows 61–65 are added to the table. Type the identifying labels 
shown in Figure 15.48 for each of the five new lots in the empty cells of lot. Enter 120 in the empty cells in 
mesh for the 5 new rows. The predicted values fill in automatically. A subset of the table including only 
the 40M and 120M results is shown in Figure 15.48. 

Figure 15.48: Subset of Particle-Size Table with Predictions  

 

The granulations of greatest concern (2016X24B and 2016X24C) have 40 M values that are greater than 
32%. The highest value for the three desirable batches is approximately 17%. A specification of no more 
than 25% retained on the 40 M screen seems to be reasonable for detecting granulations with an excessive 
amount of coarse particles.  

A calculation is needed to determine the amount retained on the 120 M screen. The 40 M portion will be 
removed from the predicted amounts of % retained since the 40 mesh screen traps coarse particles with 
finer particles passing through to the 120 M. The calculations are noted in Table 15.1. 

Table 15.1: 120 M %Retained Calculations  

lot 

120M 
cumulative 
% 
retained 

40M % 
retained 

120M 
% 
retained 

2016X24A 71.3 8.5 62.8
2016X24B 92.3 34.4 57.9
2016X24C 87.9 32.1 55.8
2016X24D 67.3 7.1 60.2
2016X24E 87.5 16.7 70.8

The 120 M screen is predicted to contain no less than 60% retained material during in-process testing using 
the target screens. The variability of the 120 M predicted results from the study is minimal, so the 
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specification for the 120 M might not be as robust as the 40 M. Additional monitoring of results from the 
120 M screen is warranted to ensure that it works as a target screen for in-process particle-size testing. 

Practical Conclusions 
The development team led by Heinz provides a strong justification for the candidate formula that was used 
as the exhibit batch for expensive clinical trials. There are healthy debates among the technical experts 
regarding the technique of choice used to compare dissolution profiles: model-based tools or the F2 
similarity criterion. Non-linear modeling and visualizing F2 results using JMP led to the same formulation 
(X2017135d) as the best choice for moving forward. A minimal effect of compression force on dissolution 
is a desired result for new formulations. The compression force is not related to differences in dissolution 
shown in the analysis, which adds robustness to the exhibit batch choice. The model-based analysis 
identifies the growth rate as the parameter that differs the most between the target and candidate dissolution 
profiles, which is very good to know. The growth rate parameter should be an output for continued fine-
tuning of the formula and developing the granulation process. The graphs and tables provided by JMP help 
the development team effectively explain their work to the project stakeholders and gain concurrence on 
the strategy for moving forward.  

The operations team has manufacturing orders that specify the amount of retained material for two target 
screens (40 M and 120 M). The process of choosing the target screens is robustly supported by the non-
linear modeling executed in JMP. The plots with the model predictions are easy for the stakeholders to 
interpret, and they offer robust justification to regulatory agencies. Leadership is exceptionally pleased at 
the amount of detail that is now available regarding the process of picking operational monitoring 
specifications for estimating the particle-size trends of granulations.  

Exercises 
E15.1—A tablet formula is in the late stages of development, and scientists are studying the release profile 
in OGD media. OGD refers to a specific mix of chemicals used to dissolve a drug tablet during dissolution 
testing. There is a suspicion that the hardness of tablets might have an effect on the dissolution profile. The 
team has tablet samples that were produced to two different hardness levels (20 Scu and 24 Scu) and has 
submitted 12 of each group for dissolution testing.  

1. Open OGD media dissolution comparision.jmp and stack the results for analyses.  

2. Rename the Data column to % released and the Label column to minutes.  

3. Recode the minutes column to include numbers only, and change the column properties to 
numeric, continuous data. 

4. Select Analyze  Specialized Modeling  Nonlinear with a three-parameter exponential 
function. Is the fit of the function appropriate for further analyses? 

5. Use the red triangle menu next to the Exponential 3P header to compare parameter estimates. Do 
you see significant evidence of a difference? Which parameter (if any) differs? What does this 
mean? 

6. Use the red triangle menu next to the Exponential 3P header to test for equivalence, using the 20 
Scu batch as the reference group. How would you use this information to report to the project 
stake holders? 
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E15.2—There is a set of data for both batches that you worked with in exercise E15.1, with F2 calculations 
to the exhibit batch reference dissolution profile.  

1. Open OGD media dissolution comparison with F2 to reference.jmp. 

2. Use the Graph Builder to create box plots in order to compare the F2 similarity criterion of both 
batches. 

3. How would you summarize the sensitivity of the formula to the minor difference in tablet 
hardness? 

E15.3—Early development of a new tablet formula is underway so that the team can understand the effect 
of a high-shear granulation process. The team is evaluating the particle-size distribution with a stack of 
mesh screens and a Ro-Tap device. The cumulative percent retained on the mesh screens is to be analyzed 
with a non-linear model so that differences among the 12 batches of the set of structured experiments can 
be determined. 

1. Open newformulagrans.xlsx in JMP using the Excel Wizard. 

2. Use the Excel Wizard to start the data on row 6 with headers included. 

3. Save the table as “newformulagrans unstacked actual.jmp.” 

4. The non-linear model of interest requires that the data be converted to cumulative results. Create 
five new columns by using the Cols menu options. 

5. Add a new column named “0 mesh” that specifies 0 for all rows. Use the Cols menu to move the 
column to be between the run and Sieve 30 columns. This column will be used to anchor the 
intercept of the non-linear model. 

6. The table must be in stacked form in order to perform the analysis. Select Tables  Stack to 
stack the eight columns of sieve results.  

̶ Be sure that the default setting Stack by Row is selected. 
̶ Use the default radio button to keep all non-stacked columns.  
̶ Change New Column Name for Data to % retained, and change the Label column to 

Sieve. 
̶ Add the Output table name “newformulagrans stacked.”  
̶ Click OK to create the table. 

7. Use the Cols menu to recode the sieve column by splitting down to retain the last word (sieve 
number); change the Pan value to 300 to make it numeric. Change the default of the column 
recode to save the sieve numbers In Place to replace the values of the column. 

8. Change the column properties of sieve to Numeric, Continuous data. 

9. Create a new column with the name “cumulative % retained.” 

10. Calculate the cumulative results from the sieves 0 to 300 for each batch in the cumulative % 
retained column.  

11. Utilize the tools in this chapter to analyze the cumulative % retained response (Y) with the 
sieve regressor (X) grouped by batch. Cumulative distribution functions for particle size tend to 
fit the three-parameter logistic function very well since it is expected that the PSD cannot be less 
than 0 and will tend to asymptote at 100%. 

̶ Use the graphics options to size the plot so that you can see where the function for each 
batch reaches the asymptote.  

̶ Does the plot make practical sense? 
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̶ The development team utilized a standard stack of eight sieves to collect data. Do you 
have evidence to support the standard stack… or not? 

12. You have likely come to the conclusion that the standard sieve stack used to collect data was too 
coarse (the openings in the screens are too large) to provide much value. A big clue is the large 
amount collected in the pan (after particles passed through all sieves). How would you summarize 
this finding to the project stakeholders? 

E15.4—The developmental scientists involved in the high-shear granulation experiments studied in 
exercise E15.2 collected more samples from the batches and passed them through a new sieve stack that 
included finer mesh. The data is saved in newformulagrans fine screens stacked.jmp.  

1. Utilize the techniques explained in this chapter to create a set of non-linear models of cumulative 
% retained response (Y) with the sieve regressor (X) grouped by batch using a three-parameter 
logistic function. What is the fit of the function? Is it appropriate for further analysis? 

2. Part of the development process includes the choice of target screens to be used in the commercial 
processing environment to detect differences in granulations. The upper and lower inflection 
points for changes in the rates of increase or decrease in the logistic function tend to be good areas 
for target screens because variability in such areas tends to differentiate particle-size distributions. 
The steep growth of the curve between the rate inflection points is a bad area for a target screen 
due to the high amount of random variability. Use the plot to determine the best target screens for 
detecting coarse particles (low sieve numbers) and fine particles (high sieve numbers). 

3. Run a parameter comparison by using the red triangle menu options. Is there evidence of a 
significant difference among the batches with regard to particle size? 

4. Relaunch the analyses utilizing microns as the regressor (X) with a three-parameter logistic 
function. What range of particle sizes will be difficult to detect due to the amount of variation? 

5. How would you summarize this analysis to the project stakeholders? 
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Overview 
The United States Pharmacopeia (USP) has issued guidance regarding the use of statistics in support of 
analytical methods as one more leg of the Quality by Design (QbD) initiative. The proposed new General 
USP Chapter <1220> and the Analytical Procedure Lifecycle notes the goal to identify an analytical target 
profile (ATP). The ATP is being developed to ensure that an analytical method is robust for the entire 
lifecycle of use. The proposed General USP Chapter <1210> provides additional details on statistical 
validation techniques that are appropriate for the method so that necessary steps are taken to mitigate 
measurement uncertainty. This chapter provides a basic example of an analytical method to illustrate the 
incorporation of statistical methods to assess accuracy and precision. The example involves a few of many 
possible options for incorporating statistical techniques.  

The Problem: A Robust Test Method Must Be Developed 
An analytical research and development team is tasked to create a dissolution method for an immediate 
release tablet. Callie is the manager of the team and has made the project a pilot to determine how 
statistical methods can be used during method development. The tablet dose is intended to dissolve in the 
body after passing through the stomach. Therefore, a slightly basic media is used to test for the amount of 
drug released in 60 minutes. The team is utilizing the USP Dissolution Apparatus 1, an automated 
dissolution bath that includes six wells with baskets used to manipulate the tablets during testing. A high-
performance liquid chromatography (HPLC) instrument will be used to detect the amount of drug present 
in a small sample collected from the sample media. The technical term for the small sample is an aliquot. 

The team has not used structured, multivariate experimentation to develop similar methods in the past. 
Each member of the team obtained a JMP license and was able to go through a training course to get them 
started on using JMP to add value. The statistician for research and development is coaching and mentoring 
the team through the project. The statistician worked with the team to break down the method into controls, 
inputs with varied levels intended for study, and potential noise factors.  
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Experimental Planning 
The analytical team took time to list each and every factor that is involved in creating dissolution results. 
An excerpt of the list is shown in Figure 16.1. 

Figure 16.1: Controls List 

 

The team assigns a person to each major group of controls so that all can be verified as in place before the 
set of runs are executed. If any changes are made to the controls, the lead of the experiments is notified, and 
the change is noted on the controls list. Once the experiments begin, no changes can be made to the 
controls unless the subject matter experts and statistical mentor evaluate the change to be sure that runs are 
not affected. 

The team compiles and discusses a list of noise factors as part of the planning to ensure that potential 
effects on the runs have been mitigated. Noise includes anything other than a control or factor that can 
change and possibly affect the results. The laboratory environment could be a noise factor since changes in 
ambient temperature, relative humidity, and room air pressure could influence results. If there are controls 
for noise factors, they can be added to the controls list for verification. The statistics mentor might decide 
to use the amount of noise as a random factor of the model if it can be quantified, and check for influence. 
In this example, the noise is not quantifiable, so no additional blocks or random factors are to be included 
in the model. If the results of the experiments include odd results that are not related to the input variable 
changes, noise might need to be revisited. 

The last list that is compiled includes all of the inputs that will be varied to specific levels. In JMP 
terminology, such inputs are called factors. The list is determined by subject matter experts with help from 
a statistics mentor. Seven method inputs have been chosen for the study based on principal scientific and 
experience. All seven of the inputs can be easily changed between the runs, making the task of model 
creation easy.  
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Methods with inputs that are difficult to change need to be studied by using a split plot design. Split plot 
designs are not covered in this chapter. There are several excellent books on the subject, as well as the set 
of JMP books that is included with the software license to provide guidance for planning purposes. Keep in 
mind that such designs require more resources to execute than does this example.  

Levels of each input need to be challenged to be as wide as possible, yet be a good reflection of the real 
method in order to provide the best chance for detecting significance. Inputs to be studied are shown in 
Table 16.1. 

Table 16.1: Method Inputs List 

Input Variable Description Low Level High Level 
1 bathID Identity of the baths used A B 
2 vibration 

mat 
The use of a vibration isolation mat under the 
bath 

no yes 

3 age of 
standard

The elapsed time in days from the creation of 
the standard to its use

1 3 

4 basket 
height 

The distance in millimeters from the bottom of 
the well to the bottom side of the basket

2.3 2.7 

5 shaft RPM The speed of the shaft that drives the basket in 
revolutions per minute

48 52 

6 age of 
sample 

The elapsed time in days from the creation of 
the sample to its use

1 3 

7 media pH The actual pH of the media measured by a 
device sensitive to 0.001 units

7.0 7.4 

 

Design Creation Using the Definitive Screening Design (DSD) 
All of the important planning elements are complete, and it is time to determine an experimental model that 
can balance the amount of information needed with available resources. Callie has limited resources 
available, yet needs a model that can extract as much information as possible. Different model designs were 
evaluated by using the model diagnostics and comparison techniques described in chapter 9. The team 
determined that the definitive screening design (DSD) is an excellent choice since more than six inputs are 
to be considered. The team members rely on their scientific knowledge and experience to choose 
appropriate inputs for study. The team believes that at most there will be only a couple of inputs that have 
an effect on the release at 60 minutes output. The DSD will provide information about the effect of the 
individual inputs (main effects), combined effects between pairs of inputs (interactions), and the curved 
terms (quadratic effects). Select DOE  Definitive Screening  Definitive Screening Design to get to 
the Definitive Screening Design dialog box shown in Figure 16.2. 
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Figure 16.2: Definitive Screening Design Model Inputs 

 

The output and inputs must be set up to initiate the experimental design. Click Add Response and select 
release at 60 minutes as the response set. Specify Maximize as the Goal and 85 for Lower Limit. Add 
the two categorical inputs and five continuous inputs with the levels shown in Figure 16.2. Click Continue 
to select the options shown in Figure 16.3. It is good practice to use the red triangle menu located next to 
the Definitive Screening Design header and select Save Factors to create a factors data file to save in 
case you need it for later use. 

Figure 16.3: Setting Design Options 

 

The basic DSD is an excellent design, but you can extract more robust information with the addition of 
only a few more runs. The model options enable you to add blocks with extra runs so that the quadratic 
effects can be estimated. Since most analytical methods involve a great deal of chemistry, quadratic effects 
are a good possibility since effects might show a rate of change as inputs change. An output trend with a 
rate of change is a non-linear response. Select Add Blocks with Center Runs to Estimate Quadratic 
Effects to create a robust design. Click Make Design. The design is added to the output, as shown in 
Figure 16.4. 
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Figure 16.4: DSD Design Output 

 

The DSD includes 22 runs with blocks and center points to study the seven inputs. Notice that the first two 
inputs involve group levels instead of numeric values since each is a categorical input. The ability to easily 
incorporate both categorical and numeric variables is a great feature of a DSD. Keep in mind that the 
design shown in the output does not include randomized runs. The Design Evaluation header located 
underneath the design provides important details about the robustness of the model. A few evaluation 
sections are shown in Figure 16.5. 
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Figure 16.5: Design Evaluation 
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The estimated power of the DSD with 22 runs is excellent for the inputs at 97% to 98%. No data is 
available from previous multivariate experiments to be used to get a more precise estimate of power by 
entering the anticipated RMSE and input coefficients. The Fraction of Design Space plot illustrates a trend 
of prediction variance that increases little from the center point of the design space and out to nearly the 
edges. The inner 50% of the design space includes under 0.3 units of prediction variance, which is minimal. 
The Color Map on Correlations illustrates the minimal correlation of 10% between the first two categorical 
inputs and the five continuous outputs. There is no correlation between the individual inputs and the 
interactions between inputs. There is varying correlation among interactions, which is not of great initial 
concern for the goal of the study. If an interaction has a high amount of significant influence on the 
dissolution output from the analysis of the model, the team might need to consider augmenting the design 
with additional runs to mitigate correlation. The evaluation of the design provides evidence of likely 
robustness for results of the analysis. 

With reasonable design evaluation results obtained, the design is to be randomized into a JMP data table. 
Prior to the randomization, use the red triangle menu next to the Definitive Screening Design header, 
select Set Random Seed, and enter 2017. Click Make Table to create the data collection plan shown in 
Figure 16.6. 

Figure 16.6: DSD Data Collection Plan 

 

The table is created and Callie is delighted that so much information can be extracted with only 22 runs. 
The risk is that if many of the inputs are found to be significant, the DSD might not provide the best results. 
Since it is not expected that many inputs will have an effect on the release at 60 minutes, the risk of using 
the DSD model is well justified.  
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Model Analysis of the DSD 
The set of 22 experiments was run in the exact random order indicated by the DSD model data collection 
plan. Results for the release at 60 minutes is added to the original data table, and the DSD scripts included 
in the design table are available for efficient analyses. The first step is to screen the seven inputs to 
determine whether any are important. The fit definitive screening script created for JMP 13 is an excellent 
start to the analyses of the model. Open the file Disso Method DSD.jmp and run the Fit Definitive 
Screening script for the first level of analysis shown in Figure 16.7. 

Figure 16.7: DSD Model Screening Results 

  

The screening analysis output includes initial results for the model, which lists the important inputs of the 
dissolution testing method. Stage 1 shows the individual inputs that have influence on the measured output 
of drug release at 60 minutes. The vibration mat, sample age, and media pH have significant influence on 
the output; with p-values that are all less than the default significance level (The stage 2 estimates 
list significant interactions and the effect from the blocking variable among the inputs. The stage 2 
estimates have no significant interactions listed and indicate no significant effect from the blocks. There is 
evidence that the  intercept is significant; however, this only means that it is not zero. A non zero intercept 
for this example is expected and not particularly noteworthy. The lack of significance for the blocks 
indicates that the runs of the successive halves of the 22 experimental runs are not significantly affecting 
the output. Screening has given you a gross idea of which of the seven inputs might have influence on drug 
release at 30 minutes. Fit screening includes plots to provide visualization of the trends detected in the 
model, as shown in Figure 16.8. 
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Figure 16.8: DSD Model Screening Plots 

 

Main Effects plots display the 22 individual runs as black dots, with a blue line that shows the average 
trends. Inputs that have no slope have no relationship to the drug release at 60 minutes. The sloped trend 
lines for sample age, media pH, and vibration mat illustrate the significance of the inputs.  

The Prediction Profiler provides a rich, dynamic visualization of the input trends alone. Exploration of how 
changes in the three significant inputs affect the release at 60 minutes is held off for now. It is time to fully 
analyze the model.  

Two options are available for analyzing the model: making the model manually or using the Run Model 
button to automatically include only the inputs of importance. This example uses the automated run model 
feature for simplicity. Click Run Model to get the analysis output shown in Figure 16.9. 

Figure 16.9: DSD Model Prediction Plot and Effect Summary 
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The Actual by Predicted plot provides the view of the overall model formed by the three significant inputs. 
Points are located very close to the trend line, illustrating the excellent model fit noted by an R square of 
0.95. The variation in the model noted by the RMSE of 1.7024 is minimal, evidenced by the narrow 
confidence interval shown in red shading about the model prediction line. The model is highly significant 
(p-value <0.0001) in influencing changes in the release at 60 minutes. The Effect Summary provides the 
same information about the important inputs as did the model screening, with a slightly different set of 
statistics. The LogWorth is a transformed value of the p-values so that they are at an appropriate scale for 
plotting. 

One aspect of analysis that has not been approached is diagnostics to ensure that appropriate assumptions 
have been met. The full model output includes a great deal of information to evaluate for the determination 
of the robustness of the model. The lack of fit test and residual plots shown in Figure 16.10 provide the first 
line of diagnostics.  

Figure 16.10: DSD Model Diagnostics 

 

The Actual by Predicted plot in Figure 16.9 contains visual evidence of how closely actual values align 
with the model prediction line. The model fit provides a summary to qualify the fit, but there might be a 
limited number of observations that do not fit well. The lack of fit test provides the sensitivity needed for 
further digging. The resulting probability of 0.8593 indicates almost no significant evidence that points 
have a poor fit.  

The Residual by Predicted plot should have a random pattern of points in order to meet modeling 
assumptions. Coned patterns or curved patterns are especially troublesome. The plot illustrates the random 
pattern and meets assumptions. The Studentized Residuals by row are within the statistical limits of 
randomness (red lines) with no trend, which meets assumptions. The diagnostics are useful because they 
remove doubt that the trends detected are not robust. 
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There is one last option to consider for making the best model possible and reducing the random error. 
Since the data is to be used to support an analytical method, precision in modeling must be a high priority. 
The Box-Cox Transformations plot shown in Figure 16.11 illustrates the set of all possible lambda 
transformations for the output that can optimize the assumption of normality and constant variance.  

Figure 16.11: Box-Cox Transformations 

 

The lowest model error (SSE) can be obtained with a lambda transformation of 2 because it is the lowest 
point of the blue SSE curve. The red line indicates the average SSE for the space. You can make a new 
model with the transformed results to determine whether analysis results can be improved. Utilize the red 
triangle menu next to the Box-Cox Transformations header and select Refit with Transformed. JMP 
chose the best lambda value 2 as the default. Keep the default and click OK to get the transformed model 
output shown in Figure 16.12. 
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Figure 16.12: DSD Model Diagnostics (Transformed) 

 

The model error for the transformed model (RMSE = 1.6758) is only slightly less than the initial model 
(RMSE = 1.7024). The model fit and the residual plots show almost no change. This is no surprise since the 
previous diagnostics indicated that each assumption is robustly met. Therefore, there is no need to 
complicate the modeling with transformations. 

Making Estimates from the Model 
The model for the dissolution method is robust and the important predictors have been identified. It is time 
to use the model to make estimations and find the optimum levels for the important predictors. There is 
great value in knowing that there are four other inputs that have no significant influence on the output 
measurements. The method can include the full range of levels studied with no risk of effecting a change in 
the measured outputs. The influence of the important predictors is shown in the Parameter Estimates table 
in Figure 16.13. 
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Figure 16.13: Parameter Estimates 

 

The intercept of 80.5 is significantly different from 0, which is not all that interesting. There is no 
significance of the blocked runs, so all 22 runs can be pooled for making estimates. When a vibration mat is 
added underneath the bath, the dissolution values drop by 2.5 percentage points. As the sample age 
increases by one day, the dissolution values drop by 3.5 percentage points. Increasing the media pH by 0.2 
units would increase the dissolution value measured by 4.4 percentage points.  

Recall that the goal is to obtain the most accurate and precise signal from the method as possible. If a 
vibration mat is not used, the signal is increased, but this is not a good effect. The USP method guidance 
clearly indicates that all known sources of influence from vibration or agitation of the media must be 
controlled. The increased results from vibration are not acceptable, and the team must use a mat to isolate 
vibration in order to reduce bias in results.  

The laboratory acceptance criteria for the age of sample preparations is up to three days. Modeling has 
indicated that the dissolution results are likely to drop as the age of the sample increases. More exploration 
of this important input is needed to ensure that the method has appropriate instructions. 

The estimates indicate that the dissolution output can change up to 8.8 percentage points for the range of 
levels studied, which is a big shift. The team should determine how closely the actual pH of the media can 
be controlled in order to scratch this input off the list of contributions to measurement uncertainty. 

All three influential inputs can be manipulated dynamically with the Prediction Profiler to try different 
levels and to determine the changes in the dissolution values. This example uses static screen shots of the 
tool. However, it is highly advised that the team takes advantage of this powerful tool in JMP. 

Figure 16.14: DSD Model Prediction Profiler 

 

The Prediction Profiler is the default tool that appears with the model analysis. The first thing to do is lock 
in the use of the vibration mat to determine how changes in the other two inputs affect results. Press the 
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Ctrl key and right-click in the white space of the vibration mat plot, to get the Factor Settings options. 
Select the Lock Factor Setting check box, and click OK. 

It is clear that the newest sample age and highest pH of media provide the highest amounts of release at 60 
minutes. The team is concerned that the results change by almost four percentage points for each day of 
sample age, which translates to a difference of over 10 percentage points over the acceptable three days of 
storage. Visualization of the effect will be important for the report of the modeling results. 

1. Make sure that the media pH is set to 7.2. 

2. Move the vertical red slider line for sample age to 1. 

3. Use the red triangle menu next to the Prediction Profiler header and select Factor Settings  
Remember Settings. 

4. Enter “New Sample” as the name, and click OK. 

5. Move the vertical red slider line for sample age to 3. 

6. Use the red triangle menu next to the Prediction Profiler header and select Factor Settings  
Remember Settings. 

7. Enter “3 Day Old Sample” as the name, and click OK to get the output shown in Figure 16.15. 

Figure 16.15: DSD Model Prediction Profiler Sample Remembered Settings 

 

The JMP journal with the output can be used to help the stakeholders of the project see that the predicted 
dissolution results are likely to drop seven percentage points with the oldest acceptable sample. This is an 
average estimate, good for only the subject set of experiments. The confidence interval estimates indicate 
that the population of results is likely to drop from between 4.6 and 9.5 percentage points for the 3-day-old 
sample prep, dissolution method run with a vibration mat, and media set to 7.2 pH. The confidence interval 
of the difference is calculated by subtracting the 1-day lower CI from the 3-day upper CI, and the 1-day 
upper CI from the 3-day lower CI.  

Using Simulations to Estimate Practical Results 
An evaluation of the media prep was completed to determine the best possible level of precision in hitting 
the target pH. The team tried an automated chemical dispenser for media preparation and found that the 
media is within a range of 0.1 pH. This information is helpful to include in a simulation of the prediction 
profiler and assess the impact on dissolution values measured. 

1. Use the red triangle menu next to the Prediction Profiler header and select Simulator. 

2. Make sure the media pH is set to the 7.2 target. 
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3. Click Fixed under the media pH plot, and select Random. 

4. Keep the default normal distribution (many options are available). 

5. Enter 0.0167 as the SD (standard deviation), which is the range divided by 6. 

6. Keep the default value 5000 in the N Runs box. 

7. Under the Simulate Table header, click Make Table. 

8. When the simulated table appears, select Analyze  Distribution.  

9. Move release at 60 minutes to the Y, Response box, and click OK.  

10. Utilize the red triangle menu next to the release at 60 minutes header and select Tolerance 
Interval. 

11. Keep the defaults and click OK.  

12. Utilize the red triangle menu next to the Distributions header and select Stack to get the output 
shown in Figure 16.16. 

Figure 16.16: DSD Model Prediction Profiler Sample Remembered Settings 

 

The distribution of simulated results, given the method variability in media pH, show a small 
amount of variability. The tolerance interval provides estimates for 90% of the individual results 
given that you utilize a 95% confidence interval to estimate the population average. The project 
stakeholders need to discuss whether it is acceptable to have a 1.2 percentage point range for 
measurement uncertainty due to an expected variability in actual media pH.  

Practical Conclusions 
Callie now has the information she needs to bring to the project stakeholders so that they can make 
decisions about the amount of measurement uncertainty that can be tolerated from the age of the sample 
and the actual pH of the media. Informed decisions can balance the costs of added precision with the 
amount of uncertainty added from variability in the factors. 

This chapter is focused on early structured experimentation with the goal of detecting method inputs that 
have significant influence on results. Definitive screening designs work extremely well for experimentation 
since analytical methods use multiple steps, which include several inputs for study. Design of experiments 
has not been typically used for method development within the pharmaceutical industry. It is very likely 
that analytical teams will learn that inputs previously thought to be robust actually have significant 
evidence of influence. This is especially true for interactions between inputs, which have not previously 
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been included in method diagnostics. The value added by using DOE extends throughout the lifecycle of a 
product since more robust methods require fewer resources to investigate unexpected results. Control of 
influential inputs can also reduce complexity in method procedures as engineered controls of inputs are 
adopted due to model analysis results. 

The next step of analytical method development includes the study of variance from method inputs. 
Response surface studies with replicates offer insight into the variability in the response that comes from 
the inputs. Measurement systems analysis is also a great option for the study of variance components that 
make up the analytical results. In either case, the initial screening of inputs focuses the team on important 
inputs and reduces resources. 

 Meaningful updates can be made from the information and a strong justification for the changes 
documented from the results of the experiments. The goals of the proposed General USP Chapters <1220> 
and <1210> have been met. The structured experimentation executed is the purest form of the application 
of Quality by Design principles.  

Exercises 
E16.1—An analytical R&D method of development involves the assay of a low dose tablet that has had a 
previous history of low values. The team did not utilize structured, multivariate experimentation to develop 
the method. The problem of low assay persists and questions regarding the robustness of the method are 
mounting. A set of experiments is planned to fully vet the method, and leadership has requested that an 
appropriate DOE is executed. All potential contributions to variation in the assay output have been 
reviewed using principal science and experience. Six variables have been established, and multiple controls 
and noise factors have been identified. The goal of the experimentation is to screen for the inputs that have 
significant influence on the results. The scientists have prior evidence to suggest that only a few of the 
inputs migh have influence on the assay results. Leadership has allocated resources to allow for up to 22 
runs to be completed for the set of experiments. The factors for the method are stored in Assay 
factors.jmp. 

1. Create experimental designs using DOE  Custom Design for the default D-Optimal screening 
design and DOE  Definitive Screening  Definitive Screening Design. Be sure to include 
the individual inputs and two-way interactions for all designs.  

2. Use DOE  Diagnostics  Compare Designs to determine the advantages of each design. 

3. How would you summarize the information to suggest the best design choice for moving forward 
to the project stakeholders? 
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E16.2—A design has been chosen for the problem presented in E16.2, and the data was collected in a JMP 
data table. Run the experimental analysis to screen for important inputs. The team is interested in any 
method input that significantly explains at least 2% of the change in results to be considered practically 
relevant. 

1. Open DSD for assay method 18R.jmp. Select Analyze  Distribution to visualize the % 
extracted results before you run the model analysis. How much variation is there in the overall 
results before the analysis divides them by significant inputs? 

2. Use the green arrow next to Fit Definitive Screening to run the script for the analysis. 

3. The team is very concerned that significant interactions are present and are influencing results. 
Use the Stage 2- Even Order Effects analysis results to determine whether the concern is valid. 

4. Click Run Model to get the detailed analysis. The assay specification is 90% to 110%, and the 
team is most interested in 2% or more influence from method inputs to be considered as 
practically relevant. Is there a cause for concern based on the analysis of the method 
experimentation regarding an input that might need to be controlled? 

5. The proposed method utilizes the A type of solvent. The B type of solvent was tried as a possible 
alternative. What do the results suggest regarding the optimum type of solvent? 

6. Summarize the results into a presentation for leadership. Be sure to explain whether the 
information from the analysis indicates that additional studies into analytical methods are 
warranted.  
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Overview 
Pharmaceutical products have rigorous requirements. The product must resist environmental exposure so 
that all critical quality attributes (CQAs) meet specifications through the expiration date. Maintaining a 
stabile formulation can be one of the most challenging aspects of drug development since many drug 
substances are sensitive to exposure to light, temperature, or humidity. The label claim cannot be adjusted 
for the effects of environmental exposure over time. It is extremely important for development teams to 
explore the trends of how the product changes during storage. Stability studies quantify trends in CQAs 
over time. The studies are completed during product development and continue throughout the commercial 
lifespan of a product. Specialized software is available to analyze stability data. However, the applications 
are not easy to use and tend to provide information limited to evidence of meeting the regulatory 
requirements for expiration dating. JMP includes a set of stability analysis tools that are very easy to use. 
The stability analysis provides high-quality graphs, tables, and analysis options that set JMP apart from 
other software solutions.  

The Problem: Transdermal Patch Stability 
This chapter involves a development project for a transdermal patch that delivers a drug used for cardiac 
care. The example utilizes data collected from project batches that are stored in accelerated conditions of 
high temperature and humidity. The tools in this chapter work just as well for real-time stability projects 
that are stored in ambient conditions.  

Bryce is a Senior Scientist in charge of developing a drug product that is dosed by a transdermal patch that 
is used for the treatment of angina. The patch is made with a polymer that ensures a controlled dose to the 
patient over a 24-hour period. The team has two alternate products that use different polymers and has seen 
very good results for both in physical properties and analytical test results. An assessment is needed to 
ensure that the patch will be able to fully release the drug at the 24-hour point of the dosing regimen for the 
entire length of product life. Commercial needs dictate that the patch must have a 24-month expiration date 
to ensure it is competitive with other like products that are on the market. The specification for % drug 
release is between 90% and 110%.  

The development team is utilizing accelerated stability studies to get results quickly so that a final product 
formula can be chosen. Prior studies indicate that one week for patches in the accelerated conditions is 
equivalent to three months in ambient conditions. The information previously provided to the team is 
limited to results data, stability model estimates, and shelf-life conclusions. Bryce recently discovered that 
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JMP includes stability studies, which happen to meet the International Council for Harmonisation of 
Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines. He is hoping to extract 
additional useful information from the JMP results to look at stability from a QbD perspective. 

Summarizing Stability Data 
The stability data includes all the individual tablet test values for each of the weekly pulls from the 
accelerated stability chamber. There is work to be done on the data since pharmaceutical stability studies 
typically deal with average trends over time. The Tables functions are used to first stack the results and 
then create a summary table. Open Accelerated stability table 24 hrs raw data.jmp, shown in Figure 
17.1. 

Figure 17.1: Raw Stability Data 

 

The data is in an unstacked form and must be changed to a stacked and summarized data table for stability 
analysis. Use the Tables platform to get the final desired format. Select Tables  Stack from the main 
menu, and select columns T1–T6. Move the selected variables to the Stack Columns box in the Stack 
dialog box, as shown in Figure 17.2.  
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Figure 17.2: Stack Dialog Box 

 

Leave the Stack by Row check box selected. Under Non-stacked columns, select the Select check box. 
Press the Ctrl key and select week and project. Under New Column Names, enter “% release” in the 
Data box and “tablet” in the Label box. Click OK to get the Untitled ## data table shown in Figure 17.3. 
Keep in mind that the number represented by ## in your results will be different from the number in the 
title in the figure. 

Figure 17.3: Raw Dataset Stacked 
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The data needs to be summarized into means of % drug release by project for each week. With Untitled 
##.jmp open, select Tables  Summary to get the dialog box shown in Figure 17.4. 

Figure 17.4: Tables Summary Dialog Box 

 

Select % release. Click Statistics and select Mean option; Mean (% release) appears in the box. Select 
project and week, and then click the Group button; the pyramid shape indicates that the groups will be 
sorted from low to high, which is desired. Enter “accelerated stability summary stacked” as the Output 
Table Name, and deselect the Link to original data table check box. Click OK to get the table shown in 
Figure 17.5. Save the data table as accelerated stability summary stacked.jmp to an accessible location. 

Figure 17.5: Accelerated Stability Summary Stacked Data Set 
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Adding Initial Results and Formatting for Stability Studies 
The data is now in the format needed to run stability analysis. The data is missing key information: the 
initial %drug release values for the project batches. The initial release values are often in a separate data 
source because they come from the quality assurance group. Quality assurance in this example is separate 
from the group that compiles stability studies. A data file of initial results is preformatted to add to the 
stacked summary of stability data. Open the file initial 24hr results.jmp, shown in Figure 17.6. 

Figure 17.6: Initial 24 Hour Results Data Set 

 

Select Tables  Stack to get the dialog box shown in Figure 17.7. 

Figure 17.7: Stack Dialog Box 

 

Select test 1 through test 8 and click Stack Columns. Deselect the Stack by Row check box. Enter “% 
release” in Stacked Data Column, enter “tablet” in Source Label Column, and then click OK to get the 
data table shown in Figure 17.8. 
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Figure 17.8: Stacked Initial 24-Hour % Release Data 

 

The initial 24-hour data is now summarized to match up with the stability data and combine into one set of 
data. Select Tables  Summary to get the dialog box shown in Figure 17.9. 

Figure 17.9: Table Summary Dialog Box 

 

Select % release. Click Statistics and select Mean; Mean (% release) appears in the box. Select 
project, and then click the Group button; the pyramid shape indicates that the groups will be sorted from 
low to high, which is desired. Enter “initial 24 hour % released summary stacked” as the Output Table 
Name, and deselect the Link to original data table check box. Click OK to get the table shown in Figure 
17.10. Save the data table as initial 24 hour % released summary stacked.jmp to an accessible location. 
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Figure 17.10: Initial 24-Hour Results Summary Stacked Data  

 

Now you must add a column for week and make the table format match the stability data table. Select 
Cols  New Columns to get the dialog box shown in Figure 17.11.  

Figure 17.11: New Column Dialog Box 

 

Enter “week” for Column Name, change Modeling Type to Nominal, and for Initialize Data select the 
Constant option to make all values 0. Click OK to add the column to the data.  

The last thing to do for this table is to put the columns into the same order as in the accelerated stability 
data table. Highlight the week column and select Cols  Reorder Columns  Move Selected 
Columns to move week to be after project in the table, as shown in Figure 17.12. Save the updated data 
table file. 
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Figure 17.12: Initial 24-Hour % Released Data Table in Matching Format  

 

The accelerated stability data needs to include initial results. Make sure that both data tables are open and 
that accelerated stability summary stacked.jmp is the active window. Select Tables  Concatenate 
to get the dialog box shown in Figure 17.13. 

Figure 17.13: Table Concatenate Dialog Box 

 

In the Concatenate dialog box, select initial 24hr %released summary stacked in the Open Data 
Table box, and click Add. Select the Append to first table check box, and then click OK to execute. 
Select File  Save or press the Ctrl S keys to save the data file. Close the initial 24hr %released 
summary stacked.jmp file to mitigate confusion. 

There are two remaining tasks needed to get the table ready for stability analysis. You must add the 
polymer variable, and the data needs to be sorted by project and week. Click on the project column 
header to select it. Select Cols  Recode to open the Recode dialog box shown in Figure 17.14. 
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Figure 17.14: Recode Dialog Box 

 

By default, JMP 14 creates a new column with the recoded data, which is desired. Enter “polymer” as the 
column name. Change test 1, test 2, test 3, and test 4 by entering A for each box. Change test 5, test 6, test 
7, and test 8 by entering B. The recode function will automatically group the tests into an A and B group as 
shown in Figure 17.14. Click Recode to add the polymer column to the data table, shown in Figure 17.15.  

Figure 17.15: Accelerated Stability Data Set with Polymer  
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Sorting the data table is not required in order to execute the stability study, but sorting cleans up the 
information in the table. Select Tables  Sort to get the dialog box shown in Figure 17.16.   

Figure 17.16: Sort Dialog Box 

 

In the Sort dialog box, move project to the By box first, and then move week to be underneath project. 
Select the Replace Table check box, and click OK to execute the sort. Save the table to ensure that your 
formatting work is not lost. 

The steps required to upload the stability data, summarize it, add the initial results, sort the table, and 
format the result into a stacked data table take time to complete. There are ways to speed up the process 
through scripting, but the tools in JMP enable you to efficiently get data ready for analysis.  

Running Stability Analysis 
Make sure that the file accelerated stability summary stacked.jmp is open. The data is organized into a 
stacked data set that sorted by week in the table shown in Figure 17.17. There are 64 observations that 
come from eight projects with eight weekly pulls from the stability chamber. It is good practice to double-
check that the total rows match what you expect before you waste time on analyzing an incomplete set of 
data.  

Figure 17.17: Summary Data Set for Stability Analysis 
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A complete set of reliability and survival tools are in the Analyze menu. Degradation studies are 
appropriate since the % drug release is likely to decline over time with exposure to environmental 
conditions. The degradation studies include a special set of customized tools for stability studies that 
comply with the ICH guidelines utilized by the pharmaceutical industry.  

The first thing to do with the data is to study overall stability for all eight projects and evaluate the trends. 
Select Analyze  Reliability and Survival  Degradation. Click the Stability Test tab to get the dialog 
box shown in Figure 17.18.  

Figure 17.18: Degradation Data Analysis Dialog Box 

 

Move % drug release to Y,Response, ACC week to Time, and project to Label, System ID. Recall 
that the label claim for % drug release is 90% to 110%. Enter 90 as the Lower Spec Limit. Because there 
is no prior history of increases in % drug release over time, there is no Upper Spec Limit. You can enter 
110 in that field, but it serves no purpose for this example. Click OK to get the output shown in Figure 
17.19. 

Figure 17.19: Stability Analysis Initial Output 
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The stability trends for the pooled data show a large amount of variation present among both the intercepts 
and the slopes for the eight projects. The excessive variability dashes the hope that the team will be able to 
interchangeably utilize either polymer, which would have provided a commercial advantage for the 
procurement team. According to the ICH Q1E guideline, the differences exceed what is acceptable for the 
pooling of the models, which includes common intercepts, slopes, or both. The most conservative model 
creates eight individual stability trends and uses the worst case to estimate the expected shelf life. Shelf life 
is determined by the point at which the confidence interval, illustrated with a shaded area about the model 
line, crosses the 90% drug release lower limit. One of the projects defines the shelf life to be a bit less than 
seven months, which is far too short for the needs of the product team. You can identify the offending batch 
by using the red triangle menu next to the Degradation Data Analysis heading to show a legend. Because 
the team plans to dig deeper into the data for the polymer groups, there is no need to identify the worst-case 
project at this point. 

Most analysis in JMP can be completed by using a BY variable to split analyses. Stability studies offer this 
option as well, and you will complete individual stability models for each polymer group next so that you 
can make comparisons. Use the red triangle menu option next to the Degradation Data Analysis header 
to select Redo  Relaunch Analysis. The Degradation Data Analysis that you used to launch the 
analysis appears. Move polymer to the By box, and click OK to launch the analysis. The output is shown 
in Figure 17.20. 

Figure 17.20: Stability Analysis for Polymer A 

 

The stability trend for polymer A is encouraging since the estimated shelf life of just less than 15 months 
exceeds the goal of no less than 12 weeks of exposure to accelerated conditions. This result equates to an 
estimated shelf-life of 30 months in ambient storage conditions. The linear trends for the four projects do 
not pool since individual models are utilized for each project, which is the most conservative of estimates. 
The results for the test 4 seem to reflect the shelf life seen in the plot. The results of the stability analysis 
for polymer A indicates that the intercepts and slopes differ. The worst-case test indicates the expiration 
time of just under 15 months. Figure 17.21 includes the initial stability analysis for polymer B. 
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Figure 17.21: Stability Analysis for Polymer B 

 

The stability trends for the polymer B projects also do not pool. The worst-case model for test 8 defines the 
shelf-life of just under seven weeks of accelerated stability exposure. Recall that one week of time in 
accelerated conditions represents three months of exposure to ambient conditions. The team can predict that 
the product would last only 21 months before the % drug release might not meet the 90% minimum. The 
stability plot also illustrates shaded confidence intervals that are much wider than the trends of polymer A 
projects. It seems that polymer A is preferred to polymer B. However, more digging into the model details 
will ensure that all required evidence is interpreted, and the best decision is reached. 

Expanding the analysis with additional detail adds to the interpretation. The trend plots of % drug release 
by ACC must be modified to have similar scaling so that a robust visualization of the data can take place. 
The polymer=A plot scale for ACC weeks is the widest of the two; it spans from 0 weeks to 18 weeks. 
The polymer=B plot % drug release scale is the widest of the two; it spans between 84 and 101. Right-
click on each of the scales for each of the plots to adjust the scales so that both plots reflect the extremes of 
0 weeks to approximately 16 weeks, and % drug release of just under 85% to just over 100%. 

Several models are available for stability analysis and the platform uses the ICH guidelines to select the 
most appropriate model. The data from the projects of polymer A include initial results that are 
significantly different, as well as slopes that differ significantly. The most appropriate analyses include 
individual models for each of the four project batches. All possible models are outlined in the JMP output 
and are located underneath the stability plots. Open the Model 4 outline to look at the estimates for the four 
linear models shown in Figure 17.22.  
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Figure 17.22: Stability Model Estimates for Polymer A 

 

The estimate table provides detail for the intercepts, slopes, and the statistics that are used to indicate the 
significant differences of the model parameters. Another important table includes the mean standard errors 
(MSE). MSE is a measure of spread for the various weekly pulls throughout the analysis timespan. The test 
4 project batch includes much more variability among pulls than the other three project batches. It is good 
practice for the team to review the results for test 4 with the analytical team to ensure that there are no 
errors in the data used for this study. Six degrees of freedom are used because sever observations were 
made for the span of stability storage (1 wk, 3 wks, 6 wks, 9 wks, 12 wks, 15 wks, 18 wks). If the DF is not 
the value for the number of pulls minus one, there might be issues with missing data that need to be 
explored.  

You will use the model estimates in a later section, so you should make them into a JMP data set for ease of 
use. Right-click on the Estimate table and select Make into Data Table, as shown in Figure 17.23. 

Figure 17.23: Stability Model Estimates for Polymer A Converted to Data Table 

 

The data table of model estimates is shown in Figure 17.24. Save the table as “Polymer A Stability 
Estimates.” 
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Figure 17.24: Table of Stability Model Estimates for Polymer A  

 

The table of model estimates is in the stability analysis output for polymer B, shown in Figure 17.25.  

Figure 17.25: Stability Model Estimates for Polymer B 

 

The slopes of the four project batches do not differ radically from the polymer A project batches, with only 
test 8 as an exception. Test 8 had a drop in % drug release that is more than double the amount of drop for 
any other project batch regardless of polymer type. Reviewing the MSD paints a picture of the most 
interesting differences between the polymer groups. The variability within the project batches of polymer B 
is larger than the polymer A group by several degrees of magnitude. The high variability is reflected in the 
confidence interval areas about the model lines that are much wider for the polymer B group. It is good 
practice to go back to the analytical team to review the source data to be sure there are no errors in the data 
set. 

The heightened variability in the project batches of the polymer B group make the bad results of shortened 
shelf life worse. It might be possible to identify issues with the test batch that defines the shortened shelf 
life, but the variability creates unacceptable risk for the development team. There is little value to digging 
deeper into the linear models for the polymer B group at this point. The team decides to shift focus to fully 
explore the trends in the polymer A group. 
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Stability—Linear Model Diagnostics 
ICH guidelines recommend the use of linear models in the analysis of stability trends. The first level of 
diagnostics for analysis models is to visualize the residuals to look for non-random patterns. Recall that 
residuals are the difference between actual values and the predicted values from the model. Figure 17.26 
includes residuals for the projects made with polymer A. 

Figure 17.26: Residual Plot for Polymer A  

 

The overall plot and the plots by project batch show random patterns of residuals. A point from test 4 at 15 
weeks was underestimated by the model and can be considered extreme. One extreme point does not make 
a trend and is not much to worry about; the linear models have an adequate fit to the data. The next plot to 
review is the inverse prediction plot shown in Figure 17.27. 
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Figure 17.27: Inverse Prediction Plot for Polymer A 

 

The inverse prediction plot indicates which of the projects have the shortest shelf life. The plot clearly 
shows that the test 1 project batch intersects the lower limit at 15 weeks. The project batch test 4 is next 
with an estimated shelf life of just over 16 weeks. Right-click on the X axis scale to adjust the tick marks. 
You can also use plot sizing to adjust the scale so that you can see all the project batches. 

You can include a specific prediction on the % drug release for any week that you specify. Click the 
Prediction Graph tab to get the dialog box shown in Figure 17.28.  

Figure 17.28: Prediction Plot Dialog Box 
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Enter 12 to get predictions at the 12-week date of storage in the accelerated conditions, and click Go to get 
the plot shown in Figure 17.29. 

Figure 17.29: Prediction Plot for Polymer A 

  

The prediction plot indicates that all four project batches meet the 90% lower limit. The predictions of % 
drug release are 91% and 93% at 12 weeks of accelerated stability exposure. The stability analysis provides 
clear evidence of the superior results of the polymer A group. Bryce is impressed with the amount of 
information provided by JMP, coupled with plots that clearly illustrate trends. The detailed information is 
shared with leadership to justify the direction of formulating the commercial product with polymer A.  

The analyses of stability trends with JMP was executed more quickly than Bryce expected. He knows that 
the quality team needs to use the results to come up with internal alert limits and internal release limits. 
Internal limits provide added confidence that future commercial batches of product chosen for stability 
testing during the life cycle of the product will meet the 90% lower specification limit. Internal limits can 
add to the commercial risk of the product if they are set too conservatively. Extremely conservative internal 
limits incorrectly identify batches at risk when they are actually likely to meet the label claim on the 
expiration date. Bryce intends to use the information from the JMP analysis to create realistic internal limits 
for the quality team to consider. 

Using Stability Estimates to Calculate Internal Limits 
The stability model estimates for polymer A were saved as the data file Polymer A Stability 
Estimates.jmp. Open this data file so that you can organize it into the most useable format. Select Tables 
 Split to get the dialog box shown in Figure 17.31. 
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Figure 17.31: Split Table Dialog Box 

 

Move Parameter to the Split By box, and move Estimate, Std Error, t Ratio, and Prob>|t| to the Split 
Columns box. Move project to the Group box, and click OK to get the new data table shown in Figure 
17.32. 

Figure 17.32: Stability Model Estimates for Polymer A 

 

The project that defines the shelf-life limit is test 1, which happens to have the most extreme slope, losing 
0.22% of drug release for every week of storage in accelerated conditions. The ICH guidelines for stability 
tend to be extremely conservative when a campaign of projects does not have intercepts and slopes pools. 
In this case, it is not recommended to apply extremely conservative confidence levels since the estimates 
are very likely to be unrealistic. In many cases, accelerated stability tends to yield more extreme results 
than the trends observed in ambient conditions, which adds justification for less conservative estimation 
techniques. Bryce’s team chooses an 80% level of confidence for an infinite sample size for the calculation 
of a reasonable internal release limit and internal alert limit.  

The z estimate for an 80% confidence level modifier is 1.3 and is used to calculate the internal limits. The 
standard error for the worst-case slope (test 1) is 0.0329. Therefore, a conservative estimate for the worst 
possible degradation is 0.22+(1.3*0.0329) =0.26. Working backward from the drug release low limit of 
90%, at the 12-week accelerated estimated expiration date, you can see that the product must yield an initial 
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% release of at least 90+(12*0.26) =93.12. The initial release limit for internal quality use with the 
transdermal patch made with polymer A is % drug release of no less than 93%.  

Leadership might want an even more conservative initial alert limit to prompt quality and operations of 
batches that are at risk for stability issues. Alert limits are used for trending changes in test results that 
might indicate added product risk. The problem is that the standard errors differ for the four projects. 
Rather than chase down the different intercept estimates for the four projects, the pooled model intercept 
estimate is used for the calculations shown in Figure 17.33. 

Figure 17.33: Pooled Stability Model Estimates for Polymer A 

 

Utilization of the standard error to add half of the margin of error of an 80% confidence interval for the 
mean (intercept) provides a conservative estimate for the alert limit. The lower half of the margin of error is 
calculated as 1.3*0.49 = 0.64. The most conservative estimate for an initial release limit is 93 + 0.64 = 
93.6. The team rounds up to simplify the internal alert limit to no less than 94% release.  

All four projects are at least 1% (rounded) above the proposed internal release limit and right on the alert 
limit. This is not necessarily a cause of alarm for the development team and leadership. As real-time 
stability projects mature to the point of having a reasonable group of projects with stability results beyond 
the 24-month expiration date, teams should review the stability trends. Internal limits can easily be adjusted 
by the quality team without the need to submit documentation to regulatory agencies. The changes will be 
captured in new revisions of the product release specifications if questions arise during the life cycle of the 
product. It is best practice for pharmaceutical manufacturers to plan to continue stability studies on at least 
the first five stability projects for a period that is at least one year beyond the expiration date. This ensures 
that the statistical trends and estimations made at the time of expiration include a reasonable amount of 
statistical error.  
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Practical Conclusions 
Bryce can communicate a great deal of information about how the transdermal patches change in the % 
drug release over time. The JMP degradation platform with stability analysis options is easy to use and 
quickly summarizes trends, based on ICH guidelines. The best estimates of stability trends result from 
analyses that include multiple test batches over a time period that is as long as possible. This example 
included eight batches with accelerated exposure times that went significantly beyond the shelf-life goal for 
the transdermal product. Therefore, results from the example are robust. 

The high-quality graphics and summary tables enabled the development team to robustly justify selecting 
polymer A for commercial product manufacturing. Not only is the polymer A product highly likely to meet 
the commercial expiration date of 24 months, the minimal variability among batch results make the 
predictions very robust.  

The predictions made from the stability modeling add significant practical value. The quality team used the 
predictions to create a set of internal limits used to evaluate the initial release of commercial product 
batches. The internal limits help ensure that the % drug release meets the 90% lower specification 
throughout the life of the batch.  

Exercises 
E17.1—A new drug formula for a capsule product has been produced for several months. Data is available 
from a long-term study of several packaging configurations that are stored in a real-time stability chamber 
(25 degrees C/ 60% relative humidity). The product includes two different active ingredients and is 
produced in a regular strength (400 mg) and maximum strength (800 mg) formula. The marketing team 
inquired about the potential for placing more configurations into the commercial product mix. The 
requirement for assay of both actives is to 95% to 105% for the life of the product. The data includes the 
following grouping variables: 

Dose: 400 mg, 800 mg 

Active:  A, B 

Container: bottle (plastic), blister (strip with 20 capsules) 

Size: 20count, 50count, 80count, 200count. 20count_film100 (blister), 
20count_film200 (blister), 20 count_film300 (blister) 

Desiccant: none, low (1unit), high (2 units) 

 

1. Open two strength assay RT stability data.jmp. 

2. Select the container, size, and desiccant columns. Select Cols ► Utilities ► Combine 
Columns to create a new column with the combined information as a labeling group for stability 
study. Name the new column “configuration” and click OK to add it to the JMP data sheet. 
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3. The blisters were not marketed due to poor stability study results from the initial accelerated 
stability studies.  

◦ Filter the data to select and include the blister configurations. 

◦ Use the techniques noted in the chapter to analyze the assay stability trend for blisters. 

◦ Be sure to include dose and active in the by window. 

◦ Is there evidence that the stability for assay will be adequate for marketed product to maintain 
a 24-month expiration date? 

4. Change the filter to run stability analysis on assay data for the bottles. Is there evidence that the 
stability for assay will be adequate for marketed product to maintain a 24-month expiration date? 

5. Utilizing filtering and By grouping to investigate whether the stability trends differ by desiccant 
group.  

6. How would you summarize this information to the leadership of the marketing team? 

 

E17.2—You analyzed the assay stability for the capsule product with two active ingredients in the previous 
exercise. However, that was only part of the story. You also need to evaluate the product for dissolution 
since it is formulated for extended release. Keep in mind that dissolution testing involves multiple capsules 
tested at each pull; filtering the data and using By groups are likely to have significant effects on the 
stability trends. 

1. Open two strength disso RT stability data.jmp. 

2. The data includes the added grouping of the four hourly pulls for measuring the % released in the 
dissolution media (1, 2, 6, and 12 hours). The analyses require that the data be filtered by hour 
since the specifications for % released are specific for each pull: 
1 hour: 20 to 45% 

2 hours: 35 to 60% 

6 hours: 60 to 85% 

12 hours: no less than 80% 

3. Be sure to include dose and active in the By window. 

4. Explore use of the Data Filter by container to isolate the trends for bottles and blisters. Once you 
have filtered the data by selecting either container type, use the red triangle options for the 
stability analysis to pick Redo. Evaluate the trend for the bottles and the blisters to determine 
whether the estimated shelf life for the various configurations is likely to exceed the planned 24-
month expiration date. 

5. How would you summarize the results of the stability analysis to present to the marketing team?  
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