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Preface

Systems pharmacology, a relatively new discipline, is the interface between systems
biology and pharmacodynamics. It is a response to the growing awareness that
pharmaceutical companies should reduce the high attrition in the pipeline due to
insufficient efficacy or toxicity found in proof-of-concept and/or Phase 2 studies.
Systems pharmacology provides a framework for integrating information obtained
from understanding physiological/pathological pathways (normal body function
system vs. perturbed system due to disease) and pharmacological targets in order to
predict clinical efficacy and adverse events through iterations between mathematical
modeling and experimentation.

Two workshops on quantitative and systems pharmacology (QSP) were held at
the NIH to discuss whether a merger of systems biology and pharmacology could
advance the discovery, development, and clinical use of therapeutic drugs; the
experts from academia, industry, and regulatory agencies have identified a need to
integrate concepts and methods. Systems biology and pharmacodynamics have
evolved in parallel, although there are significant interrelationships that can enhance
drug discovery and enable optimized therapy for each patient. Currently, no sin-
glebook exists that covers the expertise from both systems biology and pharma-
codynamics researchers.

To that end, the intent of this book is to foster such dialogue by introducing
systems modeling concepts to pharmacometricians and pharmaceutical scientists
(Part I), introducing PK/PD principles to engineers and systems scientists (Part II),
and providing detailed examples of systems pharmacology models from academia
and the pharmaceutical industry that may be useful for developing drugs to treat
various diseases (Part III). In addition, a perspective on the role of systems phar-
macology modeling in regulatory drug approval is presented in Chap. 2, followed
by the application of systems pharmacology in drug discovery and development
from an industrial perspective (Chap. 3). This book will facilitate collaboration
among industry, clinical, academic, and regulatory scientists so that systems
pharmacology and pharmacodynamics may be developed and refined further to
show practical applications in drug development.
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We hope that this book is informative and relevant to any researcher or prac-
titioner who wants to use systems pharmacology and pharmacodynamics in the
design, analysis, or regulatory decisions concerning drug discovery, as well as
nonclinical and clinical drug development. This book does not embrace all aspects
of systems pharmacology and pharmacodynamics, nor is it intended as a technical
recipe for how to apply them. Rather, it is a source of information that enables the
reader to gain a better understanding of the essential background and knowledge
of the fields of systems pharmacology and pharmacodynamics.

This book would not exist without the help and encouragement of many people.
We are grateful to all the authors who contributed to the chapters. We also would
like to thank our publisher, AAPS/Springer, for this opportunity to contribute to the
fields of systems pharmacology and pharmacodynamics.

Buffalo, NY, USA Donald E. Mager
Spring House, PA, USA Holly H.C. Kimko
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Systems Modeling



Chapter 1
Systems Pharmacology
and Pharmacodynamics: An Introduction

Donald E. Mager and Holly H.C. Kimko

Abstract Systems pharmacology represents a hybrid, multi-scale modeling
approach that seeks to combine systems or network-based structures with basic
principles of pharmacokinetics and pharmacodynamics (PK/PD). Systems biology
encompasses a broad spectrum of computational methods for vertically capturing
molecular, cellular, and tissue level interactions that regulate biological systems. In
contrast, PK/PD models are often minimal compartmental constructs (conceptual
models) with parameters that integrate PK, drug-target interactions, and
rate-limiting turnover processes. Both disciplines have shown value in various
stages of drug development and utilization; however, there is growing interest in
applying integrated systems pharmacology models, in a complimentary manner, for
informing critical decisions in drug development and pharmacotherapy. Here we
provide a rationale for the construction and evaluation of complex models of drug
action that may serve to guide the development of new compounds and combi-
natorial regimens, explain sources of inter-subject variability in drug exposure and
response, identify sources and influences of disease progression, and predict and
understand drug efficacy and safety.

Keywords Systems model � Systems pharmacology � Systems physiology �
Systems biology � Multiscale modeling � Pharmacokinetics/Pharmacodynamics

1.1 Introduction

The discovery, development, and utilization of drugs to treat disease, along with
their regulation, are complicated by the multitude of factors that can influence
individual patient responses. It is therefore not surprising that many scientists have

D.E. Mager
Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA

H.H.C. Kimko (&)
Janssen Research & Development, LLC, Spring House, PA, USA
e-mail: hkimko@its.jnj.com
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AAPS Advances in the Pharmaceutical Sciences Series 23,
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turned to mathematical modeling to help identify and integrate major determinants
of drug action and inform key decisions within each of these endeavors. A diverse
spectrum of models and computational approaches are available, ranging from
comprehensive biochemical models at the molecular and cellular levels to empirical
and conceptual models of clinical outcomes for individuals and patient populations.
The former model type emerges from engineering principles applied to biochem-
istry and physiological systems, whereas the latter form often reflects compart-
mental structures that couple pharmacokinetics (PK) and pharmacodynamics
(PD) or the time-course of response with respect to the extent of drug exposure.

Systems pharmacology seeks to combine information across such organizational
scales, and a good working definition is, “an approach to translational medicine that
combines computational and experimental methods to elucidate, validate, and apply
new pharmacological concepts to the development and use of small molecule and
biologic drugs” (Sorger et al. 2011). Accordingly, systems pharmacology models
represent hybrid, multi-scale structures, focusing on the dynamic interplay among
the constituents of the system that manifests as emergent properties. Systems
pharmacology models will not replace current population-based PK/PD (pharma-
cometrics) or chemoinformatic and systems biology approaches, but instead will
provide complimentary support and “create the knowledge needed to change
complex cellular networks in a specified way with mono or combination therapy,
alter the pathophysiology of disease so as to maximize therapeutic benefit and
minimize toxicity, and implement a ‘precision medicine’ approach to improving the
health of individual patients” (Sorger et al. 2011). Thus, systems pharmacology is
interdisciplinary and its successful implementation requires effective communica-
tion and collaborations among clinicians and basic scientists.

This chapter provides a brief overview of systems pharmacology and pharmaco-
dynamics. Chapters 2 and 3 provide perspectives on the role of systems pharmacology
modeling in regulatory drug approval and the application of systems pharmacology in
drug discovery and development from an industrial perspective. The subsequent
chapters introduce systems modeling to PK/PD scientists, PK/PD principles to
engineers and systems scientists, and provide detailed examples of systems phar-
macology models that may be useful for developing drugs to treat various diseases.

1.2 Systems Theory in Biology and Pharmacokinetics

The concept of systems science is not new. Ludwig von Bertalanffy was one
pioneer in general system theory (von Bertalanffy 1950), who in his classic text
stated, “If someone were to analyze current notions and fashionable catchwords, he
would find ‘systems’ high on the list. The concept has pervaded all fields of science
and penetrated into popular thinking, jargon and mass media” (von Bertalanffy
1969). In his chapter on, Some Aspects of System Theory in Biology, he covered
then-current theories of open systems, feedback models and Cannon’s homeostasis,
allometric scaling, and organismal growth models.
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Indeed, many of the approaches in systems pharmacology have their roots in
engineering and systems physiology. For example, consider the text, Systems
Theory and Biology, which chronicles the proceedings of the 3rd systems sym-
posium held at Case Western Reserve University (then Case Institute of
Technology) (Mesarović 1968). Building off the pioneering work of Yates and
Urquhart 1962, a comprehensive and continuous model of adrenocortical function
is featured that includes 9 independent inputs and 34 independent parameters (Yates
et al. 1968). In questioning the utility of the model, the authors “recognize that
models of physiological systems usually consume far more useful published papers
than they produce [, however,] the existence of the model will shape the strategy of
the research, hopefully in a more rational manner than human intuition, unaided by
explicit models, can do when it is confronted with great complexity.” In the very
next chapter, Gann et al. (1968) describe a finite state, Boolean mathematical model
of the same biological system. Interestingly, the Boolean model made several
predictions of intermediate variables and new system outputs, which were used to
guide subsequent experimental research. This modeling approach is also often
attributed to Kauffman (1969). These are just two examples of the early recognition
that more comprehensive models and alternative mathematical formalisms would
be needed to understand how unit processes interact to give rise to unique system
properties that could not be predicted from studying individual components.

Fundamental approaches to systems modeling in biology were also becoming
established. Some key initial considerations and choices in developing such models
include (Yates et al. 1968):

1. Choice of the species in which to study the system
2. Specification of the describing or state variables
3. Selection of measurement techniques and estimates of the errors of measurement
4. Selection of the relevant time domain for system activity
5. Choice of sampling rates appropriate to the chosen time domain
6. Choice of stimuli, input signals or forcing functions to perturb the system

Additional decisions to be made include specifying major components of the
system, how to define the connections between components, and the form of
mathematics to be used in the model. In terms of the modeling process itself, Yates
later listed key steps that involve (Yates 1973):

1. Development of a model that incorporates the unit process of components to
stimulate selected system performance characteristics

2. Test of the model
3. Experimental tests of predictions by performance of the analogous experiments

on the real system
4. Modifications of the model—further predictions and modifications within the

same general structure
5. Development of a new kind of structure for the model and fresh kinds of

predictions and experiments
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Although analytical and computational methods have advanced considerably
over the last few decades, these guiding principles are just as relevant today in
systems pharmacology.

The time-course of drug concentrations at the site of action, or biophase, is
considered to be the driving force for subsequent pharmacological or toxicological
effects. Therefore, studies of the variability in drug action should first consider
factors influencing variability in drug exposure in relevant biophases.
Pharmacokinetics is a well-established field involving the mathematical character-
ization of drug- and system-specific properties that regulate the time-course of drug
exposure following single and multiple dose regimens. Although early PK had
often been associated with simple compartmental models, Teorell published a
landmark paper to introduce this discipline (although the term pharmacokinetics
was not used) using a systems framework (Teorell 1937). The model included
physiological structures, such as tissue volumes and rate constants of distribution
and elimination mechanisms, and represents an early example of so-called
physiologically-based PK (PBPK) models. However, the role of blood circulation
was not considered, and in 1965, Jacquez and colleagues reported the first modern
mathematical PBPK model (Jacquez et al. 1960). Shortly thereafter, Bischoff and
colleagues popularized computational PBPK models for compounds like thiopental
and methotrexate (Bischoff and Dedrick 1968; Bischoff et al. 1971). Dedrick noted,
“Physiologic modeling enables us to examine the joint effect of a number of
complex inter-related processes and assess the relative significance of each”
(Dedrick 1973), which is a succinct account of the role of systems analysis in PK.

PBPK modeling is arguably the best platform for studying and integrating
intrinsic and extrinsic factors controlling drug absorption and disposition in drug
development and regulatory science (Rowland et al. 2011). Of particular impor-
tance to pharmacodynamic systems analysis, PBPK modeling has been identified as
a good tool to show a disconnect between changes in plasma drug kinetics that are
not reflected in the tissue of interest and vice versa (Rose et al. 2014). PBPK
concepts have also been extended to describe the PK of biological therapeutics and
antibody-based drugs, which include processes unique to such compounds, such as
convectional tissue uptake, FcRn-mediated salvage, tissue catabolism, and the role
of lymphatic circulation (Baxter et al. 1994; Garg and Balthasar 2007).

1.2.1 Network-Based Pharmacology and Physiological
Control Systems

After decades of reductionism, accompanied by major advances in analytical assays
for measuring molecular species (-omics and imaging techniques), computational
hardware and software, and robust computational algorithms, the field of systems
biology re-emerged as a major discipline in the early 2000s (Kitano 2002a, b). The
major challenge was (and continues to be) making biological sense out of the
extremely large data sets from multiple experimental platforms. Other challenges
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for systems biology models include: model complexity, experimental and biological
noise, redundant pathways (robustness), multiple spatial and temporal scales, and
inter-species differences in biological processes. Although the data and tools have
changed, the overall modeling process follows the well-appreciated steps estab-
lished early on, representing an iterative approach of theory and computation,
model testing and analysis, and wet-lab experimentation.

One of the major goals of systems biology was to improve the discovery and
development of therapeutics. As Kitano noted, “The most feasible application of
systems biology research is to create a detailed model of cell regulation, focused on
particular signal-transduction cascades and molecules to provide system-level
insights into mechanism-based drug discovery” (Kitano 2002b). Over the last
decade, systems biology techniques have been used to explore and identify new
drug targets and potential biomarkers of disease and drug response. However, the
overall success of this endeavor is debatable, and there is a growing consensus that
systems biology approaches should be merged with general principles of PK/PD
and clinical pharmacology in order to gain further confidence in drug targets,
biomarkers, and the role of new chemical entities to become promising drugs to
treat disease (Sorger et al. 2011; Vicini and van der Graaf 2013).

Systems pharmacology modeling is a merger of systems biology and PK/PD
principles, and represents therefore by definition, a hybrid, multi-scale modeling
approach. It is beyond the scope of this chapter (and this book) to review the many
statistical, informatic, and model-based methods that fall under the umbrella of
systems biology. Instead, we have included some of the major modeling techniques
from systems biology that have shown particular promise in systems pharmacology.

One clear concept that has become well appreciated is that of signaling and
physiological networks—the idea that the temporal effects of diseases and drugs on
homeostasis occur from altering information flow in interconnected biochemical
networks (Bhalla and Iyengar 1999; Weng et al. 1999). In Chap. 4, Birtwistle and
colleagues provide an overview of systems pharmacology, from a network-based
perspective, highlighting general properties and approaches to systems models. In
many cases, concentrations of major network components and the quantitative
interactions among these elements are unknown, and often connections are known
in only qualitative terms. For these systems, discrete and continuous logic-based
models can be used to emulate biochemical systems (Kauffman 1969; Wang et al.
2012), and Steinway and colleagues provide a summary of such methodology,
along with a case study for mimicking a mechanistic biochemical model of signal
transduction (Chap. 5). Most modelers would argue that when detailed information
and data are available, mechanistic models are preferred over empirical approaches.
Therefore, Birtwistle and colleagues describe the rationale and approaches to
developing kinetic models of biochemical signaling networks in Chap. 6. In
rounding off Part I, Khoo and colleagues describe modeling approaches to physi-
ological control systems, which provide a scaffold and context for considering
molecular mechanisms of disease and drug action (Chap. 7).
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1.3 Pharmacodynamics

The field of PK/PD modeling aims to develop conceptual models that link the
time-course of drug exposure, in plasma or sites of action (biophase), to the
time-course and intensity of pharmacological and/or toxicological effects. Levy was
the first to develop a simple mathematical expression, connecting the PK and
pharmacological properties of a drug, to explain the apparent zero-order rate of
decline of in vivo drug effects (E), despite an exponential decrease in drug con-
centrations (Levy 1966):

E ¼ E0 � k � m � t ð1:1Þ

with E0 as the effect value at the start of the decrease in E, k is a first-order
elimination rate constant of the drug, m represents the linear positive slope of a
concentration-effect plot when the effect is between 20 and 80 % maximal (ab-
scissa = natural log of drug concentration and ordinate = effect on a linear scale),
and t is time. This expression identifies the k � m product as the determinant of the
linear decrease in drug effects for simple, rapid direct effects (i.e., reversible ago-
nists or antagonists for which turnover processes are not rate-limiting). This dis-
covery marked the beginning of identifying factors that regulate the in vivo
time-course of drug effects in a quantitative manner.

Shortly thereafter, Wagner suggested the use of the Hill equation to describe the
temporal profile of direct and rapidly acting agents, which was based on a
derivation starting with drug-receptor binding (Hill 1910; Wagner 1968):

E ¼ Emax � CðtÞ= EC50 þCðtÞð Þ ð1:2Þ

withC(t) representing the plasma drug concentration,Emax is themaximal drug effect,
and EC50 is the drug concentration producing 50 % of Emax. The use of the full Hill
equation (or Emax model) avoided the restriction of the 20 to 80 % maximal effect as
required for Eq. 1.1. However, the Emax model assumes that the time to peak drug
effect coincides with the time to peak drug concentration, althoughmost drugs exhibit
a temporal delay between these events (so called hysteresis in the concentration-effect
plot). Sheiner popularized the use of a simple delay compartment, initially developed
by Segre, to accommodate the time for drug to equilibrate with concentrations in a
hypothetical effect compartment or biophase (Segre 1968; Sheiner et al. 1979). The
pharmacological effect is still defined by Eq. 1.2, but driven by concentrations in the
effect compartment rather than plasma concentration. This was the first simultaneous
PK/PD model to describe a relatively short delay in drug action owing to drug
distribution to a biophase and assumes such distribution does not influence the PK of
the drug.

Many drugs can show much longer delays, not due to distribution to a biophase,
but because drug-target interactions can act indirectly to stimulate or inhibit the
production (Kin) or loss (kout) of a biomarker (R) (Ariens 1954). Levy and col-
leagues published the first model to capture an indirect effect (Nagashima et al.
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1969), and Jusko and colleagues introduced a mathematical formalism for a family
of four basic indirect response models (Dayneka et al. 1993; Jusko and Ko 1994).
A general expression for these models is:

dR=dt ¼ Kin � 1� H1ðCÞð Þ � kout � 1� H2ðCÞð Þ � R; Rð0Þ ¼ R0 ð1:3Þ

with H1 and H2 representing Emax functions (Eq. 1.2), and R0 is the initial condition
for the biomarker. Interestingly, the time to peak (or nadir) of drug effects is
independent of dose for the biophase model, whereas this property will shift to the
right with increasing dose levels for the indirect effect models, owing to the longer
duration of time drug concentrations remain above its EC50. Although the biophase
and indirect effect models can describe delays between peak concentration and peak
response, neither will describe a case in which there is a long delay in the onset of
effect, when the biomarker does not change despite high drug concentrations. For
such systems, the use of simple transit compartments can be used to emulate the
time required for signal transduction delays with a minimal number of identifiable
parameters (Mager and Jusko 2001). From these basic structural models, one can
add a plethora of additional complexities and arrive at a diverse array of PK/PD
models for describing many animal and clinical drug effects.

Starting the PD section of this book (Part II; Chap. 8), Jusko outlines the general
fundamentals of pharmacodynamic systems analysis with a spectrum of essential
models. Krzyzanski provides a detailed account of the mathematical properties of
direct and indirect response models, along with modeling approaches for signal
transduction processes (Chap. 9). Another major class of models is irreversibly
acting systems, in which a drug can permanently inactivate a target. Such models
typically combine turnover (indirect or time-dependent transduction) with
second-order loss terms, and Russu and Pogessi describe a series of drug-induced
irreversible models along with a rationale for transitioning toward systems phar-
macology models (Chap. 10). Finally, in Chap. 11, Zhang and D’Argenio introduce
mechanisms of feedback regulatory processes into indirect response models, which
carry major translational implications for properly interpreting temporal profiles and
drug potency under such conditions.

1.3.1 Population-Based Pharmacology

The introduction of nonlinear mixed effects modeling by Sheiner and Beal had a
transformative effect on the field of PK/PD modeling (Sheiner et al. 1972, 1977;
Sheiner and Beal 1980, 1981; Beal and Sheiner 1982). Population-based modeling
is the standard for estimating parameters of exposure-response models in a popu-
lation (of in vitro profiles, animals, and humans). In brief, population algorithms
allow estimation of typical mean model parameters (h) along with the magnitude of
various sources of variability (inter-subject variability in parameters ηi, residual
error eij, inter-occasion variability, etc.). Of importance is the recognition of vari-
ability as an important feature to be identified and measured during drug
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development or evaluation in order to explain that variability by identifying
demographic, pathophysiological, environmental, or drug-related factors (covari-
ates ai) that may influence PK/PD properties of a drug. One can write a general
expression for this approach:

Yij ¼ f xij; g ai; h;gið Þ� �þ eij ð1:4Þ

in which Y represents a PK or PD outcome variable for the ith individual at the jth
time point, f is the overall structural mathematical model, x represents model inputs
(such as dose), and the function g is an expression describing individual subject
parameters based on the covariate relationships, population mean values, and
unexplained inter-individual variability. In this case ηi and eij are random effects
centered at zero and typically assigned a parametric distribution, and the relation-
ships between ai and h are fixed effects (thus nonlinear mixed effects modeling).

In Chap. 12, Bonate and colleagues provide an overview of nonlinear mixed
effects modeling and case studies of applications in systems models. A major
challenge in developing population-based models is the identification of the rela-
tionships between patient covariates and model parameters, and the best method for
testing such relationships and their inclusion in the final model is controversial.
Furthermore, traditional covariate search strategies can be difficult to impossible to
implement in the face of large multi-dimensional data sets that are common with
genomic and proteomic testing. Therefore, new strategies are needed in identifying
potential patient covariates under such conditions, and Knights and Ramanathan
describe a novel approach (Chap. 13) using an informational theoretic method
based on Shannon’s entropy (Shannon and Weaver 1948).

1.4 Systems Pharmacology Models

Parts I and II of this book feature essential elements of systems and PK/PD mod-
eling. These concepts can be combined, and Part III contains examples of inte-
grating components to construct systems pharmacology models for specific
systems, including: drugs acting in the central nervous system (Chap. 14; Geerts
et al.), mechanisms of inflammation (Chap. 15; Scheff et al.), tyrosine kinase
inhibitor associated toxicities (Chap. 16; Kariya et al.), antimicrobial agents (Chap.
17; Rao et al.), hepatitis C (Chap. 18; Haseltine and Kimko), oncology (Chap. 19;
Kirouac), and type 2 diabetes mellitus (Chap. 20; Bosley et al.). Although systems
pharmacology is still in its infancy, more examples are appearing in the literature,
along with accounts of how such modeling was used to support the clinical
development of drugs (Milligan et al. 2013). In addition, the FDA has been a
supporter of systems pharmacology modeling, particularly PBPK (Huang et al.
2013) and safety science (Abernethy et al. 2011). Notably, FDA reviewers invoked
a systems pharmacology model of bone homeostasis (Peterson and Riggs 2010) to
explore dosing regimens for a recombinant human parathyroid compound sub-
mitted for consideration to the Endocrine and Metabolic Drugs Advisory
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Committee September 12, 2014 and recommended that “the dose regimen should
be further optimized to address the safety concerns for hypercalciuria” (Peterson
and Riggs 2015). (http://www.fda.gov/downloads/AdvisoryCommittees/Commit
teesMeetingMaterials/Drugs/EndocrinologicandMetabolicDrugsAdvisory-Committ
ee/UCM413617.pdf)

The potential of using systems pharmacology models to inform the discovery
and development of new compounds is great, and further research collaborations
will be needed to fully realize that potential. Strategic interdisciplinary teams will
be needed to ensure models are fit-for-purpose and conditions for model qualifi-
cation are clearly defined in order for systems models to be adopted and used to
inform critical decision-making steps.

1.5 Prospectus

As systems modeling in pharmacology matures as a discipline, there may be an
opportunity to better predict individual patient responses. Once a structural model is
defined, sources of genomic and proteomic variability could be integrated into the
model (so called enhanced pharmacodynamic models) to simulate complex clinical
phenotypes (Iyengar et al. 2012). Insights into the determinants of inter-individual
PK and PD variability could prove useful in identifying patient subpopulations
likely to benefit from the drug or experience adverse drug reactions, help monitor
therapy over time, identify mechanisms of innate or acquired drug resistance, and
help identify novel drug combinations with superior benefit/risk ratios as compared
to single agent regimens. For example, one promising study combined absolute
quantification of two BCL2 proteins in patient colorectal tumor cells with a systems
model, and together these were used to calculate an apparent “dosing” number that
was associated with patient outcomes (disease-free survival) (Lindner et al. 2013).

Some considerations for advancing the science of systems pharmacology
modeling include:

1. Networks: Require more complete, unbiased, curated and readily available
interactomes, along with analytical advances in proteomics, unbiased compu-
tational approaches for network reduction, and formation of hybrid, multi-scale
architectures

2. Enhanced PD models: Require effective collaborations among interdisciplinary
industry, clinical, academic, and regulatory scientists for (a) generating
high-quality clinical and pre-clinical data, (b) expanding models to include
multiple scales and systems, and (c) developing standards and best practices

3. Software: Needs to be inter-operable and capable of integrating multiple data
types

4. Strategies: New approaches are needed to develop integrated workflows with
pharmacometrics and statistics

Solutions to these considerations are within reach, and the future of systems
pharmacology and pharmacodynamics is very bright. Systems models present the
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best platform for effectively integrating innovative data and methods to inform and
improve drug discovery and development, thereby helping to bring new, more
effective drugs with minimal safety concerns to patients.
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Chapter 2
Role of Systems Modeling in Regulatory
Drug Approval

Vikram Sinha, Shiew-Mei Huang, Darrell R. Abernethy,
Yaning Wang, Ping Zhao and Issam Zineh

Abstract The science of quantitative clinical pharmacology continues to advance
at a rapid pace such that regulators must constantly evaluate the most appropriate
applications of modeling, simulation, and other innovations in the public health
context. FDA continues to target improvements in regulatory science, including the
development of scientific tools that can bridge the gap between cutting-edge dis-
coveries and real-world diagnostics and therapeutics and to this end has identified
innovation through modeling and simulation as a major scientific priority area.
Physiological based pharmacokinetic (PBPK) models, which utilize system- and
drug-specific information, are being increasingly used during drug discovery and
development and informing regulatory review including drug labeling. A multi-step
approach may be appropriate when planning to use PBPK to determine the likely
effects of drug and/or gene interactions on drug pharmacokinetics and subsequent
need for dedicated studies. Published FDA guidance documents related to drug
interactions and early phase pharmacogenomic evaluation have included recom-
mendations for the use of PBPK where appropriate. As pharmacology and clinical
pharmacology move forward from reductionist approaches toward integrative
systems approaches to address problems, efforts are ongoing to leverage the new
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science that is evolving in systems pharmacology. This is focused on the prediction
of adverse drug events using the tools of cheminformatics, bioinformatics, and
systems biology. Systems pharmacology will need to be put into the larger trans-
lational science context to reach full potential in regulatory decision-making.

Keywords Physiological based pharmacokinetic (PBPK) models �
Cheminformatics � Bioinformatics � Drug-drug interactions (DDI) � Gene-drug
interactions (GDI) � Ontology � Cardiotoxicity � Hepatotoxicity � Pre-competitive
data

2.1 Introduction

In its recent efforts to foster efficient and informative drug development, the FDA
has prioritized the promotion of biomedical innovation, early communication with
drug developers, and administrative and scientific flexibility.1 The FDA approved
27 new molecular entities in 2013. Approvals included groundbreaking treatments
for a variety of unmet medical needs. Additionally, many of these therapies were
developed, evaluated by FDA, and/or approved via expedited mechanisms
(Buckman et al. 2007; Woodcock and Woosley 2008; Barratt et al. 2012).2

The science of quantitative clinical pharmacology continues to advance at a
rapid pace such that regulators must constantly evaluate the most appropriate
applications of modeling, simulation, and other innovations in the public health
context.3 FDA continues to target improvements in regulatory science, including
the development of scientific tools that can bridge the gap between cutting-edge
discoveries and real-world diagnostics and therapeutics. FDA has identified inno-
vation in clinical evaluations (e.g., through modeling and simulation) as a major
scientific priority area. The FDA Office of Clinical Pharmacology (OCP) has used
modeling and simulation strategies to address a variety of drug development,
regulatory, and therapeutic questions over the past decade (Huang et al. 2013a;
Rowland et al. 2011; Lalonde et al. 2007).

In this chapter, we discuss recent efforts by the FDA’s OCP in the development
and application of regulatory science focusing on systems pharmacology. Detailed
descriptions and case studies discussing the impact of pharmacometric analyses on
the premarket approval and labeling of new drugs and the application of accu-
mulated regulatory experience to the review of investigational new drugs (INDs)

1FDA innovative drug approvals http://www.fda.gov/AboutFDA/ReportsManualsForms/Reports/
ucm276385.htm.
2FDA Safety and Innovation Act (FDASIA) http://www.fda.gov/RegulatoryInformation/Legis
lation/FederalFoodDrugandCosmeticActFDCAct/SignificantAmendmentstotheFDCAct/FDASIA/
ucm20027187.htm.
3Advancing regulatory science for public health—a framework for FDA’s regulatory science
initiative, October 2010 http://www.fda.gov/downloads/ScienceResearch/SpecialTopics/
RegulatoryScience/UCM228444.pdf.
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have been described previously (Huang et al. 2013b). This chapter focuses on the
use of systems pharmacology approaches in drug evaluation and other research
initiatives.

2.2 Physiologically-Based Pharmacokinetic (PBPK)
Modeling

Ethical and practical issues may limit the numbers of studies one can conduct to test
all clinically relevant scenarios, which has resulted in the need for innovation in
drug development and evaluation to address these knowledge gaps and construct
recommendations for safe and effective drug use. One such area of active devel-
opment is physiologically-based pharmacokinetic (PBPK) modeling. PBPK mod-
els, which utilize system- and drug-specific information, are being increasingly used
during drug discovery and development and informing regulatory review including
drug labeling (Table 2.1) (Peck and Temple 1993; Zhao et al. 2011; Wagner et al.
2015; Shepherd et al. 2015; Jones et al. 2015).4 In 2013–2014, the yearly number of
submissions either requesting scientific advice or as part of approval filings using a
PBPK approach was approximately 50. This is a reflection of significant advances
in utilization of in vitro data, greater understanding of human physiology, and
advancement in database and software development. Experience to date suggests
that PBPK may be useful in:

1. Planning and assessment of conventional and population PK trial designs
2. Predicting the pharmacokinetics as a result of intrinsic/extrinsic factors and

assessing the impact of sources of variability for untested clinical scenarios
3. Assessment or confirmation of dosing recommendations in specific populations.

2.2.1 Drug-Drug and Gene-Drug Interactions

Drugs that are susceptible to pharmacokinetic drug-drug interactions (DDIs) are
often likewise susceptible to high inter-individual variability due to genetic dif-
ferences in the population such as in drug metabolizing enzyme genes (Conrado
et al. 2013). Arguably, DDIs and gene-drug interactions (GDIs) are two of the
major sources of variability in drug disposition, and may often coexist in a given
patient. The evaluation of an investigational drug’s potential for CYP-mediated

4Federal Register: FDA Public Workshop “Application of Physiologically—Based
Pharmacokinetic Modeling to Support Dose Selection”. https://www.federalregister.gov/articles/
2014/02/11/2014-02883/application-of-physiologically-based-pharmacokinetic-modeling-to-
support-dose-selection-notice-of. 2014.
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Table 2.1 Application of physiologically based pharmacokinetic models

Scenario Application FDA perspective Industry perspective

Drug-drug
interactions

Drug as enzyme
substrate

• Substrate/inhibitor
models verified with
key clinical data may
be used to simulate
untested scenarios and
support labeling
(especially for CYP3A
and CYP2D6
substrates)

• Predictive performance
for predicting the effect
of enzyme inducer on
investigational drug
has not been
established

• Challenges in
predicting non-CYP
pathways; expression
levels and scaling
factors unclear

Drug as enzyme
perpetrator

• Use to determine the
lack of enzyme
inhibition

• Additional evidence
needed to demonstrate
predictive performance
for positive interactions
by comparing observed
interaction magnitude
and prospectively
simulated magnitude
from multiple
examples

• Challenges in
predicting combined
time-dependent
inhibition and
induction

• Challenges in
predicting intestinal
CYP metabolism

Transporter-mediated
interactions

• In vitro-in vivo
extrapolation not
mature due to
inadequate body of
information

• Complicated by
transporter-enzyme
interplay

• Predictive performance
yet to be adequately
demonstrated

• Challenges in
predicting intracellular
concentrations

• Scaling factors poorly
understood

Specific
patient
populations

Hepatic and renal
impairment

• Predictive performance
yet to be adequately
demonstrated,
particularly in severe
impairment subjects

• System component(s)
needs additional
research

(continued)
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DDIs in various clinical scenarios is an area in which we currently have the most
experience. Our experience with transporter-mediated DDIs is modest, primarily
due to uncertainty in system parameters pertinent to our understanding of trans-
porters. Factors influencing the in vitro-in vivo extrapolation of transporter
experimental data, such as the expression level of transporters in different tissues,
are being studied (Giacomini and Huang 2013). To the extent that the functional
consequences of genetic polymorphisms in drug-metabolizing enzymes and their
frequencies across various ethnic groups are well documented, this information has
been used to evaluate their impact on drug exposure through the use of simulations
that allow stochastic modeling of virtual populations (Huang and Woodcock 2010).

In some situations, a multi-step approach may be appropriate when planning to
use PBPK to determine the likely effects of DDIs and/or GDIs on drug pharma-
cokinetics and subsequent need for dedicated studies. For example, such an
approach has been described for four drugs that are eliminated by both CYP3A and
CYP2D6 (Vieira 2014). Specifically, a PBPK model can be developed based on
in vitro metabolism and initial human pharmacokinetic data (Wagner et al. 2014;
Rostami- Hodjegan 2012). The approach starts from using basic models, moving to
static mechanistic models, followed by dynamic mechanistic models. Simulation
exercises can then be performed and refined with additional data as needed.
Labeling, management strategies, and need for additional studies could then be
driven by the magnitude and clinical relevance of the simulated results,

Table 2.1 (continued)

Scenario Application FDA perspective Industry perspective

Pediatrics • Allometry is
reasonable for PK
down to age 2 years
old

• Less than 2 years old,
ontogeny and
maturation need to be
considered

Additional
specific
populations
and
situations

Pregnancy, ethnicity,
geriatrics, obesity,
disease states, food,
formulation, and pH
effects, and tissue
concentration

• Limited experience to
draw conclusions

• For drug absorption,
there is high
confidence in
predicting the effects
for BCSa Class I drugs;
for BCS Class II drugs,
additional work in
scaling of solubility,
dissolution and
precipitation data is
needed (Roles of BCS
Classes III and IV were
not discussed)

contextualized within the robustness of the model to changing assumptions. These
exercises can be superimposed on key drug development milestones and regulator
interfaces ranging from the end of phase 1 to the end of phase 2 junctures.
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2.2.2 Specific Populations

PBPK modeling can be an attractive complement to the conduct and interpretation
of studies in patients with organ impairment (e.g., hepatic or renal), which are
logistically and clinically challenging populations to study. There is an
under-developed body of information on the impact of organ impairment on
important model parameters. We have notably found that the predictive perfor-
mance of PBPK models of hepatic impairment has not been sufficiently developed.

PBPK modeling may also have utility in predicting pharmacokinetic differences
in pediatric patients relative to adults. PBPK may be particularly useful in pediatric
populations for which allometric scaling or other standard modeling methods are
not sufficiently informative. We have found that standard modeling approaches
(e.g., allometry) generally work well in patients older than 2 years of age, and that
PBPK may have greater utility in younger patients when key differences in mat-
uration of multiple physiological processes need to be accounted.

2.3 Mechanism-Based Drug Safety Evaluation Using
Systems Pharmacology

As pharmacology and clinical pharmacology move forward from reductionist
approaches toward integrative systems approaches to address problems, efforts are
ongoing to leverage the new science that is evolving in systems pharmacology.5

This is focused on the prediction of adverse drug events using the tools of chem-
informatics, bioinformatics, and systems biology (Abernethy et al. 2011; Bai and
Abernethy 2013). To move regulatory science forward in this area, the approach
and the tools that still require development have been defined.6

2.3.1 Ontology of Adverse Events

The initial activities are both within the FDA and in collaboration with partners in
the pharmaceutical industry and academia. The framework for a predictive drug
safety systems model is being structured as a series of ontologies at different levels
of biological organization (Zhichkin et al. 2012). These were developed to organize
the massive amount of pertinent information that will populate this framework. This

5www.nigms.nih.gov/nr/rdonlyres/…/systemspharmawpsorger2011.pdf.
6Quantitative and systems pharmacology at the post-genome era; new approaches to discovering
drugs and understanding therapeutic mechanisms—an NIH white paper by the QSP workshop
group. October 2011. http://isp.hms.harvard.edu/wordpress/wp-content/uploads/2011/10/NIH-
Systems-Pharma-Whitepaper-Sorger-et-al-2011.pdf.
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includes an “ontology of adverse events” that is building on the ontology of adverse
events developed for characterization of vaccine related adverse events (Sarntivijai
et al. 2012). All of these ontologies are developed in the format consistent with
recommendations from the National Centers for Biomedical Ontology to make use
of standardized elements in existing ontologies at various levels of biological
organization (e.g., gene ontology, cell line ontology, systematized nomenclature of
medicine clinical terms).7 As this evolves, it will constitute the systems pharma-
cology network that defines a drug-mediated adverse event from observed changes
in gene expression up through organelle function, cellular expression, and organ
level toxicity that ultimately maps to the MedDRA terms.

2.3.2 Databases-Leveraging “Precompetitive” Data

An important element of the program is the collection and organization of drug
toxicity data. Published data are relatively easy to obtain and organize, and a
number of public and proprietary efforts are creating such databases. These are
useful for different forms of data-mining and establishing associations between drug
toxicities, the data supporting the mechanism of such toxicity, and in some
instances the prediction of toxicity from similar chemical structures (Lounkine et al.
2012). In other instances, based on the biological pathways that are involved, the
prediction of clinical toxicities for drugs that have similar targets has been used.
More challenging to obtain are the data contained in drug development programs,
either those that were successful, or equally important, those that were not suc-
cessful due to drug toxicity or for other reasons. An effort is underway to encourage
pharmaceutical companies to define what of these data can be viewed as
“pre-competitive” and can be shared to build more complete drug toxicity databases
that are publicly available. All of these data will be placed in a common platform
that allows easy integration across different data formats.

2.3.3 Initial Test Cases: Cardiotoxicity and Hepatotoxicity

The extent of the systems network needed to effectively predict particular drug
toxicities is likely to be variable depending on the target(s), both desired and not
desired, for the drug or series of related drugs to be evaluated. An initial “use” case
is being developed to study the non-QT cardiotoxicity of tyrosine kinase inhibitor
drugs. The clinical reports of depressed left ventricular cardiac function with
exposure to select tyrosine kinase inhibitors have certainly raised a potential safety
signal (Perakslis et al. 2010). However, the extent or reversibility of this

7http://bioportal.bioontology.org.
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cardiotoxicity is not clear, and it is also unclear if this is a class effect or only
tyrosine kinase inhibitors that target specific kinases are implicated.

A systems network for the prediction of drug-induced hepatotoxicity is being
developed at The Hamner Institute in collaboration with a number of pharmaceu-
tical companies and with the FDA interacting and contributing when appropriate.
This is a very highly specified model that utilizes a systems network. The utility of
this approach, from in vitro-in vivo extrapolation and across species hepatotoxic
effects for methapyrilene and acetaminophen, was demonstrated (Athey et al. 2012;
Howell et al. 2012). As experience accumulates, the comparative utility of these
approaches, or a synthesis of them, will become more evident. At this time, the
extent of the overall system and how well characterized the relations between nodes
and edges of the system are necessary for a particular predictive drug toxicity
problem requires further exploration and testing.

Applications of this program to regulatory decision making has, to date, been
focused on the use of data-mining to establish relationships between common
biological pathways across drugs and targets and expected or observed clinical
safety signals. In addition, the tools of cheminformatics have been incorporated to
predict toxicities based on molecular structural elements of the drug or compound
class in association with the biological pathways affected. This latter activity is a
further evolution of the quantitative structure activity relationship (QSAR) effort
that has been ongoing at the FDA for some years (Kligfield et al. 2010; Kruhlak
et al. 2012). The outcomes in some cases have led to the incorporation of added
safety information in labeling, providing a basis to not include certain risks in other
cases, and signal strengthening and (in some cases) signal weakening based on
pharmacological mechanistic rationale for potential safety signals noted in post
market adverse event monitoring.

2.4 Conclusion and Future Directions

The FDA has been proactive in the development of regulatory science in order to
address an array of public health challenges. Modeling and simulation have been
important scientific investment areas for the FDAOCP andwill continue to be amajor
area of growth. Systems pharmacology will need to be put into the larger translational
science context to reach full potential. The use of systems pharmacology in regulatory
decision making has been limited and has largely been in the area of PBPK and one
application of a calcium homeostasis model (Huang et al. 2013b) (http://www.fda.
gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/Endocri
nologicandMetabolicDrugsAdvisory-Committee/UCM413617.pdf). Key issues that
will need to be addressed in order to see enhanced uptake of systems pharmacology
approaches in drug regulation include (Force and Kolaja 2011; Ghosh et al. 2011):

• Better understanding of the mechanisms of drug action, including off target
effects and maximal elucidation of the disposition pathways of drug molecules
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• “Vertical integration”: synergistic assimilation of the bottom up (cellular level)
and the top-down (organism level) models in order to scale from molecular
interactions to organismal physiology

• Targeted training and education of regulatory and non-regulatory scientists
• Sharing of pre-competitive data (preclinical and clinical datasets); efficient use

of the private-public partnership models to foster academia-industry-
government interactions

• Development of best practices in the development of models fit for regulatory
use

• Development of mechanisms that allow for timely evaluation (and
re-evaluation) of models in view of rapidly evolving methodologies and science

Despite these challenges, improved understanding of molecular mechanisms is
enabling the FDA to employ modeling and simulation in evaluation of “subset”
effects (based on subtype of diseases, age, sex, race, genetics, organ dysfunctions,
concomitant medications, etc.). For example, published FDA guidance documents
related to drug interactions and early phase pharmacogenomic evaluation have
included recommendations for the use of PBPK where appropriate. Best practices
are needed to appropriately utilize PBPK modeling to forecast altered pharma-
cokinetics in situations that have not been clinically evaluated (e.g., complex drug
interactions and multiple extant co-morbidities). Whereas the FDA review experi-
ence is steadily increasing and the challenges in using PBPK remain great, it is
expected that applications of PBPK will continue to show utility during drug
development and regulatory review (Zhao et al. 2012).

There are several FDA and ICH guidelines that discuss the relevance of mod-
eling in several aspects of drug development.8,9,10,11,12 Meaningful, pragmatic
advice to drug developers will need to be science- and experience-based. As such,
the knowledge gained from predict-learn-confirm exercises will contribute to reg-
ulatory decision-making, and collaboration among stakeholders—industry, global
regulatory agencies, academia, and others- will be important (Woosley 2012).

8FDA CDER guidance for industry, population pharmacokinetics. http://www.fda.gov/Drugs/
GuidanceComplianceRegulatoryInformation/Guidances/ucm064982.htm.
9CDER Guidance for industry. Drug interaction studies—study design, data analysis, implications
for dosing, and labeling recommendations. http://www.fda.gov/Drugs/GuidanceCompliance
RegulatoryInformation/Guidances/ucm064982.htm.
10CDER Guidance for industry. Clinical pharmacogenomics: premarket evaluation in early-phase
clinical studies and recommendations for labeling. http://www.fda.gov/Drugs/Guidance
ComplianceRegulatoryInformation/Guidances/ucm064982.htm.
11FDA CDER clinical pharmacology guidance page. http://www.fda.gov/Drugs/Guidance
ComplianceRegulatoryInformation/Guidances/ucm064982.htm.
12FDA CDER guidance page: International conference on Harmonisation-Efficacy. http://www.
fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm065004.htm.
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Chapter 3
Quantitative Systems Pharmacology:
Applications and Adoption in Drug
Development

Saroja Ramanujan, Kapil Gadkar and Ananth Kadambi

Abstract Biopharmaceutical companies have increasingly been exploring
Quantitative Systems Pharmacology (QSP) as a potential avenue to address current
challenges in drug development. The ability to integrate diverse data into a unified
framework provides a promising approach for a systematic, quantitative evaluation
and prediction of the complex interaction between potential therapeutics and bio-
logical pathways of disease, with application across the research and development
pipeline. In this chapter, we discuss the potential for QSP to help address pressing
needs in drug development, and present numerous examples of past applications to
problems ranging from target identification to in vivo experimental design through
clinical trial simulation, patient stratification, and regulatory evaluation. These
examples also illustrate the diversity of QSP modeling approaches. Moving for-
ward, the adoption and success of QSP will require a clearly articulated record of
impact on drug development decisions, alongside the development of approaches to
address current challenges in the implementation and technical evaluation of such
efforts.
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3.1 Introduction

3.1.1 Industry Status and Needs

Pharmaceutical drug development is a statistically low success, high cost operation.
The time required to bring a single new molecular entity (NME) from bench to
bedside is 10–15 years, and the eventual approval regulatory rate for new mole-
cules entering Phase I of clinical development is as low as 5 % (Arrowsmith 2012),
a result of the very high attrition rate. Furthermore, the total research and devel-
opment (R&D) cost to a company for a single drug has been estimated to be greater
than $1B USD (Kocher and Roberts 2014).

These high costs and long developmental cycles persist despite substantial
merger and acquisition-based triaging of corporate pipeline portfolios and are more
troublesome in light of a general trend towards an increasing size of development
pipelines within the industry. A closer look at the attrition data suggests that
approximately 75 % of failures can be attributed to either lack of efficacy or to
drug-induced safety issues. These data also suggest that the proportion of efficacy
and safety-related failures in pivotal trials have been increasing since the start of the
new millennium (Arrowsmith and Miller 2013).

The low approval rates for new drugs can be partly explained by several com-
mon challenges that impair the ability to make the most informed decisions related
to advancement or termination of drug programs, especially early in development.
First, drug development suffers from a “data overload”. There is, in general, a lack
of quantitative integration of diverse data drawn from disparate sources (e.g.,
genomic and proteomic studies, in vitro assays, preclinical animal models, and early
or prior human trials). In many cases, confounding or conflicting evidence in the
data are difficult to reconcile, leading to suboptimal selection of follow-up exper-
iments and clinical trial design, difficulty evaluating and testing hypotheses, and
challenges to communication of decision rationale. Second, data suggest that the
greatest attrition (18 % success rate in 2008–2009) occurs in Phase II proof of
concept trials (Arrowsmith 2011), with roughly 50 % of failures due to lack of
efficacy and another 20 % due to safety issues. Furthermore, an analysis of
post-Phase II go/no-go decisions at Pfizer Inc. from 2005 to 2009 revealed that for
nearly half the trials that failed due to lack of efficacy, mechanisms of action
(MoA) were not investigated in the trial thoroughly enough to enable a confident
decision to progress to Phase III (Morgan et al. 2012). A key stumbling block in
evaluating MoA is translation of evidence from preclinical and animal models into
the human setting. Although most non-clinical studies are conducted in mammalian
species, physiological and pathophysiological differences between these species
and humans are inadequately addressed by historically-utilized methods. Third, in
many therapeutic areas (TAs), the development of new drugs is impeded by a
inadequate understanding of disease pathophysiology and hence, of novel target
validity, in part due to the lack of appropriate biomarkers.
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Pharmaceutical companies are also facing challenges with the development of
companion diagnostics. Such tools facilitate the individualization, or personaliza-
tion, of therapies by identifying sub-populations of patients who are most likely to
respond or who may be at risk for an adverse event following treatment.
Companion diagnostics also provide value from a regulatory perspective, as patient
stratification may improve the precision of the indications on a drug label and may
make new drugs available to the population most likely to benefit. Regulatory
agencies are already encouraging the joint development of companion diagnostics,
alongside new drugs, to facilitate their safe and effective use (CDRH guidance for
in vitro diagnostics, 2014: http://www.fda.gov/downloads/MedicalDevices/Device
RegulationandGuidance/GuidanceDocuments/UCM262327.pdf). However, devel-
opment of companion diagnostics significantly complicates and prolongs drug
development due to the need for clinical exploration and validation of the diag-
nostic markers. Earlier identification or prioritization of markers could help reduce
the extent of exploratory efforts in the clinic and increase the likelihood of drug
development success by guiding more efficient companion diagnostic development.

The above discussion highlights a critical need for methodologies that can be
applied industry-wide to improve decision-making during pharmaceutical drug and
companion diagnostic development (Box 1). Application of such methodologies
ultimately would be expected to reduce the time and cost hurdles that typically
impede pharmaceutical R&D.

Box 1. Examples of Areas Where Methodologies to Improve Industry
Decisions may Reduce Time and Costs Associated with Drug
Development

• Improved understanding of target and drug mechanisms and biological
context based on all available data

• Design of optimal experiments to support mechanistic understanding,
target validation, compound selection, and translational confidence

• Support for go/no-go decision making and risk evaluation
• Clinical trial design and optimization, including patient selection,

dose/regimen, biomarker selection and sampling, and trial duration

3.1.2 Quantitative Systems Pharmacology in the Drug
Development Context

Modeling and simulation (M&S)-based approaches have been used extensively by
the pharmaceutical industry since the 1990s to inform both drug development
decisions and discussions with regulatory agencies. These approaches have
informed dose and regimen selection for clinical trials and aided interpretation of
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clinical trial data (van der Graaf and Benson 2011). Examples of cornerstones of
pharmaceutical modeling are pharmacometric approaches including preclinical and
translational pharmacokinetic-pharmacodynamic (PK/PD) models, population-
based statistical PK/PD models, and data-driven statistical disease progression
and outcomes models. Whereas these methods have proven invaluable, their utility
in translating biological effects between species, a critical element of decision
making during drug development, is limited (van der Graaf and Benson 2011). In
addition, it is difficult to use these methods to rigorously assess MoA of new drugs,
an important consideration as discussed above.

To increase drug development success rates, pharmaceutical researchers are
increasingly exploring modeling approaches broadly referred to as Quantitative
Systems Pharmacology (QSP) that include greater biological and physiological
detail (Leil and Bertz 2014). One definition describes QSP as the “quantitative
analysis of the dynamic interactions between drug(s) and a biological system that
aims to understand the behavior of the system as a whole, as opposed to the
behavior of its individual constituents” (van der Graaf and Benson 2011). The
representation of interactions between a drug and the underlying biological pro-
cesses or mechanisms affected by the drug, including commonalities and differences
between species, and enables quantitative biology-based translation and clinical
development, including rigorous evaluation of drug MoA. QSP approaches typi-
cally share several attributes which, taken together, help distinguish them from
other modeling approaches (Box 2).

Box 2. Common Distinguishing Features of QSP Approaches

• A coherent mathematical representation of the key biological connections
underlying the system of interest, consistent with the current state of
knowledge

• A general prioritization of necessary biological detail over parsimony,1

potentially including detail at the genetic, protein, cellular, tissue, organ,
and whole-body-levels2

• Consideration of complex systems dynamics such as biological feedbacks,
cross-talk, and redundancies

• Integration of diverse data and biological knowledge or hypotheses
• A representation of the pharmacology of therapeutic interventions3

• The ability to perform quantitative hypothesis exploration and testing via
biology-based simulation in virtual humans, animals, and cells

Reproducedwith permission from S. Ramanujan, K. Gadkar, &A. Kadambi,© 2016
1van der Graaf, personal communication
2Kohl et al. (2010) and Berg et al. (2010)
3Cohen (2008)
As the aim of QSP is to quantitatively represent the often complex behaviors of

biological systems that cannot be fully characterized in any one data set, the
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approach relies heavily on consideration of diverse biological data and under-
standing. These disparate data are integrated into a coherent mathematical frame-
work, enabling quantitative predictions of the impact of drug-induced target
modulation, often prior to the availability of clinical data on the target or drug of
interest. The schematic in Fig. 3.1 highlights some of the key information types
frequently integrated in QSP modeling efforts.

Several types of models are commonly classified as QSP. These most commonly
include mechanistic models that represent complex biological pathways in healthy
and disease physiology, and downstream PD effects (Peterson and Riggs 2010;
Demin et al. 2013; Chen et al. 2009). Other pharmacometric or systems biology
related M&S approaches that include quantitative biological or biophysical detail
have also been described as QSP, including physiologically-based pharmacokinetic
(PBPK) models that focus on compound PK and distribution (Rowland et al. 2011;
Rostami-Hodjegan 2012), statistical systems models used to describe population

Fig. 3.1 Schematic depicting data sources frequently integrated during the development of a QSP
model, in this case a PhysioPD™ Research Platform for type 2 diabetes (Reprinted with
permission of Rosa & Co. LLC, © 2016). Information or data from four general classes are
typically used in this process (left): (1) physical laws e.g., conservation of mass or reaction kinetic
laws, (2) physiology e.g., organ function, (3) mechanisms e.g., cellular and molecular pathways,
(4) pharmacology e.g., drug binding constants and half-lives. These information sources include
in vitro, in vivo, or clinical patient data. Information from these disparate sources are incorporated
in the construction of a qualitative mechanistic map (center, Rosa & Co. PhysioMap®) that
describes the biological mechanisms underlying healthy and diseased physiology and subsequent
implementation as a quantitative model using mathematical equations. Solution of these equations
under different conditions (e.g., meal administration) yields predictions for changes in key system
outputs over time (right), allowing research to be conducted for different scenarios of interest (e.g.,
drug treatment regimens). Alternate parameterizations of these models, representing virtual
pathways, cells, or subjects can be used to explore the impact of alternate underlying biological
hypotheses or inter-subject variability on the system behaviors
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data on biological pathways or disease processes (van Herick et al. 2012), and some
quantitative systems-biology approaches reliant on genomic or proteomic data
(Hansen and Iyengar 2013; Zhao et al. 2013; Xing et al. 2011). Thus, the boundary
between more traditional pharmacometric approaches and QSP is not well-defined,
and these methods may be better viewed as coexisting along a continuum from
mechanistic PK/PD to PBPK and “enhanced” mechanistic PK/PD to QSP to sys-
tems biology (Iyengar et al. 2012). The different strengths and focus of these varied
approaches could be applied synergistically within the context of drug development
to provide biology-driven insights that inform necessary decisions. Most obviously,

Fig. 3.2 Illustrations of some common types of QSP models. a Biological PD pathway models are
focused on a specific biological interactions and pathways relevant to the targets, compounds, and PD
biomarkers under consideration (image reproduced from Schoeberl et al. (2009) with permission of
Science Signaling, © 2009). b Disease platforms, such as the Rheumatoid Arthritis PhysioLab®

platform (model diagram image reproduced with permission of Entelos Inc.; inset image reproduced
from (Schmidt et al. 2013) in accordance with terms of Creative Commons, http://creativecommons.
org/licenses/by/2.0/) are broader representations of physiological and pathophysiological states
which may include numerous potential targets, compounds, or patient types. cToxicology and safety
model platforms, such as the DILIsym® model of drug induced liver toxicity support in silico
evaluation of common areas of drug toxicity (image reproduced from Bhattacharya et al. (2012) and
Kuepfer (2010), with permission in accordance with terms of Creative Commons, http://
creativecommons.org/licenses/by/3.0/); d statistical systems models such as the Archimedes
model, of which a subset relevant to coronary artery disease is shown here [(Eddy et al. 2009), image
reproduced with permission fromDiabetes Care,© 2009] are statistically-based systems models for
prediction of population biomarker and outcomes predictions
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traditional pharmacometric models may provide critical inputs to QSP models, and
QSP model-derived predictions of biomarker behavior can serve as inputs into
statistical disease outcome models.

This chapter presents potential roles of QSP throughout the drug development
process, with selected illustrative examples from the biopharmaceutical industry
that illustrate synergies with existing approaches. Examples of QSP efforts dis-
cussed in this chapter illustrate not only a range of applications and TAs, but also a
variety of model types (Fig. 3.2). These examples also use a range of mathematical
techniques, including ordinary differential equations (ODEs), logic-based approa-
ches, statistical regression models, and finite element methods (FEM).

In this chapter, we focus on biology-based QSP models that include a repre-
sentation of key pathways and PD biomarkers downstream of one or more com-
pounds or targets, and do not present efforts centered on PK and drug distribution or
systems biology. Furthermore, we have emphasized published work to allow
follow-up on technical details based on the reader’s interests. Finally, we also
discuss challenges and needs for advancement of QSP in industry, including the
integration of QSP approaches into the existing pharmaceutical development pro-
cess and possible means of increasing industry and regulatory adoption (van der
Graaf and Benson 2011).

3.2 Application of QSP Across the R&D Pipeline

Frequently, the preclinical space from research to human translation, and especially
target evaluation, has been highlighted as a “sweet spot” for the application of QSP
in drug discovery and development (Agoram and Demin 2011; Vicini and van der
Graaf 2013; van der Graaf and Benson 2011). This idea is consistent with the
previously described need to better understand and test drug MoA in early stages.
The greater focus on biology in QSP relative to traditional pharmacometric
approaches enables its use early in the pipeline where decision-making is heavily
predicated on an understanding of how targets and drugs relate to the broader
biological or disease system of interest. Further, as discussed previously, there is a
pressing practical need for pharmaceutical companies to evaluate MoA early and
thoroughly as part of a “fail early” paradigm to reduce later, expensive clinical
failures. Finally, initiation of QSP efforts early in drug development can allow
companies more time to develop capabilities to address multiple targets or com-
pounds in a given TA at different development stages, incorporating new data as
they become available.

The relevance of QSP to early stages of pharmaceutical development by no
means limits its application at later stages. QSP can provide a means of integrating
prior or emerging clinical data with mechanistic and preclinical information to
address relevant clinical development considerations, such as patient stratification,
biomarker interpretation, combination therapy, and competitive evaluation and
differentiation. It can also synergize with pharmacometrics in the optimization of
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dose and regimen. Figure 3.3 highlights potential applications of QSP across the
pharmaceutical development pipeline.

Here we describe how industry can and has employed QSP approaches in dif-
ferent applications, using a few illustrative examples for each stage in the pipeline
(Table 3.1).

3.2.1 Research and Preclinical Applications

Early drug development is dependent on in vitro and in vivo studies to help
identify, prioritize, and help validate potential drug targets. However, although
valuable, these systems are imperfect models of human physiology and patho-
physiology, and thus additional approaches that de-risk decision making at this
stage are of great value. With its emphasis on quantitative integration of diverse
data, including preclinical and clinical information, QSP offers one such approach,
and there are multiple examples of its application in target identification, evaluation,
characterization, and prioritization.

One such example is a detailed model of the kinetics of EGF receptor family
mediated activation of the PI3K/Akt pathway in response to representative ligands
(Schoeberl et al. 2009). Developed using rich in vitro signaling dynamic data,
model analysis highlighted a central role of the HER3 receptor in combinatorial
ligand-induced pathway activation. To validate this finding and explore the thera-
peutic potential of HER3 modulation, Merrimack Pharmaceuticals developed
MM-121, a fully human anti-HER3 monoclonal antibody and verified their findings
with in vitro cell culture, spheroid growth, and in vivo tumor growth studies. The
molecule is currently in Phase II trials in breast, ovarian, and lung cancer, and
clinical results to date indicate that inhibition of HER3 by MM-121 improves
progression-free survival (PFS) in patients with high levels of the HER3 ligand

Fig. 3.3 Potential applications of QSP throughout the drug development pipeline
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heregulin (MacBeath and Adiwijaya 2014). This effort shows the impact of
QSP-supported target identification and subsequent in vivo and emerging clinical
validation of the target.

Practical pharmacological considerations, such as druggability and PK feasibility,
are also critical to successful modulation of a proposed target. These considerations
are harder to address using in vitro studies or in the absence of tool compounds.
Integration of prototypical PK models in QSP models of pathway biology may
provide one avenue to help handle these challenges. For example, sensitivity
analysis in a systems model of the nerve growth factor (NGF) pathway identified

Table 3.1 Summary of examples presented

Pipeline stage in
example

Primary application in
example

Biological or
therapeutic
area focus

Reference

Research and
preclinical

Target identification Oncology Schoeberl et al. (2009)

Target identification Pain Benson et al. (2013)

Combination Rx and
in vivo validation

Oncology Kirouac et al. (2013)

Regimen optimization and
combination efficacy

Oncology Orrell and Fernandez (2010)

Translation Immunogenicity prediction Immunology Chen et al. (2014a, b)

Combination Rx
evaluation

CNS Geerts et al. (2013a)

Clinical Combination Rx and
subpopulation responses

Cardiovascular Gadkar et al. (2014)

Exploratory endpoint
biomarker

Osteoporosis Visser et al. (2014)

Efficacy and safety Cardiovascular Dziuba et al. (2014 and
Peskin et al. (2011)

Safety Pre-clinical screening Cardiac
arrhythmia

Davies et al. (2012)

Clinical toxicity prediction Liver toxicity Howell et al. (2014),
Shoda et al. (2014) and
Leil and Bertz (2014)

Back-translation Mechanistic understanding
and target/compound
evaluation

Cardiovascular Gadkar et al. (2016b) and
Lu et al. (2014)

Cross-pipeline
Disease
Platforms

Target prioritization;
clinical biomarker
identification; mechanistic
hypothesis generation

Rheumatoid
arthritis

Meeuwisse et al. (2011),
Rullmann et al. (2005),
Schmidt et al. (2013) and
Kadambi et al. (2011)

Efficacy versus safety dose
and regimen evaluation

Bone
remodeling

Peterson and Riggs (2010,
2012), Riggs et al. (2012),
Peterson and Riggs (2015),
FDA briefing documenta

ahttp://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/
EndocrinologicandMetabolicDrugsAdvisoryCommittee/UCM413617.pdf
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tropomyosin receptor kinase A (TrkA), along with NGF itself, as druggable targets
predicted to strongly regulate downstream PD (Benson et al. 2013). To address
pharmacological considerations, administration of a virtual anti-NGF antibody and
of a hypothetical small molecule (i.e., a TrkA inhibitor) were simulated using rep-
resentative human PK and target binding/inhibition parameters to help evaluate the
relationships between drug properties, dose, and the extent of PD inhibition, and to
confirm pharmacological feasibility of the target.

The next step following identification of a viable therapeutic target is to develop
compounds and test them in vitro and in vivo. The NGF target identification
example illustrates how QSP can be used to understand the relationships among
compound characteristics (binding and inhibitory parameters), dose, and modula-
tion of downstream biology. QSP can also be valuable in guiding and interpreting
in vitro studies and leveraging such results to plan in vivo experiments. Preclinical
development faces continuous pressure to prioritize and reduce the number of
experiments, especially in vivo studies, for both financial and ethical reasons.
Achieving these goals can be especially challenging when exploring the combi-
natorics of compounds, doses, and regimens. QSP approaches have been used in
this area to prioritize regimens for in vivo testing of monotherapy and combination
therapies.

Kirouac et al. (2013) used QSP modeling to support the preclinical investigation
of a bispecific antibody targeting HER2 and HER3 in cancer. Using in vitro data,
they developed a multi-scale systems model of ErbB signaling through the
MEK/ERK and PI3K/AKT pathways that included immediate signaling, transla-
tional compensatory feedbacks, and downstream effects on tumor cell growth. Of
note, this effort integrated numerous modeling formalisms, including ordinary
differential equations for description of PK and tumor growth dynamics,
steady-state algebraic solutions for rapid signaling, and logic-based formulation of
cell fate decisions. Simulation results suggested that addition of the bispecific to
established drugs targeting the other EGF receptors would improve growth inhi-
bition in HER2+ tumors and would be superior to the combination of prototypical
small molecule AKT and MEK inhibitors. These findings were validated with
additional in vitro and in vivo studies that verified the predicted combination
therapy efficacy, thereby increasing confidence in the molecule and in the combi-
nation strategy.

Another model intended for broader use in preclinical oncology is the Virtual
Tumour Preclinical platform, an in silico representation of a growing tumor that
integrates available PK and cell cycle PD measurements for chemotherapeutic and
targeted cancer treatment agents into a model of cell cycle and xenograft tumor
growth (Chassagnole et al. 2006). The Virtual Tumour is intended for simulation
and optimization of in vivo dosing regimens (e.g., for the aurora kinase inhibitor
SNS-314, Sunesis), and has also predicted the non-intuitive effect of drug
scheduling on growth in combination protocols, such as SNS-314 and docetaxel
combination therapy (Orrell and Fernandez 2010). This model was recently
expanded to support translation into the clinical setting by replacing murine
xenograft-specific parameter values with values describing clinical tumor growth
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rates and human cell cycle differences. Thus, the Virtual Tumour model is being
applied to inform both preclinical and translational evaluation of single-agent and
combination therapy dose and regimen (Visser et al. 2014).

3.2.2 Translational Application

Translation of preclinical to clinical findings is an area of high risk in drug
development due to differences between preclinical models and human disease and
an incomplete understanding of the latter particularly. Translation has proved
especially challenging in certain poorly understood therapeutic areas, including
Central Nervous System (CNS) disorders. However, QSP modeling approaches that
represent conserved and differential biology to explain both preclinical data and any
relevant human data or hypotheses should be well suited to support translation.
Geerts et al. (2013b) have developed a QSP-based approach that integrates pre-
clinical neurophysiological data with clinical and imaging data of the disease
pathology. Their QSP model of the cortical network involved in the maintenance of
cognitive working memory tasks (Geerts et al. 2013a) was validated by its ability to
predict the opposing responses of two antipsychotic GABA modulators. Based on
preclinical data, the model was then used to simulate the effects of a combination
therapy in treatment-resistant schizophrenia with the antipsychotics clozapine
(which binds neurotransmitter and GABA receptors) and risperidone (a dopamine
antagonist with additional antagonist activities). Results indicate that specific
anti-cognitive effects of the combination would outweigh the pro-cognitive effects,
consistent with prior clinical results showing no improvement in symptoms and a
worsening of cognitive outcomes (Honer et al. 2006). These validation results
suggest that QSP approaches could help use preclinical data to predict the clinical
impact of CNS-related therapies based on preclinical understanding.

QSP models of the biological response to drugs might also support translation of
PK itself by modeling biological pathways that influence PK but that cannot be
addressed by traditional allometric scaling, more mechanistic target-mediated drug
distribution (TMDD) approaches, or even PBPK models. One concern that com-
plicates human translation for biologic drugs in particular is difficulty in predicting
drug-elicited clinical immunogenic response. Anti-drug antibodies (ADAs) can
significantly impact the PK of biologics and hamper drug efficacy by interfering
with target binding. Chen et al. (2014a, b) developed a first-generation
mechanism-based immunogenicity model for therapeutic proteins, including
details of antigen presentation, activation, proliferation and differentiation of
immune cells, secretion of ADAs, as well as in vivo disposition of ADAs and
therapeutic proteins. The model was validated with mouse studies, and clinical
predictions for the anti-TNFa molecule adalimumab yielded appropriate trends for
ADA- and time-dependent drug exposure. The model represents a significant first
step in the development of a translational predictive model of immunogenicity, but
first needs rigorous validation and refinement as outlined by the authors.
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3.2.3 Clinical Application

In clinical development, QSP has been used to provide insights to inform a range of
critical decisions, from dosing regimens and biomarker strategies to patient
stratigication QSP can also allow predictions and supporting interim analyse of
clinical endpoints prior to full data integration from long and costly clinical trials. In
this context, QSP methods have offered insight and guidance to complement
information provided by pharmacometric approaches.

As an example, Gadkar et al. (2014) developed a QSP model to support clinical
development of an anti-PCSK9 antibody, to be administered as monotherapy or in
combination with statins, for treatment of hyperlipidemia and cardiovascular
(CV) disease. The mechanism-based model was developed using preclinical and
limited Phase I clinical data. The model included a TMDD model of the anti-PCSK9
PK. This integration of the TMDD model with downstream mechanisms enabled
prediction of the impact of statin-induced feedback on drug PK, and ultimately PD, as
measured by LDL cholesterol lowering. The model showed that while statin back-
ground therapy would influence PK and PD, the differences would be minimal and
not necessitate special consideration. The QSP effort also led to the appropriate
selection between two population PK/PD models that equally well described the
Phase I data but yielded different Phase II predictions; the selected population PK/PD
model was then used moving forward, along with the QSP model itself, to anticipate
results for dose regimens in ongoing Phase II efficacy studies and allow accelerated
preparation for Phase III. The QSP model was also used to predict response to
anti-PCSK9 treatment in familial hypercholesterolemia (FH) patients, for whom
minimal PCSK9-related data were available, and thus informed clinical program
planning. The model was also used to evaluate the predictive value of previously
proposed biomarkers of response to anti-PCSK9. Many of these predictions
(e.g., impact of statin background, familial heterogeneity, and dose/regimen) have
since been confirmed in subsequent clinical trials and publications.

Because evaluation of clinical endpoints often requires long trials, measurements
of exploratory biomarkers that allow earlier or interim evaluation of response are of
great interest. However, linking exploratory biomarkers to functional or clinical
outcomes typically requires rich prior clinical data. QSP models could potentially
inform this connection through representation of biological or biophysical mech-
anisms. In one such case, a finite element method (FEM) based quantitative model
was constructed to use data from clinical 2-dimensional images, obtained with high
resolution peripheral quantitative computed tomography, to recreate the
3-dimensional bone structure related to fracture risk. This approach enabled the use
of model-based analysis to serve as a noninvasive surrogate marker of bone strength
and associated fracture risk (Visser et al. 2014). The model was used to support
differentiation of odacatanib, a selective CatK inhibitor used for the treatment of
postmenopausal osteoporosis, from standard of care, thus providing insight into the
clinical viability of the program. Furthermore, successful validation of the model in
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a non-human primate study led to the inclusion of the imaging-informed
model-based assessment of bone structure as an exploratory endpoint to support
a potential go/no go decision in an interim analysis of a two year Phase III clinical
trial. Thus, in addition to clinical utility, this effort also demonstrates how invest-
ment in QSP during preclinical development can subsequently enable application in
clinical decision-making.

In addition to bridging biomarkers with downstream functions or outcomes, QSP
can also bridge mechanistic and statistical approaches to modeling those outcomes,
using statistical representations of complex networks of the underlying biological
connections. One example is the Archimedes model, a human physiology-based,
statistical disease progression model designed to simulate the effect of established
and/or novel treatments for cardiometabolic diseases. The model is calibrated and
validated against a wide range of existing databases and clinical trials. It also
captures the impact of treatments on clinical outcomes, including endpoints like CV
risk that typically requires 3–5 year trials with large numbers of patients (Peskin
et al. 2011). In one application, Dziuba et al. used the Archimedes model to predict
that the SGLT-2 inhibitor dapagliflozin, when added to SoC medication for type 2
diabetes mellitus (T2DM), would not increase CV risk but actually lead to
improvement in long term risk and microvascular outcomes (Dziuba et al. 2014).
Subsequent trial results and meta-analysis of cardiovascular effects were consistent
with these predictions (Sonesson et al. 2016).

3.3 Understanding and Back-Translation of Clinical
Findings

Given the high cost and high risk in drug development, pharmaceutical researchers
are extremely interested in how to best leverage past clinical experience with drugs
aimed at specific targets, pathways, or diseases relevant to the development of a
new drug. This back-translation often involves dissecting the biological or phar-
macological basis of past success or failure to guide new efforts. For example,
initial pivotal trials of cholesterol ester transfer protein inhibitors (CETPi) aimed at
increasing HDL cholesterol (HDLc) were terminated due to lack of efficacy or
safety, raising concerns about the validity of targets and compounds aimed at
increasing total HDLc. Lu et al. (2014) developed a lipoprotein metabolism and
kinetics model using available clinical and preclinical data to evaluate the impact of
CETPi on reverse cholesterol transport (RCT), a primary mechanism for removing
cholesterol from atherosclerotic vessels. Results from this work suggest that RCT
flux does not improve and may actually decrease with CETP inhibition, contrary to
expectation. This work provided a plausible mechanistic explanation for the failure
of recent CETPi trials and suggested that other compounds with similar effects on
HDL alone may not be viable drugs. The model was later expanded to predict the
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effect of other targets and compounds in clinical development (Gadkar et al.
2016b). RCT improvements were predicted for these other HDL-related com-
pounds, and results were qualitatively validated based on agreement with prior and
subsequent imaging data on atherosclerotic plaque load. QSP results thus provided
a quantitatively and biologically plausible explanation of past trial failures while
predicting a potential therapeutic value of drugs affecting alternate targets on the
same pathway.

3.4 Safety and Toxicity Predictions and Understanding

Safety and toxicity are critical areas of consideration in drug development.
Pharmacometric approaches are frequently used to understand exposure/safety
relationships and to define therapeutic windows. However, QSP based evaluations
can also identify potential translational risks or aid drug screening during preclinical
development. Two areas in which QSP models have been used extensively to
address safety considerations include cardiac electrophysiology related safety and
drug-induced liver injury (DILI), major classes of toxicity that are closely moni-
tored in preclinical and clinical stages as part of standard drug development.

Preclinical modeling and simulation-based prediction of the potential for a
compound to induce altered cardiac action potential (AP) and cardiac arrhythmia
has been the focus of multiple QSP efforts (Mirams et al. 2012). One such effort
adapted previously published work (Benson et al. 2008; Hund and Rudy 2004) to
develop an in silico model to predict the effect of novel compounds on cardiac AP
duration and QT-interval prolongation (Davies et al. 2012). Across 53 compounds,
model predictions based on only in vitro ion channel screens were more than 80 %
accurate at identifying compounds that would change AP duration, with 68 %
accuracy at predicting the direction (prolonging or shortening) of effect. Models
such as these can serve as high-throughput in silico screens to augment existing
screening tools to support compound evaluation and reduce the number of costly
animal experiments.

With respect to DILI, both American and European institutions are actively
developing QSP platforms to enable investigation and prediction of drug-induced
liver toxicity. One example is the DILIsym® modeling platform, developed by the
non-profit Hamner Institutes of Health Sciences. This mechanistic QSP platform
integrates PBPK, metabolism models for a compound of interest, and compound
interactions with hepatocyte biology relevant to modulation of hepatic mass and
function. It is intended to provide information on experimental or clinical design
that could identify a risk of liver toxicity, as well as a mechanistic rationale for the
underlying biochemical events that would cause such toxicity. Shoda et al. have
discussed several applications of the DILIsym model during the drug development
process (Shoda et al. 2014). In one example, the DILIsym model was used to study
hepatocyte loss with entolimod, a toll-like receptor 5 agonist developed as a
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countermeasure against total body irradiation (Howell et al. 2014). The simulations
from DILIsym predicted that despite elevated levels of serum aminotransferases
observed in a safety study of the drug, the hepatocyte loss would not be sufficient to
pose significant health risks in entolimod-treated human subjects; entolimod is still
under development. In another application, research with in the DILIsym platform
was used to propose mechanisms explaining the differential hepatotoxicity of dif-
ferent bile salt export pump (BSEP) inhibitors (Woodhead et al. 2014). Results also
highlighted specific cases where the preclinical safety findings would not be pre-
dicted to translate to clinical concerns. These examples illustrate how a platform
model can be used to predict, translate, and dissect the effects of drugs on liver
toxicities.

3.5 Mechanistic Disease Platforms

The development of disease platforms that capture details of underlying biology
and ideally integrate preclinical and clinical data on different phenotypes, treat-
ments, and clinical measures, cannot be only scientifically challenging but also
more resource-intensive than traditional pharmacometric approaches. However,
there is also a strong rationale to justify investment in a platform with broad
applicability throughout the drug development process and across numerous disease
pathways, targets, drugs, biomarkers, and outcomes. Some of the examples dis-
cussed above featured the use of platforms intended for broad application, such as
the Virtual Tumour, the DILIsym model, and the CNS model of Geerts et al
(2013b). We now present two examples where published literature illustrates how
QSP disease/pathophysiology platforms have seen repeated use with cross-pipeline,
cross-industry, and even regulatory impact.

3.5.1 Rheumatoid Arthritis

The Rheumatoid Arthritis PhysioLab platform (Fig. 3.2b), a large-scale mechanistic
disease platform describing the inflammatory and erosive processes in afflicted joints
in rheumatoid arthritis (RA) patients, has been used to explore a variety of questions
at different stages of drug development. The model includes rich dynamics of
numerous immune and stromal cells in the bone, cartilage, and synovial tissue
compartments and their cross-regulation by soluble and contact mediated signals,
along with resulting inflammatory, cartilage, and bone damage readouts, as well as
numerous therapeutic interventions. In its first published application, the pharma-
ceutical company sponsoring its development (Organon Inc., since acquired by
Merck &Co.), used the platform to rank 31 diverse immunological and inflammatory
molecular targets based on the predicted effects of target modulation on disease

3 Quantitative Systems Pharmacology: Applications and Adoption … 41



severity scores and cartilage degradation (Rullmann et al. 2005). In addition to
providing insights into MoA of the different putative targets, the effort provided a
systematic and quantitative rationale for selecting the most promising targets for
Organon to move forward in the developmental pipeline.

Subsequently, the platform was used to identify potential serological markers of
the severity of progressive joint destruction in RA. Measurement of damage pro-
gression currently requires longitudinal radiographic imaging over multiple years
and meticulous scoring by trained individuals. Serological markers could not only
enable biomarker-based tracking of difficult-to-measure long-term endpoints in
trials and stratification of response based on initial severity of damage progression,
but also improve clinical practice where joint damage is infrequently measured. The
researchers in this case analyzed the simulated cytokine concentrations and joint
damage progression rates across a cohort of numerous RA virtual patients with
different underlying mechanistic parameterizations and a range of disease severities.
CXCL13 was identified as a potential marker of severity of damage progression;
clinical data from a cohort of 155 patients was then analyzed and found to validate
the finding. In subsequent clinical publications, other groups have also reported
CXCL13 as a serum biomarker of destructive severity in RA (e.g. Bugatti et al.
2014; Greisen et al. 2014), further confirming the initial model-based finding.

With respect to diagnostic biomarkers predictive of treatment response, an
expanded version of the model was used with an unspecified pharmaceutical
company to propose patient stratification biomarkers for blockade of a novel target
(Kadambi et al. 2011). Simulated pre-treatment concentrations of 69 soluble pro-
teins were assessed to identify combinations of 4–5 analytes that predicted clinical
response to simulated blockade of a novel target in three virtual patient populations:
disease modifying therapy naïve patients, methotrexate inadequate responders, and
anti-TNF inadequate responders. Recommendations were provided for clinical
exploration of the proposed diagnostic marker panels, although no follow-up has
yet been publicly reported. Notwithstanding, this case illustrates the potential of
QSP to support diagnostic biomarker identification or evaluation.

The platform was also used to explore mechanistic underpinnings of differences
in response to the B-cell depleting agent rituximab (Schmidt et al. 2013). The
authors created virtual patient populations to identify mechanisms associated with
rituximab response. Their results highlighted a potential role of interferon beta
effects on synovial fibroblasts and macrophages, consistent with a clinically
observed relationship between rituximab response and a type I interferon signature
(Raterman et al. 2012). Pharmaceutical companies that have licensed this RA model
platform continue to use it to support their drug development efforts, for example to
explore combination therapy strategies (Thalhauser et al. 2015).

42 S. Ramanujan et al.



3.5.2 Bone Remodeling

QSP approaches have been widely applied in the study of bone structure, strength,
and remodeling. In one notable effort, three published mechanistic models (Raposo
et al. 2002; Lemaire et al. 2004; Bellido et al. 2003) were integrated and modified to
create a comprehensive multi-scale platform of bone remodeling (Peterson and
Riggs 2010) that was subsequently adapted to support development of various
drugs in different therapeutic indications. The integrated model encompassed
mechanistic details of key processes in bone catabolism and metabolism, including
complex interactions of osteoblast and osteoclast cells, cytokines and growth fac-
tors, and parathyroid hormone (PTH) in different tissue compartments, as well as
pathways related to calcium dynamics and its regulation by the kidney. These
features enabled an accurate reproduction of healthy, disease, and therapeutic
conditions, including: RANKL inhibition, administration of PTH, primary and
secondary hyperparathyroidism, and primary hypothyroidism (Peterson and Riggs
2010).

The model was further expanded to include menopause-related estrogen effects
on bone physiology and integrated with a logistic regression-based analysis of the
effect of GnRH agonists on endometrial pain (Peterson and Riggs 2012).
Simulations for GnRH agonists predicted the target range of estradiol biomarker
concentrations to achieve a balance between the desired efficacy and bone loss side
effects, thus guiding dose optimization. The model was also expanded to address
the effects of kidney dysfunction on bone mineral density (BMD) by linking the
bone resorption pathways to BMD changes and simulating effects of hypothetical
treatment strategies for chronic kidney disease-induced bone loss (Peterson and
Riggs 2012).

Finally, the original model was used in the Food and Drug Administration
(FDA) evaluation of the recently granted biological license application
(BLA) submitted by NPS pharmaceuticals for the recombinant PTH drug Natpara for
the treatment of hypocalcemia in patients with hypothyroidism. The FDA Advisory
Panel briefing document describes the use of themodel to evaluate the adequacy of the
dosing regimen and examine alternate regimens, including sustained release or lower,
more frequent dosing (http://www.fda.gov/downloads/AdvisoryCommittees/
CommitteesMeetingMaterials/Drugs/EndocrinologicandMetabolicDrugsAdvisory
Committee/UCM413617.pdf). A commentary on the history and evolution of the
bone remodeling platform raised the idea that the use of this model in regulatory
review might be a “watershed” moment for QSP, marking its progress towards
adoption in the regulatory context (Peterson and Riggs 2015). Regardless, the repe-
ated adaptation and use of this systems platform for different applications and in the
context of regulatory evaluation highlights the potential broader impact of publicly
disclosed or available QSP platforms of physiological and pathophysiological
processes.
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3.6 Adoption of QSP in Industry

Given the relatively new role of QSP in the biopharmaceutical industry, organi-
zations have adopted different approaches to integrating QSP into their drug
development process. At one end of the spectrum, the biotech/pharmaceutical
company Merrimack Pharmaceuticals Inc. adopted a unique approach to exploiting
systems modeling, embedding QSP alongside and interactively with experimental
work as a core part of drug development from discovery through clinical stages
(Fig. 3.4). Since its inception in 2000, the company has applied QSP efforts to
development of agents across its pipeline for both protein and nanotherapeutic
agents (Hendriks et al. 2012, 2013; Schoeberl et al. 2009; Kirouac et al. 2013). The
company’s strategy to incorporating QSP was enabled in part by the background of
the founders who were trained in systems modeling (Chen et al. 2009) and the
opportunity to include QSP as part of internal processes from the inception of the
company. The specific molecules discussed are still in development. However the
company has received their first regulatory drug approval for a liposomal irinotecan
agent for treatment of metastatic pancreatic adenocarcinoma, providing initial
support for their drug development approach and the embedding of modeling
techniques.

Fig. 3.4 Schematic of the team structure throughout molecule development at Merrimack
Pharmaceuticals (reproduced with permission of Merrimack Pharmaceuticals Inc., © 2015)
illustrating the integrated role of computational modelers throughout the drug development
process, starting in early discovery
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In contrast, larger pharmaceutical companies with broad pipelines and complex
corporate structures are faced with the challenge of integrating QSP into
pre-existing company structures and their development processes. Furthermore,
given resource constraints, QSP may not be considered critical path. Researchers
from Merck & Co. described how they have successfully implemented their QSP
program as part of their wider efforts in quantitative pharmacometrics, with close
interactions with key collaborators in different functions and a broad range of TAs
(Visser et al. 2014). They have described a range of applications and modeling
methodologies as well as their strategic approach to program implementation and
remaining challenges. One highlighted aspect of their approach that contrasts with
the Merrimack case above was the rigorous prioritization and selection of projects
in which to apply QSP; this is a critical consideration in larger organizations where
the number of potential projects and the demand across the pipeline outstrip QSP
resource availability. Other approaches have also been adopted in the pharmaceu-
tical industry, and implementation in different organizations has proceeded both by
establishing in-house programs and collaborating with external academic
researchers, nonprofit organizations, or specialized modeling and simulation con-
sultancies and contractors. Furthermore, because of the longer-term and
resource-intensive nature of some larger QSP efforts such as disease modeling,
pre-competitive consortia have emerged as one approach to QSP platform devel-
opment. For example, multiple drug companies are members of the DILIsym ini-
tiative, and the FDA is also involved as a collaborator. In Europe, the German
government is sponsoring the development of the Virtual Liver, a public model of
liver physiology and pathophysiology (Holzhutter et al. 2012).

The diversity of approaches taken to incorporate QSP reflects the diversity of
company and project contexts and needs. Notably, despite the different approaches
adopted in Merrimack Pharmaceuticals, Merck & Co., and DILIsym, one feature
they share that is frequently cited as key to success is the central role of interdis-
ciplinary collaboration between modelers and researchers from other functions (Leil
and Bertz 2014). Though this is a feature common to many areas of drug devel-
opment, it may be true to a greater extent for QSP than other modeling approaches
due both to its recent introduction in industry and projects, and also to the emphasis
on biological detail and mechanistic understanding that requires regular guidance,
participation, and buy-in from experts in collaborating departments.

3.7 Challenges, Considerations and Future Directions
for QSP in Industry

Although there is increasing interest in QSP within the biopharmaceutical industry,
with a growing number of efforts and programs in multiple companies, its role in
drug development is yet to be established and fully realized, and challenges remain
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to be addressed before it can become a widely accepted contributor in drug
development (Vicini and van der Graaf 2013). First and foremost, successful
execution and publication of additional examples that clearly illustrate a direct and
critical impact of QSP on decisions, efficiency, and timelines, will further support
the case that QSP provides significant value in pharmaceutical R&D. Metrics that
quantify the impact of QSP and communication of the value by senior industry
leadership in the greater context of drug development would also be invaluable.
Achieving these goals will require concise and effective messaging, which in turn
requires training of QSP program leaders and the broader community in the
communication of business impact rather than technical detail (Allerheiligen 2014).

Various other considerations remain for optimizing adoption and success, as
summarized in Box 3. One set of pressing needs is rigorous review and guidelines
around language, qualification criteria and metrics, and technical workflows and
approaches that facilitate the evaluation of QSP models and results by broader
audiences. The QSP community has begun to discuss the need for different qual-
ification criteria for QSP models relative to pharmacometric models and to propose
potential approaches. The qualification approaches are indeed different than those
for traditional pharmacometric modeling (Agoram 2014), as illustrated in the
methodology described by Friedrich (2016) (Fig. 3.5a), and thus require clear
articulation and consensus on the procedure and success criteria.

Fig. 3.5 a The Model Qualification Method © of Rosa & Co., LLC (Reprinted with permission
by Rosa & Co. LLC., © 2016) provides an approach to determining and communicating model
qualification specifications that addresses four main considerations critical to development of QSP
models and confidence in their predictions. b A Six-Step QSP Workflow presented by Gadkar
et al. (2016a) provides a systematic approach and associated technical methodologies for robust
application of QSP
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Box 3. Requirements to Facilitate Future QSP Adoption and Success
Within the Pharmaceutical Industry

• Public disclosure of QSP examples that clearly illustrate a critical impact
on drug development to industry leadership, together with easily com-
municable and quantifiable metrics of impact

• Standardization of language, qualification criteria, and metrics (Iyengar
et al. 2012)

• More standardized and technically robust QSP workflows (Gadkar and
Ramanujan 2015; Aldridge et al. 2006)

• Methods to efficiently identify and consolidate data from diverse sources
(Visser et al. 2014)

• Availability of appropriate software suitable for use by researchers with
diverse technical backgrounds (Ermakov et al. 2014; Ghosh et al. 2011;
Ghosh et al. 2010)

• Availability of trained QSP researchers (Sorger and Allerheiligen 2011)
• Regulatory involvement, implementation, and acceptance

More technically robust and generalizable workflows, including methodologies
for parameter estimation and exploration for example, are required to ensure that
projects across the industry can be consistently evaluated. Again, such workflows
are being proposed (Fig. 3.5b) and require greater discussion (Aldridge et al. 2006;
Gadkar et al. 2016a). Common language, workflows, and evaluation criteria are
especially critical in the consideration and review of QSP-based results by regu-
latory agencies. The pharmacometrics field provides an example of a path toward
adoption and acceptance of modeling and simulation methods in regulatory filings,
and currently PBPK modeling is pursuing a similar goal (Zhao et al. 2011). In
addition to these strategic considerations, very practical challenges exist for project
execution such as the frequently tedious task of aggregating diverse data, the
availability of suitable software and tools, and the availability of researchers trained
in QSP in drug development.

Despite these challenges, examples, including some described in this chapter,
where QSP has meaningfully influenced decision-making already exist. As more
cases emerge and are publicized, as the field addresses the above considerations,
and as industry, academia, government, and nonprofit agencies continue technical
innovation in the field, QSP will hopefully become a well-accepted biopharma-
ceutical industry approach and fulfill its promise to help improve the efficiency of
the drug development process.
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Chapter 4
Systems Pharmacology: An Overview

Marc R. Birtwistle, Jens Hansen, James M. Gallo,
Sreeharish Muppirisetty, Peter Man-Un Ung, Ravi Iyengar
and Avner Schlessinger

Abstract Systems pharmacology has evolved from a discipline that focuses on
drug action at the organ level to a discipline that combines traditional pharma-
cokinetic and pharmacodynamic modeling with recent systems biology approaches.
The integration of high-throughput data technologies with computational data
analysis and modeling offers new opportunities to overcome the one disease, one
target, one drug approach. Whole genomic or transcriptomic sequencing and pro-
teomics allow qualitative, and sometimes quantitative, snapshots of the cellular
state at any given condition (e.g., during disease or after drug treatment) that can be
the basis for the development of whole cell models to predict drug responses.
Networks of protein–protein interactions that were confirmed by experimental and
computational analysis of the structure of the interaction partners can be combined
with graph theory to identify modules regulating the cellular state. Dynamic
modeling and sensitivity analysis allow the identification of robust and fragile
nodes within these modules to identify putative drug targets for single or combi-
natorial drug treatment. Traditional pharmacokinetic and pharmacodynamic mod-
eling complements these approaches by predicting drug concentration and target
perturbation at the site of drug action. Such general systems pharmacology models
are a great leap forward towards the development of patient-specific drug response
models as a main component of precision medicine.
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4.1 Introduction

Over the past two decades, as our understanding of molecular and cellular char-
acteristics of biological organisms has grown, it has become clear that to understand
how components come together to form functional units, such as the actin
cytoskeleton for cell movement or the secretory machinery for hormone secretion,
requires us to study biological processes in a holistic manner. By holistic, we mean
that we keep track of both the components that make up the functional units and
also how they interact to give rise to function (Sabathie et al. 1975; Weng et al.
1999). This field of study is called systems biology. The development of high
throughput experimental technologies in genomics that allow us to sequence all the
genes in a genome simultaneously (Shendure and Lieberman Aiden 2012) and
measure genome-wide patterns of expression and gene modification (such as DNA
methylation) provide a comprehensive basis for understanding the genetic and
genomic underpinnings of cellular, tissue/organ, and organismal functions.
Similarly, development of proteomics using mass spectrometry (Picotti and
Aebersold 2012) has contributed to our knowledge of protein and protein state (e.g.,
phosphorylation) profiles within cells and tissues. The large data sets produced by
these omics technologies can seldom be intuitively understood and require statis-
tical and computational analyses for the data to be converted into knowledge.
Typically a variety of statistical tools, Bayesian models, as well as network analyses
based on graph theory are used to analyze large data sets. Bioinformatics is the field
that studies the organization and storage of large data sets and their subsequent
statistical and computational analysis. Although the pictures produced by such
analyses are reasonably comprehensive, they are often qualitative snapshots in time
and seldom or incompletely provide information about the dynamic or quantitative
capabilities of systems. Yet, critical for drug action and pharmacology approaches
is knowledge of precisely such characteristics—dose and timing. What is needed in
this regard is a different class of experiments that are not yet high-throughput, as
well as dynamical models based on differential equations to understand systems
dynamics. Irrespective of the approaches used, it should be appreciated that systems
biology uses an integrated approach wherein experiments and computational
models are combined to provide insight into how the systems are organized and
how this organization leads to function. The approach of integrating experiments
and computation is not new in biomedical sciences. It has been used for over
50 years in biochemistry, physiology, and pharmacology. In the past, however,
combinations of experiments and models dealt with functions at a single scale.
Typically biochemistry focused on the atomic and molecular scale, whereas
physiology and pharmacology focused on tissue/organ level functions. A distinctive
characteristic of current systems biology approaches is that it is multiscale—often
both in levels of organization as well as across time scales. Such analyses have the
potential to help us understand how molecules and interactions can give rise to
functions manifested at the cellular, tissue/organ, and organismal levels.
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4.2 Systems Pharmacology: A Network-Based View
of Drug Action

Traditionally, systems pharmacology has been used to describe studies of drug
action at the level of organ systems (Brunton et al. 2011). A set of two workshops at
the National Institutes of Health in 2008 and 2011 led to a white paper that provides
an expansive view of quantitative and systems pharmacology in current times
(Sorger et al. 2011). Currently, systems pharmacology in academia describes a
research area that combines both high- and low-throughput experimental approa-
ches of systems biology as well as a range of computational approaches including
network analyses for drug discovery and studying drug action (Berger and Iyengar
2009; Zhao and Iyengar 2012).

The concepts from graph theory, the branch of mathematics focused on the study
of networks, has been enormously useful in understanding regulatory features of
cell and tissues/organs. Components of cells interact both directly and indirectly,
and most components have multiple interactions. Networks capture these interac-
tions and provide frameworks for understanding of how regulation arises from the
interactions between cellular components. Feedback inhibition, which in network
parlance is called a negative feedback loop, has been long known in biochemistry
(Lehninger et al. 1992), but knowing how such loops can work in the context of
other regulatory features provides insight into the regulatory capability of the
system. The systematic description of regulatory units called network motifs (Milo
et al. 2002), and the ability to identify such motifs within large regulatory networks
(Wendell and Cianci 1992), provides mechanistic understanding of how the orga-
nization of systems contributes to regulatory capability. Since dysregulation is often
a key feature of the pathophysiological state, understanding physiological and
pathophysiological systems as networks is useful for both drug discovery and
studying drug action. These studies are generally based on molecular interactions
between the drug and its targets when these targets interact with and regulate other
cellular components or the network biology of drug action (Zhao and Iyengar
2012). These network-based approaches have been useful in understanding the
basis for cancer combination therapy (Boran and Iyengar 2010a, b), devising
treatment regimens for optimal efficacy (Boran and Iyengar 2010a), origins of drug
induced adverse events such as arrhythmias (Berger et al. 2010), and how
multi-drug combinations can mitigate serious adverse events (Zhao et al. 2013).
These successes indicate the value of network-based reasoning in the study of drug
action.

Systems pharmacology is often thought of as extension of pharmacokinetics and
pharmacodynamics that have been rooted in compartmental and physiologically
based pharmacokinetic models and biomarker-based pharmacodynamic models.
Each perspective—traditional and systems-based—serves a valuable role and rep-
resents the different facets of systems pharmacology that are schematically shown
in Fig. 4.1. In this overview we briefly describe the components of systems phar-
macology in the second decade of the 21st century that highlight an evolution in
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going from structural biology-based drug discovery to a more integrated mecha-
nistic pharmacokinetic and pharmacodynamic regime that accounts for genomic
and epigenomic control of drug action. For this we start with a brief description of
bioinformatics for drug discovery, drug action, and pharmacogenomics.

4.3 Systems Pharmacology: Relationships to Personalized
and Precision Medicine

For some diseases, genomic determinants are useful predictors of drug efficacy as
well as drug toxicity. Coding region SNPs have been very useful in identifying the
ability of cytochrome P450 variants to metabolize warfarin. This relationship has
allowed for the development of treatment regimens that enable the titrating of drug
dosage to obtain maximal efficacy in reducing clot formation while minimizing the
risk for internal bleeding (Aithal et al. 1999). The presence or absence of certain
cancer mutations may determine whether a certain receptor antagonist would be an
effective drug. For example, blockers of receptor tyrosine kinase activity are
unlikely to be effective if there are downstream mutations in Ras that would likely
change signal flux and drug efficacy. Of note, the Food and Drug Administration
recommends genetic testing to ascertain that K-Ras is not mutated before the
receptor tyrosine kinase inhibitor cetuximab is used for treatment of colorectal
cancer (De Roock et al. 2013). Tailoring the use of medication or adjusting its
dosage according to individual genetic makeup is called personalized medicine.
This terminology is fairly synonymous with the term pharmacogenomics, which is
described in a section below and is well known in clinical pharmacology. More
recently a new term called “precision medicine” has been introduced (Toward
Precision Medicine: Building a Knowledge Network for Biomedical Research and a
New Taxonomy of Disease 2011) that the National Academies have defined as
disease classification based on molecular characteristics. It is easy to see that the
terms personalized and precision medicine are conflated to imply that genetic
characteristics are the predominant characteristics to consider in disease classifi-
cation and drug therapy. Whereas genetic characteristics are very important, there is

Molecular Network Biology
Drug targets as nodes within regulatory
pathways & networks leading to phenotype

Pharmacogenomics
Drug ac on regula on by 
genomic determinants

Structural Biology
Structure-based considera on of  
drugs, drug targets and  drug ac on

Pharmacokine cs & Pharmacodynamics
Quan ta ve analysis of drug distribu on and 
drug ac on

Quan ta ve  &
Systems Pharmacology

Fig. 4.1 Quantitative and systems pharmacology is a multidisciplinary field. The different areas
of research that are integrated in quantitative and systems pharmacology are depicted as a flow
diagram
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likely to be more to precision medicine in fact, to make it precise. What seems to be
missing is a significant appreciation that the underlying principles of drug action are
quantitative dynamic processes embodied in pharmacokinetics and pharmacody-
namics. It is these disciplines that account for drug interactions—both pharma-
cokinetic and pharmacodynamic—and allow drug dosing schedules to be tailored to
patients. In addition, depending on the extent of the models, drug toxicity can be
predicted and used as a valuable guide to design therapeutic regimens. Although
these dynamic processes can be analyzed semi-empirically in pharmacokinetic and
pharmacodynamics studies, such analyses are not necessarily constrained by
molecular details, and with the advent of systems-based approaches and its merging
with pharmacokinetic/pharmacodynamic analyses, systems pharmacology has
gained traction. Systems pharmacology will likely grow in importance given the
interest and emphasis on precision medicine and the appeal to tailor therapy in the
context of genomic and epigenomic determinants, as well as regulatory networks.
Thus it is likely that systems pharmacology and precision medicine will develop in
a naturally coordinated manner in the future.

4.4 Bioinformatics for Systems Pharmacology

The ability to construct large networks that can be used to understand drug action
and drug discovery depends on the availability of large data sets. Among the largest
and best characterized ones are those that contain gene related information,
including gene variants that are related to drug action. These include the NCBI
databases on various types of genomic information. Among the oldest is GenBank,
which contains an annotated collection of all DNA sequences. Currently there are
19 databases under the heading DNA and RNA and another 17 databases under
Genes and Expression. There may be some overlapping information, but overall
these numbers provide a view of the vastness of the genomic data that is publicly
available. A few databases that are directly relevant to systems pharmacology are
listed in Table 4.1. In addition to genomic sequence information, there are also
databases for gene and protein interactions, along with ontologies that associate
genes with pathways and function. Gene Ontology is a widely used ontology
database. There also exist a number of drug related databases such as Connectivity
Map, DrugBank, PubChem and FAERS (Table 4.1). Each of these databases is
important for systems pharmacology as these enable the construction of different
types of networks to understand both drug action and to discover new drug targets
for complex diseases.
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Table 4.1 Representative list of databases used in systems pharmacology

Gene sequence and annotation
NCBI gene_info Contains gene related information such as taxonomy ids

(i.e., organism), ENSEMBL gene identifiers, Human
Protein Reference Database Identifiers (HPRD), official
gene symbols, gene ids, gene synonym names and full
gene names

NCBI gene2refseq Contains gene related information such as taxonomy ids,
gene ids, refSeq status, RNA nucleotide and protein
accession identifiers and official gene symbols

NCBI homoloGene Contains information about gene homologs between
different organisms

MGI vertebrate homology Contains information about gene homologs between
mouse, human, rat and other organisms

NCBI dbSNP Contains single nucleotide polymorphisms (SNPs),
insertions and deletions, microsatellites and
non-polymorphic variants

Gene or protein interactions
TRANSFAC PWM Associates transcription factors with their target genes

ChipX enrichment analysis
(ChEA) background database

Associates transcription factors with their target genes,
based on experimental results obtained from ChIP-chip
and ChIP-seq studies

Stitch Bork lab database of predicted protein-drug interactions
using various approaches http://stitch.embl.de/

Kinase enrichment analysis
(KEA) background database

Associates protein kinases with their protein
phosphorylation targets

Ontologies: association of genes with biological processes or pathways
Gene ontology (GO) Probably the most extensive ontology available,

categorizes its terms into three namespaces: biological
process, cellular component and molecular function

Kyoto encyclopedia of genes and
genomes (KEGG)

A smaller ontology with a focus on metabolic pathways.
KEGG also offers metabolic pathway maps on their
website

WikiPathways Further ontologies that associate genes with biological
pathwaysReactome pathway

Online Mendelian Inheritance in
Man (OMIM)

Associates human genes with genetic phenotypes

Mouse genome informatics
(MGI) mammalian phenotype

A large ontology that associates genes with mammalian
phenotypes

Drug related expression changes
Connectivity map (CMPA) Contains genome-wide transcriptional expression data

from human cells that have been treated with various
bioactive small molecules. It can be used to identify a
small molecule that up- or down-regulated a certain gene
set of interest

(continued)
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4.4.1 Pharmacogenomics

As mentioned above, pharmacogenomics connects drug action in an individual to
specific characteristics of the individual’s genome. Variations in the genome are
thought to account for a significant part of inter-individual variability in drug action,
and genomic characteristics are used for determining dosing regimens as well as
predictions for responsiveness to therapy. The best known example for prediction
of dosing regimens based on genomic variations is the use of warfarin to regulate
blood coagulation and thrombosis. Cytochrome P450 isoform CYP2C9 regulates
the metabolism of warfarin. CYP2C9 has two polymorphisms that reduce the level
of enzyme activity towards warfarin; consequently, increased warfarin concentra-
tions in the blood result in an increased risk of bleeding. So if a patient has these
CYP2C9 polymorphisms, the dosage of warfarin can be titrated to optimize therapy
while reducing the risk of bleeding. Testing for warfarin metabolism has become a
common approach to titrating warfarin dosage in clinical practice.

In treatment of cancers, genomic status, most often defined as presence or
absence of oncogenic mutations, can be used to predict responsiveness to certain
drugs. KIT oncogene mutations reduce the responsiveness of gastrointestinal stro-
mal tumors to imatinib (Aithal et al. 1999); k-RAS oncogene mutations in colorectal
cancer reduce responsiveness to cetuximab (De Roock et al. 2010); and epidermal
growth factor receptor mutations in non-small-cell lung cancer alter responsiveness
to gefitinib or erlotinib (Toward Precision Medicine: Building a Knowledge
Network for Biomedical Research and a New Taxonomy of Disease 2011). In most
of these cases, mechanisms underlying the genotype to drug response relationships
are not fully understood, and one of the major goals of pharmacology is to provide
mechanistic understanding of such multiscale relationships.

Table 4.1 (continued)

Drug related databases
Drug bank Contains detailed drug-related information, such as an

extensive list of drug target genes, drug-drug interactions,
drug metabolizing enzymes and drug indication

PubChem Database of small molecules and their activities in
different biological assays that were obtained by
high-throughput screening assays

ZINC Largest dataset of purchasable small molecules for virtual
screening http://zinc.docking.org/

ChEMBL Database with small molecules and their activities against
biological assays

FAERS FDA—adverse events
reporting system

Contains information about adverse events documented
by healthcare professionals during the treatment with a
drug or drug combinations
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4.4.2 Structural Reasoning in Systems Pharmacology

Structural biology has long been an area in which experimental data and compu-
tational modeling have been integrated to obtain biological knowledge. Going from
X-ray diffraction patterns to protein structures have always required building
models, and even more so in modern structure determination via X-ray crystal-
lography or NMR. Thus melding structural reasoning into systems pharmacology
approaches for drug discovery involves integrating models to scale across multiple
levels of organization. Several themes that form the basis for integrating models for
multiscale understanding are described here.

4.4.2.1 Protein Structure Informs Network Biology

Since biological networks are defined by the physical interactions between their
components, description of the precise molecular interactions between proteins,
nucleic acids, and small molecules is a prerequisite for understanding the dynamics
of lower resolution interaction networks and ultimately for designing drugs that
perturb these networks. For instance, a highly connected node in a protein–protein
interaction (PPI) network can be a protein that interacts with multiple partners
through the same surface region at different times in different pathways, or a protein
that interacts with multiple partners simultaneously using distinct surface regions
(Kim et al. 2006). Currently, there are over 100,000 experimentally determined
protein structures available in the Protein Data Bank (Rose et al. 2013); however,
only a small fraction of these structures correspond to protein complexes within the
interactome, making it difficult to map protein structure onto networks that can be
easily generated with high-throughput approaches. Multiple computational
approaches have been developed to predict the three-dimensional structures of
protein complexes in various network types, relying on homology modeling, in
which a target complex structure is based on experimentally determined structure of
a related protein or protein complex (Davis et al. 2006; Sali and Blundell 1993).
Mosca et al. developed Interactome3D, which is an automated homology modeling
pipeline and visualization tool, to map structural information onto any PPI dataset
provided by the user (Mosca et al. 2013). Homology modeling-based approaches
can also be used to annotate previously unknown physical interactions. PrePPI is a
Bayesian-based approach that combines protein structure information with
co-expression and functional similarity data to predict protein–protein interactions
(Zhang et al. 2012). PrePPI identified more protein–protein interactions in the yeast
proteome than those identified with high-throughput experimental approaches and
with higher accuracy, as well as covered a different fraction of the interactome
(Zhang et al. 2012).

In addition, many key cellular functions are executed by large complexes or
assemblies, such as the proteasome and ribosome. Experimental determination of
the atomic structures of such assemblies can be technically challenging and costly,
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and their modeling via homology is difficult because of limited structural coverage
of their components. Integrative modeling approaches such as the integrative
modeling platform (IMP), which generates three-dimensional structures or models
of large complexes using restraints that are derived from various low-resolution
data types (e.g., protein–protein interactions), can identify the domains and residues
that are involved in specific interactions (Russel et al. 2012). The yeast nuclear pore
complex structure, which includes 456 proteins, was modeled with IMP using
low-resolution data from diverse sources, such as affinity purification of protein
sub-complexes, sedimentation analysis, and electron microscopy (Alber et al.
2007).

4.4.2.2 Structural Considerations Guide Drug Discovery

Efficacy of a drug is strongly influenced by the extent that the target controls the
phenotype and the strength of binding between the drug and target(s). The former is
related to the system as a whole, and is typically analyzed by sensitivity analysis of
models that link the target to phenotype (Birtwistle et al. 2007; Schoeberl et al.
2009; Zhang et al. 2014). The latter is related to target ‘druggability’, that is,
particular structural features, such as binding pockets of suitable size, shape, and
electrostatic properties to accommodate drug-like molecules with optimal
bioavailability properties (e.g., the Lipinski rule-of-five (Lipinski et al. 2001)).
Hopkins and Groom introduced the term “druggable genome” and estimated that
about 10 % of the genes in the human genome are druggable, but only about half of
these genes are both druggable and relevant to disease (Hopkins and Groom 2002).
These druggable targets are primarily GPCRs, protein kinases, ion channels, and
membrane transporters (Hopkins and Groom 2002).

Druggability of a putative target is typically analyzed with protein structural
methods focused on physicochemical properties such as the presence of a surface
hydrophobic pocket (Cheng et al. 2007; Kozakov et al. 2011; Perot et al. 2010).
Recent efforts attempt to extend the druggable genome by targeting protein–protein
interactions (Wells and McClendon 2007), developing covalent probes (Singh et al.
2011), as well as by targeting allosteric or cryptic binding sites that cannot always
be observed in a static X-ray structure doi:10.1002/bip.22742 (Ung et al) (Ostrem
et al. 2013). For example, for many years the Ras protein has been considered
“undruggable”. Ostrem et al. (2013) used a tethering technique to screen com-
pounds against the cancer-associated Ras G12C variant. The X-ray structure of Ras
G12C bound to a novel tethered inhibitor revealed a newly exposed pocket, thus
providing a framework for developing more potent and bioavailable inhibitors.

Rational or structure-based drug discovery includes a wide range of approaches
aimed at developing small organic molecules that bind druggable pockets and rely
on concepts from medicinal chemistry and protein structure. This approach has
been used to successfully develop at least ten marketed drugs, including the anti-
hypertensive drug aliskiren (Rahuel et al. 2000), the antiviral telapravir (Lin et al.
2006), and the anticancer drug vemurafenib (Bollag et al. 2012). Computational
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approaches are particularly useful for identifying novel chemical scaffolds and for
optimizing lead molecules or known drugs against particular targets. For example,
in structure-based virtual screening (‘molecular docking’) a large compound library
is computationally screened, in which each small molecule is sampled in many
configurations and scored based on its complementarity to the target structure
(Shoichet 2004). This quick and inexpensive method—based on protein structure
rather than the chemical structure of known small molecule ligands—is a powerful
and validated tool for identifying novel chemical entities. For a protein target
without an experimentally determined structure, virtual screening can be performed
against homology models (Baker and Sali 2001; Jacobson and Sali 2004;
Schlessinger et al. 2013). Furthermore, characterizing various conformational states
of target proteins (e.g., with homology modeling or molecular dynamics simula-
tions) enables researchers to identify conformation-specific modulators, thereby
further increasing the pharmacological space (Durrant and McCammon 2013).

An emerging paradigm in modern drug discovery is one type of polypharma-
cology, in which a drug interacts with multiple targets with significant affinity to
obtain effective therapy (Keiser et al. 2009; Roth et al. 2004; Xie et al. 2011). This
is different from traditional drug discovery approaches, where a highly potent and
selective drug is optimized toward a single specific biological target.
Polypharmacology is observed in the treatment of various multigenic diseases such
as central nervous system disorders and cancer. For example, the cancer drug
sorafenib is a kinase inhibitor that binds to multiple targets such as BRAF, KDR
and p38a in their inactive conformations (Fig. 4.2). Because polypharmacological
modulators often have lower binding affinity to multiple targets rather than potently
binding one single target (Xie et al. 2012), previously “undruggable” sites, such as
those involving protein–protein interfaces, can also be targeted by such drugs. In
rational polypharmacology, a drug or a cocktail of drugs is/are designed against
multiple targets simultaneously, taking into account both drug and target structure.
Dar et al. combined medicinal chemistry, biochemical assays, and fly genetics to
systematically identify five distinct functional targets and ‘anti-targets’ for the
treatment of Ret-MEN2B cancers (Dar et al. 2012). Anti-targets are proteins that
when inhibited by drug, have undesirable effects such as increased toxicity or
reduced efficacy, and thus should be avoided. They then developed two novel
compounds that optimally interact with those targets/anti-targets to produce
strongly efficacious compounds now in clinical trials. It can readily be seen that
multiple targets could be part of a functional network, so we may in the future
design single or multiple drugs that exert their effects by modulating the behavior of
functional cellular networks rather than by modulating the activity of a single target.
Identification of such targets and anti-targets clearly interfaces tightly with
network-based thinking as described above.

Although protein structure-based approaches can be useful for rationalizing side
effect and efficacy of polypharmacological drugs (Geier et al. 2013; Schlessinger
et al. 2011), small molecule-based approaches are significantly more efficient in
capturing unintended ‘off-targets’ that predict adverse drug reactions. The chemical
similarity ensemble approach (SEA) relates proteins based on the chemical
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similarity among their ligands to build cross-target similarity networks that accu-
rately identify previously unknown protein-drug interactions (Keiser et al. 2009).

4.4.2.3 Genomic Variation Imposes Constraints on Networks Through
Protein and Drug Structure

Identifying which regions of a protein are responsible for different interactions is a
key step toward understanding how protein function and interactions will be
affected by genomic variation, including point mutations, deletions, and other
mutation types. Nonsynonymous single nucleotide polymorphism (nsSNP) is a
genetic variation that involves amino acid substitutions that can have a dramatic
effect on stability, hydrogen-bond network, conformational dynamics, interaction,
and many other physiologically important properties of proteins. Such properties
can be critical for interacting with their partners including proteins, nucleic acids,
and small molecule drugs (Wang and Moult 2001). For example, nsSNPs alter
kinetic parameters of signaling pathways (e.g., E542K, E545K and H1047R on
p110a for PI-3K catalytic activity). Protein structure reasoning can be applied to
design “personalized drugs” that interact with variants associated with specific

Fig. 4.2 Polypharmacology of the cancer drug sorafenib. a Phylogenetic tree of the human kinome
(illustration reproduced courtesy of Cell Signaling Technology, Inc. (www.cellsignal.com),
generated with Kinome Render (Chartier et al. 2013)), with sorafenib targets highlighted in red
circles. The binding site structure of various protein kinases is shown in surface representation.
b BRAF (PMID: 15035987) (Wan et al), c KDR (McTigue et al. 2012), and d p38a (Simard et al.
2009) are targets of sorafenib and their corresponding binding sites have negative electrostatic
potential (red); e ERK is not a target of sorafenib and its modeled binding site exhibits lower
negative electrostatic potential (blue) (PMID: 25420233; doi:10.1021/cb500696t) (Ung et al)
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diseases. Using X-ray crystallography and fragment-based screening, vemurafenib
was specifically designed to target the BRAF V600E mutant for treating metastatic
melanoma (Bollag et al. 2012).

Predicting how mutations affect protein structure, function, and druggability is
therefore critical for modern drug discovery and personalized medicine. Various
approaches aim at predicting mutation effect on functions such as destabilization of
the native structure or interference with the binding of other proteins or small
molecules (AlQuraishi et al. 2014; Kumar et al. 2009; Ramensky et al. 2002).
Examples include (i) machine learning-based methods that are trained on sequence
and biophysical features, such as solvent accessibility, flexibility, packing, and
conservation of residues (Bromberg and Rost 2007; Kumar et al. 2009), and
(ii) physics-based methods that compute the folding free energy to quantify the
magnitude of a mutational effect on stability (Schymkowitz et al. 2005). Notably,
deleterious point mutations can occur in binding interfaces and affect protein–
protein interactions and lead to network rewiring and new targets. Interestingly,
only a small fraction of the total residues in the binding interface contribute to most
of the energy that is associated with binding (Wells and McClendon 2007). These
interaction-stabilizing residues, which are often dubbed “hot spots”, can also be
predicted from structure using different approaches, such as computational alanine
scanning, which computes the free energy effect of mutation to alanine for each of
the binding interface residues, and other methods that consider evolutionary con-
servation (Kortemme and Baker 2002; Zhao et al. 2014). Analyzing the structural
consequences of mutations in the context of networks and pathways can provide a
mechanistic description for disease states and predict phenotypic effect. Kiel and
Serrano performed a systematic analysis of 956 RASopathy and cancer mutations
based on structures and energy predictions and showed that for the same gene, the
type of mutation determines the diseases state (Kiel and Serrano 2014). Energy
changes are higher for cancer mutations compared to RASopathy mutations, and
RASopathy mutations are likely to cause only minor pathway dysregulation. These
studies highlight how computational approaches allow the identification of rela-
tionships from structural variants to phenotypes to understand drug action. It is
expected as such approaches get integrated into the drug discovery process, more
personalized efficacious treatment for complex diseases such as type-2 diabetes,
cancer, and heart failure will be forthcoming.

4.5 Network Dynamics in Systems Pharmacology

Network representations allow us to describe how molecules within the cell are
connected through chemical reactions to one another. The organization within
networks is often called topology, and network topology allows one to trace how a
perturbation such as that evoked by a drug may be connected to important phe-
notypic outcomes such as cell fates or physiological responses. These networks can
be analyzed to detect hubs, highly connected molecules that may be effective drug
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targets. An ubiquitous network that regulates cell survival and proliferation is made
up by the MAP-kinase and PI-3 kinase pathways as regulated by growth factor
receptors (Fig. 4.3; von Kriegsheim et al. 2009). Such networks show topological
features such as feedback and feed-forward loops. As described above, when
information from network topology is combined with atomic structural information
of the biological molecules within these networks, one can further identify what
kinds of small molecule drugs may bind selectively to potential targets.
Furthermore, at least in some cases, one can infer how this binding may depend on
genomic variation that changes amino acid sequences, or understand how epige-
netic information dictates connections between a perturbation and outcome in a
context-dependent manner. This kind of reasoning can give tremendous insight into
generating hypotheses for pharmacological targeting of disease-related networks.
However there are limitations. One major limitation is the lack of consideration of
quantitative and dynamic relationships between network nodes. If a certain network
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Fig. 4.3 Schematic of EGF and NGF signaling to ERK and Akt in PC-12 cells. Adapted from
(von Kriegsheim et al. 2009). Epidermal growth factor (EGF) and nerve growth factor (NGF),
stimulate activation of the EGF receptor (EGFR) and the TrkA receptor (NGFR), respectively,
which can be internalized to different degrees (denoted by i). These active receptors lead to
recruitment of activators and inhibitors of the Ras and PI-3K pathways, including a spatial
regulator PEA-15 (denoted by 15). These pathways interact to form a complex network that
regulates activity of ERK and Akt kinases, which in turn regulate multiple phenotypic outputs,
depending on their temporal and spatial patterns. Multiple pharmacological compounds target
nodes in this network
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node is perturbed, will the perturbation be strong enough to propagate significantly
to affect cell fate, or in the case of drug action, alter pathophysiological behaviors?

4.5.1 Fragile and Robust Nodes

Network and structural information give insight into a traditional definition of
druggability by identifying a drug target and whether it is likely one can find a small
molecule to bind this target. Although these are necessary criteria for defining drug
targets, they are not sufficient. The question posed above evaluates druggability
using the criterion of fragility or robustness of the target; only the former attribute is
sought for a potential drug target. Fragility or robustness of a node is a
systems-level feature of the biological network that defines how strong or weak a
perturbation of that node affects an outcome of interest, and it is inherently quan-
titative. A fragile node mediates a large change in response to a small perturbation,
and a robust node the opposite. We posit that an effective drug needs not only to be
both structurally compatible with the target as is currently a usual focus of drug
development, but also that the target must be “fragile”, meaning that at therapeutic
concentrations of the drug, it binds the target with adequate selectivity and avidity
such that concentrations of the drug-target complex are sufficient for this pertur-
bation to be propagated with significant strength to the functional effector of the
network to evoke a therapeutic physiological response. In contrast, robust nodes
would not sufficiently alter their activity upon binding the drug and hence do not
induce change in response. Static, qualitative network models that are focused on
topology give us a limited ability to evaluate such fragility.

4.5.2 Sensitivity Analysis to Assess Fragility

A common way to assess such systems-level druggability depends on first casting
the biological network in terms of the elementary biochemical reactions that
comprise it. This usually gives rise to ordinary, partial, or stochastic differential
equation models that describe how these networks propagate signals and respond to
drugs over space and time in a dose-dependent manner. Importantly, such models
can give insight into this fragility or robustness question through a variety of
systems engineering-inspired approaches including sensitivity analysis (Csete and
Doyle 2002; Stelling et al. 2004; Kitano 2007). Sensitivity analysis is a collection
of many methods that share the basic property of perturbing quantities in a math-
ematical model of a system, and then observing the change in an output(s) of
interest. The magnitude of the sensitivity coefficient is related to fragility—the
larger the sensitivity the more fragile the target. However, not all types of sensitivity
analysis are appropriate for such biological networks. Because these networks are
usually incompletely understood and non-linear, global sensitivity analyses, which
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account for uncertainties in models and are not affected by non-linearities, are better
suited for making such inferences of fragility (Kim et al. 2010; Zhang et al. 2014),
and have even been used to make successful predictions for drug development,
which surprisingly involved a kinase dead receptor ErbB3 (Schoeberl et al. 2009,
2010).

Predicting fragility of a single node is useful for understanding diseases that can
be treated by a single drug or arise from defects in a single gene. However, many
non-communicable diseases that are progressive are multi-factorial and would
benefit from combination therapy. Additionally, an otherwise efficacious drug
might have unacceptable toxicity that can be mitigated by a second drug (Zhao et al.
2013). High-throughput screening technologies can quite effectively explore
responses of cells to single drugs and even dose responses of those drugs. When
one is considering drug combinations; however, the number of potential experi-
ments explodes into a number that is experimentally infeasible. Mathematical
models of the system of interest can be useful to providing leads on potentially
good drug combinations. Because they are based only on simulation, they are
almost always quicker to evaluate than a typical high-throughput screening assay,
as well as less expensive. In order for model analysis to yield useful predictions,
those predictions must be precise, meaning that the variance in the prediction of
drug response when model uncertainty is taken into account is relatively small.
Small, here, is defined as that level which allows a robust decision to be made as to
whether the drug combination is suitable for testing or not, and as such may be
quite different depending on the particular scenario. Most of these models have a
significant amount of uncertainty in them, both in the connections between bio-
logical molecules (network topology) and in the values of parameters that describe
these interactions (e.g., binding affinities). How much experimental data does one
need to build a model that makes precise and usable predictions for drug discovery
as well as drug action? A gold standard would be a dataset that gives so-called full
observability of the system, meaning that based on the measurements made, one can
uniquely calculate the values of every unique chemical species in the model.
However, one needn’t know every parameter in the model precisely to make useful
predictions of how model variables respond to perturbations; most if not all models
of biological signaling networks exhibit a property called sloppiness in which time
trajectories of key model variables are quite invariant to changes in most model
parameters (Gutenkunst et al. 2007a, b). From a biological perspective this is not
surprising, since this implies that key model variables are robust to most pertur-
bations, which should be the case due to evolutionary pressures for these networks
to function in the face of multiple forms of uncertainty and noise.

In any case, this understanding of sloppiness still does not answer the question of
data requirements for the model. Just how well do we need to know the parameter
values to make predictions of responses to single drugs and drug combinations that
are of sufficient precision? To gain insight into this question, we performed sim-
ulations with a model of a mitogen activated protein kinase cascade (MAPK)
(Huang and Ferrell 1996) (Fig. 4.4a) which controls many important cellular
functions from yeast to mammals (Kholodenko and Birtwistle 2009) and is thus the
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target of many drugs, particularly anti-cancer drugs. We simulated time-course data
(with added noise) from this system in response to an endogenous activation of the
pathway, and ensured that the considered data were both experimentally feasible
and gave full system observability. Next, different sets of kinetic parameters with
the same goodness of fit were estimated based on minimizing the error between
model predictions and simulated data using at least 25 different starting guesses to
evaluate parametric uncertainty. These fitted parameter sets were then used to
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Fig. 4.4 Drug Action in the MAP—kinase pathway. Simulations with the Huang-Ferrell MAPK
model using MAPKKK (Raf) and MAPKK (MEK) inhibitors. a Simplified model schematic.
b Drug dosage responses computed as function of steady-state active MAPK/ERK (PPERK)
concentration after drug administration for Raf, MEK, and Raf and MEK combined inhibitions. At
least 25 drug dose response curves make up each plot, which correspond to different good fitting
parameter sets, and are summarized by their mean, 5th and 95th percentiles. The top panel is
simulations when the model is fit to simulated data that gives full system observability, and the
bottom panel corresponds to when just a single observable, the MAPK-MAPK phosphatase
complex, is removed from estimation. The first two columns are drug dosage responses for Raf and
MEK inhibitors alone, and the last two columns correspond to drug combinations

68 M.R. Birtwistle et al.



predict MAPK (ERK) steady-state responses to a MAPKKK (Raf) drug, a MAPKK
(MEK) drug, and a combination of the two that produced a range of predictions for
drug responses. The gold standard dataset that allows full observability of this
system (15 different quantities measured over time), not surprisingly, yielded very
precise predictions of responses to single drugs and the drug combinations
(Fig. 4.4b). However, if a single observable is left out during the parameter esti-
mation, for example a somewhat non-obviously important one, such as the total
level of MAPK/MAPK phosphatase complex (which actually has small sensitivity),
single drug dose response predictions remain quite precise, whereas drug combi-
nation response predictions lose a significant amount of precision (Fig. 4.4b). This
result holds for several such leave-one-out simulation experiments. Thus, it seems
that making precise and therefore useful model-based predictions for drug combi-
nation responses requires a higher fidelity of parametric certainty, and therefore
more experimental data than is often considered. More research into this important
topic is needed if such models are to be useful in informing drug development and
choices for potentially effective drug combinations to test further in experimental
studies.

4.5.3 Sensitivity Analysis for Discovery of Targets
for Combination Therapy

The previous line of thought is based on evaluating a pre-existing hypothesis for a
drug combination; will the combination of two selected drugs be effective? How
can we use quantitative biological network models to suggest co-fragile nodes, and
therefore potential drug combinations a priori, before drugs are selected? This is an
area where global sensitivity analysis is useful. While there are a variety of methods
for global sensitivity analysis, we have had success in applying the method of Sobol
to such differential equation models of biological pathways (Zhang et al. 2014;
Sobol 2001; Saltelli 2008). One advantage of Sobol sensitivity analysis is that it
allows rigorous calculation of uncertainty on the sensitivity coefficients, and each
sensitivity coefficient is bounded between 0 and 1, with certain sums constrained to
add to unity. Thus, the absolute value of Sobol sensitivity coefficients is directly
meaningful and its statistical significance can be evaluated. Although Sobol sen-
sitivity analysis can require a significant number of model simulations, it is a
parallel problem, so utilizing high performance computing resources to implement
it is quite straightforward and easily scaled. Based on Sobol sensitivity analysis, one
can estimate both the impact of single parameters on an important output of interest
(1st or total order terms), and the simultaneous impact that two parameters have on
the output of interest (so-called 2nd order interaction terms). Single parameter
sensitivity coefficients can be useful to identify drug combinations when simula-
tions are performed with a first drug already selected and present in the model. The
2nd order parameter sensitivity coefficients that quantify interactions between
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parameters give direct insight into potentially useful drug combinations without
having to first consider a single drug.

Such simulations to suggest drug combinations of course do not give any insight
into dosing strategies or regimens. For these purposes one must couple biological
network dynamics that regulate drug action with pharmacokinetic models of the
drugs.

4.6 Networks to Pharmacodynamics

Most textbooks of biochemistry contain detailed diagrams of biochemical pro-
cesses; from glycolysis pathways to the TCA cycle to signaling pathways and
networks. These descriptions of interconnected biochemical reactions (networks)
provide a blueprint of normal physiology and also how they can be disrupted in
various diseases. The level of detail and complexity is impressive and each reaction
subset or single reactions that detail molecular conversions and enzyme kinetics can
be further scrutinized and elaborated. Although such description of biochemical
pathways and networks have existed for some time and are continually revised and
expanded, they (the most part) have had little influence on drug discovery or studies
of drug action. The modus operandi in drug discovery had been rational drug design
for specific targets. Whether that drug design process involved protein structure and
computer docking or more simply chemical modifications of lead compounds, the
focus was the drug-target interaction defined by Ki and IC50 values. Even as drug
discovery evolved into high-throughput screening techniques, the one drug-one
target approach has been commonly used. It is, with few exceptions, fair to say that
the worlds of detailed biochemistry of pathways and networks and the drug dis-
covery and development were silos on different farms.

Now the drug discovery enterprise is changing; its deconstruction is not so much
to do with an appreciation of the complexity of drug action but rather a realization
that drug development expenditures are escalating faster than the return on
investment; new blockbuster drugs are hard to find. Within this milieu of reanalysis,
new strategies are being considered; from a growing emphasis on moving modeling
and simulation, a standard practice in pharmaceutical companies, to more “radical”
systems-based approaches (Benson and van der Graaf 2014; Milligan et al. 2013;
Birtwistle et al. 2013). Such systems-based drug development is evolving from the
juxtaposition of an appreciation of complex drug action and the revolution of
bioinformatics heralded by the technological advances in genomics, including
broad-based microarrays and next generation sequencing. The mindset that drug
action is complex—not one drug-one target—is a natural evolution that also
includes drug toxicity, and now, terms like “off-targets” and “repurposing” are
common and have spawned new industries (Hurle et al. 2013; McCarthy et al.
2013). Informatics serves many functions from identifying prognostic risk factors
such as individual genes and their variants, to gene sets or signatures as biomarkers
for disease progression, to serving as a template for personalized medicine. It is the
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latter use that may impact preclinical drug discovery and development with a
central question, “which patients will benefit from our drug”? Superimposing
complex drug action and a gene regulatory network on a single canvas paints a new
picture that may be referred to as systems pharmacology. The gene network can be
used to develop protein networks, or these protein networks can be developed
independently using proteomic tools. A systems pharmacological view of drug
action, whether for therapeutic efficacy or toxicity, can be cast as a subnetwork of
drug targets within a larger regulatory network comprised of cell signaling path-
ways (Fig. 4.3). Pharmacodynamics (Levy 1966) predates this systems view and
had more or less adopted the early view of one drug:one target where the measured
response was either the direct drug target—target engagement—or a tell-tale
downstream biomarker, for example phosphorylated Erk is often a measured bio-
marker for EGFR inhibitors (Wang et al. 2008). Not dissimilar to the black box
compartmental modeling that is done in pharmacokinetics, pharmacodynamic
models have also largely been a black box, the input is a drug concentration and the
output of the box a measured response; mostly relative to control or pre-dose. Of
course the limitation of black box pharmacodynamics is that without a mechanistic
framework, patient responses may not correlate to the black box output, and even if
they do, there are sufficient variations of the inner working of the black box that
interpretation of the biomarker is fortuitous rather than causal. A good example is
the work done by Iyengar et al. (2012) in which an EGFR biochemical network
containing up to four genetic alterations (i.e., overexpression, SNP, miRNA
expression, methylation status of promoter) exposed to the same degree of EGFR
inhibition produced uniquely different responses based on tumor size. Measurement
of a single biomarker—here tumor size or extent of EGFR inhibition—provides no
insight as to why tumor size varied in these virtual patients or why the same degree
of EGFR inhibition (80 % in this case) did not produce the same tumor size.
The EGFR model was referred to as an enhanced pharmacodynamic model (ePD) to
denote the shift from traditional pharmacodynamic models. Others have also
appreciated complex drug action and put forth pharmacodynamic models that could
double as a biochemical scheme. For example, a pharmacodynamic model for
methotrexate depicted its multiple enzyme targets as well as interconnected
metabolites (Panetta et al. 2010). The potential value of ePD models is clear.
Whether a drug has only one or multiple targets, the influence of measured or
predicted changes in the interconnecting proteins on signal flux and the final drug
response can be determined. Thus, each patient may have a unique pharmacody-
namic network or model—cast as a set of ODEs—that provides a simulation tool of
their drug response (i.e., precision medicine). The individual ePD model outputs
can be used directly to tailor therapy or analyzed as a population of patients to
address questions like “is there a subset of patients that favorably respond to the
drug and what are the biochemical characteristics”? By addressing the latter
questions early in the drug development process, perhaps with a virtual population,
an efficient means to decide on the future development strategy could be attained.
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4.7 Systems-Based PK/PD Models

Pharmacodynamic models rarely exist as isolated entities and are linked to phar-
macokinetic models to increase their usefulness by providing a total pharmaco-
logical package (Fig. 4.5). Historically, PK models were multi-compartment
models that consisted of a set of black boxes to represent the various tissue regions
that behaved kinetically quite similar. A link to the drug target organ via an effect
compartment sufficed as a combined PK/PD model, wherein the effect compartment
was often represented as the Sigmoid Emax model (Sheiner et al. 1979). In many
cases, rather than the effect compartment formulation, the plasma drug concentra-
tion—again generated from the classic compartmental modeling approach—pro-
vided the link to the pharmacodynamic model. Even with the seminal advance of
indirect response pharmacodynamic models made by Jusko and coworkers, plasma
drug concentrations most often provided the link between PK and PD models
(Dayneka et al. 1993). The simplicity of plasma drug concentrations was also
utilized in conjunction with a VEGFR ePD model used to design novel multidrug
regimens (Zhang et al. 2014). Although plasma drug concentrations have merit in
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the clinical application of PK/PD models, it is known that drug concentrations at
cellular receptors in tissues drive responses and may not necessarily mirror plasma
drug concentrations. An alternative pharmacokinetic modeling approach—
physiologically-based (PB) PK models—had been devised based on the prediction
of tissue drug concentrations that was somewhat obscure until it was rediscovered
during the upheaval in the drug discovery industry (Rowland et al. 2011). Since the
original intent of PBPK models was to predict drug concentrations based on spe-
cies- and drug-dependent parameters, it may be casted as an in silico tool to
evaluate candidate drug pharmacokinetics expeditiously and without extensive data.
During this same period, others appreciated the tissue-based assessment of drug
disposition, its mechanistic potential, and scalability to patients (Gallo et al. 2004;
Laplanche et al. 2007; Zhou et al. 2007). Now adjoining PBPK and enhanced
pharmacodynamic models was a natural fit (Gallo 2013), and highlighted by an
early investigation of the anticancer drug geldanamycin by the D’Argenio group
(87). PBPK models can be used to estimate intracellular drug concentration
(Fig. 4.5) and this capability was extended to a new paradigm referred to as
cell-type specific (CTS) PBPK/ePD models (Ballesta et al. 2014). The full power of
CTS PBPK/ePD models has yet to be realized; however, it provides a foundation to
contrast drug efficacy and toxicity in their appropriate cell types, and further to
account for heterogeneity and personalized therapy (Ballesta et al. 2014). At the
same time, due to the potential size and number of model parameters in PBPK/ePD
models, the same considerations of model construction and parameter estimation
(sloppiness) faced by network biochemical models as mentioned above also con-
fronts PBPK/ePD models (Gutenkunst et al. 2007a). Nonetheless, given their
potential to enhance mechanistic models, drug development, and novel therapeutic
strategies, it is believed that the field of system pharmacology will embrace these
challenges and through innovation move the field forward.

4.8 Future of Systems Pharmacology

The majority of diseases for which we lack effective therapeutics are complex and
progressive in nature. These include cardiovascular diseases such as heart failure,
type-2 diabetes, and kidney disease among others. Both the progression of the
disease and response to current therapy show considerable variability among
patients. These differences have highlighted the need for understanding the indi-
vidual patient in terms of her/his genomic and proteomic characteristics. Such
understanding of disease mechanisms in individual patients has been largely
focused on using genetic characteristics of the individuals. This approach has been
successful in limited cases in which singular genetic (and protein) abnormalities
determine drug response, such as for warfarin therapy. However, for complex
diseases, we are likely to have multiple genes as well as postgenomic events
regulating the disease state. Hence a systems biology-based approach that uses
network topology to describe disease states is likely to be a very useful step in
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developing dynamical models for disease progression. These models in turn should
enable the definition of mechanism-based rules to not only understand why a drug
may be effective but can further be applied to identify combinations of drug targets
(Fig. 4.6, blue boxes). Some of these targets may already have drugs that bind and
modulate their activity. In such cases, these drugs can be repurposed to treat other
diseases distinct from the one they were originally intended to treat. In other cases,
we may need to develop new drugs for particularly novel targets, but these efforts
can be made more efficient when systems level models are available.

Beyond the general approach of considering disease networks in population of
patients, there is an urgent need to understand variability, as disease progression
differs among patients (?) and the same drugs show variable efficacy in different
individuals. Here the development of disease state models that are personalized for
each patient using the genomic characteristics guided by protein structure con-
straints, as well as dynamical features that are patient specific, can set the stage for
ePD models that lead to precise individualized dosing regimens (Fig. 4.6, orange
boxes). The integration of systems biology with pharmacology has given rise to the
new field of systems pharmacology that provides an intellectual framework to
consider complex physiology, pathophysiology, and drug action in a systematic
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combinations of targets that are predicted to be efficacious. The topological disease state networks
can be personalized for an individual patient using genomic, transcriptomic, or proteomic
determinants. Such networks can serve as the basis of dynamical models that are personalized
using patient specific parameters that can be used to predict dosing regimen and therapeutic
strategies for the specific patient
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manner to drive both drug discovery and therapeutics at an individual level. Thus,
the impact of systems pharmacology on personalized and precision medicine is
likely to be substantial.
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Chapter 5
Discrete Dynamic Modeling: A Network
Approach for Systems Pharmacology

Steven Nathaniel Steinway, Rui-Sheng Wang and Reka Albert

Abstract Systems pharmacology is an interdisciplinary field that aims to apply the
theoretical and experimental tools of systems biology to drug development. The
goal is to go beyond the interaction between a drug and the target to which it binds
to explore drug effects on the cellular networks affected by disease. Over the years,
vast amounts of information about the regulatory relationships among genes, pro-
teins, and small molecules have been acquired. Similarly, there is much known
about the deregulation of these systems during disease. However, many knowledge
gaps still exist. There is an abundance of qualitative or relative information related
to the activation of signaling pathways, but a paucity of kinetic and temporal
information. Discrete dynamic modeling provides a means to create predictive
models of signal transduction pathways by integrating fragmentary and qualitative
interaction information. Using discrete dynamic modeling, a structural (static)
network of biological regulatory relationships can be translated into a mathematical
model without the use of kinetic parameters. This model can describe the dynamics
of a biological system over time, both in normal and in perturbation scenarios. In
this chapter, we discuss the fundamentals of discrete dynamic modeling as it per-
tains to systems pharmacology. As an example, we apply this methodology to a
previously constructed pharmacodynamic model of epidermal derived growth
factor receptor (EGFR) signaling. We (1) translate this model into two types of
discrete models, a Boolean model and a three-state model, (2) show how the effects
of an EGFR inhibitor (such as gefitinib) can suppress tumor growth, and (3) model
how genomic variants can augment the effect of EGFR inhibition in tumor growth.
We argue that discrete dynamic models can be used to facilitate many of the goals
of systems pharmacology. These include understanding how individual differences
contribute to variability in drug response and determining which drugs would be
best depending on individual genetic differences.
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5.1 Introduction

Systems biology involves the reconstruction of a system from individual biological
interactions. Small scale and high throughput experiments over a long period amass
to systems-level information. Collecting this information into holistic models is a
fundamental goal of systems biology, because it allows the study of biological
processes at a systems level, realizing emergent properties that are critical to the
biological process and that may not be recognized from traditional reductionist
views. Systems biology relies on a combination of experimental and computational
techniques. Experimental techniques include the acquisition of “omics” level
analysis of DNA, mRNA, proteins, and metabolites related to specific biological
processes and disease states. Computational techniques are required to analyze and
interpret these massive amounts of data.

Systems pharmacology is an emerging interdisciplinary field that aims to use the
tools of systems biology to improve the development of drugs and to understand
drug effects on the body. Traditional drug discovery has largely focused on the
drug-target interaction. It is apparent now that this is insufficient, as it is recognized
that diseases and drug targets are connected to networks of proteins that regulate
drug response. As a result, it has become quite difficult for traditional pharmaco-
logical approaches to yield promising drug candidates (Sorger et al. 2011).
Understanding how drug effects propagate from the site of action through the
signaling network it regulates is a critical aspect of pharmacological development.

One aspect of systems biology is network modeling, which is a formalism that
can be used to represent signaling networks. In a network, nodes represent the
components of the network (e.g., proteins, genes, and small molecules) and the
edges are the interactions between nodes. Edges can be directed (indicating the
direction of information flow, for example from a regulator to a target) and can be
positive (activating) or negative (inhibitory). Construction of a network allows for
topological analysis, based on measures related to the structure of the network.
Many measures have been developed to describe the features of networks based on
their structure. For example, centrality measures have been used to identify the
relative importance of a node within a network (Telesford et al. 2011).

An additional layer of modeling is the dynamic model, which characterizes each
network node with a state variable and describes how these states change in time
due to the interactions among nodes. Both quantitative and qualitative models exist
to describe the dynamics of systems. Quantitative dynamic models generally use
systems of differential equations to describe the continuous change of the system
over time. These models can be highly accurate, but the limited kinetic and
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temporal information about individual nodes in the network limits their feasibility
and widespread use, especially for large-scale systems (Wang et al. 2012).

Discrete dynamic modeling represents a class of qualitative dynamic models
used to study signal transduction processes because of its computational feasibility
and capacity to be constructed with qualitative biological data (Albert and Wang
2009). The simplest kind of discrete models are Boolean models. In these models,
nodes can have two qualitative states, ON (above an activity threshold) or OFF
(below an activity threshold). The biological relationships defined by the structure
of the network can be translated into mathematical equations using Boolean
operators (Saadatpour and Albert 2012). Network-based discrete dynamic models
can be used to generate testable hypotheses and are particularly useful in poorly
characterized biological systems (Gross 2006). Boolean network models have led to
new insight into signal transduction and gene regulatory networks in numerous
organisms (Thakar et al. 2007; Walsh et al. 2011; Zhang et al. 2008; Albert and
Othmer 2003).

In this chapter, we introduce discrete dynamic modeling in the context of sys-
tems pharmacology. We first describe how to reconstruct a network from available
experimental information, which is often disparate and incomplete. We then
describe how we can translate this network framework into a dynamic model that
can predict the behavior of a biological system in response to some kind of signal
(e.g., a drug) and in the presence of model perturbations (e.g., genomic or epige-
nomic alterations). We explain in detail how to construct Boolean dynamic models,
including synchronous and asynchronous updating schemes and model reduction
techniques. We further discuss how to analyze the dynamics of a system, including
attractors, initial conditions, basins of attraction, and the network’s state space.
Based on these models, predictive and testable hypotheses can be obtained. As an
example, we have constructed a Boolean and a multi-state discrete model of EGFR
signaling and of the effect of an EGFR inhibitor on tumor growth in the context of
different tumor mutations. We demonstrate that this model is consistent with
existing knowledge and that it can be used to predict tumor response to drug
treatment in the context of different mutations.

5.2 Methodology in Discrete Dynamic Modeling

5.2.1 Constructing the Network

In order to develop a dynamic Boolean model, a network must be first constructed,
which represents the players to be modeled and their interactions or regulatory
relationships. Importantly, networks provide a unifying representation of hetero-
geneous biological information. This allows diverse regulatory relationships from
protein-protein interactions, post-translational modifications, to mRNA transcrip-
tional changes and/or sub-cellular localization to be modeled in a unified language.
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Networks are commonly constructed from pre-existing literature. Primary liter-
ature and review papers provide a valuable resource for identifying (1) the com-
ponents that regulate a cellular process and (2) the qualitative regulatory
relationships among these components. For example, a putative component might
be added to a network if a known node in the network of interest alters the activity
or expression of the putative network component. This information may be gleaned
experimentally by studying the effects of activating mutations or over-expression of
a network component. Specifically, if over-expressing the known network com-
ponent leads to up-regulation or increased activity of the putative network com-
ponent, it suggests that an activating relationship exists between the two nodes.
However, if over-expressing the known node produces down-regulation or
decreased activity of the component, then this suggests that an inhibitory rela-
tionship exists between the two nodes.

Determining the response of a gene or molecular entity after mutating or
over-expressing a regulator of that gene provides genetic evidence for the
involvement of the regulator in a signal transduction event. Over-expression vec-
tors, the use of dominant negatives, RNA interference, and genome editing are
common genetic manipulations to produce this kind of evidence. Chemical inhi-
bitors may be used to provide pharmacological evidence about the relationship
between two nodes. It is important to note that most chemical inhibitors block a
specific interaction, whereas many genetic techniques (e.g., over-expression or
knockdown) are producing node effects. It should also be noted that chemical
inhibitors frequently have off-target effects, possibly affecting other network
components, so these inhibitors should be used cautiously when trying to under-
stand their effect on a network. Other evidence that may be used when constructing
networks includes enzymatic activity, protein-protein interactions,
post-translational modifications (Walhout and Vidal 2001), transcription factor
binding (Buck and Lieb 2004), and mRNA transcriptional changes (Wu and Chan
2012). In addition to primary literature, curated databases of signaling pathways
may also be of use in building networks (Kanehisa 2013). Software packages exist
to aid in the rapid acquisition of model-producing information from databases like
Pubmed (de Jong 2002; Chiang and Yu 2003). One such software package,
Chilibot, mines Pubmed for causal and parallel relationships between two or more
gene or protein names (Chen and Sharp 2004; Margolin et al. 2006). Furthermore,
methods have been developed to reverse engineer networks from high throughput
expression-type datasets (Margolin et al. 2006; Basso et al. 2005).

Genetic, pharmacological, and biochemical evidence can be represented as
component-to-component relationships such as “I activates A” (denoted as I ➝ A)
or “B inhibits O” (denoted by B—|O), which correspond to directed edges from an
upstream regulator to a downstream target in a graph representing a signaling
network (Fig. 5.1a, b). In some situations, experimental evidence leads to double
causal inferences such as “X activates the process through which Y activates Z”. In
some cases these inferences can be logically broken down to two separate
component-to-component relationships. Some experimental evidence however,
represents indirect casual relationships that are not easy to interpret. A method has
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been developed that uses techniques from combinatorial optimization to find the
sparsest network consistent with all experimental observations (Albert et al. 2007).
This method was implemented in the software NET-SYNTHESIS (http://www.cs.
uic.edu/*dasgupta/network-synthesis). The input to NET-SYNTHESIS is a text
file of positive or negative relationships among nodes in the biological network.
The software produces a simplified network representation and a text file with the
edges of the inferred signaling network (Kachalo et al. 2008).

5.2.2 Determining the Boolean Functions

The network representation of a signal transduction process is static, while bio-
logical processes happen over time. In order to understand the dynamic behavior of
a system, each node needs to be characterized by a state variable that can change in
time. Specifically, each node’s state variable is determined by the state variable of
the nodes that regulate it. This dependency is expressed through a node-specific

Nodes Causal Relationship

I I activates A
I activates B

A A activates B
A activates O

B B activates A
B activates O

O

(a)

Nodes Boolean rule

I

A A* = I OR B

B B* = I AND NOT A

O O* = A AND NOT B

(c)
Node A

I* B* A*

1 1 1

1 0 1

0 1 1

0 0 0

Node B

I* A* B*

1 1 0

1 0 1

0 1 0

0 0 0

Node O

A* B* O*

1 1 0

1 0 1

0 1 0

0 0 0

(d)

(b)

Fig. 5.1 A simple signaling network and its Boolean representations. a The relationships among
the nodes in this hypothetical network. b The graphical representation of the network. Nodes are in
boxes and edges connect pairs of nodes. Activating relationships are denoted by arrows (➝) and
inhibitory edges by blunt ends (—|). c The Boolean rules representing the network. d Truth table
representation of the Boolean relationships. Asterisk marking a node’s name indicates the future
state of the node
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Boolean function. This function aggregates the effect of upstream nodes (activation
or inhibition) on a regulated node as well as the relationships among the regulators
for a given node. A popular way of representing Boolean functions is through the
Boolean operators NOT, AND, and OR. The is used to specify inhibitory effects;
AND and OR are used to define the relationships among regulators. If node Y has a
single activator X, represented by X ➝ Y and rooted in experimental evidence that
X leads to activation or up-regulation of Y after a period of time, the state of node Y
can be represented by the Boolean function Y* = X. In this representation, the state
of the nodes is represented by the node labels and Y* denotes the state of node Y at
a future time point. The rule indicates that the future state of node Y will be equal to
the current state of node X. Biologically, this means that a high level or activity of
X will lead to high level or activity of Y. Nodes can be inhibited by upstream nodes
(e.g., X —| Y), indicating that the activation of the target node Y requires a low
level or activity of the inhibitory node X. The effect of a single negative regulation
is thus represented by the Boolean rule Y* = NOT X. Here the NOT represents
logical negation, where NOT ON = OFF and NOT OFF = ON.

Cases of combinatorial regulation can be explored using the hypothetical
Boolean relationships in Fig. 5.1c. The Boolean function for the state of node A:

A� ¼ I OR B;

uses the OR operator to represent that node A can be independently activated by
node I or by node B. In general, an OR relationship represents the convergence of
two independent and individually effective pathways on a target node. The AND
operator is used to represent situations where the synergistic activity of multiple
regulators is required to activate the target node. For example, in Fig. 5.1:

B� ¼ I AND NOT A

indicates that node B will be active (ON) if there is a high level (ON state) of I and
low level (OFF state) of A in the cell. Similarly to B, the output O of the hypo-
thetical network is regulated by an activating node A and an inhibitory node B:

O� ¼ A AND NOT B

O is activated under the condition that A is ON and B is OFF. Under circumstances
where more than two regulators exist for a node, the Boolean function can be
comprised of a combination of AND, OR, and NOT operators, depending on the
biological regulation involved.

Each Boolean function can also be represented by a truth table, which lists all
possible future states of a node resulting from all possible states of its regulators.
Each row in the truth table lists a combination of values of the Boolean variables of
the node’s regulators and the associated output value (i.e. future state of the reg-
ulated node). “1” represents a node being ON and “0” represents a node being OFF.
The truth table of a Boolean function with x regulators has 2x rows and x + 1

86 S.N. Steinway et al.



columns. Figure 5.1d shows the truth tables corresponding to the Boolean functions
of the four nodes in the network.

Boolean functions are usually determined based on known relationships in the
published literature. If a node’s Boolean function cannot be unequivocally deter-
mined from the literature, then multiple Boolean functions can be created and tested
against known biological outcomes. The equation that best recapitulates known
network outcomes can then be used. Boolean rule construction could thus yield
information about regulatory relationships that were not previously known. For
example, if an AND rule between two regulators best recapitulates the known
responses for a network, this suggests a putative biological synergy between the
two regulators. Lastly, approaches have been developed to produce Boolean net-
works and functions from high throughput expression data (Chueh and Lu 2012;
Laubenbacher and Stigler 2004; Mehra et al. 2004).

5.2.3 Selecting Time Implementation for State Transitions

Boolean models and discrete dynamic models in general focus on state transitions
instead of following the system in continuous time. Thus, time is an implicit
variable in these models. After constructing the static signal transduction network
and translating it into a system of Boolean functions, the next step is to choose an
algorithm for the time implementation. Time implementation refers to the timing of
transitions from one network state to the next. Synchronous models are the simplest
update method: all nodes are updated at multiples of a common time step based on
the previous state of the system:

Xiðtþ 1Þ ¼ FiðX1ðtÞ; X2ðtÞ; . . .;XNðtÞÞ:

Here Xi (t) represents the state of node i at timestep t of a network with N nodes,
given by i = 1, 2, …, N. The state of node i at a future timestep, Xi (t + 1), is a
function of the previous states of the nodes that regulate it. The synchronous model
is deterministic in that the sequence of state transitions is definite for identical initial
conditions of a model (Dubrova and Teslenko 2011). This update method is valid if
the time scales of all signal transduction processes represented as edges of the
model are quite similar.

The kinetics of biological reactions and processes has been shown to vary
substantially. For example, post-translational modifications like phosphorylation
events can occur in thousandths of a second, whereas transcriptional events may
take hundreds of seconds (Papin et al. 2005). Thus updating algorithms that account
for differences in process timing must be used. In asynchronous models, the nodes
are updated individually, depending on the timing information, or lack thereof, of
individual biological events. In this section we discuss three asynchronous updating
models: the random order asynchronous, general asynchronous, and deterministic
asynchronous models.
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In a random order asynchronous model, at each time step every node is updated
in a random order chosen from all possible node orders with equal probability
(Chaves et al. 2005). In this model, the state of node i at the next time step, t + 1, is
obtained from the most recently updated states of its input nodes:

Xiðtþ 1Þ ¼ FiðX1ðsi1Þ; . . .;XNðsiNÞ

where sij 2 {t, t + 1}, for any node i and j, where j = 1, 2, …, N. If node j is before
node i in the randomly chosen update order, then sij = t + 1, otherwise, sij = t. With
this update method each node is updated once in each round of updating.

In the general asynchronous model (Chaves et al. 2005), a single node is ran-
domly updated at each time step. Under this approach, it is possible that a node
chosen in the current time step will be chosen in a future time step. The unit of time
in the general asynchronous model is (1/N) of the time unit of the random order
asynchronous model.

Both random order and general asynchronous models are stochastic, reflecting
the variability in the timing of signal transduction events at the population level. If
there is a priori knowledge about the relative timescales over which biological
processes in the signaling network of interest occur, it can be incorporated as a
constraint of the updating scheme. This may also be accomplished through a de-
terministic asynchronous model. In this model each node i is associated with an
intrinsic time unit ci and is updated at multiples of that unit, ti = kci (Chaves et al.
2006). At a time t + 1, the node i whose ti = t + 1 is updated and all other nodes
remain in the same state:

Xiðtþ 1Þ ¼ FiðX1ðtÞ; . . .;XNðtÞÞ if tþ 1 ¼ kci k ¼ 1; 2; . . .
XiðtÞ otherwise

�

In the deterministic asynchronous model, nodes with longer time units will have
less updates than nodes with shorter time units. This update mode is best suited for
cases when the relative frequency or rate of biological events is known or can be
estimated from biological knowledge. As this is a deterministic model, there is a
guaranteed trajectory for state transitions.

5.2.4 Evaluating the Dynamics and Steady-States
of the System

Choosing a time implementation for a Boolean model allows one to explore the
dynamics of the system; that is, how it changes over time. Initial conditions can be
set to represent the initial biological phenotype of the system and any signals or
environmental conditions that may cause the system to change over time. By
varying the initial conditions, the effect of different initial conditions on an output
can be modeled.
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Initial conditions for a model can be set based on a priori biological knowledge.
For example, in the hypothetical signal transduction network of Fig. 5.1, if we are
curious about the effect of the input (signal) I on the output, O, and we know that
prior to receiving the signal node A is ON and node B is OFF, we can use the initial
conditions I = ON, A = ON, B = OFF, O = OFF, to study the predicted effects by
the model. It is also good to compare this system to the case where the signal,
I = OFF, to determine the state of O when no signal is present. If the information is
not sufficiently specific, multiple initial conditions can be used as starting points of
replicate simulations. The percentage of replicate simulations where a node (e.g. the
network’s output node) is ON can be calculated for each time step, representing the
probability that a node will be activated or an outcome will occur given a stimulus.
Additionally, patterns for initial conditions that lead to O = ON versus O = OFF
can be explored, to determine the conditions that allow the signal to induce the
output.

Starting from a plausible initial condition and updating the nodes’ states
according to the Boolean rules in the model, the system’s state will change over
time until it reaches a stable outcome called an attractor. An attractor can be a fixed
point (steady-state) or a set of states that repeat indefinitely (a complex attractor).
The basin of attraction refers to the initial conditions that lead the system to a
specific attractor.

There are several software applications to simulate the trajectory of the system
from the initial condition to the attractor(s). BooleanNet (http://code.google.com/p/
booleannet/) is a Python library that facilitates Boolean simulations of biological
regulatory networks. This software requires a text file containing Boolean rules as
input, and users can choose from various updating schemes for their models (Albert
et al. 2008). BoolNet, SimBoolnet, and ChemChains are other software tools for
Boolean modeling (Mussel et al. 2010; Helikar and Rogers 2009; Zheng et al.
2010).

Under the hypothetical circumstance that nothing is known about the initial
conditions of the signal transduction network in Fig. 5.1, and that we are curious
about the effect an input I on the output node, O, we can set I to ON, randomly set
nodes A, and B, and have node O OFF in the initial conditions. Using BooleanNet,
we can simulate this using a random order asynchronous model (Albert et al. 2008)
and determine the fraction of O = ON in 100 replicate simulations as shown in
Fig. 5.2.

Analysis of attractors is important in signaling networks because they represent
the long term effect of a signal on an output. The attractors of gene regulatory
networks that do not have external signals represent different cell fates. We can
analytically find all possible fixed points of a network by recalling that in the fixed
point the future state of any node equals its current state. Thus the Boolean update
functions become equations. The solutions of these equations are the fixed points of
the system. If the system of equations does not have a solution, the model does not
have fixed points, just one or several complex attractors. For the four node signaling
network illustrated in Fig. 5.1, if we assume I = 0, then the Boolean equations
simplify to A = 0 OR B = B, B = 0 AND NOT A = 0, O = A AND NOT B.
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Substituting B = 0 in the first and third equation we find the solution I, A, B,
O = 0000. If we substitute this state back into the set of equations, we see the same
result; thus 0000 is a fixed point of the system. If we assume I = 1, then A = 1 OR
B = 1, B = 1 AND NOT A = NOT A = NOT 1 = 0, and O = 1 AND NOT 0 = 1,
thus we get the result 1101. Thus, there are two fixed points, one for each value of
the signal. The state of the output node O equals the state of the input node I in each
fixed point, which is representative of a response to a signal.

For a Boolean network with N nodes, there are 2N possible states. In the absence
of specific information, each of these states can be considered as an initial state, and
the trajectory of the system, starting from this state and ending in one of the
attractors, can be determined. A compact representation of all possible trajectories is
given by the state transition network. The nodes of this network are the 2N states of
the system, and a directed edge is drawn from state S1 to state S2 if applying the
Boolean rules to state S1 transforms it into state S2 (i.e. there is a state transition
from S1 to S2). Figure 5.3 illustrates the state transition network for the Boolean
network of Fig. 5.1 using synchronous update. The state transition network indi-
cates the two previously found steady-states as nodes that do not have edges that
point toward other nodes. It also indicates that all states in which the signal is OFF
converge into the 0000 state and all states in which the signal is ON converge into
the 1101 state.

Synchronous and asynchronous Boolean models have the same fixed points,
because fixed points are independent of the implementation of time. However, the
basins of attraction that lead to the fixed points may differ between synchronous and
asynchronous models. Synchronous and deterministic asynchronous models have a
definite trajectory between states, whereas stochastic asynchronous models may
have multiple trajectories depending on the specific update sequence chosen.
Specifically, each state can have up to N successors when following a general
asynchronous update, as any of the nodes of the system could be updated. In
random order update, each state can have up to N! successors. Thus, initial con-
ditions that lead to a single attractor in deterministic models may enter multiple
attractors in asynchronous models. Lastly, certain complex attractors may disappear
when switching from synchronous to stochastic asynchronous models. This is

0 

0.2 

0.4 

0.6 

0.8 

1 

0 1 2 3 4 5 

I=ON;O=OFF

Timesteps

Fr
ac

on
 o

fO
=O

N

Fig. 5.2 Fraction of
simulations where O = ON as
a function of time, given
I = ON and nodes A and B
are randomly set to ON or
OFF in the initial condition
for the Boolean model given
in Fig. 5.1 (100 replicates;
random order asynchronous
update)

90 S.N. Steinway et al.



because those attractors (called limit cycles) depend on multiple nodes changing
states at the same time (Harvey and Bossomaier 1997).

As an illustration, Fig. 5.4 indicates the random order asynchronous state tran-
sition network of the system in Fig. 5.1. As expected, the fixed points of the system
are the same as in Fig. 5.3. In this case the basins of attraction of the steady-states
remain the same as well, because they are determined by the state of the input node.

Fig. 5.3 The state transition network of the four node network given in Fig. 5.1 obtained using
the synchronous update method. Each symbol represents a network state. The binary sequence in
each symbol, from left to right, represents the state of node I, A, B, and O in the network. There are
two attractors, both of which are fixed points: 0000 and 1101. Both states only have incoming
edges and a self-loop. Fixed points 0000 and 1101 both have seven states in their basins of
attraction

Fig. 5.4 The state transition network of the four node network given in Fig. 5.1 obtained using a
random order asynchronous updating scheme. Each symbol represents a network state. The binary
sequence in each symbol, from left to right, represents the state of node I, A, B, and O in the
network. The two fixed points (steady-states) produced using the synchronous updating algorithm
are conserved in the asynchronous model. Their basins of attraction are the same as well; however,
many of the states have multiple trajectories to the corresponding steady-state (e.g., 1011 has four
trajectories to 1101)
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Multiple trajectories from a single initial condition may exist in Fig. 5.4, as this
updating scheme is non-deterministic. State transition networks for both updating
schemes are implemented in BooleanNet (Albert et al. 2008).

5.2.5 Network Reduction Techniques

In large Boolean networks, it is computationally unfeasible to map the network’s
state space (Zhao 2005). Methods have been developed to reduce the size of net-
works to make them easier to handle algorithmically, while maintaining the
attractor repertoire of the larger network. Two methods have been developed that
search for “frozen nodes,” which are nodes that stay constant regardless of the
initial condition. Because these nodes do not change, they are irrelevant for dif-
ferentiating attractors and thus can be removed from attractor and state space
analyses (Bilke and Sjunnesson 2002; Richardson 2005). Two other computational
methods iteratively remove non-auto-regulatory components (i.e. nodes without a
self-loop). These methods have been proven to conserve fixed points but may
produce complex attractors that do not exist in the larger network (Naldi et al. 2011;
Veliz-Cuba 2011). Another reduction method involves a two-step process, which
identifies nodes which stabilize due to the presence of a sustained signal, followed
by removing simple mediators (nodes with a single incoming and outgoing edge)
(Saadatpour et al. 2010). Lastly, a network reduction approach has been developed
that identifies (possibly nested) feedback loops that have a defined steady-state
associated with them, then uses this steady-state to simplify the network as in
Saadatpour et al. (Zanudo and Albert 2013).

5.2.6 Testing the Validity of the Dynamic Model

Discrete dynamic models are constructed to understand the dynamics of biological
systems, or how a biological system might change or respond to a stimulus or
signal. In order to explore unknown features of biological systems, it is first
important to assess whether the model reproduces known features of the system
being studied. In order to do this, one needs to study the long-term behaviors (e.g.,
steady-states) of the system, as well as the intermediate states leading to them. If
there is a baseline, unstimulated, or signal-free state in the system, it is important to
determine whether that state exists in the dynamic model as a steady-state. If the
baseline condition does not exist, or is transient, the cause is probably an error in
the Boolean logic (for example the use of OR instead of AND) or the incom-
pleteness of the model.

Once a baseline condition is reproduced, it is important to check whether the
model recapitulates a known relative order of events after a stimulus. If it does not,
the erroneous state changes can be traced back and errors in the Boolean logic or
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incompleteness of the model may be discovered. It is also important to determine
whether a biologically realistic steady-state exists. If in addition to a biologically
realistic steady-state the model also indicates another steady-state that has never
been realized biologically before, the new steady-state should not necessarily be
discounted. It is possible that this steady-state could represent a previously undis-
covered biological outcome for the system. In these circumstances, the initial
conditions and intermediate states that lead to this novel steady-state can be
explored and their biological feasibility can be determined.

5.2.7 Introducing Model Perturbations

Discrete dynamic models allow for the exploration of the effect of network per-
turbations on the dynamics of the biological system. Perturbations are the network
equivalent of a deviation from biological homeostasis. Essentially all diseases are a
deviation from a homeostatic or “normal” state. These perturbations may be the
direct result of single or multiple mutations (e.g., cancer or genetic diseases). Other
causes of biological perturbations include environmental influences like pharma-
cological use and abuse or traumatic injury. Certain environmental cues may cause
genetic aberrations, so these modes of biological perturbations are not mutually
exclusive. Discrete dynamic models can also be used to model the effect of phar-
macological interventions, in the presence of no, single or multiple genomic
abnormalities, and how these effects percolate through a network to produce a
biological phenotype.

There are several ways to study the effect of perturbations on biological net-
works. Biological over-expression or over-activity of a node can be modeled by
keeping its state as ON irrespective of its regulators. Biological knockouts or
down-regulation of a node can be modeled by keeping the state of a node as OFF,
irrespective of the state of its regulators. The effect of these perturbations can be
determined by performing simulations or state space analysis in their presence, and
comparing perturbed outcomes to their normal states. Drug or growth factor
treatments can be simulated by inhibiting or activating certain nodes transiently
(setting the node state and allowing it to update based on its biological regulation)
or permanently (over-riding the existing rules). BooleanNet has built-in functions to
facilitate network perturbations in Boolean models (Albert et al. 2008).

Perturbations to discrete dynamic models can facilitate the efforts of systems
pharmacology by facilitating the development of personalized networks repre-
senting individuals in disease. We can model the effect of drugs in the presence of
individual network differences (i.e. individual genetic differences) and can predict
the effect of pharmacological intervention in specific individuals. Discrete dynamic
models can be used in these ways to choose pharmacological interventions that will
work for specific patients and to avoid treatments that would have no benefit.
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5.2.8 Non-boolean Discrete Dynamic Modeling (Multi-state
Discrete Models)

Until this point we have discussed the simplest kind of discrete dynamic model, the
Boolean model. Multi-state discrete dynamic models can also be constructed to
analyze biological systems and in certain cases may be more appropriate than
Boolean models. As with Boolean models, truth tables can be constructed to rep-
resent the regulatory relationships among nodes. For example, in a three-state
model, nodes can be assigned three states (e.g., −1, 0, 1 or 0, 1, 2) to represent
under-activity (down-regulation), normal activity, and over-activity (up-regulation).
The value of a regulated node will depend on the logical constraints designated by
the modeler in the truth tables.

There are alternative mathematical formalisms for a more compact representa-
tion of multi-state discrete models: logical models (Thomas 1991), implemented in
the software GINsim (Naldi et al. 2009) and polynomial dynamical systems
(Veliz-Cuba et al. 2010) implemented in the software ADAM (Hinkelmann et al.
2011). The logical functions used in the logical model framework specify the
conditions for which the regulated node’s state is different from the baseline
(Thomas 1991). Polynomial dynamical systems represent each truth table by a
polynomial function. Polynomial algebra can then be used to identify the steady
states of the model. One disadvantage of this method is that the polynomial rep-
resentation (even for Boolean models) is less intuitive than other forms, e.g., logical
models (Veliz-Cuba et al. 2010).

5.3 A Discrete Dynamic Model of Tumor Response
to an EGFR Inhibitor

Previously an enhanced pharmacodynamic (ePD) model was constructed by
Iyengar et al. to model the effects of an EGFR inhibitor (e.g., gefitinib) on EGFR+

tumor growth (Iyengar et al. 2012). This model was novel because it merged
traditional PK/PD models, which focus on the site of drug action (EGFR protein)
with ordinary differential equation models of signaling events downstream. This is
important, essentially encapsulating the goals of systems pharmacology, because
many factors beyond the direct effect of the drug on the receptor contribute to the
effect of a drug in treating disease. As with other differential equation based models,
the EGFR model used a large number of parameters, whose value was estimated
based on experiments reported in the literature. The model demonstrated that three
genes (RASAL1, PEBP1, and miR221), all of which are downstream of the site of
drug action (EGFR), affect whether a tumor responds to gefitinib treatment. The
model also quantified how sensitive a tumor is to gefitinib; whether the tumor was
resistant, went into a partial remission, or complete remission (Iyengar et al. 2012).
As an illustration, we translate this ePD model of EGFR inhibition into two types of

94 S.N. Steinway et al.



discrete dynamic models: (1) a Boolean model and (2) a three-state discrete model.
Furthermore, we demonstrate the efficacy of discrete models at reproducing the
results obtained from the ePD model.

5.3.1 A Boolean Model of EGFR Inhibition on Tumor
Growth

The ePD model represents the EGFR signaling pathway as a linear pathway aug-
mented with a feed-forward motif from EGFR to Raf1 (Fig. 5.5a). Active EGFR
signaling leads to the induction of proliferation (output node). Tumor cell prolif-
eration regulates tumor growth and thus tumor size. Since we have the network
structure, we can move on to creating Boolean rules for each node in the network.
Most rules are simple to determine: nodes with a single input (regulator) can be
represented as Node* = Regulator. For example, from Fig. 5.5a, the rule for Pkc is
the following: Pkc* = Plcc. There are three nodes with multiple regulators, Kras,
Raf1, and Cdk4/6. As discussed in Sect. 5.2.2, most biological regulators act
independently of one another and can be combined by an OR rule; however, it is
important to understand the biology behind the network and to determine if syn-
ergistic relationships exist between regulators of the same node (AND rule). In the
case of the well-studied EGFR signaling network, the only evidence of biological
synergy occurs for the Cdk4/6 node, indicating that p27kip binds to CyclinD and
prevents its interaction with Cdk4, inhibiting cell proliferation (Polyak et al. 1994).
Thus, Cdk4/6* = CyclinD AND NOT P27kip (Fig. 5.5a).

Using the reduction of simple mediator nodes as described in Sect. 5.2.5 and
previously (Saadatpour et al. 2010), we reduced this network to an equivalent 7
node and 7 edge network by collapsing nodes with an in-degree and out-degree of 1
(Fig. 5.5b). For example, EGFR ➝ Plcy ➝ Pkc —|Rkip was collapsed to EGFR
—|Rkip. We subsequently substituted upstream regulators into rules for down-
stream nodes. For example, Rkip* = NOT EGFR would be produced from col-
lapsing the previously described rules. Using these methods, we constructed a set of
Boolean equations for the reduced EGFR network (Table 5.1).

In the ePD model of an EGFR inhibitor, perturbations in three different gene
products were the focus. RasGAP and miR221 were assumed to have three states:
over-active, normal, and under-active. Rkip was assumed to have two states: normal
and over-active (see Table 5.2). In the ePD model, combinations of these mutations
were integrated with the effect of an EGFR inhibitor to explore individual patient
response to treatment. As examples, R−, K0, M+ patients were predicted to have
EGFR inhibitor resistant tumors, R0, K+, M− led to tumors that are EGFR inhibitor
sensitive (full remission), and R0, K0, M0 tumors were predicted to lead to a partial
remission phenotype.

In order to test the fidelity of our Boolean model at reproducing these results, we
have to make some assumptions and simplifications. The ePD model had three
possible states for Rasgap and miR221 (e.g., R−, R0, and R+ for Rasgap) and also
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(a) (b)EGF

EGFR

EGFR

Fig. 5.5 The EGFR signaling network used to model EGFR inhibitor therapeutics. a This model
contains 18 nodes including three source (unregulated) nodes, and 18 edges. Nodes with
mutational changes to be modeled are colored. Nodes that under normal circumstances inhibit
EGFR signaling and proliferation have a dark background and nodes that induce EGFR signaling
and cell proliferation have a light background. b A reduced network was produced by collapsing
simple mediator nodes (nodes with one upstream regulator and one downstream target, see
Sect. 5.2.5). This led to a network with 7 nodes and 7 edges
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three possible model outputs: resistant, partial remission, and full remission;
however, Boolean models can only handle two states. Let us first make the
assumption that there are two model outputs: proliferation and no proliferation,
which correspond to resistance to EGFR inhibitor treatment and remission (re-
sponse to EGFR inhibitor treatment), respectively. Now we have to determine how
to handle the Rkip and Rasgap states. In order for the model to reproduce tumor cell
proliferation when EGFR signaling is active (EGFR = ON) in the absence of EGFR
inhibitor and no mutations, normal miR221 needs to correspond to the ON state,
and thus decreased miR221 is the OFF state. The increased miR221 level cannot be
distinguished from the normal level in a Boolean model so M0 = M+ = ON. If we
assume that the normal Rasgap state (R0) is closer to the R+ state; that is, that under
normal circumstances, Rasgap suppresses EGFR signaling and tumor cell prolif-
eration, then we can say R0 = R+ = ON.

Using the above assumptions for converting node perturbations for Rasgap
(R0 = R+ = ON) and miR221 (M0 = M+ = ON), we can determine the steady-state
of the Proliferation node for a Boolean model for each tumor genotype by substi-
tuting these values into the Boolean equations or by using BooleanNet. We can then
compare with the results of the ePD model by making a correspondence between
proliferation and a resistant tumor, and between the absence of proliferation and full
remission (Table 5.3).

The agreement between the ePD and Boolean model of an EGFR inhibitor is
quite strong. We see that 100 % (4 out of 4) of the tumors that are resistant in the

Table 5.1 Boolean rules for the reduced (7 node) EGFR network

Rkip* = NOT EGFR

Kras* = EGFR OR NOT Rasgap

Raf1* = Kras OR NOT Rkip

Proliferation* = Raf1 AND miR221

Table 5.2 Genes and perturbations modeled in the EGFR ePD model

Gene Symbol: perturbation Normal function Effect on tumor growth
(proliferation)

RASAL1
(Rasgap)

R−: hypermethylation Suppresses Ras
signaling (catalyzes
Ras-GTP to Ras-GDP)

Suppresses tumor growth
by inhibiting MAPK
signaling (Ras)

R0: normal

R+: hypomethylation

PEBP1
(Rkip)

K0: responsive to PKC Rkip inhibits Raf
(MAPK signaling). Pkc
inhibits Rkip

Suppresses tumor growth
by inhibiting MAPK
signaling (Raf)

K+: non-responsive to
PKC

miR221 M−: decreased miR221 miR221 suppresses p27.
p27 suppresses CDK4

miR221 induces tumor
growthM0: normal miR221

M+: increased miR221
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ePD model undergo proliferation in the Boolean model and that 67 % (4 out of 6)
of tumors that achieve full remission in the ePD model undergo no proliferation in
the Boolean model. Interestingly, even though there is no partial remission category
in the Boolean model, it seems that the Boolean model stratifies into proliferation
versus no proliferation groups right in the middle of the partial remission category.
Assuming that the Boolean model is correct if it attains the proliferation outcome to
the left of this mark and the no proliferation outcome to the right of this mark, then
the model correctly predicts the ePD outcomes in 83 % of the cases.

5.3.2 A Multi-state Discrete Model of EGFR Inhibition
on Tumor Growth

The ePD model of EGFR inhibition has some non-Boolean discrete properties:

1. The model output was classified into three discrete categories: resistant, partial
remission, or complete remission, depending on the tumor size (Table 5.3).

2. Rasgap and Rkip have three states: under-active, normal, and over-active
(Table 5.2).

Therefore, a multi-state discrete model may better reproduce the results of this
model. Because the model output was assigned three categories: resistant, partial
remission, or complete remission, we can assign the “Proliferation” node the same
three states: −1 (remission), 0 (partial remission), and 1 (resistant). Similarly, the
states of Rasgap and miR221 could be assigned three states depending on activity:
−1 (under-active), 0 (normal), and 1 (over-active). The states of EGFR and Rkip
can remain as Boolean (two-state) variables.

We configure the truth tables so that they preserve or refine the Boolean rela-
tionships indicated on Table 5.1. For example, the Boolean rule for Kras indicates
that the presence of EGFR or the absence (OFF state) of Rasgap can lead to the
activation of Kras. The refined truth table will have three states for Rasgap and
Kras. We assume that the presence of EGFR combined with a low or intermediate
state of Rasgap leads to a high activity (state 1) of Kras, as does the under-activity
(state −1) or Rasgap. We assume that the absence of EGFR combined with
over-activity of Rasgap leads to low activity (state −1) of Kras. The remaining two
conditions are assumed to lead to an intermediate Kras activity (see Fig. 5.6). The
resulting model recapitulates all but two findings of the ePD model, or almost 89 %
of ePD model findings (Table 5.3). In fact, the R0, K+, M+ case is on the border
between the partial and complete remission categories and would be consistent if a
slight change were made in the tumor mass threshold between these two categories.
Furthermore, we can stratify our results into three categorical outcomes instead of
just two in the Boolean model, which is substantially more informative. Lack of
intermediate categories like “partial remission” is one of the major limitations of
Boolean models. Using multi-state models, intermediate states can be recapitulated.
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5.4 Conclusions

Very frequently the kinetic details of biological processes are not known because
they are very difficult to measure experimentally. Discrete dynamic modeling is
formidable in the absence of such details. As an example of how discrete dynamic
modeling can be used in systems pharmacology, we translated a pre-existing ePD
model of an EGFR inhibitor and its effect on tumor growth in the context of various
tumor mutations. The results demonstrated that even in the absence of the rigorous
experimental detail (e.g., kinetics and concentration information) that was required
to create the ePD model, our discrete dynamic model was able to recapitulate
almost 90 % of the ePD model results. This is a testament to not only the utility of
discrete models but the importance of the structure of a biological network over the
kinetic details of the individual processes in determining network function.

In the post-genomic era, we have largely realized that there are major genomic
differences among humans, and that these individual differences are likely very
important contributors to disease and disease susceptibility. The major issue now is
how we use this information to make smarter decisions about who we treat and how
we treat them. Systems pharmacology offers a framework to approach these issues.
Discrete dynamic modeling is a critical means to understand the network effects of a
drug, how and why it might work in the context of differences in individual net-
works, and which drugs might work best in different individuals. The era of per-
sonalized medicine is upon us. Discrete dynamic modeling is and will continue to
be a powerful tool to systems pharmacology and personalized medicine in this new
age of pharmaceutical intervention.

EGFR

EGFR

EGFR

Fig. 5.6 Truth tables for the multi-state discrete model of EGFR inhibition on tumor growth.
The EGFR and Rkip nodes have two states. Rasgap, Kras, Raf1, miR221, and Proliferation have
three states. Asterisk marking a node’s name indicates the future state of the node
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Chapter 6
Kinetic Models of Biochemical Signaling
Networks

Mehdi Bouhaddou and Marc R. Birtwistle

Abstract Kinetic models of biochemical signaling networks are a mechanistic
description of pharmacodynamics, and thus are potentially well-poised to fill gaps
in the drug development pipeline by: (i) allowing putative drugs to be tested via
simulations for efficacy and safety before expensive experiments and failed clinical
trials; (ii) providing a framework for personalized and precision medicine that
incorporates genomic information into a prediction of drug action in an individual;
and (iii) interfacing with traditional pharmacokinetic models to yield computable
yet mechanistic simulations that can inform drug dosing and frequency. However,
biochemical signaling networks are currently incompletely understood on a basic
level and are extremely complex compared to traditional applications of kinetic
modeling. Herein, we describe current methods used to build such models and
highlight strengths and weaknesses of the various approaches, as well as identify
areas that need more research to drive the field towards influencing these important
potential applications.
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6.1 Introduction

Kinetic models are those that represent the dynamics of a system in response to
perturbation, and are almost ubiquitously quantitative. This chapter focuses on how
one builds a quantitative kinetic model to describe the coupled chemical reactions
that together dictate how cells respond dynamically to a perturbation, such as
treatment with a drug. These collections of coupled chemical reactions are often
called biochemical signaling networks, or signal transduction networks. The word
network should be stressed, because although the historic notion of linear signaling
pathways has allowed us to understand basic routes of biochemical signaling, it is
becoming clear that signaling pathways in cells rarely operate linearly in isolation,
but rather are highly interconnected with feedforward and feedback loops and
exhibit significant crosstalk (Kholodenko et al. 2010).

Why should one care about kinetic models of biochemical signaling networks?
They are useful, if not essential tools in understanding and predicting how per-
turbations to biochemical signaling networks influence cell behavior. The validity
of this assertion is not clear if one still views signaling in terms of linear pathways
without feedforward and feedback loops or crosstalk. However, when one embraces
these ubiquitous features of signaling systems, the importance of kinetic models as
a tool to predict quantitative signaling behavior becomes lucent. As a simple
example, consider the simple biochemical network shown in Fig. 6.1, where an
input signal S is controllable and activation of D leads to a cell fate. In this simple
yet common “incoherent feedforward loop” network, the input signal S leads to
activation of A and C, but A activates D while C represses D. What will the cell fate
be if S is increased? If the levels of C were high, then increasing S would decrease
D, and if they were low, the opposite. Further compounding this seemingly simple
question are the spatiotemporal dynamics of A and C activation. If A is localized
with D but C is not, then D would go up, but if C is localized with D and A is not,
the opposite. Moreover, if C affects D more quickly than does A, D would go down
then up, and if C affects D more slowly than does A, vice versa. Thus, even in this
idealized example, quantitative knowledge of network spatiotemporal dynamics is
needed to predict cell fate. Qualitative knowledge for maps such as those in Fig. 6.1
is currently abundant, but the quantitative knowledge needed to predict behavior in
response to perturbations is scarce. This quantitative predictability problem is
amplified by the overwhelming complexity of real biochemical networks, in which
a large number of species are interconnected by a multitude of feedforward and
feedback regulatory motifs. Kinetic models of biochemical signaling networks have
properties that are suitable for dealing with these types of problems.

This kind of quantitative understanding of signaling dynamics is at the heart of
much current signal transduction research. If one understands the relationship
between biochemical network behavior and cell fate, it becomes possible to answer
a related but critically important question: how can one manipulate a biochemical
network to control cell fate? The ability to answer this second question has
seemingly countless potential applications. For instance, understanding how to
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make stem cells migrate, differentiate, and proliferate as needed could potentially
lead to cures for several hitherto untreatable diseases, and understanding how to
perturb deregulated signaling networks in cancer cells such that they cease prolif-
eration and migration could lead to novel cancer treatments. Improving the effi-
ciency of the drug development pipeline is critical as the cost of drug development
rises while success rates fall (Birtwistle et al. 2013; Returns on R&D investments
continue to fall 2014), and the ability of kinetic models to predict the effects of
putative new drugs or drug combinations, both for efficacy and toxicity, can place a
meaningful computational layer into the pharmaceutical drug development pipeline
that can help prevent costly failed clinical trials (Schoeberl et al. 2009). Moreover,
if the model is grounded in biochemical mechanisms, as we advocate for in this
chapter, then adapting the model to different patients based on their particular
genomic characteristics may be straightforward. In this regard, kinetic models of
biochemical signaling networks have been referred to as enhanced pharmacody-
namic (ePD) models (Iyengar et al. 2012). The ability of ePD models to cleanly
interface with traditional pharmacokinetic models can also help inform drug dosing
and scheduling (Zhang et al. 2014). These potential applications poise kinetic
modeling of biochemical signaling pathways to have significant impact in the
developing disciplines of systems and personalized pharmacology.

6.2 Building Kinetic Models of Biochemical Signaling
Networks

Figure 6.2 illustrates the general process that one would follow to develop a kinetic
model of a biochemical signaling network. It begins with a question or problem-of-
interest, and ends with a validated model that describes the relevant system

S

A

C

D

Cell Fate

Fig. 6.1 A simple incoherent feedforward motif
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Fig. 6.2 An overall workflow for building kinetic models of biochemical signaling networks. The
various aspects of the process are described throughout this chapter in sequence. Box—process to
be carried out, trapezoid—input information or data, diamond—decision to be made
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behavior and answers the initial question in a meaningful way. This process is not
unique to the models we consider in this chapter but is instead rather general to
many types of modeling. Notably, it depicts an ideal situation; in practice typically
many of these steps are either not performed or do not follow rigorous protocols.
Models that are not developed via this ideal process nevertheless are often quite
useful and have had impact in systems biology research. Yet, applying all the steps
of this pipeline would certainly improve the final developed model and would help
to standardize the currently widely-varying protocols employed to develop these
models. Such protocol standardization would help to boost confidence in the fidelity
of this class of models, as well as increase model sharing and reuse. This is of
particular importance if the goal of one’s modeling efforts is to inform preclinical or
clinical pharmaceutical development in an industrial or clinical setting.

In what follows, we expand on each step of this process, surveying current
methods and approaches as well as illustrating with real examples when possible.
Also, although we give an inherent bias towards mammalian systems and methods,
as the focus of this chapter is pharmacology, many of the presented methods are
general and can be applied to a multitude of biological systems.

6.2.1 Identify the Question or Problem

The process begins by identifying the question or problem-of-interest. This step is
absolutely critical to embarking on a well-posed modeling exercise that is likely to
yield meaningful research results, and is analogous to starting a research project
with a well-founded and experimentally-testable hypothesis. The question should
(i) rely on or be enhanced by kinetic modeling for providing an answer and
(ii) provide focus for the scope and granularity of the model when choosing from
among the many alternatives to be discussed below.

Throughout this Chapter, we will illustrate some (but not all) of the methods
with a case study focused on the role of Kinase Suppressor of Ras 2 (KSR2) in
extracellularly-regulated kinase 1 (ERK1) and ERK2 signaling mediated by the
B-isoform of rapidly accelerated fibrosarcoma (B-Raf) (Brennan et al. 2011). The
ERK1/2 signaling pathway plays a central role in a variety of cellular processes,
including migration, differentiation, and death (Yoon and Seger 2006). B-Raf is
commonly mutated in a variety of human cancers. A well-documented B-Raf
mutation is V600E, which is frequent in melanoma and constitutively activates the
kinase activity of B-Raf, leading to inappropriate ERK1/2 activation and cell
proliferation, survival, and migration (Dankort et al. 2009). A targeted small
molecule inhibitor of only B-Raf V600E, but not wild-type B-Raf or C-Raf (ve-
murafenib) was recently developed with structure-based approaches, and has
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showed a remarkable 80 % response rate in melanoma patients with the V600E
mutation (although the tumor regression only lasted 2–18 months presumably due
to adaptive resistance) (Sondergaard et al. 2010; Das Thakur et al. 2013; Bollag
et al. 2010). However, not all Raf inhibitor drugs have worked out so well. Pan
small molecule inhibitors of Raf family proteins, such as GDC-0879 and PLX4720
that target mutated and non-mutated B-Raf as well as the C-Raf isoform, have been
developed but have seen relatively limited clinical success (Hatzivassiliou et al.
2010; Poulikakos et al. 2010). This may be due to the fact that, in some cases, these
inhibitors can actually have paradoxical activating effects on Raf-family proteins by
inducing their dimerization (Poulikakos et al. 2010) and depend on the mutational
status of the upstream Ras family proteins (Hatzivassiliou et al. 2010). A new and
potentially critical mechanism has been shown for how the scaffold protein KSR2
operates in the context of mediating B-Raf activation and signaling to ERK1/2
(Brennan et al. 2011), and it may be feasible to design drugs that disrupt KSR2’s
ability to activate B-Raf-mediated ERK1/2 signaling. What oncogenic mutations
might make a particular tumor sensitive and/or resistant to such a KSR2 drug? What
other drugs, such as Raf inhibitors, may synergize with a KSR2 drug? What affinity
must a KSR2 drug have to exert ERK1/2 pathway inhibition, and what are the most
effective mechanisms to target? A kinetic model of the ERK1/2 signaling pathway
incorporating these new KSR2 mechanisms may help answer such questions.

6.2.2 Define the System

Defining the system forms the foundation for the entire modeling process, yet it is
very difficult to systematize and embodies what many refer to as “the art of
modeling”. Many choices and assumptions must be made that are based more on
intuition rather than rigor and mathematics. Yet, one guiding principal that almost
universally holds true is that of Occam’s Razor, which suggests that when con-
fronted with many possibilities, one should choose the simplest that describes all
desired features. Thus, we prefer to start simple with relatively restrictive models,
and only expand the model to be more complex when warranted by inability to
describe experimental data relevant to the question-of-interest. At this stage it is
prudent to consider the experimental system as well (e.g., cell lines vs. animal
models; which lines or animals, etc.), although this could also be considered at the
experimental design phase.

6.2.2.1 Inputs and Outputs

The question-of-interest should inform a clear choice for the input(s) and output(s)
of the model. The input should be experimentally perturbable, the output should be
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experimentally observable, and ideally vice versa. For our example, we choose Ras
as the input and ERK1/2 as the output. Ras is a small G-protein that sits at the top of
the B-Raf-ERK1/2 signaling cascade. Activation of Ras leads to B-Raf and ERK1/2
activation. ERK1/2 activation is a key regulator of proliferation, and its aberrant
activation in cancer is often a driver of unregulated growth.

6.2.2.2 Connecting the Inputs and Outputs with a Kinetic Scheme

The kinetic scheme is a precise pictorial representation of the chemical transfor-
mations that are assumed to occur between the model inputs and outputs. It is the
foundation and a central part of the model. There have been some formalisms
proposed to depict kinetic schemes, such as those suggested by CellDesigner
(Kitano et al. 2005), but they have yet to be widely adopted. Nevertheless, there are
a few basic features that are widely understood (see Fig. 6.3 for examples):
(i) binding of one species to another to form a complex is depicted by two arrows
smoothly coming together into one arrow, and dissociation as the reverse; (ii) en-
zymatic transformation is depicted by a curved unidirectional arrow from substrate
to product, with a straight unidirectional arrow from the enzyme to the nadir of the
curved arrow; (iii) degradation is depicted by chemical transformation to the empty
set ∅; (iv) synthesis is depicted by chemical transformation from nothing. Of
course, there are many variations on this theme, but these generalities will help one
to understand many kinetic schemes.

Deciding on reactions to connect the inputs and outputs is again part of the art of
modeling. Moving backwards from the output to the input is usually a reasonable
method. How does my output get produced? What biochemical entities are needed
to do that? How does this mechanism move me one step closer to my input? By
repeatedly answering these questions, one can arrive at a list of species and reac-
tions that are likely important to connect the model inputs and outputs. It will also
suggest when “dead-ends” are present and thus suggest species and reactions that
may be culled.

We opt to build “mechanistic” models when possible, meaning that if an ele-
mentary reaction mechanism is known, then we prefer to include it in the model
explicitly. This is desirable as the model is grounded by its clear connection to real
biochemical entities and mechanisms, and as such is usually easier to compare to
experimental data than a model that is not mechanistic. Most importantly, a
mechanistic model can be quite adaptable to different cell systems or contexts
(Bouhaddou and Birtwistle 2014) because its parameters and species have explicit
biochemical meaning and can be changed by measurements in the new system. This
is in contrast to empirical models that may be very good at describing the behavior
of a particular system, but are not easily adaptable to other systems because the
parameters do not have biochemical meaning. Yet, more often than not in bio-
chemical signaling networks, uncertainty is abundant, and mechanisms are not
known. This necessitates semi-mechanistic or empirical approaches, at least for
connecting those species where mechanisms are not known. Approaches based on
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fuzzy logic, Bayesian inference, and quantitative logic gates have had success in
such endeavors (Morris et al. 2011; Kirouac and Onsum 2013; Sachs et al. 2005), as
well as those based on modular response analysis (Klinger et al. 2013) or similar
perturbation-centric methods (Molinelli et al. 2013). Moreover, the mechanistic
links between signaling kinetics and cell fate, such as apoptosis, are sometimes not
clear; in such cases regression based methods, such as partial least squares
regression, have been shown to work well (Miller-Jensen et al. 2007; Janes et al.
2005). Useful models will likely be a mix of mechanistic with empirical functions
when necessary.

Sometimes, explicitly modeling all known biochemical mechanisms is overly
burdensome or not relevant to the question of interest. For example, often times in
models of kinase signaling pathways, ATP is not explicitly modeled. Of course,
ATP is important for kinase signaling; yet, its concentration almost never changes
in the cell and its binding to enzyme is typically very fast and does not appreciably
influence the overall reaction kinetics. Thus, one must exercise some restraint to
balance the costs vs. the benefits of incorporating mechanistic detail. Without this
restraint, one ends up with an extremely large model that becomes computationally
impractical to apply the downstream modeling process steps. Thus, we strongly
prefer parsimony as a first assumption over complexity.

The initial kinetic scheme we have chosen to depict our KSR2/B-Raf model is
shown in Fig. 6.3. Note that we have also indicated reaction rate numbers and
species indices; this greatly facilitates model development and its understanding by
others. As stated above, we describe scheme development starting with the output
and work upstream. ERK1 and ERK2 are doubly phosphorylated and activated by
active MEK1 or MEK2; however, only MEK1 has been sufficiently studied to be
included in the model (Brennan et al. 2011). MEK1 is activated by double phos-
phorylation as well, and it is claimed that only MEK1, which is bound to the
KSR2-B-Raf complex, can be doubly phosphorylated by a different B-Raf molecule
(Brennan et al. 2011). We assume that active GTP-bound Ras serves to recruit these
MEK1-KSR2-B-Raf complexes (presumably through the Ras binding domain of
B-Raf) and catalytically active B-Raf dimers to the plasma membrane so that the
B-Raf dimers can phosphorylate and activate MEK1. We assume that KSR2,
MEK1, and B-Raf can bind in any order to one another, but that B-Raf is needed for
binding to RasGTP. As mentioned above, we choose Ras as our model input, which
can be in two states, the inactive GDP or active GTP bound state. The conversion of
RasGDP to RasGTP is mediated by guanine exchange factors, whose activity are
typically regulated by external factors such as mitogens. It is well established that
active, doubly phosphorylated ERK1/2 (ppERK1/2) enacts strong negative feed-
back upstream by directly phosphorylating and inactivating C-Raf, and possibly to
a lesser extent B-Raf (Sturm et al. 2010; Fritsche-Guenther et al. 2011; Pratilas et al.
2009). Another well-established mechanism of ERK1/2-mediated feedback, which
is thought to travel through p90 ribosomal S6 kinase (RSK), is dampening of Ras
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activation by inhibiting the GEFs (von Kriegsheim et al. 2009). Negative feedback
is important for dictating input/output responses and drug sensitivity/resistance, and
therefore we include them since one of the modeling goals is to investigate drug
sensitivity/resistance.

Inspection of all the various association and dissociation reactions presented in
Fig. 6.3 highlights that it is often difficult to allow for all combinations of bio-
chemical transformations in a rigorous manner (i.e., it is easy to leave some out by
mistake). Furthermore, consider how difficult it would be to incorporate C-Raf into
this model, which can heterodimerize with B-Raf and can also bind many of the
same targets as B-Raf. Yet, incorporating C-Raf would likely be important to our
question-of-interest, since it is the target of many current Raf drugs and influences
their effectiveness (Sullivan and Flaherty 2013; Heidorn et al. 2010). This “com-
binatorial complexity” arises when model species have multiple sites that can each
be in many states, and arises not only from complex binding scenarios (as described
here), but more commonly from multisite modification such as phosphorylation.
For example, the epidermal growth factor receptor has approximately 10 tyrosines
that can each be unphosphorylated, phosphorylated, or bound to various down-
stream adaptor proteins; accounting for all these combinations yields 310 possible
species. This is clearly infeasible to draw on a kinetic scheme (and code) (Birtwistle
2014). An innovative solution to building models that account for such combina-
torial complexity is “rule-based modeling” (Chylek et al. 2013; Sorokina et al.
2013). BioNetGen and its derivatives, such as NFsim, are the more commonly used
variants (Sneddon et al. 2011). Instead of specifying a detailed kinetic scheme of all
unique chemical species, one only lists the domains and states of each molecule and
a handful of reaction rules that describe interactions between these domains and
states, which the software then iterates over to generate all potential chemical
species. Although attractive-in-principle, rule-based approaches tend to generate
extremely large models (sometimes even of infinite size if there are ring-forming or
polymerization reactions), which practically limits their applicability and sometimes
necessitates assumptions to reduce model size so that they are computationally
feasible. As computational power grows and rule-based algorithms improve, such
approaches will become more attractive. Nevertheless, whether the kinetic scheme
is depicted with the traditional enumeration of unique chemical species or by
reaction rules, the modeling steps illustrated in Fig. 6.2 and discussed below still
generally apply.

6.2.2.3 System Properties

Whereas the kinetic scheme is a quite comprehensive summary of all the bio-
chemical species and reactions being considered, there are still several key

114 M. Bouhaddou and M.R. Birtwistle



properties of the system to specify beyond that. Below we list these properties and
describe rationale for their selection:

1. Single Cell or Cell Population Average: Are the experimental data to be gath-
ered on a single cell level, or from millions of cells combined into a single
measurement? Are the questions-of-interest relevant to behavior of individual
cells or a population of cells?

2. Spatial or Compartmental: Do possible diffusional effects or spatial gradients of
biochemical species play a role? Can various subcellular compartments be
viewed as effectively well-mixed? How many cellular compartments are
needed?

3. Stochastic or Deterministic: Are any molecular species present in low copy
number (*100), making stochastic effects potentially important? Is one inter-
ested in cell heterogeneity? Does gene expression noise affect the
question-of-interest?

4. Dynamic or Steady-State: Are cellular dynamics important for your
question-of-interest? Will the experimental data consist of time courses?

Determining these properties gives well-defined tasks and methods for later in the
model development process.

For our example, we choose (1) cell population average, as drug sensitivity and
resistance are typically evaluated in cell populations, (2) compartmental with one
whole cell compartment, as the kinetic scheme does not involve any transport or
subcellular organelles, (3) deterministic, as these components are not very lowly
expressed (see below Build Initial Model section), and we do not wish to explain
any cellular heterogeneity (although drug response heterogeneity may be interest-
ing), and (4) dynamic, because often ERK1/2 and/or drug dynamics can be
important for mediating biological effects, and there are dynamic data available to
help constrain the model behavior.

Unfortunately, there is not enough space in this chapter to describe how to build
spatial models of biochemical signaling networks; however, there are a number of
excellent reviews on the topic (Kholodenko 2006; Neves and Iyengar 2002), and
many pieces of the model building process do not depend on whether the model is
spatial or compartmental.

6.2.3 Build Initial Model(s)

Once the system is defined and the kinetic scheme is in hand, one can specify the
model equations and then simulate and adjust the model, if needed, based on
literature or pre-existing experimental data.
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6.2.3.1 Choosing Reaction Rate Laws

Each reaction in the kinetic scheme has a corresponding rate law, which describes
the rate at which that reaction proceeds in units of concentration per time. The type
of reaction will drive the choices for the mathematical form of the rate law. These
rate laws can be used directly for deterministic simulations, and with minimal effort
for stochastic simulations (by converting units to reaction propensities and molecule
numbers).

Association and dissociation reactions are often assumed to follow mass-action
kinetics, in which the reaction rate is proportional to the concentration of the
reactants. For example, v1 is an association reaction between MEK1 and KSR2 and
we assume the rate law to be v1 = k1[MEK1][KSR2], where k1 is a rate constant
(1/time/concentration) and [] denotes concentration. The corresponding dissociation
reaction is v2 = k2[MEK1-KSR2], where k2 is a rate constant (1/time). For sim-
plicity and organizational purposes, we prefer to match rate constant subscript
indices with those of the reaction.

Enzymatic reactions can be broken down into elementary steps of association,
catalysis, and dissociation, or a lumped rate law can be assumed. Michaelis-Menten
lumped rate laws are common and capture the saturating nature of enzymatic
reactions even though the basic assumptions that go into such rate laws may not
firmly hold in some scenarios to which they are applied (such assumptions are often
difficult to validate in vivo) (Chen et al. 2010). If competition or sequestration is
thought to be important, then full elementary reactions should be used, in which the
binding of enzyme and substrate are considered explicitly.

Many times we further reduce the Michaelis-Menten equations to effective linear
rate laws that on their surface look like mass action laws. This requires assumptions
of Michaelis constants being much greater than the substrate concentration, giving
an effective first-order rate constant of kcat/Km, where kcat is the enzyme catalytic
constant and Km is the Michaelis constant. However, often due to parameter
identifiability issues (see below), one usually cannot determine whether such
assumptions are valid or not, and therefore we opt to use Occam’s Razor and go
with the simpler linear rate laws unless there is experimental evidence that they are
too simplistic.

Other potential rate laws are many, depending on specific assumptions the
researcher would like to make about each reaction. They include, for example,
Hill-type equations for multi-step or unknown mechanisms, and also for tran-
scriptional regulation. Our choices for all the rate laws in our example cannot be
described here due to space constraints, but can be found in the MATLAB code for
the model contained in the Supplementary Material (SimulateKSRv1.m and
SimulateKSRv2.m).

One important consideration is that all of these reaction rate laws are predicated
upon the hypothesis that cellular compartments are “well-mixed”, meaning that the
species are uniformly distributed throughout a compartment. Clearly, in many
biological situations such an assumption is suspect. For example, the plasma
membrane is not a homogeneous compartment but rather contains microdomains
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where receptors are located and downstream signaling occurs. Yet, models based on
this well-mixed assumption over the past 40 years, from metabolism to signaling,
have been very successful at describing the biological behaviors of interest and
providing insight into their mechanisms and function. Nevertheless, one must be
aware of this underlying assumption of traditional reaction kinetics approaches, and
if there is reason to believe it is causing model-experiment mismatch, one can use
more complex agent-based or spatial kinetic Monte Carlo approaches (Collins et al.
2010; Costa et al. 2009). Alternatively, one can instead opt to use empirical
approaches in such situations, as described above.

6.2.3.2 Initial Parameter Value Choices

Although parameter estimation is an explicit and significant step later in the
modeling process, much can be done here at the initial model development stage to
determine parameter values. There is a rich literature describing in vitro studies on
enzyme kinetics for many enzymes of interest, as well as affinities of protein–
protein interactions. These should serve as initial parameter value estimates. Even if
a particular protein–protein interaction or enzyme was not explicitly studied, one
can infer a feasible range for the parameter based on experimental studies of
homologs or similar processes. Such primary experimental studies should be a first
resource for determining initial parameter values. However, it should be noted that
there is no guarantee that parameter values measured in an in vitro setting corre-
spond to a live cell situation; thus, caution must be taken to remember that these
values are only initial estimates, and may need to be refined.

Another source of parameter values is previously developed kinetic models.
These are not as trustworthy as values that have been directly determined experi-
mentally, because parametric identifiability of these types of models is largely not
guaranteed (see Parameter Estimation section below). Nevertheless, such values are
reasonable starting points when no other information is available.

Because many of the reactions are founded in mechanism, reasonable lower and
upper bounds can be posited based on thermodynamic and physical principles, such
as detailed balance and diffusion limit. Detailed balance specifies that the product of
equilibrium constants for a circular cycle of binding reactions that do not produce or
consume energy must equal one, and the diffusion limit specifies that no association
reaction can proceed faster than the two reactants can find each other. If one
assumes that a particular protein–protein association has the same equilibrium
constant no matter what the states of the proteins (e.g., bound to other proteins,
phosphorylated, etc.), then detailed balance will be satisfied. There is some spread
in the literature as to what the diffusion limit is, perhaps because of uncertainty in
how diffusion proceeds in the complex cellular environment as compared to a pure
solution, but it is typical to limit on rate constants at approximately 0.1 s−1 nM−1.
In our experience, association rate values are well described by values a few orders
of magnitude less than this (*0.001 s−1 nM−1). One will often find values of
dissociation constants or affinities in the literature; we prefer to hold the association
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constant at 0.001 s−1 nM−1 and then calculate the off rate constant, based on the
reasoning that affinity will more likely affect the lifetime of the complex (koff), rather
than the association rate constant (often determined by encounter rate set by dif-
fusion). If one finds that the association rate constant must be increased far past the
diffusion limit to describe the data well, a likely explanation is that the two com-
ponents are co-localized in a volume smaller than the compartment being consid-
ered. For example, the association of two signaling proteins recruited to the plasma
membrane will have a much higher apparent rate constant due to their
co-localization. Thus, such constraint-violating situations can be resolved with new
mechanistic hypotheses, and then the rate law can be adjusted by assuming a
volume of this new subcompartment and scaling the two reactant concentrations
accordingly.

Another major class of parameters to determine is initial species concentrations.
Cellular protein concentrations range from about 0.1 nM (*100 molecules/cell) on
the low end to about 1 lM (*106 molecules/cell) at the high end (based on a
2000 lm3 cell—8.3 � 10−4 nM � cell/molecules). A recent study has obtained
absolute quantification of many cellular protein concentrations (Schwanhausser
et al. 2011), and we routinely use this resource to obtain species concentration
estimates. We also used this resource to estimate the overall levels of the species in
Fig. 6.3 (see Supplementary Material), but KSR2 levels were not available so this is
something we must estimate by analyzing its effects on model behavior. However,
it is important to note that these estimates should be refined later by parameter
estimation or through direct experimentation, as protein concentrations vary widely
across cell types.

6.2.3.3 Deriving the Differential Equations

For a deterministic model, each species will have its own ordinary differential
equation (ODE) (or a partial differential equation if a spatial model is being
considered; stochastic models do not have differential equations but rather reactions
are fired probabilistically using rate laws derived from the deterministic case).
A large majority of kinetic models of biochemical signaling networks are based on
ODEs. Thus we describe in detail here the derivation of the ODEs (there are
numerous excellent reviews on these other topics for interested readers).

The ODE for each species is simply the sum over all reactions that produce or
consume that species, with all reactions multiplied by the stoichiometry of the
species in that reaction. Consuming stoichiometries are negative, whereas pro-
ducing stoichiometries are positive. The entire system of ODEs is succinctly rep-
resented in matrix-vector notation using the stoichiometric matrix S

dx
dt

¼ Sv ð6:1Þ
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here, x is an n-by-1 vector of species concentrations, v is an m-by-1 vector of
reaction rates, and S is an n-by-m matrix containing the stoichiometric coefficients,
with species corresponding to rows and reactions corresponding to columns. In
principal, one does not need to specify the stoichiometric matrix to derive the
differential equations, and can instead write out sums of the reaction rates for each
species. However, we strongly prefer to use this stoichiometric matrix approach to
deriving the differential equations for several reasons: (i) reaction stoichiometries
are stored in one place and it is much easier to ensure their correctness; (ii) calcu-
lating the differential equations requires only one line of code (with linear algebra
libraries); (iii) any errors will be confined to the stoichiometric matrix itself, which
is straightforward to troubleshoot, rather than possibly being contained in hard
coded sums of reaction rates in multiple places; (iv) there are a host of analyses that
provide model information based on analysis of the stoichiometric matrix alone
(e.g., conserved moieties (Vallabhajosyula et al. 2006)); (v) providing a stoichio-
metric matrix facilities combining, modifying, and sharing models. An example
stoichiometric matrix for our model is provided in the Supplementary Material
(KSRModelv2Stoich.csv).

When reactions transport species across compartments, or when two reactants
are localized to a compartment but the reactant concentrations are defined with
respect to different volumes, special care must be taken to ensure the ODEs are
correct. In the case of transport, the product stoichiometry should be the volume
ratio between the compartments. For example, if a species A is transported from the
cytoplasm to the nucleus, with rate v = kt[A]cyt, then the stoichiometric matrix entry
for this reaction for cytoplasmic A is −1, but the entry for nuclear A is the volume
ratio Vcyt/Vnuc, with the subscripts cyt and nuc referring to the cytoplasm and
nucleus. Alternatively, one can multiply the vector of reaction rate laws by their
respective volumes, to obtain a left-hand side that is in terms of molecules (or
moles) per time, rather than concentration. In the case of species localization, both
species concentrations must be rescaled to the volume of the reaction compartment.
A typical example is ligand-receptor binding. Ligand-receptor association occurs in
the extracellular space, but ligand concentration is defined in the extracellular
compartment and receptor concentration in the cellular compartment. In this case,
the receptor concentration in the ligand-receptor association rate law should be
multiplied by the factor Vc/Vec, with the subscripts ec and c denoting extracellular
and cellular compartments. This rescales the receptor concentration to the extra-
cellular compartment for this particular reaction (but not in the entire model).

6.2.3.4 Simulating the Model-Deterministic

At this point one will have an ODE model that describes the mechanistic rela-
tionships between the chosen inputs and outputs. To simulate this model, one first
needs to specify the initial conditions. In most scenarios this is a two-step process.
First, one sets all of the unmodified, unbound species equal to the total concen-
trations determined above, and all other concentrations to zero. Then, with the input
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level set to that corresponding to the system prior to experimental perturbation, the
model is integrated to its natural steady-state. This step is called “equilibration.”
Integration should be done with an algorithm designed for stiff systems, such as
ode15s in MATLAB. The values for all states after equilibration become the
initial conditions for a relevant simulation in response to a perturbation. Then, the
response of a system to the perturbation is simulated by integrating over the desired
time interval, starting from the equilibrated initial conditions.

Simulations with the initial model should be used to verify that the model does not
have errors and that it displays expected behavior. No species should have negative
concentrations and moiety conservation should be confirmed. It is typical to do a
preliminary study of the dynamics and dose response of the system, and compare it to
what might be expected. Almost always the model must be altered. We did this for
our KSR2 model with the following characteristics in mind: (i) ERK1/2 activation in
response to mitogens usually occurs over *5 min., and in the presence of strong
negative feedback with decline by *30 min.; (ii) there should be a smooth dose
response of RasGTP, active B-Raf (RasGTP bound), ppMEK1, and ppERK1/2 to
mitogen levels 60 min. post mitogen stimulus; (iii) most MEK1 and ERK1/2 should
be in the doubly phosphorylated form at high mitogen doses; (iv) there should be an
optimal KSR2 concentration for causing maximal ERK1/2 activation 60 min post
mitogen stimulus; (v) increasing negative feedback strength should smoothen the
dose response to make ppMEK1 and ppERK1/2 (at 60 min.) increase more gradually
in response to increased mitogen levels. Unfortunately, we cannot expand in detail
how we made specific modifications to meet these criteria here, but the model code
with comments before (file name with suffix ‘v1’) and after (‘v2’) modification is
given in the Supplementary Material (SimulateKSRv1.m and SimulateKSRv2.m).
Interested readers are encouraged to analyze the differences between the two, and
contact us with questions.

6.2.3.5 Simulating the Model-Stochastic

If the model is stochastic, then there are no ODEs to integrate, and reactions are
fired through random sampling approaches. If one is unsure whether the molecule
numbers of various species are low enough to warrant stochastic simulation, it is
prudent to compare deterministic to stochastic simulation results and analyze if
there are significant differences. Common stochastic simulation methods reviewed
(Golightly and Gillespie 2013) are predominantly based on the Gillespie algorithm
or variants thereof. A preferred exact algorithm is that of Gibson and Bruck (2000),
but this is usually computationally intensive and cannot be widely applied to larger
models, particularly for stiff systems as is common for biochemical signaling net-
works. The implicit tau-leaping algorithm (Cao et al. 2007) is the numerical
equivalent to ODE integrators for stiff systems, and although it is not exact, it
usually gives acceptable results by time-averaging the behavior of fast reactions.
There are also hybrid methods that divide the model into stochastic and deter-
ministic portions (Salis et al. 2006). Many software packages make many such
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algorithms readily available in standard code libraries or with graphical user
interfaces, such as StochKit and Cain.

Sometimes, even though system behavior on the single cell level is stochastic, all
the molecule numbers are large resulting in little variability in reaction rates with
traditional stochastic simulations. Such noise may be largely due to cell-to-cell
protein expression variability, which arises from the stochastic nature of gene
expression. One can take such noise into account without direct stochastic simu-
lations, or rather by sampling total protein concentrations from known distributions,
and then integrating the ODE model for many sets of these initial conditions
(*1000) (Birtwistle et al. 2012a; Gaudet et al. 2012). Although some have used the
log-normal distribution for such sampling, it predicts a scaling behavior between
mean protein concentrations and the variance of protein concentrations that is not
consistent with experimental observations (Birtwistle et al. 2012b). The gamma
distribution is a more appropriate choice that captures cell-to-cell variability in
protein expression over a wider range of conditions (Birtwistle et al. 2012b;
Shahrezaei and Swain 2008). Alternatively, knowledge of the transcription and
translation rates, as well as mRNA and protein degradation rates for each species in
a model, permits the simulation of burst-like transcription and translation events de
novo using algorithms that simulate stochastic processes such as the Gillespie
algorithm.

6.2.3.6 Annotating the Model

For others to understand and reuse the model, it is essential to provide carefully
documented code, record the assumptions and parameter values that were used, and
then upload them to model-sharing resources such as BioModels or convert them
into a universal format such as SBML as well as provide source code (e.g.,
MATLAB or C++ code) (Waltemath et al. 2011). There is much literature devoted
to these topics and we do not discuss them in detail, but it is nevertheless important
to emphasize this step. We mention it here, rather than at the end, because it is
typically easier to annotate while the model is being initially developed, rather than
at the end when many versions of the model have been created, and many of the
assumptions were made long ago (sometimes several years).

6.3 Experimental Design and Execution of Experiments

It can often take months, if not longer, to gather reliable experimental data for the
initial development of a kinetic model. Thus, one should aim to plan such exper-
iments at a very early stage in the model development process, perhaps as early as
the kinetic scheme is produced (see curved arrow in Fig. 6.2). Although some
experimental design methods depend on an initial model, some experiments can be
planned and completed prior to completion of an initial model.
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Experimental design for kinetic models of biochemical signaling networks
consists of answering two questions. What types of perturbations should I apply?
What should I measure, and when should I measure it for each perturbation? If a
biological system has not yet been chosen, this also needs to be addressed here
based on the question-of-interest and system definition above. Are cell lines suf-
ficient or do we need animal models? What lines are appropriate? We focus on cell
lines. Here, we briefly describe the types of perturbation and measurement methods
that are commonly used, with the goal of providing enough information for readers
to make an informed choice, although it is impossible to comprehensively list all
methods here. As an aid, we provide a summary in Table 6.1.

We note that although it is seldom done, we strongly advocate for directly
measuring the total absolute abundances of all model proteins in the experimental
system of interest. Without these measurements to constrain the magnitude of the
various species in the model and the initial conditions, it is generally difficult to
make relevant predictions of the system behavior.

Table 6.1 Selected experimental methods and their properties relevant to kinetic modeling

Method What it
measures

Single cell
or
population
measure

Live,
fixed, or
lysed
cells

Ability to
multiplex

Ability to
generate
time-course
data

Absolute or
relative
quantification

qRT-PCR RNA Both Lysed Medium Medium Relative

RNA-seq RNA Both Lysed High Low Absolute or
relative

FISH RNA or
DNA

Single cell Live or
fixed

Medium Low Relative

Protein
tagging

Protein Both Live or
fixed

Low High Relative

FRET Protein
interactions

Single cell Live or
fixed

Low High Relative

Western blot Protein Population Lysed Low-medium Medium Absolute or
relative

Flow
cytometry

Protein Both Live or
fixed

Low-medium Medium Relative

Luminex Protein Population Lysed Medium Medium Relative

Mass
spectrometry

Protein Population Lysed High Low Absolute or
relative

Mass
cytometry
(CyTOF)

Protein Both Fixed High Low Relative
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6.3.1 Types of Perturbations

The most straightforward way to perturb the system is to apply a defined and
time-invariant concentration (dose) of a compound. Such compounds can be
pharmacological (e.g., a small molecule kinase inhibitor), or biological (e.g., a
growth factor). While biological compounds are usually applied at the moment
defined as time point 0, pharmacological inhibitors are often applied to the system
prior to biological compound treatment, to ensure its uniform distribution in cells.
Standard pipette-based approaches are limited to simple perturbation time courses,
such as the time 0 step response or a pulse-chase where the original dose is washed
out and then replaced with a new dose. However, sophisticated pump-based per-
fusion chamber or microfluidics methods (Mettetal et al. 2008) and
optogenetic-based methods (Toettcher et al. 2011, 2013) can allow for complex
time-dependent perturbations, such as sine waves or increasing ramps.

The system can also be perturbed at the transcript level. One can transfect
(liposome-based methods) or infect (virus-based methods) genetic material into
cells. The genetic material (usually a DNA plasmid) can express a gene ectopically,
overexpress an endogenous gene, or downregulate a gene via RNA interference
(e.g., shRNA) in a transient setting. A negative selection mechanism is needed to
obtain cells that permanently exhibit the alteration. To do this, the plasmid also
usually encodes resistance to a particular drug, such as puromycin. However,
genome-editing methods, such as those involving CRISPR and TALEN (Ran et al.
2013; Reyon et al. 2012), are becoming more realistic.

Once a gene has been permanently integrated, it can be controlled using drugs
such as tetracycline (or more commonly its higher affinity analog doxycycline) so
long as the gene is engineered to be Tet responsive. Expression can be modulated in
a dose-dependent manner, permitting a level of control similar to that describable
by a kinetic model. Aside from such transcription rate control, one can use the small
molecule Shield1 to increase the half-life of proteins that contain a DD domain
(Banaszynski et al. 2006).

6.3.2 Types of Measurements-Transcripts

To obtain a quantitative measure of the mRNA expression levels, one can perform a
qRT-PCR, or quantitative reverse-transcription polymerase chain reaction. This
technique is useful if one is interested in a few transcripts in a cell population
setting, but sometimes is done on single cells (although it can be technically
challenging). The alternative to enumerating individual transcripts a priori is to
measure transcripts globally, using a technique such as RNA-seq. RNA-seq data
can provide absolute mRNA copy number information as long as internal controls
are included in the analysis. Although RNA-seq is most commonly performed on
cell populations, the ability to perform RNA-seq in single-cells is rapidly emerging
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(Islam et al. 2013). If one is unable obtain RNA-seq data, microarray is a com-
parable methodology though it possesses several drawbacks such as high back-
ground noise and the limitation of having to define target sequences of interest a
priori (Xu et al. 2013). Fluorescence in situ hybridization (FISH) is a technique one
can use to visualize a particular mRNA transcript via a fluorescently labeled nucleic
acid probe. FISH can lend insight into differences in gene expression across a
population of cells and has been used to study stochastic gene expression in
mammalian cells with success (Raj et al. 2006). Generally, one fixes and perme-
abilizes the cells prior to FISH, thus killing them; however, it is possible to perform
FISH in live cells with minimal perturbation (Simon et al. 2010). Highly multi-
plexed FISH methods are also becoming available (Lubeck and Cai 2012).

6.3.3 Types of Measurements-Proteins

One way to measure the levels (and/or spatial location) of a protein over time is to
“tag” it with a fluorescent protein, by cloning them together such that they are
transcribed as a fusion protein. This method could serve to monitor protein
expression levels in response to a stimulus, such as cFos levels following growth
factor-mediated ERK activation. Importantly, protein tagging can be used to
measure protein levels and/or localization in live cells over time. Another live-cell
technique involves genetically encoded probes based on Forster Resonance Energy
Transfer (FRET) (Miyawaki 2011). Such probes allow one to measure the
spatio-temporal dynamics of biochemical signaling activities. For example, the
EKAR-EV FRET probe responds to ERK1/2 activity by changing its FRET
(Komatsu et al. 2011), and the past decade has provided a wealth of these probes for
various biochemical activities one may be interested in.

To measure protein levels in a cell population, the western blot is the gold
standard. In this technique, an antibody is used to bind to and measure the amount
of a protein or protein state in whole cell lysate that has been separated by
molecular weight. As an example, one could measure the level of a phosphorylated
protein in response to increasing mitogen dose. Further, the technique can be
combined with immunoprecipitation to quantify levels of protein–protein interac-
tions. Although enhanced chemiluminescence is often used to quantify western blot
signals, there can be non-linearity in such measurements; therefore for quantitative
kinetic models, systems such as LI-COR are preferred which provide a linear
signal-response. Absolute quantification is seldom done but possible by including
known protein concentrations as internal controls. It should be noted that the
western blot has been miniaturized into a so-called “microwestern” which is
potentially useful for kinetic modeling applications, since it allows probing with
many antibodies over many perturbation conditions (dose/time points). A Luminex
assay allows multiplexing to a similar extent as microwesterns (Ciaccio et al. 2010).

Flow cytometry allows one to measure the relative level of proteins in a large
number of single cells at a single time point, capturing the distribution of protein
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levels found in a population of cells using fluorescently labeled antibodies. In
principal, modern flow cytometers can quantify up to 16 analytes, but in practice
this is quite difficult and 3–4 color imaging is more typical. A flow cytometer
coupled to a mass spec (CyTOF) potentially allows quantification of *40 analytes
in single cells (Bendall et al. 2011), but requires specialized equipment and
antibodies.

As previously stated, one must determine initial protein concentrations in order
to construct a kinetic model that is biologically meaningful. One way to gather
initial protein concentrations in the cells of interest is via a proteomics approach
using mass spectrometry (MS), which can globally quantify protein levels in a
population of cells. Advances in mass spectrometry have enabled the quantification
of proteins in terms of absolute copy numbers, easily convertible to units of
molecules/cell (Schwanhausser et al. 2011).

6.3.4 Formal Statistical Design of Experiments

With an initial model that is based on and reproduces to an acceptable level
available literature or preliminary experimental data, it is possible to implement a
formal statistical design of experiments (DoE) tailored to the goal of the modeling
exercise. DoE is a mature field, and many have demonstrated how it might be
applied to the types of biochemical signaling models we describe here (Bandara and
Meyer 2012; Banga and Balsa-Canto 2008). The specific approaches that have been
described depend on whether the goal is parameter estimation for one model, or
discrimination between many candidate models. Although such established DoE
methods have historically been successful in other fields, their original development
is largely grounded in application to relatively low dimensional linear models, with
only a handful of states and experimental decision variables. Kinetic models of
biochemical signaling networks, however, have many properties that in our opinion
preclude meaningful application of such approaches with current computational
technology:

1. They are almost ubiquitously highly non-linear. Thus, local linear approxima-
tions of the model are used to apply these traditional DoE methods, the validity
of which is often unclear.

2. They are typically high-dimensional (>10 states). Thus, the potential number of
states to measure that the DoE algorithm must choose from is often over-
whelmingly large.

3. There are many potential experimental perturbations. This causes a combina-
torial explosion of possibilities for these DoE methods that optimize over the
experimental decision variable space.

4. It is generally not yet known how to guarantee parametric identifiability (see
Parameter Estimation below). Thus, it is unlikely that these DoE methods would
produce a design that significantly enhances our ability to identify model
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parameters or discriminate between two models, as compared to a more prag-
matic approach.

5. The validity of the initial model structure and parameter values is unknown at
this point. Thus, it makes little practical sense to spend a significant amount of
experimental resources to implement an optimal experimental design based on
an initial model that is likely inadequate.

These major reasons are most likely why in practice, formal DoE methods are
typically not employed to develop kinetic models of biochemical signaling net-
works. This is not to say that such methods lack importance, but rather that much
research is needed to develop new DoE methods that are suited to the properties of
this class of models and fill the current void in the model development process.

6.3.5 Practical Design of Experiments

The more pragmatic yet common approach to experimental design is to use the
insight of expert biologists to answer the two basic questions needed for experi-
mental design. This can often be done only with a kinetic scheme and thus can be
done before the initial model is completed. At this initial stage of model devel-
opment, a broad experimental design that perturbs the system using the model
inputs and measures across “important” states is preferred. Typically, perturbations
consist of applying extracellular agonists or antagonists (e.g., a growth factor) to
cells that have been serum-starved overnight (to minimize confounding variables),
in the presence or absence of pharmacological or small molecule inhibitors of “key
pathways” in the model. What states are “important” and what pathways are “key”
is best informed by expert opinion or initial experimental data. Dose responses for
the extracellular agonists or antagonists give important information to constrain
model behavior and should be done if the resources are available. Logarithmic dose
spacing (e.g., base 10) between saturating and limit of detection levels is often most
informative. Which species to measure is also best informed by an experimental
biologist with expertise in that system, and of course is limited by available tech-
nologies and resources. The time point selection should also be informed by expert
opinion, and depends on how one defined the system, the question(s) of interest, the
limits of the chosen technology, and available resources.

Biochemical signaling models have been termed “sloppy” (Gutenkunst et al.
2007), which refers to the fact that many key system outputs are quite robust to
variations in many model parameters (discussed more in Parameter Estimation
below). This property may be why such a pragmatic approach to experimental
design often results in a successful modeling exercise, because sloppiness dictates
that many of the choices simply do not matter for the behavior of key system
outputs.
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6.3.6 Comparison of Experimental Data to Model
Simulations

In general an experimental measurement does not directly correspond to a particular
model species. For example, if one is measuring a kinase activity in live cells by
FRET, the resulting FRET measurement cannot be directly related to the kinase
activity in the model, because there is not a linear relationship between the two
(Birtwistle et al. 2011). As another example, if one measures the total amount of
cellular RasGTP by pull down and western blot, this would correspond to a sum
over several model states in Fig. 6.3. Moreover, the way in which the western blot
data are normalized can have a significant impact on the quality of the normalized
data (Degasperi et al. 2014). Thus, great care should be taken to ensure that the best
comparison between experimental data and model simulations is being employed,
and often requires mapping the model variables onto so-called “observable” vari-
ables with defined functions. This requires a thorough understanding of both the
computational model and the experimental data; thus close collaboration and
effective communication between wet and dry lab researchers is essential.

6.4 Parameter Estimation

With an initial model and experimental data in hand, the next task is to determine
whether the model is capable of describing the experimental data, and what range of
parameter values give good fit. This exercise is called parameter estimation or
“training.” Parameters include total protein abundances (if not directly measured)
and kinetic rate parameters in each rate equation. Although one will have reason-
able initial values for all these quantities, it is highly unlikely that the model will be
able to reproduce the new experimental data without modifying the parameter
values. This is expected since many of the initial parameter values will have come
from in vitro studies or from data collected in a different biological system.

Parameter estimation for kinetic models of biochemical signaling pathways is an
extremely challenging exercise for two main reasons. First, the model is
high-dimensional and nonlinear. Thus it is computationally expensive to explore
the parameter space extensively when searching for good-fitting parameter sets.
Second, it is not understood how to guarantee parametric identifiability for these
models, and even this general class of nonlinear chemical kinetic models. An
identifiable parameter is one whose value is well-constrained by the experimental
data, such that it is known with acceptable precision. A typical kinetic model of a
biochemical signaling pathway will not have identifiable parameters. This is quite
shocking and perhaps even disturbing to modelers from other disciplines, such as
pharmacokinetics and pharmacodynamics described in other chapters in this book.
Despite this ubiquitous parametric uncertainty, an emerging theme in this type of
modeling is that key temporal outputs are typically robust to large changes in most
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parameter values. This property seems to be general for this class of systems
biology models and is referred to as “sloppiness” (Gutenkunst et al. 2007). From a
biological and evolutionary perspective, this makes sense, because key dynamic
behavior should not be affected by common noise sources. From a modeling per-
spective, this to some extent mitigates the problem that unidentifiable parameters
cause, with respect to reproducing biologically relevant behavior. However, one
should still strive to ensure all rate constants and concentrations are within bio-
physically feasible ranges, such as not exceeding the diffusion limit, and are jus-
tified to do so because model parameters typically have a biophysical interpretation.
Nonetheless, we are still left with the problem that we cannot be certain that
unidentifiable parameters do not affect our conclusion. That is why downstream
model analyses must account for how parametric uncertainty affects predictions,
such as global sensitivity analysis methods (see Model Analysis).

The first step in parameter estimation is to define lower and upper bounds for the
unknown parameter values. As described above, these can typically be set through
hard biophysical or thermodynamic limits. Next, one must define an objective
function that represents goodness-of-fit. There are many options, including
log-likelihood and sum-of-squared errors between simulations and data, and the
particular choice depends on assumptions for the expected errors in the experi-
mental data (Raue et al. 2013). Regardless, it is essential to scale each quantity such
that error does not depend on units (variance scaling is common and often statis-
tically valid). Then, one must choose an algorithm that will vary the parameters
over the bounds to optimize the objective function. Local, deterministic
gradient-based optimization is inappropriate for this class of models as they are
nonlinear and of high dimension. Global optimization methods are a necessary
component of any choice. One simple global method is to repeatedly employ local
methods but from different initial parameter values judiciously chosen from across
the parameter space (e.g., with latin hypercube sampling), and in fact such methods
may be both accurate and efficient (Raue et al. 2013). However, the majority of
studies have had success using either the genetic algorithm (Nakakuki et al. 2010;
Schoeberl et al. 2002) or simulated annealing (Wang et al. 2009). Bayesian methods
have been applied in a few cases with success (Vyshemirsky and Girolami 2008;
Eydgahi et al. 2013), and such methods are very attractive since they rigorously
account for multi-dimensional parametric uncertainty, although at much higher
computational cost than other global methods. Lastly, the chosen algorithm should
be run many times over, due to the inherent sloppiness of these models and
therefore parameter uncertainty. This allows one to estimate the range of parameter
values that give rise to models with “acceptable” fit. We suggest obtaining at least
10 good fitting parameter sets; *100 would give a much better indicator of
parametric uncertainty but even 10 is sometimes difficult to obtain due to the
computational burden.

Most of these parameter estimation algorithms are well-suited to parallelization
and should be implemented on high performance computing resources. One
potentially promising new technology is graphical processing unit (GPU)-based
computation. A single GPU card can contain *3000 processors that run the same
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program (i.e., model) given different input values (i.e., parameter sets), which is
ideal for this parameter estimation task. A desktop workstation can house up to 4
such cards, giving *12,000 GPU processors in a single machine. However, robust
ODE solvers that operate in the specialized GPU environment (e.g.,
NVIDIA CUDA language) must first be developed for such an approach to be
implemented. Some attempts exist, such as cudasim which can take an SBML
model input and use the GPU to simulate it both stochastically or deterministically
(Zhou et al. 2011), or code libraries such as odeint. Any GPU-based solver must
be able to implement implicit solver methods that can tackle the stiffness that is
present in these types of models.

After parameter estimation, one must decide whether the model has acceptable
fit or not. This is commonly done by simply plotting the model simulations against
the experimental data, and looking for close match between the two. In addition,
one can analyze the distribution of residual errors (differences between simulations
and data) for evidence of bias (non-zero mean). If there is bias, then that suggests
that the model structure and/or parameter bounds must be changed. A clear indi-
cator that parameter bounds should be changed is if estimated parameter values are
constantly on or near the bound. It is desired to first try to expand parameter bounds
if it is likely to improve fits, before altering the model structure. How to alter the
model structure is highly dependent on the nature of the model-experiment mis-
match and needs to be analyzed on a case-by-case basis. Regardless, if the structure
needs refinement, one must return to defining the system to come up with new
hypotheses.

6.5 Model Discrimination

Model discrimination refers to determining which model among a set is most
appropriate given experimental observations. Usually, parameter estimation must
be done before model discrimination. Some have investigated model discrimination
in a formal way, using Bayesian methods to compute Bayes factors for each model
(Xu et al. 2010). More straightforward and computationally inexpensive methods
are simply considering the sum of squared residual errors for each model and
weighting it by the number of free parameters with the Akaike or Bayesian
Information Criterion. As mentioned briefly above, there are some statistical design
of experiments methods that are focused on model discrimination, but largely any
experiments that are tailored to determining which model among many is most
appropriate are designed in a pragmatic manner.
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6.6 Model Analysis and Prediction

After successfully completing parameter estimation, one is ready to analyze the
model to provide potential answers for the question-of-interest in the form of
experimentally testable hypotheses. The type of model analysis will differ
depending on the question-of-interest. For example, if nonlinear dynamical phe-
nomena such as bistability or oscillations are of interest (e.g., cell cycle or circadian
clock), then traditional bifurcation analysis techniques can be applied (Chickarmane
et al. 2005), although this can be difficult with the high dimensional models typical
of biochemical signaling pathways and need expert knowledge to reduce the
number of parameters one is considering.

One general type of model analysis that is almost universally useful is parameter
sensitivity analysis. This consists of varying parameter values and observing the
effect on outputs-of-interest. Sensitivity analysis, like parameter estimation meth-
ods, can be local or global. Local methods consider only a particular region of
parameter space, and are typically inappropriate because (i) the models are non-
linear and (ii) parameters are not identifiable and therefore their values are not
known precisely. Unfortunately, local methods include metabolic control analysis
which has been widely applied to understand steady-state phenomena in metabolic
networks (Kholodenko et al. 1994). Global methods consider an entire
multi-dimensional region of parameter space, and therefore can account for the
inherent parametric uncertainty present in these models. There are many global
sensitivity analysis methods available (reviewed in (Saltelli 2008)), and it is not yet
clear which may be best for these types of models. We have previously used a
rigorous yet straightforward global method called Sobol sensitivity analysis, which
quantitatively decomposes the total variance in outputs-of-interest into the contri-
butions by individual parameters and the interactions between parameters (Sobol
2001). A larger variance indicates a more important parameter and therefore
important mechanism. The method functions by evaluating model outputs for a
large number of different parameter sets, and, importantly, is capable of providing
error estimates on the sensitivity coefficients. Although a very large number of
model evaluations are needed to produce statistically significant results, the algo-
rithm is easily parallelizable. We were able to perform Sobol sensitivity analysis on
a model of the VEGFR pathway containing 77 parameters with relative computa-
tional ease (Zhang et al. 2014).

6.7 Model Validation

The model analysis stage will produce many predictions, and these predictions must
be sorted into those that can be experimentally tested and those that cannot, which,
like experimental design, requires close contact between the wet and dry labs.
Among those predictions that can be experimentally tested, typically the
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counter-intuitive or unexpected ones are the best to explore experimentally, in
addition of course to those that directly address the question-of-interest. Only a
small subset of all predictions can be experimentally addressed, so it is important to
carefully select those to further consider. Importantly, any experiments for model
validation must be independent from those used to develop and train the model.

After the new experiments are performed (or mined from the literature), one
must compare simulation predictions to the new data, and then interpret what it
means for the question-of-interest. Currently, a model is considered valid if it is able
to reproduce independent experimental data outside the scope of the original
training data set. If the model is not valid, typically it can still yield insight into the
question-of-interest, and may still be valuable in that regard. Such disagreement
prompts a new hypothesis and iteration back to the first step of the modeling
process. Yet, even if a model is validated in this way, it is not certainly universally
valid, and assuming that the model can predict many other quantities outside of its
training set would be grossly premature. Much more research must be done to
elucidate how a more unbiased approach to model validation can be designed, so
that confidence in model predictions can be quantified in a rigorous manner.

6.8 Conclusions

Building a kinetic model of a biochemical signaling network is a significant
investment of time and effort, and therefore one should have very clear goals and
expectations for what the eventual model will accomplish for the research
question-of-interest. Such kinetic models have many properties that can potentially
fill a significant gap in the drug development pipeline and inform personalized
medicine approaches. However, to reach this potential, much theoretical work must
be done to improve and standardize each step of the model building process shown
in Fig. 6.2. Any new methods must take special care to accommodate the properties
of biochemical signaling networks that hamper current methods, namely, the
complexity of these networks, their large scale, and inherent uncertainty.
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Chapter 7
Mechanistic Models of Physiological
Control Systems

Michael C.K. Khoo, Wen-Hsin Hu and Patjanaporn Chalacheva

Abstract Dynamic modeling has played an important role in advancing and
integrating the fields of pharmacokinetics and pharmacodynamics. However, the
vast majority of models in the literature do not take into account the fact that
pharmacological responses are frequently affected by the homeostatic mechanisms
inherent in physiological control systems. This article provides a short tutorial
presenting examples that illustrate the basic properties of closed-loop control and
how these can influence model predictions of drug responses in both the
steady-state and under dynamic conditions. Physiological control systems can be
modeled using two basic approaches: (a) “minimal modeling”, in which all model
parameters for individuals can be estimated from experiment; and (b) “structured
modeling”, in which the model parameters are isomorphic to key physiological
entities, but not all can be identified from the measurements. A discussion of these
two approaches is presented, along with a case study of how minimal modeling can
be applied to extend a larger structured model. Finally, the importance of modeling
functional linkages and interactions across organ systems and across scales is
highlighted through a brief exposition of a recently developed structured model of
cardiorespiratory, sleep-wake state and metabolic control.
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7.1 Introduction

Fundamental to all living systems is the phenomenon of homeostasis, in which the
key physiological variables are regulated so that internal conditions remain rela-
tively stable and operate within narrow bounds, even when the system in question is
perturbed by changes in the external environment. Homeostasis is generally
maintained through the interplay of multiple factors, some of which act to oppose
the changes induced by the external disturbance whereas others act to reinforce
these changes. The longstanding practice in physiology has been to identify each of
the many associated factors and to develop a conceptual model of how they interact
with one another to produce homeostasis in the variable in question. However,
although the end result established in homeostasis is a relatively bounded condition,
the physiological processes that produce this state are highly dynamic. Moreover,
the dynamics of regulation for a physiological variable can span multiple time
scales, ranging from seconds to years. For example, arterial blood pressure fluc-
tuates between diastolic and systolic levels within each cardiac cycle, while dias-
tolic and systolic pressures fluctuate within a breathing cycle. Over longer time
scales, there are also fluctuations that result from dynamic changes in cardiac output
and vascular resistance. And over even more extended time scales, blood pressure
fluctuates as a byproduct of the dynamic processes at play in renal autoregulation
and thermoregulation. The complex dynamics that emerge from the interaction of
the multiple underlying mechanisms make it difficult to distinguish cause from
effect. As such, a conceptual model quickly becomes inadequate as a tool for
analysis, and it is necessary to turn to the rigorous framework inherent in a
mathematical model to help extricate the influences of the various interacting
physiological mechanisms from one another. Since feedback regulation is involved
in virtually all these processes, a basic understanding of control theory is also
important in providing insight into how unexpected behavior of the integrated
system can emerge from the network of components that individually might have
very different dynamics.

Dynamic modeling has played an important role in advancing and integrating the
fields of pharmacokinetics (PK) and pharmacodynamics (PD) over the past several
decades; comprehensive summaries of these efforts from various perspectives may
be found in a number of excellent reviews (Derendorf and Meibohm 1999; Mager
et al. 2003; Csajka and Verotta 2006; Danhof et al. 2007). However, the vast
majority of models in the PK/PD literature do not take into account the effects of
physiological feedback, even though some studies have suggested that homeostatic
mechanisms constitute the basis for a variety of observations that traditional PD
models are not able to account for. These include counter-regulatory effects in the
development of tolerance to chronic treatment (Francheteau et al. 1993; Bauer and
Fung 1994; Mandema and Wada 1995), dependency of physiological responses on
the time-course of drug infusion (Kleinboesem et al. 1987), and the development of
oscillatory dynamics in body temperature following administration of 5-HT1A

agonist (Zuideveld et al. 2001). The purpose of this article is to highlight the
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importance and utility of incorporating considerations of closed-loop control in the
underlying physiology when PK/PD models are developed for situations in which
therapeutic interventions may interact with a potent autoregulatory system.

7.2 Open-Loop Versus Closed-Loop Systems

As a simple illustration of how the intrinsic regulatory mechanism of a physio-
logical system can mask the true pharmacodynamic effects of a drug, consider the
specific example displayed in Fig. 7.1. Here, we examine, in simplistic fashion, the
efficacy with which a calcium channel blocker drug, such as nifedipine, produces
vasodilation, thereby reducing total peripheral resistance (TPR). Following infusion
of the drug into the bloodstream, the plasma concentration (Cp) of the drug assumes
a certain time-course, consistent with the underlying pharmacokinetics. Cp

decreases TPR by an amount ΔTPR through an assumed effect compartment.
However, since the product of TPR and cardiac output (CO) yields the mean arterial
pressure (MAP), the reduced TPR leads to a reduction in MAP. The decreased
MAP unloads the baroreceptors located in the carotid sinuses, leading subsequently
to an increase in heart rate and thus CO. The decreased MAP also leads to a reflex
peripheral vasoconstriction, increasing TPR, which along with the increase in CO,
restores MAP back towards its baseline level. The overall result is that TPR is not
reduced as much as one would have predicted based on the known vasodilatory
effects of the drug. This is a classic example of “closed-loop control” with negative
feedback. In contrast, an example of “open-loop control” would be one in which the
baroreceptors have been denervated. In this case, the final steady-state level of TPR
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would be the original baseline level of TPR minus the change ΔTPR induced by the
drug.

Under resting conditions, the controlled variables (e.g., arterial blood pressure,
body temperature) in physiological control systems generally operate within a
relatively narrow range—this is Walter Cannon’s “homeostatic principle” (Cannon
1939) at work. How are these “equilibrium” or “steady-state” conditions deter-
mined? Essentially, negative feedback couples the different components of a
closed-loop system together, constraining the mode of operation in each of these
components. This is best illustrated in terms of the simplistic example of control of
blood pressure displayed in Fig. 7.2. The straight lines, labelled CM1, CM2 and
CM3, represent the basic property of vascular resistance in circulatory mechanics:
for a given TPR, increasing MAP would increase CO. The slope of each of these
lines is inversely proportional to TPR. Thus, CM1 has the highest TPR and CM2 the
lowest. The reverse sigmoid curve represents the baroreflex component of this
system—as MAP increases, the baroreceptors act to decrease HR and thus CO
(since CO = HR � stroke volume, assuming stroke volume remains constant).
Changes in MAP elicit changes (in the opposite direction) of HR—this is the source
of negative feedback in this closed-loop system. Assuming that CM1 represents
circulatory mechanics under normal resting conditions, “E1”, at which the baror-
eflex function curve and CM1 intersect one another, represents the point at which
the factors that act to increase or decrease MAP balance out. If MAP falls below its
value at E1, the baroreflex component would increase HR and CO, which in turn
would elevate MAP (through the circulatory mechanics component), thereby
restoring MAP towards E1.

Consider what happens during constant rate intravenous infusion of the
vasodilator drug. The resulting decrease in TPR is represented by an increase in
slope of the circulatory mechanics line (broken line labelled CM2 in Fig. 7.2). If the
baroreflexes were absent and there is no corresponding compensation in CO, the
MAP would drop from *90 mmHg (E1) to *65 mmHg (E2*). However, with
baroreflex feedback, the lowered MAP triggers an increase in HR, and the
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consequent increase in CO raises MAP to *80 mmHg, establishing the new
equilibrium point E2, which lies at the intersection of the baroreflex function curve
and CM2.

The solution represented by equilibrium point E2 is incomplete, since the cal-
culations took into account the baroreflex control of HR but not the baroreflex of
TPR. In the latter case, the reduced MAP would stimulate the baroreceptors to
produce a reflex vasoconstriction that offsets the drug-induced vasodilation. As
such, the final equilibrium value of TPR would be a compromise between the
drug-induced decrease and the reflex-induced increase in TPR. The final TPR
(associated with equilibrium point E3) would be lower than its pre-infusion level
(E1) but higher than that in E2.

7.3 Open-Loop Versus Closed-Loop Dynamics

The aforementioned graphical analysis method is useful in providing intuitive
insight into how the equilibrium or steady-state levels in closed-loop systems are
established. But the utility of this approach is limited to relatively simple examples
that involve only two or three control variables. Moreover, the conclusions are
strictly correct only under static conditions. To overcome these limitations, we turn
to the dynamic model below, which closely follows the formulation proposed by
Francheteau et al. (1993).

The structure of the model is schematized in Fig. 7.1. The dynamics associated
with circulatory mechanics are assumed to be much faster than the dynamics
associated with the baroreflexes or pharmacokinetics of the drug, and thus, blood
pressure can be considered to be instantaneously related to blood flow. Thus, the
following equation represents the relationship linking MAP, TPR and HR:

MAPðtÞ ¼ SV � HRðtÞ � TPRðtÞ ð7:1Þ

In Eq. 7.1, SV is assumed constant and equal to 0.097 L.
The equations that follow represent the dynamics associated with the depen-

dencies of HR and TPR on baroreceptor feedback, as well as the dynamics of
baroreceptor transduction:

s1
dðHRÞ
dt

þHR ¼ HReq 1� aUð Þ ð7:2Þ

s2
dðTPR�Þ

dt
þ TPR� ¼ TPReqð1� bUÞ ð7:3Þ

s
dU
dt

þU ¼ Sp MAP�MAPeq
� �þ Sr

dMAP
dt

ð7:4Þ
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with Sp and Sr as the baroreceptor sensitivities to changes in MAP and the rate of
changes in MAP. a and b represent the relative gains with which the baroreceptors
affect HR and TPR control. s, s1, and s2 are the time constants associated with
baroreflex dynamics. MAPeq, HReq, and TPReq are the pre-infusion equilibrium
values of MAP, HR, and TPR. In the simulation examples presented here, a and b
are both assigned values of 1, and the time constants s, s1, and s2 are each given the
value of 0.01 h. MAPeq, HReq, and TPReq are assumed to be 90 mmHg, 70 beats
min−1, and 12.5 RU (resistance units).

For simplicity, we assume the pharmacodynamic effect of the drug to be pro-
portional (through a gain factor m) to the plasma concentration, Cp(t), at any given
time t:

DTPRðtÞ ¼ m � CpðtÞ ð7:5Þ

and

TPRðtÞ ¼ TPR�ðtÞþDTPRðtÞ ð7:6Þ

The pharmacokinetic model is a single compartment model with first-order
elimination, as given below:

CpðtÞ ¼ C0

cT
1� e�ctð Þ for 0� t�T ð7:6aÞ

CpðtÞ ¼ C0

cT
1� e�cT
� �

:e�cðt�TÞ for t[T ð7:6bÞ

We assume a constant rate infusion of the drug over a period T. c is the elimination
rate constant. C0 is the initial (fictive) drug plasma concentration that would be
obtained after a bolus of the same dose, and is equal to the (constant) rate of
infusion multiplied by T and divided by the volume of distribution. In the simu-
lation examples that follow, T is 10 h, c is 0.7 h−1, and C0 is 350 lg L−1, based on
a uniform drug infusion rate of 350 lg h−1 and volume of distribution of 10 L. The
pharmacodynamic gain factor, m, is assumed to be 0.09 RU L lg−1.

Figure 7.3 compares model responses to a constant rate infusion of a vasodilator
for 10 h (0 < t < 10) under open-loop (broken lines) and closed-loop (solid lines)
conditions. In the open-loop situation, the baroreceptor sensitivities Sb and Sr are
assumed to be zero. TPR decreases in proportion to the plasma concentration of the
drug, and MAP follows the same time-course as TPR, since both HR and CO
remain unchanged from equilibrium values. Under closed-loop conditions
(Sb = 0.01 mmHg−1, Sr = 0.01 h mmHg−1), as TPR decreases, MAP falls. But this
triggers the baroreflexes to increase CO by increasing HR, thus partially offsetting
the reduction in TPR. As such, the resulting reductions in MAP and TPR are
substantially smaller than in the open-loop case, but these occur in association with
an elevated HR.
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Fig. 7.3 Pharmacodynamic
response of TPR, MAP, and
HR in model of Fig. 7.2 to
constant-rate infusion of
vasodilator drug for 10 h
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and with baroreflex regulation
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Fig. 7.4 Predicted
pharmacodynamic responses
in TPR, MAP, and HR for
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(Sb = 0.001 mmHg−1, broken
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In Fig. 7.4, a comparison is made between the predicted response to drug
infusion of a case with low Sb (0.001 mmHg−1, broken lines) and the response in a
case with high Sb (0.03 mmHg−1, solid lines). In the low Sb case, both TPR and
MAP exhibit significant drops during drug infusion. At the same time, HR shows a
small increase, which initially overshoots but subsequently settles down to a level
that is only slightly higher than its prior equilibrium value. Following termination of
drug administration, HR displays a brief undershoot before it returns towards its
pre-infusion equilibrium level.

The model simulation examples displayed in Figs. 7.3 and 7.4 demonstrate that
closed-loop systems with negative feedback are in general less vulnerable to
external perturbations, and that the ability to offset the effects of external inter-
ventions increases with feedback gain. However, in systems with high feedback
gain, there is a tendency for the corrective action generated by the controller to
overcompensate for the effect of the initial disturbance, thereby creating an artifi-
cially induced perturbation in the opposite direction. Under the “right conditions”,
this cyclic chain of events can propagate around the feedback loop, giving rise to
oscillatory behavior (Khoo 2000). This can be clearly seen in the response of the
high-gain system displayed in Fig. 7.4.

Thus, for reasons related to the underlying homeostatic mechanism rather than
pharmacological potency, vasodilator drugs are less likely to be effective, for the
same dosage, in patients with strong baroreflexes compared to patients with low
baroreflex gains. This basic property of closed-loop control systems may account
for the differences in responses to dihydropyridine drugs between normotensive
healthy subjects and patients with hypertension: normal subjects display an increase
in heart rate with little drop in blood pressure, whereas hypertensive patients, blood
pressure can drop substantially with little change in heart rate (Lederballe Pedersen
et al. 1980; MacGregor et al. 1982). The differences in responses between the two
subject groups may be explained by the observation that hypertensive patients
generally have reduced baroreflex sensitivity relative to normotensives (Gribbin
et al. 1971; Mussalo et al. 2002).

7.4 Structured Versus Minimal Models

The kind of model presented in Fig. 7.1 is what is known as a “structured model”.
“Structured” or “comprehensive” models allow our knowledge of the underlying
physiology to be systematized and encapsulated concisely into an efficient library of
mathematical “rules”. The presence of model parameters that are isomorphic to key
physiological entities greatly simplifies the problem of interpretation. Moreover,
simulations and sensitivity analyses performed with the structured model can
provide insight into which physiological parameters are more important in the
mediation of the mechanisms under study. However, in structured models with
large numbers of parameters, estimation of all the model parameters (including the
parameters that characterize the pharmacokinetics and drug pharmacology) from
experimental data can become problematic due to system identifiability or “noise to
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signal” issues (Cobelli and DiSteffano 1980). An alternative approach is to develop
and employ a “minimal model”, i.e., one that is able to account for most of the
dynamic features of a set of physiological responses and yet be simple enough that
all its characteristic parameters can be estimated from measurements obtained in
individual subjects. The cost of parsimony in the number of parameters, however, is
that the model may not be able to provide insights into the detailed mechanisms of
the underlying physiology. On the other hand, minimal models have demonstrated
their practical utility in providing quantitative “biomarker” information that can be
used to delineate normal from pathological function in various physiological
applications. Examples include estimates of insulin sensitivity derived from the
Bergman minimal model (Bergman et al. 1985), and respiratory-cardiac coupling
gain as a measure of autonomic function under various pharmacological inter-
ventions (Mullen et al. 1997) and in patients with obstructive sleep apnea (Khoo
2008). Although structured and minimal modeling approaches are generally applied
separately, it is possible to employ a combination of both in which minimal
modeling is used to provide components that may be missing in a structured model,
as illustrated in the following example.

7.5 Improved Model of TPR Control

The model displayed in Fig. 7.5a, which we will refer to as “Simulation Model A”,
incorporates a number of additional elements directly pertinent to the control of
MAP, HR, and TPR that were missing in the rather simplistic model of Fig. 7.1.
The extended model is based largely on previous work by deBoer et al. (1987),
Madwed et al. (1989), and Saul et al. (1991). In contrast with the simpler model of
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Fig. 7.5 a Extended structured model of the control of arterial blood pressure and heart rate,
incorporating the effects of respiration and pulsatility of the heart. See text for details. b Further
extension of Simulation Model A with the incorporation of the respiratory-peripheral vascular
resistance coupling (RVC) component. The dynamic characteristics of RVC are estimated using a
minimal model applied to individual measurements of peripheral arterial tonometry (surrogate
measure of TPR), MAP, and respiration
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Fig. 7.1, beat-to-beat changes are introduced by employing a two-element
Windkessel model (representing arterial resistance and compliance) to generate a
pulsatile waveform in blood pressure within each cardiac cycle. Respiration, rep-
resented as incremental changes in lung volume, ΔV, is assumed to be directly
related to the autonomic inputs at the sino-atrial (SA) node through neural coupling
between the respiratory and autonomic centers in the medulla, as well as through
input from the pulmonary stretch receptors. This transfer relation is labelled “RSA”
in Fig. 7.5a. Feedback from the baroreceptors also directly influences the auto-
nomic inputs to the heart. Through changes in intrathoracic pressure, respiration
produces mechanically-induced alterations in stroke volume which in turn lead to
fluctuations in blood pressure. This mechanical effect of respiration (MER) is
modeled as a derivative of ΔV multiplied by a negative gain. The time-course of
arterial blood pressure, which contains these influences combined, then becomes
the input to the model components that represent baroreflex control of HR and TPR.

The model components that represent baroreflex control of TPR and HR are each
assumed to contain static gain functions that are inverse-sigmoidal (so that higher
blood pressure produces lower HR and lower TPR) placed in series with a dynamic
low-pass filter and time delay. The HR and TPR outputs of these baroreflex
components are dynamically changing, depending on beat-to-beat blood pressure.
The TPR output is fed into the Windkessel model, allowing the time constant of the
Windkessel to change from beat to beat. Systolic and diastolic arterial pressures,
and thus MAP, fluctuate from beat to beat. The dynamics of the SA node are
divided into sympathetic and parasympathetic components. Both branches are
modeled as low-pass filters with constant gains. In addition, a time delay is added to
the sympathetic branch to mimic latency in the sympathetic response. The outputs
from each branch in the SA node are combined to obtain the final HR. This HR then
enters the “properties of myocardium” block, which represents the influence of the
duration of pulse interval on stroke volume. A longer pulse interval would lead to
an increase in the stroke volume and thus pulse pressure of the next cardiac cycle.

Although not indicated in Fig. 7.5a, white noise sequences with coefficient of
variation of 8–10 % of the total variance of resulting time-series are added on a
breath-to-breath basis to respiratory frequency and tidal volume, and on a
beat-to-beat basis to HR, SV, and TPR. The injected noise sequences represent
disparate sources of random input fluctuations (e.g., neural and mechanical) that
continually perturb the system. Propagation of these random influences through the
multiple feedback loops of the closed-loop system and interaction among the coupled
feedback loops give rise to spontaneous fluctuations, most notably a strong oscilla-
tion near the 0.1 Hz region in HR, MAP, and TPR, as displayed in the frequency
spectra of these variables (Fig. 7.6, middle column. “Model A Simulation”). This
simulation result is consistent with the “low frequency” oscillation in blood pressure
and heart rate widely reported in the literature (Malliani et al. 1991). For comparison,
the frequency spectra of respiration and the cardiovascular variables measured in a
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healthy subject are displayed in Fig. 7.6 (left column, “Experiment”). Peripheral
vasoconstriction is measured using peripheral arterial tonometry (Schnall et al.
1999), and the resulting beat-to-beat amplitude, PATamp, of this signal is used.
However, for the sake of comparison with the model simulation results, it is more
convenient to use the total peripheral conductance (TPC = 1/TPR) instead of TPR,
since peripheral vasoconstriction results in both reduced PATamp and TPC.

An important feature that Simulation Model A is not able to reproduce correctly
is the peripheral vascular response to large breaths (sighs), as displayed in Fig. 7.7
(middle column, “Model A Simulation”). During the sigh, Model A predicts a brief
increase in HR. This leads to a transient increase in MAP, which subsequently
lowers HR through the baroreflex. The increase in MAP also triggers a vasodilatory
response through the baroreflex control of TPR. However, this prediction runs
counter to observation, as peripheral vasoconstriction following deep inspiration
has been well documented in humans (Bolton et al. 1936). This peripheral vaso-
constriction is clearly visible in the PATamp (or TPC) measurements displayed in
Fig. 7.7 (left column, “Experiment”).
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Fig. 7.6 Comparison of the frequency content of respiration, HR, MAP, and TPC time-series
derived from experimental data (left column), Simulation Model A (middle column), and
Simulation Model B (right column). All frequency spectra have been normalized to their peak
values. Both simulation models show a prominent spectral peak at around 0.1 Hz, representing an
oscillation with periodicity of *10 s that has been generated through propagation of system noise
around the baroreflex loops of the closed-loop control system. In the experimental data, peripheral
arterial tonometry recordings were used as a surrogate measure of the total peripheral conductance,
TPC (defined as the inverse of TPR)
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7.6 Extending the Structured Model of TPR Control: Use
of Minimal Modeling

The inability of Model A to adequately predict the occurrence of peripheral
vasoconstriction following a large breath suggests that this phenomenon may be the
result of not having included a relevant mechanism—in this case, a distinct reflex
linking respiration to TPR—in the model. Since no existing computational model of
cardiovascular regulation has taken this mechanism into account, it is possible to
infer this relationship quantitatively from data by using a minimal modeling
approach, and to develop the extended structured model by inserting the
data-derived module into the network of components of Model A. Thus, although
the minimal model linking respiration to TPR may not shed light into the physi-
ological mechanisms underlying this coupling, including this dynamic component
in the structured model allows us to incorporate an important aspect not fully
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Model B reproduces the peripheral vasoconstriction response to the sigh observed in experimental
data, but Simulation Model A exhibits a small vasodilatory response instead
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appreciated previously and to determine how it contributes to the integrated
responses of the larger closed-loop system.

The minimal model presented here may be considered “kernel-based”
(Marmarelis 1993), since the dynamics of its major components are explicitly
characterized by their corresponding impulse responses or, if this methodology is
extended to the nonlinear case, their Volterra kernels. This contrasts with the more
traditional “parametric” approach in which the dynamics are more compactly
described using differential equations with unknown coefficients that represent the
parameters to be estimated. An advantage of the kernel-based approach is that it
does not limit us to a particular model structure. Although this approach is some-
times labelled as “non-parametric”, the unknown coefficients of the model impulse
responses nonetheless may be considered “parameters” that need to be estimated
from the data. In the particular case at hand, assuming only linear dynamics, the
model is formulated as:

PATampðtÞ ¼
Z1

0

hBPRðsÞ:MAPðt� s� TBPRÞds

þ
Z1

0

hRVCðsÞ:DVðt� s� TRVCÞdsþ eðtÞ
ð7:7Þ

In the above equation, the unknown impulse responses, representing the dynamics
of baroreflex control of TPR (hBPR(s)) and the dynamics of respiratory-peripheral
vascular coupling (hRVC(s)), have to be estimated from the measured time-series of
MAP, DV, and PATamp. TBPR and TRVC are the delays associated with the two
kernels, and e(t) represents the errors between the measurements and the predic-
tions. If Eq. 7.7 is converted to discrete-time form, all the sampled values of
hBPR(s) and hRVC(s) can be determined from the data using least squares or max-
imum likelihood estimation. This is one of the advantages of employing this
kernel-based algorithm rather than the approach that requires solution of multiple
differential equations. Another important point to highlight in this technique is the
fact that estimation of the model parameters is carried out in the time domain. The
presence of time delays allows us to impose causality on the model—allowing us to
computationally “open the loop” of the closed-loop system, thereby separating the
feedforward from the feedback components. Frequency domain methods do not
permit this kind of temporal delineation.

Depending on the sampling interval and the memory of the systems being
estimated, the number of sampled values of hBPR(s) and hRVC(s) can be large, and
thus the estimation error can be substantially high. In order to reduce the level of
parameterization and thus increase estimation accuracy, the impulse responses of
our model components can be expanded to be the sum of weighted Laguerre
(Marmarelis 1993) or Meixner (Asyali and Juusola 2005) basis functions, Bi(t). For
example,
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hRVCðtÞ ¼
Xq

i¼1

ciBiðtÞ ð7:8Þ

where Bi(t) represents the ith Laguerre or Meixner basis function, each of which is a
known, pre-generated time series. Thus, instead of having to estimate all the
sampled values of the kernels hBPR(s) and hRVC(s), we need only estimate all
q unknown weights of the q basis functions. In general, q is much smaller than the
total number of sampled values of the impulse responses to be estimated. Further
details of this methodology may be found in Khoo (2008) and Chaicharn et al.
(2009). Whereas the model kernels considered here assume linear dynamics, they
can be easily extended to incorporate nonlinear dynamics (Jo et al. 2007) or
time-varying parameters (Blasi et al. 2006).

Following estimation of the respiratory-peripheral vascular coupling component,
hRVC(t), from datasets in which large sighs are present, the corresponding transfer
function can be inserted into the Model A to create the extended structured model
(Fig. 7.5b). Figure 7.6 (right column, “Simulation Model B”) shows the frequency
spectra of the relevant cardiorespiratory variables with the model operating in
closed-loop mode with the same random noise inputs as in Model A (8–10 %
coefficient of variation). The behaviors of Models A and B become more distinct
when the comparison is made in the time domain. As one would expect, in
Model B, a large sigh is followed by a significant drop in the predicted TPC, or
correspondingly, a noticeable vasoconstriction (Fig. 7.7, right column, “Simulation
Model B”). Further details of the methodology employed in the development of
Simulation Model B and the associated minimal modeling may be found in
Chalacheva and Khoo (2013).

7.7 Integrative Models

The aforementioned examples were presented to illustrate the utility of both
structured and minimal models of physiological control systems. As well, the
structured modeling and minimal modeling approaches are not mutually exclusive,
and minimal models of system components that are not well understood can be used
to characterize those components within a larger structured model. A minimal
closed-loop model can be used in conjunction with a pharmacokinetic model and a
model of the drug pharmacodynamics, if the objective is to quantify the drug
response of a physiological variable in individuals and to extend the integrated
model to characterize population responses. On the other hand, the use of a
structured model of physiological control in combination with PK/PD models may
offer greater insight into which mechanisms are more affected by the therapeutic
intervention. Moreover, the responses elicited by the administered drug are likely to
affect other organ systems that are connected with the system under study. Thus,
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there is a role for comprehensive structured models that characterize multiple organ
systems to play in PK\PD modeling.

One of the earliest comprehensive structured models was that of Guyton et al.
(1972), which provided a detailed quantitative characterization of the circulation,
focusing particularly on the mechanisms responsible for short-term and long-term
control of blood pressure. This was extended to include several other organ systems
(e.g., respiratory, endocrine, and neural) in a model named “Human” by Coleman
and Randall (1983). “Human” has been expanded further and now takes the form of
“HumMod”—a comprehensive, multilevel modeling environment for human
physiology (Hester et al. 2011). PNEUMA is a somewhat less comprehensive
model, one that was developed to integrate the cardiovascular, respiratory, and
sleep/wake control systems in the context of sleep-related breathing disorders
(Cheng et al. 2010). A schematic representation of PNEUMA is displayed in
Fig. 7.8. PNEUMA has been developed using the Simulink® (Mathworks, Inc.,
Natick, MA) programming environment that is platform-independent. Simulink
programs take the form of interconnected graphical objects, similar to the block
diagrams of classical control theory. This graphical environment allows relatively
easy deciphering of the mathematical structure of each model component and how
they interact with one another. This format also promotes the portability of models,
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comprehensive structured model of cardiorespiratory, sleep-wake, and metabolic control
(reproduced with permission from Cheng et al. (2010))
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thereby enhancing the free exchange of ideas and the ability to test competing
models.

The programming environment of PNEUMA makes it easy to divide the
large-scale model into hierarchies of nested subsystems. At the highest level in this
hierarchy, the model contains three main subsystems—the respiratory, cardiovas-
cular, and central neural control systems. Each of these main subsystems consists of
a hierarchy of several levels of smaller subsystems, as illustrated in Fig. 7.9. The
cardiovascular model incorporates a pulsatile cardiovascular compartment with
mechanics of the heart and the systemic and pulmonary circulations. The sinoatrial
node is modeled as a simple pacemaker, regulated by the parasympathetic and
beta-sympathetic inputs. Heart period is generated from the SA output using an
integration/saturation mechanism. The beta-sympathetic branch affects heart con-
tractility, thus modulating the systolic period. Each atrio-ventricular compartment is
characterized by a time-varying nonlinear elastance function which depends on
beta-sympathetic tone. The systemic circulatory model includes a detailed arterial
tree including aorta, systemic arteries, veins, capillaries, and vena cava. The pul-
monary circulatory model includes pulmonary arteries, arterioles, capillaries, and
veins. Total peripheral resistance incorporates vasodilation and vasoconstriction
and can be affected by the alpha-sympathetic tone. The stroke volume can vary
under the influence of venous return, heart period and contractility, and circulatory
flow is determined by the stroke volume and vascular tone. The arterial blood
pressure thus results from the interactions between the cardiac output, the peripheral
resistance, and the arterial compliance.

Fig. 7.9 Diagrammatic representation of the hierarchical structure of PNEUMA, a feature that is
easily implemented using the Simulink® platform
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The respiratory system includes both mechanical and the gas exchange mech-
anisms. Respiration is driven by a central neural control block and generates airflow
based on the curvilinear relationship between the respiratory muscles and the lung
volume, and incorporates the respiratory muscles and all necessary components for
gas exchange and transport. The gas exchange and gas transport compartments
model the convection and the mixing of oxygen and carbon dioxide in both the
lungs and the heart, incorporating the responses to hypoxia and hypercapnia of the
central and peripheral chemoreceptors.

The neural control system governs respiratory and cardiovascular activities and
includes the baroreflex, chemoreflex, the pulmonary stretch reflex, respiratory sinus
arrhythmia (RSA), the effect of pleural pressure on arterial blood pressure, and the
influence of cardiac output on blood flow. The baroreflex is triggered by changes in
arterial blood pressure, and modulate heart rate via parasympathetic and sympa-
thetic channels. The chemoreflex includes the contribution of the central and the
peripheral chemoreceptors. The lung stretch reflex increases heart rate in response
to moderate lung inflation, while RSA modulates the heart rate in response to neural
inspiration and expiration. Pleural pressure modulation leads to a transient decrease
in blood pressure during inspiration, and blood flow determines the time delay for
the gas transport to the chemoreceptor sites. The breathing period is determined by
an autorhythmic generator, and, when combined with the ventilatory drive, deter-
mines the neuromuscular drive. PNEUMA also incorporates the cardiorespiratory
effects of wakefulness, sleep, sleep onset, and arousal from sleep, using a
sleep-wake model based on that of Borbely and Achermann (1999). Sleep is
assumed to reduce heart rate and arterial blood pressure, and increase respiratory
load with the concomitant decrease in ventilation.

PNEUMA has been validated by duplicating a number of important physiologic
phenomena. For example, PNEUMA demonstrates spontaneous cardiovascular
variability typical of normal human response, showing spectral components at 0.2–
0.3 Hz and 0.05–0.15 Hz, similar to those displayed in Fig. 7.6. The sleep/wake
feature of PNEUMA also enables it to simulate the complex sleep-cardiorespiratory
interactions that occur during obstructive sleep apnea or Cheyne Stokes breathing
(CSR). CSR, characterized by a periodic wax-wane pattern of tidal volume, occurs
commonly among patients with congestive heart failure (CHF). In the more
exaggerated form, CSR-CSA,, central apneas alternate with periods of hyperpnea.
PNEUMA, CSR-CSA can be generated by increasing chemoreflex gain several-fold
as well as reducing cardiac output, thus prolonging circulation time (Fig. 7.10,
4800–7200 s). This is compatible with published observations in CHF patients who
also have CSR, that show increased chemoreflex gain and long circulation times.
The cardiovascular variables, such as heart rate and arterial blood pressure, are also
entrained by the waxing and waning respiratory pattern. Treatment with supple-
mental CO2 (*3 % inhaled concentration) leads to a rapid and complete disap-
pearance of the repetitive episodes of apnea, and restoration of a uniform tidal
breathing pattern along with stable sleep (Fig. 7.10, 3600–4800 s). More fre-
quently, in clinical practice, treatment is administered through O2 supplementation.
Figure 7.10 (7200–8400 s) shows that, when inhaled O2 (*28 %) is administered,
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the large fluctuations of ventilation and the cardiovascular variables are markedly
attenuated. However, the periodic modulation of breath-by-breath ventilation
remains. Although not displayed in Fig. 7.10, the model predicts that the periodic
arousals from sleep that generally accompany the periodic pattern of ventilation
disappear, even after ventilatory periodicity persists. The simulations suggest that
treatment with supplemental CO2 is more effective in eliminating CSR than

Inhaled CO2 ~ 3% Inhaled O2 ~ 28% 

Fig. 7.10 Simulation of Cheyne-Stokes respiration with central sleep apnea (CSR-CSA) in a
“subject” with congestive heart failure (4800–7200 s) using PNEUMA. Periodic waxing and
waning of the respiratory pattern (VT, top panel) occurs with a periodicity of *1 min. This is
produced by reducing cardiac output (and thus prolonging circulation time) and increasing
chemoreflex gain in the model. The periodic ventilatory pattern is accompanied by fluctuations in
breathing frequency (BF) and pleural pressure (Ppl), and entrains oscillations in HR, blood
pressure (“ABP”), arterial PCO2 , and arterial O2 saturation. When supplemental CO2 (*3 % in air)
is administered, the oscillations are eliminated after a couple minutes (3600–4800 s). When
supplemental O2 (*28 %) is administered, the CSR pattern is attenuated and the apneas are
abolished, but an oscillatory pattern of ventilation remains (7200–8400 s)
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treatment with supplemental O2. The responses to CO2 and O2 administration are
clearly different than what would be predicted if the regulatory or closed-loop
aspects of the model were not taken into consideration.

PNEUMA has been extended to incorporate a metabolic sub-model (Cheng and
Khoo 2011). The latter has been developed by combining the existing minimal
model of glucose-insulin regulation by Bergman et al. (1985) with a model by Roy
and Parker (2006) that includes the regulation of free fatty acid (FFA). Glucose and
free fatty acid metabolism in this “extended minimal metabolic model” is also
assumed to be influenced by plasma epinephrine concentrations. Inputs from the
dietary intake of glucose and external interventions, such as insulin injections, have
also been incorporated into the model. The primary connection between the
sleep-cardiorespiratory model of PNEUMA and this extended metabolic model is
the efferent sympathetic output produced by PNEUMA. Changes in sympathetic
output from the cardiorespiratory portion of PNEUMA, as well as changes in
sleep-wake state, lead to changes in epinephrine output, which in turn affects the
metabolism of glucose, insulin, and FFA. Sympathetic activity produces higher
epinephrine concentrations in the heart, muscle, and pancreas compartments.
“Metabolic feedback” takes the form of changes in insulin concentration, which
lead to changes in sympathetic tone through stimulation of the alpha-sympathetic
receptors. Extensive testing employing sensitivity analyses has been performed to
test the robustness of the model with respect to variations in the critical parameters.

Running PNEUMA to simulate physiological behavior over periods of up to
10 days leads to higher levels of blood pressure, epinephrine, FFA, and insulin,
along with slightly elevated plasma glucose concentrations. Essentially, sleep apnea
produces sympathetic overactivity, elevating epinephrine concentrations which
stimulate glycogenolysis and gluconeogenesis, thus increasing blood glucose. This,
along with the elevated epinephrine concentration, stimulates the production of
insulin, which helps to attenuate the rise in blood glucose. As such, the model ends
up in a hyperinsulinemic state. Although the parameters of the metabolic sub-model
that collectively represent insulin sensitivity remain unchanged in the model,
whole-body insulin resistance is effectively increased. The model predicts that
increased severity of sleep apnea, as reflected in an increase in apnea-hypopnea
index, leads to higher concentrations of fasting plasma insulin.

The extended version of PNEUMA is being used as the starting point for
developing a model of disease progression linking sleep apnea and metabolic
syndrome (Khoo et al. 2013). This endeavor requires the incorporation of biological
and biochemical processes that occur at the cellular, and ultimately, molecular
levels, thus expanding PNEUMA to become a truly multiscale model. It is antic-
ipated that this future version of PNEUMA could be a useful tool in enhancing our
understanding of the development of autonomic and metabolic dysfunction in
pre-diabetic subjects. Such a comprehensive model could be used in conjunction
with specific PK/PD models to investigate the efficacy of drugs that are aimed at
slowing down disease progression.
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7.8 Conclusion

Pharmacological responses are affected to various degrees by the homeostatic
mechanisms inherent in physiological control systems. To underscore this point, in
this article, we have presented examples that illustrate the basic properties of
closed-loop control and how these can influence model predictions of drug
responses in both the steady-state and under dynamic conditions. Physiological
control systems can be modeled using two basic approaches: (a) “minimal mod-
eling”, in which all model parameters for individuals can be estimated from
experiment; and (b) “structured modeling”, in which the model parameters are
isomorphic to key physiological entities, but not all can be identified from the
measurements. These two approaches are not mutually exclusive, but can be
applied in tandem and iteratively, so that one approach informs the other and vice
versa. Finally, we have also highlighted the importance of modeling functional
linkages and interactions across organ systems and across scales, through a brief
exposition of a recently developed structured model of cardiorespiratory,
sleep-wake state and metabolic control.
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Part II
Pharmacodynamics



Chapter 8
Foundations of Pharmacodynamic
Systems Analysis

William J. Jusko

Abstract The pillars of pharmacodynamic modeling are the pharmacokinetics of
the drug, the nature of the pharmacology that underlies drug interactions with their
targets, and the physiology of the system considering molecular to whole body
levels of organization and functioning. This chapter provides a general assessment
of the fundamental components and some interactions of each of these pillars
indicating how they serve as building blocks for systems models. Key elements of
pharmacokinetics include the operation of Fick’s Laws for diffusion and perfusion
along with the often nonlinear mechanisms of drug distribution and elimination.
Target-binding relationships in pharmacology evolve from the law of mass action
producing capacity-limitation in most operative control functions. Mammalian
physiology and pathophysiology feature a wide breadth of turnover rates for bio-
logical compounds, structures, and functions ranging from rapid electrical signals to
lengthy human lifespans, which often determine the rate-limiting process and basic
type of model to be applied. Appreciation of the diverse array, mechanisms, and
interactions of individual components that comprise the pillars of pharmacody-
namics can serve as the foundation for building more complex systems models.

Keywords Fick’s laws � Target-binding � Drug-biological interface � Affinity �
Capacity � Substrate control � Operational efficacy � Turnover � Homeostasis �
Gaddum equation

8.1 Introduction

The three pillars of pharmacodynamics (PD), as depicted in Fig. 8.1, are the
pharmacokinetics (PK) of the drug, the pharmacology and mechanism of the
drug-biological interface, and the physiology or pathophysiology of the system
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being altered by the drug (Mager et al. 2003; Jusko 2013). Each can contribute to
the extent and time-course of observed pharmacodynamic responses depending on
their intrinsic properties and rate-limiting step(s). The foundations of systems
analysis will be explored by delineating the basic “rules of biology” for the major
components that govern each of the pillars of pharmacodynamics. Along with the
determinants of PK, two general principles, namely capacity-limitation and turn-
over, form the basis for a variety of commonly used PK/PD and systems models.
Genomics is included in Fig. 8.1 as the presence, location, and functioning of
determinants of PK/PD are governed by genomics and genetics. The quantitative
skills of mathematics, statistics, and computation are needed to identify relation-
ships, integrate them into models, analyze experimental data, and perform
simulations.

8.2 Pharmacokinetics

Common approaches for analyzing pharmacokinetic data utilize noncompartmental,
compartmental (mammalian), and physiological concepts and methods, with
ascending degrees of complexity. Physiologically-based PK (PBPK) models pro-
vide mechanistic and insightful separation of drug and systems properties as well as
their interfaces and interactions. Three key relationships that underpin drug distri-
butional processes in PBPK models are:
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Fig. 8.1 The palace of pharmacodynamics with its foundation, structural components, and three
pillars
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Fick's Law of Diffusion:
dA
dt

¼ PS Ch � Clð Þ

where the rate of drug movement (Amount/time, dA/dt) from higher (Ch) to lower
(Cl) concentrations is governed by the permeability-surface area (PS) coefficient
(Fick 1855). Permeability (P) is governed by molecular size and lipid solubility of
the compound along with the nature of the biological membrane and its surface area
(S). This equation is often invoked to describe small molecule (drug) absorption
rates, movement between interstitial fluids (ISF) and cell water spaces, and has been
adapted to account for biophase distribution of drugs.

Fick's Law of Perfusion:
dA
dt

¼ Q Ca � Cvð Þ

where the rate of organ uptake (dA/dt) is governed by arterial (Ca) and venous (Cv)
drug concentrations and organ blood flow (Q) (Teorell 1937). The ratio of
(Ca − Cv)/Ca is also termed the Extraction Ratio (ER). This equation is commonly
used in PBPK models to describe drug distribution to various organs and tissues via
blood flow.

Convection:
dA
dt

¼ L 1� rð Þ � C ¼ fL � Q 1� rð Þ � C

where organ uptake of molecules is determined by water movement equaling lymph
flow (L) and the vascular reflection coefficient (r) associated with water flux across
capillary membranes into ISF (Renkin 1979). Lymph flow is usually assumed as a
small fraction (fL = 0.02–4 %) of blood flow to each organ or tissue as determined
by the Starling (1896) approximation, while the reflection coefficient varies with
type of organ capillaries (some ‘leaky’ such as liver, some ‘tight’ such as muscle).
This equation is used in PBPK models of monoclonal antibodies (mAbs) and other
large molecules to describe their limited and slow movement from plasma to ISF
(Cao et al. 2013). Glomerular filtration rate is primarily a convection process as
well.

The joint roles of blood flow and permeability for control of the distribution of
molecules from blood to tissues is termed Distribution Clearance (CLd) in PK and
quantified as:

CLd ¼ fd � Q ¼ Q 1� e�PS=Q
� �

where fd is the fraction of Q accounting for organ uptake of drug, PS is the
rate-limiting factor when Q is small, and Q is the rate-limiting factor when PS is
large (Stec and Atkinson 1981).

The array of nonlinear protein binding, metabolism, transport, and clearance
relationships commonly encountered in PK are listed in Table 8.1 (Jusko 1989).
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They all evolve from the law of mass action where the limited quantity of binding
substances, metabolic enzymes, or transporters results in capacity-limited pro-
cessing of drugs and other substrates. At low drug concentrations, the functions
operate linearly, such as with the common relationship for intrinsic clearance,
CLint = Vmax/Km, pertaining to drug metabolism. Often the preferred or operative
drug concentration is the free or unbound drug in either plasma or in tissues. These
distributional and elimination relationships are components of full PBPK models
and are presented here partly owing to their fundamental value in PK, but also
because they are helpful in describing the kinetics of physiological substances or
biomarkers when analyzed in PK/PD and systems models. For example, the PK/PD
modeling of cortisol as an indicator of adrenal suppression and of nitrate as a
biomarker of inflammation is best handled by considering their intrinsic kinetics
(Krzyzanski and Jusko 2001; Sukumaran et al. 2012).

8.3 Pharmacology

The interaction of drugs (D) with their biophase targets (R) is the interface that
controls the array of subsequent genomic, proteomic, biochemical, and physio-
logical changes. These targets may be receptors, enzymes, transporters, ion chan-
nels, and/or DNA. A common feature is that the concentration or quantity of such
targets is limited and can be described with the law of mass action:

DþR �kon
koff

DR

as described by:

dR
dt

¼ kon � D � R� koff � DR

where kon is the association rate constant, koff is the dissociation rate constant and, at
equilibrium, the equilibrium dissociation constant is KD = koff/kon. This type of
interaction leads to a nonlinear relationship that the author calls “The Equation of
Life”:

Function ¼ Capacity � Substrate
Affinityþ Substrate

In this fashion, Capacity, Affinity, and Substrate control numerous biological pro-
cesses: those involved in PK as listed in Table 8.1 and those describing many
pharmacological actions as listed in Table 8.2. These pharmacologic processes or
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mechanisms include receptor binding, transduction, cytotoxicity, inhibitory and
stimulatory changes, as well as simple directly observed drug effects.1

It is important to appreciate the need for sufficiently high doses or drug con-
centrations to attain an observed maximum response (Capacity) and the occurrence
of the Affinity constant at concentrations when responses equal one-half of
Capacity. Such conditions facilitate operation of all PK/PD models and assist in
resolution of the parameter values (Dutta et al. 1996; Krzyzanski et al. 2006). Some
of the relationships include a power coefficient (n, c) accompanying the concen-
tration and Affinity terms. Although this power coefficient may not have a mecha-
nistic basis, it sometimes adds flexibility in fitting pharmacological data. Of special
note is that the Affinity term in the equations is of the nature that lower, rather than
higher, concentration values reflect greater potency of the drug.

The simple pharmacologic relationships listed in Table 8.2 have been applied for
a vast array of drugs and response measures. However, pharmacology textbooks
may offer additional more complex relationships that have usually evolved from
in vitro systems (Kenakin 1997). One of note is the Adair equation (1925) relevant
for biphasic or hormesis drug effects:

E ¼ Emax � C
EC50 þCþK2 � C2

where K2 is a secondary binding coefficient. This equation produces a bell-shaped
Effect (E) versus concentration (C) relationship. Cao et al. (2012) applied this
equation to describe the effects of GLP-1 on stimulating insulin secretion for a wide
range of doses examined in rats.

Another complex relationship of considerable value is the Black and Leff (1983)
equation for nonlinear transduction of the effects of an agonist:

Effect ¼ Em � sn � Cn

KD þCð Þn þ sn � Cn

where s is Operational Efficacy defined as Bmax/KE (other symbols are defined in
Table 8.2). Resolution of all parameters in this equation may require assessment of
both nonlinear drug-receptor binding (Bmax, KD) as well as nonlinear responses (Em,
KE) in relation to receptor occupancy. This equation is of great value as the PK and
drug-receptor interactions are usually specific for individual compounds, while the
subsequent events yielding an effect are controlled by the biological transduction or
signaling system. One applied example is where the plasma concentrations of
methylprednisolone were found to control receptor binding while the receptor

1The author tells his students that this equation will also predict their future success in pharma-
cometrics: a function of the combination of brain capacity (IQ), affinity for mathematics, statistics,
and computation, and the relevant assimilated information (coursework and studies).
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binding of free and liposomal-incorporated drug served as the basis for the
time-course of immunosuppression for lymphocytes in the spleen of rats (Mishina
and Jusko 1994).

8.4 Physiology

Nearly all mechanistic PD models are based on the concepts of turnover and
homeostasis (Mager et al. 2003; Jusko 2013). Biological compounds (biomarkers),
structures, and functions are continually being produced and degraded. The starting
condition or baseline of most PD models is thus the steady-state that exists in the
organism. Numerous physiological controls can be invoked to maintain home-
ostasis of the system and factor being measured.

Figure 8.2 provides a listing of many biological entities that have served as PD
measures. Their time-frames for turnover range from very fast (electrical signals) to
very slow (human lifetimes). The factors in the upper part of the list are often
biomarkers of body processes while the lower components may require clinical
measures of major organ or system functioning (e.g., arthritis or depression
symptom scores). Of course, patient survival is a key endpoint in cancer
chemotherapy where measurements are made in a population sense.

The turnover rate may determine which type of PK/PD model applies. For very
rapid turnover processes, direct effect or biophase models are relevant as the PK of
the drug will be rate-limiting in controlling observed responses. When the pro-
duction (kin) and loss (kout) rates of the biological factors are slower and directly
altered by drugs, indirect response models pertain. As systems become more
complex with multiple controls, then transduction, multi-component, or systems
models are needed. These time-frames also determine study designs as slow pro-
cesses need lengthier monitoring of the response measures.

Biological Turnover Rates of Structures or Functions

Electrical Signals (msec)
Neurotransmitters (msec)

Chemical Signals (min)
Mediators, Electrolytes (min)

Hormones (hr)
mRNA (hr)

Proteins / Enzymes (hr)
Cells (days)

Tissues (mo)
Organs (year)

Person ( .8 century)

Fast

Slow

B
I
O
M
A
R
K
E
R
S

C
L
I
N
I
C
A
L

Direct
Effect

Models

Turnover
Models

Transduction
Models

S
Y
S
T
E
M
S

M
O
D
E
L
S

Fig. 8.2 Diversity of
turnover rates and models
(adapted from Mager and
Jusko 2008)
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Turnover and homeostasis are part of most of the basic PD models or compo-
nents currently known.2 Homeostasis reflects the baseline and final steady-state
condition of body systems before and after drug administration and the diverse
feedback and set-point mechanisms that help maintain normal functioning. The
primary PD turnover models are depicted in Table 8.3 with indication of input and
loss functions, types of rate processes, and commonly associated pharmacological
functions. In the receptor and target-mediated models, turnover may be viewed as
drug binding and dissociating from receptors particularly when kon is relatively
slow (Swinney 2009). The synthesis (ksyn) and degradation (kdeg) rates of the
receptors also contribute to the PD, particularly for longer studies. The Precursor
model and Feedback component are often employed to account for tolerance and
rebound phenomena.

Table 8.3 Basic types of turnover models or components used in pharmacodynamics

Model type Diagram Input
function

Loss
function

References

Indirect response
R

kin kout kin (drug
modified)
Zero-order

kout (drug
modified)
First-order

Dayneka
et al. (1993),
Jusko and
Ko (1994)

Precursor-indirect
P

kp
R

kout kp � P (drug
modified)
First-order

kout
First-order

Sharma et al.
(1998)

Cytotoxicity
R

klkg
kg
First-order

kl � C (drug
modified)
Second-order

Jusko,
(1971), Zhi
et al. (1988)

Irreversible
R

kin
kout

kl

kin
Zero-order

kl � C (drug
modified)
Second-order

Yamamoto
et al. (1996)

Transit
R

τ τ First-order
1=s

First-order
1=s

Sun and
Jusko (1998)

Feedback–
Tolerance (Tol) Tol

kt kt kt
First-order

kt
First-order

Friberg et al.
(2002)

Receptor binding
Target-mediated

R
kon

CR
koff

C +

ksyn

kloss

kon � C � R
Second-order

koff � CR
First-order

Shimada
et al. (1996),
Mager and
Jusko (2001)

Usually nonlinear inhibition: 1� Imax �C
IC50 þC

� �

Usually nonlinear stimulation: 1þ Smax�C
SC50 þC

� �

Drug-induced loss may be simple 2nd-order kl � C � R or nonlinear: Kmax�C
KC50 þC

� �
� R

2Here turnover is generalized to include any process where the response or control factor is
affected by production and loss. Some authors consider only basic indirect response models as
turnover models.
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The listings in Table 8.3 provide the most basic models or components. Various
complexities can be added to any model such as transit steps, feedback, additional
compartments, circadian baselines (Krzyzanski et al. 2000a), disease-altered base-
lines (Lepist and Jusko 2004), life-span loss (Krzyzanski et al. 2000b), and/or
physiological limits in responses (Yao et al. 2006).

8.5 Disease Progression

Disease progression models often reflect the time-course of disturbance of PD
baselines, turnover components, or subsystems with changes in homeostasis
(Mould et al. 2007; Earp et al. 2008a, b). A classic disease model for cell prolif-
eration and tumor growth is the ‘resistance to death’ Gompertz function (1825) as
shown in the modern convenient form:

N ¼ Nss � e� lnNssN0
�e�kg�t

where kg is a first-order growth constant, N0 is the initial number, and Nss is the
steady-state number of cells, tumor size, and/or body mass. This equation accounts
for early exponential growth with an ultimate attainment of a plateau value.

The simpler, preferred equation used for size measures or numbers of cells in
many chemotherapy studies is the logistic function (Robertson 1923):

Growth Rate ¼ kg 1� N0

Nss

� �
� N

Cell proliferation rates have also been modeled with an adaptation of the
Michaelis-Menten equation (Meagher et al. 2004). All of these growth or disease
models are “Equations of Life” in a somewhat different format as they are nonlinear
and exhibit capacity-limitation.

8.6 Drug Interactions

The wealth of existing drug-drug interactions and quantitative methods are
well-appreciated in pharmacokinetics. When two or more drugs are administered,
additional interactions can occur owing to either the nature of their pharmacological
mechanisms or their alteration of the same or convergent turnover process or both.

The isobolograph approach based on Loewe Additivity (1926) is often used in
assessing pharmacologic interactions of two agents (Gessner 1974). However, this
and most drug interaction methodology in pharmacology has involved measure-
ment of a static endpoint and do not take into account the PK/PD time-course of
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drug action. Fortunately, time-honored mechanistic equations allow the PK to be
incorporated into their interaction relationships:

Gaddum (1937) Equation for Competitive Interactions:

EAþB ¼
EmaxA � CA

EC50A
þEmaxB � CB

EC50B

CA
EC50A

þ CB
EC50B

þ 1

where CA is the concentration of agonist and CB is the concentration of a drug
competing for the same target site. This equation is applicable for two agents
typically having similar molecular structures and targets. The Gaddum equation
simplifies for an antagonist when EmaxB = 0 as:

Effect ¼ EmaxA � CA

CA þEC50A 1þ CB
EC50B

� �

The ability to fully resolve antagonistic drug effects requires careful assessment of
the actions of the agonist to obtain its EmaxA and EC50A values and further
examining the offsetting effects of the antagonist in order to calculate EC50B. It is
difficult to do this in most in vivo studies, but Mandema et al. (1992) accomplished
this in quantifying the agonist effects of midazolam and antagonistic action of
flumazenil in studies in human subjects.

Ariens et al. (1957) provided basic equations for more complex drug interactions
such as noncompetitive, uncompetitive, and irreversible drug combinations that
require careful enactment for experimental data. The Kenakin (1997) book provides
highly useful instructions regarding these diverse relationships.

If one of these basic mechanistic equations does not suffice in accounting for the
joint effects of two agents, then an empirical drug interaction parameter (w) can be
introduced by multiplying it times one of the EC50 terms. Chakraborty et al. (1999)
used the inhibitory forms of the Gaddum equation and Ariens equations and
demonstrated how adding the w term allowed assessment of possible immuno-
suppressive interactions between IL-10 and prednisolone for inhibiting lymphocyte
proliferation. In fitting joint drug data, w < 1 reflects synergy and w > 1 reflects
antagonism. Another interpretation, if w does not equal 1, is that a more complex
mechanism may exist than accounted for by these basic interaction equations.

Turnover models often allow a mechanistic approach for discernment of natural
synergy occurring for two or more drugs. Earp et al. (2004) provided equations for
indirect response models and demonstrated how strong synergism can result when
there is either joint inhibition of kin and stimulation of kout or, conversely, stimu-
lation of kin and inhibition of kout. The principle that synergy or augmented drug
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effects are produced by opposing drug effects on the two sides of a turnover process
also applies in chemotherapy when inhibition of growth along with cytotoxicity on
the loss side occur. This was nicely demonstrated for the effects of rituximab and
rhApo2L on tumor xenografts in a small systems model enacted by Harrold et al.
(2012).

8.7 Summary and Prospectus

This compilation of PK/PD models and components provides a ‘toolbox’ of kinetic
processes, pharmacological functions, and turnover features of major basic models.
Enhanced PK/PD or small to large systems models can often be assembled by
consideration of the sequence of events leading to an observed drug effect and
utilization of the appropriate mechanistic pieces that capture major rate-limiting
steps. For example, Earp et al. (2008a, b) described disease progression in arthritic
rats and inhibitory effects of dexamethasone on pro-inflammatory cytokines and
edema with model components that included PK, receptor binding, transduction,
competitive interactions, end organ Turnover (paw and bone), and inhibitory
pharmacological functions. Similarly, Fang et al. (2013) assembled a small systems
model to account for the diabetogenic effects of methylprednisolone in a
meta-analysis of receptor, genomic, and biomarker (glucose, insulin, FFA) data
from several studies in rats. The similarity that exists for numerous capacity-limited
pharmacologic and disease progression functions and the fundamental nature of
diverse turnover processes greatly facilitates the meshing of these components in
assembling complex models.
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Chapter 9
Direct, Indirect, and Signal Transduction
Response Modeling

Wojciech Krzyzanski

Abstract Based on the paradigm of mechanistic modeling, three types of phar-
macodynamic models are introduced: direct effect, indirect response, and signal
transduction. The underlying pharmacological and biological assumptions about the
model structures and operations are provided along with examples of their appli-
cations. A brief historical perspective is introduced for each model class.
Mathematical equations defining the model are presented and explored to link
model parameters with model characteristics such as the shape of the response
curve. The impact of dose on the time courses of pharmacodynamic responses is
evaluated for large doses and exemplified with computer simulations. A common
theme is the extent of delay between drug pharmacokinetics and response. When
relevant, alternative parameterizations and parameter identifiability are discussed.
Only the simplest forms of models are provided with some guidelines on how to
build more complex models based on a systems pharmacology approach.

Keywords Direct effect � Indirect response � Signal transduction � Receptor
occupancy theory � Biophase model � Biosensor process � Biosignal flux � Power
model � Link model � Alternative parameterization � Transit compartment model �
Agonism � Concentration

9.1 Introduction

Receptor occupancy theory states that drug molecules exert a pharmacological
effect only if bound to a receptor, and the intensity of the effect is determined by the
size of the drug-receptor complex pool (Clark 1933). In majority of situations, the
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concentration of the bound receptors at the effect site is a function of drug plasma
concentration that is typically quantifiable from blood samples. The drug plasma
concentration is a key variable used to mathematically describe the extent and
duration of pharmacological effect. Such relationships are termed pharmacody-
namic models examples of which are the focus of this chapter.

Basic components of a pharmacokinetic/pharmacodynamic (PK/PD) model
include drug disposition, biophase distribution, biosensor process, biosignal flux,
transduction, and response (Jusko et al. 1995; Mager et al. 2003). Depending on the
presence or absence of one or more of above mentioned components and time that
elapses between introducing a drug to the system and recording the response, the
relationship between drug plasma concentration and response can be direct or
indirect, resulting in two fundamentally different modeling approaches: explicit
algebraic functions and differential equations. The former applies when there is no
delay between pharmacokinetics and pharmacodynamics, whereas the latter is
commonly used if such a delay is present. Development of a relevant model should
be based on understanding both the pharmacology of drug action and biology of the
system the drug acts upon.

In the following sections two types of PD models are introduced that account for
direct and indirect pharmacological responses. Additionally, modeling techniques
describing transduction processes are discussed. Model equations are presented so
the parameters can be interpreted based on their biological meaning and the role
they play in controlling the response curve. Model behavior is explored by simu-
lating response time-courses for typical PK functions. Quantitative relationships
between doses and the response curve geometric characteristics are provided. When
relevant, typical issues arising in fitting the model to the data are discussed.

9.2 Direct Effect Models

By definition, a direct effect takes place if the response is a function of drug
concentration at the effect site. Since quite often the site of drug action is difficult to
sample for assessment of drug concentrations or simply is not known, an additional
assumption is made that drug plasma concentration (C) is in a rapid equilibrium
with the effect site, so that the drug concentration at the effect site is proportional to
C. Then a general form for the direct effect model is

E ¼ f(C) ð9:1Þ

where E denotes the effect and f(C) is a function of C. Examples of direct effects
include drugs acting on the autonomic nervous system such as adrenergic receptor
agonists relaxing smooth muscles in various tissues (Frazier et al. 2006). The direct
effect models are used to describe data from in vitro experiments where cell cultures
are incubated in media containing the known concentration of drug and the cellular
status serves as a marker of the effect (Jamal et al. 2006).
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A mathematical form of the function describing the direct effect (9.1) is deter-
mined empirically based on the shape of the E versus C curve for the observed data.
Therefore, such models are termed empirical. A multitude of empirical direct effect
models have been reported in the literature: linear, power, hyperbolic, sigmoid,
logarithmic, and logistic depending on an appropriate algebraic function selected
for the model. Below only two direct effect models are analyzed which seem to be
most often applied due to their simplicity and flexibility. For unbound effects, the
power model is recommended (with the linear model as a special case), and for
bound (saturable) effects, the sigmoid model is proposed.

9.2.1 Power Model

The power model of direct effect is of the following form:

E ¼ S � Cc ð9:2Þ

where S is a scaling factor and − ∞ < c < ∞ is a dimensionless power coefficient. If
c = 1, Eq. (9.2) defines a linear model with the slope S. It should be noted that c can
be negative. For c < 0, the power model is a decreasing function of C that approaches
infinity if C becomes small. On the other hand, for c > 0, the effect increases to
infinity as C increases to large values. The typical profiles of the power model for
various c are shown in Fig. 9.1. An example of a linear model (c = 1) is provided by
Yamakage (1992) to describe the effect of halothane on smooth muscle dilatation.

Fig. 9.1 Effect versus plasma concentration profiles for various power coefficients c for the power
model parameterized as in (9.3). The Eth is the only effect value that corresponds to the drug
concentration Cth for all c values
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Alternative Parameterization
In (9.2) the power coefficient c plays a role of a shape factor, whereas S is a

scaling factor without a clear interpretation (except for c = 1 when S is the slope of
the line). Moreover the dimension of S is [Effect][Concentration]−c which becomes
problematic for rational or irrational c. A parameterization where a reference
concentration Cth is introduced:

E ¼ Eth
C
Cth

� �c

ð9:3Þ

offers an interpretation of the scaling factor Eth as the effect value corresponding to
the concentration Cth. Eth is obtained for C = Cth regardless of c. The dimension of
Eth is the dimension of the effect. Additionally, as shown in Fig. 9.1, Cth can be
interpreted as a threshold (th) value for effects with large c. The effect (9.3)
becomes a none-or-infinity step function as c ! ∞

E ¼ 0; C\Cth

1; C[Cth

�
ð9:4Þ

However, it should be noted that the parameters Eth and Cth are not identifiable and
one needs to be set to a known value when estimated. The property in (9.4)
constitutes the basis for a “switch” mechanism in the tumor growth rate introduced
by Simeoni et al. (2004) in modeling of inhibitory effects of anticancer agents.

9.2.2 Sigmoid Emax Model

The sigmoid Emax model is without a doubt the most commonly used direct PD
model with applications reaching far beyond pharmacodynamics. It has been
introduced by Hill (1910) to describe the oxygen-hemoglobin dissociation curve.
Wagner (1968) used the Hill equation to describe the relationship between response
and drug plasma concentration. The mathematical form is as follows:

E ¼ EmaxCc

ECc
50 þCc ð9:5Þ

where Emax is the maximal effect, EC50 is the drug plasma concentration that elicits
50 % of the maximal effect, and c is the Hill coefficient that plays the role of a
shape factor. If c = 1, then the sigmoid Emax model is known as the Emax model.

The fundamental property of the sigmoid model is that it bounds the effect
between 0 � E < Emax. Secondly, as seen in Fig. 9.2, the effect is an increasing
function of plasma concentration that approaches Emax as C ! ∞. The name “sig-
moid” originates for a characteristic S-shape of the E versus C curve for c > 1. For
c = 1, Eq. (9.5) becomes a hyperbola with a horizontal asymptote at E = Emax, and
for 0 < c < 1 the model maintains the hyperbolic behavior.
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Both Emax and EC50 are easily identifiable from the E versus C curve as
explained in Fig. 9.2. To define c, one needs to determine the slope of that curve at
C = EC50 (Krzyzanski and Jusko 1998):

dE
dC

ðEC50Þ ¼ cEmax

EC50
and

dE
dðlnCÞ ðlnðEC50ÞÞ ¼ cEmax ð9:6Þ

where the second term quantifies the slope of E versus lnC curve (E vs. C plot in the
linear-log scale) evaluated at ln(EC50).

Emax Model in Pharmacology
Based on receptor occupancy theory, Clark (1933) postulated that the drug effect is
proportional to the fraction of occupied receptors with the maximal effect corre-
sponding to full occupancy. The drug-receptor concentration (DR) at equilibrium
between receptor binding and disassociation according to receptor occupancy
theory is described by the following equation:

DR ¼ RtotC
KD þC

ð9:7Þ

where Rtot is the total receptor concentration and KD is the equilibrium disassoci-
ation constant. Then receptor occupancy can be calculated as DR/Rtot and the effect
becomes

E ¼ Emax
DR
Rtot

¼ EmaxC
KD þC

ð9:8Þ

Fig. 9.2 Effect versus plasma concentration profiles for various power coefficients c for the
sigmoid Emax model (9.5)
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The proportionality coefficient must be equal to the maximum effect Emax to ensure
that at 100 % receptor occupancy the effect is maximal. This assumption holds true
only for full agonists. There are drugs that do not elicit maximal effect despite
100 % occupancy (partial agonists). This observation underlies the concept of in-
trinsic activity introduced by Ariens (1954).

Drug potency is the concentration required to produce a given response and drug
efficacy is its ability to change a receptor, such that it produces a cellular response
(Kenakin 2006). The dose-response curves are frequently applied in pharmacology
to determine drug potency and efficacy based on a relationship between drug
concentrations and a measurable response in an in vitro system. According to Eqs.
(9.5) and (9.8), the Emax serves as a marker of drug efficacy and EC50 as a marker of
drug potency. Moreover, drug potency is determined by its affinity to the receptor
and efficacy. This interpretation has been extended to any type of
concentration-response data described by the Emax model, and subsequently by the
sigmoid Emax model.

Alternative Form
One can divide the numerator and denominator of Eq. (9.5) by EC50

c arriving at the
following form that is numerically favorable:

E ¼ EmaxðC=EC50Þc
1þðC=EC50Þc ð9:9Þ

This implies that for C � EC50 the sigmoid model behaves like the power model
(9.3). Consequently, EC50 and Emax cannot be identified from PD data collected for
C � EC50. The identifiability of Emax and EC50 parameters is further discussed by
Dutta et al. (1996). Another property of (9.9) is often exploited in modeling PD
data. For large c the sigmoid model behaves like a step function as follows:

E ! 0; C\EC50

Emax; C[EC50

�
as c ! 1 ð9:10Þ

Due to a discontinuity, the numerical implementation of a step function becomes
problematic. In practice, for c � 10, the sigmoid model is a good continuous
approximation of (9.10).

9.2.2.1 Sigmoid Emax Model with Baseline

The sigmoid model (9.5) applies only to data where there is no effect in the absence of
drug. Many pharmacological effects are at nonzero baseline E0 > 0 prior to drug
treatment. If the drug effect is direct, one of twomodels with the baseline can be used:

S ¼ E0 þ SmaxCc

SCc
50 þCc and I ¼ E0 � ImaxCc

ICc
50 þCc ð9:11Þ
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where the model that adds to the baseline is considered stimulatory and one that
subtracts from the baseline is called inhibitory. Changing the letter “E” in the names of
variables and parameters to “S” and “I”, respectively, emphasizes that behavior. For
the inhibitory effect model it is assumed that 0 � Imax � E0 to ensure positiveness of
I. An example of the inhibitory Emax model is the effect of an angiotensin-
converting-enzyme (ACE) inhibitor on ACE activity (Edeki et al. 1994).

9.2.2.2 Sigmoid Emax Model as Function of Time

The data to which direct effect models apply consist of measurements of responses
at specific concentrations, which is typical for in vitro studies but requires a special
effort for achieving steady-state concentrations for in vivo experiments. In the
majority of preclinical and clinical studies, PK and PD measurements are made at
specified time points. The relationship (9.1) can be inferred from a PK model
describing C as a function of time C(t) and the effect as a function of time:

R(tÞ ¼ fðCðtÞÞ ð9:12Þ

The importance of the time course of pharmacological effect was first recognized by
Levy (1966) setting the foundation for pharmacodynamic relationships. The sig-
moid Emax model (9.5) as a function of time is defined as follows

RðtÞ ¼ EmaxCðtÞc
ECc

50 þCðtÞc ð9:13Þ

where C(t) is drug plasma concentration at time t described by a separate PK model.
Figure 9.3 shows the time courses of the effect (9.13) corresponding to drug con-
centrations described by a monoexponential function:

Fig. 9.3 Monoexponential drug plasma concentration time profiles (left) and the corresponding
responses (right) for the sigmoid Emax model (9.13) with c = 1 for escalating dose. The symbols
indicate times of the inflection point tfp on the response versus time curves. The slope of the
tangent line to R(t) at t = tfp is given in (9.17)
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CðtÞ ¼ D
V
e�kelt ð9:14Þ

where D denotes the dose, V is the volume of distribution, and kel is the elimination
rate constant.

The immediate consequence of a direct relationship (9.13) is that the peak of
concentration coincides with the peak of response. The rate of the response decay is
determined by the elimination rate of drug concentration. If kz is the terminal slope
for C(t) and Cz is the back-extrapolated y-axis intercept,

CðtÞ�Cze�kzt as t ! 1 ð9:15Þ

then the terminal slope for R(t) is c � kz:

R(tÞ�Emax
Cz

EC50

� �c

e�kzct as t ! 1 ð9:16Þ

where the symbol g(t) * h(t) means that g(t)/h(t) ! 1 as t ! ∞. If C(t) is
monoexponential (9.14) and C(t) > EC50, then the R(t) versus t curve has an
inflection point at time tfp such that C(tfp) = EC50 (see Fig. 9.3) and the slope at tfp
is (Krzyzanski and Jusko 1998):

dR
dt

ðtfpÞ ¼ � 1
4
cEmaxkel ð9:17Þ

9.2.3 Biophase Model

If the drug distribution to the site of action is not rapid, then a delay between the
drug concentration at the effect site Ce and C can be present. In such a case the
effect is not a function of C but Ce:

E ¼ fðCeÞ ð9:18Þ

Because of the delay, the plot of E versus C exhibits a hysteresis, which is a
hallmark of the biophase distribution. Since drug concentrations in the effect
compartment are rarely measured, Ce is inferred from the plasma concentrations by
means of a biophase model that links the time course of C(t) with the time course of
Ce(t) resulting in the response versus time relationship:

RðtÞ ¼ fðCeðtÞÞ ð9:19Þ

Responses known to have a delay related to the biophase include muscle
paralysis following administration of neuromuscular blocking agents such as
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pancuronium (Evans et al. 1984), cardiovascular effects caused by calcium channel
blockers (e.g., verapamil) (Schwartz et al. 1989), or respiratory function affected by
bronchodilators (e.g., theophylline) (Whiting et al. 1981).

9.2.3.1 Link Model

Sheiner et al. (1979) proposed a model describing the degree of paralysis caused by
infusion of a muscle relaxant d-tubocurarin in healthy subjects:

RðtÞ ¼ EmaxCeðtÞc
ECc

e50 þCeðtÞc ¼
EmaxAeðtÞc

EAc
e50 þAeðtÞc ð9:20Þ

where the sigmoid model (9.13) was used with Ce replaced by the ratio of drug
amount Ae in the effect compartment and its volume Ve resulting in another
parameter EAe50 = ECe50 � Ve. This representation of the response eliminated the
volume of the effect compartment from the model equations. The drug distributes to
the effect site according to a first-order rate constant k1e and is eliminated by a
first-order rate constant ke0:

dAe

dt
¼ k1eA� ke0Ae ð9:21Þ

where A = C � V is the drug amount in the plasma compartment. A key assumption
is that the amount of drug distributed to the effect compartment is negligible so that
it does not affect the pharmacokinetics of drug in the plasma. Since the parameters
EAe50 and k1e are not typically identifiable, a new variable is introduced:

Cpss ¼ ke0Ae

k1eV
ð9:22Þ

This can be interpreted as the drug plasma concentration at which the effect
compartment is at equilibrium. Equation (9.21) implies that the differential equation
for Cpss(t) becomes:

dCpss

dt
¼ ke0 C� Cpss

� � ð9:23Þ

Accordingly, the response is:

RðtÞ ¼ EmaxCpssðtÞc
ECc

pss50 þCpssðtÞc ð9:24Þ

where the parameter ECpss50 is defined by (9.22) with Ae replaced by Ae50. The
final model with (9.23) and (9.24) does not require k1e, and ke0 is a sole parameter
accounting for the drug distribution to the biophase.
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9.2.3.2 Biophase Model

The link model of (9.23) and (9.24) has been further modified by assuming that the
clearance of the drug from plasma due to the distribution to the effect compartment
is equal to the clearance of the drug from that compartment (k1eV = ke0Ve) yielding
equality of Cpss = Ce. This simplifies ECpss50 to ECe50 and the link model to the
following form:

dCe

dt
¼ ke0 C� Ceð Þ ð9:25Þ

and the response becomes

RðtÞ ¼ EmaxCeðtÞc
ECc

e50 þCeðtÞc ð9:26Þ

It should be noted that the two models of (i) (9.23)–(9.24) and (ii) (9.25)–(9.26) are
mathematically identical. They differ only in the interpretation of the Cpss versus Ce

with the former being a theoretical drug plasma concentration yielding equilibrium
at effect site and the latter being the drug concentration at the effect site.

Assuming there is no drug in the effect compartment at time t = 0, the con-
centration Ce(t) can be expressed by the convolution integral:

CeðtÞ ¼
Z t

0

Cðt� zÞe�ke0zdz ¼ CðtÞ � e�ke0t ð9:27Þ

For monoexponential PK (9.14), the integral can be calculated explicitly yielding:

CeðtÞ ¼ D
V

ke0
ke0 � kel

e�kelt � e�ke0t
� � ð9:28Þ

The Ce(t) versus t and R(t) versus t profiles corresponding to increasing doses are
shown in Fig. 9.4.

Typically for direct effect models, there is no delay between Ce(t) and R(t)
resulting at the same peak time tp that can be calculated for the monoexponential C
(t) (9.14):

tp ¼ lnðke0=kelÞ
ke0 � kel

ð9:29Þ

The peak time can serve as a measure of the delay between C(t) and R(t). An
obvious observation is that tp does not depend on dose. This property holds for any
linear (dose proportional) C(t).
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9.3 Indirect Response Models

Many pharmacological targets are subjected to a continuous process of degradation
compensated by a renewal to maintain the stable steady-state termed as home-
ostasis. Human gastric acid pH is maintained at the level of 1.5–3.5 by secretion of
chloride and hydrogen ions from the cytoplasm of parietal cells in the stomach. The
human body temperature of 37 °C is tightly controlled by the thermoregulatory
center in the hypothalamus. Many hormones need to be kept in a specific con-
centration range to regulate functions of the body tissues and organs. Blood glucose
concentration is controlled by the pancreas secreting glucagon and insulin.
Hematopoietic cells are produced by the bone marrow and die as a result of
senescence or random destruction so that their levels are sufficient to deliver enough
oxygen to tissues, to stop bleeding, or to initiate an immune response. Mechanisms
of action of a variety of drugs are based on perturbing the homeostatic baseline of
target or its biomarker by affecting the process of production or elimination. In
result, a temporal change in the marker value will be observed generating a re-
sponse. If upon disappearance of the drug from the system, the response returns to
the baseline, then the drug effect is reversible. Since the process of balancing the
drug effect takes time, a delay between the drug time-course and the response
time-course is apparent. The extent of the delay and the amplitude of the response
are determined by the strength of the effect and the turnover rates of the pharma-
cological target. Such mechanisms of drug action are inherently indirect, meaning
that the drug directly affects the turnover process that controls the response rather
than the response itself. Nagashima et al. (1969) are credited for using the first
indirect response model to evaluate the effect of the anticoagulant warfarin on the
prothrombin complex activity.

Fig. 9.4 Time-courses of the concentration of drug in the effect compartment and the response
described by the biophase model of (9.25)–(9.26). The drug plasma concentrations follow
monoexopential kinetics (9.14) with escalating doses. The peak time tp is identical for both Ce(t)
and R(t)
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9.3.1 Basic Indirect Response Models

Dayneka et al. (1993) introduced general mathematical models of indirect phar-
macological responses. The response R is produced at a zero-order rate kin and lost
according to a first-order rate constant kout. The drug inhibits or stimulates the
production or elimination process according to one of the following models:

Model I (inhibition of kin):

dR
dt

¼ kinI CðtÞð Þ � koutR ð9:30Þ

Model II (inhibition of kout):

dR
dt

¼ kin � koutI CðtÞð ÞR ð9:31Þ

Model III (stimulation of kin):

dR
dt

¼ kinS CðtÞð Þ � koutR ð9:32Þ

Model IV (stimulation of kout):

dR
dt

¼ kin � koutS CðtÞð ÞR ð9:33Þ

where I and S are the inhibitory and stimulatory drug effect functions described by
Eq. (9.11) with E0 = 1. Prior to drug administration (C = 0), the response is
assumed to be at the steady-state (baseline) R0:

Rð0Þ ¼ R0 ¼ kin
kout

ð9:34Þ

Examples of systems described by basic indirect response models are provided by
Jusko and Ko (1994). The inhibition of trafficking of basophils from the extravascular
tissues to the blood by methylprednisolone comprises Model I. The inhibition of
water reabsorption from the tubules and collecting duct by a loop diuretic drug
furosemide resulting in the increase of urine volume is an example of Model II. The
stimulation of the production of cyclic adenosine monophosphate (cATP)-induced
bronchodilation by the b-adrenergic receptor agonist terbutaline is described by
Model III. The increase in cAMP activates the cellular membrane sodium-potassium
pump leading to the increase of K+ ions efflux from the plasma into cells constituting
another terbutaline effect that can be described with Model IV.

The time-courses of responses described by Models I–IV are shown in Fig. 9.5.
If C(t) decreases to zero as time increases, then the inhibition of the production
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(Model I) causes the response to decrease below the baseline to reach a nadir and
return to the baseline as drug washes out. A similar behavior can be observed for
the stimulation of the response elimination (Model IV). The stimulation of the
production (Model III) elevates the response above the baseline to culminate at a
peak and descends to the baseline after the drug is cleared from the system. The
response time-course for the inhibition of the elimination (Model II) behaves
similarly.

For general PK functions, there are no explicit solutions to any of differential
equations (9.30)–(9.33). However, they can be integrated to the following forms:

Model I RðtÞ ¼ R0 � kin

Z t

0

1� I CðzÞð Þð Þe�koutðt�zÞdz ¼ R0 � kin 1� I CðtÞð Þð Þ � e�koutt

ð9:35Þ
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Fig. 9.5 Time courses of four basic indirect response models (9.30)–(9.33). The drug plasma
concentrations follow monoexponential kinetics (9.14) with escalating doses. The bold lines are
the limit values of the response as Dose ! ∞ (9.39)–(9.43)
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Model II RðtÞ ¼ R0 þ kin

Z t

0

1� I CðzÞð Þð Þe
�kout

Rt

z

IðsÞds
dz ð9:36Þ

Model III RðtÞ ¼ R0 þ kin

Z t

0

S CðzÞð Þ � 1ð Þe�koutðt�zÞdz ¼ R0 þ kin S CðtÞð Þ � 1ð Þ � e�koutt

ð9:37Þ

Model IV RðtÞ ¼ R0 � kin

Z t

0

S CðzÞð Þ � 1ð Þe
�kout

Rt

z

IðsÞds
dz ð9:38Þ

If C(t) is the monoexponential function (9.14), then the explicit solutions can be
obtained by means of hypergeometric 2F1 functions (Jordan and Gieschke 2005).

9.3.1.1 Large Dose Approximation

For increasing doses, drug plasma concentrations C(t) approach infinity, and the
sigmoid effects (9.11) attain their maximal values. Under this simplifying
assumption, the integrals in (9.35)–(9.38) can be evaluated resulting in the fol-
lowing limiting curves (see Fig. 9.5) as dose D ! ∞

Model I RðtÞ ! R0 1� Imaxð ÞþR0Imaxe�koutt ð9:39Þ

Model II RðtÞ ! R0

1� Imax
� R0Imax

1� Imax
e�koutð1�ImaxÞt; if Imax\1 ð9:40Þ

RðtÞ ! R0 þ kint; if Imax ¼ 1 ð9:41Þ

Model III RðtÞ ! R0 1þ Smaxð Þ � R0Smaxe�koutt ð9:42Þ

Model IV RðtÞ ! R0

1þ Smax
þ R0Smax

1þ Smax
e�koutð1þ SmaxÞt ð9:43Þ

Maximal Response Eqs. (9.39)–(9.43) imply that for all models (except
Model II with Imax = 1), the response reaches the finite maximal value Rmax as dose
increases to infinity:

Rmax ¼

R0 1� Imaxð Þ; Model I
R0

1 - Imax
; Model II

R0 1þ Smaxð Þ; Model III
R0

1þSmax
; Model IV

8
>>><

>>>:

ð9:44Þ
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Peak Time The peak time tp is defined as the time point at which the response
attains its local maximum or minimum. The hallmark of all indirect responses is
that tp depends on dose. If C(t) decreases with time and increases to infinity with
increasing doses, then for Models I–IV (Krzyzanski and Jusko 1997):

tp ! 1 asD ! 1 ð9:45Þ

For monoexponential C(t) (9.14), the dose dependence of tp can be further quan-
tified (Peletier et al. 2005). As D ! ∞:

Model I tp � c2kel
ckel þ kout

ln
D=V
IC50

� �
ð9:46Þ

Model II tp � c2kel
ckel þ koutð1� ImaxÞ ln

D=V
IC50

� �
ð9:47Þ

Model III tp � c2kel
ckel þ kout

ln
D=V
SC50

� �
ð9:48Þ

Model IV tp � c2kel
ckel þ koutð1þ SmaxÞ ln

D=V
IC50

� �
ð9:49Þ

Relationships (9.46)–(9.49) in essence state that the peak time increases logarith-
mically with dose.

Recession Slope For large doses, the offset part of the response versus time
curve becomes linear (see Fig. 9.5) similarly to the sigmoid model (9.17). The slope
of this curve can characterized by the derivative of R(t) at the inflection point tfp
called the recession slope. It informs about the rate at which the response returns to
the baseline. Contrary to (9.17), the limit value of the recession slope for large
doses cannot be expressed as an explicit function of the model parameters
(Krzyzanski and Jusko 1998).

9.3.1.2 Parameter Identifiability

The basic indirect response model parameters consist of system parameters, kin and
kout, and drug related parameters, Imax, IC50, c (Models I and II) and Smax, SC50, c
(Models III and IV). Typically the parameter identifiability is determined by sen-
sitivity analysis where the response time-courses are simulated for various sets of
parameter values. Results of that nature have been reported by Sharma and Jusko
(1996). In the absence of the drug, the response is at the constant baseline R0, and
kin and kout cannot be identified from the baseline data alone. Since the inhibitory
and stimulatory functions are the sigmoid models, identifiability of Imax and IC50 (or
Smax and SC50) is possible only for drug concentrations that remain above IC50 or
SC50 concentrations long enough to elicit a response that is close to the maximal
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response. Therefore, a necessary requirement for the identifiability of these
parameters from single-dose drug administration data is a large dose resulting in a
peak value near Rmax that should be observed as a temporal plateau. As seen from
the large dose approximation equations (9.44), Imax and Smax can be calculated
from Rmax and R0. Given Imax or Smax, (9.39)–(9.43) imply that kout can be
determined from the onset part of the response curve. The recession slope and the
peak response are informative about c. Response data corresponding to a single
large dose have been reported to be sufficient to resolve all model parameters with
imprecise estimates of IC50 and SC50 (Krzyzanski et al. 2006). Therefore, two dose
level response data are recommended for the accurate and precise parameter
estimation.

Alternative Parameterization The baseline serves as a reference for assessing the
extent of the response. Therefore, without sufficient information about the baseline
R0, the estimation of Imax and Smax and other model parameters is impossible. The
presence of the placebo (control) response data is necessary for an unbiased esti-
mation of R0. Because of the baseline relationship (9.34), R0 is a secondary
parameter expressed as a ratio of kin and kout. This often results in a high corre-
lation between estimates of these parameters. An alternative parameterization that
expresses kin as a product of R0 and kout can ameliorate this problem:

kin ¼ R0kout ð9:50Þ

Having R0 as a primary parameter is necessary in the absence of the baseline data
when R0 has to be fixed to a single pre-dose response measurement or a known
value.

9.3.2 Extended Basic Indirect Response Models

The basic indirect models (9.30)–(9.33) can be modified to account for different
processes from zero-order production and first-order elimination processes con-
trolling the change of the response. The production process can vary in time, which
would require kin to be time-dependent (Chakraborty et al. 1999). The loss rate
might be determined by the lifespan of cells, whose counts serve as a marker for the
response (Krzyzanski et al. 1999). The production and loss processes can be
nonlinear functions of the response to account for capacity limited processes or to
keep the response within physiological limits (Yao et al. 2006).

9.3.2.1 Basic Indirect Response Models with Circadian Input

The light-dark cycle affects physiological functions of many organs causing their
circadian (periodic 24 h) fluctuations. The master clock present in the anterior part
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of the hypothalamus controls peripheral clocks in other parts of the body (Reppert
and Weaver 2002). Gastric acid secretion, cardiac output, hepatic enzyme activity,
and glomerular filtration are subject to circadian variability that impact pharma-
cokinetics of various drugs (Labrecque and Belanger 1991). Gene expression
(Sukumaran et al. 2010), hormone secretion, body temperature, heart rate, and
blood pressure (Sallstrom et al. 2005) are known PD responses that undergo cir-
cadian changes.

To account for time-dependent production, the zero-order rate constant kin is
assumed to be a continuous function of time kin(t) that is T-periodic (T = 24 h):

kinðtþTÞ ¼ kinðtÞ for all t ð9:51Þ

The basic indirect response with the inhibition of the circadian input is of the form
(9.30) with kin replaced with kin(t)

dR
dt

¼ kinðtÞI CðtÞð Þ � koutR ð9:52Þ

In the absence of drug (C(t) = 0), there exists only one T-periodic solution to (9.52)
Rb(t)

dRb

dt
¼ kinðtÞ � koutRb ð9:53Þ

that can be determined by the following initial condition:

Rbð0Þ ¼ RbðTÞ ¼ 1
ekoutT � 1

ZT

0

kinðtÞekouttdt ð9:54Þ

The T-periodic function Rb(t) has all attributes of a baseline for an indirect response
but stationarity. If drug perturbs Rb(t) by inhibiting kin(t) and C(t) vanishes after a
long time, then R(t) approaches Rb(t), in the sense that the difference Rb(t)-R(t)
becomes 0 as t ! ∞. The convolution representation of the response R(t) (see
(9.35)) is:

RðtÞ ¼ RbðtÞ

�
Z t

0

kinðzÞ ImaxCðzÞc
ICc

50 þCðzÞc e
�koutðt�zÞdz ¼ RbðtÞ � kinðtÞ ImaxCðtÞc

ICc
50 þCðtÞc

� �
� e�koutt

ð9:55Þ

For the model to be complete, a specific function should be selected to describe
kin(t). The simplest choice favored by many modelers is a trigonometric function.
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Cosine Model The cosine function was first introduced by Lew et al. (1993) to
model the inhibitory effect of methylpredisolone on cortisol concentrations in
healthy subjects. In this model, kin(t) is described by the mean production rate
(mesor) kinM, amplitude kinA, and peak time (acrophase) tk:

kinðtÞ ¼ kinM þ kinA cos
2p
T
ðt� tkÞ

� �
ð9:56Þ

Then the baseline can be calculated explicitly as:

RbðtÞ ¼ RbM þRbA cos
2p
T
ðt� tbÞ

� �
ð9:57Þ

where

RbM ¼ kinM
kout

; RbA ¼ kinAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2out þð2p=TÞ2

q ; tb ¼ tk þ tshift;

tshift ¼ T
2p

atan
2p=T
kout

� � ð9:58Þ

As seen in Fig. 9.6, the baseline Rb(t) is shifted by time tshift with respect to kin(t).
As for the basic indirect models, if the drug is administered at time t = 0, then the
response must be at the baseline value:

Rð0Þ ¼ Rbð0Þ ¼ RbM þRbA cos
2p
T
ðtbÞ

� �
ð9:59Þ
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Alternative Parameterization The parameters describing the production rate kinM,
kinA, and tk are difficult to determine from PD data. On the other hand, the baseline
parameters RbM, RbA, and tb are readily identifiable from the baseline data.
Therefore, using them as primary parameters might be more practical. Then (9.61)
can serve to calculate kinM, kinA, and tk

kinM ¼ RbMkout; kinA ¼ RbA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2out þð2p=TÞ2

q
; tk ¼ tb � tshift ð9:60Þ

Note that kout is not identifiable from the baseline data alone. Equation (9.60)
implies that kinM, kinA, and tk are also not identifiable from the baseline data.

Asymmetric Circadian Rhythms Since the cosine function is symmetric, the
cosine model can be used to describe PD data with symmetric baselines. When an
asymmetry is observed, asymmetric functions should be used to define kin(t).
Various models have been reported such as exponential and linear release models
(Rohatagi et al. 1996) and dual cosine and harmonic models (Chakraborty et al.
1999).

9.3.2.2 Basic Lifespan Based Indirect Response Models

The concept of lifespan controlled cell removal is based on the assumption that each
cell has the same lifespan TR. This assumption implies that the cell removal rate is
the production rate kin(t) delayed by TR, kin(t-TR). The rate of change in the cell
number becomes:

dR
dt

¼ kinðtÞ � kinðt� TRÞ ð9:61Þ

If kin(t) has a constant baseline kin0:

kinðtÞ ¼ kin0 for t \ 0 and kinðtÞ ! kin0 as t ! 1 ð9:62Þ

then the response R(t) has the baseline R0 (Koch and Schropp 2013):

R0 ¼ kin0TR ð9:63Þ

that serves as an initial condition for (9.61). The response R(t) can be calculated in
terms of the integral of kin(t):

RðtÞ ¼
Z t

t�TR

kinðzÞdz ð9:64Þ
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Basic Indirect Model with Lifespan Controlled Loss The lifespan concept of cell
elimination was first implemented in indirect response models by Krzyzanski et al.
(1999). The basic indirect response Model III was adopted to describe the stimu-
latory effect of hematopoietic growth factors erythropoietin, thrombopoietin, and
granulocyte-colony stimulating factor on the production of reticulocytes, platelets,
and neutrophils, respectively, in healthy subjects. The cell production rate under
baseline conditions is assumed to be constant kin0. The drug stimulation of kin0 is
described as the basic indirect response Model III (9.32). Since the loss rate is the
production rate delayed by TR, (9.61) implies that

dR
dt

¼ kin0S CðtÞð Þ � kin0S Cðt� TRÞð Þ ð9:65Þ

The initial condition for (9.65) is the baseline value (9.63)

Rð0Þ ¼ R0 ð9:66Þ

The lifespan based indirect response models have been applied to hemoglobin
responses to treatment with erythropoiesis stimulating agents (Budha et al. 2011),
and pegylated thrombopoietin effect on platelets in healthy subjects (Samtani et al.
2009). The response time-courses for escalating doses are shown in Fig. 9.7.

The fundamental difference between the indirect response Model III and model
(9.65)–(9.66) is that for drug plasma concentrations decreasing with time the peak
response is dose independent and

tp ¼ TR ð9:67Þ

Similarly to Model III, if dose becomes very large, D ! ∞, there is a limiting
response curve (Krzyzanski and Perez Ruixo 2012):
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RðtÞ ! R0 þ kin0Smaxt; for 0\t\TR

R0 1þ Smaxð Þ; for TR � t

�
ð9:68Þ

and the maximal response is

Rmax ¼ R0 1þ Smaxð Þ ð9:69Þ

The lifespan concept has been implemented to model hematological toxicities
(Bulitta et al. 2009) and tumor growth inhibition (Mo et al. 2014) by anticancer
agents.

9.3.3 Indirect Response Models with Precursor

A precursor for a response R is another response P controlled by a turnover process
such that the output from P is the input to R. Bone marrow hematopoietic cells are
precursors for the circulating blood cells. Hormones produced and stored in glands
and organs are precursors secreted to the blood where they become measurable
responses. If the drug acts on the precursor, then the effect propagates on the
response. Iron stored in the liver and muscle is an example of a precursor with the
release to the circulation controlled by hepcidin (Detivaud et al. 2005). The
dynamics of such effect differs from the drug effect with a simple zero-order pro-
duction rate for the response.

Sharma et al. (1998) introduced a precursor to the basic indirect models to
account for tolerance and rebound phenomena observed for drugs acting on pre-
cursors. The precursor P is produced at a zero-order rate k0 and eliminated at a
first-order rate kp. The loss rate of the precursor is the production rate for the
response R, which is eliminated according to a first-order rate constant kout. The
drug affects kp according to the basic indirect model mechanisms (9.32) or (9.33).

Model V (blockage of precursor):

dP
dt

¼ k0 � kpI CðtÞð ÞP ð9:70Þ

dR
dt

¼ k0I CðtÞð ÞP� koutR ð9:71Þ

Model VI (depletion of precursor):

dP
dt

¼ k0 � kpS CðtÞð ÞP ð9:72Þ
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dR
dt

¼ kpS CðtÞð ÞP� koutR ð9:73Þ

As for the basic indirect response models, it is assumed that, prior to drug
administration at time t = 0, both precursor and response are at their baseline values

Pð0Þ ¼ P0 ¼ k0
kp

and Rð0Þ ¼ R0 ¼ k0
kout

ð9:74Þ

Model V has been applied to describe the inhibition of T-helper cell trafficking by
prednisolone (Magee et al. 2001). An example of Model VI application is the
stimulation of prolactin secretion by antipsychotic drug chlorprothixene (Bagli et al.
1999).

The response versus time profiles for escalating doses from the precursor model
are shown in Fig. 9.8. After a single dose of drug with decreasing PK, the response
time course of Model V decreases to reach a nadir Rp followed by an increase
towards the baseline, crossing to show a rebound RBp with a subsequent asymptotic
return to the baseline. For Model VI the response time-course is inversed. The
response increases to reach a peak Rp followed by a decrease towards the baseline,
crossing to show a rebound RBp with a subsequent asymptotic return to the
baseline.

The differential equations (9.71) and (9.73) can be integrated to the following
integral representation of responses for Models V and VI
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Fig. 9.8 Time courses of two indirect response models with precursor (9.70)–(9.73). The drug
plasma concentrations follow monoexponential kinetics with escalating doses. The bold lines are
the limit values of the responses as D ! ∞ (9.76)–(9.77)
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RðtÞ ¼ R0 þ P0e�koutt

� PðtÞþ kout

Z t

0

P(z)e�koutðt�zÞdz ¼ R0 þ P0e�koutt � PðtÞþ koutPðtÞ � e�koutt

ð9:75Þ

where P(t) is given by Eqs. (9.36) (Model V) and (9.38) (Model VI), with kin
replaced by k0 and kout by kp.

Large Dose Approximation If dose approaches infinity, so does C(t), and the
integral in (9.75) can be evaluated, yielding (Hazra et al. 2006):

Model V

RðtÞ ! R0 � R0Imaxkout
kout � kp 1� Imaxð Þ e�kp 1�Imaxð Þt � e�koutt


 �
; if kout 6¼ kp 1� Imaxð Þ

ð9:76Þ

Model VI RðtÞ ! R0þ R0Smaxkout
kout � kp 1þ Smaxð Þ e�kp 1þ Smaxð Þt � e�koutt


 �
; if kout 6¼ kp 1þ Smaxð Þ

ð9:77Þ

The limit curves (9.76)–(9.77) after a correction for the baseline R0 are essentially
Bateman functions.

Maximal Response The peak or nadir of the limit functions (9.76)–(9.77) are the
maximal responses approached by the peak or nadir response as dose increases to
infinity:

Rmax ¼
R0 � R0Imax

kout

kp 1�Imaxð Þ
� � kp 1�Imaxð Þ

kp 1�Imaxð Þ�kout

; if kp 1� Imaxð Þ 6¼ kout; 0\Imax\1; Model V

R0þR0Smax
kout

kp 1þSmaxð Þ
� � kp 1þ Smaxð Þ

kp 1þ Smaxð Þ�kout

; if kp 1þ Smaxð Þ 6¼ kout; Model VI

8
>>>><

>>>>:

ð9:78Þ
Peak Time and Rebound Peak Time For doses increasing to infinity, the
response peak times approach a finite time (except for Model V with Imax = 1)
(Hazra et al. 2006).

Model V tp !
ln kpð1� ImaxÞ=kout
� �

kpð1� ImaxÞ � kout
; if kp 1� Imaxð Þ 6¼ kout; 0\Imax\1

ð9:79Þ

Model VI tp !
ln kpð1þ SmaxÞ=kout
� �

kpð1þ SmaxÞ � kout
; if kp 1þ Smaxð Þ 6¼ kout; ð9:80Þ
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The peak of the rebound tr approaches infinity for large doses for both Model V and
Model VI (Hazra et al. 2006):

tr ! 1 as D ! 1 ð9:81Þ
Area Between Baseline and Response Regardless of dose, as long as the drug
concentration vanishes after a long time, the area between the baseline and response
part of the response curve and the area between the baseline and rebound are always
equal (Sharma et al. 1998).

9.4 Signal Transduction Models

Signal transduction is a sequence of events that takes place between binding and
activation of the receptor and observable effect. This sequence involves intracellular
processes such as a signaling cascade that begins with activation of transmembrane
proteins or enzymes, followed by activation of secondary messengers leading to up-
or down-regulation of genes, their transcription to mRNA that is further translated
to functional proteins, which change the cell status and can cause a cellular
response. The affected cells can further propagate the signal either by trafficking and
interacting directly with other cells or affecting them indirectly. The indirect
interaction can involve initiating a neural signal or secreting hormones that travel
with the blood stream. Such cellular responses can lead to changes in functions of
tissues and organs, which can impact the behavior of the entire organism. Each step
of this multi-scale transduction process might be a measured response. An example
of a signal transduction is a sequence of events following binding of methylpred-
nisolone to the glucocorticosteroid receptor that results in its translocation to the
nucleus and up- or down-regulation genes causing temporal changes in mRNA for
the tyrosine aminotransferase and other enzymes (Ramakrishnan et al. 2002).

By definition, every transduction process has two attributes: it transforms the
original signal and can introduce a delay. If the transduction steps are rapid given the
experimental scale, the delay might be negligible and the measurable response might
be a function of the initial stimulus. However, if such a delay is apparent, modeling of
the transduction process must involve mathematical apparatus generating delays.

9.4.1 Signal Transduction Without Delay

A central component for modeling signal transduction is the stimulus concept
introduced by Stephenson (1956). The stimulus is the product of receptor occu-
pancy and efficacy, e. The response is a nonlinear function of the stimulus:
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E ¼ f
eC

KD þC

� �
ð9:82Þ

Since efficacy can be both tissue and drug specific, Furchgott (1966) introduced an
intrinsic efficacy, e, such that the efficacy is the product of e and the total receptor
concentration Rtot

E ¼ f
eRtotC
KD þC

� �
ð9:83Þ

9.4.1.1 Operational Model of Agonism

Black and Leff (1983) proposed an operational model of agonism where the efficacy
term in the Furchgott model was ignored and the response was only a function of
the occupied receptor concentration

E ¼ f
RtotC
KD þC

� �
ð9:84Þ

Moreover, the transducer function, f, was assumed to be sigmoidal

fðDRÞ ¼ EmDRn

Kn
E þDRn ð9:85Þ

where Em is the maximum effect, and KE is the concentration of bound receptors
that elicits half-maximal effect. Combining (9.84) and (9.85) allows for the
response to be a function of the drug plasma concentration

E ¼ EmsnCn

ðKD þCÞn þ snCn ð9:86Þ

where the transducer ratio s = Rtot/KE is a measure of the efficiency of transduction
of occupied receptors into the pharmacological effect. The operational model (9.86)
was applied to describe the effects of agonists for A1 adenosine receptor on the
heart rate in rat (Van der Graaf et al. 1997).

9.4.2 Signal Transduction with Delay

When the time scale for the transduction delay is not negligible, a delay might be
observed in the response. Then the signal transduction is a dynamic process that
changes the signal over time. The most common approach is the transit compartment
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model that stands out for majority of applications because of its robustness and
simplicity. Other possible modeling techniques involve convolution integrals or
delay differential equations which are mathematically more advanced and require
special software.

9.4.2.1 Transit Compartment Model

The transit compartment model consists of a sequence of transit compartments, Mi,
representing non-observable steps of the transduction process by transferring the
signal at the same first-order rate constant 1/s, where s denotes the mean transit time
of the signal through a single compartment. The transit compartments are unidi-
rectionally connected, so the output from Mi is the input to Mi+1 (Fig. 9.9).

The signal enters the first compartment as a time-dependent input, Input(t):

dM1

dt
¼ Input(t)� 1

s
M1 ð9:87Þ

dMi

dt
¼ 1

s
Mi�1 �Mið Þ; i ¼ 2; . . .; n ð9:88Þ

where n is the number of transit compartments. It is assumed that the input for
negative times is at the baseline value In0, approached by the input function after a
long time:

Input(t) ! In0 as t ! 1 ð9:89Þ

Then the initial conditions for the model equations (9.87)–(9.88) are defined by the
steady-state

Mið0Þ ¼ M0 ¼ In0s; i ¼ 1; . . .; n ð9:90Þ

For most applications In0 = 0, but the situation where In0 > 0 is not uncommon.
Many receptors targeted by drugs are constitutively activated by endogenous
ligands (hormones or cytokines) which results in a continuous baseline signal. The
integral representation of the solution to (9.87)–(9.88) is

Fig. 9.9 Schematic of the transit compartment model. The first-order output from a compartment
is the first-order input to the following compartment. The transit rate constants are the same for
each compartment and equal to 1/s, where s is the mean transit time
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MiðtÞ ¼ M0 þ s
Z t

0

In(z)� In0ð Þ‘iðt� zÞdz ¼ M0 þ s In(t)� In0ð Þ � ‘iðtÞ; i

¼ 1; . . .; n ð9:91Þ

where ‘i(t) is the gamma probability distribution function (Zelen and Severo 1972)

‘iðtÞ ¼ 1
sðn� 1Þ!

t
s


 �i�1
e�t=s ð9:92Þ

Gamma Function For the unit impulse input, Input(t) = d(t), where d(t) is the
Dirac delta function, In0 = 0 and the convolution integral in (9.90) reduces to

MnðtÞ ¼ s‘nðtÞ ð9:93Þ

Equation (9.92) implies that the signal in the n-th compartment, initiated by a unit
impulse, is proportional to the gamma probability distribution function. The
time-courses of Mn(t) corresponding to different numbers of transit compartments
are shown in Fig. 9.10.

The signal propagation results in delayed peaks, lowering their heights, and
increasing the dispersion with increasing n. The peak time (mode) and the corre-
sponding peak value for ‘n(t) are
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Fig. 9.10 Time courses of inputs (left) and responses (right) described by the transit compartment
model for the varying number of transit compartments n. The input for the upper panel is Input
(t) = ABEC�d(t)/s whereas the input for the lower panel is Input(t) = 1/sE(C(t)), where E(C) is the
Emax model and ABEC is the area under the E(C(t)) versus t curve. The concentration C(t) is
monoexponential (9.14)
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tmode ¼ ðn� 1Þs and ‘nðtmodeÞ ¼ 1
sðn� 1Þ!

n� 1
e

� �n�1

ð9:94Þ

The standard deviation of ‘n(t) serves as a measure of signal dispersion

SD ¼ ffiffiffi
n

p
s ð9:95Þ

Since the signal weakens and dissolves with increasing n, the addition of an
amplification factor c in the last transit compartment equation was suggested by
Sun and Jusko (1998):

dMn

dt
¼ 1

s
Mc

n�1 �Mn
� � ð9:96Þ

Transit Compartment Model with Stimulus For a transduction process with
delays, the relationship between the stimulus and the response cannot be described
by a function. Mager and Jusko (2001) introduced a model where the input was the
stimulus introduced by Stephenson (9.83) that served as an input to the transit
compartment sequence:

Input(t) ¼ 1
s
eRtotCðtÞ
KD þCðtÞ ð9:97Þ

where the 1/s is the first-order constant at which the initial signal is generated. In the
final form, the model is as follows:

dM1

dt
¼ 1

s
EmaxC(t)

EC50 þC(t)
�M1

� �
ð9:98Þ

dMi

dt
¼ 1

s
Mi�1 �Mið Þ; i ¼ 2; . . .; n ð9:99Þ

where Emax = eRtot and EC50 = KD. In the absence of the baseline drug effect, the
initial conditions were set to zeroes

Mið0Þ ¼ 0; i ¼ 1; . . .; n ð9:100Þ

The model (9.96)–(9.99) was applied to describe the effect of scopolamine and
atropine on the parasympathomimetic activity in rats (Perlstein et al. 2002).

The time-courses of Mn(t) for the increasing number of transit compartments are
shown in Fig. 9.10. As for the gamma distribution function, the response peaks
decrease and peak times increase with n. Also, the response dissipates with
increasing n. Although some results regarding the peak time tp as a function of n
have been reported (Yates 2008), a more quantitative relationship between tp and n
for a general model is not known.
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Large Dose Approximation The time-courses of the response for escalating doses
are shown in Fig. 9.11. If dose becomes large, then the input in (9.97) approaches
Emax/s, and the convolution integral in (9.90) can be calculated explicitly:

MnðtÞ ! Emax

Z t

0

‘nðzÞdz ¼ Emax

ðn� 1Þ! gðn,t=sÞ as D ! 1 ð9:101Þ

where g(n,x) is the incomplete gamma function (Davis 1972). Note that g(n,t/s)/
(n − 1)! is the explicit representation of the cumulative distribution function for the
gamma distribution that approaches 1 as t ! ∞. Therefore, the maximal response
for Mn(t) is

Mnmax ¼ Emax ð9:102Þ
Alternative Parameterization Based on the interpretation of s as the mean transit
time of the signal through a transit compartment, the mean transit time of the signal
through n compartments (MTT) is the product of n and s

MTT ¼ ns ð9:103Þ

The MTT parameter characterizes the maturation time for aging cell populations
(e.g., Friberg et al. 2002; Harker et al. 2000) and can be measured from in vitro or
in vivo experiments contrary to the transit time s in many cases.

Parameter Estimation A notorious problem for the transit compartment model is
a selection of the number of transit compartments. A brute force approach often
applied in practice is to assign n a series of integers and select the lowest one that

Time t

In
pu

t

0

50

100

150

200

Time t
0 10 20 30 40 50

R
es

po
ns

e 
M

n

0

50

100

150

200

Emax/

Emax

0 10 20 30 40 50

Fig. 9.11 Time-courses of the Input(t) and response Mn(t) for the transit compartment model
(9.93)–(9.94) for escalating doses with n = 5. Input(t) = 1/sE(C(t)), where E(C) is the Emax model.
The concentrations C(t) are monoexponential (9.14). The bold line is the limit values of the
response as D ! ∞ (9.96)
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does not significantly improve the goodness of fit criterion value. A more sophis-
ticated approach that applies only to models with explicit solution to Mn (9.93) is to
estimate n as a real number. This requires the factorial in (9.93) to be replaced by a
continuous Euler gamma function C(n) (Davis 1972) or to use Stirling’s approxi-
mation (Savic et al. 2007):

n!�
ffiffiffiffiffiffiffiffi
2pn

p
nne�n as n ! 1 ð9:104Þ

9.5 Summary

In this chapter, the basic components of the major PD models (Jusko et al. 1995)
have been introduced. These have encompassed direct, indirect, and transit com-
partment models. Ever evolving experimental technology offers new biomarkers or
extends existing ones as measures of PD responses. This enables the better quan-
tification of mechanisms of drug action resulting in an increased complexity of the
mathematical models describing such biological systems. Consequently, the basic
models serve as unit blocks that can be connected in a multi-scale and multi-level
complex model capable of describing available data. The model complexity typi-
cally necessitates an increase in the system dimension (number of state variables),
but also requires a network of interactions between the model components.
Examples of such complex systems can be found among PD models describing
interactions between glucagon, insulin, and glucose (Peng et al. 2014). High
dimensionality and cross-talk between model variables are the key features of
systems biology models. Merging PK/PD modeling principles with systems biology
approaches sets ground for the field of systems pharmacology (Jusko 2013).
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Chapter 10
Irreversible Pharmacodynamics

Alberto Russu and Italo Poggesi

Abstract The assessment of pharmacodynamics (PD) and their relationship to
drug exposure are of paramount importance in drug development processes. PD
effects are typically initiated by the interaction of drugs with target systems (re-
ceptors, enzymes, channels, membranes, etc.). These interactions can be reversible
(i.e., governed by chemical equilibria) or irreversible (as is the case of a compound
forming covalent bonds with its target). Following these interactions, a cascade of
events is triggered, that can again be reversible or irreversible in nature. This
chapter describes some examples of drug-induced irreversible processes, focused
on the mathematical models that have been used in the literature to describe them.
In many cases, imperfect knowledge and limitations of experimental designs are
reflected in uncertainties in the interpretation of the experimental results: different
classes of models, both irreversible and reversible, may provide reasonably accurate
descriptions of a certain set of data. The use of System Pharmacology approaches,
which incorporate the knowledge of the interconnections between events involved
in the observation of a particular drug response, will help in providing a more
mechanism-based interpretation of irreversible pharmacodynamics.

Keywords Chemical equilibrium � Irreversible drug action � Concentration-effect
relationship � Target � Slow dissociation � Turnover model � Direct-effect model �
Mechanism of action

10.1 Introduction

Pharmacodynamic (PD) models, which describe the time-course of drug effect and
their relationship to drug exposure (PK/PD), are important tools for drug devel-
opment (Mager et al. 2003; Ploeger et al. 2009). Substantial portions of a drug’s
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label nowadays describe these relationships to provide practitioners with indications
on how to handle dose levels and dosing regimens to obtain the desired therapeutic
effect. For instance, the label of gabapentine reports: “Pharmacokinetic/
pharmacodynamic modeling provided confirmatory evidence of efficacy across
all doses” (Gabapentine package insert 2014).

Therapeutic drug effects are related to the interaction with targets (e.g., receptors,
proteins, hormones, or ion channels). These interactions develop a cascade of
downstream effects that result in a clinical response (Mager et al. 2003; Danhof
et al. 2005; Ploeger et al. 2009). This process is schematically represented in
Fig. 10.1. It is possible that the interaction of a drug with the target happens via a
chemical equilibrium (i.e., via a process that is reversible by definition). Likewise, it
is possible that the same interaction occurs via an irreversible process, for instance,
the so-called “suicide inhibition”. There are a number of drugs acting in this way,
for instance: suicide inhibitors of cytochrome P-450 (CYP) 19, such as exemestane
(Miller et al. 2009), and CYP17, such as abiraterone (Bryce and Ryan 2012) are
part of the therapeutic armamentarium for the treatment of breast and prostate
cancer, respectively. In many cases, compounds such as these are transformed into
reactive metabolites, which bind covalently to the target, thereby inactivating the
target itself (Miller et al. 2009). To recover the pre-dose situation, de novo synthesis
of the target is required. Other processes along the chain linking the target inter-
action step to the final clinical response can be irreversible in nature, for instance,
killing of pathogens (e.g., bacteria, viral load) or processes implying cell kill, such
as those occurring during tumor growth inhibition.

The objective of this chapter is to examine the drug-induced processes (drug
target engagement, target activation, and downstream occurrence of physiological
or pathophysiological responses) that may be described as irreversible processes
and to provide some of the basic model building blocks that are used to describe
these events, together with some key examples reported in the literature.

Due to a variety of reasons, such as imperfect knowledge, suboptimal experi-
mental designs, lack of information related to important covariates, or relative
empiricism of the available models, there is sometime a disconnect between the
irreversible nature of some processes and the “reversible-like” nature of the models
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Fig. 10.1 Schematic representation of processes involved in the generation of a pharmacological
response
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used to describe them. The use of System Pharmacology approaches (Van Der
Graaf 2012), which are grounded on detailed mechanisms, may help in providing a
more mechanism-based interpretation of irreversible pharmacodynamics.

10.2 Mechanistic/Biological Principles of Irreversible
Drug Action

10.2.1 Background

The interaction between a natural agonist and a target (e.g., a receptor) is typically
the first event that triggers a certain biological process. A drug response is elicited
when a compound interacts with a target and modifies its natural function, thus
altering the downstream cascade of events, as shown in Fig. 10.1.

In the case of interactions at the receptor level, simple considerations based on the
law of mass action suggest that the formation of the agonist-receptor complex can be
described by a saturable function of the agonist concentration. According to classical
receptor theories (e.g., Occupational Theory, Operational Model of Agonism, see
Kenakin 1997 for a review), pharmacological response to an agonist drug can be
related to the quantity of drug-receptor complex and, in turn, to drug concentration
through a proportionality factor, e.g., the “intrinsic activity” (Ariens 1954) or the
“transducer constant” (Black and Leff 1983). Therefore, the overall relationship
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Fig. 10.2 Example of concentration-effect relationship for a hypothetical agonist, in absence and
presence of a given antagonist. Two specific cases of reversible and irreversible antagonism are
shown: increased EC50 with Emax unchanged, and decreased Emax with EC50 unchanged
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between agonist concentration and effect may in turn be described by a saturable
function, as exemplified by the “No antagonist” curve in Fig. 10.2.

On the contrary, a drug acting as an antagonist decreases the effect of a natural
agonist. In this case, these drugs bind to receptors but do not act like agonists and,
therefore, do not activate receptor function. These antagonists may block the ability
of agonists to bind to the receptor, for example by competing for the same receptor
site. In this respect, the antagonist-receptor interaction is regulated by a chemical
equilibrium, which is a reversible process.

10.2.2 Irreversible Interaction with the Target

In case the antagonist forms covalent bonds with the receptor at the agonist binding
site (for instance, via the formation of a reactive intermediate), a complex with the
receptor is formed via an irreversible process, which effectively inactivates the
receptor. The number of remaining unoccupied receptors may be too low for even
high concentrations of agonist to elicit a maximal response.

Figure 10.2 provides a simple example of how the concentration-effect rela-
tionship of an agonist would change in the presence of a reversible or an irreversible
antagonist, compared to a scenario with no antagonist. In presence of a reversible
antagonist competing with the agonist for the same binding site, the agonist EC50

would increase, according to the law of mass action. In the presence of an irre-
versible antagonist, the EC50 (i.e., the agonist concentration associated to
half-maximal effect) would remain unchanged with respect to a scenario with no
antagonist, since the agonist undergoes no competition at antagonist-free receptors.
Conversely, the Emax (i.e., maximum effect as percentage of the effect obtained with
the agonist alone) would be decreased by the presence of the irreversible antagonist,
since less free receptors would be available for agonist binding. The reader is
referred to Kenakin (1997) for further details and a thorough overview of possible
scenarios.

In an in vivo setting, the scenario is even more complex because of the presence of
dynamic aspects. For example, the antagonist concentrations are not constant, but
change with time as a consequence of the drug input (i.e., dosing regimen and
absorption processes) and of the processes related to subsequent drug disposition.
Also, once bound to the receptor, there is no need for an irreversible antagonist to be
resent in the biophase to inhibit the effects of the agonist. Thus the duration of action
of such an inhibitor is relatively independent of its rate of elimination from the body
and essentially dependent on the rate of turnover of receptor molecules. Recovery of
receptor takes place through re-synthesis, rather than dissociation of the drug-receptor
complex (as in reversible inhibition). Similarly, in irreversible inhibition of targets
such as enzymes, the time to recovery is dependent upon the synthesis of new enzyme,
rather than upon the dissociation and elimination of the inhibitor.
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Therefore, because of the aforementioned time-dependency aspects, the models
that describe the relationships between dosing regimens and effects need to consider
the dynamic nature of these processes. The static relationships exemplified in
Fig. 10.2 are in general not adequate for such a task, and rather represent a special
case where effect can be related to constant concentrations of agonist and antagonist
(e.g., an in vitro setup). In an in vivo scenario, receptor binding and/or effect are
often more suitably expressed by means of differential equations, which provide a
convenient tool for modeling possible delays between pharmacokinetics (PK),
receptor binding, and onset of effect.

10.2.3 Reversible Interaction with the Target Under Slow
Dissociation

In many scenarios of drug-receptor interaction, the equilibrium between bound and
unbound forms of the receptor is characterized by much faster kinetics than the
other processes involved, such as turnover of the free receptors, or the natural
degradation of the drug-receptor complex. However, there may be cases where the
dissociation processes involving drug and receptor are much slower compared to
the other dynamics of the system. Therefore, although the mechanism is in principle
reversible, the overall interaction can be essentially considered irreversible.
Consequently, re-synthesis of the receptor becomes the dominant mechanism of
receptor recovery, since the drug-receptor dissociation process takes place on a
much longer time scale. Moreover, slow dissociation kinetics may have implica-
tions on the duration of pharmacological and toxicological effects, as exemplified in
the reviews by Tummino and Copeland (2008) and Copeland et al. (2006), where
the relevance of long residence times associated with different receptor-ligand
complexes is described.

10.2.4 Induction of an Irreversible Phenomenon

A pharmacodynamic effect can be considered irreversible in general if the drug
induces a given irreversible phenomenon, regardless of the mechanism of inter-
action with the target (i.e., either reversible or irreversible). In this respect, all
events dealing with organism or cell kill can be considered irreversible. Various
examples of irreversible processes are:

• Bactericidal action of antibiotics (Nielsen et al. 2011);
• Reduction of viral load due to the treatment with antivirals (Snoeck et al. 2010);
• Cell death processes induced by anticancer drugs, which elicit tumor growth

inhibition compared to controls in preclinical models (Simeoni et al. 2004), or
which cause the tumor shrinkage with respect to the initial condition in cancer
patients (Claret and Bruno 2009);
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• White blood cell progenitor kill process induced by cytotoxic therapies leading
to myelosuppression (Friberg et al. 2000);

• Occurrence of mutagen or teratogen effects (Jusko 1971a);
• Irreversible inhibition of enzyme turnover, as is reported for the turnover of

cyclo-oxygenase-1 (COX-1) enzyme by aspirin (Hong et al. 2008) or gastric H+,
K+-ATPase by omeprazole (Äbelö et al. 2000).

Also in this case, as for the irreversible reaction leading to a covalent drug-receptor
complex, the processes can be interpreted as the extraction of a component
(pathogen, cell, enzyme etc.) or the formation of a new component (mutated cell)
from the system via the interaction with the xenobiotic.

10.3 Turnover Model with Irreversible Inactivation

According to classical receptor theory, receptor binding is governed by the law of
mass-action and assumes reversible binding, as shown in Eq. (10.1):

ð10:1Þ

where r is the concentration of free receptors (denoted as lowercase, to distinguish
from response R), C is the concentration of drug D in the biophase, and rC is the
concentration of drug-receptor complex (rD). The total concentration of receptors
(i.e., in free and bound form) is given by rT = r + rC. Synthesis and degradation of
the receptor are ruled by the zero-order rate constant ksyn and the first-order
degradation rate constant kdeg, respectively. Formation of the drug-receptor com-
plex is governed by the association rate constant kon and the dissociation rate
constant koff (the degradation of the drug-receptor complex with rate constant kelim
has been omitted from the equation for simplicity), as shown also graphically in the
scheme at the right of the equation.

A mathematical model for irreversible receptor binding can then be readily
derived from Eq. (10.1) by dropping the term koff � rC, as shown in Eq. (10.2):

drC
dt ¼ konðrT � rCÞC rCð0Þ ¼ 0
dr
dt ¼ ksyn � kdegr � konðrT � rCÞC rð0Þ ¼ rT

�
ð10:2Þ

From Eq. (10.2), it is easy to observe that, because of irreversible receptor binding,
the free receptors can only be restored through re-synthesis (via the formation rate
constant ksyn). This also accounts for the time-dependent pharmacodynamic features
of irreversible binding, in that the restoration of free receptors is rate-limited by the
re-synthesis process, assuming that the drug half-life is relatively shorter.

A pharmacological response R, elicited from receptor binding, may be assumed
proportional to rC/rT (e.g., for agonists, so that response increases with increasing
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concentrations rC), or to (rT − rC)/rT (e.g., for antagonists, so that response
decreases with increasing concentrations of rC), although other choices of the
transduction function are possible, depending on the specific context (see Kenakin
1997 for a review). Assuming that response is proportional to the fraction of free
receptors with a linear transduction constant equal to 1, i.e., R = R0 � (r/rT),
Eq. (10.2) can be easily reparametrized in terms of response R, yielding:

dR
dt

¼ kin � koutR� f ðCÞR Rð0Þ ¼ R0 ð10:3Þ

where R denotes the response variable, R0 is its initial value, kin is a zero-order
production rate of the response, and kout is a first-order elimination rate constant,
representing the turnover rate of the response. At equilibrium and in absence of
drug effect, it follows that R0 = kin/kout. Comparing Eqs. (10.2) and (10.3), it can be
observed that kin = kdeg � R0, kout = kdeg, f(C) = kon � C.

In general, the turnover model, which can be schematically represented as in
Fig. 10.3, can be effectively used to model pharmacodynamic effects arising not
only from irreversible receptor binding, but also from irreversible interaction
between a drug and other targets such as endogenous enzymes or ion channels. In
such cases, parameters kin and kout represent apparent rates of response formation
and dissipation, rather than parameters related to receptor synthesis and degrada-
tion. In the general form of Eq. (10.3), drug effect is implemented as a function of
the drug concentration, f(C), and the elimination term f(C) � R can be interpreted
as a bimolecular interaction between the drug and the target, which is irreversibly
inactivated. Possible choices of f(C) are a linear function, f(C) = slope � C, or a
sigmoid-type function, e.g. f(C) = Emax � Cc/(EC50

c + Cc). In general, the con-
centration C can be a plasma concentration (Cp) or the concentration in a hypo-
thetical effect compartment (Ce). Although more complex scenarios are possible,
requiring suitable models to be developed on an ad hoc basis, the turnover model
has been widely used in the literature, for example in modeling the irreversible
effects of omeprazole (Äbelö et al. 2000) and irreversible 5a-reductase inhibitors
(Gisleskog et al. 1998; Katashima et al. 1998).

We discuss here the concepts of irreversible target inactivation with an example
on exemestane, an irreversible aromatase inactivator used for the treatment of
postmenopausal women with advanced breast cancer. The work by Valle et al.
(2004) investigates the impact of exemestane PK on plasma estrone sulphate (E1S),
using a PK/PD approach. The proposed PD model assumes that E1S plasma con-
centrations are determined by a zero-order synthesis rate ks, indirectly related to
aromatase activity, and a first-order elimination constant ko. Inhibition of E1S
synthesis by plasma exemestane concentration C is controlled by an IC50 parameter,

R
kin kout

f(C)

Fig. 10.3 Schematic
representation of the turnover
model with irreversible
elimination of response
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which gives rise to a standard type I indirect response model (Dayneka et al. 1993),
as shown in Eq. (10.4):

dE1S
dt

¼ ks 1� Cc

ICc
50 þCc

� �
� koE1S E1Sð0Þ ¼ E1S0 ð10:4Þ

where c is a Hill coefficient and E1S0 is the baseline E1S concentration.
The delay observed between the peak plasma exemestane exposure and the peak

effect on E1S was suitably modeled through a type I indirect response model, which
is a reasonable modeling choice whenever such delays between PK and PD are
observed, and/or when the mechanism of action is unknown. Such a simple,
semi-empirical approach fitted the data well and required only four parameters
(baseline E1S, ko, IC50, and c), although in many applications the Hill coefficient is
not introduced so as to obtain an even more parsimonious model. As an alternative,
a type IV indirect response model was applied, with a slightly less satisfactory
fitting than the type I model (Poggesi et al. 1999).

Although the PK/PD data were satisfactorily fitted using the semi-empirical,
indirect-response model, a more mechanism-based approach was also developed,
whereby irreversible aromatase inhibition was explicitly modeled. The mechanistic
model introduces aromatase concentration, Ar, as a system variable which controls
the synthesis rate of E1S. The rate of change of Ar is in turn governed by a
zero-order rate constant of production, kse, and a first-order rate constant of elim-
ination, koe. Irreversible aromatase inhibition was modeled by allowing plasma
exemestane concentrations to increase aromatase elimination (i.e., enzyme inacti-
vation), by means of a second-order rate constant ki. The mechanism-based irre-
versible effects model is given by Eq. (10.5a,b):

dAr
dt ¼ kse � koeAr � kiC � Ar Arð0Þ ¼ Ar0

dE1S
dt ¼ ksAr � koE1S E1Sð0Þ ¼ E1S0

ð10:5a; bÞ

where Ar0 is the baseline aromatase concentration. Note that model of Eq. (10.5a,b)
is fully identifiable provided that Ar is observed. Otherwise, as mentioned in
Sect. 10.6, a re-parametrization must be performed so as to remove the redundancy
between kse and ks, thus enabling parameter identifiability.

In this specific example, the hypothesized mode of action for exemestane would
have favored the adoption of such an irreversible aromatase inhibition model.
Interestingly, however, the irreversible and type I indirect-response models proved
reasonably equivalent in terms of goodness-of-fit and model selection criteria.
Despite being semi-empirical in nature, in that it does not implement the actual
exemestane mode of action, the type I indirect-response model was able to predict
the drug effect in different conditions (dose levels, dosing regimens), in reasonable
agreement with data not used for the PK/PD model development. Overall, this
seems to suggest that, in certain circumstances, the available data may not provide
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sufficient information to prefer a mechanistic model to a more empirical one, even
when the mechanism of action can be explicitly modeled.

10.4 Model of Slow Reversible Drug-Receptor Binding

As indicated in Sect. 10.3, a particular case of the reversible receptor binding model
(see Eq. 10.1) occurs when the dissociation process is much slower compared to the
other processes. In such a case, although the molecular interaction is reversible, it is
not possible to describe the system through the equilibrium equation of fast and
reversible binding (i.e., rC = rT � C/(KD + C), where KD = koff/kon is the equi-
librium dissociation constant). Therefore, in practice, Eq. (10.1) will have to be
used as-is to fit experimental data. Parameter estimation will then enable to assess
the relative magnitude of the different kinetics involved in the binding and the
velocity of the dissociation process (often reported as a dissociation half-life, i.e.,
t1/2,off = log(2)/koff). It is interesting to note that, in principle, the same data could
potentially be described also through Eq. (10.2), which is equivalent to Eq. (10.1)
with the term koff � rC dropped, because of the assumption of slow dissociation.

The work by Yassen et al. (2007) provides a practical example of such a sce-
nario, whereby the respiratory depressant effects of buprenorphine is described
through a mechanistic PK/PD modeling approach. A biophase equilibration model
with receptor association/dissociation (Eq. 10.1), combined with a linear trans-
duction function, was selected as the most suitable model to fit ventilatory response
data. The analysis of parameter estimates confirmed that buprenorphine is charac-
terized by relatively slow kinetics of dissociation from the µ-opiod receptor, with a
dissociation half-life t1/2,off = 68 min (KD = 0.089 nM), which is consistent with
results from previous in vitro studies. Moreover, the delay in onset and the pro-
longed duration of respiratory effect appeared to be explained not only by slow
receptor binding kinetics, but also by the relatively slow effect site equilibration
(log(2)/keo = 75 min).

10.5 Modeling the Induction of Irreversible Processes

In certain physiological systems, a response variable can be subject to growth or
proliferation over time (e.g., tumor cells, pluripotent stem cells, and bacterial or
viral load). This is usually modelled by assuming that the rate of change of a
response variable R is governed by a growth function g(R) (e.g., exponential
growth, g(R) = kg � R, or logistic growth, g(R) = kg � R � (1 − R/Rmax), where
kg and Rmax represent the growth rate constant and the maximum value of
response). When the response variable is represented by proliferating cells, irre-
versible inactivation or cell killing (e.g., by means of a chemotherapeutic agent) can
be modelled as in Eq. (10.6):
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dR
dt

¼ gðRÞ � f ðCÞR Rð0Þ ¼ R0 ð10:6Þ

As described earlier, f(C) is often modelled as a linear or sigmoid-type function of
drug concentration either in plasma or in a biophase compartment. Under repeated
dosing or infusion regimens, the system in Eq. (10.6) may converge to a
steady-state equilibrium R∞ (possibly even R∞ = 0), or diverge to infinity,
depending on the relative magnitude of proliferation (expressed by g(R)) and cell
inactivation (expressed by f(C)).

This class of models has been originally introduced to describe phase specific or
non-specific cell inactivation by chemotherapeutic drugs (Jusko 1971b, 1973).
These concepts have been extended to account for possible delays between irre-
versible drug action on a given target and cell elimination. In the field of cytotoxic
chemotherapeutic drugs, the work by Simeoni et al. (2004) assumed that drug
concentration opens an elimination pathway for proliferating cells, which are then
removed from the system through a chain of transit compartments expressing
several steps of cell degradation. In an alternative approach by Lobo and Balthasar
(2002), drug concentration is assumed to trigger a “cell destruction” signal which is
propagated to the proliferating cells through a chain of delay compartments:
inactivation of target cells takes place as soon as the destruction signal is delivered.
Because of such “distributional” aspects, the above models were also termed “cell
distribution” and “signal distribution” models (Yang et al. 2010).

A model based on similar principles of Eq. (10.6) was used by Friberg et al. to
characterize the time course of leukopenia after administration of 5-fluorouracil
(Friberg et al. 2000). Their semi-physiological PK/PD model assumed that repli-
cating cells (progenitors) in the bone marrow may maturate to become
non-replicating cells and, ultimately, circulating leukocytes, by means of a chain of
maturation compartments. The model included a feedback loop on the progenitor
production rate dependent on the amount of peripheral circulating cells. Exposure to
5-fluorouracil was then assumed to act on two compartments of replicating cells
(representing two different stages of maturation) by irreversible inactivation.

Recently, the concepts of cell proliferation and inactivation by irreversible drug
action have been applied to model the cell-killing effects of dulanermin
(rhApo2L/TRAIL) and conatumumab, two pro-apoptotic receptor agonists
(PARAs), on COLO205 tumor cells implanted in mice (Kay et al. 2012). The two
drugs bind to transmembrane death receptors DR4 (dulanermin only) and DR5
(both compounds) and trigger the extrinsic cellular apoptotic pathway through a
caspase-signaling cascade resulting in cell death.

Tumor size data from rodent tumor xenograft studies following administration of
either compound were combined to develop an intracellular-signaling tumor
regression model that includes two levels of signaling: upstream signals unique to
each compound (representing initiator caspases), and a common downstream
apoptosis signal (representing executioner caspases) shared by the two agents. The
model is represented in Fig. 10.4 and in Eq. (10.7a,b,c):
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d
dt
UpSig ¼ kin;Up � C � kout;Up � UpSig UpSigð0Þ ¼ 0

d
dt
ApopSig ¼ kin;Apop � UpSig� kout;Apop � ApopSig ApopSigð0Þ ¼ 0

d
dt
TV ¼ kG � 1� TV

TVSS

� �
� TV � kDeath � ApopSig � TV TVð0Þ ¼ TV0

ð10:7a; b; cÞ

In the model, UpSig is the upstream signal (governed by a first-order formation rate
constant kin,Up and first-order dissipation rate constant kout,Up), ApopSig is the
apoptosis signal (governed by a first-order formation rate constant kin,Apop and
first-order dissipation rate constant kout,Apop), and TV is the tumor volume, which is
characterized by a logistic function of unperturbed growth (kG: first-order net
growth rate constant; TVss: steady-state or maximum tumor volume; TVss: baseline
tumor volume) and an elimination term with second-order rate constant parameter,
kDeath, activated by the apoptosis signal. The upstream signal is linked to the PARA
plasma concentration and represents initiator caspases. Its dynamics include the
delivery of PARA to the cells, PARA binding to the death receptors, PARA dis-
sociation from its target receptors, and removal of PARA from the tumor site, each
of which is likely to be different for the two PARAs. The dynamics of the Upstream
Signal also include the initiator caspase activation by the death domains of the
activated death receptors and the turnover of initiator caspases. That is, the

TV

ApopSig

UpSigCmab

UpSigDlmn

Dulanermin 
Plasma PK Conatumumab 

Plasma PK

kinUp,Dlmn
kinUp,Cmab

koutUp,Dlmn
koutUp,Cmab

kinApop,UpSig koutApop

kDeath

kG, TVSS

Fig. 10.4 Model scheme of PARAs pharmacodynamics (with kind permission from Springer
Science + Business Media: adapted from Kay et al. 2012, p. 580, Figure 1)
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dynamics of the apoptosis signal are not drug specific and represent the activation
of the executioner caspases by the initiator caspases as well as the turnover of the
executioner caspases. The apoptosis signal increases the turnover rate of the tumor
cells, thus leading to an additional elimination pathway via the term
kDeath � ApopSig. It is interesting to observe that, although the interaction between
drug and target is reversible (i.e., is characterized by association and dissociation
with the death receptors), the downstream pharmacodynamic effect is to be con-
sidered irreversible, in that it leads to cell apoptosis.

10.6 Reduction of Irreversible-Effects Mechanistic PD
Models

Hutmacher et al. have proposed a framework to reduce or “collapse” mechanistic
pharmacodynamic models that are not a priori identifiable (Hutmacher et al. 2005).
More specifically, the concepts of turnover models and irreversible elimination are
exemplified through a PK/PD modeling exercise on a selective irreversible antag-
onist, which is assumed to bind irreversibly to a target enzyme and essentially kill
it. The above mechanisms were incorporated into a “total mechanistic” model,
which postulated synthesis and degradation of enzyme and drug distribution to an
effect site, as shown in Eq. (10.8a,b,c):

dCe
dt ¼ keo Cp � Ce

� �
Ceð0Þ ¼ 0

dE
dt ¼ ksyn � kdeg 1þ f Ceð Þð ÞE Eð0Þ ¼ ksyn

kdeg
¼ E0

dR
dt ¼ kinE � koutR Rð0Þ ¼ kin

kout
E0 ¼ R0

ð10:8a; b; cÞ

where E represents the enzyme concentration, Cp is the plasma concentration of the
inhibitor, keo is the effect site rate constant, Ce is the effect site concentration, E is
the enzyme, ksyn is the zero-order rate of enzyme synthesis, kdeg is the first-order
rate constant of enzyme degradation, f(Ce) is the function that mediates the clear-
ance of the enzyme by the drug, R is the response, kin is the apparent first-order
conversion rate constant of enzyme to response, and kout is the first-order elimi-
nation rate constant of response dissipation (substrate, S, is assumed to be in excess
and thus constant, i.e., kin = kin,true � S). The function f(Ce) can be assumed as a
linear, power, or sigmoid-type function of inhibitor concentration at the effect site.

In certain cases, data may fail to support fully mechanistic models, because not
all physiological variables can be sampled, because the sampling scheme is too
sparse to allow reliable identification, or because the fully mechanistic model is
inherently over-parametrized. In these cases, alternative modeling strategies are
usually pursued, such as the adoption of simpler, more empirical models, or fixing
some parameter (e.g., rate constants) of a fully mechanistic model. However, if the
pathway contains processes with “fast” dynamics, the clear-cut approach is to
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reduce, or “collapse”, the mechanistic model so as to obtain parametrically simpler
classes of models that retain the mechanistic interpretation of the full one. The
integrity of the total mechanistic model is retained by assuming equilibrium con-
ditions for certain “fast” processes. For example, two possible collapsed models can
be obtained depending on the relative velocity of enzyme degradation and response
dissipation (i.e., the relative magnitude of rate constants kdeg and kout).

Equation (10.9a,b) shows the case in which enzyme degradation occurs at a
much faster rate than response dissipation:

E ¼ E0

1þ f ðCeÞ
dR
dt

¼ kin
E0

1þ f ðCeÞ � koutR Rð0Þ ¼ kin
kout

E0 ¼ R0

ð10:9a; bÞ

where the equation for the enzyme dynamics can be solved assuming an equilib-
rium (with respect to the dynamics of the response), given the assumption that kdeg
is much larger than kout.

Equation (10.10a,b), on the contrary, shows the case in which response dissi-
pation occurs at a much faster rate than enzyme degradation:

dE
dt

¼ ksyn � kdeg 1þ f ðCeÞð ÞE Eð0Þ ¼ ksyn
kdeg

¼ E0

R ¼ E
E0

R0

ð10:10a; bÞ

where the equation for the response dynamics can be solved assuming equilibrium
(with respect to the dynamics of the enzyme), given the assumption that kout is
much larger than kdeg. Note that none of the models above is structurally identifiable
if the enzyme concentration E is not measured, because it is not possible to separate
ksyn from kin (Eq. 10.8a,b,c), E0 from kin (Eq. 10.9a,b), and ksyn from R0

(Eq. 10.10a,b) (see also Gisleskog et al. 1998 for a discussion). In order to ensure
identifiability, a reparametrization must be performed, by removing one unneces-
sary parameter. Additionally, it can be shown that, if the dynamics of both the
enzyme degradation and response dissipation are fast compared to the kinetics of
the drug concentration, a direct-effect model is obtained.

It is interesting to observe how a model of irreversible effects, typically
expressed by means of a differential equation containing a term of irreversible
elimination, can take several possible mathematical forms, depending on the
availability of data, the need for model simplification, or the presence of fast
dynamics that can be collapsed to yield a reduced model. In this respect, the
equivalence between the mechanistic model of irreversible aromatase inhibition and
the indirect response model of E1S, presented in Sect. 10.3, may be interpreted in
terms of collapsed models. As a matter of fact, the indirect response model in
Eq. (10.4) could be regarded as a “collapsed” version of the irreversible inhibition
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model of Eq. (10.5a,b) (with c = 1), assuming that the equation of aromatase
dynamics is solved at equilibrium and substituted in the E1S equation. Similarly,
Eq. (10.8a,b,c), a fully mechanistic enzyme-response model, can be reduced to
Eq. (10.9a,b), a type I indirect response model, after solving the enzyme equation at
equilibrium.

10.7 Discussion

Understanding the pharmacodynamic effects that trigger drug response is difficult
due to the complexity of physiology and the limited or partial knowledge about
pharmacological mechanisms of action of drugs. Even focusing on the sub-class of
irreversible pharmacological effects, the diversity of possible mechanisms, the
number of molecules participating in the interaction, and the complexity of pro-
cesses that trigger the response call for suitable modeling techniques to allow
interpretation of the data and meaningful inference.

In this review, we have provided some examples of simple and common
mechanism-based models that describe and quantify irreversible pharmacodynamic
effects. However, it should be stressed that, in many instances, this is necessarily a
simplification of reality. For example, in many real-life scenarios, it is not possible
to classify a given drug effect, observed in a pre-clinical experiment or in a clinical
trial, as either “reversible” or “irreversible” class. In this respect, from a PK/PD
modeling standpoint, a given irreversible pharmacodynamic effect could potentially
be described using models that do not incorporate the actual mechanism of action,
such as a reversible-effect model or a semi-mechanistic, indirect-response model.
Moreover, as demonstrated in the work by Hutmacher et al. (2005), indirect-effect
or direct-effect models can indeed be interpreted as collapsed irreversible mecha-
nistic models, and are suitable for use, in absence of additional data, when certain
assumptions regarding relative kinetics of processes within a pathway are met. In
general, the conditions for modeling irreversible events with “reversible” structural
models (or vice versa) may not always be clear, or data may not always be fully
informative to allow the identification of a model that incorporates the actual
mechanism of action. This has been shown by the exemestane case (Valle et al.
2004; Poggesi et al. 1999), where an indirect-response model of exemestane effect
could be successfully fitted to data from clinical studies, and was used to predict
drug effect in studies characterized by a different design. The PK/PD model that
incorporates the actual exemestane mode of action, namely aromatase inactivation,
was not superior with respect to the semi-mechanistic indirect response model in
terms of goodness-of-fit criteria. A similar issue can be encountered in case of the
confounding between the process with slow dissociation of drug-receptor complex
and the irreversible formation of a drug-receptor complex (Yassen et al. 2007). This
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appears to suggest that, in absence of prior knowledge about the underlying
mechanism of action, it may not be possible to select the correct mechanistic model
among several candidates, as equivalencies may exist among model classes. In
general, it would be interesting to formally investigate under what conditions (e.g.,
in terms of experimental design and values of rate constants) two model classes
could be considered equivalent, at least in terms of goodness-of-fit and/or predictive
performances.

It should be recognized that focusing on a single, specific target or receptor
interaction and neglecting the interconnections among different processes may
hamper the interpretation of the experimental results. We observed how different
classes of models of irreversible and reversible effects may sometimes describe a
given dataset equivalently. This may be the case when prior biological knowledge
is absent, when the mechanism of action is unknown, and/or when the information
content of the data is limited. In such cases, the choice of a suitable mechanistic
model is difficult and may have to be guided by empirical or data-driven criteria,
rather than physiological understanding. In this respect, Systems Pharmacology
modeling (Van Der Graaf 2012) is a promising tool to understand biological and
pharmacological phenomena to test hypotheses about mechanisms of action, and to
identify a target for compound selection (Agoram and Demin 2011). The White
Paper by the National Institute of Health working group on Quantitative Systems
Pharmacology acknowledged that, in order to better understand therapeutic and
toxic effects of a given compound, the pharmacometrics community should pro-
gressively move away from the traditional “one-gene, one-receptor, one-mecha-
nism” paradigm, “in favor of a network-centric view that relies on mathematical
models to achieve the necessary integration of data and hypotheses” (Sorger et al.
2011). Papers started adopting PK/PD models within System Pharmacology
approaches, as is the case of methylprednisolone pharmacodynamics
(Ramakrishnan et al. 2002) and fatty acid amide hydrolase inhibition in pain
(Benson et al. 2014). Because of its network-oriented approach, Systems
Pharmacology may also enable the resolution of the ambiguousness between
reversible and irreversible pharmacodynamic effects, which is sometimes an
obstacle to mechanistic PK/PD modeling.

In conclusion, this review presented some key elements, or “basic blocks”, that
can be used within more comprehensive modeling frameworks to describe complex
pathways or networks of interactions among a drug and possibly multiple targets.
Despite their simplicity, such models capture fundamental mechanistic concepts
that reflect the rate-limiting steps of pharmacological response. With the progres-
sive establishment of quantitative Systems Pharmacology, it is expected that the
integrated application of several basic pharmacodynamic models within a com-
prehensive systems-based framework will become the rule rather than the
exception.
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Chapter 11
Feedback Control Indirect Response
Models

Yaping Zhang and David Z. D’Argenio

Abstract Most physiological processes are subject to feedback regulation. We
hypothesize that PK/PD models that do not appropriately incorporate known
autoregulatory mechanisms are incomplete representations of the drug-response
relationship, and may lead to an underestimation of a drug’s potency. In this
chapter, a new general framework is introduced for modeling pharmacodynamic
processes that are subject to autoregulation, in which the canonical IDR models of
Jusko are extended to incorporate the time-course of the difference between the
pharmacodynamic response and its basal value (the error signal). Following the
well-established approach of traditional engineering control theory, the proposed
feedback control indirect response (FC IDR) models include linear combinations of
terms proportional to the error signal itself, the integral of the error signal, and the
derivative of the error signal. Model equations are derived and simulations are
conducted to illustrate the characteristic behaviors of FC IDR models. It is
demonstrated that ignoring the contributions of feedback control mechanisms in PD
studies would lead to the underestimation of drug potency. Four examples were
selected from literature to illustrate the broad application of the FC IDR framework.
The similarities and differences of this proposed framework and two alternate
approaches that also include feedback are further discussed. The FC IDR modeling
framework allows the drug’s effects to be quantified independently of the
autoregulatory mechanisms that also act on the controlled variables. It addresses the
difficulties long-recognized by systems physiologists in understanding the mecha-
nisms of drug action that underlie processes subject to feedback regulation, and
may provide a bridge for development of more mechanistic systems pharmacology
models.
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11.1 Introduction

Regulation is a hallmark of living systems. The scholarship of the physiologist
Adolph (1961) highlighted early concepts of physiological regulation, from
Alcmaeon’s notion that blending opposites secures the constancy of constitution,
through Lavoisier’s experiments on energy metabolism that identified regulators
keeping the animal body in a state of equilibrium. But it was the codification of
these ideas beginning with Bernard and especially with the work of Cannon (1929),
which has led to almost a century of work by systems physiologists, joined more
recently by systems biologists, aimed at uncovering the regulatory mechanisms that
govern life.

Well-versed in Cannon’s concept of homeostatic mechanisms and armed with the
tools used for the design of automatic feedback control systems as well as other
enabling technologies that resulted from World War II, a cadre of pioneering sys-
tems physiologists began to uncover the mechanism of feedback regulation under-
lying a number of physiological responses. One of the earliest of these is the
contribution of Grodins and Gray in 1954 introducing the role of a respiratory
control system in the feedback regulation of arterial CO2. This and other applications
based on engineering feedback control principles were presented in Grodins’s
landmark 1963 monograph on control theory in biological systems (Grodins 1963).
During this same time period, Guyton et al. (1973) were using these ideas of feed-
back control to elucidate various levels of regulation at play in the cardiovascular
system in health and disease. Several other especially influential examples during
this seminal period include: the pupillary light reflex studied by Sherman and Stark
(1957); Bolie’s model of insulin control of glucose (Bolie 1961); feedback control of
plasma adrenocortical hormones by Yates and Urquhart (1962); the role of
hypothalamic control in temperature regulation by von Euler (1964); the closed loop
control model for the muscle stretch reflex of Milhorn (1966). These and other
contributions during the 1950s–1970s were synthesized and made available in a
number of influential monographs (Milsum 1966; Stark 1968; Clynes and Milsum
1970; Jones 1973) that inspired the next generation of systems physiologists and
bioengineers. For a contemporary treatment of physiological control systems, the
reader is referred to the encompassing monograph of Khoo (2000).

Using the techniques of the molecular biology revolution, systems biologists
have also been ably guided by concepts and techniques used in the control of
engineered systems to understand, for example, how intracellular signaling net-
works regulate specific cell behaviors. A few examples include: the use of integral
control to describe the perfect adaptation observed in bacterial chemotaxis (Yi et al.
2000); rate sensitive and persisting signaling pathways in feedback regulation of
erythropoiesis (Koulnis et al. 2011); and negative feedback properties of the
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MAPK/ERK signaling pathway (Sturm et al. 2010). These concepts and approaches
of feedback control have also been presented as essential components of mono-
graphs and textbooks on systems biology (for example in Kitano 2001; Alon 2007;
Kremling 2014).

Concepts of regulation now constitute a central tenet and integrating principle
for studying living systems from the molecular, sub-cellular, cellular, multi-cellular,
tissue, organ, organism, through the population levels. These ideas and their
associated implementing machinery that have been used with great effect by sys-
tems physiologists and systems biologists, however, are not widely used in service
to the drug discovery and development enterprise. There are some notable excep-
tions. First, Urquart’s (2003) compelling insights on this topic, informed by the
expansive arc of his first-hand experience in physiology, pharmacology, device, and
drug development, are essential reading to begin understanding the challenges
involved with studying and modeling drug action when the drug’s response(s) is
itself subject to endogenous feedback control. There have also been specific models
reported in the literature that incorporate pharmacodynamic feedback elements
developed for particular compounds (Woo et al. 2008), as well as some more
general approaches that have been used to model such autoregulated pharmaco-
dynamic processes (Gabrielsson and Weiner 2007; Gabrielsson and Peletier 2008).
In addition, the precursor-dependent indirect response model (Sharma et al. 1998),
while not explicitly incorporating feedback mechanisms, has been used to describe
tolerance and rebound caused by feedback regulation.

Our purpose in the remainder of this chapter is to illustrate how some of the
ideas and tools for feedback regulation used for controlling engineered systems,
may provide not only a conceptual but also a general working framework for
modeling pharmacodynamic processes that are subject to autoregulation. Toward
this end, we (1) introduce a feedback control framework based on indirect response
models, (2) provide some illustrative simulations using different feedback con-
trollers, (3) compare the proposed feedback control indirect response model
framework to other approaches, and (4) further illustrate the application of the
proposed approach using several examples from the literature.

11.2 Feedback Control Indirect Response Models

In this section we present the feedback control indirect response modeling frame-
work by: (1) introducing linear feedback control (FC) as applied to engineered
systems; (2) illustrating several feedback control indirect response (FC IDR)
models; (3) presenting extensions to the linear feedback control framework par-
ticularly relevant to modeling drug action; (4) relating the FC IDR framework
introduced to other approaches used for modeling drug action involving autoreg-
ulated pharmacodynamic processes; and (5) highlighting the challenges of quan-
tifying the contributions of feedback control mechanisms in PD studies.
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11.2.1 Linear Feedback Control Framework

We outline below the essential elements of the classic feedback control framework
that we will apply to IDR models. For a thorough and rigorous treatment of
physiological control systems, the inquisitive reader is referred to the bioengi-
neering monograph of Khoo (2000).

The block diagram in Fig. 11.1 depicts a generic feedback control system
configuration in which the output of the system to be controlled yðtÞ is fed back to
the controller, which in turn constructs the input to the system uðtÞ. The design of
the controller is dictated by the desired performance goals of the feedback control
system (e.g., regulation, servomechanism). When the system to be controlled is
linear and the performance goal is to regulate the system output at a desired ref-
erence value yref (set point) (that is, to reduce the error eðtÞ ¼ yref � yðtÞ that may
result from disturbances acting on the system or changes in the system character-
istics), the controller may construct the input signal using terms involving (1) the
error, (2) the integral of the error, (3) the derivative of the error, or (4) linear
combinations of these terms. We can then write the control input as follows:

uðtÞ ¼ GpeðtÞþGi

Z t

0
eðsÞdsþGd

deðtÞ
dt

ð11:1Þ

The components in Eq. (11.1) are referred to, in turn, as the proportional (P),
integral (I), and derivative (D) control terms and the constants Gp;Gi;Gd are their
respective gains reflecting their contribution to the control input u(t). Inspection of
Eq. (11.1) reveals that the control input is composed of terms representing the
current, past, and future state of the system output.

A commonly encountered example of such a control system is the automatic
cruise control in a car that acts to maintain the car’s speed at a selected value in the
presence of changes in load on the engine (e.g., resulting from changes in the
incline of the road). Such cruise control systems are generally composed of both the
proportional and integral terms in Eq. (11.1) (PI control). Another example is the
operation of an atomic force microscope in which the vertical position of the
cantilever base is controlled (in contact mode AFM, the bending of the cantilever is
controlled) via a piezo drive, based on a laser reflected off the cantilever as the
feedback signal (again a PI control law is used). The applications of these control
ideas are ubiquitous in areas such as process engineering, power transmission,
aerospace and flight control, transportation, robotics, telecommunications, instru-
mentation, and numerous others.

In ending this briefest of introductions to linear feedback control systems, we
direct the interested reader to the history informed perspective of classic feedback

Fig. 11.1 Feedback control
system
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control in the encompassing 2010 monograph of Astrom and Murray (2010). We
also note that numerous extensions of this basic feedback control idea have been
developed and applied over the past 70 years and are the subject of ongoing
research. They include contributions under the following rubrics: optimal control,
adaptive control, robust control, stochastic control, fuzzy control, hierarchical
control, distributed control, autonomous control, and quantum control. An exten-
sive literature exists on the theory and practice for controlling engineered systems.

The approaches developed to handle these even more realistic and challenging
engineered system control problems have also been used to guide our under-
standing of control and regulation in biology at the molecular, cellular, organ,
organism, and population levels. Of course, in these applications one is not faced
with the task of designing the controller as is the control engineering (the forward
control problem), but instead with the challenge of understanding the control
mechanisms established through the evolutionary pressures that direct
self-organization in biological systems (the inverse control problem). We return to
these ideas later in this chapter.

In what follows, we propose, illustrate, and apply an inverse control approach
that can be coupled with the IDR modeling framework, to allow the characterization
of drug action when the pharmacodynamic response is itself subject to endogenous
feedback control.

11.2.2 Feedback Control Indirect Response Model
Framework

The indirect response modeling framework introduced, developed, and applied by
Jusko and his colleagues, has provided a formal, general and powerful companion
to pharmacokinetic modeling approaches. Its widespread use has transformed the
study of pharmacodynamics. In this section, we outline how the feedback control
framework summarized above can be merged with IDR models.

We adopt the notation for indirect response models used in Dayneka et al. (1993)
and consider the following four canonical IDR models:

Model I: Inhibition of kin

dR
dt

¼ kinð1� H1ðCÞÞ � kout � R; Rð0Þ ¼ R0 ð11:2Þ

Model II: Inhibition of kout

dR
dt

¼ kin � koutð1� H1ðCÞÞR; Rð0Þ ¼ R0 ð11:3Þ
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Model III: Stimulation of kin

dR
dt

¼ kinð1þH2ðCÞÞ � kout � R; Rð0Þ ¼ R0 ð11:4Þ

Model IV: Stimulation of kout

dR
dt

¼ kin � koutð1þH2ðCÞÞR; Rð0Þ ¼ R0 ð11:5Þ

In the above equations, C is the plasma or biophase concentration of the drug, and
H1ðCÞ, H2ðCÞ are defined as follows:

H1ðCÞ ¼ Imax � C
IC50 þC

; H2ðCÞ ¼ Smax � C
SC50 þC

For those applications in which the PD response is subject to endogenous regu-
lation, the IDR model framework can be extended, as depicted in Fig. 11.2, with the
addition of the feedback control introduced above in Eq. (11.1).

For the case of linear feedback control, the specific form of the function
f ðR;R0; tÞ defining the kinðtÞ, can include one or more of the terms in Eq. (11.1).
We explicitly note the dependence of kin on t to emphasize its time dependence
independent of drug concentration. In the framework shown in Fig. 11.2, the drug
action corresponds to the system disturbance discussed above (e.g., change in
position of the cantilever base in AFM) that invokes a control action.

We now combine IDR Model I with the different feedback control mechanisms
introduced above. Simulations are also provided for each case presented to illustrate
the consequences of feedback regulation on the IDR model’s response. A similar
exposition using IDR Models II, III and IV is not shown.

The illustrating simulations will use a one-compartment iv bolus model to describe
plasma concentration (C ¼ 1000e�0:3t), along with the following pharmacodynamic
parameter values for the IDR models: R0¼ 50; kout ¼ 0:1; Imax ¼ 1; IC50 ¼ 10.

11.2.2.1 Inhibition of Kin: Proportional Feedback

The equations below define the FC IDR model for IDR Model I and proportional
feedback control:

Fig. 11.2 Feedback control
indirect response model
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dR
dt

¼ kinðtÞ 1� Imax � C
IC50 þC

� �
� kout � R; Rð0Þ ¼ R0

where kinðtÞ ¼ kin0 þGpðR0 � RÞ

The second equation defining kinðtÞ includes a constant term kin0 (kin0 ¼ R0 � kout),
plus a feedback term that is proportional (gain term Gp) to control error e ¼ R0 � R
(negative feedback). The effect of the feedback control is evident from the equation:
it will act to increase kinðtÞ above kin0 when R is below its basal value (R0) as a
result of drug action. We note that the above equations assume the drug acts on the
net synthesis, versus on its components [i.e., the basal synthesis kin0 or the feedback
contribution GpðR0 � RÞ]. Figure 11.3 illustrates the response of this FC IDR
model to different values of the feedback gain Gp.

The left panel in Fig. 11.3 illustrates the effect of increasing the contribution of
the proportional feedback term in reducing the deviation of the response R from its
basal value R0 ¼ 50. The right panel of Fig. 11.3 shows the results of the feedback
control on the time course of kinðtÞ, as the control mechanism acts to return R to its
basal value due to the disturbance caused by the drug’s action. For now we defer
discussion of physiological constraints on kinðtÞ. Finally we note that the response
of the FC IDR model resulting from increasing values of Gp, shown in the left panel
of Fig. 11.3, is qualitatively consistent with the predictions of IDR Model I (that is,
an IDR model without feedback) generated with increasing IC50 (decreasing drug
potency). We return to this unsettling observation below.

Fig. 11.3 IDR Model I with proportional feedback control. PD response (left panel) and kinðtÞ
(right panel) for no feedback control (Gp ¼ 0) and increasing values of the proportional feedback
gain. The light line in the left panel (axis scale on right) indicates the drug concentration-time
profile for reference
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11.2.2.2 Inhibition of Kin: Integral Feedback

The equations below define the FC IDR model for IDR Model I and integral
feedback control.

dR
dt

¼ kinðtÞ 1� Imax � C
IC50 þC

� �
� kout � R; Rð0Þ ¼ R0

where kinðtÞ ¼ kin0 þGi

Z t

0
ðR0 � RðsÞÞds

The term representing the integral of the control error in the second equation above,
can be obtained by introducing a new state xðtÞ defined by the following dynamic
model:

dx
dt

¼ ðR0 � RÞ; xð0Þ ¼ 0

Thus the following equations define the IDR Model I and integral feedback:

dR
dt

¼ kinðtÞ 1� Imax � C
IC50 þC

� �
� kout � R; Rð0Þ ¼ R0

dx
dt

¼ ðR0 � RÞ; xð0Þ ¼ 0

where kinðtÞ ¼ kin0 þGi � x

Figure 11.4 illustrates the response of this FC IDR model for different values of
the integral feedback gain Gi. For the highest value of the gain term, the response
shows a clear overshoot R[R0, before a return to its basal value. We will discuss
comparison of the FC IDR models to other models used to describe such phe-
nomena (e.g., moderator state models) below.

Fig. 11.4 IDR Model I with integral feedback control. PD response (left panel) and kinðtÞ (right
panel) for no feedback control (Gi ¼ 0) and increasing values of the integral feedback gain
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11.2.2.3 Inhibition of Kin: Proportional Plus Integral Feedback

dR
dt

¼ kinðtÞ 1� Imax � C
IC50 þC

� �
� kout � R; Rð0Þ ¼ R0

dx
dt

¼ ðR0 � RÞ; xð0Þ ¼ 0

where kinðtÞ ¼ kin0 þGpðR0 � RÞþGi � x

Figure 11.5 illustrates the response of the combined proportional plus integral
feedback control model for IDR Model I, for different values of the integral
feedback gain Gi with fixed proportional gain Gp (upper panels) and for different
values of the proportional feedback gain Gp with fixed integral gain Gi (lower
panels).

Fig. 11.5 IDR Model I with proportional plus integral feedback control. PD response (left panels)
and kinðtÞ (right panels). Upper panels show results with Gp fixed and Gi increasing, while in the
lower panels, Gi is fixed and Gp is increasing
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11.2.2.4 Inhibition of Kin: Proportional Plus Integral Plus Derivative
Feedback

We now combine all three terms, proportional, integral and derivative, in the
feedback control model.

dR
dt

¼ kinðtÞ 1� Imax � C
IC50 þC

� �
� kout � R; Rð0Þ ¼ R0

where kinðtÞ ¼ kin0 þGpðR0 � RÞþGi

Z t

0
ðR0 � RðsÞÞdsþGd

dðR0 � RÞ
dt

As before, a new state is introduced for the integral control term, while the
derivative term is defined by the differential equation for R. Thus, the following
equations represent the proportional plus integral plus derivative FC IRM model:

dR
dt

¼ 1

1þGd � 1� Imax�C
IC50 þC

� � kin0 þGpðR0 � RÞþGi � x
� �

1� Imax � C
IC50 þC

� �
� kout � R

� 	
; Rð0Þ ¼ R0

dx
dt

¼ ðR0 � RÞ; xð0Þ ¼ 0

Figure 11.6 illustrates the response of the combined proportional plus integral
plus derivative feedback control model for IDR Model I, for different values of the
derivative feedback gain Gd with fixed proportional gain Gp and integral gain Gi.

Fig. 11.6 IDR Model I with proportional plus integral plus derivative feedback control. PD
response (left panel) and kinðtÞ (right panel) for no derivative feedback control (Gd ¼ 0) and
increasing values of the derivative feedback gain
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11.2.3 Extensions of the Linear Feedback Control
Framework

Important extensions to the classical linear feedback control framework have been
developed and applied to the control of engineered systems (anti-windup, dead-
band, setpoint weighting, and others (Astrom and Murray 2010)). Of particular
relevance in pharmacodynamics involves limits on the control signal itself. We
illustrate this by replacing the proportional error term in Eq. (11.1) by a
non-proportional term to reflect an upper limit on the control input.

For the case of IDR Model I with proportional feedback, we can incorporate an
upper limit on kinðtÞ through using a non-proportional feedback as exemplified
below (of course, other nonlinear terms could be used, including the use of a
non-zero lower limit on the feedback control contribution to kinðtÞ):

dR
dt

¼ kinðtÞ 1� Imax � C
IC50 þC

� �
� kout � R; Rð0Þ ¼ R0

where kinðtÞ ¼ kin0
Rn
50 þRn

0

Rn
50 þRn

We return to this example below.
Physiologists have long recognized the importance of the change in a physio-

logical variable in receptor response and overall regulation (e.g., in blood pressure
regulation), which can be reflected by the derivative control term in Eq. (11.1).
System biologists have identified the importance of this rate sensitivity at the level
of receptor-ligand interactions (e.g., G-protein coupled down regulation) and cel-
lular signaling. Moreover, a ubiquitous element in biological control systems is
unidirectional rate sensitivity, which introduces a hard nonlinearity into the overall
system behavior. Urquart has discussed and emphasized this critical topic and its
relevance to pharmacology and drug therapy (Urquhart 2003), and the feedback
control indirect response models can be extended to incorporate this property.

11.2.4 Relation of the FC IDR Framework to Other
Feedback Pharmacodynamic Modeling Approaches

A number of application and model specific approaches for incorporating feedback
regulation in PK/PD models have been presented in the literature (for a summary
listing of several, see Gabrielsson and Peletier 2008). Two approaches for modeling
drug action involving autoregulated pharmacodyamic processes have been applied
to different drugs and targets, and they are illustrated below.

In one approach, feedback is incorporated and used to modify kinðtÞ using a
hyperbolic function as follows (Woo et al. 2008; Friberg et al. 2002):
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dR
dt

¼ kinðtÞ 1� Imax � C
IC50 þC

� �
� kout � R; Rð0Þ ¼ R0

where kinðtÞ ¼ kin0
R0

R

� �c

Negative feedback results, since kinðtÞ is inversely related to R for deviations of the
response around R0. The relationship between the FC IDR model with proportional
feedback, the non-proportional feedback model given in the previous section, and
the hyperbolic feedback model is shown in Fig. 11.7. The left panel shows kinðtÞ
versus R, while the right panel shows the model response versus time for each of
these three feedback control models. These models could yield similar results,
depending on the respective values of their parameters, at least around the steady-
state response R0. Of course in the hyperbolic feedback model, kinðtÞ increases
without limit as R is reduced below R0.

Gabrielsson and colleagues have introduced and applied a pharmacodynamic
feedback control model that includes an additional state (“moderator” state) that
feeds back to alter the response synthesis or turnover (see Wakelkamp et al. 1996;
Gabrielsson and Weiner 2007; Bundgaard et al. 2006; Gabrielsson and Peletier
2008; Ahlstrom et al. 2013). A specific application of this moderator model can be
illustrated using the IDR Model I as shown below.

dR
dt

¼ kinðtÞ 1� Imax � C
IC50 þC

� �
� kout � R; Rð0Þ ¼ R0

dM
dt

¼ �ktolðM � RÞ; Mð0Þ ¼ M0

where kinðtÞ ¼ kin0
M0

M

� �

Fig. 11.7 IDR Model I with no feedback, proportional, hyperbolic, and nonproportional feedback
control. The left panel shows kinðtÞ, while the right panel shows the response R tð Þ for each of the
models. Gp ¼ 0:5 in the proportional model, c ¼ 1:5 in hyperbolic model, and R50 ¼ 16:7, n ¼ 2
in the nonproportional model. Also, R0 ¼ 50; kout ¼ 0:1; Imax ¼ 1; IC50 ¼ 10
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In the above implementation, kin0 �M0 corresponds to kin in the Gabrielsson model,
which makes the correspondence to the hyperbolic feedback model shown above
more evident (also, M0 ¼ R0).

We can also compare the moderator model to the FC IDR framework and do so
using proportional plus integral feedback. Shown below is the implemented form of
the integral feedback term to allow for comparison to the moderator model.

dR
dt

¼ kinðtÞ 1� Imax � C
IC50 þC

� �
� kout � R; Rð0Þ ¼ R0

dx
dt

¼ ðR0 � RÞ; xð0Þ ¼ 0

where kinðtÞ ¼ kin0 þGpðR0 � RÞþGi � x

In both cases, the complete closed loop system is a second-order system, and can
produce the characteristic under damped, critically damped, or over damped
response behavior, depending on the specific value of the drug independent
parameters of the respective models. The moderator model, however, is nonlinear
while the FC IRM is linear (reference is to the model without drug). The FC IDR
model’s feedback includes the integral of the difference between R0 and the
response, while the moderator model feeds back the integral of the moderator state
minus the response, subject to a time constant. From a control perspective, the
moderator model represents a leaky integrator of the error signal and thus will result
in a steady-state error (imperfect adaptation) in the presence of drug. Figure 11.8
shows a simulation of the response for the two models, illustrating some qualitative
similarities.

Fig. 11.8 The response of the IDR Model I with no feedback control, moderator feedback
control, and proportional plus integral feedback control. ktol ¼ 0:04 in the moderator model, and
Gp ¼ 0:01, Gi ¼ 0:005 in the proportional plus integral model. Also, R0 ¼ 50; kout ¼ 0:1;
Imax ¼ 1; IC50 ¼ 10
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11.2.5 The Consequences of Ignoring Feedback Control
Mechanism in Pharmacodynamic Studies

Systems physiologists have long-recognized the difficulties in understanding the
mechanisms that underlie processes subject to feedback regulation. To study such
systems in situ they have devised clever experimental approaches aimed at
“opening the loop” in an effort to separately characterize the system and feedback
processes. A few examples of such loop-opening experiments include the voltage
clamp technique of Cole to study ion channel regulation of transmembrane potential
in the giant squid axon (Cole 1949), and the denervated heart model of Sheppard
for understanding the neural and humoral control of cardiac output in racing
greyhounds (Donald et al. 1964). See Khoo (2000) for a summary of others.

Quantifying the contribution of feedback control mechanism in pharmacody-
namic studies of drug action is no less challenging. From the forgoing simple
illustrations, it is apparent that assessing the in vivo potency of a drug’s action on a
process that involves autoregulation of the observed PD response will confound a
quantitative estimation of the drug’s potency. The following example provides a
quantitative illustration of this issue.

The simulated response values shown in Fig. 11.9 were generated using FC IDR
Model I with proportional feedback with parameters of kout ¼ 0:1, IC50 ¼ 10,
R0 ¼ 50, and different values of Gp: 0.05 (squares), 0.5 (circles) and 5 (triangles).
The results of fitting the IDR Model I (i.e., no feedback) are shown as the

Fig. 11.9 The results of fitting IDR model to simulated data generated from an FC IDR model
with proportional feedback control with different values of the feedback gain Gp. Symbols are
simulated data using FC IDR I model with proportional feedback control with parameters of
kout ¼ 0:1, IC50 ¼ 10, R0 ¼ 50, and varying values of Gp: 0.05 (squares), 0.5 (circles) and 5
(triangles). Lines are the fitted curves to those data with IDR model I with following estimates of
parameters: kout ¼ 0:109, IC50 ¼ 16:8, R0 ¼ 51:1(solid line); kout ¼ 0:152, IC50 ¼ 107, R0 ¼
51:3 (dashed line); kout ¼ 0:255, IC50 ¼ 705, R0 ¼ 50:6 (dotted line)
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corresponding lines in Fig. 11.9. In each case the fits are excellent but the estimates
of IC50 and kout deviate from the true values. Most critically, IC50 is overestimated
as 16.8, 107, 705 (with increasing Gp), thus leading to significant underestimation
of the in vivo potency of the drug.

For discussion of the challenging issue of pharmacodynamic modeling of drug
action involving autoregulated systems, the reader is referred to the extensive
analysis of Urquart (2003) and the recent example of Ahlstrom et al. 2013.

11.3 Applications

In this section we present four examples illustrating the application of the FC IDR
framework. The examples were selected to reflect each of the four mechanisms of
drug action as represented via each of the canonical IDR models (e.g., Models I–IV
in Fig. 11.2). In each example, mean or sample individual data were digitized from
published figures and used in the analysis with different forms for the feedback
control as introduced above.

11.3.1 Selective Serotonin Reuptake Inhibitors
and Extracellular Serotonin

Gabrielsson and colleagues have extensively studied and modeled the action of
selective serotonin reuptake inhibitors (SSRI) on extracellular concentrations of
serotonin (5-HT) in the brain and introduced a model that includes 5-HT feedback
via a moderator state. As reviewed (Pineyro and Blier 1999) and summarized in
(Bundgaard et al. 2006), neuronal release of 5-HT is under autoregulation, sug-
gesting that the action of feedback regulation may be an important component of
any PD model aimed at quantifying the action of SSRIs on the 5-HT release.

To illustrate the application of the FC IDR modeling framework for this prob-
lem, a model was constructed for the PK of unbound plasma escitalopram (a SSRI)
based on the average escitalopram concentration time data presented in Bundgaard
et al. (2006, see Fig. 3), and then used to explore FC IDR models for 5-HT.
Figure 11.10 (upper left panel) shows the mean concentration data and the resulting
two-compartment model predictions for each dose (2.5, 5, and 10 mg/kg). With
pharmacokinetic parameter values fixed at their estimates for each dose (results not
shown), the mean 5-HT response-time data (Fig. 4 in Bundgaard et al. 2006) were
then pooled and analyzed using IDR Model II, FC IDR Model II with proportional
feedback and with proportional plus integral feedback as defined in the following
equations:

11 Feedback Control Indirect Response Models 243



IDR Model II without feedback:

d5HT
dt

¼ kin � kout 1� Imax � C
IC50 þC

� �
5HT ; 5HTð0Þ = 5HT0

IDR Model II with proportional feedback:

d5HT
dt

¼ kin0 þGpð5HT0 � 5HTÞ� �� kout 1� ImaxC
IC50 þC

� �
5HT ;

5HTð0Þ = 5HT0

Fig. 11.10 Upper left panel shows the PK model predcitions and the mean unbound escitalopram
concentrations for each of the three doses. Mean response-time data of 5-HT and model
predictions using the IDR model (upper right panel), the IDR proportional feedback model (lower
left panel), and the the IDR proportional plus integral feedback model (lower right panel) are also
shown
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IDR Model II with proportional plus integral feedback

d5HT
dt

¼ kin0 þGpð5HT0 � 5HTÞþGi � x
� �

� kout 1� ImaxC
IC50 þC

� �
5HT ; 5HTð0Þ = 5HT0

dx
dt

¼ 5HT0 � 5HT ; xð0Þ¼ 0

Table 11.1 lists the estimated parameters obtained using each of these three
models, while the corresponding model predictions of the 5-HT concentrations
versus time are shown in the upper right and lower two panels of Fig. 11.10. The
inability of an IDR model without feedback to describe the 5-HT data over the dose
range considered has been discussed and analyzed by Bundgaard et al. (2006). The
results presented herein illustrate that an FC IDR model with both proportional plus
integral feedback are consistent with the mean data analyzed, resulting in the lowest
value of AIC of the models considered (see Table 11.1). We note that the FC IRM
model with proportional plus integral control results in a value of IC50 of 2.9 µg/L.

11.3.2 Histamine H2-Receptor Antagonists and Gastric Acid

This example illustrates the feedback regulation of gastric acidity based on a study of
ranitidine (a histamine H2-receptor antagonist) administration in patients in an
intensive care unit setting during extended intravenous dosing, as report by Mathot
and Geus (1999). It is well established that the reduction in gastric pH following

Table 11.1 Pharmacodynamic parameter estimates and percent relative standard errors (%RSE)
for each pharmacodynamic model

Implemented model Parameter (units) Estimate (%RSE)

IDR model II kin (% basal value/h) 710 (12)

IC50 (µg/L) 19.8 (8.1)

5HT0 (% basal value) 112 (3.1)

FC IDR model II with proportional
feedback

kin0 (% basal value/h) 1280 (19)

IC50 (µg/L) 6.82 (13)

Gp (h−1) 3.15 (24)

5HT0 (% basal value) 106 (2.4)

FC IDR model II with proportional
plus integral feedback

kin0 (% basal value/h) 949 (9.5)

IC50 (µg/L) 2.85 (15)

Gp (h−1) 2.24 (11)

Gi (h
−2) 0.528 (11)

5HT0 (% basal value) 109 (1.6)

The corresponding values for AIC are in order: 849, 790, 723
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elevated production of gastric acid, results in an increase in somatostatin secretion,
which in turn inhibits histamine and gastrin release, ultimately leading to the inhibition
of acid secretion via negative feedback mechanism (Shulkes and Read 1991). Thus
incorporating this autoregulation may be a critical component of any comprehensive
PK/PD model to describe the dose response of histamine H2-receptor antagonists.

In their study, Mathot and Geus (1999) administered a single 50 mg intravenous
dose of ranitidine, and twelve hours later delivered a second bolus of 50 mg fol-
lowed by a continuous infusion of 0.125 mg/kg/h ranitidine. The mean ranitidine
plasma concentration time data reported (Fig. 2 in Mathot and Geus 1999) were
fitted by a two-compartment pharmacokinetic model and the resulting model fit and
data are shown in Fig. 11.11 (upper left panel).

The resulting PK model was then used with the IDR model reported by Mathot
et al. to describe the changes of pH (pH ¼ � log½H þ � ) after drug administration.

Fig. 11.11 Mean plasma concentration-time profile of ranitidine and model prediction using a
two-compartment pharmacokinetic model (upper left panel). Measured response-time data of pH
and model predictions from the indirect response model without feedback of Mathot et al. (upper
right panel). Response-time data of pH and model predictions using IDR model with integral
feedback control (lower left panel), and model predictions of pH response over 84 h with drug
infusion discontinued at 42 h (lower right panel)
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Their model includes two different steady-states, with the first representing the basal
condition and the second representing the maximal drug effect achieving the
maximum attainable acidity (pH of 7.4). We also investigated FC IDR models and
show the results for IDR Model I with integral feedback:

IDR Model I without feedback

dH þ

dt
¼ kin 1� Imax � CH

ICH
50 þCH

� �
� koutH þ ; H þ ð0Þ ¼ H þ

0

where; kin ¼ koutH
þ
0 and Imax ¼ 1� H þ

phys=H
þ
0

IDR Model I with integral feedback

dH þ

dt
¼ ðkin0 þGi � xÞ 1� Imax � CH

ICH
50 þCH

� �
� koutH

þ ; H þ ð0Þ ¼ H þ
0

dx
dt

¼ H þ
0 � H þ� �

; xð0Þ = 0

The resulting estimated parameters from these two models are shown in
Table 11.2. The model with integral feedback control results in a smaller IC50

estimate compared to the IDR model used by Mathot et al. (0.026 vs.
0.0065 mg/L). The upper right panel in Fig. 11.11 shows the measured pH values
over the course of the study along with the predicted values from the IDR model
without feedback, while the lower left panel in Fig. 11.11 shows the predictions
based on the FC IDR model. During the constant maintenance infusion of rani-
tidine, the feedback attempts to return pH towards its basal value (see lower left
panel). After a discontinuation of drug infusion at 42 h, the FC IDR model predicts
an undershoot in pH before its return to its baseline value as shown in the plot in the
lower right panel of Fig. 11.11.

Table 11.2 Pharmacodynamic parameter estimates and percent relative standard errors (%RSE)
for the two models

Implemented model Parameter (units) Estimate (%RSE)

IDR model I without feedback kin (mol/L/h) 0.286 (32)

IC50 (mg/L) 0.0261 (18)

H 2.53 (6.3)

pHð0Þ 1.16 (24)

FC IDR model I with integral feedback kin0 (mol/L/h) 0.307 (26)

IC50 (mg/L) 0.00648 (66)

H 3.00 (10)

Gi (h
−2) 51.2 (260)

pHð0Þ 1.16 (21)

The corresponding values for AIC are in order: 498, 448
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11.3.3 Growth Hormone Secretagogues and Circulating
Growth Hormone

The mechanisms of neuroendocrine control of growth hormone (GH) release are well
established and involve negative feedback regulation based on circulated concen-
trations of GH and IGF-1 (Muller et al. 1999). This example explores the dose-effect
relationship between the growth hormone secretagogue NN703 and plasma growth
hormone concentrations as observed in a study of human volunteers administered
NN703 as an oral solution at doses of 6 and 12 mg/kg (see Agerso et al. 2001).

A two-compartment model with zero-order input over 1.5 h described the mean
NN703 plasma concentration data for both doses, resulting in the model fit shown
in the upper left panel of Fig. 11.12. With the pharmacokinetic parameters fixed,

Fig. 11.12 Mean concentration-time measurements of NN703 and model predictions using a
two-compartment pharmacokinetic model for each of two doses (upper left panel). Response-time
data of growth hormone concentration and model predictions using IDR Model III (upper right
panel). Response-time data of growth hormone concentration and model predictions using the IDR
Model III with integral feedback control (lower left panel)
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the response-time data of plasma growth hormone were modeled by IDR Model III
using a linear effect on the production rate of growth hormone. In addition, an
FC IDR model with integral feedback control was used to describe the plasma
growth hormone. The equations for both models are given below:

IDR Model III without feedback

dGH
dt

¼ kinð1þ k � CpÞ � kout � GH; GHð0Þ = GH0

FC IDR Model III with integral feedback

dGH
dt

¼ ðkin0 þGi � xÞð1þ k � CpÞ � kout � GH; GHð0Þ ¼ GH0

dx
dt

¼ ðGH0 � GHÞ; xð0Þ ¼ 0

Table 11.3 lists the parameter estimates for the two models and Fig. 11.12
shows the resulting model fits. The FC IDR model is associated with a smaller AIC
value, a better prediction of the later values of plasma GH, and predicts a somewhat
greater drug sensitivity as indicated by the larger drug effect (bigger k) compared to
the corresponding value in the simple indirect response model (0.0794 vs.
0.0620 L/µg).

11.3.4 b2-Selective Adrenergic Agonists and Potassium

Plasma potassium concentration is also under feedback regulation that acts by
altering cellular uptake and renal excretion (Greenlee et al. 2009). In this example,
the effects of the b2-selective adrenergic agonist terbutaline on plasma potassium

Table 11.3 Pharmacodynamic parameter estimates and percent relative standard errors (%RSE)
for the two models

Implemented model Parameter (units) Estimate (%RSE)

IDR model III without feedback kin (µg/L/h) 1.51 (16)

k (L/µg) 0.0620 (3.2)

GHð0Þ (µg/L) 0.5 (Fixed)

FC IDR model III with integral feedback kin0 (µg/L/h) 0.861 (18)

k (L/µg) 0.0794 (8.5)

Gi (h
−2) 0.00484 (17)

GHð0Þ (µg/L) 0.5 (Fixed)

The corresponding values for AIC are in order: 140, 134
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are used to further illustrate feedback control indirect response models. The
example is based on the results reported in the study of Jonkers et al. (1987).

In their study, six subjects were given a single subcutaneous dose of 0.5 mg
terbutaline, and both plasma terbutaline and potassium concentrations were mea-
sured over seven hours. A two-compartment model with a first-order absorption rate
was used to describe the mean terbutaline concentration data presented in the paper,
resulting in the model fit shown in the upper left panel of Fig. 11.13. An IDR
Model IV using a linear effect on the elimination of potassium and an FC IDR
model with integral feedback control were then used to describe the mean plasma
potassium concentration data reported in (Jonkers et al. 1987). The equations for
both models are given below:

Fig. 11.13 Mean plasma concentration-time profile of terbutaline and model prediction using a
two-compartment model (upper left panel). Mean potassium plasma concentration and model
predictions using IDR Model IV (upper right panel) and with the IDR Model IV with integral
feedback control (lower left panel)
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IDR Model IV without feedback

dK þ

dt
¼ kin � koutð1þ k � CÞK þ ; K þ ð0Þ ¼ K þ

0

IDR Model IV with integral feedback

dK þ

dt
¼ ðkin0 þGi � xÞ � koutð1þ k � CpÞK þ ; K þ ð0Þ = K þ

0

dx
dt

¼ ðK þ
0 � K þ Þ; xð0Þ ¼ 0

Figure 11.13 shows the resulting model fits and Table 11.4 lists the parameter
estimates for the two models, indicating that the FC IDR model is associated with a
smaller AIC value. Addition of a proportional feedback control term did not further
improve the model fit. The model with integral feedback control predicts an
overshoot of potassium concentration with the decrease of terbutaline concentration
over a prolonged time (result not shown).

11.4 Summary

In this chapter, a feedback control method widely used in engineered systems has
been applied to the indirect response modeling framework, providing a pharma-
codynamic modeling formulation for studying a drug’s action when its response is
subject to endogenous feedback control. After briefly introducing the feedback
control framework, its application was illustrated using one of the canonical IDR
models, which thereby provided an outline for its general application to other IDR
models. Simulations were presented to illustrate the model responses under different
assumptions about the feedback control mechanisms. Several extensions to the
linear control framework were presented, as were comparisons to some general
modeling approaches for incorporating feedback regulation used previously in

Table 11.4 Pharmacodynamic model parameter estimates and percent relative standard errors (%
RSE)

Implemented model Parameter (units) Estimate (%RSE)

IDR model IV without feedback kin (mmol/L/h) 13.3 (16)

k (L/µg) 0.0387 (4.2)

K þ
0 (mmol/L) 4.1 (Fixed)

FC IDR model IV with integral feedback kin0 (mmol/L/h) 10.5 (9.4)

k (L/µg) 0.0429 (3.2)

Gi (h
−2) 0.161 (20)

K þ
0 (mmol/L) 4.1 (Fixed)

The corresponding values for AIC are in order: -28.8, -41.5
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pharmacodynamic modeling. The challenging issue of identifying the contribution
and form of feedback mechanisms in PK/PD studies was also highlighted. Finally,
four examples based on published studies from literature were used to illustrate the
application of the proposed FC IDR framework Since the original submission of
this chapter, a version of this material has been published (Zhang and D'Argenio
2016).
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Chapter 12
Nonlinear Mixed Effects Modeling
in Systems Pharmacology

Peter L. Bonate, Amit Desai, Ahsan Rizwan, Zheng Lu
and Stacey Tannenbaum

Abstract Quantitative systems pharmacology (QSP) is the design and application
of mathematical models to explain how drugs function at a systems level. Whereas
traditional pharmacokinetic-pharmacodynamic modeling takes an empirical or
mechanistic approach to modeling, QSP takes a holistic approach exploring whole
biochemical and metabolic pathways and how drugs interact in those pathways.
These models are often unidentifiable from any single set of data. Instead they are
built using diverse datasets with many parameters fixed to mean values from dif-
ferent experiments resulting in models that are over-confident in their parameter
values. Few models currently take into account these sources of variability in their
parameter estimation. This chapter discusses nonlinear mixed effects models, a
modeling approach that specifically accounts for sources of variability in a model,
and their application to QSP.

Keywords Nonlinear mixed effects models (NMEMs) � Variability � Linear
model � Monoexponential � Overparameterization � Covariates � Between-subject
variability � Multimodal distributions � Drug potency � Myeloperoxidase (MPO) �
Turnover rates

12.1 Introduction

Any experiment can be viewed as a system, a collection of objects that interact to
create a unified whole. Mathematical models, whether it is a differential equation or a
statistical model like simple linear regression, attempt to define the structure and
behavior of the system in mathematical terms and explain how components in the
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system change over time or with respect to other components in the system. When an
observation is made in an experiment, scientists talk about accuracy and precision.
Accuracy refers to how close the observed value is to the true value, while precision
refers to the variability in the observation. The precision of an observation is
dependent on the sources of variability in the experiment, and there can be many.
Preclinically, there can be variability in response within an animal, across animals,
across cages, and across animal housing units. Within a lab, there can be variability
introduced by different lab technicians with respect to how they prepare dosing
solutions, how they handle animals, how they dose the animals, how they draw blood
samples, and how they measure pharmacodynamic responses. Bioanalytically, there
can be variability in measurement of analytes within runs, across runs, and across
different assays. In all, there are many potential sources of variability, any of which
can decrease the precision of an observation.

One goal of mathematical modeling is to separate the noise from the “infor-
mation” or systematic component in the system; the more imprecise an observation,
the greater the noise, and the harder it is to define the underlying structure of the
system. Models consist of a mapping function, parameters, and variables. Variables
are the inputs to the system, whereas parameters are constants that map the vari-
ables to the observations. For example, with the simple model

Y ¼ 2þ 3xþ e ð12:1Þ

Y is an observation made about the system, x is a variable, 2 is called the intercept
and is a model parameter, 3 is the slope and it too is a model parameter, and e is the
error between the mapping function 2 + 3x and the observation Y. Given a set of
observations {Y, x}, the goal of modeling is to often identify the mapping function
and to estimate the parameters of the model, in this case the slope and intercept. As
the magnitude of e becomes larger and larger, which means the precision of the
observation Y becomes smaller and smaller (it is often assumed that x is measured
perfectly without error), the ability to identify the underlying structure of the model
diminishes as does the ability to accurately estimate the model parameters.

As a modeler there are two choices: ignore the variability or model the data
taking into account and controlling for these sources of variability. Nonlinear mixed
effects models (NMEMs) are one class of models that choose the latter approach—
to model the data taking into account the sources of variability in order to obtain
better parameters estimates (Davidian and Giltinan 1995). A mixed effects model
consists of a model that contains both fixed and random effects. Fixed effects define
the structural model (the mapping function that defines the mean response for the
population) and are variables manipulated by the experimenter, like the dose of
drug administered to an animal or the timing of samples for bioassay. Random
effects do not contribute to the structural model but instead define the variance
model; they are latent variables not controlled by the experimenter and are
stochastic in nature. All the random effects in a model define the sources of vari-
ability and are referred to as the variance components. The term “nonlinear” in
NMEM refers to the fact that the underlying structural model is nonlinear in nature
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with respect to the model parameters. This chapter will focus on the use of NMEMs
in systems pharmacology, a relatively new area of research. This chapter will
further explain the sources of variability, the basics of NMEMs, why you want to
use NMEMs, will present an overview of software and estimation of model
parameters, and will conclude with some case studies.

12.2 Source of Variability and NMEMs

Suppose you are interested in measuring blood pressure Y after some pharmaco-
logical intervention and you wanted to know what was the population mean blood
pressure after treatment l. If you measured one time point in n different animals, a
linear model of the form

Yi ¼ lþ ei; i ¼ 1; 2:. . .; n, ð12:2Þ

could be written, where e is an error term that represents all sources of variability.
The population estimate for l would be the sample mean �Y and would be equal to
�Y ¼P Yi=n: Because none of the sources of variability can be distinguished, there
would be only one variance component called unexplained variability, defined as
the sample variance Var(Y) = r2. As n ! ∞, then by the Law of Large Numbers,
�Y should be closer and closer to l.

Unlike the example above, most biological experiments are repeated measures
experimental designs wherein observations are serially measured on a subject,
which can be a mouse, rat, or human. Now suppose you measured blood pressure at
three different time points 10 min apart in each subject. Each of these time points
will be called an occasion. Assuming the treatment effect is a constant at each
occasion, a model of the form

Yij ¼ lþ Si þ eij; i ¼ 1; 2; . . .; n, j = 1,2,3 ð12:3Þ

could be written, where Si is now the individual subject effect of the ith subject. The
population mean would still be the overall sample mean �Y ¼P3

j¼1

Pn
i¼1 Yij=n.

However, because repeated observations are available for each subject, each sub-
ject’s mean can be written as �Yi ¼

P3
j¼1 Yij=n. The variance of �Yi across all subjects

represents between-subject variability: x2. Hence, under this repeated measures
design, there are two variance components: x2 and r2. All of the variance com-
ponents in the model are referred to as random effects. It should be noted that r2 in
Eq. (12.2) is not the same r2 in Eq. (12.3): by definition, the total variance of the
observations never changes, so the total variability in Eq. (12.2) has been parti-
tioned into two components in Eq. (12.3) such that r2 in Eq. (12.2) equals x2 + r2

in Eq. (12.3).
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Now, suppose that on each occasion, 2 measures are taken 10 s apart so that
each subject now has 6 observations. A linear model of the form

Yijk ¼ lþ Si þ tþ eijk; i ¼ 1; 2; . . .; n, j = 1,2,3, k = 1,2 ð12:4Þ

could be written, where tk is the effect at each occasion. Using the same concepts as
with Eq. (12.3), the total variability in Y can be partitioned into between-subject
variability x2, inter-occasion variability j2, and unexplained variability r2, such
that Var(Y) = x2 + j2 + r2. With each design, as more and more data are col-
lected, the unexplained variability is reduced as total variability is partitioned more
and more. These concepts can now be extended to a NMEM.

Suppose Y is a vector of m observations from n subjects and x is a matrix of
fixed effects from n subjects. For simplicity, all subjects will be assumed to have the
same number of observations m, but this does not necessarily have to be so.
A general NMEM can be written as

Y ¼ f ðx;h;X;RÞ ð12:5Þ

where f(.) is a function that maps x to Y, h is a vector of estimable regression
parameters of size p, X is a matrix of variance components that define the sources of
variability in the model, and R is a vector of residual variance components that
model the unexplained variability in the data. For example, in a pharmacokinetic
experiment where plasma drug concentrations are serially measured after intra-
venous dosing and are found to decline monoexponentially over time, a model for
such an experiment might be

Cij ¼ D
Vi

exp
�CLi
Vi

tij

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

StructuralModel

exp eij
� �|fflfflfflffl{zfflfflfflffl}

VarianceModel

ð12:6Þ

where Cij is the concentration at the jth time point for the ith subject and is modeled
as a function of the structural model and variance model. The fixed effects in the
structural model are dose D and time tij. The random effects are Vi, the volume of
distribution for the ith subject, and CLi, the total systemic clearance for the ith
subject, and the variance model is a function of the residuals eij. This model is
referred to as a 1-compartment model.

It is often assumed that the distribution of the subject-specific pharmacokinetic
parameters are log-normal in distribution, that the distribution of the
subject-specific random effects are normal in distribution, and that the two can be
related though an exponential transformation. For example, the volume of distri-
bution for the ith subject would be expressed as

Vi ¼ h1 exp gVið Þ ð12:7Þ
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where h1 is the population mean value and ηVi is the deviation of the ith subject
from the mean value, which is assumed to have mean 0 and variance x2

V . Clearance
would similarly be expressed as

CLi ¼ h2 exp gCLið Þ ð12:8Þ

where h2 is the population mean value and ηCLi is the deviation of the ith subject
from the mean value, which is assumed to have mean 0 and variance x2

CL.
Similarly, for bioanalytical data, it is assumed that eij has mean 0 and variance r2.
Going back to Eq. (12.5), in matrix notation h is then the vector of estimable
parameters {h1, h2}, X is the set of variance components {x2

V ; x
2
CL}, R = {r2},

and the NMEM now can be written as

gCL
gV

� ��N 0
0

� �
;X

� �
e�N 0; r2ð Þ
X ¼ x2

CL 0
0 x2

CL

	 

P ¼ r2

Cij ¼ f ðh;D; t;CL;V;X; RÞ
Cij ¼ D

h1 exp gi;Vð Þ exp
�h2 exp gi;CLð Þ
h1 exp gi;Vð Þ tij

� �
exp eij
� �

ð12:9Þ

This model is illustrated graphically in Fig. 12.1 (Bonate 2011), in which the
concentration-time profile for 2 subjects are shown relative to the population mean.
Each observation is expressed as a deviation from the population mean, which is
what Eq. (12.9) expresses mathematically.

While estimates of h are most often of primary interest, estimates of the variance
components are also of interest because, conditional on the model and population
estimates and then using Bayes theorem, an estimate of individual subject param-
eters hi can be obtained (Aarons 1991; Fitzmaurice et al. 2004). These individual
subject parameters are referred to as empirical Bayes estimates (EBE). Availability
of EBE can be used to examine groups of subpopulations that may be of interest or
to look for correlations between-subject-specific characteristics (such as genotype)
and the parameter of interest.

The assumptions made in Eqs. (12.7) and (12.8) with regards to the distribution
of the random effects (i.e., log-normal distribution) are not predetermined; other
distributions can be assumed depending on the data type. For many studies
examining physiological parameters, a normal distribution is more appropriate.
Also, in Eq. (12.9) the residual, unexplained error e was assumed to be multi-
plicative in nature, but this does not have to always be the case. Other common
residual error models include:
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• Additive error model

Y ¼ f ðX; h;XÞþ e ð12:10Þ

• Constant coefficient of variation (CV) or proportional error model

Y ¼ f ðX; h;XÞð1þ eÞ ð12:11Þ

• Combined additive and proportional error model

Y ¼ f ðX; h;XÞ exp e1ð Þþ e2 ð12:12Þ

The most common residual variance model being used for pharmacokinetic data is
the proportional error model, with the additive model being most commonly used
for pharmacodynamic data.

Structural models in conventional pharmacokinetics-pharmacodynamics
(PK/PD), like in Eq. (12.6), are generally empirical in nature. For example, a
typical pharmacokinetic model, the “two compartment model”, represents the body
as 2 linked compartments with flows in and out of each (Gabrielsson and Weiner
2000). While often such empirical models are sufficient to represent the concen-
tration or response as a function of time, mechanistic models used in systems
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   C = 100 * exp(-0.05 x Time)
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   C = xβ + zU + e
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Fig. 12.1 Plot demonstrating the relationship between the population mean, subject mean, and
deviation from the subject mean for 2 different subjects using a 1-compartment open model plotted
on a semi-log scale. Reprinted from Bonate (2011)
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pharmacology take the underlying (patho)physiology and the mode of drug action
into consideration. According to Danhof et al. (2007), “mechanism-based PK/PD
models differ from conventional PK/PD models in that they contain specific
expressions to characterize, in a quantitative manner, processes on the causal path
between drug administration and effect. This includes target site distribution, target
binding and activation, pharmacodynamic interactions, transduction, and homeo-
static feedback mechanisms”. The structural model generally defines the underlying
model for the population mean data. Using a population approach, in which a
statistical model is added to the structural model, may add value to a traditional
systems pharmacology approach by allowing an examination of the variability
between and within subjects, and between observed and model-predicted values
(i.e., residual variability).

In models with a simple structure, like Eq. (12.9) and many types of compart-
mental pharmacokinetic models, random effects generally are included on all
parameters; however, systems pharmacology models tend to have a very large
number of parameters. Adding variability to each parameter may lead to model
instability or structural unidentifiability due to overparameterization, not to mention
run times that are inconveniently long (Chis et al. 2011). Before adding variability
to the model, one may consider reducing the model to a simpler one which retains
the dynamic properties of the original, as demonstrated by Schmidt et al. with bone
remodeling (Schmidt et al. 2011). Once the model is reduced (if applicable), care
should be taken to first model between-subject variability on parameters for which
extensive variability is observed. Change in model stability and relative improve-
ment in fit should be assessed upon adding additional variability terms.

One of the powerful things about NMEMs is that the model parameters them-
selves can be modeled as a function of other predictor variables. These predictor
variables, called covariates, can be defined as either intrinsic (such as weight, sex,
age, etc.) or extrinsic (such as smoking status, concomitant medications, conditions
of the drug treatment like formulations or dose regimens, etc.) characteristics that
describe a subject (United States Department of Health and Human Services et al.
1999). Returning to the model presented in Eq. (12.9), suppose it was believed that
clearance was a linear function of weight, Eq. (12.8) could be rewritten as

CL ¼ ðh2 þ h3 �WeightÞ exp gCLð Þ ð12:13Þ

and Eq. (12.9) would then be modified to

Cij ¼ D

h1 exp gi;V
� � exp � h2 þ h3 � weightð Þ exp gi;CL

� �� �
h1 exp gi;V

� � tij

 !
exp eij
� �

: ð12:14Þ

In this manner, covariates can be added to the model to further improve its pre-
dictive capabilities. For a particular systems pharmacology model, the covariates to
be explored should be those of scientific or clinical interest as well as mechanistic
plausibility in that disease state (Gastonguay 2011) and/or for that treatment: for
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example, in bone reabsorption modeling, Post et al. (2013) suggest “baseline serum
estrogen, FSH or calcium concentrations, age and age at menarche” as potential
covariates.

Variability in disease status, response rate, and system dynamics can often be
explained in part by covariates; addition of an appropriate covariate to a parameter
may improve the model fit for individual subjects and reduce the magnitude of
unexplained variability in the population. In addition, knowledge of the covariate’s
impact on a particular component of the model may be used to advise dose or
treatment adjustment, suggest a subgroup analysis (e.g., responders vs.
non-responders), or inform future study designs. As in the case of between-subject
variability components, with so many parameters in a systems pharmacology model
which may be affected by intrinsic or extrinsic factors, there is a danger of
over-parameterizing the model. Care should be taken to select only the most
influential and meaningful covariates that improve the model fit or allow the
exploration of important scientific or clinical questions.

“Traditional” PK/PD data that are analyzed using a population approach tend to
have only a few observations per individual (parent drug, sometimes a metabolite,
and perhaps 1–2 PD measurements), generally all of which are on a similar time
scale. However, systems pharmacology models often incorporate processes that
occur at different time scales during the course of disease (Schmidt et al. 2011).
Osteoporosis, in particular, has observations that range from seconds (receptor
binding, enzymatic reactions), to hours (drug concentrations), to weeks (bio-
chemical turnover markers such as NTx and CTx), to months (bone mineral den-
sity), and even to years (fracture risk) (Peterson and Riggs 2010); whereas “fast”
observations may show a quick response to intervention and thus be useful for
informing proof of mechanism or dose selection, “slower” observations may be
more useful for exploring the long-term impact of intervention on disease pro-
gression or assessing drug safety. One of the advantages of NMEMs is that they are
not limited to a single data type, e.g., only pharmacokinetic or only pharmacody-
namic data, but can be extended to model many different data types of different
scales simultaneously, although it may be necessary to mathematically reduce the
model to “physiologically and therapeutically relevant time scales” and to select
only the most important parameters upon which to add variability terms.

12.3 What’s Wrong with Modeling the Mean?

During preclinical drug development, particularly in experiments with mice and
rats, it is often not possible to collect multiple blood samples in the same animal.
Usually only one blood sample per animal is available in a drug concentration
analysis and certainly only one tissue or organ sample is available per animal.
Therefore, in the past it was common practice to do one of two things: naïve
pooling or naïve averaging. With naïve averaging, the measurements across animals
at each time point are first averaged and then the averages are used for modeling.
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Numerous examples of this approach can be found in the development of models
for corticosteroid pharmacodynamics (Nichols et al. 1989; Ramakrishnan et al.
2002; Xu et al. 1995). With naïve pooling, all individual animals are pooled and
treated as independent observations, even if there are repeated measurements per
animal (Sun et al. 1998). This approach is in contrast to NMEMs in which all data
from all subjects are fit simultaneously taking into account the sources of vari-
ability. A natural question is how the parameter estimates differ between the naïve
pooled approach and NMEMs: it turns out the model parameter estimates of the
fixed effects are often, but not always, similar between the methods and there are no
real differences observed (Bonate 2011; Upton and Mould 2014; Wright 1998).

So what advantage do NMEMs have over using naïve pooling? If the goal is to
obtain estimates of the fixed effects, the estimates are similar between the two
approaches so there is no advantage in that regard. However, what NMEMs do offer
is that in addition to fixed effect estimates, estimates of the variance components
can also be obtained. This advantage though comes at a price—speed. It is much
faster to model the mean using a software program like ADAPT V or SAAM II than
to use a program like NONMEM. One modeling plan then could be to develop the
underlying structural model using the naïve approach but then to port the model
over to a NMEM software package like NONMEM and use a NMEM approach to
estimate the model parameters and variance estimates using all the data.

12.4 Does Variance Scale Across Species?

As discussed previously, one of the advantages of NMEMs is that in addition to
estimates of the fixed effects, estimates of the variance components are also
available. In clinical studies, these variance components may include
between-study, between-center, between-subject, inter-occasion, and residual or
unexplained variability, while in animal studies they may include between-study,
between-technician, between-cage, between-animal, inter-occasion, and residual
variability. In nonclinical drug development, studies may be done in rats, mice,
dogs, or other less common species. It may be necessary to bridge the model across
different animal species, or scale a model developed in animals to humans, such as
what might be done when predicting human pharmacokinetics based on animal
pharmacokinetics. A great body of evidence suggests that many fixed effect phar-
macokinetic parameters, like clearance and volume of distribution, as well as many
other physiological processes like heart rate, blood flow, or organ volume, scale to
body weight (Boxenbaum 1982) using a power equation of the form

PK = a(Weight)b: ð12:15Þ

b is generally about 0.75 for clearance terms and 1.0 for volume terms (Holford
1996). Because of this relationship, in many instances it is possible to predict
pediatric pharmacokinetics based on adult data or adult pharmacokinetics based on
animal data (Mahmood 2006; Sinha et al. 2008). Equation (12.15) may also be used
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to scale the pharmacokinetics in mice to rats; this may be useful when pharma-
codynamic studies of efficacy are done in mice, but pharmacokinetic studies are
done in rats, and it is necessary to bridge the studies across species.

Some fixed effect parameters, usually pharmacodynamic in nature, like IC50 and
EC50, do not scale with body weight across species (Mager et al. 2009). For
example, Lepist and Jusko (2004) generated pharmacokinetic-pharmacodynamic
models for s(+)-ketoprofen in cat, goat, calf, sheep, and horse and found no relation
between model-estimated pharmacodynamic parameters and body weight.
However, some pharmacodynamic parameters, while they do not scale with weight,
need to be corrected using species differences. For example, Zuideveld et al. (2007)
studied 2 biomarkers for 5HT-1a receptor mediated responses, hypothermia and
corticosterone increase, in rats using 2 agonists: buspirone and flesinoxan.
Pharmacokinetic models were developed and scaled to humans using Eq. (12.15)
and mechanistic pharmacodynamic models were developed in rats. The
drug-related pharmacodynamic parameters (potency, intrinsic activity, and slope)
were not scaled and were treated as equal between rats and man, whereas differ-
ences in EC50 were accounted for based on species differences in receptor binding
and potency assays (van der Graaf et al. 1997). Under these assumptions, human
predictions were very close to observed experimental results. Other examples can
be found in Melham (2013).

Less attention has been paid to whether variance components scale across spe-
cies. Typically, variability is assumed to be similar between animals and humans
despite there being no a priori justification for this to be true (Mager et al. 2009).
One might in fact expect the opposite to be true since experimental animals tend to
come from the same genetic strain so as to minimize between-subject variability
(BSV). A few studies have used population pharmacokinetics to model the phar-
macokinetics of a drug across species by modeling all data from all species
simultaneously. These studies typically account for BSV across species using a
modification of the power model shown in Eq. (12.15), i.e.,

PK = a(Weight)b expðgÞ: ð12:16Þ

The η term in Eq. (12.16) accounts for BSV after controlling for weight and is
assumed to be normally distributed with mean 0 and variance x2. For example, Wu
and Feng (2011) modeled the interspecies pharmacokinetics of dasatinib in mouse,
rat, monkey, and dog, while Mu et al. (2004) modeled the interspecies pharma-
cokinetics of drug LY in rats, dogs, and monkeys. Both scaled the model to predict
the pharmacokinetics in humans, assuming that the BSV across species was the
same, i.e., that the variance across rats or mice or dogs was the same as the variance
across humans.

Similar assumptions are made when adult pharmacokinetic data are scaled down
to pediatric populations. For example, Morris et al. (2013) reported on artesunate
pharmacokinetics in adults and children and Robbie et al. (2012) reported on

264 P.L. Bonate et al.



palvizumab pharmacokinetics in adults and children. In both studies, all pharma-
cokinetic parameters were modeled using Eq. (12.16), and both assumed that the
variability in children was the same as the variability in adults. No study to our
knowledge has ever modeled the variability in children to be different than the
variability in adults or the variability in animals to be different than the variability in
adults.

A PubMed literature review was conducted looking for population pharma-
cokinetic reports of the same drug independently done in mice, rats, dogs, or
humans. Only a few drugs were found (Table 12.1), and while these results are far
from definitive, the estimates of the variance components are generally similar
across species. No large differences were noted. These results suggest that the use of
similar variance estimates in the scaling of pharmacokinetic or pharmacodynamic
models appears justified.

12.5 Estimation and Software

To analyze the longitudinal data generated from a systems pharmacology study,
that is, data in the form of repeated measurements on each subject over time, there
are three parameters (h, X, and R, which have been previously introduced) that

Table 12.1 Estimated variances for drugs in animals and humans

Drug Parameter BSV in
rats (%)

BSV in
dogs (%)

BSV in
humans (%)

References

Fentanyl CL 25 36 Freise et al. (2012)

Vss 40 64 57 Yassen et al. (2007)

Ka 25 24 Kaneda and Han
(2005)

Kel 5

Amiodarone CL 44 Vadiei et al. (1997)

V 43 29 Campos-Moreno
et al. (1997)

K10 19

Pregabalin CL 25 16 Shoji et al. (2011)

Vss 45 17 Bender et al. (2009)

Ka 98

Buprenorphene CL 37 24 Jensen et al. (2007)

Vss 81 106 Yassen et al. (2007)

Q 43 35

Ertapenem CL 45 55 Boulemery et al.
(2013)

Vss 25

V2 51
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must be estimated. Among several methods of estimation, maximum likelihood
(ML) is an old and well-established method originally established by R.A. Fisher in
the early 1900s that has a variety of optimal properties (Aldrich 1997). But in order
to implement ML estimation, one of the basic requirements is that of assuming an
underlying joint probability distribution for the data Y, which is also the likelihood
function of the parameters given the data. A natural choice is to assume a normal
distribution for both the random effects and unexplained variance, and the NMEM
can be written as

Y ¼ f ðh;X; gÞþ gðeÞ ð12:17Þ

where η * N(0, X) and e * N(0,R), the joint probability distribution function can
be expressed as a marginal distribution.

p Yijjh;X;R
� � ¼ Lij h;X;RjYij

� � ¼ Z p Yij; gijh;X
� �

dgi

¼ p Yijjgi; h;X
� �

p gijh;Xð Þdgi
ð12:18Þ

where the random effects are integrated out (Wang 2009). The likelihood function is
then

Q
Lij, and when the likelihood function is maximized, the values of (h, X, R)

are referred to as the ML estimates.
If Eq. (12.17) is linear in the parameters, an explicit analytical solution to

Eq. (12.18), which is similar in nature to the solution for a multivariate regression
problem, can be obtained and the ML estimates are easily found. However, non-
linearity in f(.) and g(.), particularly with g(.), makes it difficult to evaluate the
integral in Eq. (12.18) explicitly. The integral must therefore be evaluated either
numerically or by using some approximation. The first method to solve the integral,
called the first-order (FO) approximation by Sheiner and Beal (1980, 1981, 1983),
does not compute the integral but instead linearizes the model in Eq. (12.17) using
a first-order Taylor series approximation, and then explicitly evaluates the marginal
distribution. Although the FO-approximation method has proven adequate for many
pharmacokinetic problems, one key disadvantage of this method is that when there
is substantial between-subject variability or the model is highly nonlinear, like with
typical models for pharmacodynamic data, the linearized model may be a poor
approximation, leading to biased and imprecise estimation of the parameters. An
alternative solution that takes the first-order approximation around the conditional
estimates of the random effects, first-order conditional estimation (FOCE), is more
accurate for nonlinear problems and is now the standard method used for most
pharmacokinetic-pharmacodynamic NMEMs (Boeckmann et al. 2006). FOCE is
more computationally intensive than the FO method, but with significant advances
in computer technology and the introduction of parallel computing, the run times
with FOCE are quite reasonable.

Another way to solve Eq. (12.18) is to numerically evaluate the integral. There
are many ways to do so, each of varying accuracy. One method is Gaussian
quadrature which evaluates the integral using the quadrature rule, essentially a
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weighted sum over the limits of integration (SAS Institute 2009). The method,
which is the gold standard for numerical estimation of the integral, is also the
slowest and least computationally efficient, particularly as the number of random
effects in the model increases. Therefore, for modest size problems, Gaussian
quadrature is not practical. A more reasonable solution is to evaluate the integral
using Monte Carlo simulation. A number of different options are available,
including stochastic approximation expectation-maximization [SAEM (Kuhn and
Lavielle 2005)]. The main disadvantages of the EM algorithm are the slow con-
vergence rate and no immediate standard errors for the estimates as in the FO and
FOCE method; however, many extension versions of the EM algorithm have been
developed for improvements.

There are many either commercially available (MATLAB, MONOLIX,
NONMEM, Pharsight Phoenix® NLME™, SAS) or free (ADAPT, R, S-ADAPT,
WINBUGS) software packages that can be used to fit NMEMs. Among them,
NONMEM has been regarded by many as the gold standard for PK/PD modeling in
the pharmaceutical community. NONMEM was originally developed by Stuart
Beal and Lewis Sheiner in the University of California at San Francisco for fitting
NMEMs (Sheiner and Beal 1980, 1981, 1983). The first version of NONMEM was
introduced by them in 1979; the current version 7.3 was formally released in 2013
from its licensor ICON (http://www.iconplc.com/technology/products/nonmem/).
NONMEM, which stands for “NONlinear Mixed Effects Model”, was designed to
fit general statistical (nonlinear) regression-type models to PK/PD data. Compared
with other statistical software packages (R, S-PLUS, SAS) for fitting nonlinear
mixed effect models, the current version of NONMEM is much more versatile,
including a variety of estimation algorithms and offers parallel computing capa-
bilities. NONMEM also uniquely allows for complex dosing schedules which are
typically included in the design of PK/PD studies through specification of dosing
information in the dataset, and has extensive predefined libraries for most com-
monly used PK models. These useful features are acknowledged and built into
recently emerging PK/PD software packages such as MONOLIX and Phoenix®

NLME™.
MONOLIX(http://www.lixoft.eu/products/monolix/product-monolix-overview/)

is also well accepted by the community of PK/PD for population analysis using
NMEMs, and implements the SAEM algorithm for ML estimation. MONOLIX was
initially developed as an open-source program in 2005 but in 2009 was changed to a
commercial package; it does however remain free of charge for academics, students,
and regulatory agencies. MONOLIX is implemented in the MATLAB environment,
but is also available as a full-featured standalone software compiled with MATLAB
libraries, and therefore does not require one to purchaseMATLAB licenses. One nice
feature of MONOLIX is the availability of a user-friendly graphical user interface
(GUI) that links the user-defined PK/PD model and data file for the data analysis and
has four sessions: data andmodel, initialization, algorithms, and results.Under thedata
andmodel session,NONMEM-type datasets can be uploaded, and aPK/PDmodel can
either be chosen from thebuilt-in library or be defined anduploadedby theMONOLIX
user. In this session, models to characterize the between-subject and within-subject
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variability and covariate models can be also specified. The initial estimates of the
parameters offixed effects and random effects including residual error can be specified
under initialization.

12.6 Case Studies

12.6.1 Development of a Systems Pharmacology Model
for Osteoporosis

An excellent example of the application of a population approach to a systems
pharmacology model was reported by Post et al. (2013). In this analysis, the authors
applied clinical data from post-menopausal women administered tibolone to a
mechanism-based model for osteoporosis (Fig. 12.2). Plasma bone-specific
biomarkers, bone mineral density (BMD) in hip and spine, and tibolone

Fig. 12.2 Schematic description of the layered model structure reported by Post et al. (2013) with
the bone cell interaction model at its core (dashed box), from which links to the corresponding
biomarkers are established. Here, Ru denotes the activity of the uncommitted osteoblast progenitor,
R of the responding osteoblast, B of the active osteoblast responsible for bone formation, Cp for
the osteoclast progenitor, and C for the active osteoclast responsible for bone resorption. PTH
stands for parathyroid hormone, TGF-b for transforming growth factor-b, OPG for osteoprote-
gerin, RANK for receptor activator of NF-jB, and RANKL for receptor activator of NF-jB ligand.
RANKL binds to RANK and promotes osteoclast differentiation, while OPG inhibits this
differentiation by binding RANKL. Figure and legend were originally adapted from Lemaire et al.
(2004)
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pharmacokinetics were incorporated into the model. A NMEM was used to control
between-subject variability on specific model parameters, to estimate residual
variability, and to characterize the distinction between responders and
low-responders to tibolone treatment using mixture modeling.

Judicious application of between-subject variability to the most influential
parameters was a feature of the analysis. For example, adding between-subject
variability to the pharmacokinetics of tibolone did not substantially improve the
model performance after controlling for variability in the biomarker pharmacody-
namics. While it would be generally not advised for one to consider ignoring
between-subject variability in pharmacokinetics using a traditional population
approach, when faced with an already complex and highly parameterized model,
the authors opted to favor the more influential pharmacodynamic variability. Even
when applying between-subject variability to the biomarkers, only the most variable
of the dynamic parameters for the biomarkers was initially examined: the baseline
values. The authors did attempt the inclusion of additional variability parameters in
a step-wise fashion, but found that adding these values resulted in model instability
and/or a lack of improvement in fit.

While a covariate analysis may have served to explain the individual fluctuations
in some of the bone turnover markers (as well as reduce the unexplained variability
in the parameters), covariate exploration was not conducted as it was outside the
scope of the analysis; the authors did note that such an analysis would be infor-
mative with respect to disease and system dynamics and would be considered for
future evaluation.

While not discussed to any extent in this book chapter, mixture models may be
used to describe populations with bi- or multimodal distributions. In practice,
software programs like NONMEM will assign individual patients to particular
subpopulation with the highest probability. Post et al. applied this methodology to
the parameter for drug potency (ID50) in order to identify two subpopulations which
differed in terms of treatment response: responders and low-responders. NONMEM
assigned 60 and 40 % of patients, respectively, to these two groups. It should be
noted that clinically, it is not clear whether these two subgroups truly exist or
whether the data drove the need for the mixture model. This question could also be
addressed with a covariate analysis to explain the between-subject variability in
treatment response in a future analysis.

In summary, by choosing to use a population analysis approach to analyze a
systems pharmacology model, Post et al. were able to assess between-subject
variability and to characterize individual subjects’ treatment response. Use of this
methodology led to improved learning and hypothesis generation compared to a
traditional systems pharmacology approach.
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12.6.2 Development of a Systems Pharmacology Model
for Thyroid Regulation

Ekerot et al. (2013) describe how the development of a myeloperoxidase (MPO)
inhibitor for thyroid regulation (MPO-IN1) was aided by integrating knowledge of
systems pharmacology with population PK/PD concepts. This example demon-
strates how systems pharmacology knowledge can be used as a tool to efficiently
analyze pre-clinical data by assuming the underlying physiology between species is
similar. The advantage of animal studies is that they can be exploratory in nature
and several scenarios can be tested using the relatively rich data (several doses, long
dosing times) before applying the model in humans. Translation to humans then
becomes a matter of altering the model by substituting human turnover numbers,
rate constants, affinities, etc. for animal values.

Figure 12.3 provides a schematic illustration of the hypothalamic-pituitary-
thyroid (HPT) axis. Thyroid stimulating hormone (TSH) is secreted by the pituitary
gland under the control of hypothalamic thyrotropin-releasing hormone (TRH) and
negative feedback regulation from circulating thyroxine (T4). TSH stimulates the
thyroid gland to produce and secrete T4 and T3. A fraction of T4 is also converted
to T3, mostly peripheral to the thyroid gland. MPO-IN1 targets the thyroid system
by inhibiting thyroperoxidase (TPO), an enzyme that frees iodine for the formation
of T4 and T3. The inhibition of T4 production is therefore expected to result in the
lowering of T4 and T3 levels during treatment. The reduced T4 is in turn expected
to increase TRH and TSH levels through negative feedback regulation.

The first step towards model building is to understand the system well enough
such that it can be described using systems parameters that can be measured or
imputed (in this case: turnover rates, fraction of T4 converted to T3, plasma

Fig. 12.3 Basic
hypothalamic–pituitary–
adrenal axis summary
(corticotropin-releasing
hormone = CRH,
adrenocorticotropic
hormone = ACTH). Created
by Brian M Sweiss; original
work from Jessica Malisch
and Theodore Garland; under
the Creative Commons
Attribution license, https://
commons.wikimedia.org/
wiki/File:HPA_Axis_
Diagram_(Brian_M_Sweis_
2012).png#filelinks
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concentrations of TSH, T4, T3, etc.) and mathematical equations that can describe
the interrelationships between these parameters. Much work has already been done
toward making a physiological model of the thyroid system and HPT axis.
Numerous complex models that describe the thyroid system in great detail already
exist (Degon et al. 2008). What Ekerot et al. did was to start exploring the next step,
which was how to assess the modulation of the thyroid system by pharmacological
manipulation through condensing a relatively complex systems pharmacology
model into a simpler form that could be used for candidate selection in drug
development.

In their study, MPO-IN1 was administered to beagle dogs once daily for 1 or
6 months. Three MPO-IN1 dose levels were tested, and serial pharmacokinetic and
hormone samples were collected. Using these data and in vitro IC50 and Imax values
for TPO inhibition obtained from inhibition experiments with the test compounds,
the production and elimination rate constants for T4, T3, and TSH were estimated
either by the model or were fixed to values reported in the literature. The architecture
of the model is described by Fig. 12.4 and consisted of compartments for TSH, T4,
and T3 that were linked based on physiology of thyroid hormone regulation. TSH

Fig. 12.4 Proposed feedback model of thyroid hormone homeostasis and drug mediated
inhibition of TPO. Hormone interactions are shown with dashed lines, where ± indicate a
positive or negative interaction following decreased or increased hormone concentrations.
Reduced concentrations of T4 stimulate production of TSH and lower the elimination of TSH.
Increased concentrations of TSH stimulate production of T4. Green-shaded compartments are
those where thyroid hormone observations were available in plasma. TSHBL, T4BL, and T3BL are
baseline (steady state plasma concentrations) of the thyroid hormones. The drug-specific parameter
potency (IC50) was different between compounds. The system-specific parameters such as
first-order elimination rate constants of TSH, T4, and T3 (KTSH, KT4 and KT3) and the fraction of
T4 that is conversed to T3 (fr) were different between species (dog and human). Imax is the
maximal inhibition of T4. NF1 and NF2 are the slope factors of the relationship describing the
influence of T4 on TSH production and elimination. NF3 is the slope factor of the relationship
describing the influence of TSH on T4 production. kinTSH, kinT4, and kinT3 are the zero-order
elimination rate constants of TSH, T4, and T3, Reprinted from Ekerot et al. (2013)
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production was described by a transit compartment model, a technique often used in
pharmacometrics (see Chap. 9). The transit model was used to describe the time delay
between MPO administration and effect on the PD endpoint (i.e., TSH concentration
changes in plasma). Based on evidence from the literature, a reduction in plasma T4
concentration was allowed to both stimulate the production of TSH and decrease its
turnover by linking T4 concentration to kinTSH (zero-order production of the pre-
cursor of TSH) and kTSH (first-order rate constant of elimination of TSH). In turn, T4
and T3 production and elimination was described by their own production and
elimination rate constants as well as by TSH. The model accounted for the fact that
T3 is produced both from thyroglobulin and the fraction of T4 was converted to T3.
Finally, the effect of drug was introduced into this systems model by introducing an
Imax type inhibition equation in which the rate of production of T4 was dependent on
the IC50 and steady-state concentration of the TPO-inhibitor. The concentration of T4
was also dependent upon TSH concentrations, the effect being that increased TSH
resulted in increased T4 production. Finally, thyroid hormone profiles under the
influence ofMPO inhibitor were predicted based on the ability to inhibit TPO (shown
in red in Figs. 12.3, 12.4).

The model was developed using population PK/PD methodology making use of
the NONMEM program to code the equations that described the relationships
between different compartments. Results were obtained in the form of the popu-
lation estimates for the model parameters along with the inter-individual variability
for select parameters. Overall, the model described the TSH, T4, and T3 concen-
tration versus time profiles quite well. Figure 12.5 shows the observed data along

Fig. 12.5 Visual predicted check plots for T4 and TSH based on the uncertainties in population
parameter estimates after 6 month oral dosing of MPO-IN1 at doses of 0, 15, 60, and
250 lmol/kg. Dashed line median of predictions, closed circles: median of observations, open
symbols individual observations, shaded area 95 % prediction interval. Note the uncertainty in the
inter- and intra-individual variation was excluded from the VPC predictions and values below the
LLOQ were excluded in the figure. Reprinted from Ekerot et al. (2013)
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with the model predictions overlaid for the 6-month study. The model was able to
describe the rapid decrease in T4 as a result of TPO inhibition. Additionally,
because of the incorporation of feedback effects, the model was able to capture the
increase in TSH during drug administration and the rebound effect after drug
administration was stopped. Inclusion of a transit compartment adequately captured
the delay of about 1 day for the increase in TSH concentration following admin-
istration of the test compound.

An advantage of using systems pharmacology based models is that when data do
not permit the estimation of a parameter then it can be fixed to a reliable estimate
from literature to simplify or speed up the model. In this case, the elimination rate
constants of T4 and T4 were fixed to known physiological values. The advantage of
using the population approach was that it provided not only population estimates for
TSH, T4, and T3 concentrations but also the inter-individual and intra-individual
variability associated with these parameters. The data could also be analyzed to
assess the significance of different covariates. Relevant in this case was the finding
that T4 and TSH concentrations were estimated to be 43 % higher in males for the
highest dose group.

The robustness of this model was tested by several methods. With the knowledge
of differences between hormone turnover rates and IC50 values of MPO inhibition,
this model could be used to make an informed guess of what the thyroid hormone
profile is likely to be upon administration of a different MPO inhibitor and, more
importantly, what the thyroid hormone profile is likely to be in a human clinical trial.
The model can also be adapted for the development of candidate drugs that affect
T3/T4 concentrations via other mechanisms shown in Figs. 12.3 and 12.4.

12.7 Conclusions

All experiments suffer from the curse of variability. At all turns, experimenters try
to control the variability: variability between animals, variability across analytical
results, variability between experiments. Variability is a nuisance that obscures the
true results of an experiment and obfuscates the underlying model structure.
NMEMs are an efficient method to model the underlying structure of a system and
control for variability by the explicit modeling of variability in the data through the
addition of random effects and residual variance models. While early systems
pharmacology models were based on modeling the mean data from experiments and
ignoring the variability in the data, more recent models take into account such
variability to obtain more accurate estimates of the model parameters. The future of
NMEMs in systems pharmacology looks bright and its use is expected to grow as
more pharmacologists start to become more comfortable with models and begin the
recognize the power of mathematical modeling as a tool to characterize experi-
ments, summarize data, and to predict future outcomes.
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Chapter 13
Detecting Pharmacokinetic
and Pharmacodynamic Covariates
from High-Dimensional Data

Jonathan Knights and Murali Ramanathan

Abstract With the rapid evolution of technologies capable of generating
high-dimensional data sets such as those from the ‘omic’ platforms commonly
encountered during pharmacogenetic/genomic clinical trials, there is need for
computationally efficient methodologies capable of integrating that information into
the drug development pipeline; however, the computational cost of identifying
covariates and interactions through traditional parametric statistical approaches has
impeded their utilization for these large data sets. Within the context of population
pharmacokinetic/pharmacodynamic modeling, the potential for detecting interac-
tions on such data sets is of great interest: Specifically, the applications of inter-
actions in this context would be the creation of more comprehensive and
biologically sound covariate models, leading to better prediction of individual
values for PK/PD parameters of interest, and moving one step closer to the goal of
personalized medicine. However, there are currently no commercially available
software packages, or computational approaches, that can handle covariate inter-
action detection or model synthesis at a genome scale. Thus, the most immediate
and tractable benefit from such interaction analyses at this scale would be the
identification of the most informative subset of predictors that could be used for
‘formal’ covariate model synthesis. This chapter will provide a discussion on the
following topics of interest in this area: A general discussion on covariates and
interactions; specific challenges and opportunities that arise when large datasets are
considered; search metrics that are applicable on high-dimensional data sets; and a
justification for the need to distinguish between covariate detection and formal
covariate model synthesis in this context.
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13.1 Introduction

The fields of pharmacodynamics and systems pharmacology have developed in
parallel and share the common goal of improving patient and drug outcomes. They
also share many methodological challenges, which include the development of
methods for identifying biomarkers and clinically informative relationships capable
of individualized predictions. Whereas pharmacokinetics and pharmacodynamics
(PK/PD) are relatively well established as the predominant methods for identifying
and optimizing dosing regimens during drug development and clinical trials, sys-
tems pharmacology is an emerging area of research with great promise in drug
target identification and in individualizing therapies.

The number of dimensions can loosely be defined as the number of independent
variables that have been measured. The term high-dimensional data refers to
datasets with a large number of independent predictors, commonly on the order of
102–106, but may contain on the order of up to 108 predictors. In high-dimensional
data from clinical trials, many of the predictors in the available data represent
genetic variations, proteins, biomarkers, and other environmental factors that
interact with each other. Often, one of the core objectives in modeling projects is to
parsimoniously describe all of the significant relationships in the underlying system,
to obtain a high level of mechanistic insight and to enable prediction. For these
reasons, identifying and quantifying covariates and covariate interactions con-
comitantly within a unified framework is useful, and arguably essential to realizing
the goal of individualized predictions for treatments.

This chapter highlights the challenges and unique opportunities for knowledge
gain from covariate searching and model building when analyzing
high-dimensional datasets, which are becoming common in systems pharmacology
and PK/PD modeling.

13.2 What Are Covariates?

Covariates are variables capable of explaining inter- and intra-individual variability
of an observed outcome in a given population (see Chap. 10.1007/978-3-319-
44534-2_12). The identification of effective covariates can provide the basis for
personalized medicine because it can enable the selection of the best drug and
dosing regimen for a given patient. In population PK/PD modeling, covariate
models extend the formal description of factors leading to the observed variability
in drug concentrations or effects, beyond that of the structural model. A useful
covariate model describes variability in outputs arising from differences in expected
values and/or differences in the variability of a PK/PD parameter between different
groups.

Figure 13.1 illustrates how covariates enable the description of observed vari-
ability. The solid line in Fig. 13.1a represents the expected concentration in the
study sample at a given time point; Fig. 13.1c shows the raw distribution of
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clearance values in the same sample. After the inclusion of gender as a covariate,
two subgroups can be identified, and the population predicted values can be
adjusted appropriately (Fig. 13.1b), allowing separate predictions for males and
females. Figure 13.1d illustrates this concept from the perspective of the observed
clearance values, whereby the addition of the covariate (gender) enables the
identification of subgroups and significantly improves the estimation of clearance,
shown now as a bimodal distribution. A perfect covariate model would enable the
identification of all relevant subgroups of patients in the population, allowing
researchers and clinicians to more accurately describe the expected
concentration-time (or concentration-effect) profiles for a given individual based on
the values of the covariates.

(a) (b)

(c) (d)

Fig. 13.1 a Natural log-transformed concentration values after an IV bolus dose following single
compartment kinetics in a simulated population. The expected concentration values for the
population at a given time point are represented by a solid line. b The same simulated data, with
separate population predictions for males and females after the addition of gender as a covariate to
the model. c Distribution of observed clearance values in the original population, whereas
d highlights the identification of the true underlying bimodal distribution after inclusion of gender
as a covariate in the model
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Although the evaluation of PK/PD covariate effects within the context of a given
structural model has been well studied (Joerger 2012; Jonsson and Karlsson 1998;
Khandelwal et al. 2011; Ribbing 2007; Ribbing et al. 2007; Wählby 2002; Wahlby
et al. 2001, 2002), research on the identification of the most appropriate covariates
affecting PK/PD structural model parameters from high-dimensional genetic and
environmental data is in its infancy. The identification of drug disposition, efficacy,
and toxicity-related covariates from high-dimensional pharmacogenomic (or other)
datasets presents numerous challenges that must be overcome by the PK/PD and
pharmacometrics communities in order to realize the potential and promise of
systems pharmacology in individualizing therapy.

13.3 Introduction to Covariates and Interactions

13.3.1 Covariates and Covariate Models

In statistics, a covariate is an independent variable that displays a relationship with a
dependent variable(s) of interest (Hair 1995; Tabachnick and Fidell 2001). There
are multiple ways to define the effect of a covariate on a phenotype of interest
(Nonyane and Foulkes 2008)—covariates can exert effects directly via main effects
and via interactions with other covariates. A covariate model is a formal description
of the relationship between the value of the covariate and the outcome of interest.

In population PK/PD modeling, covariate models may be built for observed
outputs (e.g., maximum concentration or the area under the concentration-time
curve) or for PK/PD parameters (e.g., the clearance or the theoretical volume of
distribution). The possible covariates for these models can be based on available
genetic, environmental, or patient demographic information. Additionally, when
genetic variations such as single nucleotide polymorphisms are used as covariates,
it is common to require separate fixed-effect parameters for different genotype
groups, meaning one covariate may require multiple parameters to be estimated.

13.3.2 Linear Covariate Models

Let an observed outcome, Y, be explained by a set of predictors, X ¼ x1; . . .; xNf g,
with a set of unknown relationships, B ¼ b0; b1; . . .; bMf g, through some function,
f, such that, Y � f ðX;BÞ. The set X could contain covariates as well as primary
predictor(s) of interest. For example, if we were interested in finding out whether or
not a treatment had an effect on cholesterol concentrations (which would be Y), then
X would contain one xi term for the treatment effect, and additional xi terms rep-
resenting factors external from treatment (covariates) that may influence cholesterol
concentrations, such as age, gender, dietary intake, genetic factors, etc.
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In the simplest case, the relationship of the covariate with the parameter of
interest is additive, and we observe a proportional change in f for each value, j, of
the ith predictor, xij. With one predictor we have:

f X;Bð Þ ¼ b0 þ b1x1j þ e; ð13:1Þ

where b0 is the baseline value, or intercept, of the outcome, b1 represents the
coefficient for proportional effect of the states of predictor x1 on the outcome, and e
is an additive error term representing random variations in the outcome. The dif-
ferent values, j, of xi, may represent genotype states, gender, or specific observa-
tions of some other categorical/ordinal or continuous variable.

Figure 13.2a, b represents two examples of main effects. Figure 13.2a shows a
direct relationship between the measured outcome, Y, and age—the form of this
equation would be identical to that of Eq. 13.1, such that Y ¼ b0 þ b1Ageþ e.
Figure 13.2b shows an example of two predictors, age and gender, which both
display additive main effects, where Y ¼ b0 þ b1Ageþ b2Genderþ e, and
“Gender” is a binary indicator variable.

13.3.3 Interactions in Regression

In regression analyses, statistical interactions are implemented via product terms in
an appropriate regression equation. Building on the linear regression Eq. 13.1
above, if we add a second predictor, x2, and an interaction term, our new expression
becomes:

f X;Bð Þ ¼ b0 þ b1x1j þ b2x2k þ b3ðx1jx2kÞþ e; ð13:2Þ

where b3 represents the coefficient for the deviation from additivity, or interaction,
between x1 and x2 on the outcome. It is customary to refer to the b1 and b2 terms as
main effects. In principle, statistically significant interaction terms can result from
predictor sets with significant main effects, and also from predictor sets wherein one
or more of the predictors does not show main effects.

Figure 13.2c, d shows examples of what statistical interactions look like visu-
ally. Figure 13.2c is an example of an interaction with main effects; in this case the
outcome, Y, is estimated as Y ¼ b0 þ b1Ageþ b2Genderþ b3ðAge� GenderÞþ e.
Figure 13.2d illustrates what an interaction without main effects could look like,
where Y ¼ b0 þ b1ðAge� GenderÞþ e. Although both Fig. 13.2c, d display sim-
ilar “criss-crossing” graphical relationships, the absence of main effects in
Fig. 13.2d can be inferred from both the lack of differences between mean values of
the outcome in males and females when age is not considered, and the relatively
stable mean of the outcome across age when gender is not considered (highlighted
by the symmetric distribution around b0 across age).
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One of the main computational complexities with interaction analyses in re-
gression is the rapidity with which the number of parameters (b) to be evaluated
increases with the number of parameters (xi). For a saturated additive regression
model, testing all interactions between N predictors (such as in Eq. 13.2), 2N b
terms are required.

Parametric regression approaches are restrictive in that the detection and mod-
eling of interactions is limited by the specific functional form of the product term
representing the interaction. The ability to identify statistical interactions in this
framework is thus dictated by the magnitude of the effect of the interaction, by the
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form of the functional inter-dependence of the predictors, and by the sample size.
Further, statistical regression models generally fit the combined model, containing
the main effect and the interaction effect, simultaneously to the data, which makes
identifying the contribution of the interaction term more difficult.

13.3.4 Biological Versus Statistical Interactions

Several reports have made distinctions between biological and statistical interac-
tions (Cordell 2002, 2009; Moore and Williams 2005; Siemiatycki and Thomas
1981). Biological interactions refer to a physical interaction of molecules (such as
protein-protein interactions, protein-small molecule binding, binding of drugs with
their receptors) and are generally mediated by an exchange of chemical potential,
energy, or information.

Statistical interactions are those interactions that produce observable differences
in a measured outcome that can be quantified from the available data. Interactions
are ubiquitous in many areas of science—in the pharmaceutical sciences, drug-drug
interactions, and drug synergy/antagonism are examples of interactions, whereas in
genetics an interaction between genetic variations is referred to as epistasis.

In the past, the definition of a statistical interaction has been used to refer to a
non-additive relationship(s) across groups of two or more predictors; however,
statistical interactions are defined as outcomes that occur only when two or more
variables are observed simultaneously. With this definition, the conceptual frame-
work for interactions becomes functional form independent, and simultaneously
more general, effective, and elegant. Ideally, once a model is sufficiently mecha-
nistic, it should be possible for statistical interactions in the model to correspond to
biological interactions, but not all biological interactions may manifest in statistical
interactions.

Figure 13.3 schematically illustrates biological gene-gene (GGI) and
gene-environment (GEI) interactions for case-control data. In the top panel, a
gene-gene interaction is depicted wherein different combinations of genotypes
correspond to observable differences in a phenotype of interest. The penetrance table
for the phenotype for different combinations of the genotypes is also shown. In the
lower panel of Fig. 13.3, a GEI is shown schematically using exposure to an
environmental agent, such as air pollution (high levels of pollution are depicted by
the smoke stack versus low levels depicted by the healthy tree), in conjunction with a
certain genotype. An environmental factor can be any observable non-genetic
variable: within this definition, environmental factors can include exposure to
infectious agents, smoking, diet, and other lifestyle factors. The Fig. 13.3 schematics
of GGI/GEI, which for simplicity suggest that there be a direct or causal link
between representative genotypes and the phenotype, can be applied to phenotypes
that result from more complex interactions in biological networks and pathways.
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13.4 Covariate Modeling Challenges in Systems
Pharmacology

In the past, the spectrum of potential covariates in pharmaceutically relevant data
sets consisted of a modest, manageable number of candidate genes, along with
relevant patient demographic and clinical characteristics. However, systems
approaches to PK/PD (e.g., systems biology models and physiologically based
PK/PD models) are gaining interest, and acquisition of rich, high-dimensional data
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principle would hold for continuous data and other types of data
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is now readily obtainable during clinical trials from various ‘omic’ platforms (e.g.,
pharmacogenomics, proteomics).

Technologies such as microarrays, next generation sequencing, metabolomics,
and mass spectrometry are enabling the simultaneous collection of highly multi-
plexed measurements of genetic variations, mRNA levels, and proteins; however,
the addition of extra dimensions exponentially increases the hypervolume in which
the data is distributed, resulting in the so-called curse of dimensionality, which
increases the computational complexity and degrades the statistical power of
algorithms (Bellman 1961).

The primary advantage of massively multiplexed measurement systems is that
information is obtained on many genes, gene products, and chemical species,
simultaneously—each of which may (or may not be) altered by the disease or drug
treatment. Thus, these multiplexed systems contain measurements on both infor-
mative and uninformative genes, which can be leveraged to gain insight into the
underlying system of interest. As genome-scale sequencing commonly produces
data on the order of 106 – 5 � 106 unique genetic markers (and possible two-way
interactions on the order of 109–1011), which are many orders of magnitude higher
than candidate gene approaches and modest clinical datasets, the identification of
individual covariates and covariate combinations from these high-dimensional
datasets is a far more complex problem than that of covariate identification on a
candidate gene or clinical level.

13.5 Current Covariate Model Building Approaches

The purpose of this section is to briefly introduce some available software packages
for performing population PK/PD modeling and provide a discussion of the various
approaches to covariate model building vis-a-vis a description of current method-
ologies and practices: The discussion will also enable the reader to appreciate the
time-intensive nature of even relatively simple population PK/PD modeling pro-
jects; why only modest numbers of covariates are currently considered in the
modeling process; and why the ability to screen PK/PD parameters against
high-dimensional datasets for possible covariates could increase overall confidence
in future models.

Three commonly utilized software packages for population PK/PD analysis are
NONMEM (ICON/Globomax, Ellicott, MD), MONOLIX (http://www.lixoft.eu/
products/monolix/product-monolix-overview/), S-ADAPT and ADAPT5 (University
of Southern California, Biomedical Simulations Resource, Los Angeles, CA), and
Phoenix NLME (Pharsight, Mountain View, CA). Although evidence has been docu-
mented that differences in the estimation algorithms of some early versions of these
software packages meant the choice of which software to use could have been in part
driven by the complexity and sparsity of the data (Bauer et al. 2007), current versions of
these packages have become similar with respect to their estimation algorithms.
Additionally, other differences affecting the potential complexity of models supported
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by a particular software package have largely been eliminated, e.g., NONMEM7 now
allows up to 50 columns of data as opposed to the 20 columns ofNONMEM6.Despite a
recent report from Pharsight that the current expectation-maximization algorithm
implemented in the Phoenix NLME package has improved accuracy and run time over
NONMEM7 with a complex PD problem (Leary et al.), the improvements to the
available population PK/PD modeling software packages have done much towards
accuracy and run-time convergence, making the choice of what modeling package to
use more a matter of economics and preference, as opposed to modeling or data-centric
considerations.

Multiple factors must be considered when building both structural and covariate
models alike: First, the sample size and number of data points per subject limit the
model complexity that can be supported by the data; second, the timing of the
concentration measurements may limit the reliability of parameter estimates—for
instance, analysis of population datasets that do not contain adequate concentration
values immediately following oral doses may not support covariates on an
absorption parameter; and third, model evaluation is time-intensive and requires a
high-degree of user intervention. For these reasons, covariate models in population
PK/PD are usually explored with fewer than twenty predictors.

Figure 13.4 provides a brief representation of the various steps involved in syn-
thesis and verification of a population PK/PD model. Briefly, after exploratory data
analysis and base structural model selection, potential covariates for each parameter
must be identified from available data. As the selection of possible covariates is often
largely driven by (prior) biological knowledge, one’s confidence that all appropriate
covariates will ultimately be evaluated is directly related to the extent of that
knowledge. Following selection, the relationships of the potential covariates with the
parameter(s) of interest must be assessed in the context of the overall structural
model, the residual error model, and the available data. The principle of parsimony,
which limits the complexity of models, also limits the number of covariates that can
be incorporated into the final model—only those covariates whose inclusion offsets
the penalty from increasing the complexity of the model may be carried forward. The
necessary time commitment of the initial steps (exploratory data analysis, structural
model selection, and identification of possible covariates) will depend on the richness
of the available data and prior knowledge of the underlying system being investi-
gated; however, the iterative demand of subsequent steps is related to the number of
covariate terms that must be evaluated and is inherently time-intensive: For instance,
in the final evaluation step of Fig. 13.4, the sensitivity of model performance to each
covariate in the preliminary model is evaluated by iteratively comparing model
performance in the absence of each individual covariate term. It should be noted that
covariates may be included as part of the structural model or the residual error model
(e.g., study or assay specific random error).

There has also been interest in implementing full covariate models after base
structural model selection (Gastonguay 2004), foregoing the initial forward inclu-
sion of covariates. In this approach, the full set of covariates are selected and
included based more on physiological rational and plausibility than pure statistical
criteria; while this is appealing when the underlying system is well-studied, and
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potential limitations with respect to availability of data notwithstanding, this
approach will also, by definition, deliver a model that is only as informative as the
current understanding of the presumed true underlying physiology. Further, a
considerable amount of evaluation is still required to ensure that the data supports
all parameters.

Regardless of how they enter the model, covariates are included as part of the
parameter counts and are included in the calculation of the Akaike Information
Criterion, Schwarz Information Criterion, or other criterion used to assess

Fig. 13.4 Representation of
the steps involved in building
a population PK/PD model,
starting with the selection of
the structural model
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parsimony (Fisher and Shafer 2007; Ludden et al. 1994); it is these metrics that
dictate whether or not improvements in model performance overcome added model
complexity and justify inclusion of a covariate in the final model. As discussed
above, once a base structural model has been identified, a set of potential covariates
must be determined, and individual posterior Bayes’ estimates from the base
structural model may be used to explore covariate relationships in a stepwise (or full
inclusion) fashion. The significance/impact of a particular covariate on the esti-
mation of a model parameter is driven by visual inspection of predicted values,
residuals, as well as improvements in the variance associated with that parameter
and in the model objective function—which in some cases may be evaluated based
on a chi-square distribution with degrees of freedom equal to the number of
parameters added to the model which is being compared (Fisher and Shafer 2007).

Generalized additive models (GAM) have been utilized for evaluation of
covariate relationships with parameter estimates. Originally proposed by Mandema
et al. (1992), this framework is beneficial in that it allows nonlinear covariate
relationships to be discovered without independent model runs; however, within
this framework, covariate effects are only determined for individual parameters, and
detection of covariate interactions are not directly supported. Although it has been
shown that forward covariate selection using the GAM framework (in a statistical
package such as S-PLUS), followed by backwards elimination in a population
PK/PD modeling software package such as NONMEM, performs similar to doing
both forward selection and backwards elimination in NONMEM (Wahlby et al.
2002), this process also requires relatively high numbers of model runs and user
intervention. Additionally, independently assessing the effects of each covariate on
a particular parameter does not allow appropriate evaluation of the subsequent
effects between that covariate and another parameter in the structural model, and
can cause unnecessarily redundant models being taken into evaluation (Jonsson and
Karlsson 1998).

More recently, automated covariate model building algorithms have emerged
that evaluate the benefit of adding a covariate to the model on a given parameter
with respect to the entire structural model (Jonsson and Karlsson 1998; Ribbing
et al. 2007). The appeal of this process lies in its ability to evaluate a covariate in the
context of the overall model and reduce the need for user intervention and sub-
jective decision-making. For instance, Jonsson and Karlsson (1998) extended
NONMEM’s first-order (FO) Taylor series estimation method by including a term
for covariate effects within the estimation procedure, allowing the addition of
covariates to be evaluated in the context of the given structural model as a whole.
This approach is appropriate for additive and proportional models of inter- and
intra-individual variability, but caution must be taken with nonlinear relationships:
In order to reduce the computation time for evaluating covariate effects in more
complex models, Jonsson and Karlsson employ a linearization of the function
describing the covariate effects, which requires that function to be centered on zero.
The result is a linearization that works well for weak covariate relationships and for
covariate values close to the “typical” value, but becomes less accurate with strong
(and nonlinear) effects. Additionally, only covariates with bivariate relationships
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may be considered under this linearization, and computational burden may increase
nonlinearly with both model complexity and the size of the dataset being analyzed.
These limitations are potentially problematic for complex PK/PD/Disease models
or even relatively large datasets.

Ribbing et al. (2007) suggest a method closely related to ridge regression called
the “least absolute shrinkage and selection operator” (lasso). This methodology is
aimed at constructing a model with the highest predictive performance and utilizes
cross-validation of a dataset to assess model performance. In essence, the lasso
standardizes covariates and limits the total absolute value of the regression coef-
ficients (effects) of these covariates by specifying a “tuning parameter”. The lasso is
designed only for linear models, but additional surrogate variables can be created to
account for nonlinear effects. However, it is not appropriate for power-model
covariate relationships, and further subtleties such as breakpoints for piecewise
relationships need to be pre-specified.

Although the automated approaches outlined above allow parsimony to be
implemented in real-time when evaluating the effects of covariates in NONMEM,
this benefit comes with subsequent limitations and a steep computational cost.
Similar to the standard GAM approach, these algorithms do not support direct
evaluation of covariate interactions, and the computational complexity limits the
number of possible covariates that can be included in the analysis. Neither method
is generally attempted with more than ten covariates.

As discussed, high-dimensional datasets being generated in the field of phar-
macogenomics and systems biology contain of the order of 102–108 possible pre-
dictors, making the problem space of covariate identification many orders of
magnitude different than the problem space of covariate model synthesis. With this
difference of many orders of magnitude, along with the limitations of covariate
model building algorithms specified above, it should become evident why tradi-
tional approaches designed for covariate model building from a modest number of
possible covariates cannot be implemented on a genome or systems scale. To
incorporate the full range of pharmacogenetic and pharmacogenomic data, covariate
detection and covariate model synthesis should be considered distinct problems
where pre-processing with search metrics and innovative algorithms (with efficient
implementations) is needed in the detection phase to obtain a tractable number of
possible covariates for more formal model synthesis.

13.6 Search Strategies for Covariate Detection
in High-Dimensional Datasets

13.6.1 Regression-Based Methods

Linear regression approaches find their utility in the model-building and evaluation
phase, as opposed to covariate identification. Main effects can feasibly be
exhaustively searched on high-dimensional datasets using regression methodologies
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such as logistic or linear regression; however, these methodologies require model
specification a priori, and multiple models are needed to assess different types of
main effects (e.g., additive and multiplicative). For any second-order (or higher)
interactions, parametric approaches become infeasible on genome-scale datasets
and search algorithms must be employed. Regression-based methods also encounter
challenges when the interacting predictors exhibit collinearity with each other,
which occurs frequently in pharmacogenomic data sets and is often referred to as
linkage disequilibrium (LD).

13.6.2 Restricted Partition Method

The restricted partition method (RPM) (Culverhouse et al. 2004) detects interac-
tions from continuous outcomes and has also been extended to case-control data
(Culverhouse 2007). RPM is a computational simplification of the combinatorial
partition method (CPM) (Nelson et al. 2001): It reduces the computational
requirements by eliminating the exhaustive search nature of the CPM. The RPM
algorithm seeks to identify the “best” predictor-value partitions that explain the
observed variance in the outcome of interest. For each combination of predictors,
RPM utilizes Games and Howell’s version of Tukey’s honest significant difference
test (Games and Howell 1976) to determine which groups have statistically different
means—if all groups have different means, the algorithm stops for that combina-
tion. If there are groups with similar means, the algorithm ranks the non-significant
groups and combines the two groups that are the most similar; this process is
repeated until either all groups have different means or no other simplifications can
be made.

The RPM is capable of producing robust relationships, including higher-order
interactions, and has outperformed both the multifactor dimensionality reduction
methodology, as well as support vector machines in a report that compared inter-
action analysis methods on simulated case-control data of modest size (Culverhouse
2012). It is worth noting that the RPM algorithm would not be appropriate for
stochastic, or non-normally distributed outcome measures, and to our knowledge,
has not been characterized on full genome-wide data in the presence of linkage
disequilibrium and population heterogeneity.

13.6.3 Dimensionality Reduction Methods

These are a class of exhaustive search methods used primarily in genetic epi-
demiology that are applicable to binary outcomes. The multi-factor dimensionality
reduction (MDR) method, developed by Ritchie and her colleagues (Hahn et al.
2003; Moore et al. 2006; Ritchie et al. 2001b), is based on non-parametric
multi-factor models and allows statistical and cross-validation analysis of
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interactions for balanced case-control and discordant sib-pair designs (Bush et al.
2006; Hahn et al. 2003; Ritchie et al. 2001b, 2003); it has also been extended to
unbalanced data sets (Velez et al. 2007). MDR uses constructive induction wherein
the dimensionality of the multi-locus genotype is systematically reduced by pooling
into high and low risk groups (Moore et al. 2006). The similarity of the MDR
classifier to the naïve Bayes classifier has been shown (Hahn and Moore 2004).

The generalized multifactor dimensionality reduction (GMDR) (Lou et al. 2007)
approach has also been used in the context of genetic epidemiology datasets (Gassó
et al. 2010; Grady et al. 2010; Motsinger‐Reif 2012; Sabbagh and Darlu 2009).
GMDR extends the original case-control MDR method (Ritchie et al. 2001a) to
include continuous data by enabling MDR’s high/low risk partition of groups to be
based on score statistics derived from the generalized linear model instead of
observed odds ratios in case-control data. GMDR enables covariate corrections and
handles both discrete and continuous phenotypes in population-based study
designs. GMDR employs the same risk-pooling (dimensionality reduction) strategy
as MDR and yields the original MDR as a special case when covariates are not
present and the phenotype is discrete (Lou et al. 2007). Similar to CPM and MDR,
GMDR is an exhaustive search methodology and has only been practically applied
to candidate gene approaches (Gassó et al. 2010; Li et al. 2008).

GMDR and RPM share many commonalities in their algorithmic approaches and
do not require a parametric definition of an interaction. GMDR has an additional
computational burden in that it randomly segments the data into a learning set and
nine cross-validation sets. It is possible that part of the increased performance of
RPM over MDR in the study mentioned above (Culverhouse 2012) could be due to
initial sampling variation; however, the RPM consistently outperformed MDR on
that simulated set of case-control datasets. Of the two, MDR is the only one with a
well-developed user interface.

13.6.4 Information Theoretic Methods

Information theoretic methods can provide powerful non-parametric search and
identification algorithms for covariates and covariate interactions. These methods
are those based on the concept of entropy, first introduced by Shannon and Weaver
(1948), as a way to quantitate the amount of information necessary to send (and
receive) a message. However, entropy is a descriptor of distributions, discrete and
continuous alike, and has many applications in modeling. The Shannon entropy, H
(), of a discrete random variable, X, is defined as:

HðXÞ ¼ �
X

8x2CX
pðxÞ log½pðxÞ�: ð13:3Þ

Entropy is a measure of the uncertainty associated with the observations of a
random variable. As can be seen from Eq. 13.3, impossible events (p(x) = 0) do not
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add uncertainty to the overall term (by convention, 0 � log(0) = 0 in this frame-
work), and random variables that have only one outcome (p(x) = 1) do not have any
uncertainty. As a corollary, random variables whose outcomes are equiprobable
have the maximum amount of uncertainty and the highest entropy.

The application of entropy for interactions analyses is based on the concept of
joint entropy. For the general case of a discrete predictor (or set of predictors), X,
and a discrete (categorical or ordinal) outcome, Y, the joint entropy is given by the
expression:

HðX; YÞ ¼ �
X

8ðx;yÞ2X�Y

pðx; yÞ log½pðx; yÞ�; ð13:4Þ

where X � Y is the Cartesian product of X and Y. In the case of a continuous
outcome, Y, it can be shown that

HðX;YÞ ¼ HðXÞþ
X

8x2X
pðxÞHðyjX ¼ xÞ; ð13:5Þ

where H(Y|X = x) is the conditional entropy of Y, given that X = x, which for the
normal distribution is ln rX¼x

ffiffiffiffiffiffiffiffi
2pe

p� �
, where rX¼x is the standard deviation of the

outcome distribution given X = x. Conditional entropy is the amount of uncertainty
in Y, after accounting for X, and is thus a measure of the dependence between
random variables. A useful reference describing the theoretical relationship of
entropy and higher-order information theoretic metrics (such as the k-way inter-
action information, described below) to familiar statistical concepts is available
(Tritchler et al. 2011).

Entropy serves as the computational framework for many commonly encoun-
tered search algorithms, including regression trees and random forests. Additional
algorithms employing entropy concepts are, PLATO (Grady et al. 2010), BOOST
(Wan et al. 2010), and a host of search algorithms based on the k-way interaction
information (KWII) (Chanda et al. 2008, 2009; Knights and Ramanathan 2012;
Knights et al. 2013b) including AMBIENCE (Chanda et al. 2008), CHORUS
(Chanda et al. 2009), and SYMPHONY (Knights et al. 2013b), which have shown
initial promise for detection of informative covariates for gemcitabine and warfarin
(Knights et al. 2013a).

13.6.4.1 Plato and Boost

The Platform for the Analysis, Translation, and Organization (PLATO) of
large-scale data, is a suite of data filters designed to identify potentially informative
interactions in large datasets through the utilization of multiple search strategies: It
was created by the developers of the MDR and GMDR algorithms and utilizes
conditional entropy in multiple filters such as the normalized mutual information
and the uncertainty coefficient. Although PLATO has not been scaled up to
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genome-wide datasets, the availability of multiple filters could make it a valuable
resource for discrete and continuous variables; however, count data and other mixed
distributions common to pharmaceutical datasets have not been evaluated using this
platform.

The Boolean Operation-based Screening and Testing (BOOST) algorithm is an
efficient search algorithm powered by the Kullback-Leibler (K-L) divergence that
has been applied to several genome datasets from the Wellcome-Trust Case-Control
Consortium (Wan et al. 2010). The K-L divergence is also known as the relative
entropy (Cover and Thomas 1991). BOOST begins with a saturated log-likelihood
model of the data, given a particular set of predictors, and builds to a K-L diver-
gence definition of an interaction by removing the likelihood of the homogenous
association model (given the data) from the saturated model, theoretically leaving
only the quantity associated with the interaction. This methodology highlights the
relationship between entropy-based approaches and more familiar log-likelihood
approaches, which has been described (Tritchler et al. 2011). However, there is no
closed form solution for the likelihood of the homogenous association model, and
BOOST employs the Kirkwood Superposition Approximation (KSA), which is
related to the KWII (Jakulin 2005), to quantitate this likelihood. Given the
assumption of a homogenous interaction in the BOOST algorithm, the power of
BOOST will likely suffer in the presence of population heterogeneity (stratifica-
tion); additionally, as will be discussed later, the KWII accomplishes the same
intended task of quantifying only the information gained from accounting for all
variables of interest, without the need for approximation statistics.

13.6.4.2 Random Forests

Random forests are an extension of the classification and regression tree (CART)
analysis of Breiman (Olshen and Stone 1984) and eliminate some of the sensitivity
to data partitioning by randomly bootstrapping the portion of the original data
selected as the training set. The random forest algorithm then performs a specified
number of CART analyses on randomly selected sets of m predictors from the
training data to build each of the ‘trees’ in the ‘forest’. By selecting m random
predictors from the data at each node, each tree is grown by identifying the most
informative partition of the data at that node using the Gini impurity, which is built
on the concept of entropy. Each tree in the forest produces a vote for the most
appropriate classification set. After all trees in the forest have been grown, the
classification set with the most votes, the “most popular” set, is identified (Breiman
2001). This approach operates under the assumption that a relationship between two
or more predictors will exist no matter how the data is partitioned. One of the most
appealing features of random forests is the existence of executable versions of the
algorithm in the open source statistics language, R. At their essence, random forests
seek to identify the best set of predictors for a dataset: While it is possible to learn
about the relationships that exist in the dataset (Goldstein et al. 2010) from a
random forest analysis, this information is not necessarily easily accessible, nor
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easily interpretable, making random forests less appealing in situations when the
maximum amount of knowledge is desired from the data.

Random forests have been successfully applied to genome-wide data
(Garcia-Magarinos et al. 2009; Goldstein et al. 2010; Kim et al. 2009; Sun et al.
2007); however, their results to date have been mixed. For instance, the default
settings for the number of trees and the size of the random vector of predictors for
each tree are not appropriate for genome-wide data (Goldstein et al. 2010), and
there is still more work necessary to test the suggested adjustments of these
parameters. Although random forests have also been explored in the pharmaceutical
industry for molecular predictors of pharmacokinetic properties in silico (Lombardo
et al. 2006; Paine et al. 2010), and for homogenous population candidate gene
analysis (Cosgun et al. 2011), their performance in the presence of genetic com-
plexities such as linkage disequilibrium and population stratification has not been
systematically evaluated and remains an important question for their utility in
detecting PK/PD covariates from these datasets: In fact, it has been shown that
random forests may have difficulty detecting predictor effects in the presence of
covariates (Nonyane and Foulkes 2008) and have even been outperformed on
smaller scale pharmacogenetic datasets by MDR and neural networks (Sabbagh and
Darlu 2006).

13.6.4.3 KWII-Based Methods

The KWII is a multivariate extension of mutual information that provides a way to
quantify higher-order interactions while removing the confounding effects of factors
such as LD. The KWII removes the contributions of lower-order interactions and
can be written as an alternating sum over all possible subsets T, of a set !. using the
difference operator notation of Han (1980):

KWII tð Þ ¼ �
X

T�!

ð�1Þj!j�jTjHðTÞ; ð13:6Þ

where the symbols !j j and Tj j represent the cardinality of the set ϒ, and the subset
T, respectively. The number of genetic and environmental variables, k (not
including the phenotype), in a combination is called the order of the interaction.

The KWII of a combination represents the amount of information that can only
be gained (or lost) from the inclusion of every variable in the combination:
Operationally, positive values indicate a net gain of information or synergistic
interactions, negative KWII values indicate the net redundancy of information, and
values of zero indicate net absence of interactions. This simple heuristic property
enables KWII output to be easily interpreted, and can be visualized as a “KWII
spectrum” which plots the KWII values for each combination. The most prominent
interactions can be readily identified by visual inspection from such spectra.
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As the KWII can be computationally expensive, KWII-based algorithms employ
two search metrics: the total correlated information (TCI) (Watanabe 1960) and the
phenotype-associated information (PAI) (Chanda et al. 2008). The TCI quantifies
the amount of correlated information between a set of variables, and the PAI is
designed to provide an efficient search metric for predictors and predictor combi-
nations that carry information about a particular phenotype of interest. For the same
set ϒ above, let �nP be the set minus the phenotype of interest: the PAI is then
defined as

PAI !ð Þ ¼ TCI !ð Þ � TCIð! n PÞ: ð13:7Þ

The PAI is always positive, and when a non-informative predictor is added to a
combination (i.e., one SNP in LD with another SNP in the set already), the PAI is
unchanged. However, the addition of an informative predictor increases the PAI.
This property of the PAI enables the construction of KWII-based search algorithms
that identify interesting regions of a combinatorial space where the individual
KWIIs can then be computed—for more information on the PAI see (Chanda et al.
2008, 2009).

The significance of information theoretic metrics such as the KWII can be
assessed using permutation-based methods. Permutations are a commonly used,
robust, and generalizable method for significance assessments in many applications
(including the RPM algorithm) because it is an easy implementation strategy for
obtaining the null distribution for any statistic of interest. The p value for the
statistics can be obtained by comparing the observed value of the statistic to the
corresponding null distribution. The p value is easier to interpret for the wider
potential audience, which may be unfamiliar with the underlying statistic.
Significance assessment is thus an essential but computationally time-intensive
element in many algorithms because a large number of permutations have to be
conducted when closed form expressions for the distribution of the underlying
statistic are not available. Although statistics based on multiple mutual information
(such as the KWII) have been shown to approximate a chi-square distribution (Han
1980), large sample sizes necessary for accurate significance testing via this method
have restricted the use of this approach.

The most general form of permutation testing involves randomly shuffling the
phenotype data in the input and repeatedly computing the KWII (or other statistic)
of interest. However, for phenotypes involving discrete or dichotomous binary
outcomes, the significance of the statistic can be evaluated using a fast exact per-
mutation test. This fast test is exact (i.e., it yields the same results as a brute force
permutation test); however, it derives its efficiency from randomly permuting the
contingency table derived from the data. Random permutations of contingency
tables properly constrained on the margins can be obtained efficiently using the
Patefield algorithm (1981), which eliminates the need for repeated data access and
speeds up significance assessments. Improving the computational efficiency of
permutations has a considerable impact because a large number of permutations
have to be done independently for each combination. More work is needed on
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improving the computational efficiency of permutations for PK/PD outcomes that
are continuous.

The KWII is one of the few search methodologies that has been studied for
covariate detection of PK/PD covariates (Knights et al. 2013a), evaluated at the
genome-scale (Knights and Ramanathan 2013), and assessed systematically in the
presence of LD (Chanda et al. 2007; Sucheston et al. 2010) and population strat-
ification (Knights et al. 2013b). Additionally, although the AMBIENCE, CHORUS,
and SYMPHONY suite of KWII-based algorithms were designed for discrete,
continuous, and multivariate datasets, respectively, they are built on the same
search strategy that is theoretically versatile for different data distributions.
The KWII has also been shown to outperform, or perform comparably, to MDR and
regression (Sucheston et al. 2010), including Poisson regression for count/rate data
(Knights and Ramanathan 2012).

13.6.5 Improving PK/PD Covariate Detection
in High-Dimensional Data

For high-dimensional pharmacogenomic datasets, it has been said that “… the pri-
mary goal of analysis is not the genetic association with the phenotype, but rather the
effect of genetics on the association between a certain drug and the phenotype”
(Peters et al. 2010). For multidimensional datasets there is simply too much infor-
mation and complexity for traditional approaches to exhaustively search for, and
model, relationships. In a drug development setting, analyzing high-dimensional
datasets is useful, not only because they enable detection of genetic/environmental
influences on the disposition of a compound, but they may also provide evidence for
lack of significant genetic/environmental associations, which can also be helpful.

Presumably, if there were a high level of confidence regarding possible covari-
ates, a more focused, and perhaps parametric, candidate gene/predictor approach
would be preferred; however, the availability of high-dimensional pharmacoge-
nomic and pharmacogenetic data can enable insights into the molecular mechanism
and also facilitate identification of previously unsuspected pathways.

Of the methodologies discussed, the KWII-based algorithms are among the few
to combine a search strategy with powerful non-parametric interaction-identification
metrics, and enable the easy identification of informative predictors (and predictor
combinations), which may be explored further. These predictors and predictor
combinations can be further reduced using information theoretic model building
methods such as AMBROSIA (Chanda et al. 2011). Additionally, the data set could
be concomitantly analyzed using other approaches, (e.g., PLATO, RPM, and ran-
dom forests), to increase confidence in the robustness of the results. The outputs
from these non-parametric search-enhanced methodologies can complement,
strengthen, and inform more formal population PK/PD modeling approaches.
Implementations of most of these algorithms are available in the public domain.
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In contrast to case-control genetic epidemiology studies, PK/PD studies offer a
wealth of information on the underlying system, including observed parameters
such as Cmax, derived non-compartmental values such as AUC, and model specific
parameter values such as drug clearance from the body and the volume of distri-
bution. Each of these values carries unique information on the underlying system
and each could be used with the same high-dimensional dataset to identify potential
predictors and predictor combinations (covariates) that are informative about the
disposition of that compound—the results of these analyses could then be used for
hypothesis generation and model building. For instance, using non-compartmental
PK values generated from infusion data of gemcitabine (and active metabolite),
along with a candidate gene dataset of 92 SNPs from Japanese cancer patients, the
top-five KWII values for each parameter analyzed contained all but one of the final
covariates from the final published NONMEM population PK model (Knights et al.
2013a). In a follow up study using the same non-compartmental values, but with
genome data instead of candidate gene data, novel relationships with gemcitabine
disposition were detected by the KWII (Knights and Ramanathan 2013). This type
of naïve, unbiased analysis of high-dimensional datasets offers the greatest potential
for improving the detection of relevant PK/PD covariates and can be executed with
simple observed values, and sophisticated, calculated values alike; however, it
should always be remembered that the results of any analysis of a phenotype are
conditioned on the original assumptions of the model creation (i.e., assuming the
appropriate base-model has been identified in a population PK/PD model).

13.7 Conclusions

The problem of covariate detection from multidimensional datasets is gaining
attention in the PK/PD and pharmacometric communities as high-dimensional
pharmacogenetic and pharmacogenomic datasets become more common in clinical
trials and drug development. The identification of potential covariates from
high-dimensional datasets should be considered a separate problem from modeling
covariate relationships. Automated covariate modeling algorithms and iterative
model assessments are useful for population modeling when the number of
potential covariates are limited (Jonsson and Karlsson 1998; Ribbing et al. 2007),
starting with no more than ten covariates. However, the size and complexity of
pharmacogenetic and pharmacogenomic approaches requires novel search-based
methods. Entropy-based information theoretic search algorithms are among the
most promising approaches to improving the detection of PK/PD covariates in
high-dimensional datasets—their versatility and non-parametric definition of
interactions facilitates detection of both linear and nonlinear types of interactions, as
well as higher-order relationships. Because they result in the identification of a
manageable number of predictors, the output from these methods can be used as
input for subsequent population modeling. Early inclusion of these approaches will
increase the ability to detect covariates and covariate combinations in
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high-dimensional pharmacogenetic and pharmacogenomic datasets, which could
enhance the predictive capacity of population modeling and bring us one step closer
to realizing the goal of individualized therapy.
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Part III
Multi-scale Models of Drug Action



Chapter 14
Multi-scale Modeling of Drug Action
in the Nervous System

Hugo Geerts, Patrick Roberts, Athan Spiros and Robert Carr

Abstract Drug discovery and development in CNS diseases has one of the greatest
failure rates of all indications. This is due to poor translation ability of preclinical
animal models for diseases like schizophrenia, Alzheimer’s disease, and depression.
In addition, treatment of patients in real-life situations is far from perfect, and
polypharmacy is attempted without a rational understanding of the interactions of
the various drugs with each other and with the brain circuits. A possible alternative
is to develop an in silico model of relevant brain circuits using the existing expertise
of computational neurosciences to which very specific neuropharmacology pro-
cesses are added. This chapter illustrates a multi-scale drug action model for CNS
diseases. We show various applications of this platform in actual CNS research and
development projects.
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14.1 Introduction

14.1.1 Why Multi-scale Modeling of Drug Action?

CNS diseases, like depression and Alzheimer’s disease, come with a steep societal
impact, are difficult to treat, and most therapies are symptomatic rather than disease
modifying or preventive. According to the World Health Organization, one in every
four humans will develop a form of mental illness at some point, and the number of
patients with dementia will rise to 75 million in the next 18 years. This is a huge
challenge and likely to cast an enormous burden on developed societies.

While disease-modifying approaches are actively pursued, clinical trial failures
in CNS diseases (notably Alzheimer’s disease) (Cummings et al. 2014) have sig-
nificantly delayed this time horizon. Therefore it is likely that symptomatic treat-
ment based upon modulation of neuronal circuits will remain the staple of treatment
paradigms and that it is absolutely mandatory to use such available therapies in an
optimal way. For instance, the annualized incidence of schizophrenia is 82.9 per
100,000 males and 32.2 per 100,000 females for a young population (Anderson
et al. 2012), leading to more than 500,000 new schizophrenia patients diagnosed
every year in the developed world, and over 2 % of the adult population in
developed countries has been diagnosed with a form of serious mental health issue
(Pratt 2012). Furthermore about 30 % of the currently treated 10 million patients
are not satisfied with their current medication and therapeutic strategy.

As a consequence of decreased psychotherapy, drug prescriptions for treatment
of US mental health have substantially increased, up to $68 billion in 2008, almost
25 % of all drug prescriptions (Olfson et al. 2009). In many cases, physicians resort
to polypharmacy as a way to enhance therapeutic response in a trial-and-error
approach that is not based upon on a rational interpretation of the pharmacology of
the drugs. In addition, it becomes increasingly clear that therapeutic response and
sensitivity to side-effects of individual patients has a genetic basis that is being
increasingly documented. Currently, physicians in clinical practice tend to combine
various medications (polypharmacy) to alleviate symptoms based on trial and error
approaches, not on a rational understanding of the interaction of drugs with the
human neuronal networks in disease. Such an improper combination of CNS active
drugs often leads to increased side-effects without therapeutic benefit, in addition to
higher medication costs. Also the individual patient pathology (often defined by the
patient’s history and genotypes) or specific comedication modulates the response to
individual therapies. Current pharmacogenomics approaches, while a good first step
to identify factors associated with therapeutic response, rely much more on corre-
lation than on the available scientific understanding of the neurobiology and often
do not take into account gene-gene interactions, patient history, comedications, or
environmental effects.

Developments in computational neurosciences have made it possible to simulate
the complex network dynamics of neuronal brain circuits based upon realistic
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representations of spiking neurons. Quantitative Systems Pharmacology has
expanded this approach considerably to include the pharmacology of CNS active
drugs, the interaction between different brain circuits, the implementation of human
pathology and genotypes, and the calibration with clinical data. This ‘humanized’
platform (currently in schizophrenia, Alzheimer’s disease, and Parkinson’s and
Huntington’s disease) has been successfully used in situations relevant to drug
discovery. The Institute of Medicine (Washington DC) has identified Quantitative
Systems Pharmacology as one of the promising technologies to address the trans-
lational disconnect in CNS R&D (http://iom.edu/Activities/Research/NeuroForum/
2012-MAR-28.aspx).

14.1.2 CNS Drug Discovery and Development

Developing successful drugs for CNS is extremely difficult; as many animal models
are not predictive (Geerts 2009) for clinical trials. In fact in schizophrenia, no major
new breakthrough has been observed since the serendipitous discovery of chlor-
promazine and haloperidol in the late 1950s. In Alzheimer’s disease, according to a
recent study (Cummings et al. 2014), only 1 in 244 clinical development projects is
ultimately successful, and a number of highly visible trial failures have led to a
feeling of despair in the public perception. The last approved medication was
memantine in 2004, a compound that does not work at all in the so-called standard
animal models of Alzheimer’s disease. The situation is similar in major depression;
MAO-A inhibitors and tricyclics were discovered serendipitously, before the suc-
cessful development of serotonin transport inhibitors, based on rational under-
standing of human neuropathology. Additionally, new targets in the glutamatergic
systems were discovered based upon serendipitous discovery of the unanticipated
anti-depressant effects of ketamine in humans (Zarate et al. 2006).

14.1.3 The Issue of Polypharmacy in Real-Life Situations

Many well controlled studies fail to identify substantial clinical benefits of
polypharmacy, i.e., combination of antipsychotics in real-life situations
(Waddington et al. 1998; Kroken et al. 2009; Yu et al. 2009; Gellad et al. 2012;
Kroken and Johnsen 2012; Langle et al. 2012), whereas the incidence of both
polypharmacy and high-dose antipsychotic combinations in clinical practice
increases over time (Roh et al. 2014; Suokas et al. 2013). For example, in a
naturalistic study with 56 patients (Elie et al. 2010), polypharmacy was associated
with significantly lower BACS scores, suggesting an increased cognitive deficit.
Often, combinations of antipsychotics are graded using chlorpromazine equivalents
(Davis 1976; Kukreja et al. 2013). Although this grading definition has been used
more successfully for typical antipsychotics, the nonlinear interaction of two or
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more contemporary atypical antipsychotics with a more complex pharmacology at
different receptor systems makes this approach less useful and likely erroneous.
Animal models on the other hand are ill-equipped to provide good predictability for
polypharmacy questions, because among many other problems (Geerts 2009):
comedications of drugs are extremely difficult to test in preclinical conditions owing
to very different PK profiles, varying drug affinities among preclinical species and
humans, and the frequent presence of unique drug metabolites in humans.
Retrospective studies indicate that even in patients with a first episode, polyphar-
macy is quite common, and clinical practice varies substantially from one treatment
center to another (Goren et al. 2013). The current knowledge basis to provide a
rational guidance for polypharmacy in psychiatric disorders is insufficient, and a
better, more rational approach is desperately needed (Ballon and Stroup 2013;
Fujita et al. 2013; Jureidini et al. 2013; Tani et al. 2013). A recent well controlled
study suggests that increasing doses or switching to alternate antipsychotics in
first-episode patients does not improve the outcome (Agid et al. 2013).
Polypharmacy cannot be tested accurately in preclinical animal models, so this
suggests the need for a completely new humanized approach. We will show that
Quantitative Systems Pharmacology can provide a solution for this problem.

14.1.4 Personalized Treatment in CNS Diseases

With the increasing availability of genomic technology, pharmacogenetics studies
have identified individual genetic differences in drug response or side-effect vul-
nerability in certain indications. However, the situation is much more complex in
psychiatric diseases. For instance, a large GWAS study failed to find genetic pre-
dictors of clinical response to serotonergic and noradrenergic antidepressants
(Tansey et al. 2012); likely because of incomplete genomic coverage with the
current technology and the computational burden associated with the study of
gene-gene interaction or epistasis. One possible way to get around this problem is to
include biological information on pathways that could identify possible gene
combinations. However, correlation does not guarantee causation, and it is very
difficult to predict the direction of the response associated with a certain combi-
nation of genetic markers.

New big-data analytical approaches are currently being explored; as an example a
systematic investigation of drug-gene interactions in schizophrenia (Putnam et al.
2011) suggested that haloperidol has a unique drug-gene interaction that might
explain some of its clinical effects. However, the correlative nature of this study
precludes any conclusion with regard to dosing or drug-drug combinations.

Furthermore, the fraction of active metabolites can be modulated by interaction
of concomitant medication at the specific P450 enzymes that metabolize the parent
antipsychotic. Anti-epileptic drugs, as well as smoking, can significantly affect
serum concentrations of olanzapine and its metabolites (Haslemo et al. 2012). In
addition, certain genetic polymorphisms in specific enzymes might affect

308 H. Geerts et al.



olanzapine metabolism; as an example, the FMO1rs7877C>T mutation in
flavin-containing mono-oxygenase 1, involved in the metabolism of olanzapine,
significantly affects the concentrations of the N-oxide metabolite of olanzapine
(Soderberg et al. 2013).

It is therefore clear that a new approach is needed to identify and frame the issue
of pharmaceutical treatment so that the best treatment strategy for an individual
patient can be selected from the list of available medications. Quantitative Systems
Pharmacology has expanded mechanism-based computer modeling of relevant
human brain circuits considerably to include the pharmacology of CNS active
drugs, the interaction between different brain circuits, the implementation of human
pathology and genotypes, and the calibration with clinical data.

14.2 Multi-scale Modeling Approach

Quantitative systems pharmacology (QSP) multi-scale modeling and simulation
platforms for addressing R&D challenges in CNS disorders is based on biophysi-
cally detailed models of neuronal circuitry, complete with membrane voltages of
individual neurons and synaptic currents. This is in contrast to approaches that rely
on curve-fitting and statistical optimization methods. In fact, the QSP approach
could be considered as physiology-based pharmacodynamic modeling that is
complementary to more traditional pharmacokinetic/pharmacodynamic modeling
and simulation platforms (Geerts et al. 2012a, 2013c).

The critical insight to make such a biophysical computational platform practical
for use in CNS pharmaceutical R&D is to focus model calibration on the parameters
that have the greatest uncertainty and are most closely tied to pharmacology. These
are the parameters that link the activation of receptors (especially G-protein coupled
receptors or GPCRs) and other targets to their effects on electrical currents in
neuronal membranes and synapses. This platform implements a method for cali-
bration of key parameters with clinical data by linking pharmacology to neuronal
function as a perturbation of circuit dynamics. Receptor activations are linearly
coupled to a neuronal circuit simulator through parameters that are calibrated by
relating circuit outputs to clinical data. This calibration approach, i.e., calibrating
the linear sensitivity of a system around a known state, has been extremely pro-
ductive in both physics and engineering.

The modeling and simulation platform has three major components at different
scales:

Component 1: Models of neuronal modulators acting on receptors in the synaptic
cleft.

Component 2: Models of neuronal microcircuits modulated by those receptors.
(the linear coupling of Component 1 is a key part of these models)

Component 3: Models of neuronal connectivity between microcircuits (brain
nodes).
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Disease pathology is introduced into the platform models by changing param-
eters consistent with known pathologies associated with a disease and derived from
human imaging and postmortem data. In assessing a target/indication, compound,
or trial design, the inputs to the platform are primarily the human receptor affinities
of a new compound being assessed (also see section on non-receptor targets). The
outputs could be defined as “in silico biomarkers”, such as network spike train
information content (entropy) or some other biometric (e.g., fMRI signals, attractor
pattern stability, or working memory analog) that can be correlated with human
clinical data; and which can also be used to help confirm systemic hypotheses about
the target or compound effect.

Different concepts of implementing CNS-based Quantitative Systems
Pharmacology are shown in Fig. 14.1; each step is described below:

Step 1: Calculate Receptor Activation. Calculate the activation of each receptor
in the presence of drugs using the synaptic cleft model (Component 1). It
is illustrated for a dopamine synapse, but there are many other receptor
types.

Step 2: Calculate Local Activation Effects on Neurons. Calculate the changes in
membrane and synaptic currents (using coupling parameters) due to
receptor activation, and simulate resultant neuronal activity changes in
microcircuits for each drug/dose combination (Component 2). The

Fig. 14.1 Sequence of steps in a multi-scale modeling and simulation platform for drug action in
the nervous system
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example here is the soma of a pyramidal cell in a cortical microcircuit
model containing membrane currents for sodium (Naf, Nap), potassium
(Kdr, KCa, Ks), calcium (Hva), and a nonspecific leak current (leak).
The activation level of receptors change the maximum conductance of
the labeled currents.

Step 3: Calculate Network Effects. Calculate the change in the neuronal network
activity (Components 2 and 3) and the altered outputs such as neuronal
spike rates, spike train information content (entropy), or some other
biometric (e.g., fMRI signals, attractor pattern stability or working
memory analog), which result from the changes in synaptic and mem-
brane currents caused by receptor activations.

Step 4: Calibrate Local Activation Effects on Neurons. Within biologically
realistic constraints, recursively optimize correlation of clinical drug
effects (e.g., N-back working memory scores) with measures of
Component 3 neuronal systemic output (e.g., network attractor pattern
stability) by adjusting the strength (coupling parameters) of the linear
coupling between the receptor activation by the drugs and the change in
maximum conductances. Coupling parameter calibration also yields a
level of correlation with clinical scores as a form of validation of the
platform circuit models (i.e., that some of the key circuitry of the disease
is being properly captured), and yields a regression curve that can be
used to quantitatively estimate human clinical effects of new drugs.

The outputs of Step 3 (simulated physiological measures) and Step 4 (estimated
clinical measures) must be weighed and discussed in context, along with standard
drug program evaluation inputs, with an awareness of the unique limitations of each
type of drug program evaluation input. However, adding the inputs from the
platform to drug program data packages can help identify important opportunities
and dangers, which would not have otherwise been known, for further investigation
(e.g., experiments, literature searches, further discussion, and simulation). This is
especially true when differences between animal and human biology result in
important differences in animal versus computational circuit outputs.

Such model-guided investigation can potentially yield subsequent program
improvements, program cost savings, course changes in indication and compound
selection, as well as trial design. As an example, we were able to blindly predict a
Phase II clinical trial outcome for a novel dopaminergic drug (Geerts et al. 2012b)
in schizophrenia, the Phase II outcome for another new non-dopaminergic
stand-alone drug in schizophrenia (Liu et al. 2014), and a Phase I clinical
Proof-of-Concept human scopolamine trial for a novel non-cholinergic Alzheimer
drug (Nicholas 2013).
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14.2.1 Major Platform Dimensions

14.2.1.1 Models of Neuronal Receptor Modulation Based
on Pharmacology

This component simulates the activation of receptors based on chemical and
physical characteristics of the competition for binding sites on each specific
receptor type. The parameters of this receptor competition model are primarily
based on the human receptor affinities of the specific pharmaceutical compounds
under study. These compound human receptor affinities are the primary input into
the platform when running simulations of neuronal systemic effects of actual or
desired compounds. This module has been described in detail (Spiros et al. 2010,
2012).

The calculation in the synaptic cleft of diffusion and removal of neuromodula-
tors, competition for binding to the receptors of multiple agents, and receptor
activation is done with differential equations that are numerically integrated
(Fig. 14.1—example for dopamine). In contrast to simple equations, such as the
steady-state calculation of receptor occupancy as a function of drug dose, this
approach allows for the competition with the endogenous neurotransmitter to be
simulated in many disease states or with certain genotypes, where the neurotrans-
mitter dynamics are significantly changed (Fig. 14.2).

Fig. 14.2 The activation of each receptor for neuromodulators is calculated in the presence of
drugs using QSP’s unique receptor competition model—here illustrated for a dopamine synapse.
Included are the effect of presynaptic D2 autoreceptor activation on subsequent neurotransmitter
release; variable presynaptic firing patterns for neuro-transmitter release; facilitation and
depression of synaptic release; the competition between five agents (neurotransmitter, and up to
four drugs or two active moieties of a parent drug and its major metabolite) and the dynamics of
kon/koff binding of each of these agents
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14.2.1.2 Models of the Neuronal Microcircuits Modulated
by Receptors Affected by the Compound

The input to the microcircuit models is receptor activation due to the compound (the
output from Component 1). The coupling of this output from Component 1 to the
effects on electrical currents in neuronal membranes and synapses is a key part of
the Component 2 microcircuit models. The outputs of Component 2 microcircuits
are neuronal spike rates, spike train information content (entropy), or some other
biometric (e.g., fMRI signals, attractor pattern stability or working memory analog)
that can be correlated with human clinical data. These outputs can also be used to
help confirm systemic hypotheses about a compound’s effect.

14.2.2 Four Categories of Microcircuit Parameters

Parameters of the neuronal microcircuit component are constrained by public data
found in peer-reviewed literature and can be divided into four categories:

(1) Channel kinetics
(2) Structure
(3) Conductance
(4) Receptor effects (coupling the activation of receptors to effects on membrane

and synaptic currents is a cornerstone of the QSP platform)
(1) Channel kinetic parameters are obtained from in vitro data

The channel kinetic parameters determine the time-course and voltage sensitivity
of membrane and synaptic currents. These parameters are well characterized by
physiological experimentation in vitro (N.B. we focus on human receptors).

(2) Structure of neurons and microcircuits constrained by functionality and
anatomy

Structural parameters define the dimensions of compartments that represent
neurons and are determined by the minimal number of compartments that are
necessary to simulate the physiological activity of the microcircuit. Structural
parameters also define the connectivity between neurons in the microcircuit and are
constrained by anatomical data.

(3) Membrane conductances constrained by experimental data

Maximum conductances of membranes and synapses are adjusted for the initial
tuning of each neuronal circuit model to accurately simulate neuronal activity on a
systems level. The conductance parameters are determined by accurately simulating
electrophysiological recordings of spiking activity in animals and humans as well as
data from human EEG and fMRI.
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The parameters are constrained by electrophysiological studies of membrane
current densities and synaptic currents, but are also dependent on the specific
implementation of the compartmental models to represent biophysical microcir-
cuits. A major issue is the difference in inhibitory tone in cortical networks. In fact,
experimental studies have suggested that rodent GABA channel kinetics is different
from primate GABA tone (Povysheva et al. 2007, 2008; Zaitsev et al. 2009; Volk
and Lewis 2010).

(4) Receptor effects—neuronal network coupling

The receptor effect parameters are the key to including pharmacology in the
models and to calibrating the models with human clinical data. The effects
of neuronal modulators such as dopamine and serotonin are introduced by coupling
the activation of receptors to changes in membrane and synaptic currents.

The localization of all currents in the model is shown in Fig. 14.3 on the left, and
the receptor effects of modulators [dopamine (D1), serotonin (5-HT1A, 5-HT4),
and acetylcholine (M1)] on currents in the soma compartment are shown on the
right. The four categories of parameters are labeled with arrows showing their
implementation in the model. The membrane voltage, V, is computed in each
compartment by integrating differential equations, and the contribution of each
current is calculated by its voltage-dependent kinetics. The receptor effects linearly
modify the currents through a coupling parameter, P5HT4

K , for the activation,
act5HT4, calculated using platform component 1.

Fig. 14.3 Schematic diagram for a cortical microcircuit model consisting of 3-compartment
pyramidal cells (Pyr-Green) and 2-compartment inhibitory interneurons with basket cell properties
(BC-yellow). Changes in membrane potential are calculated from Hodgkin-Huxley equations (1)
using time-dependent currents through voltage-gated ion channels, located in specific cell
compartments (2). Conductance properties (3), both effect size and dynamics, are implemented.
The effect of a GPCR (4), such as 5-HT4, can be implemented through transfer functions with the
appropriate ion channels
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14.2.2.1 Receptor Coupling Parameters not Directly Accessible
from Patients

Although one can often measure receptor activation and their effects on channels
via intracellular signaling pathways in vitro, it remains impossible to actually
measure the strength of those effects in the clinical situation for humans. Therefore,
receptor effect parameters are the largest source of uncertainty in predicting effects
caused by pharmacology on clinical measures. However, these effects tend to
modulate, rather than drive, the overall activity of the network. Reasonably small
changes in receptor activation will not cause drastic change to the overall systems
level behavior. In fact, large changes caused by neuromodulators are typically toxic,
and would be avoided in clinical treatments. In the clinical situation, compounds
typically make small changes to the activation levels of the receptors and the overall
dynamics of the neuronal system. Therefore, a linear approximation for the sensi-
tivity of the neuronal circuit to receptor activation is both practical and realistic
given the present uncertainties in preclinical and clinical data.

14.2.2.2 Receptor Effects Are Described as First-Order (Linear)
Changes to the System

The modulation of receptors by pharmacological agents is assumed to be a small
perturbation of a known state of the system, regardless of whether that state is
normal or pathological. Because the changes are small, a first-order (linear)
approximation of the changes caused by pharmacology to alter the effects of
receptor activation can be used.

Receptor coupling parameters are calibrated to maximally correlate the simu-
lated physiological changes (neuronal circuit model readouts) with known clinical
outcomes of specific drugs. Higher order, nonlinear approximations can in principle
be explored, but such elaborations rarely improve the correlation between the model
readout and clinical data.

14.2.2.3 Receptor Coupling Starting Values from Preclinical
Electrophysiology

Electrophysiological data from preclinical studies are used to determine the starting
values for calibration. For instance, if a 30 % change in a current is observed
following a saturating infusion of a modulator in a slice preparation from an animal
model, the coupling parameter is initialized at 0.30. Because the clinical situation
involves human receptors and an entirely different biochemical environment for the
modulated neurons, it is expected that following calibration, these parameters will
shift from the preclinical value and be more representative of human receptor
coupling.
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14.2.2.4 Optimization Method Is not as Important as Biological Basis

The optimization method of calibrating the coupling parameters with clinical data is
not as critical as the correct localization of receptor effects on the neuronal circuitry.
We have used several methods of optimization including grid searches, gradient
ascents, and iterative application of design of experiments to simulation results. The
choice of optimization method depends on computational efficiency and whether
the method can reliably converge on a maximal correlation. Experience shows
convergence to a strong correlation with clinical data depends more on getting the
neurobiology as accurate as possible, and less on the specific optimization method.

14.2.2.5 Strong Receptor Activation Changes Can Be Limited
by Saturation Limits

The linear approximation of the coupling between receptor activation and the
neuronal system is applied with the caveat that large changes in receptor activation
could push out of the range of confidence in the validity of a linear approximation.
In practice, such large changes are obvious in a breakdown of the system level
dynamics or abrupt changes in the readouts. In the few cases where strong changes
in activation have been explored, we have applied saturation limits on the receptor
coupling as best approximated from physiological data.

14.2.3 Models of Neuronal Connectivity Between
Microcircuits (Brain Nodes)

Extensive literature can help to define large-scale connectivity (connections
between brain nodes). We usually derive neuronal connectivity properties from
imaging studies such as Diffusion Tract Imaging and functional connectomics.
Integrating separate models of various brain regions through synaptic connections
(Fig. 14.4) reflect disease dynamics among regions and also enable the use of
imaging data and predictions to help further refine the platform models.

Imaging data can be used for additional calibration of the models. Moreover
links can be identified between model prediction of clinical scales and changes in
imaging data caused by novel compounds. The results can help reveal how the
biological mechanisms of non-invasive biomarkers, such as fMRI and EEG, cor-
relate with changes in clinical scales. As an example, consider the problem of
negative symptoms in schizophrenia. Imaging studies reveal that the strength of
interaction between orbitofrontal cortex and ventral striatum is proportional to the
subjective reporting on the Physical Anhedonia Scale (Juckel et al. 2006; Harvey
et al. 2010), which is very specific and different from the imaging pattern that
correlates with positive symptoms (Pinkham et al. 2011a, b) or in subjects with
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major depression. This allows focusing on the afferent projections from the cortical
region into the ventral striatum medium spiny neurons to develop a computational
model of Bold fMRI changes that are correlated with the clinical PANSS negative
scale.

14.2.3.1 Application to Non-receptor Targets and Novel Receptor
Targets

When the platform is optimally calibrated to predict the effects on neuronal
dynamics of clinically tested compounds (many of which hit multiple targets in
multiple circuits), the platform is then also capable of estimating the effects of other

Fig. 14.4 Example of multiple brain nodes (prefrontal cortex, thalamus, and basal ganglia)
connected in a large-scale model to simulate how pharmacology changes neuronal activity in the
cortical-striatal-thalamic loop. Such larger-scale models leverage calibration of the separate
microcircuits and enable further calibration with fMRI and EEG
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perturbations to the circuitry, as the models simulate many biophysical mechanisms
of the neuronal circuitry. The QSP modeling platform can thus estimate the effects
of novel compounds that modulate intracellular pathways, such as
phosphordiesterase-10, because these intracellular pathways are represented in the
models with the coupling between receptor activation and changes in membrane
and synaptic currents. Modulations of the intercellular pathways are introduced into
the models by a multiplicative factor, based on preclinical data, which perturbs the
strength of the receptor coupling.

Moreover, any novel receptor target that changes the release of dopamine, such
as TAAR1 modulators (Sotnikova et al. 2009), will cause known changes to
dopamine receptor activation in a more complex neuronal circuit that has already
been calibrated with clinical data. Another example is the action of a modulator of
NMDA receptors, such as glycine, that can be modulated by a GlyT1 modulator.
The perturbation of NMDA currents caused by changes in background levels of
glycine are calculated using preclinical data, then applied to the clinically calibrated
model to predict the changes in the human situation.

14.2.3.2 Introducing Pathology into the Circuits

Disease pathology is introduced into the platform models by changing parameters
consistent with known pathologies associated with a disease. For example, in the
case of schizophrenia, NMDA and GABA currents are modified, along with
background noise levels consistent with known human data, along with changes in
dopamine concentrations as derived from human imaging studies in specific brain
regions such as the cortex or striatum.

The degree to which these parameters are changed is the degree that enables
matching of the clinical difference in predictions from platform readouts with the
healthy and diseased states. In the schizophrenia example, we often use a PANSS
(Positive and Negative Symptoms Scale) scale for models of striatal neurons, and
then these parameters are adjusted to correspond to a level of PANSS that repre-
sents the predicted clinical deficit that is in the schizophrenic range.

14.2.4 Calibration of the Model with Clinical Outcome

In order to calibrate the in silico platform, we introduced the pharmacology of all
antipsychotic drugs (24) that have been tested in the clinic, at the appropriate dose
at all receptors in the model for which a clinical outcome has been reported, and
correlated the model outcome with the respective outcome on the clinical PANSS
total scale (76 drug-dose combinations from 44,117 patients reported in 149
peer-reviewed publications starting in 1988 onwards). Note that these values refer
to group averages and not individual patients. Correlation between model outcome
and clinical outcome for the 43 drug-dose combinations in PANSS Total is 0.56
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(Spiros and Edelstein-Keshet 1998), much larger than with simple D2R occupancy
(0.18) or multi-dimensional receptor occupancy variance analysis (0.30), as it takes
into account the known neurophysiological interaction between many different
receptor subtypes.

The Extra-Pyramidal Symptoms module achieves a much better correlation
(r2 = 0.66) with clinical measures of Parkinsonian side-effects (i.e., the number of
patients being given anticholinergic medication in the trial) than the single dopa-
mine receptor (D2R) occupancy (r2 = 0.08). This type of ‘calibration’ is very dif-
ferent from the traditional animal model validation, where usually only clozapine
and haloperidol at a random dose is required to ‘qualitatively change the
phenotype’.

Additional validation comes from a meta-analysis (Davis et al. 2003) covering 8
antipsychotics at different doses, where the QSP model gives a correlation of 0.56
with the clinical PANSS scales, compared to 0.08 for the simple D2R occupancy.
The QSP platform also outperforms the D2R occupancy rule at 5 out of 8 ‘real-life’
readouts in the CATIE trial (Lieberman 2007; Spiros et al. 2012). Similarly for our
cognitive model, we achieve a correlation of 0.76 between the outcome of 17
different clinical interventions on the N-Back working memory test and the out-
come in the computer model for the same interventions (Geerts et al. 2013a).

While retrospective calibration is a good approach to constrain the model out-
comes to predict an actual clinical outcome, we have also applied this platform to
predict the outcomes of meta-analyses (Geddes et al. 2000; Davis and Chen 2004)
and the CATIE trial (Lieberman 2007). In all cases, the platform outperforms the
current standard (the D2R occupancy as measured by PET imaging of a dopamine
tracer). Furthermore, as a prospective prediction, the platform was able to blindly
and correctly predict an unexpected clinical outcome in two schizophrenia and one
Alzheimer case (see below), underscoring the superior predictive power of the
platform as compared to animal models.

14.2.5 Differentiation from Statistical Data Analysis

The QSP platform is very different from statistical data-analysis or pattern recog-
nition. Whereas a simple multivariate regression analysis based on large datasets
can give some idea of expected outcomes, we recently compared this approach to
the QSP analysis for the same set of clinical data and drug-receptor affinities (Spiros
et al. 2012) for a blind prospective prediction of a clinical outcome. The QSP
mechanism-based systemic platform is superior in predicting theses clinical out-
comes, likely due to the fact that the multivariate analysis assumes independent
processes rather than systemic interactions involving redundancy and feedback.

Actual physiological systems modeling can account for nonlinear processes such
as the threshold for action potential generation or the complex interaction between
different receptor systems (for instance one neurotransmitter regulating the release
of another neurotransmitter) that modulate the membrane potential.
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While multivariate regression analysis can identify a possible target that drives
the clinical outcome, the computer-based mechanistic modeling approach adds
quantitative understanding of the neurobiology (e.g., clarifying the link from
receptor modulation to membrane excitability through effect of specific ion chan-
nels in specific parts of the neuronal network).

14.3 Summary and Discussion

The QSP modeling and simulation platform has three major components:

(Component 1) Models of neuronal modulators acting on receptors in the synaptic
cleft.
(Component 2) Models of neuronal microcircuits that those receptors modulate.
(Component 3) Models of neuronal connectivity between microcircuits (brain
nodes).

Integrating these components and utilizing clinical data to calibrate linear
receptor effects on targets, by optimizing correlations of simulated circuit outputs
with regression equations, enables predictions about the key neuronal circuit effects
of new compounds in human patients. In addition, the resultant regression equa-
tions enable preclinical predictions of quantitative clinical outcomes based solely on
drug pharmacology.

Following calibration of the crucial receptor coupling parameters, the platform
models are able to estimate, in a very early stage of drug discovery and develop-
ment, both neuronal circuit outcomes and clinical outcomes of novel compounds,
given knowledge of a compound’s effects on receptors or other targets.

Examples of the successful implementation of this platform in CNS R&D
include a blinded prediction of the Phase II outcome of a novel dopaminergic drug
in schizophrenia (Geerts et al. 2012b), the Phase I human scopolamine
proof-of-concept for a novel non-cholinergic drug in Alzheimer’s disease (Nicholas
2013), and the quantitative prediction of Phase II outcome for a novel
non-dopaminergic drug in schizophrenia (Liu et al. 2014). Additional examples
include the identification of the biology of the clinical responders of iloperidone
that corresponds with one SNP identified in a traditional pharmacogenomics
analysis (Geerts et al. 2015) and the biological explanation of the inverse U-shape
dose-response of a Glycine T1 inhibitor for negative symptoms in schizophrenia,
based upon the differential affinity of glycine for the excitatory-excitatory
NMDA-NR2B subunit versus the excitatory-inhibitory NMDA-NR2C subunit
(Spiros et al. 2014).

Furthermore, the QSP platform allows for a biological explanation of the dif-
ferential effect of memantine and APOE in moderate versus mild AD patients
(Roberts et al. 2012) and the negative pharmacodynamic interference of risperi-
done added to clozapine for cognitive outcome in schizophrenia patients
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(Geerts et al. 2013a). The QSP platform can be used in principle for setting up a
rational drug discovery program for neuropsychiatric dysfunction in Alzheimer’s
disease as measured using the Neuropsychiatric Index (Geerts et al. 2013b). This is
based upon a combination of genetic rodent (rat, mice) data with the humanized
QSP platform, where elements of psychiatric readouts are introduced.

In a drug discovery and development project, such outcomes are important data
to be weighed and considered alongside animal physiological and behavioral
models. The platform physiological predictions and the clinical predictions become
an important new set of data highly complementary to animal results. Examination
of the neuronal systemic implications of key differences in animal versus human
physiology is enabled. Furthermore, when compounds hit multiple targets or when
augmentation trials are considered, which is often the case with CNS drugs, the
platform is uniquely useful.

In general, when large differences between animal and QSP platform results
occur, the QSP platform can guide further investigations into animal and human
differences and how this might affect outcomes before investing in expensive
human clinical trials. The platform thus leverages expensive animal data in a most
effective way. Furthermore, the platform can illuminate and identify key additional
data needed from the literature or additional experimentation. Such investigations
can help in better rank ordering compounds and projects, and in improved decisions
about target and indication selection, compound selection, and trial design.

The QSP modeling and simulation platform contains realistic biophysical and
systemic physiological representations of drug action, and thus it is also a frame-
work for discussion of the details of how targets affect the human central nervous
system. Such models provide a quantitative basis for quantitative hypothesis testing
and refinement across many projects and stages encompassing the same pathology.
This leverages the utilization of expensive data and scientific personnel in the most
effective way.
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Chapter 15
Mechanistic Modeling of Inflammation

Jeremy D. Scheff, Kubra Kamisoglu and Ioannis P. Androulakis

Abstract In this chapter we explore the characteristics underlying the development
of mechanistic-based models of inflammation. The discussion covers the three basic
arms of developing mechanistic models. We begin by exploring the likely exper-
imental analogues producing critical information, we then review modeling alter-
natives for representing the biological system under study, and finally we review
the key methods for executing the model and performing the required calculation.
The discussion concludes with a brief overview of the challenges and opportunities
in the context of bridging the gap between (mechanistic) disease and pharmacology
models as we move towards more integrated systems pharmacology approaches
with the ultimate goal of designing relevant in silico clinical trials enabling rational
extrapolation of bench observations.

Keywords Bioinformatics � Disease progression � Stochasticity �
Immunomodulatory signals � Homeostasis � In vitro models � Cross-system
interactions � Lumped � Phenomenological � Statistical � Quasi-mechanistic � In
silico � Clinical trials

15.1 Inflammation: “the Good, the Bad, and the Ugly”

The inflammatory response is a key component of the host’s reaction to acute stress,
acting as a major contributor to the recovery from trauma and injury (Lowry
2009a). Furthermore, low-grade, chronic inflammation has been shown to play a
critical role in a wide variety of pathophysiological conditions such as obesity,
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diabetes, and cancer (Coussens and Werb 2002; Southerland et al. 2006; Haffner
2006; Luft et al. 2013). Managing, modulating, and eventually controlling the
progression of the inflammatory response, be it either acute or chronic, has faced
numerous obstacles. At the heart of this conundrum is the fact that the inflammatory
response, under normal circumstances, engages an intricate web of interacting
protective mechanisms aiming at restoring homeostasis following a stressful chal-
lenge. However, when the response does not resolve appropriately, or is initiated
inappropriately, it can lead to detrimental results (Laroux 2004). The delicate
balance of the forces that induce and maintain a proper response is critical in
re-establishing homeostasis under conditions of stress (Bone 1996) as well as
performing the balancing act of maintaining homeostasis (Chrousos 2009).
Challenges in understanding how to modulate inflammation ultimately stem from
the underlying complexity of the inflammatory response itself, a homeostatic
mechanism which has served as a major component during our evolutionary
development (Lowry and Calvano 2008). Cytokines, hormones, and autonomic
signaling all convey immunomodulatory signals that are typically redundant and
pleiotropic, making it difficult to infer how perturbing individual components will
impact the overall systemic response in a specific context.

The intrinsic complexity of the immune response to stress (Segel and Cohen
2001) naturally triggered interest in systems-based approaches to rationalize the
evolution of the dynamic interactions of the constitutive components (Vodovotz
and An 2010, 2013; Vodovotz et al. 2013a). Model-based approaches attempt to
quantify the causal relationships between the components manifesting and driving
the onset, maintenance, and resolution of the inflammatory response. These rep-
resentations can vary from statistical and correlational (Clermont et al. 2004b) to
mechanistic (Foteinou et al. 2009c); from deterministic and continuous (Scheff et al.
2011b) to discrete and stochastic (An et al. 2009; Dong et al. 2010; Nguyen et al.
2013). As we increasingly begin to understand and appreciate the systems char-
acteristics of the inflammatory response and the inflammation-related pathophysi-
ological conditions (Vodovotz et al. 2013a; Carre and Singer 2008), the need for
establishing appropriate mathematical and computational frameworks becomes
more apparent (Zenker et al. 2007a, b).

15.2 Mathematical Modeling in Health
and Disease—A Few Preliminaries

Although this chapter focuses on (approaches towards) mechanistic models of
inflammation, it is instructive to put these modeling efforts in a broader context.
Building a quantitative model is not simply the process of using an existing,
available, and applicable tool in any setting. It is rather a challenging research
question requiring a deep understanding of the question to be addressed, the type of
answer that is pursued, the access to the physical/biological systems (i.e., data) and,
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of course, the development of the appropriate mathematical and computational
representations which synthesize a coherent picture of the physical reality of
interest. Therefore, moving towards the development appropriate models, a number
of prototypical questions first need to be well articulated, understood, and
addressed. A model is a particular representation of reality whose granularity
(complexity) depends on the scope and goals of the analysis. Broadly, we will
assume that models are developed in the context of a 3-dimensional space whose
axes define the level of detail with regards to various decisions, as shown in
Fig. 15.1 and described below.

15.2.1 Experimental Axis: Which System Is Modeled?

The first level of classification in mathematical modeling relates to the physical
reality, for which an experimental analogue is used as a proxy to explain the
biological or biomedical systems of interest being described and analyzed. In that
respect, existing systems can be classified according to how they represent bio-
logical reality:

(i) Conceptual: The quantitative models do not describe precise biological or
physiological phenomena and do not attempt to replicate a physical reality.
Rather, the quantitative models aim at developing conceptual relationships
and broad(er) analogies between putative components involved in the
inflammatory response (Kumar et al. 2004; Lauffenburger and Kennedy

Fig. 15.1 Model development space
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1983, 1981). These models aim at deriving fundamental underlying rela-
tionships that should hold between the actual elements of a real system.

(ii) In vitro: The quantitative representations describe relations at the most
fundamental physical level such as the cell. These models have the potential
of being the most mechanistic, likely capturing a well-defined range of
responses in the proper context. The key limitation of in vitro models is that
they focus on subsystems, isolated from their functional environment,
lacking proper cross-system interactions and interactions with key systemic
characteristics such as rhythmic variability (circadian, ultradian, etc.) that
play a significant role, as will be discussed later (Jayaraman et al. 2005).

(iii) In vivo–ex vivo (animals): This is the most widely used vehicle for pro-
ducing an adequate body of experimental observations (Webb 2014). Their
advantages and disadvantages are clear and well-articulated: While offering
the opportunity to probe the biological system of interest in relatively inte-
grated manner, the cross-species extrapolation remains elusive (Seok et al.
2013; Ovacik and Androulakis 2013; Kamisoglu et al. 2015b).

(iv) In vivo (humans-controlled studies): In a limited number of cases, healthy
human volunteers are subjected to appropriate challenges for the purpose of
replicating a pathophysiological condition of interest. The advantages and
limitations are clear: This provides relevant (human) data albeit limited in
terms of elicited responses and cohort composition (usually young and
healthy subjects) (Calvano et al. 2005; Kamisoglu et al. 2014, 2015a;
Haimovich et al. 2010a, b).

(v) Ex vivo (humans): This appears to be a reasonable compromise. Cells
extracted from humans already in a condition of actual interest are analyzed
ex vivo. The advantages relate to the appropriateness of the source of the
sample (disease or treated human), but the analysis is conducted outside the
physical environment of the human (Crome et al. 2010).

(vi) In vivo (patient): This is the most informative source of actual data, yet not
necessarily the most appropriate for analysis purposes. A number of con-
founding factors make such analysis horrendously difficult—i.e., limited data
availability with samples that capture a convolution of disturbances and
pre-existing conditions, making the dissection of cause-effect relationships
difficult (Xiao et al. 2011; Tsalik et al. 2014; Langley et al. 2013, 2014).

15.2.2 Model Axis: How Is the Physical System Modeled?

Once the representation of the biological system has been defined, the next question
is the methodological approach used to model this rendition of reality, in other
words, the nature and characteristics of mathematical model. Several approaches can
be undertaken (as discussed below) and each approach is characterized by its own
merits and flaws. The saying “all models are wrong, but some are useful” should be
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carefully taken into consideration not so much in order to disqualify the model, but
rather to make sure that the proper model is used in its appropriate context. As Segel
nicely puts in the preface of his book (Segel 1984) “[…] a good mathematical model
—though distorted and hence wrong like any simplified representation of reality—
will reveal some essential component of a complex phenomenon”.

Broadly speaking, we can characterize the models as one of the following
categories:

(i) Statistical: This aims at deciphering correlational relationships based on
experimental observations. Albeit simple, these models allow us to extract
critical information regarding the constituents of the response.

(ii) Lumped and phenomenological: These models aim at describing broad and
coarse characteristic responses as proxies in lieu of precisely defined state
variables which are quantities with exact physiological interpretation. Such
models tend to be less complex, or at least their complexity can be controlled
by design, thus enabling a more detailed analysis (Kumar et al. 2004).

(iii) [quasi] mechanistic (single level): The term mechanistic in biological and
biomedical research needs to be used in the proper context. It usually implies
increased level of details; however, exact mechanisms, in the context of first
principles, are rarely known if ever available. Lumped systems tend to be
more phenomenological, whereas the [quasi] mechanistic approach tends to
introduce more tangible cause-effect relationships.

(iv) [quasi] mechanistic (multiple levels): This refers to models which aim at
engaging multiple cell types, tissues, organs, and eventually integrated host
systems interacting with their environment. The physiologically-based
pharmacokinetic models (Rowland 2013) can be considered as the typical
example of such an approach. The advantages are obvious, i.e., phenomena
of interest are placed in the proper context, but the complexity of such
models can easily escalate such that critical assumptions and simplifications
are often required.

15.2.3 Model Execution Axis: How Is the Model Evaluated?

The choices in terms of the execution of the model do not simply reflect the way the
model equations are solved but rather reflect specific characteristics of the way we
hypothesize biological processes take place.

(i) Mathematical versus rule-based: The physical reality of a biological system
can be described either through mathematical equations (closed form) or
through logical statements and execution rules. The underlying hypotheses
are the same, but the expression of the outcome of an interaction differs.
Often times rule-based descriptions aim at addressing issues related to the
discrete nature of the dynamics of the underlying processes (see iii).
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(ii) Stochastic versus deterministic: It has been argued that nothing in the
physical world is deterministic, in the sense that variability exists in bio-
logical and physiological systems (Ullah and Wolkenhauer 2010). Modeling
stochastic events increases not only the complexity of the representations but
also the complexity of the responses. However, it remains to be evaluated
whether this increased complexity necessarily translates to improved insight.

(iii) Discrete versus continuous: The continuum approximation simplifies many
of the representations, yet it can be argued that reaction and signaling events
take place in a discrete manner. This constitutes a design decision endowing
the modeling approach with specific characteristics depending on whether
the modeler wishes to emphasize events which evolve continuously or in
discrete fashion (Bortolussi and Policriti 2008). A classic example would be
the modeling of gene expression as either a discrete or continuous process
(Klipp 2005) depending on whether one wishes to adopt a discrete repre-
sentation of the transcriptional events or assume that the events take place in
a continuum.

In the sections that follow, we will attempt to provide an ensemble of approaches
spanning a wide range of methodologies exploring various combinations of the
three major categories just described. As will become apparent from the discussion
which follows, there is not necessarily a clear logical progression in terms of
moving from less to more complex models as different approaches are used to
address different questions, while the three axes just described can be mixed and
matched accordingly. Models are placed in the model space of Fig. 15.1 and
therefore a particular approach reflects combinations along the three primary axes.
However, for presentation purposes, models have been ordered along the model
axes of our classification matrix.

15.3 Model Axis: Towards the Development
of Mechanistic Models of Inflammation

Although methods and approaches are presented individually, it needs to be made
clear that the process of developing a mechanistic model is iterative in nature and
results from multiple refinements based on the interaction and integration of the
components to be described in the sections that follow (Fig. 15.2).

15.3.1 Bioinformatics Models of Disease Progression

The computational analysis of biological data has evolved to an entire discipline in
and of itself (Altman and Miller 2011). Large amounts of diverse data sets are now
routinely assembled, annotated, and analyzed for the purpose of deciphering
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functional relationships. What is slowly emerging as a promising alternative to the
analysis of such diverse data is to perform statistical analyses for the purpose of
deriving representation of the dynamic trajectories representing the host’s deviation
from, and return to, homeostasis. In the work discussed in Polpitiya et al. (2009),
McDunn et al. (2008), for example, the transcriptional dynamics of circulating
leukocytes are represented in a reduced space in order to map trajectories of crit-
ically ill patients as their condition progresses. The implications of such approaches
are profound as now we can begin to talk about transcriptional dynamics and place
it in the context of a host response to a stressor (Yang et al. 2009). The fundamental
idea is that coherent system dynamics are embedded within high-throughput
measurements and these, if properly analyzed, could be revealed and used as sur-
rogates of the host response. Although mostly descriptive, these approaches can
form the foundation, as will be shown later, for characterizing complex state
variables in the context of a complex inflammation model. Interesting preliminary
results have emerged demonstrating that the dynamics of a system deviating from
its homeostasis can be inferred by proper analysis of systemic markers such as
cytokines (Mi et al. 2011). The intriguing opportunity here is that, whereas earlier
approaches for building trajectories aimed mostly at characterizing independent
components, we are now starting to appreciate that causal relationships can also be
inferred; a critical step in moving towards integrated model development. By and
large, the application of these models focuses on detecting system dynamics and
less so on relating constitutive dynamics elements to each other in the form of an
integrated model.

Fig. 15.2 Functional integration and interaction of model development concepts
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15.3.2 Theoretical and Conceptual Models of Inflammation

In a lumped model, the assumption is made that appropriate biomarkers exist (i.e.,
masked state variables), which capture basic elemental responses. These are further
assumed to be inter-related by appropriate causal dependencies, expressed mostly in
the form of phenomenological relationships. These formalisms have been proven
extremely powerful (Kumar et al. 2004) since the emphasis is given on analyzing
broad systemic characteristics using models readily available for intricate analyses.

Simple mathematical models of inflammation allow efficient exploration of
high-level mechanisms, which is typically either much more difficult, or even
impossible, to model with increased complexity. An early lumped model of
inflammation was proposed to describe the local tissue-level inflammatory response
to bacterial invasion (Lauffenburger and Kennedy 1981). This two-variable model
considers populations of bacteria and leukocytes with homogeneous distributions
within a local region. By modeling the bacterial growth rate, the phagocytosis rate,
the leukocyte emigration rate, and the leukocyte death rate, two ordinary differential
equations (ODE) were constructed to investigate the dynamical behavior of this
type of system. The small size of the model facilitates the derivation of relatively
simple closed-form expressions for the steady-states and their associated stability
characteristics, allowing high-level mechanistic interpretations of the importance of
model parameters in the dynamic responses of the system. Extensions of this work
increased the complexity of the model by accounting for the influence of chemo-
taxis (Fisher and Lauffenburger 1990), allowing the analysis of the relationship
between factors, such as cell speed and persistence on bacterial elimination
dynamics, at the expense of increased complexity.

While the focus of models such as the aforementioned is on events at the cellular
level, models at a higher level of abstraction would allow the assessment of changes
at the host level. As such, compact phenomenological model of acute inflammation
were proposed in Kumar et al. (2004), incorporating abstractions in the form of:
biomarkers describing events at the level a pathogen to instigate inflammation, an
early inflammatory marker to induce the inflammatory response, and a later
anti-inflammatory biomarker to enable return of the system to homeostasis,
assuming a graceful resolution of the response (via dampening and regulating the
inflammatory response). This conceptual model aimed at describing the minimum
number of required components of an inflammatory response, namely an initiating
event, a mechanism for setting the inflammatory response in motion, and finally a
negative-feedback-like regulatory control mechanism. Albeit conceptual, the model
captures the key macroscopic system dynamics at a high level.

The tractability of such mathematical representations makes it possible to
identify steady-states and perform stability analysis, thus resulting in intuitive
interpretation of the expected responses leading to mechanistic insight, despite the
coarseness of the representation. As such, parameterizations of the model were
identified, which correspond to observed phenotypes: (i) a healthy response in
which the pathogen is eliminated and inflammation resolves; (ii) a recurrent
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infection scenario where both the pathogen and inflammatory response oscillate in a
predator-prey-like relationship; (iii) a persistent non-infectious inflammatory state
where the pathogen is cleared but inflammation persists due to positive feedback;
(iv) a persistent infectious inflammation state where the acute inflammatory
response is not sufficient to restore homeostasis; and (v) severe immune-deficiency
where even high levels of pathogen do not elicit a robust inflammatory response.
The richness of these responses shows that even small, simplified models can lead
to the emergence of complex results shedding light on possible functional
inter-relationships among structural components.

The model complexity can be increased to account for the inflammatory
response including: the initiating event (pathogen or injury); a pro-inflammatory
response; an anti-inflammatory response; and tissue damage (Day et al. 2006;
Reynolds et al. 2006). Such conceptual models begin to elucidate more complex
questions. As such, it was hypothesized that exogenous treatment aiming at sim-
ulating the anti-inflammatory response does not always result in reduced inflam-
mation, depending on the dose and the timing; if a sufficient pro-inflammatory
response is suppressed, it can result in a persistent infectious state. Therefore, even
such a simple model illustrates generalizable characteristics of interventions that are
aimed at modulating inflammation-driven diseases: Targeting components of the
inflammatory response can produce unintuitive results, which may contribute to
controversies about the effectiveness of immunomodulatory treatments such as
glucocorticoids or anti-cytokine therapies, which have proven successful in some
cases but ineffective in others. If even a simple model can exhibit these complex
results, the situation is far more challenging for a real physiological system.

Therefore, conceptual and lumped models can provide critical insight into the
inflammatory response, but at a fairly high level of abstraction. A critical limitation
of such models is that it is difficult to translate the meaning of a lumped variable
capturing broader characteristics (such as “pro-inflammatory activity”) and phe-
nomenological relations, such as the complicated, nonlinear forms used in these
models, to specific measureable quantities and tangible interventions. However,
such models are powerful (in theory) to provide insightful characterization of an
idealized response.

The role of theoretical models cannot, and should not, be either undermined or
underestimated. Theoretical models aim at identifying, what appear to be, simpler
structures with the ability to generate macroscopic observables and dynamic
characteristics of the more complex biological reality whose mechanistic descrip-
tion remains elusive (Segel 1998; Segel and Bar-Or 1999). Therefore, a theoretical
model of the inflammatory response will begin to outline and characterize either
properties of the host response to an inflammatory stimulus or properties that the
host response needs to adopt in order to enhance its ability to control the inflam-
matory response. In other words, theoretical models are the rational source of
generating testable hypothesis for elucidating mechanistic underpinnings.
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15.3.3 Putting Data in the Context of [Semi]Mechanistic
Formalisms

After obtaining an understanding of the intrinsic dynamics (using correlational
models) of the data and a basic framework of the functional relationships among the
state variables (using theoretical models), we can then proceed to developing a
mechanistic framework, based on the theoretical model, that would rationalize the
experimental dynamics.

As an example of this type of model, Chow et al. developed a model incorpo-
rating individual cytokines, different types of immune cells, and other key physi-
ological parameters to investigate inflammation more intricately (Chow et al. 2005).
A significant amount of experimental data is required to estimate the numerous
parameters for a model of this size. However, the end result is a model that is
potentially much closer to a real physiological system. Data from multiple mouse
experiments were used to evaluate the model’s ability to capture responses to a
variety of inflammatory states induced by different injuries (endotoxemia, hemor-
rhage, and surgical trauma). They found that they were able to model these different
scenarios simply by altering the initial conditions of the core inflammation model,
providing some evidence towards the hypothesis that these diverse inflammatory
shock states have similarities in their underlying mechanisms, even when
cytokine-concentration data may look quite heterogeneous. One key potential
application of this type of model is in understanding how the internal dynamics of
the inflammatory response lead to specific types of responses to therapies in an
individual (Clermont et al. 2004a).

The complexity of such models can increase (Prince et al. 2006; Torres et al. 2009;
Daun et al. 2008; Lagoa et al. 2006) eventually reaching the level of description of the
host response (Nieman et al. 2012). Amuch higher level of detail and a broader scope
can be defined and explored. In addition to breaking down general “inflammatory
signaling” variables into individual variables for different cytokines, integrated
models incorporate more physiologically-based influences on inflammation,
including lung function, gas exchange, and oxygen transport. Similar to the results of
the previously discussed works, they found that heterogeneity between genetically
distinct swine with different responses to injuries could be encoded in the initial
conditions of the model. Additionally, insight can be gained into the relationship
between oxygen transport and endotoxemia-induced damage. From a modeling
perspective, one of the key aspects of such models is that individual components are
selected in a data-driven fashion, using statistical techniques, thus moving a step
closer to the closing of the theory-modeling-experiment group. This is important as
many studies make a priori assumptions about which components are important
enough to be included in a model, although those assumptions may not always be
true. A conceptually parallel approach integrating rigorous statistical analysis of data,
formalisms translating prior biological knowledge, and further development of
putative mechanistic links were pursued (Yang et al. 2011a). The ultimate result was
an integrated model describing tissue specific (i.e., liver) response to acute stress
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following burn injury. The approach further demonstrated how signaling events can
begin to emerge in such semi-mechanistic formalisms.

The latter became clearly apparent in a series of publications aiming at modeling
human endotoxemia. Using high-throughput microarray mRNA measurements
from peripheral blood cells (Foteinou et al. 2009a, b; Nguyen et al. 2011) it was
possible to develop semi-mechanistic, tissue specific dynamic models linking the
ligand (lipopolysaccharide, LPS) recognition by appropriate (TLR4) receptors,
eventually activating inflammation-specific signaling cascades (NF-jB) driving the
peripheral release of pro- and anti-inflammatory cytokines. The underlying
hypothesis was that critical pathways activated in endotoxemia will result in the
emergence of coherent transcriptional dynamics representing the key signals to be
included in a dynamical model of endotoxemia (Yang et al. 2009). Analysis of the
human microarray data enabled the definition of three key transcriptional responses:
(1) an early pro-inflammatory response, including genes in the Toll-like receptor
and NF-jB pathways that are closely linked to LPS signal transduction; (2) a late
inflammatory response, including components of the anti-inflammatory IL-10 sig-
naling pathway; and (3) an early down-regulated cohort of genes related to cellular
bio-energetic processes. The proposed ODE-based physicochemical model aimed at
linking cellular recognition of LPS with the production and downstream effects of
the aforementioned transcriptional responses. In a subsequent work it was
demonstrated how further the network with appropriate signaling cascades,
extensions of this model would begin to shed light on complex phenomena such as
endotoxin tolerance (Yang et al. 2011b).

The inflammatory response induces the involvement of the neuroendocrine
system modulating the release of anti-inflammatory hormones and neurotransmit-
ters. As such, cortisol and epinephrine lead to anti-inflammatory downstream
effects, cortisol through glucocorticoid receptor-mediated signaling and epinephrine
through the stimulation of adrenergic receptors, leading to elevated intracellular
cAMP concentrations (van der Poll et al. 1996b; van der Poll 2000). These im-
munomodulatory hormones have been experimentally studied in human endotox-
emia by giving exogenous hormone infusion before, during, or after LPS
administration (Alvarez et al. 2007; van der Poll et al. 1996a, b; Jan et al. 2009).
Leveraging established models of hormone activity (Ramakrishnan et al. 2002) to
account for the effects of cortisol and epinephrine, the investigation of how
cellular-level transcriptional responses to inflammation are modulated by hormonal
cues (Foteinou et al. 2009a, 2010) was further explored, such as how hormone
levels can influence whether the system exhibits a healthy self-limited inflammatory
response or whether it will instead move to a persistent chronic inflammatory state.

15.3.4 Accounting for Stochasticity and Discrete Events

Stochasticity and heterogeneity have profound effects on the function of biological
systems (Bahcall 2005; Blake et al. 2003; Rosenfeld et al. 2005), and an alternative,
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more intuitive, approach—agent-based modeling (ABM) has been explored (An
2008; Chavali et al. 2008). An ABM consists of simulations of discrete interactions
between discrete agents, based on the concept that relatively simple local interac-
tions can model complex global phenomena. Each agent represents a component of
a system (such as an individual cell), and at discrete time points, each agent
stochastically moves and interacts with its surroundings based on previously
defined probability distributions. ABMs are fundamentally different than ODE
models because of the key roles played by spatial heterogeneity and stochasticity.
In the context of inflammation, ABMs have been widely used to study a variety of
conditions (An et al. 2009), particularly in cases where incorporating a spatial
component or stochasticity is important. The usefulness and applicability of ABMs
vary, but applications to immunological problems and findings derived from these
models generated a lot of insights into the interactions and dynamics at the cellular
level in immune responses. Jenkins and colleagues (Catron et al. 2004) investigated
B-T cell interactions in the absence of directed cell chemotaxis during the first 50 h
of a primary immune response to an antigen. Gary An and coworkers have pio-
neered the application of ABMs in the context of evaluating the dynamics of the
innate immune response, the efficacy of proposed interventions for SIRS/multiple
organ failure (MOF) (An 2004, 2001), and the dynamics of the TLR4 signal
transduction cascade with LPS preconditioning and dose-dependent effects (An
2009; An and Faeder 2009). A result of this effort was the development of a basic
immune simulator (BIS) to qualitatively examine the interactions between innate
and adaptive interactions of the immune responses to a viral infection (Folcik et al.
2007). Furthermore, a variety of successful agent-based simulators have been
constructed as frameworks for immunology/disease understanding and exploration,
such as IMMSIM (Baldazzi et al. 2006; Celada and Seiden 1992), SIMMUNE
(Meier-Schellersheim et al. 2006), and CyCells (Warrender et al. 2006). Challenges
and limitations of agent-based modeling include fitting large numbers of parame-
ters, interpreting “emergent” model output from basic agent interactions, and slow
performance with large numbers of agents. Below, several insightful ABMs as
examples are discussed to highlight how ABMs of diverse origins can be used to
gain insight into the inflammatory response.

Mi et al. implemented an ABM that considers the activities of inflammatory cells
and cytokines in the wounded tissue, as well as the surrounding blood and tissue, to
study diabetic foot ulcers (Mi et al. 2007). First they constructed a general model to
capture known behaviors related to skin wound healing. Then, they evaluated two
alternative hypotheses about which inflammatory mediators drive the development
of diabetic foot ulcer (DFU). Finally, they evaluated a variety of simulated therapies
to compare their performances. Therefore, this ABM contributed both towards the
understanding of the mechanisms driving DFU and towards the evaluation of
treatment options. Through these avenues, this type of ABM can influence both the
development and testing of therapies for DFU.

Bailey et al. combined a model of blood flow with an ABM of the microvas-
culature to investigate leukocyte trafficking (Bailey et al. 2007). In this model,
agents are individual cells in the microvasculature. The hemodynamic model
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provided an added modulatory function on top of the cells as they experienced
changing mechanical force in addition to biochemical cues from other cells.
Through this, they investigated the relationship between adhesion molecules,
chemokine/cytokine secretion, and monocyte trafficking. The fundamental
mechanical/spatial aspects of this model made it well-suited for an ABM approach
that can naturally consider interactions between adjacent cells and the position of
cells relative to the endothelium.

Possibly the most comprehensive ABM used to study inflammation was pro-
posed by An (2008). This work presented a multi-level model, starting with the
typical cell-as-agent paradigm but then scaling up to tissues and organs with their
own agent-based rules, with the ultimate goal of better understanding complex,
systemic diseases like multiple organ failure that cannot be explained purely by a
single local model. A key hypothesis of this integrated model is that epithelial
barrier dysfunction plays an important role in organ dysfunction. Damage markers
from compromised epithelial and endothelial cells move into a blood compartment
where they can influence other parts of the system, simulating inter-organ com-
munication. This general model structure was validated by reproducing a variety of
conditions including pneumonia, pulmonary edema, and ischemia. The vast scope
of this model is indicative of the potential for complex, multiscale interactions to be
encoded in ABMs. Dong et al. (2010) discussed an ABM in the context of human
endotoxemia, aiming at analyzing the inflammatory dynamics at the level of both
immune cells and inflammatory mediators such as cytokines and LPS. In Nguyen
et al. (2013), an ABM was developed to investigate the cellular variability through
the interactions and dynamics of inflammatory cytokines in acute inflammatory
responses following endotoxin administration. Whereas in previous studies
(Foteinou et al. 2009a, b; Scheff et al. 2010) the focus was on the possibility of
modeling the transcriptional dynamics of cellular responses, the attempt here was to
capture stochastic variation in the transcriptional process, one of the key factors
leading to phenotypic variation besides the genetic and environmental variability
(Kaern et al. 2005; Kilfoil et al. 2009; Niepel et al. 2009; Raser and O’Shea 2005).
Because stochasticity is an inherent property of agent interactions, non-genetic
cell-to-cell variability originating from stochastic variance is captured by our pro-
posed model. Therefore, elucidating the relationship between the behaviors mea-
sured at the single-cell level and those measured in a population of cells is among
the aims of the study, in order to provide an insight into the host inflammatory
response under different external stimuli.

15.3.5 Inflammation Models Accounting for Physiological
Rhythms

Clearly all living systems are open systems in the sense that they exist in an
environment constantly exposed to challenges and perturbations. Therefore, any
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realistic representation of a disease, in general, and inflammation in particular,
needs to eventually possess the ability to allow for interactions between the host and
its environment. Of all possible interactions, we choose to focus here on external
signals which impose on host internal variability strongly suspected to endow the
host with increased adaptability to stresses critically affecting the response to
inflammatory challenges. Among those signals, the ones driving daily (circadian)
rhythms are particularly important. Although the nature of the source of circadian
biological rhythms will not be discussed here (Albert 2010), the relevance for the
discussion stems from the fact that intrinsic biological rhythms are known to be
related to the overall ability of the host to adapt and respond (Lehrer and Eddie
2013), whereas the loss of rhythmic variability is a confounding factor in the
context of the inflammatory response (Lowry 2009b).

Circadian rhythms are of importance in the context of the inflammatory response
proximally because they impose patterns on a wide range of inflammatory medi-
ators (Coogan and Wyse 2008). The hypothalamic-pituitary-adrenal (HPA) axis and
the sympathetic nervous system (SNS) produces stress hormones (Sternberg 2006)
whose pattern of release follow broad circadian rhythmicity and play critical roles
in immune responses (Coogan and Wyse 2008; Levi and Schibler 2007; Sukumaran
et al. 2010; Cutolo et al. 2003). This rhythmicity is regulated by the 24 h light/dark
cycle exerting diurnal effects on numerous inflammatory cytokines (Lissoni et al.
1998; Petrovsky et al. 1998). Furthermore, clock genes responsible for circadian
timekeeping are also linked to cytokine production and their expression patterns
significantly change in human endotoxemia (Haimovich et al. 2010a). In addition to
disruptions in circadian rhythms due to the activation of inflammatory machinery,
circadian rhythms can be diminished in a critical care setting where there is constant
activity and clinicians often aim at imposing constancy on physiological signals
(Lowry 2009b).

To account for these circadian-immune linkages within a model of human
endotoxemia, Scheff et al. (2010) explored the relationship between the central cir-
cadian clock in the suprachiasmatic nucleus and its putative regulation of peripheral
immune function via centrally-released systemic hormones, such as cortisol and
melatonin, and exploring established circadian pharmacokinetic/pharmacodynamic
models (Chakraborty et al. 1999) related to these central circadian hormones. The
propagation of these signals through the inflammatory network produced patterns in
cytokine and hormone responses that corresponded with observed experimental data
(Petrovsky et al. 1998), suggesting that this is a plausible mechanism for coupling
between circadian rhythms and the inflammatory response. Interestingly, despite its
phenomenological nature, the model predicted a circadian (time-of-day dependent)
pattern in inflammatory responsiveness beginning to shed light on the cross-talk
between the circadian clock and the immune system (Keller et al. 2009).

In addition to the aforementioned circadian patterns with 24 h periods, there are
also important physiological rhythms at other frequencies. The circadian rhythm of
the immunomodulatory hormone cortisol is fundamentally produced by circadian
patterns in the amplitude of a faster pattern called an ultradian rhythm. Cortisol is
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secreted in roughly hourly bursts that have garnered much interest in recent years
towards unraveling their physiological implications (Lightman and
Conway-Campbell 2010). Due to the rapid binding between activated glucocorti-
coid receptor (GR) and DNA (McNally et al. 2000), pulsatile patterns in tran-
scriptional activity tracking glucocorticoid concentrations can be observed
(Stavreva et al. 2009). This is likely to contribute to the broad transcriptional
differences that were observed when comparing constant and oscillatory exposure
of cells to glucocorticoids (McMaster et al. 2011). Based on these underlying
biological principles, Scheff et al. (2011a) sought to understand how nonlinear
ligand-receptor kinetics can lead to differential responses to ultradian and constant
cortisol exposure. Furthermore, we investigated how altering key parameters of the
model leads to perturbed ultradian patterns in homeostasis, illustrating how analysis
of biological rhythms can give insight into underlying mechanisms (Scheff et al.
2012a). The stress responsiveness of the HPA axis was further tested by quantifying
the peak levels of glucocorticoid-responsive genes in response to an acute
inflammatory stimulus. Peak stress responsiveness was found to be proportional to
the amplitude of ultradian rhythms, even when controlling for the mean values in
homeostasis. This again illustrates how studying biological rhythms can lead to
informative insights about the state and behavior of a physiological system.

Whereas circulating molecules like cytokines and hormones are important
markers of inflammation, they do not reveal the entire inflammatory state of the host
and they require invasive procedures for measurement, which complicates the high
frequency sampling needed to quantify biological rhythms. This has motivated
interest in noninvasive metrics that can correlate with disease severity in
inflammation-linked disorders, most prominently heart rate variability
(HRV) (Schmidt et al. 2001), roughly speaking the quantification of the variability
of the time interval between successive heart beats.

Decreased HRV is a commonly-observed response in critically ill patients and
thus has been studied with the goal of providing clinically actionable information
about a patient through noninvasive means. However, there is still significant
uncertainty in ascribing specific underlying mechanistic causes to observed patterns
in HRV, and most clinical applications of HRV in this context are phenomeno-
logical. Human endotoxemia provides a controlled experimental setting to study the
relationship between inflammation and the loss of HRV (Gholami et al. 2012;
Godin et al. 1996; Rassias et al. 2005, 2011; Sayk et al. 2008; Alvarez et al. 2007;
Jan et al. 2009, 2010; Kox et al. 2011). Based on this, we sought to formalize and
extend these experimental observations through semi-mechanistic modeling of the
effects of endotoxemia on the heart.

The sympathetic and parasympathetic branches of the autonomic nervous system
converge at the sinoatrial (SA) node of the heart, and oscillations in the release of
their corresponding autonomic neurotransmitters produce oscillatory patterns in the
firing of action potentials at the SA node and thus the beating of the heart. Circadian
rhythms exert a clear pattern on HR and HRV mediated by the autonomic nervous
system. Much higher-frequency rhythms in HR can be categorized into two fre-
quency bands (Akselrod et al. 1981; Task 1996): high frequency (HF) rhythms
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ranging from 0.15 to 0.4 Hz driven largely by the respiratory sinus arrhythmia and
transduced to the heart via the vagus nerve (Berntson et al. 1997); and low fre-
quency (LF) rhythms ranging from 0.04 to 0.15 Hz driven in part by
baroreflex-mediated fluctuations in blood pressure which respond to both sympa-
thetic and parasympathetic modulation. While the power in each frequency band
(LF and HF) gives some indication of the sympathetic and parasympathetic
activities, their ratio is commonly used to quantify sympathovagal balance. These
metrics are at best indirect and imprecise measures of autonomic activity
(Karemaker 1999).

Driven by the desire to evaluate systems-level properties of biological oscillators
through quantitative modeling (Novak and Tyson 2008), a heart rate and HRV
regulation model of human endotoxemia based on multiple rhythmic signals driving
the pattern of heart beats through a model of autonomic influence on the heart was
proposed by Scheff et al. (2011b). The translation from a continuous oscillatory
(activity of the ANS) system to a noisy discrete output (heartbeats) is an essential
step in modeling a physiological process like the beating of the heart, which is
fundamentally discrete. The resulting heartbeats were then analyzed to characterize
time domain, frequency domain, and nonlinear metrics, all aimed at either gaining
some specific physiological insight or optimizing the correlation of the HRV metric
with a clinical outcome. Thus, based on the discrete output of our model, we
highlighted discrepancies in responsiveness of different HRV metrics to endotox-
emia. Such models lay the foundation of integrated models which merge the
multiple scales involved in the inflammatory response and begin to relate cellular
events with systemic host responses (Scheff et al. 2013b). Through increasingly
detailed mechanistic modeling of HR and HRV in human endotoxemia, we con-
tinue to work towards understanding the biological processes linking inflammation
and biological rhythms (Dick et al. 2012). Semi-mechanistic models were further
explored to rationalize the likely permissive-suppressive inflammatory effects of
cortisol as manifestations of the balance between pro- and anti-inflammatory
characteristics induced by circadian rhythms (Mavroudis et al. 2012, 2013, 2014,
2015; Scheff et al. 2012b, 2013b). Figure 15.3 provides a broad overview of the
continuum of model development, accounting for variety of the elements just
described, with emphasis on inflammation.

15.3.6 Mechanistic Models of Inflammation Meet Systems
Pharmacology

The preceding sections have placed major emphasis on modeling aspect of
inflammation (or any disease for that matter). Therefore, we discussed approaches
which aim at developing dynamic models characterizing the onset and evolution of
the inflammatory response. From an intervention point of view, numerous studies

340 J.D. Scheff et al.



have attempted to delineate the mode of action of various drug, or other modulating
agents (Iorio et al. 2010; Felmlee et al. 2012). Systems pharmacology (Bai et al.
2013) takes the systems view in order to further elucidate the systemic effects of a
drug’s efficacy and effects beyond the local site of action leading to the develop-
ment of more comprehensive approach towards systems level PK/PD models
aiming at understanding the relationship between drugs and physiology through
mathematical modeling (Jusko 2013).

It is only natural then to appreciate the importance of early attempts to bridge the
gap between disease progression and systems pharmacology models. Furthermore,
a disease state is not a stable condition but rather one which intimately and closely

Fig. 15.3 Developing mathematical models of inflammation—from high-throughput data to
(semi)mechanistic models: (top row—left) genomics data capturing the dynamics of numerous
transcripts are clustered and annotated (Nguyen et al. 2011). (Top row—middle and right)
Clustered profiles define emerging dynamics of coherent responses which can be used as surrogate
variables for the development of simple and theoretical models (Foteinou et al. 2009b). (Bottom
row—left) Detailed mechanistic information—including putative receptors and regulators—is
embedded within broader structures resulting in detailed (semi)-mechanistic models in the form of
ordinary differential equations (Scheff et al. 2011a, 2012a; Mavroudis et al. 2012, 2014, 2015;
Foteinou et al. 2009a, 2010). (Bottom row—middle) Discrete and stochastic events in
aforementioned networks can be captured and analyzed using agent based models (Dong et al.
2010; Nguyen et al. 2013). (Bottom row—right) Biological rhythms (circadian) can account for
capturing underlying dynamics of inflammatory mediators (Scheff et al. 2010)
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interacts with the therapeutic intervention. In that respect, linking disease pro-
gression and pharmacology is of paramount importance (Gao and Jusko 2012; Gao
et al. 2011).

Earp et al. followed this paradigm to study the relationship between glucocor-
ticoids and inflammation in a rat model of arthritis, based on their previous work on
more traditional PK/PD modeling of glucocorticoids (Earp et al. 2008a, b). They
used PK/PD modeling principles such as indirect response modeling and transit
compartments to link key individual inflammatory mediators with changes in bone
density and edema. Evaluating scenarios where different combinations of cytokines
were inhibited or pharmacologically modulated shed some light on the redundancy
in inflammatory signaling pathways and the complexity inherent in developing
effective therapies. Additionally, they evaluated how different cytokines contribute
to different aspects of disease. Along similar line Lon et al. (2012) further examined

Fig. 15.4 Integrated Pharmacokinetic–Pharmacodynamic–Disease progression (arthritis) model:
advanced models will incorporate a drug’s PK/PD, the dynamics of disease mediators (cytokines
such as IL-1, IL-6 and TNF), the regulation of the disease mediators by the drug, and the dynamics
of disease markers (paw edema and bone density) as well as their regulation post drug
administration (Earp et al. 2008a; Earp et al. 2008b) (© William J. Jusko, April 29, 2008,
Modeling Corticosteroid Effects in a Rat Model of Rheumatoid Arthritis II: Mechanistic
Pharmacodynamic Model for Dexamethasone Effects in Lewis Rats with Collagen-Induced
Arthritis, The Journal of Pharmacology and Experimental Therapeutics Online, http://www.jpet.
aspetjournals.org/)

342 J.D. Scheff et al.

http://www.jpet.aspetjournals.org/
http://www.jpet.aspetjournals.org/


the role of anti-inflammatory agents in the context of an inflammatory disease
progression models. The basic elements of such a mathematical model are depicted
in Fig. 15.4. Finally, of particular importance is the work presented in
Meyer-Hermann et al. (2009) which evaluated the interplay between disease pro-
gression, pharmacologic treatment and biological rhythms.

15.4 Concluding Remarks: Challenges and Opportunities

A diverse set of models of inflammation are discussed above, varying in scope,
complexity, mathematical foundations, and ultimate goals. From a broad perspec-
tive, the purpose of mathematical models fall into the same two categories that all
experiments can be divided into: Basic and applied science. From a basic science
perspective, we seek to identify the fundamental principles underlying a physio-
logical system. Mathematical modeling clearly plays a role here, as any well
understood system is supported by a well-studied model. In terms of more direct
applications, systems biology of inflammation has the potential to ultimately
improve clinical practice, not just through greater understanding of the basic sci-
ence of inflammation, but also through advances in the context of model-based
personalized medicine (Hood 2013) and in silico clinical trials (Foteinou et al.
2009c; Vodovotz 2010; Vodovotz et al. 2008). Continual feedback between theo-
retical and practical models of inflammation will continue to push the field forward
in an attempt to develop integrated frameworks which couple cellular, physiolog-
ical, pharmacologic, disease, and environmental models advancing the state of the
art in clinical trials, Fig. 15.5. Particularly promising in that respect are results
illustrating, in principle, how imminent transitions during the progression of a
disease could be predicted using appropriate theoretical, modeling, and computa-
tional approaches (Scheff et al. 2013a). This work advocates the idea that it may not

Fig. 15.5 From cellular
mechanisms to in-silico
clinical trials
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be necessarily critical to estimate the exact state of the host during the evolution of
the disease, and by extension following treatment, but rather assess whether
improvement or deterioration is imminent.

Finally, a point of critical importance relates to long-term effects of either
inflammatory diseases or the effects of anti-inflammatory treatments. The challenge,
of course, is how to decipher the mechanistic causes of long term effects of per-
sistent, albeit possibly low grade, perturbations of a biological system, which may
open a possibility for alternative mechanisms activated as a result of long-term
stress (Yang et al. 2011b; Paterson et al. 2003). Ultimately, disease and drug action
models will need to be integrated with models accounting for not only the host
(patient) and the drug, but also the environment (including social) the patient
resides in, thus leading to more “holistic” approaches (Androulakis 2015; Vodovotz
et al. 2013b; Androulakis 2014).
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Chapter 16
Systems Pharmacology of Tyrosine Kinase
Inhibitor-Associated Toxicities

Yoshiaki Kariya, Masashi Honma and Hiroshi Suzuki

Abstract Tyrosine kinase inhibitors (TKIs) are designed to exhibit marked efficacy
against cancer progression, based on accumulated molecular knowledge. The admin-
istration of TKIs is associatedwithmuch lower general toxicities (such as pancytopenia
and gastrointestinal tract disturbance) than the administration of classical cytotoxic
anti-tumor agents. However, TKIs provoke certain adverse reactions, which cannot be
explained by the molecular mechanisms known at the time of drug development.
Unfortunately, these unfavorable events often force the discontinuation of TKI treat-
ment, with a typical worsening of therapeutic outcomes. Therefore, elucidating the
molecular mechanisms behind TKI-related adverse reactions is a critical task in current
and future chemotherapeutic drug management. Here, we provide a concrete mecha-
nistic investigation of the adverse reactions of erlotinib, a TKI prototype, using a
systems pharmacology-based approach. The molecular mechanism of erlotinib
remains largely unknown, probably because there has been no unbiased drug analysis
or account taken of the information available in numerous archives. In this study, we
separated themechanism of skin inflammation, a prominent erlotinib-mediated adverse
reaction, into multiple pharmacokinetic/pharmacodynamic layers constituting drug
responses. Importantly, an examination of the candidate mechanisms associated with
each layer effectively extracted mechanisms from a myriad of contenders, enabling the
design of polished “wet” experiments for further confirmation. This strategy is con-
ceptually applicable to drugs other than erlotinib, and might facilitate the mechanistic
exploration of the adverse reactions of cancer drugs in general.
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16.1 Development of Molecularly Targeted Drugs

Since the 1990s, many genes involved in the initiation of oncogenic events and the
promotion of tumor growth have been identified (Hornberg et al. 2006; Futreal et al.
2004; Vogelstein and Kinzler 2004), which has led to the development of molec-
ularly targeted drugs against these genes (Khuri and Cohen 2004; Kim and Murren
2002; Herbst and Bunn 2003). Among such drugs, several low molecular weight
compounds targeting receptor tyrosine kinases and non-receptor tyrosine kinases are
now clinically employed, and exhibit the great advantage of oral bioavailability
coupled with good clinical outcomes (Herbst and Bunn 2003; Sridhar et al. 2003).
For example, gefitinib, erlotinib, and lapatinib, which all belong to the epidermal
growth factor receptor (EGFR) family of tyrosine kinase inhibitors (TKIs), are often
used for the treatment of non-small cell lung cancer (Sridhar et al. 2003). In addition,
assorted monoclonal antibodies against protein products derived from these genes
are also utilized as drugs (e.g., cetuximab and panitumumab) to treat many kinds of
cancer (Sridhar et al. 2003; Heymach et al. 2006). These treatment-related
achievements strongly indicate the efficacy of molecularly targeted drugs.

Because TKIs were originally developed as molecularly targeted drugs, investi-
gators expected that these agents would show high specificity against primary target
molecules. However, TKIs often inhibit several other off-target kinases. For
instance, imatinib was developed to inhibit the breakpoint cluster region-Abelson
murine leukemia viral oncogene homolog Bcr-Abl, which causes chronic myelo-
cytic leukemia; however, imatinib also inhibits c-kit and is thus used also to con-
strain the growth of c-kit-positive gastrointestinal stromal tumors (Tuveson et al.
2001). Furthermore, sunitinib, a drug used for the treatment of renal cell carcinoma,
blocks the actions of multiple kinases such as vascular endothelial growth factor
receptor-2, platelet-derived growth factor receptor-b (PDGFR-b), and c-kit, and
exhibits its anti-cancer potential through the integrative suppression of tumor growth
and angiogenesis (Mendel et al. 2003; Motzer et al. 2006). These observations
suggest that these drugs inhibit not one, but several kinases at the same time.

On the other hand, adverse reactions that are unlikely to occur as an extension of
beneficial anti-tumor effects are suspected to be caused by the blockade of off-target
kinases, which are not the intended pharmacological targets of TKIs. In this regard,
more than 50 % of patients receiving imatinib were found to exhibit decreases in
serum phosphate and calcium levels in a recent study (Berman et al. 2006). These
results may be explained by observations showing that imatinib inhibits c-fms,
c-kit, carbonic anhydrase II, and PDGFR in osteoclasts and osteoblasts, resulting in
reduced bone resorption and the obstruction of the release of mineral components
from bone into blood (Vandyke et al. 2010). Moreover, approximately 69 % of the
patients receiving the EGFR inhibitor, erlotinib, suffered severe skin rashes (over
grade 2, classified according to Common Terminology Criteria for Adverse Events
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v3.0) (Tarceva®, Japanese package insert, 2010; Chugai Pharmaceutical Corp,
Tokyo, Japan), which was considerably higher than the percentage of suffering
patients (35 %) receiving gefitinib (Iressa®, Japanese package insert, 2010;
AstraZeneca, Osaka, Japan). Given that erlotinib and gefitinib both inhibit EGFR to
a similar extent, the difference between the occurrence rates is probably associated
with the inhibition of kinases other than EGFR.

In anti-cancer therapy with TKIs, certain adverse reactions (e.g., the severe skin
rashes described above) are a major cause of therapy discontinuation and/or dose
reduction. This in turn results in a concomitant degeneration of clinical efficacy,
because the cytotoxic actions of EGFR inhibitors against cancer cells are
concentration-dependent (Ono et al. 2004). Indeed, the dose intensity of sunitinib
correlates with its anti-tumor capacity (Houk et al. 2010). Therefore, elucidation of
the mechanisms of the side effects of TKIs will probably improve the clinical profile
of these agents. Nevertheless, in contrast to the molecularly targeted mechanism of
the main therapeutic drug action, adverse TKI reactions occur via unintended
mechanisms. In addition, even in those cases where the mechanisms behind adverse
reactions seem to involve some off-target kinases, the detailed action pathways have
not yet been clarified for most TKIs.

To shed light on such mechanisms, a comprehensive analysis of all possible
mechanisms is mandatory. For this reason, we propose that systems pharmacology
is ideal for the mechanistic scrutiny of TKI-stimulated adverse reactions. Systems
pharmacology is an area of pharmacology that recognizes drug action as an out-
come of comprehensive biological systems. In this chapter, we describe a systems
pharmacology-based approach to the mechanistic analysis of adverse events asso-
ciated with erlotinib as a prototypical analysis.

16.2 Approaches to Reveal the Mechanisms of Adverse
Reactions to TKIs by Focusing on the Drug-Target
Molecule Layer

As noted above, the mechanisms of adverse reactions to TKIs are, at present, largely
unknown. Therefore, it is essential to formulate plausible working hypotheses
regarding the prospective mechanisms by using non-biased methodologies, such as
systems pharmacology-based analyses. Concrete protocols for systems pharma-
cology-based approaches are now being established, as we reviewed previously
(Kariya et al. 2013). The procedure can be summarized as follows (Kariya et al.
2013). Generally, drug actions can be separated into a pharmacokinetic layer and
several pharmacodynamic layers (Fig. 16.1). Once a drug is administered, the agent
is distributed and gains access to various sites in the body, after which it is eliminated
by metabolism or excretion. These pharmacokinetic properties determine the degree
of exposure of all organs and cells to the drug (Fig. 16.1) and are responsible for
determining the magnitude of both main effects and adverse reactions.
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Cellular responses can be subdivided into multiple pharmacodynamic layers,
comprising the drug-target molecule layer, the target molecule-pathway layer, and
the pathway-cellular response layer (Fig. 16.1). The first layer provides the infor-
mation regarding direct interactions between drugs and biological target molecules
in the cell (e.g., proteins and endogenous small molecules). The second layer
describes the manner in which target molecules affect cellular signaling or meta-
bolic pathways. The third layer corresponds to a conversion of intracellular events
into cellular output by integrating the upshots of multiple signaling or metabolic
pathways. The concerted information emanating from all three layers specifies the
detailed mechanism of the drug’s action on cells. If omics data are available, we can
superimpose these data on the respective layer(s), making comprehensive analyses
possible (Abu-Asab et al. 2011; Gehlenborg et al. 2010). In addition, ideally
speaking, to understand the drug response of the whole body, an additional phar-
macodynamic layer is required for the integration of cellular responses with the

Fig. 16.1 Systems pharmacology-based approach for the elucidation of adverse drug reaction
mechanisms
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whole-organ response, or the whole-body response, in cases of adverse reactions
resulting from inter-organ communication. However, the analysis of such a process
is very difficult because of its complexity.

16.3 A Quest for Kinases Involved in Erlotinib-Associated
Skin Inflammation

Skin inflammation is an undesirable reaction linked to the EGFR TKIs, gefitinib
and erlotinib. The primary target of both of these TKIs is EGFR, but, as noted
above, the frequency of skin inflammation is much higher in patients receiving
erlotinib than in those receiving gefitinib. We previously explored the mechanism
of skin inflammation exacerbation after erlotinib administration (Yamamoto et al.
2011). Firstly, we approached the adverse drug mechanism at the drug-target
molecule layer. For TKIs, the targets comprise the ATP-binding regions of tyrosine
kinases, whose structures are similar among all tyrosine kinases. Thus, it was
previously assumed that TKIs would target many other kinases in addition to their
primary targets, and the association of the drug of interest with all tyrosine kinases
must therefore be considered in order not to lose comprehensiveness.

Karaman et al. (2008) contributed greatly in this regard by establishing the
methodology to measure the value of the dissociation constant (Kd) between a
compound of interest and 317 kinases. They reported the values for staurosporine,
21 TKIs, 15 serine-threonine kinase inhibitors, and one lipid kinase inhibitor
(Karaman et al. 2008). These data can be utilized as comprehensive information for
the drug-target molecule layer. According to the data, erlotinib inhibits many
kinases with a Kd of <300 nM: Abelson murine leukemia viral oncogene homolog 2
(ABL2), Kd = 160 nM; B lymphocyte kinase (BLK), Kd = 190 nM; EGFR (pri-
mary target), Kd = 0.67 nM; erythroblastic leukemia viral oncogene homolog 4
(ERBB4), Kd = 230 nM; cyclin G-associated kinase (GAK), Kd = 3.1 nM;
serine/threonine protein kinase (STK) 10, Kd = 19 nM; and STE20-like STK
(SLK), Kd = 26 nM.

The ratio of the Kd value of the primary target (EGFR) to that of the Kd value of
each kinase reflects the selectivity of the drug for the primary target. The ratio
becomes smaller when the primary target is selective for a kinase of interest. For
example, the Kd ratios for GAK and STK10 are *0.22 and 0.035, indicating that
EGFR is highly selective over GAK and STK10 (Fig. 16.2a). However, whether
the kinases are actually inhibited clinically depends not only on drug-target
affinities, but also on the drug concentration at inflammatory sites. In general, if a
drug is sufficiently lipophilic, the protein-unbound concentration of the drug in the
plasma reaches equilibrium with that in the tissue. Therefore, given the
plasma-unbound concentration (Cu) and the Kd values for kinases, occupancies of
kinases by drugs of interest can be calculated under clinical situations. Drug
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occupancy is then calculated according to the reaction kinetics between a protein
and a drug, as follows:

Kinase½ � þ Drug½ �� Kinase:Drug½ �

Kd ¼ Kinase½ �½Drug�=½Kinase:Drug�; Cu = ½Drug�

Occupancy ð% ) ¼ Kinase:Drug½ �
Kinase:Drug½ � þ Kinase½ �

¼ 1
1þ Kinase½ �= Kinase:Drug½ �

¼ Drug½ �
Drug½ � þ Kinase½ � Drug½ �

Knase:Drug½ �
¼ Cu

Cu þKd

Based on this equation, we calculated the occupancies for each kinase examined
in Karaman’s comprehensive assay, as shown in Fig. 16.2c. Consequently, only
four kinases, namely EGFR, GAK, STK10 and SLK, showed occupancies of
>80 % when the average plasma concentration at steady-state was assigned to Cu,
indicating that clinically significant targets are limited to these four kinases.
Moreover, as shown in Fig. 16.2d, the comparison with the profile of occupancy by
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gefitinib yielded an even greater restriction, in that STK10 and SLK are not
inhibited by this drug at clinical concentrations. Because an extraordinarily high
frequency of skin inflammation is observed with erlotinib but not with gefitinib,
candidate kinases involved in the exacerbation of skin inflammation can be nar-
rowed down to STK10 and SLK (Fig. 16.2d). Thus, by combining information
from clinical drug concentrations (which can be estimated through pharmacokinetic
analysis) with comprehensive data concerning the affinity between a drug and
assorted kinases (which can be obtained from the drug-target kinase layer), the
numerous candidate kinases involved in the adverse reaction mechanism were
reduced to only two.

16.4 Building a Protein-Protein Linkage Network
for the Analysis of Drug Responses

Even if candidate kinases are successfully identified, the definitive elucidation of
the mechanisms behind erlotinib-associated skin inflammation requires further
analysis, because we still do not know which molecular pathways and downstream
events are perturbed by the inhibition of off-target kinases. Relevant information
could be forthcoming from in-depth analysis of the target molecule-pathway layer
and the pathway-physiological response layer. For this analysis, information
available on the web database is frequently used, as introduced previously (Kariya
et al. 2013).

In the case of erlotinib, the analysis of the pharmacokinetics and drug-target
molecule layers indicates that two kinases, STK10 and SLK, are likely responsible
for erlotinib-induced skin inflammation. Unfortunately, the signaling pathways
involving these two kinases are not sufficiently described in the databases intro-
duced above. Therefore, we manually constructed a protein linkage network around
these two kinases using the iHOP (information Hyperlinked Over Proteins) web
service to uncover protein linkages for STK10 and SLK. With the iHOP program,
we can find proteins that appear along with STK10 and SLK in single sentences in
the abstract of original articles available from PubMed (Hoffmann and Valencia
2004). When “STK10” was input as a query, the service returned seven proteins as
molecules simultaneously appearing with STK10 in single sentences, including
mitogen-activated protein kinase kinase kinase 1 (MAP3K1), STK25, Misshapen
kinase (MSN), SLK, and interleukin 2 (IL2).

To expand this network for comprehensiveness, the seven selected proteins were
then input as iHOP queries to obtain further protein linkages. In the case of STK10
and SLK, one-time iteration generated the protein linkage map shown in Fig. 16.3,
which exhibits substantial complexity. Consequently, additional assessments were
performed on the basis of this map.
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16.5 Analysis Based on a Protein Linkage Network
and Graph Theory

Once the protein linkage network is prepared, the next step is to focus on which
molecules or events need to be assessed. The network for STK10 and SLK contains
896 molecules and appears comprehensive (Fig. 16.3), but the large number of
molecules makes it difficult to define which molecules or events should be the focus
of further investigation. This kind of network is accessible to mathematical graph
theory. Mathematical graph theory provides information on the qualitative prop-
erties of key components in target networks, including the importance of each
component for maintaining the network structure. In this type of analysis, infor-
mation obtained from networks is introduced with the aid of simple hypothetical
networks (Fig. 16.4a). Figure 16.4a assumes that the network was prepared to
analyze events surrounding molecule “A”.

According to the mathematical graph theory, the following characteristics can be
obtained: (1) the distance of the shortest path to any molecule, showing how many

Fig. 16.3 iHOP-based protein linkage network for STK10 and SLK
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steps are required to advance from one node to another; (2) the number of shortest
paths between any two molecules; and (3) the number of paths leading into and out
of each molecule, defined as degreein and degreeout. In addition to these basic
characteristics, the importance of each molecule can be calculated according to
“stress” and “betweenness”.

Stress is calculated by counting the number of shortest paths between any two
given molecules that pass through a particular molecule. Mathematically, the stress
of node v is given by the following equation:

StressðvÞ =
X

s6¼v2V

X

t 6¼v2V
rstðvÞ

where V is a class of all nodes, and rst(v) is the number of shortest paths between
nodes s and t that pass through node v. The stress value reflects how deeply a
particular molecular node is involved in the system, but does not necessarily reflect
the regulatory ability of the molecule within the entire map, since the stress value is
not influenced by whether a particular molecular node is on a unique pathway or on
a pathway with alternative conduits between nodes s and t. The regulatory ability of
node v is higher if the node is on a unique pathway; therefore, in a calculation of the
betweenness centrality of node v, rst(v) is normalized by rst, the total number of

(a) (b)

(c) (d)

Fig. 16.4 Graph theory-based ordering of molecule linkages
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shortest paths between nodes s and t, which takes the regulatory effect into con-
sideration. The mathematical description is as follows:

BetweennessðvÞ =
X

s 6¼v2V

X

t 6¼v2V

rstðvÞ
rst

The higher the betweenness value of a molecule, the more hub-like and more
important the function of the molecule is for controlling the network. Thus,
molecules “F”, “G”, and “M” are predicted to be focus points in the network
(Fig. 16.4a). Once hub molecules are found, the distances to “A” can be focused on
to analyze the effect of external perturbation on “A”, given that “A” will have a
more direct effect when the distance is smaller. The distances from “A” to “F”, “G”
and “M” are 1, 1 and 2, respectively, and therefore, “F” and “G” are primary targets
for further analyses. In addition, the betweenness centralities of “F” and “G” are
0.348 and 0.361, respectively, indicating that “G” has a higher impact on the entire
network. Therefore, the order of analytical focus is determined as “G”, “F”, and
finally “M”. In addition to this order, a consideration of the observed physiological
outputs upon perturbation on “A” provides us with a plausible molecular
mechanism.

16.6 Identification of Key Events and Pathways Related
to Drug Responses

In the erlotinib network, molecules corresponding to “A” are identified as STK10
and SLK. In accordance with the ordering rule proposed above, we first sought to
establish hub molecules by elucidating molecules with high betweenness centrality.
For this purpose, Cytoscape, an open source platform for complex network analysis
and visualization, is useful because the platform automatically calculates scores
based on graph theory and visualizes all scores in the network (Smoot et al. 2011).
With this platform, the betweenness centrality of the erlotinib network can not only
be calculated, but also graphically superimposed onto the network structure, where
the size of each circle reflects the degree of betweenness centrality (Fig. 16.5a).
Figure 16.5a indicates that STK10 and SLK are surrounded by seven hub networks
whose centers are ERBB2, MSN, translationally controlled tumor protein 1 (TPT1),
STK25, P21-activated kinase 1 (PAK1), caspase 3 (CASP3), and IL2, and the
distances from STK10 or SLK to these central molecules all have a value of one. In
other words, the signaling pathways or cellular events linked to these proteins are
likely to be strongly influenced by erlotinib administration when they function in
signaling pathways downstream of STK10 and SLK, although we cannot eliminate
the possibility that signaling pathways or cellular events will be affected upstream
of these kinases.
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By using the Uniprot protein database, the pathways and cellular events linked to
the above seven proteins were ascertained and summarized in Fig. 16.5b. Because
these pathways/cellular events correspond to physiological responses, we were able
to compare clinical and pathological observations according to the pertinent sig-
naling cascades/cellular events. In pathological studies, cells committed to a T cell

(a)

(b)

Fig. 16.5 Graph theory-based network analysis of erlotinib protein linkage network. a The size of
each circle indicates the betweenness centrality value. Black circles denote the “start” molecules,
STK10 and SLK. b Related pathways and downstream physiological responses for the central hub
network nodes

16 Systems Pharmacology of Tyrosine Kinase Inhibitor-Associated… 363



fate accumulate at sites of skin inflammation after erlotinib administration (Busam
et al. 2001), which is consistent with the signaling pathway and downstream
physiological responses of the IL2 hub. Therefore, we combined the above network
analysis with this pathological observation, and concluded that the putative cause
for skin inflammation was the perturbation of IL2-related immune responses by
STK10 or SLK inhibition. In the protein linkage network analysis, the linkages with
the minimal number of paths from STK10 and SLK to IL2 are STK10–IL2 and
SLK–STK10–IL2. The distance to IL2 is shorter for STK10 than for SLK, indi-
cating that STK10 is more likely to be responsible for the IL2-faciliated immune
response. Thus, the results of pharmacokinetic analysis together with information
about the drug-target molecule layer, the target molecule-pathway layer, and the
pathway-physiological response layer indicate that the most plausible mechanism
underlying erlotinib-associated skin inflammation involves STK10–IL2
linkage-mediated T cell activation. Hence, this linkage was used as the basis for
additional in vitro and in vivo wet analyses, as discussed below.

16.7 “Wet” Experiments to Verify the Molecular
Mechanism Behind Erlotinib-Associated Skin
Inflammation

As mentioned earlier, the protein linkage network analysis does not contain a
dedicated mode of drug-target interactions (e.g., inhibition and enhancement) and
therefore, the relationship between IL2 and STK10 requires a more detailed review
of the original literature. STK10 is responsible for the suppression of IL2 secretion
from T cells (Tao et al. 2002). In addition, T cells are the predominant secretors of
IL2 (Lenschow et al. 1996). Moreover, STK10 is highly expressed in rapidly
proliferating tissues and cells, such as the spleen, placenta, and peripheral blood
leukocytes (Walter et al. 2003). Thus, the first point to be confirmed by “wet”
experiments was whether or not either inhibition of STK10 by erlotinib increases
IL2 secretion from T cells.

IL2 secretion was first measured in Jurkat E6-1 cells, a cell line derived from
primary leukemia cells. After testing several clinical, protein-unbound concentra-
tions of erlotinib or gefitinib (a negative control), we found that cell treatment with
erlotinib (200 nM), but not with gefitinib (70 nM), resulted in an increase in IL2
secretion (Fig. 16.6a). The effect of STK10 or SLK knockdown was assessed by
using Jurkat E6-1 cells transfected with a small interfering RNA (siRNA) against
STK10 (siSTK10) or SLK (siSLK). Suppression of STK10 expression, but not SLK
expression, increased IL2 secretion; moreover, treatment of the cells with erlotinib
diminished the enhanced IL2 secretion observed after STK10 knockdown
(Fig. 16.6b). These in vitro data suggest that the increase in IL2 secretion from T
cells following erlotinib exposure occurred at least in part via an STK10-facilitated
mechanism. Given that IL2 mediates inflammation and provokes T cell activation,
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the secretion of IL2 and the inhibition of STK10 inhibition apparently aggravate
inflammation.

Furthermore, we determined whether in vivo inflammatory responses associated
with erlotinib are mediated by IL2. Before performing in vivo experiments in mice,
we determined the IC50 values of erlotinib and gefitinib against mouse STK10 by
performing in vitro kinase assays using the recombinant catalytic regions of each
protein (Yamamoto et al. 2011). In addition, pharmacokinetic profiles in mice were
obtained after the administration of a single dose of erlotinib or gefitinib, and the
pharmacokinetic parameters for an oral one-compartment model for each drug were
established (Fig. 16.7a). With these data, we finally determined the conditions
under which each drug suppressed STK10 activity in a murine croton oil-induced
skin inflammation model, in order to mimic clinical situations (Fig. 16.7b).

Following the administration of the first dose of the drugs to the mice, the
earflaps were exposed to croton oil to induce inflammation. The thickness of each
earflap was then measured after a period of time. As a result, erlotinib strongly
enhanced the tumentia of the earflaps, whereas gefitinib did not (Fig. 16.8a). In
addition, because in silico network analyses and in vitro analyses suggest that IL2 is
a mediator of skin inflammation, we anticipated that neutralizing IL2 would sup-
press erlotinib-associated inflammation. Indeed, when an anti-IL2 antibody was
administered immediately before the application of croton oil, the thickness of the
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gefitinib treatment on IL2 secretion is shown in Jurkat E6-1 cells. A clinical concentration of
erlotinib (200 nM) significantly enhanced IL2 secretion, whereas that of gefitinib (70 nM) did not.
b The effect of siRNA-mediated STK10 or SLK suppression on IL2 secretion is illustrated in
Jurkat E6-1 cells. Treatment with siSTK10 enhanced IL2 secretion under erlotinib-free conditions,
whereas such enhancement was weakened by erlotinib exposure. Values are given as the
mean ± the standard deviation (SD); *P < 0.05; **P < 0.01. These data are taken from
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earflaps recovered (Fig. 16.8b). These results confirm that an in in vivo model skin
inflammation stems from enhanced erlotinib-facilitated IL2 secretion. Additional
biological experiments to support the present systems pharmacology-based network
analysis of multiple layered pharmacological responses would greatly contribute to
the clarification of adverse drug reaction mechanisms and provide clues for over-
coming such reactions.

(a)

(b)

Fig. 16.7 Determination of conditions for animal model. a Pharmacokinetic profiles after a single
dose of erlotinib or gefitinib in mice. Based on these profiles, pharmacokinetic parameters for oral
one-compartment models were determined. C(t), concentration at time t; D, dose; F, bioavail-
ability; Vd, distribution volume; ka, rate constant for absorption; ke, rate constant for elimination.
Black circle, experimental data point; solid line, fitted curve. b Designing the dosage of each drug
in mice. Based on the pharmacokinetic data obtained in (a), the dosages were designed to give a
comparable inhibition profile for STK10 as that obtained in human clinical situations. Black circle,
inhibition rate calculated from measured serum concentration of each drug (mean ± SD); solid
line, inhibition rate curve calculated from pharmacokinetic parameters obtained in (a); dotted line,
inhibition rate curve predicted under human clinical conditions. These data are taken from
Yamamoto et al. (2011), with permission of the publisher
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16.8 Conclusions

Conventional anti-tumor agents provoke numerous adverse reactions, including
damage to the gastrointestinal epithelium, hair loss, and myelosuppression via their
cytotoxic actions on normal cells, in which the mechanism of each adverse event is
the same as that of the main therapeutic event. Conversely, the adverse reactions of
other agents, such as TKIs, cannot be explained as merely an extension of the main
therapeutic event (Gainor and Shaw 2013; Ku and Ilson 2013). Adverse TKI
reactions often limit drug dosing, and it is expected that exploring the molecular
mechanisms of these adverse events will potentially improve therapeutic outcomes.
Nonetheless, little information is available concerning the precise mechanisms of
adverse TKI reactions. Thus, a more comprehensive, systems-based mechanistic
analysis and an examination of a wealth of candidate mechanisms will be required.

To accelerate this process, the present chapter proposes a multi-layer focusing
strategy. Physiological responses following drug administration can be separated
into multiple pharmacodynamic layers, including the drug-target molecular layer,
the target molecule-pathway layer, and the pathway-physiological response layer.
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Multi-dimensional focusing based on a consideration of these layers can provide an
order of plausibility for the candidate mechanisms. Designing further “wet”
experiments to examine the candidate mechanisms suggested by this approach is
regarded as an efficient way to identify the actual mechanism, while identification
of the mechanisms of already occurring adverse events might suggest a means of
prevention and/or counteraction. In addition, we suggest that the approach descri-
bed herein can be used to predict adverse reactions in advance of clinical drug use
by anticipating plausible drug responses, such as cell death, immune
reactions/inflammation, and oxidative stress. Moreover, identification of the pre-
cipitating factors for adverse events during the early stages of drug development
will likely contribute to the discovery of new compounds that avoid such pitfalls.

Prediction of adverse events of anti-cancer drugs is very important during novel
drug development and for the safe and efficient pharmacotherapy of cancer.
Therefore, a systems-based analysis of adverse drug events conducted by applying
the present methodology will hypothetically improve both current anti-cancer drug
therapy and future drug development.
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Chapter 17
Translational Modeling of Antibacterial
Agents

Gauri G. Rao, Neang S. Ly, Brian T. Tsuji, Jürgen B. Bulitta
and Alan Forrest

Abstract The golden era of antibiotic discovery almost 60 years ago seems to be an
interlude in the eternal battle against bacteria; the spread of resistant bacteria has led
to the emergence of highly resistant pathogens and hard-to-treat infections. In vitro
infection models have made it possible to gather time-course data regarding antibi-
otic and bacteria interaction. The main drawback of these in vitro systems is that they
do not take into account the host immune system, drug-protein binding, and char-
acteristics of the infection site. Hence, animal studies are important to gain insights
into the host response and the progression of infection. Modeling antimicrobials has
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the distinct advantage wherein the target is readily accessible since the bacterial load
can be quantified in both in vitro and in vivo experimental conditions. The increasing
knowledge base about molecular mechanisms of interactions between antibiotics and
antibiotic targets, coupled with advanced experimental techniques and computational
capability, makes the development of mechanism-based PK/PD models incorporat-
ing receptor binding and bacterial physiology possible. This new generation of
mechanism-based PK/PD models will enable the exploration and increased under-
standing of the underlying complex mechanisms of the infectious process. The
transition toward systems-based approaches requires the ability to integrate diverse
data types and experimental platforms. Most approaches for translating preclinical
antimicrobial research focus only on antibiotic activity and interactions between the
drug and bacteria. Mathematical modeling can assist in this process by integrating the
behavior of multiple components into a comprehensive network-based model, and by
addressing questions that are not yet accessible to experimental analysis.

Keywords Network-based model � Minimum inhibitory concentration (MIC) �
Target values � Optimal sequencing � Combination regimens � In vitro models �
Static time-kills � Open system dynamic models � In vivo � Polymorphonuclear
lymphocytes (PMNs) � Bacterial growth model � Systems modeling

17.1 Introduction

The term antibiotic refers to substances produced by microorganisms that have the
ability to kill bacteria, a term first coined by Waksman (Bush 2010). Antibiotics
were considered to be natural products that produced both bacteriostatic and bac-
tericidal effects. Antibiotics are a class of “anti-infectives,” a larger group that also
includes anti-viral, anti-fungal, and anti-parasitic drugs. In 1946, at the Section of
Biology of the New York Academy of Sciences meeting, penicillin was termed as
the “wonder drug”. The 60 or so years after penicillin came to the market appears to
be an interlude in the eternal battle against bacteria, as we are now being confronted
with the emergence of bacterial strains resistant to almost all current approved
antibacterial agents.

Despite our decreased reliance on natural products and increased sophisticated
structure-based drug design, we continue to be plagued by pathogens resistant to
current approved agents. The World Health Organization (WHO) and Infectious
Diseases Society of America (IDSA) have identified antimicrobial resistance as one
of the three greatest threats to human health (Boucher et al. 2013a). IDSA has
highlighted the current state of antibiotics, ‘as antibiotic research and discovery
stagnates, a public health crisis brews’, needing urgent attention of the global
medical community (Boucher et al. 2009, 2013b).
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Employing quantitative systems pharmacology (QSP) principles and an inter-
disciplinary approach are necessary to aid in understanding the underlying disease
mechanisms and effects of therapeutic agents on processes spanning several bio-
logical scales (consisting of cell, animal-based experiments, and clinical studies in
infected patients). A framework that incorporates in vivo biology should facilitate
the development of new approaches for optimization of current agents, increase the
probability of therapeutic effectiveness of newly discovered compounds, and
increase the rate of success of clinical trials. Mathematical modeling and sophis-
ticated computation are critical for the vertical and horizontal integration of data
that span multiple spatial and temporal scales (Sorger et al. 2011). The primary
focus of this chapter is to highlight modeling trends for antibacterials and the
transition towards a system-based modeling approach.

Systems pharmacology involves, “the quantitative analysis of the dynamic
interactions between drug(s) and a biological system… [that] aims to understand
the behavior of the system as a whole, as opposed to the behavior of its individual
constituents” (Sorger et al. 2011). This is in contrast with traditional pharmacoki-
netic (PK) and pharmacodynamic (PD) modeling, which involves simplification of
complex physiological processes involved in the distribution and action of drugs as
a series of interconnected “black boxes” or “compartments”. Although these models
are not mechanistic at a molecular level, the PK/PD modeling approach provides
information about the interactions between bacteria, disease processes, and the drug
within individual patients and patient populations. PK/PD models are widely
employed in clinical trials and are critical to drug development (Sorger et al. 2011;
Lee et al. 2011; Gobburu and Sekar 2002; Bhattaram et al. 2007).

In this chapter, we provide relevant background and concepts that are commonly
used in the development of mathematical PK/PD models based on in vitro and
animal infection models and/or human data. We describe the process of selecting
relevant candidate models for both empirical and mechanism-based model devel-
opment and review the merits and limitations of each of these models.

17.2 Minimum Inhibitory Concentration (MIC)

The MIC is defined as the visual quantification of the lowest selected antimicrobial
concentration that inhibits the visible growth of a microorganism, at an initial
inoculum of 5 � 105 CFU (colony forming units) per mL and incubated for 18–
22 h at 37 °C (Clinical Laboratory Standards Institute Guideline 2007). The MIC is
considered as a measure of susceptibility, and when combined with antibiotic
exposure measures (e.g., the time free drug concentration remains above the MIC,
fT > MIC, or the area under the free drug concentration-time curve ratio,
fAUC/MIC), the result is a measure of activity that may be related to specific and
general outcomes (such as time to clinical resolution, bacterial eradication, emer-
gence of resistance, and probability of clinical success or bacterial eradication), and
may be used as a target to optimize outcomes in patients (Craig 1998).
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Although the MIC is commonly used as a measure of bacterial susceptibility to
antibiotics and a guide for dosing antibiotics in the clinical setting, it is seriously
flawed in these applications. The reported MIC is dependent on the time frame of
measurement (usually 18–22 h post incubation), the initial inoculum (usually
5 � 105 CFU/mL), and the visual assessment of turbidity (inter-strain variance in
bacterial density associated with turbidity) (Stevens et al. 1993; Simard and
Bergeron 1982). For example, in Fig. 17.1, we conducted a simulation of an MIC
determination (using Berkeley Madonna 8.3.18), assuming the preexistence of three
bacterial subpopulations. The more sensitive population has an EC50 of 5.30 mg/L
and an initial inoculum of 105.5 CFU/mL, and the less sensitive subpopulations
have an EC50 of *31.8 mg/L and an initial inoculum of *102 CFU/mL. The
resistant subpopulation is usually less fit, which explains the small percent of the
initial inoculum. The bacterial load curves show an initial decrease and hit a nadir,
which is followed by regrowth after drug treatment. This initial net kill is due to the
drug affecting the sensitive population, reducing competition for the resistant
subpopulation, which can then propagate and take over the inoculum. The vertical
limit lines denote the 18–22 h window within which the MIC could be determined.
The horizontal limit lines represent the bacterial concentration threshold counts
required for visual assessment of turbidity. If, for example, the MIC is determined
at 18 h instead of 22 h, the MIC value reported will be 2 mg/L compared to 4 mg/L
that would be reported at 22 h. The bacterial burden at 18–22 h in this experiment
(or at any other single point of time) is not particularly representative or reflective of
the overall bacterial response to a drug concentration (compare the log10CFU at 4–
8, 18–22, and 48 h in Fig. 17.1). Characterizing the temporal profile of bacterial kill
and growth will provide better insights into drug efficacy, as compared to the MIC
as a predictor of outcome.

The initial bacterial inoculum is usually a heterogeneous population consisting
of bacterial sub-populations with differing susceptibilities. The dominant subpop-
ulation, which usually determines the MIC, is often the most susceptible subpop-
ulation, but may not be the one responsible for treatment failures. The MIC value
might be used to adequately describe bacterial isolates that are a mixture of pop-
ulations with various susceptibilities. However, if only one MIC value is allowed to
represent the mixture, the MIC of the less susceptible subpopulation should be
reported. Detection of the resistant subpopulation would be favored by determi-
nation of the bacterial count at a later sample point (e.g., 48 h) or characterizing the
MIC based on a higher initial inoculum (such as 107 CFU/mL). Despite its defi-
ciencies, the MIC is sometimes used as a covariate for describing
concentration-effect relationships of antibacterials.

The MIC is not an intrinsic property of a microorganism. Instead, it is the net
difference between the growth rate of the bacteria and rate of kill due to the fixed
antibacterial concentration (Boucher et al. 2009, 2013b). MICs are determined at a
fixed concentration after a fixed amount of time, as compared to in vivo conditions,
in which the concentrations of the antibiotic are dynamic in nature (changing as a
function of time). In addition, pre-selected drug concentrations in MIC experiments
usually follow two-fold increments. This can result in significant uncertainty in the
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MIC, which might be reduced by using a denser grid of drug concentrations.
Quantification of the bacterial count, as opposed to just visual assessment of the
turbidity (dichotomous output), would help alleviate the ambiguity in determination
of the MIC.

17.3 Determining the PK/PD Driver, Target Values,
and Target Attainment

A common practice in modern antibiotic drug development is the grouping of drugs
by their predominant PK/PD driver and the determination of which target is a good
predictor of antimicrobial activity in patients. The drivers considered are usually the
area under the free (unbound) concentration-time profile to MIC (fAUC/MIC, the
percentage time that the unbound drug concentration exceeds the MIC of the

Fig. 17.1 Simulations of an example Staphylococcus aureus strain following treatment with a
fluoroquinolone assuming three bacterial subpopulations: a sensitive, less sensitive, and a resistant
subpopulation. The dashed vertical limit lines denote the 18–22 h window within which the MIC
should be determined. The dashed horizontal limit lines represent the bacterial concentration
threshold counts required for visual assessment of turbidity. If, for example, the MIC is determined
at 18 h instead of 22 h, the MIC value reported will be 2 mg/L as compared to 4 mg/L at 22 h.
The bacterial burden at 18–22 h in this experiment (or at any other single point of time) is not
particularly reflective of the overall bacterial response to a drug concentration. These simulations
illustrate the problems associated with determining the MIC

17 Translational Modeling of Antibacterial Agents 375



organism (%fT > MIC), and the peak free drug plasma concentration to MIC ratio
(fCmax/MIC) (Craig 1998; Andes and Craig 2002; Mouton et al. 2005). A major,
early objective in infectious disease drug development is the determination of the
PK/PD index and the magnitude of this PK/PD index necessary for targeted degrees
of effect (e.g., net stasis, 1-, 2- or 3-logs of net kill). These objectives are accom-
plished by conducting dose-ranging studies, followed by dose fractionation studies,
with selected strains of bacteria. The design of these studies typically include a range
of 3 or 4 daily doses, each fractionated (e.g., entire daily dose given once a day dosed
as q24 h, one-half the daily dose given twice a day as q12 h, one-quarter the daily
dose given four times a day as q6 h, and one-eighth the daily dose given eight times
a day dosed as q3 h). This design enables decoupling the autocorrelation between
Cmax, AUC, and time above a threshold, which would occur in a simple
dose-ranging study (i.e., for the same AUC, a range of Cmax and T > MIC values
are achieved). Three plots are typically constructed relating drug effect to each of the
three indices, and the index that fits the data the best is selected as the PK/PD driver
for the tested antibiotic. The fitted PK/PD model is also used to determine the index
values necessary to achieve targeted drug effects (e.g., net stasis, 1-, 2-, 3-logs of net
kill). These index values then become ‘targets’ for developing dosing guidelines, by
calculating target attainment using Monte Carlo simulation.

Dose fractionation and target attainment studies are common and serve a useful,
but limited purpose. These studies provide insights into proper maintenance regi-
mens (daily dose and dosing intervals), but they do not provide the necessary
knowledge for predicting optimal initial therapy, the expected time-course of drug
effects, and the duration of therapy. The main shortcoming of the PK/PD index
driver approach is that the time-course of antimicrobial pharmacokinetics and
pharmacodynamics is not taken into consideration. Modeling the time-course of the
relationship between drug concentration and the pharmacodynamic effect should
aid in (a) the development of novel regimens, such as those with front-loading
(Tsuji et al. 2012; Rao et al. 2013, 2016) and optimal sequencing of combination
regimens, or (b) the determination of optimal duration of therapy.

17.4 Experimental Models for Infectious Disease

In vitro experimental models of infection are important tools that aid in the PK/PD
characterization of antibacterial agents in conjunction with in vivo systems
(Wootton et al. 2001). The in vitro experimental model provides a quick and cost
effective method to assess the pharmacodynamic activity of an antibacterial against
a bacterial population of interest, which can serve as preliminary data for further
evaluation of proposed hypotheses. These experimental models provide flexibility
over in vivo animal models given the ease of working with different inocula that
will be exposed to the drug regimen of interest, the range of effective drug con-
centrations, and frequency of sampling necessary for full characterization of the
PK/PD relationship. The results from in vitro studies may significantly differ from
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that obtained in vivo as the only interaction possible in vitro is between the drug
and the bacteria, whereas the in vivo system also includes interactions with the host
immune system. In vitro experiments can be broadly classified into two categories,
namely static and dynamic systems, based on the nature of the drug concentration
profiles imposed for the duration of the experiment.

17.4.1 Static in Vitro Experimental Models

The time-kill experimental setup is the simplest in vitro experimental system
consisting of a single culture tube that contains the growth media, bacteria of
interest, and the antibacterial agent. The time-kill culture tubes are incubated in a
water bath at 35–37 °C, with constant shaking to maintain a homogenous envi-
ronment. The main assumption is that the bacteria are exposed to a static envi-
ronment in which the drug concentration is constant for the duration of the
experiment. It is also assumed that bacterial growth is not limited by the supply of
the nutrients as long as bacterial regrowth does not exceed the initial inoculum (Keil
and Wiedemann 1995). The environment within each time-kill system is continu-
ally changing as the growth media is being depleted of nutrients while toxins
released from the bacteria are accumulating. The duration of time-kill studies range
from as short as 8 h to as long as 72 h. This model can be used for dose-ranging
studies to provide insight into the killing dynamics of the drug and approximating
the behavior of a continuous infusion in vivo. The limitation of this static experi-
mental setup is the inability to simulate human pharmacokinetic dosing regimens.

17.4.2 Dynamic in Vitro Experimental Models

One-compartment and hollow fiber in vitro infection models (HFIM) are dynamic
systems as the antibiotic concentration can be altered over the duration of the
experiment, hence allowing for the assessment of the pharmacodynamics under
experimentally simulated human dosing conditions. Dynamic in vitro experimental
models are classified as open or closed systems depending on the loss of bacteria
based on the in vitro experimental setup.

17.4.3 Open Systems (Models Without Filters)

The apparatus for a one-compartment system consists of a reservoir connected by
airtight silicon tubing to an Erlenmeyer flask equipped with magnetic stirrers to
ensure homogenous mixing maintained at 35–37 °C. Fresh media is pumped at a
constant rate by a peristaltic pump from the reservoir into the Erlenmeyer flask
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(central compartment) containing the antibiotic and bacteria of interest, which causes
an equal amount of volume to be displaced as it is pumped out so as to maintain a
constant working volume (Grasso et al. 1978). The addition of fresh growth media at
a constant rate allows dilution of the antibiotic and bacteria, resulting in “washout”
of the bacteria in addition to the antibiotic. The antibiotic of interest can be added to
the central compartment at regular intervals to simulate human pharmacokinetics, or
it can be added to the reservoir containing the growth media to simulate a continuous
infusion. Peristaltic pumps are used to control the flow of fresh media into and the
isovolumetrical removal of media from the central reservoir at rates programmed to
simulate the half-life of the drug in humans. The main disadvantage of this in vitro
experimental system is the continuous loss of bacteria from the central reservoir by
dilution. This interferes with the ability to determine the reduction in the initial
bacterial inoculum as a result of the antibacterial agent alone. The loss of bacteria
due to flow can be neglected as long as the concentration-time curve is not affected or
when the antibacterial effect results in reductions of the initial bacterial load below
the limit of detection rapidly with no visible regrowth. Correction for bacterial loss
as a result of dilution is necessary for comparisons of antibiotics with different
elimination half-lives or different killing dynamics (Murakawa et al. 1980; Keil and
Wiedemann 1995). Equation 17.1 enables the necessary correction for the bacterial
loss from the system:

dCFU
dt

= kg � 1þ CFU
CFUmax

� �
� CFU� FR

V
� CFU, IC: CFUo ð17:1Þ

with CFU as the total bacteria in the reservoir (CFU/mL), CFUmax is the maximal
growth rate of the bacteria (CFU/mL), CFUo is the initial inoculation (CFU/mL), kg
is the net first-order growth rate constant (units of time−1), FR is the flow rate of
media (mL/units of time), and V, is the volume of the central reservoir (mL).

17.4.4 Closed Systems (Models with Filters)

Several systems with filter membranes to prevent the loss of bacteria due to
washout have been proposed (Lowdin et al. 1996). The membrane based systems
face the possibility of the membrane pores becoming blocked, especially with high
flow rates necessary for drugs with relatively short half-lives. Hence, the
two-compartment diffusion or dialysis-based systems were proposed to overcome
the shortcomings of filter membrane systems (Navashin et al. 1989; Reeves 1985;
Schneider and Lewis 1982; Gloede et al. 2010). In this system, the bacteria are
contained in a peripheral compartment, separated from the central compartment by
a membrane, in order to avoid dilution of the bacterial inoculum at the same rate as
the antibiotic. Similar to the experimental systems in Sect. 17.4.3, the drug and
fresh media are added to the same central compartment to dilute the drug. The drug
and the necessary nutrients diffuse (via the membrane) into the peripheral space
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containing the bacteria. The main limitation of these single membrane systems is
that the equilibration between the two compartments is slow as it depends on
passive diffusion across the membrane.

Therefore, an increase in the surface area of the dialysis membrane will allow for
rapid equilibration resulting in the kinetics of the peripheral compartment resem-
bling the kinetics in the central compartment (Zinner et al. 1981). The hollow fiber
system consists of a collection of dialysis capillaries of hollow fibers (Blaser 1985;
Blaser et al. 1985). The capillaries have a fixed central compartment working
volume and are connected to a pump that pumps fresh media, with a flow rate
determined by the elimination rate of the drug. Similar to previous systems, the
peripheral compartment consists of the extracapillary space that contains the bac-
teria. The concentration gradient across the capillaries is the driving force for the
diffusion of drug and nutrients from the central compartment into the peripheral
space. The semipermeable nature of the capillaries allows for only waste from the
peripheral space to diffuse into the central space. The commercial hollow fiber
systems allow for sampling of the central and the peripheral space and dosing via
computer controlled syringe systems that can simulate the desired dosing regimens
for the drug(s) of interest. Since these systems are less prone to contamination
related issues, they can be used to conduct studies over a prolonged duration of time
(e.g., up to 28 days) necessary to study the emergence of drug resistance (Drusano
et al. 2010b; Srivastava et al. 2011).

17.4.5 Limitations of in Vitro Experimental Systems

The main drawback of these in vitro experimental systems is that they do not take
into account the host immune system, drug-protein binding, and characteristics of
the infection site. Other limitations include: the high surface area to volume ratio of
the hollow fiber system, the facilitation of bacterial growth by nutrient rich envi-
ronments, static antibiotic concentrations in time-kill experiments, the lack of
infection site-specific pharmacokinetics, and the lack of concentration-time profile
measurements in most in vitro studies. These limitations may necessitate the
evaluation of promising treatment regimens in an in vivo infection model.

17.4.6 In Vivo Infection Experimental System

Animal studies are important to gain insights into the host response and the pro-
gression of infection. Animal infection experimental systems play an important role
in bridging the gap between characterization of the antimicrobial agent using
in vitro concentration-effect experiments and evaluation of clinical efficacy.
Specifically, carefully defined animal models of infection not only provide insight
into the efficacy of newer antimicrobial agents, but they can also be used to assess
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the pharmacokinetics and toxicities of these compounds. Furthermore, important
information can be obtained regarding unique or unusual infections that may serve
as an example or precursor for clinical trials in humans. In vivo systems capable of
mimicking the time-course and pathophysiology of infections in patients are useful
for preclinical assessments of new antibiotics, as well as optimization of existing
antibiotic regimens using approved antibiotics. There are a number of animal
infection systems, based on the site of infection under investigation, immune status,
and the renal function of the animal. The use of appropriate pharmacodynamic
analyses can account for these differences and allow for comparison of data
between different studies by determining the magnitude of the PK/PD index nec-
essary for antimicrobial efficacy across animal species and humans. Differences in
pharmacokinetic profiles, drug metabolism/excretion, and anatomical differences
between the animal species and humans can result in incorrect predictions of tox-
icity in humans based on animal toxicity data (Zak and O’Reilly 1990). Despite
these challenges and limitations, toxicity evaluation of antimicrobial agents in
animals has been and will continue to be an essential part of drug development as
they have shown to be predictive of maximum tolerable doses, a prerequisite for
clinical trials.

17.5 Bacterial Quantification

17.5.1 Total Bacterial Population

The determination of bacterial counts is performed by obtaining serial samples from
any of the previously described in vitro systems at pre-determined times that will
best characterize the pharmacodynamics of the antibacterial agent(s) being evalu-
ated. The samples for the experimental system are immediately serially diluted in
cold 0.09 % sodium chloride. Viable bacterial counts are determined by plating
aliquots of each diluted sample, generally 50 lL, on agar plates either manually or
by using an automated spiral dispenser. The plated samples are incubated at 37 °C
for 24 h, and colony counts are determined in log10 CFU/mL either manually or by
using an automated bacterial colony counter.

17.5.2 Resistance Quantification

Population Analysis Profile (PAP) is an experimental method that allows for
characterization of different resistant subpopulations and determination of the
emergence of resistance during therapy for both in vitro and in vivo studies (Jumbe
et al. 2003; Li et al. 2006; Wootton et al. 2001). Incorporating these data into the
pharmacodynamic mathematical model will aid in predicting emergence of resis-
tance due to treatment, as well as the optimization of antibiotic treatment to prevent
the emergence of resistance.
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17.6 Experimental Design

17.6.1 In Vitro Experiment

The design of in vitro experimental studies involves the selection of the appropriate
conditions based on the nature of analysis and the duration of the study. The initial
bacterial inoculum can affect the rate and extent of kill that can be attained by
antibacterials and the probability of observing the emergence of resistant subpop-
ulations under drug pressure. The nature of the inoculum (heterogeneous log phase
or homogenous late-log phase), the range of doses studied (clinically achievable or
a wide dose range), susceptibilities of the strain, and analytical methods used to
quantify the antibacterial pharmacodynamic effect are just some of the other rele-
vant factors that need to be considered in experimental designs.

17.6.2 In Vivo Experiment

The design of animal studies is critical for the translation of promising interventions
to the clinic. The lack of correlation between results from clinical trials and
pre-clinical animal studies are multifactorial and could stem from inadequacies of
animal studies. The first of the more common flaws is the lack of sufficient sta-
tistical power of animal studies to detect the true benefit or effect of a given
treatment. The second error, compounding the first, is over-optimistic interpretation
of the results from a poorly powered animal study. The third error is the inability of
the animal model to emulate the full course of disease pathophysiology in humans.
The lack of external validity can be a rate-limiting step in the translation of
pre-clinical animal results to the clinic. Lastly, in some cases, the in vivo experi-
mental design and results may be valid, but errors in calibration between
pre-clinical species and humans could result in incorrect translation of the results.

Selection of an appropriate in vivo system is guided by multiple considerations,
including: specific disease states being studied, the nature of sampling (e.g.,
destructive), the amount per sample (e.g., volume of blood that can be obtained
from the animal per sample), the number of samples intended during the duration of
the study, the route of drug administration, the ability to dose the drug, and the
nature of the toxicodynamics of the drug. For example, the murine model does not
lend itself well for sampling at multiple time points to track the time-course of
individual disease progression, given the limited total amount of blood that can be
obtained. This often results in destructive sampling at each of the intended time
points. Ideally, the pharmacokinetics and pharmacodynamics should be evaluated
in the same animals to reduce the variability in resulting concentration-effect
relationships. Current animal infection models are not convenient to study disease
progression using a systems biology approach (Drusano et al. 2010a, 2011a, b) in
which multiple biomarkers of interest are monitored to associate disease
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progression and the severity of the infection with the host immune response to the
bacterial infection. Ideally, the efficacy of a proposed treatment regimen should be
evaluated using an intact host immune system as opposed to an immunity deficient
system (many current animal infection models are immune compromised in nature).

17.7 Current Practice of Antibacterial Modeling

The modeling philosophy of antibacterial data has evolved over the past 50 years,
resulting in a few generations of different model structures describing the growth
kinetics of bacteria and the evolution of the bacterial population under drug pres-
sure. Modeling antimicrobials has the distinct advantage wherein the target is
readily accessible since the bacterial load can be quantified in both in vitro and
in vivo experimental conditions. In this section, we describe some of the repre-
sentative key models.

17.7.1 Bacterial Growth Model in Absence of Drug

The typical bacterial growth curve exhibits an initial lag phase, during which time
the bacteria are acclimatizing to the new environment, and is followed by an
exponential growth phase when the bacteria start dividing by binary fission pro-
cesses. The different models proposed to characterize bacterial growth are expo-
nential (Mouton et al. 1997; Nielsen et al. 2007; Zhi et al. 1988; Garrett et al. 1970;
Garrett and Wright 1967), logistic (Jumbe et al. 2003; Mouton et al. 1997), capacity
limited (Bulitta et al. 2010; Harigaya et al. 2009; Meagher et al. 2004), and the
life-cycle model (Bulitta et al. 2009; Landersdorfer et al. 2013; Tsuji et al. 2012).
The exponential growth model was commonly used in the 1970s and 1980s, as
these models describe the exponential growth phase well, given that the bacteria
never attained maximum growth capacity within the relatively short duration or
limited conditions of the experimental setup at the time (Zhi et al. 1988; Garrett
et al. 1970; Garrett and Wright 1967). The logistic growth model is commonly used
when the experimental data is obtained over a prolonged period of time comprising
of all phases of bacterial growth. The equations for the different growth models are
as follows:

(A) Exponential growth model:

dðCFUÞ
dt

¼ kg � kd
� � � CFU, IC: CFUo ð17:2Þ

Equation 17.2 represents a common model describing bacterial growth
(Fig. 17.2a). CFU is the bacterial population, kg is a first-order rate constant
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describing bacterial growth, and kd is a first-order rate constant describing
bacterial death. Based on in vitro data, it is difficult to determine both rate
constants, kg and kd, and only the net growth rate constant (the difference
between kg and kd,) is estimable.

(B) Logistic growth model:

dðCFUÞ
dt

¼ kg � 1� CFU
CFUMAX

� �
� CFU � kd � CFU, IC : CFUo ð17:3Þ

Equation (17.3) describes bacterial growth for a system constrained by a
maximal population (Fig. 17.2a). CFUMAX is the maximum bacterial popu-
lation attainable within the study system. When the bacterial population
approaches CFUMAX, the net growth rate approaches zero.

(C) Capacity Limited Growth Model

dðCFUÞ
dt

¼ VGmax

CFUm þCFU
� kd

� �
� CFU, IC : CFUo ð17:4Þ

Equation (17.4) describes the total bacterial growth using a Michaelis-Menten
type function. The rate of bacterial replication is parameterized by the
maximal velocity of bacterial growth, VGmax (CFU/mL/h), and CFUm is the
CFU at which the rate of replication is half the maximal velocity of bacterial
growth. VGmax could be reparametrized in terms of kd, CFUm, and CFUmax as:

At the plateau;
VGmax

CFUm þCFUmax
� kd

� �
� CFUmax ¼ 0 ð17:5Þ

VGmax ¼ kd � ðCFUm þCFUmaxÞ ð17:6Þ

CFU(S,I,R)

kg(S,I,R)

kd(S,I,R)

state 1

(CFU1(S,I,R)) (CFU2(S,I,R))
k12(S,I,R)

k21·REP(a) (b)

k21·(1-REP)

state 2

Fig. 17.2 Simple models of bacterial growth. a An exponential bacterial growth model with a
first-order rate constant describing bacterial growth (kg) and a first-order rate constant controlling
bacterial death (kd). b The life-cycle growth model in which bacteria are assumed to exist in
two-states: a vegetation state (state 1) and a replicative state (state 2)
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(D) Life cycle model

dðCFU1Þ
dt

¼ Rep � k21 � CFU2 � k12 � CFU1; IC : CFUo ð17:7Þ

dðCFU2Þ
dt

¼ �k21 � CFU2 þ k12 � CFU1; IC : 0 ð17:8Þ

CFUall ¼ CFU1 þCFU2 ð17:9Þ

Rep ¼ 2 � 1� CFUall
CFUmaxþCFUall

� �
ð17:10Þ

The life-cycle model (Fig. 17.2b) is based on physiological processes of bacterial
replication, and the flexibility of this model allows for easy incorporation of
antibiotic mechanisms of action against bacteria (Bulitta et al. 2009; Tsuji et al.
2012; Landersdorfer et al. 2013). In this growth model, the replication process is
simplified to two states, a vegetative state (CFU1, preparing for replication) and
replicative state (CFU2, a state prior to dividing or binary fission) as described by
Eqs. (17.7) and (17.8). The total bacteria in the two states is represented by
Eq. (17.9). The conversion rate constant (k12) between the two states, CFU1 to
CFU2, is assumed to be rate-limited while conversion rate constant (k21) from CFU2

to CFU1 is assumed to be rapid. The replication factor (REP) shown in Eq. (17.10)
provides the doubling factor for each cycle, and CFUmax is representative of the
carrying capacity of the system.

The effect of antibiotics can be incorporated in the model either by stimulating kd
or inhibiting bacterial replication (i.e., k12, kg, and VGmax). Additionally, first-order
or second-order killing kinetics of the antibiotic could be incorporated into these
models. The logistic, capacity-limited, and life cycle models describe the experi-
mentally observed plateau well and are frequently used to describe the growth
kinetics of bacteria.

17.7.2 Modeling Bacterial Populations

There are a number of pharmacodynamic models that assume different character-
istics of the bacterial population. The nature of the experiment often dictates the
nature of the bacterial population (heterogeneous or homogenous).

Single population Prior to the 1990s, models describing bacteria growth and
killing dynamics assumed a single homogeneous bacterial population (Zhi et al.
1988; Garrett et al. 1970; Garrett and Wright 1967), and the initial killing was
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reasonably explained by these models. In vitro and in vivo experimental studies
were conducted over a relatively short period of time, typically up to 300 min (Zhi
et al. 1988; Garrett et al. 1970; Garrett and Wright 1967), and selected doses were
much higher or lower relative to the MIC of the bacteria of interest, resulting in
complete suppression or uninhibited growth (Meagher et al. 2004). The assumption
of a homogenous bacterial population seemed reasonable. However, advanced
experimental methods and increased knowledge of bacterial physiology have led to
a consensus that the bacterial population is heterogeneous in nature arising from
differences in fitness, which led to the development of pharmacodynamic models
that could explain this heterogeneity.

Mixture model bacteria population The bacterial population consists of a mix-
ture of subpopulations with varying degrees of susceptibilities, which becomes
apparent during the course of dose ranging in vitro studies conducted over an
extended period of time. The signature profile for heterogeneous subpopulations is
regrowth after initial decline in the bacterial inoculum or continued persistent
bacterial populations without further growth or decline in the bacterial population
when exposed to antibiotic drug pressure (Bulitta et al. 2009, 2010; Jumbe et al.
2003; Landersdorfer et al. 2013; Meagher et al. 2004). We described the hetero-
geneity in the initial inoculum by assuming two or more pre-existing genotypic
bacterial subpopulations with differing susceptibility to antibiotics. Meagher et al.
observed attenuation of killing upon repeated dosing, and they assumed two
pre-existing subpopulations to account for this behavior (Meagher et al. 2004).
Campion et al. developed a similar model with unique growth and killing rate
constants for the susceptible and resistant bacterial subpopulations to describe the
activity of ciprofloxacin against Staphylococcus aureus when exposed to different
pharmacokinetic profiles (Campion et al. 2005). The authors assumed pre-existing
subpopulations, enrichment of resistant subpopulations in the presence of cipro-
floxacin, and allowed for the conversion of the susceptible subpopulation to a
resistant phenotype. Multiple investigators have provided evidence of adaptive
resistance when bacteria are exposed to environmental or antibiotic pressures
(Macfarlane et al. 1999; McPhee et al. 2003; Fernandez et al. 2010). This results in
a shift in subpopulations (inter-conversion between existing sub-populations) and
the emergence of new subpopulations, and mathematical models have been
implemented with this inter-conversion between existing subpopulations (Nielsen
et al. 2007; Yano et al. 1998). Jumbe et al. (2003) proposed two pre-existing
subpopulations similar to the models of Meagher et al. (2004) and Campion et al.
(2005), with the exception that Jumbe et al. (2003) incorporated PAP experimental
data enabling the quantification of the total and resistant subpopulations. This
model allows for the quantification of the time-course of emergence of resistant
subpopulations during the course of therapy and can aid in dose selection for
suppression of the emergence of resistance.

17 Translational Modeling of Antibacterial Agents 385



17.7.3 Mechanism-Based Models

The increasing knowledge base about molecular mechanisms of interactions
between antibiotics and antibiotic targets, coupled with advanced experimental
techniques and computational capability, makes the development of
mechanism-based PK/PD models incorporating receptor binding and bacterial
physiology feasible. This new generation of mechanism-based PK/PD models will
enable the exploration and increased understanding of the underlying complex
mechanisms of the infectious process.

Bulitta et al. developed a mechanism-based mathematical model incorporating
the current knowledge about bacterial physiology, receptor binding, and antibiotic
mechanism of action that could describe and predict the time-course of bacterial
growth and killing (Bulitta et al. 2009, 2010). The pharmacodynamic model for
ceftazidime against P. aeruginosa incorporated bacterial physiology in terms of the
lag time of bacterial killing as a result of the turnover of cell wall constituents, and
the lag time was dependent on the antibiotic concentration. Additionally, the
mechanism of action of ceftazidime was incorporated and accounted for the delay
observed in the binding of the antibiotic to its target, penicillin-binding protein (i.e.,
PBP3). The authors observed an attenuation of ceftazidime activity with increasing
initial inocula. This led to the hypothesis that bacteria produce and release signal
molecules at high bacterial densities that may result in the modulation of certain
pathways resulting in antibiotic tolerance. The final model that included this
mechanism allowed for the characterization of the attenuated bacterial killing at
high bacterial inoculum.

Monte Carlo simulations, using a ceftazidime population pharmacokinetic model
and the final mechanism-based pharmacodynamic model, were used to predict the
time-course of effect in response to two different infusion durations (i.e., 5 h vs.
30 min) against two different initial bacterial inocula. The model predicted that
prolonged infusion of ceftazidime provided a better pharmacodynamic profile, and
the high inoculum resulted in attenuated killing by ceftazidime (Bergen et al. 2011),
which is in agreement with the clinical PK/PD target (i.e., time above MIC). This
mechanism-based model was developed based on known bacterial physiology and
mechanism of action of ceftazidime and enabled the enhanced characterization and
prediction of bacterial response with increased precision and under new experi-
mental conditions.

17.7.4 Quantification of Combination Therapy

The rapid rise in antibiotic resistance has led to the emergence of so-called ‘super
bugs’ and, coupled with the lack of viable treatment options, it has forced clinicians
to increasingly prescribe antibiotic combinations. Combination therapy can provide
broad-spectrum empirical coverage, resulting in the increased likelihood of clinical
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success by maximizing the decrease in bacterial load while minimizing the emer-
gence of resistance as well as adverse drug effects. The benefit of synergy is an
increased rate of killing; one drug may potentiate or enhance the activity of the
other drug in the combination, resulting in significant improvement of outcomes
against resistant and hard to treat bacteria. The ability to quantify drug interactions
is one of the major challenges when assessing antibiotic combinations. Qualitative
terms like synergy, additivity, or antagonism are used to describe the pharmaco-
dynamic drug interaction of antimicrobials. Based on the traditional definition of
synergy, the interaction between two drugs is classified as synergistic (or antago-
nistic) when the observed effect of the combination is more (or less) than what
would be predicted based on the knowledge of the effects of each drug acting
independently (Greco et al. 1996). The two main metrics used to quantify the
interactions between drugs are Loewe additivity and Bliss Independence. The main
difference between the different metrics for evaluating pharmacodynamic interac-
tions is based on the definition of additivity, “no interaction” between the two
agents used in combination.

Loewe additivity defines a drug as non-interacting with itself. For example, if
drugs A and B are the same drugs or very close structural analogues, then the
combination of drug A and B at equal concentrations should produce the same
effect if either A or B were used at twice the dose (Greco et al. 1995; Yeh et al.
2009). Loewe additivity is presented in Eq. (17.11), in which the concentrations of
drug A and B contained in the combination is indicated by CA and CB, and the
concentrations required to produce the given effect (e.g., 50 % inhibition of max-
imum, IC50) are DA and DB:

1 ¼ CA

DA
þ CB

DB
ð17:11Þ

Synergy, additivity, or antagonism is indicated by the required concentrations CA

and CB. For example, the combination of drug A and drug B is additive if 2.5 mg/L
of drug A combined with 2.5 mg/L of drug B produces 50 % inhibition of bacterial
growth equivalent to 1 mg/L of drug A or drug B used alone. The combination is
synergistic in nature if the drug required to achieve the same amount of inhibition is
less as compared to when either drug is used independently. However, the com-
bination is antagonistic if the drug required to achieve the same effect as a part of a
combination is more compared to when either drug is used independently.

Bliss independence, on the other hand is defined as fractional response due to the
combination of two agents at specific concentrations (Greco et al. 1995; Yeh et al.
2009). Bliss independence assumes that both agents used in combination have
distinct mechanisms and that each agent in the combination produces an effect
independent of the presence of the other agent. Hence, it is the product of the
fractional responses of each agent applied alone at the specific concentrations
(Eq. 17.12), where EAB is the effect of drug A and B in combination, EA and EB are
the effect of drug A and B alone:
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EAB ¼ EA � EB ð17:12Þ

The fraction of effect when drug A and drug B are used in combination (FAB) based
on the definition of Bliss Independence can be calculated using Eq. (17.13):

FAB ¼ FA þ FB � FA � FB ð17:13Þ

where FA is fraction of the effect due to drug A alone, and FB is fraction of the effect
due to drug B alone. Therefore based on Bliss Independence, the combination is
additive when the joint activity is equal to that predicted by Eq. (17.13). When the
joint activity is greater than that predicted, the combination is considered to be
synergistic. For example, if drug A produces 50 % of inhibition, and drug B produces
25 % of inhibition when evaluated independently then together, the interaction is
quantified as synergistic when the joint activity of A and B is greater than the activity
of each acting independently, i.e., decrease in growth due to the combination based on
Eq. (17.13) is greater than 62.5 % (FAB = 0.5 + 0.25 − (0.5) � (0.25) = 0.625).
Bliss Independence in the logarithmic domainwill be additive. The drawback of these
metrics is that the classification labels do not appropriately describe the nature of the
interactions. A label of synergy may not always mean that the outcome will be
favorable, and similarly a combination labeled antagonistic may not mean that the
outcome is less than favorable. The following examples will help illustrate the
drawbacks of these classification methods.

The first example involves an additivity classification with linezolid, a synthetic
antibacterial agent, a member of the oxazolidinone class that prevents protein
synthesis by targeting the 50s ribosomal site (Shinabarger et al. 1997). Nisin is a
peptide antibiotic that induces pore formation in bacterial membranes and inhibits
the synthesis of peptidoglycan (Gao et al. 1991). The pharmacodynamic activity of
linezolid and nisin, when dosed simultaneously as a combination against a high
inoculum of a MRSA strain, was suggestive of limited promising joint activity
(Landersdorfer et al. 2013). By definition of Bliss Independence, this combination
is classified as simply additive, but despite this classification, the interaction has
meaningful clinical benefits.

The second example is for a synergistic classification with colistin, also known
as polymyxin E, which belongs to the polymyxin class of antibiotics. Colistin exerts
its bactericidal effect by competitively displacing Mg2+ and Ca2+ ions (divalent
cations) necessary to form cross-linkages between the adjacent negatively charged
phosphate groups of the lipopolysaccharides (LPS) in the outer cell membrane of
Gram-negative bacteria (Lim et al. 2010). This results in disruption of the outer cell
membrane, leakage of intracellular contents, and eventually bacterial death.
Doripenem is a carbapenem that displays bactericidal activity by inhibiting cell wall
synthesis via inactivation of penicillin-binding proteins (Davies et al. 2008). Based
on the definition of Bliss Independence, the simultaneous dosing of colistin and
doripenem resulted in greater combined activity compared to when either drug was
used as monotherapy (Landersdorfer et al. 2013).
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An excellent example to illustrate antagonism is the combination of rifampicin
and vancomycin. Rifampicin is a semisynthetic derivative of the rifamycins class of
antibiotics. It is bactericidal in nature as it inhibits bacterial RNA polymerase
responsible for DNA transcription (Drusano et al. 2010b; Wehrli 1983).
Vancomycin, a glycopeptide that primarily inhibits cell-wall biosynthesis, binds
with high affinity to the D-Ala-D-Ala C-terminus of the pentapeptide, thus pre-
venting the incorporation of N-acetylmuramic acid (NAM) and N-acet-
ylglucosamine (NAG)-peptide subunits into the peptidoglycan matrix (Hammes
and Neuhaus 1974). In vitro studies suggest that this combination is antagonistic in
nature based on the definition of Bliss Independence. Despite this categorization,
rifampicin and vancomycin represents a highly beneficial combination against acute
clinical staphylococcal infections, as it prevents the emergence of resistance and
helps reduce the virulence of the pathogen.

The classification of in vitro synergy is not necessarily associated with clinical
success, as two drugs could be synergistic but do not exhibit sufficient activity when
dosed together resulting in a good clinical outcome. Labels like antagonism, syn-
ergy, or additivity that are typically used to group the joint activity of antibiotics
may misrepresent the outcome of the interaction of these antibiotic combinations.
The label is not indicative of the clinical outcome, as it is the overall activity based
on the interaction that determines the outcome. In part, this failure may be due to
the lack of mechanistic information about the interaction of the drugs when used in
combination. The gap in knowledge about the “mechanisms of interaction” of drug
combinations can be addressed by quantitative systems modeling incorporating
information about the drugs and the biological target and host physiology.

17.7.5 Modeling Antimicrobial Combinations

Quantifying antibiotic interactions is generally achieved by performing measure-
ment at pre-determined end points. However, the limitation of all such methods is
that they are point-based estimates, which do not take the time-course of interaction
into consideration. More importantly, none of these approaches recognize or
account for the presence of multiple bacterial subpopulations with differing sus-
ceptibilities (Bulitta 2009). Earp et al. (2004) proposed a framework for quantifying
drug-drug interactions based on the principle of indirect response models as the
measured response for basic turnover processes. Drugs can perturb the production
or elimination of a biomarker or the turnover process of the bio-signal in a com-
petitive or noncompetitive fashion. Additionally, both drugs could act on the same
process in a competitive or noncompetitive manner. The net response of a com-
bination is not only dependent on the intrinsic pharmacological properties of the
single agents but also on their pharmacokinetics, the nature of the antibiotic target,
and the mechanism of interaction between the two agents. Hence, two agents with
similar pharmacodynamic and pharmacokinetic properties may elicit different
responses depending on whether both agents affect the same target in a competitive
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or non-competitive manner. Such a framework could be applied to quantify drug
interactions of an antimicrobial combination.

For chemotherapeutic combinations, agents could perturb replication or elimi-
nation process of bacteria, which is illustrated in Fig. 17.3. The first example is for
a case in which both drug A and B act on the same process, i.e., bacterial replication
(Fig. 17.3a). The two antibiotics ceftolozane and ceftazidime act on inhibiting the
replication of P. aeruginosa by inhibiting the cell wall synthesis through binding to
the penicillin binding protein (PBP) (Hayes and Orr 1983; Hong et al. 2013). The
second example is for one in which drug A inhibits replication and drug B stim-
ulates elimination of the bacteria (Fig. 17.3b). The combination of vancomycin and
tobramycin provides such an interaction. Vancomycin inhibits bacterial growth
(Hammes and Neuhaus 1974), and tobramycin binds to bacterial 30S and 50S
ribosome, resulting in protein synthesis inhibition and enhanced bacterial killing

Fig. 17.3 Approaches for
drug-drug interaction models
for a both Drug A and
B inhibiting the bacterial
growth rate, b Drug
A inhibiting the growth rate
and Drug B stimulating
bacterial cell killing, and
c both Drug A and B stimulate
cell killing
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(Le Goffic et al. 1979). The last example is when both antibiotics, such as tobra-
mycin and daptomycin, stimulate the bacterial killing process (Fig. 17.3c).
Tobramycin inhibits protein synthesis (Le Goffic et al. 1979), whereas daptomycin
intercalates into the bacterial membrane in a phosphatidyl glycerol dependent
manner causing the disruption of the bacterial cell wall resulting in bacterial cell
death (Baltz 2009).

17.8 Translation Using Monte Carlo Simulations

Monte Carlo simulation (MCS) allows for the integration of prior knowledge and
drug-target interactions to predict the clinical performance of a drug at the dose(s)
selected for clinical trials. Once the goal of therapy is established (bacterial kill
necessary for the eradication of the organism and/or suppression of resistance), the
sources of variability that will affect the achievement of the therapeutic goal (e.g.,
variability in pharmacokinetics, MIC values, and protein binding) can be accounted
for using MCS in determining the probability of target attainment. Models derived
from animal and/or in vitro experiments can be coupled with MCS to predict the
probability of patients likely to achieve a specific target (target attainment) and for
determining an initial antimicrobial dose (Drusano 2004; Drusano et al. 2001). This
approach is commonly used and has been successful in the translation of
pre-clinical studies to humans, and MCS is the method of choice for the opti-
mization of antibiotic treatment regimens. The main drawback of the current
approach is that it fails to account for the variability in pharmacodynamic activity
(i.e., variability in initial inoculum, between strain variability, and bacterial
heterogeneity) and host-bacteria interactions (Bergen et al. 2011; Soon et al. 2013).

One of the main reasons for clinical antibacterial failure is the emergence of
resistance during the course of therapy. Translational PK/PD approaches derived
from relatively short-term studies that are only 24 to 48 h in duration cannot be
used to determine the target required for the suppression of the emergence of
resistance. The in vitro hollow fiber system offers an advantage compared to animal
experiments for testing the target necessary for suppressing bacterial resistance
given the long duration of experiments possible with this in vitro experimental
setup. Experiments monitoring the emergence of resistance are not routine for
antibiotic development and optimization, and accounting for the time-course and
variability in pharmacodynamics is essential for the effective translation of
promising antibacterial compounds to the clinical setting.

17 Translational Modeling of Antibacterial Agents 391



17.9 Proposed Systems Modeling for Antibacterials

A major limitation of pharmacodynamic models developed based on in vitro data is
that they do not take the immune system or the underlying biology that influences
the time-course of in vivo infection into consideration. Figure 17.4 shows a theo-
retical approach for incorporating the immune system; its influence on the infecting
bacteria superimposed with the drug pharmacological effect. For simplicity, the
initial inoculum is assumed to consist of a single bacterial population. Bacterial
growth is described by a growth model and bacteria are lost by a first-order natural
death rate constant. As the infection progresses, the bacteria could undergo an
adaptive process that results in the secretion of virulence factors causing the
degradation of tissue and activation of the immune system, resulting in the release
of cytokines and the onset or increase in symptoms. Therapeutic agents could target
multiple system components, such as stimulating bacterial killing, inhibiting the
production of virulence factors, and/or inhibiting the replication of bacteria.

Bacteria

Epithelial Cells

Cytokines

Virulence
Factors

Phagocytes

Symptoms

PAMPs

DAMPs

TLRs Release 

Release 

Infect 

Release 

Increased produc on of 
cytokines

Clear the infec
on

Macrophages

Polymorphonuclear
lymphocytes(PMN)

Fig. 17.4 A network of systems level regulation of host immune responses, including several
interactions between the host immune system and bacteria. Host immune components are outlined
(blue box) along with bacterial components (brown box). The bacteria infect the host (epithelial
cells are used as an example of an infection site), and PAMPs (pathogen-associated molecular
patterns) and virulence factors are released by the bacteria that influence cytokine production.
DAMPs (danger-associated molecular patterns) released by damaged tissue are recognized by
neutrophils, which stimulate the production of cytokines. PMNs, released by activation of the host
immune system, result in increased production of cytokines and up-regulation of host symptoms
through the release of cytokines. Black indicate stimulation processes while the red lines indicate
inhibition processes
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17.10 Considerations for Moving Toward Systems Based
Approaches

17.10.1 Bacterial Physiology

Bacterial physiology and gene regulatory systems are complex and resilient. Over
the past million years, both host and bacteria have co-evolved, with pathogenic
bacteria adapting to host defense systems by modifying their virulence in order to
change their pathogenicity. These virulence mechanisms enable the bacteria to
overcome host defense mechanisms, and develop resistance under drug pressure,
allowing them to adapt and survive in competitive new niches. The inability to
measure these processes occurring at a molecular level precludes the development
of detailed and quantitatively accurate mathematical models describing the
time-course of infection. However, experimental methods like quantitative PCR,
transcriptomics, proteomics, and metabolomics have enabled the quantification of
molecular markers of bacterial resistance like b-lactamases, efflux pumps, and
related protein activity (e.g., elastase and antibiotic target receptors).

Bacteria have a network of regulatory systems interacting with each other to
promote antibiotic tolerance, drug resistance, and their adaptation and survival
when exposed to hostile environments (Friedberg and Friedberg 2006). The role of
the mismatch repair (MMR) system is to correct mismatched base pairs to maintain
genome stability. MMR has the ability to turn on and off during different phases of
bacterial growth. During the stationary phase or chronic infection, MMR genes are
transiently shut down to promote mutation rates (Li et al. 2003). The SOS response
system, a regulatory system that is up-regulated upon detecting DNA damage (e.g.,
exposure to UV light or b-lactam antibiotics), can arrest the replication process and
operate in a repair mode (Friedberg and Friedberg 2006; Janion 2008). The SOS
and MMR systems are examples of genetic regulators that have been associated
with clinical antibacterial failure.

Another genetic regulatory system is the two-component regulatory system that
consists of a sensor, a membrane spanning histidine kinase, and a regulator (cognate
response regulator). The sensor allows bacteria to sense the extracellular and
intracellular environments, and the response regulator then controls the downstream
effect, resulting in the development of antibiotic resistance or the production of
virulence factors. For example, in P. aeruginosa, the two-component system con-
sists of 10 % of all genes that allow for bacteria to adapt and survive in diverse
environmental conditions (Stover et al. 2000; Laub and Goulian 2007; Gooderham
and Hancock 2009). Examples of a well-studied two-component regulatory systems
responsible for adaptive resistance among polypeptide and cationic peptides
(Macfarlane et al. 1999; McPhee et al. 2003; Fernandez et al. 2010) are PhoP-phoQ
(Macfarlane et al. 1999), pmrA-pmrB (McPhee et al. 2003), and ParR-ParS
(Fernandez et al. 2010). These systems have been proposed to regulate adaptive
resistance in polymyxins and aminoglycosides.
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Quorum sensing is another well-studied regulatory system in bacteria repre-
senting an alternative approach for bacterial resistance. Quorum sensing is a
cell-to-cell communication mechanism used by bacteria as a means to regulate cell
population and a diverse range of physiological processes, such as secretion of
virulence factors, invasion host defences, and up-regulation of genes that may be
involved in regulating antibiotic tolerance (Driscoll et al. 2007; Pesci et al. 1997;
Pesci and Iglewski 1997; Pearson et al. 1995). None of the proposed PK/PD models
of antibiotics incorporate virulence factors or bacterial signalling that influence the
pathogenicity of bacteria.

The intrinsic or acquired resistance in response to antimicrobial treatment,
coupled with limited antibiotics in the drug development pipeline, is of great
concern. Pathogens can develop resistance to antibiotics during the course of
therapy, especially when exposed to sub-optimal antibiotic concentrations. The
common known mechanisms of antibiotic resistance are: induction of b-lactamase
production (e.g., treatment with cefepime and ceftazidime), up-regulation of efflux
pumps, and mutations of the target binding site that alter drug-target affinity (e.g.,
fluoroquinolones and aminoglycosides) (Buynak 2013; Guan et al. 2013). Although
many efforts have been made to evaluate inhibitors for b-lactamases or efflux
pumps (Buynak 2013), the high mutation rate of bacteria, compounded with their
constantly evolving mechanisms of mutation and the lack of complete, in-depth
knowledge of bacterial resistance mechanisms, has precluded the inclusion of such
critical components into PK/PD models.

Molecular mechanisms of bacterial responses to external pressures have been
proposed and well characterized in the literature (Blair et al. 2015). However, the
temporal profiles of such regulatory factors have not been integrated into quanti-
tative PK/PD models. Incorporation of quantitative measurements of factors con-
trolling antibiotic resistance and bacterial virulence into mechanistic translational
models will provide opportunities to link with population-based models, a powerful
tool for the optimization of clinical dosage regimens. Additionally, such models
could be used to guide the study of underlying mechanisms of bacterial and host
responses to new treatments. An increased knowledge of bacterial regulatory
pathways will aid in uncovering new targets for therapeutic intervention leading to
altered production of aggressive bacteria.

17.10.2 Host Immune Response

Bacterial regulatory systems can allow for adaptation and persistence within the
host by subverting phagocytosis by immune cells or by countering the host immune
system by producing immunosuppressive effects. The dynamic interaction between
the host and the invading pathogen can result in complete recovery of the host, due
to eradication of the infecting pathogen, the emergence of a resistant hard-to-treat
pathogen, or death of the host system due to complete failure of the immune
response. Interactions of the host immune system and bacteria are complex in
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nature and are dependent on both the bacteria and the status of the host immune
system. A homogenous initial bacterial population may give rise to a heterogeneous
bacterial population during the course of treatment owing to genomic and pro-
teomic variability. A number of bacterial species are capable of manipulating and
altering signaling pathways responsible for the generation of host immune
responses that could result in hyper-activation (e.g., symptoms observed during
infections) or immune system avoidance. Circumventing the host immune system is
vital for bacterial survival and persistence within the host (Gyles 2010). Hence,
alterations to the host immune system (e.g., increase or decrease in the number of
white blood cells) or changes in bacterial regulatory pathways will influence the
dynamics of an infection.

Neutrophils or polymorphonuclear lymphocytes (PMNs) are essential innate
immune components that determine host response to bacterial infections.
Neutrophils are the first immune components to arrive at the site of an infection that
act to produce antimicrobial products and pro-inflammatory factors to help contain
the infection. Additionally they cause the activation of other innate immune cells,
such as epithelial cells, mast cells, macrophages, and endothelial cells (among
others). PMNs and macrophages recruit phagocytes that are responsible for the
phagocytosis of the invading pathogen (Silva 2010).

Neutrophils express toll-like receptors (TLRs) that play a key role in early innate
immune responses by sensing endogenous signals that might prevent the progres-
sion of infection (Kawai and Akira 2011; Medzhitov et al. 1997). TLRs have the
ability to recognize pathogen-associated microbial patterns (PAMPs), exclusively
expressed by bacteria, or danger-associated molecular patterns (DAMPs) that are
endogenous molecules released by infected or dying cells in the damaged tissue.
After the molecular recognition of PAMPs, TLRs activate signaling pathways that
provide specific immunological responses tailored to the particular pathogen
expressing that PAMP (Akira et al. 2006). Examples of PAMPs include bacterial
cell wall components, such as lipopolysaccharide, peptidoglycan, and lipopeptides
present in Gram-negative bacteria. In contrast, DAMPs are typically intracellular
proteins, such as high-mobility group proteins (e.g., HMGB1) and heat shock
proteins. The potential to recruit and direct the innate immune system in combi-
nation with drugs targeting TLRs to prevent the inflammatory process associated
with infection holds great therapeutic potential. Figure 17.4 contains a network or
framework of a systems level regulation of host immune responses, with several
interactions between the host immune system and bacteria, which is adapted from
the Consensus Network of Immunological Steps and Processes Activated upon
invasion by Bordetellae species (Thakar et al. 2007). The ability to detect and
quantify a number of these immune components, and integrate them into mathe-
matical models, should enhance understanding of the underlying infectious process
and improve the translation of preclinical research to humans.

Pharmacokinetic parameters have been successfully scaled from pre-clinical
species to humans for both small and large molecule drugs, especially renally
cleared drugs, using either allometric scaling or physiologically based pharma-
cokinetic models (Mager et al. 2009). The drug concentration in the plasma is
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frequently used as the main driving function of pharmacological activity; however
it is not indicative of the concentration at the site of infection (e.g., epithelial lining
fluid or bone). Some agents have significantly greater distribution to certain tissues,
whereas some other compounds may remain confined in the plasma space (Burian
et al. 2012; Rodvold et al. 2006). Tigecycline is an example of an agent resulting in
low plasma concentrations but significantly greater tissue concentrations. Hence,
the recommended tigecycline dose does not result in sufficiently high drug con-
centrations in the plasma to treat blood stream infections (Rodvold et al. 2006).

In addition, disease states (e.g., cancer or cystic fibrosis) can alter the available
albumin resulting in altered protein binding within the host. In the case of highly
protein bound drugs, the concentration of free drug will be considerably greater in
cases of hypoalbuminemia observed in critically ill patients (Joynt et al. 2001;
Briscoe et al. 2012; Ulldemolins et al. 2010; Wong et al. 2013). Close drug
monitoring in the case of polymyxins or aminoglycosides may be critical to avert
adverse events.

17.11 Prospectus on Antimicrobial Translation
with a Systems Approach

Systems biology seeks a quantitative understanding of biological systems and
control processes (Kitano 2002), whereas systems pharmacology focuses on the
responses of biological systems upon perturbation by drugs. As noted by Sorger
and colleagues, “Quantitative system pharmacology will create understanding of
disease mechanisms and therapeutic effects that span biochemistry and structural
studies, cell and animal-based experiments and clinical studies in human patients”
(Sorger et al. 2011). The goal of adopting a systems-based approach in the area of
infectious disease is to accommodate the multifactorial components of the immune
system, host immune system-bacteria interactions, bacterial physiology, and
mechanisms of drug action. The transition toward systems-based approaches
requires the ability to integrate diverse data types and experimental platforms. Most
approaches for translating preclinical antimicrobial research focus only on antibiotic
activity and interactions between the drug and bacteria. Mathematical modeling can
assist in this process by integrating the behavior of multiple components into a
comprehensive network-based model, and by addressing questions that are not yet
accessible to experimental analysis. In addition, combining systems models and
adaptive feedback control, in which pharmacokinetic and biomarker measurements
of immune status and pharmacological response, could be used to personalize
antibacterial pharmacotherapy and improve clinical outcomes in individual patients.

Our PK/PD modeling philosophy is to use microbiology, biochemistry, phar-
macology, and -omics data to inform our mechanism-based models. A systems
approach will foster the development of more complete models that incorporate the
pharmacology of the therapeutic agents, molecular signaling and factors released by
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the bacteria, and components of immune response (e.g., TNF-a, pro-inflammatory
and anti-inflammatory cytokines, and tissue damage signals). This approach will
improve the ability to predict the progression of the infectious process under
treatment conditions and provide a framework for the translation of preclinical
antimicrobial research.
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Chapter 18
Viral Dynamic Modeling of Hepatitis
C Virus Infection: Past Successes
and Future Challenges

Eric L. Haseltine and Holly H.C. Kimko

Abstract Viral dynamic modeling has had a long history of providing insight into
the dynamics of hepatitis C virus infection. This chapter reviews a model used to
predict treatment outcomes for regimens including the direct-acting antiviral
telaprevir. Challenges for modeling existing and upcoming regimens are also
discussed.

Keywords Interferon � Direct-acting antiviral (DAA) � Telaprevir � Multi-variant
model � Parameterization � Sequencing methods � Interferon-free regimens �
Nonlinear mixed-effect (NLME) � Limit of detection (LOD) � Sustained virologic
response (SVR)

18.1 Introduction

Viral dynamic modeling has had a long history of providing insight into the
dynamics of hepatitis C virus (HCV) infection. For example, the seminal work of
Neumann et al. provided a rational explanation for the two slopes of decline
commonly observed in the viral load (i.e., HCV RNA levels) of patients treated
with interferon (Neumann et al. 1998). The first, typically rapid decline observed
with interferon therapy was attributed to inhibition of viral replication, whereas the
second, prolonged decline was attributed to clearance of infected hepatocytes.
Guedj et al. constructed a model incorporating both the intracellular and extracel-
lular infection dynamics to explain how different mechanisms of action account for
the apparent difference in the virus decay rate of different antiviral regimens (Guedj
et al. 2013a). Many of these seminal works have been reviewed elsewhere (see, for
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example, Chatterjee et al. 2012, 2013). Most viral dynamic models were developed
to characterize the HCV viral load after treatment with antiviral regimens in small
studies. This chapter reviews the use of viral dynamic modeling to predict both the
HCV viral load and the clinical outcome as measured by sustained virologic
response (SVR) for larger HCV clinical studies.

The dynamics of the HCV viral load, both on- and post-treatment, provide useful
information that can help predict whether patients will achieve SVR with antiviral
therapy. In patients treated with only interferon and ribavirin, these dynamics
provide important information about how these drugs work since a wide range of
viral loads above the limit of detection (LOD) are observed. Based on these
dynamics, interferon-regimen responses are typically characterized into the four
main categories shown in Fig. 18.1a: (1) achievement of SVR, (2) viral relapse
(undetectable viral load at the end of treatment but subsequent detectable viral
load), (3) partial response (detectable viral load at the end of treatment), and (4) null
response (<2 log drop in viral load after 12 weeks of treatment). Treatment with an
interferon regimen generally results in one or two phases of viral decline on the log
scale. Also, the viral infection can persist below the LOD as inferred from the
dynamics of viral relapse (Fig. 18.1a).

The viral dynamics are significantly different when a direct-acting antiviral
(DAA) is added to an interferon regimen. With these triple regimens, patients
usually exhibit a rapid first phase of viral decline, followed by a second phase
decline that is steeper than that observed when the DAA is excluded (compare
Fig. 18.1b to 18.1a). Even when patients exhibit similar viral dynamics above the
LOD followed by viral dynamics below the LOD for the remaining on-treatment
period, some of these patients achieve SVR, whereas others relapse. These viral
dynamics occurring below the LOD cannot be directly measured, but they can be
inferred with the use of viral dynamic modeling. If one can accurately account for
the dynamics of the infection systems that are, in turn, integrated into the viral

Fig. 18.1 Categories of responses to a interferon and b the corresponding HCV viral dynamics
when a direct-acting antiviral (DAA) is added to the interferon regimen. In both cases the treatment
duration is 24 weeks
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dynamics, then it is possible to predict the efficacy of antiviral regimens. In this
light, viral dynamic modeling is truly an exercise in systems pharmacology.

Numerous studies have sought to explain the viral dynamics observed in patients
during the initial treatment response before the viral load becomes undetectable
(Chatterjee et al. 2012, 2013). However, these studies have limited utility in predicting
SVR. For example, a model developed by Guedj et al. integrated the intracellular and
extracellular infection cycles of HCV (Guedj et al. 2013a) to describe the viral
dynamics before they initially drop below the LOD.When the authors fit this model to
these early viral dynamics, the parameter representing the inhibition of virion
assembly and secretion by telaprevir was significantly weaker than that estimated for
daclatasvir (P < 10−6) (Guedj et al. 2013a). Although telaprevir and daclatasvir have
not been directly compared in a controlled clinical study, they have both been inde-
pendently evaluated in combinationwith pegylated interferon (Peg-IFN) and ribavirin
(PR). From these studies, it appears that the patient populations (treatment-naïve
patients with genotype 1 HCV infection) and treatment durations (24 or 48 weeks,
depending on early viral response) were comparable. Telaprevir-based treatment
resulted in a 79 % SVR rate (N = 363) versus PR alone in Phase 3 studies (INCIVEK
(telaprevir) [US Prescribing Information] 2013), whereas daclatasvir resulted in a
65 % SVR rate (N = 147) versus PR alone in Phase 2 studies (Hezode et al. 2012).
The apparent disconnect between early viral dynamics and SVR outcome (although
subject to the uncertainty arising from a cross-trial comparison) suggests that other
antiviral factors, in particular those that might exert influence on the viral dynamics
below the LOD, are critical to understanding and predicting viral eradication.

To the best of our knowledge, only three models have successfully been used to
predict treatment outcomes in HCV clinical studies:

1. A model developed for PR regimens (Snoeck et al. 2010)
2. A model developed for alisporivir and ribavirin regimens (Guedj et al. 2013b),

and
3. A model developed for telaprevir and PR (T/PR) regimens (Adiwijaya et al.

2012).

This chapter reviews the third model in depth and discusses the challenges that will
need to be addressed for viral dynamic modeling to be useful for modeling of
existing and upcoming regimens.

18.2 Modeling Telaprevir-Based Regimens

Adiwijaya et al. developed a multi-variant viral dynamic model to understand and
predict the effects of treating genotype 1 HCV-infected patients with T/PR
(Adiwijaya et al. 2012). This model helped inform design of clinical studies,
playing a pivotal role in determining the telaprevir treatment duration used to
design Phase 3 clinical studies. These Phase 3 studies ultimately validated the
model predictions.
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The model integrates the pharmacokinetics (PK) of each drug with the phar-
macodynamics of the viral dynamics. To better understand this integrative model,
we first discuss the viral dynamic portion of the model, then how the PK is inte-
grated into the model to drive the viral dynamics. Next we consider how this model
was parameterized and how predictions were made using the model. Finally, we
review the model predictions and their potential utility in helping guide the design
of clinical studies.

18.2.1 HCV Viral Dynamics

The multi-variant model used by Adiwijaya et al. is conceptually similar to the
single variant models originally developed to understand dynamics with
interferon-based treatment (Neumann et al. 1998). Namely, the model considers a
population of target cells that can be infected by the virus. The infected cells
produce additional virus, leading to an exponential replication cycle of virus that is
ultimately limited by how quickly new target cells can be regenerated. This limited
regeneration leads to a chronically infected state, where virus production is bal-
anced by degradation of the virus and infection of additional target cells.

The model was developed to capture the different types of patient responses
observed in clinical data, including on-treatment viral breakthrough, relapse after
the end of treatment, and achievement of SVR at different times. Each of these
treatment outcomes can be attributed to the types of viral quasi-species (i.e., the mix
of viral variants present at any given time) and the effectiveness of the antiviral
regimen on these quasi-species. Viral variants exhibit a broad range of sensitivity to
telaprevir, from extremely sensitive (e.g., wild-type and R155K variants) to largely
insensitive (e.g., R155K/V36M and A156T variants). Telaprevir is dosed to
effectively inhibit the sensitive variants, but not the insensitive variants (Sarrazin
et al. 2007). Although these telaprevir-insensitive variants remain sensitive to PR
(Kieffer et al. 2007), PR inhibition of viral replication can vary widely from patient
to patient and is generally not as profound as telaprevir inhibition of
telaprevir-sensitive variants. Typically the telaprevir-sensitive wild-type
(WT) variant is the most fit (i.e., replicates the fastest) and dominates the
quasi-species. Therefore, the rationale behind the T/PR regimen is that telaprevir
swiftly and strongly inhibits the predominant, drug-sensitive variants, while PR
inhibits to a more moderate degree the telaprevir-resistant variants. When all agents
are effective and the treatment duration is sufficiently long, SVR is achieved. If the
regimen is not dosed long enough, the patient relapses after the end of treatment.
When PR has little antiviral effect, the outcome is viral breakthrough.

To explain these key features of the clinical data, the single variant model must
be made more complex by adding multiple viral variants. For comparison, the
governing model equations for both the single variant and multi-variant dynamic
models are presented in Fig. 18.2. Overall, the two models are quite similar.
However, in contrast to the single variant model, the multi-variant model tracks
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multiple numbers of infected cells and viral variants, with the primary differences
being that, in the multi-variant model, (1) target cells are lost due to infection by
multiple viral variants and (2) viral variants are generated within cells infected with
that variant and within cells infected with other variants via mutation.

Conceptually, the different outcomes attainable by the multi-variant model can
be understood by using the mathematical construct of the reproductive number, R0

Table 18.1 HCV viral dynamic model symbol definitions

Symbol name Description

c Plasma virion clearance rate constant

d Healthy hepatocyte death rate constant

fi Fitness of virus variant i relative to WT (pi/p)

Ii Concentration of cells infected with viral variant i

mj,i Mutation rate from variant j to variant i

p WT virion production rate constant

s Synthesis rate of healthy hepatocytes

T Concentration of healthy hepatocytes

Vi Plasma concentration of viral variant i

VSVR Eradication limit for the virus

b Healthy hepatocyte infection rate constant

di Clearance rate constant for hepatocytes infected with virus variant i

dnodrug Clearance rate constant for infected hepatocytes in the absence of drug

dd,i Effect of drug d on the clearance of hepatocytes infected with virus variant i

ed,i Production blockage factor of drug d on virus variant i

ei Total blockage factor on virus variant i

η Peg-IFN effect of blocking infection

(a) (b)

Fig. 18.2 Equations for the a single variant and b multi-variant HCV viral dynamic models.
Definitions for model parameters are presented in Table 18.1
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(Nowak and May 2000). In the absence of antiviral therapy, R0 is defined as follows
for each variant (j):

R0;j ¼ sfjpb
dcdj

ð18:1Þ

Similarly, R0 can also be defined in the presence of antiviral therapy:

R0;j;treat ¼ 1� eið Þ 1� gð Þ sfjpb
dcdj

ð18:2Þ

R0 corresponds to the number of viruses that are produced during a single infection
cycle. This definition allows for an intuitive understanding of the parameters
governing R0 from Eq. 18.1. For example, increasing the viral production rate (p) or
the infection rate (b) increases the number of viruses produced during an infection
cycle, and correspondingly R0 increases. In contrast, increasing the viral (c) or
infected cell (d) clearance rates decreases the number of viruses produced during an
infection cycle, so R0 decreases. If R0 is greater than or equal to 1, then the infection
propagates until it becomes chronic. Otherwise, the infection does not persist and
will be cleared. For a multi-variant model, if R0 is known for the WT variant, then
R0 for each variant in the absence of antiviral therapy can be calculated by speci-
fying the relative fitness for each variant. Typically the WT variant has the highest
relative fitness (i.e., fWT = 1), whereas the relative fitness of all other variants is
lower (i.e., fj < 1). These variants are included in the model only if they are fit
enough to replicate, that is their R0 values in the absence of antiviral treatment are
greater than or equal to 1. In the presence of antiviral therapy, the R0 for each
variant is multiplied by the efficacy of each antiviral treatment (telaprevir, Peg-IFN,
and ribavirin in this case) as shown in Eq. 18.2 to yield R0,treat. To achieve SVR in a
patient, R0,treat values of all variants must be less than 1. For viral relapse, generally
all variants’ R0,treat values are less than 1 during treatment, but the treatment
duration is not long enough for each variant to be cleared. In some cases, viral
relapse can occur with R0,treat values slightly greater than 1 during treatment. For
viral breakthrough, at least one variant’s R0,treat is larger than 1, thereby allowing
the variant to cause an observable, persistent infection during antiviral treatment.

Another feature of this multi-variant model is that the variant with the highest
fitness (i.e., the largest R0) outcompetes all other variants. Thus, though theoreti-
cally each variant can infect target cells and replicate, in practice the variant with
the highest fitness dominates. All other variants are primarily generated from the
variant with the highest fitness via mutation. Which variant has the highest fitness is
typically determined by the selective pressure: antiviral therapy selects
drug-resistant variants, whereas the absence of antivirals selects the WT variant.
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One practical consideration that must be taken into account is the number of
mutants to include in the model and their genetic barrier (i.e., the number of
mutations that make the drug-resistant variants different from the dominant
drug-sensitive variant). The genetic barrier along with the mutation rate determines
whether a given variant pre-exists at the beginning of treatment and how much of
that variant exists. Theoretical arguments suggest that all single and double mutants
pre-exist as part of the viral quasi-species before the start of antiviral treatment
(Rong et al. 2010). However, to avoid generating an unnecessarily complicated
viral dynamic model, only those mutants that are relatively fit in the presence of
antiviral treatment are modeled. For the T/PR model, many key mutants were
identified first using in vitro data (Lin et al. 2006; Zhou et al. 2007, 2008) and then
confirmed clinically by sequencing virus from patients treated with telaprevir-based
regimens in Phase 1 studies (Adiwijaya et al. 2010). Although data from Phase 2
and 3 clinical studies were used to identify additional mutations (Kieffer et al. 2012)
not considered by the T/PR model (Adiwijaya et al. 2012), these mutations were
similar to those included in this model in terms of genetic barrier and telaprevir
resistance. That is, mutants could be classified into three groups: (1) high fitness,
low resistance mutants that varied from the WT virus by one mutation; (2) high
fitness, high resistance mutants that varied from the WT virus by two mutations;
and (3) low fitness, high resistance mutants that varied from the WT virus by one
mutation. By accounting for these three main groups of mutants, the model
generically accounts for the broad range of mutants observed in clinical studies.

18.2.2 Integrating Drug Pharmacokinetics with the HCV
Viral Dynamics

The parameters e, d, and η are used to model the effect of antivirals on the viral
dynamics. Telaprevir and ribavirin affect e, the inhibition of viral production,
whereas Peg-IFN affects both e and η, the blockage of viral infection. The model
parameter d, which primarily affects the steepness of the second phase of viral
decline, is assumed to be correlated with e. Because potent DAAs such as telaprevir
inhibit viral replication to a much greater degree than PR, modeling e and d in this
way results in the first and the second phase viral declines for telaprevir being much
faster than those observed for PR.

Hill functions are used to map drug concentrations onto the actual values of e, d,
and η, along with a factor (j) that nominally accounts for drug exposure differences
in the plasma and liver. These mappings are presented in Eq. 18.3, where [drug]
denotes the drug concentration in plasma. The coefficients for the Hill functions
were fixed in the viral dynamic model to values estimated from in vitro experiments
in the HCV replicon system (Lin et al. 2006; Zhou et al. 2007, 2008).
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1� eið Þ ¼
Y
d

1� ed;i
� �

edrug;i ¼
jdrug½drug�
� �hdrug;i

IChdrug;i
50;drug;i þ jdrug½drug�

� �hdrug;i
g ¼ jg½Peg-IFN�

� �hPeg�IFN

IChPeg�IFN
50;Peg-IFN þ jg½Peg-IFN�

� �hPeg�IFN

di ¼ dnodrug �
X
drug

ddrug;i log10 1� edrug;i
� �

ð18:3Þ

Approximations are used to account for the dynamics of the drug exposure. Each
drug is administered on a regimented schedule: orally every 8 h for telaprevir,
orally twice a day for ribavirin, and weekly injections for Peg-IFN. Rather than
accounting for the discrete dynamics of this schedule, the exponential approxi-
mations presented in Eq. 18.4 are used to roughly capture the dynamics of the
initial drug administration:

Telaprevir : ½TVR] = F1TDT

sTClT
1� exp �ClT t

VT

� �� �

Peg-IFN : ½Peg-IFN] = DP

sPClP
1� exp � t

VP
ClP

þ 1
KaP

 ! !

Ribavirin : ½RBV] = F1RDR

sRClR
1� exp � t

V2R
ClR

þ V2R
Q3R

þ V3R
Q3R

þ V4R
Q4R

þ 1
F1RKaR

 ! !

ð18:4Þ

Here, Dj is the dose for drug j, sj is the dosing interval for drug j, F1 values are the
bioavailabilities, Cl values are the drug clearances, V values are the volumes, Q values
are the inter-compartmental clearances, and Ka values are the absorption rate con-
stants. As shown in Fig. 18.3, this approximation roughly captures the average drug
concentration and neglects the fluctuations due to discrete dosing. Drug parameters
for each patient treated with T/PR are obtained from population PK models. The
primary benefit of this approximation is that it reduces the computational expense
required to integrate the model. Simulation of discrete dosing introduces numerous
discontinuities into the model (e.g., every 8 h for the duration of q8h telaprevir dosing
as shown in Fig. 18.3). These discontinuities substantially slow down model simu-
lation when using an adaptive time-step integrator such as LSODE (Hindmarsh 1980)
or DASSL (Petzold 1982) because they force the integrator to take small time steps to
resolve the PK dynamics (hours), whereas the SVR dynamics occur on a longer time
scale (weeks). Consequently, parameter estimation, which requires numerous
model-based predictions for calculations of residuals from the observed values, can
become prohibitively time consuming when dosing is discretely simulated.
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18.2.3 Model Parameterization

The model contains a large number of parameters that govern the dynamics of the
target cells, infected cells, and viral variants. However, because only total viral load
data (i.e., the sum of all viral variants) were used to fit the model, many parameters
are correlated and cannot be uniquely determined. Therefore, some parameters were
fixed to reasonable values prior to estimation. These parameters include those listed
in Table 18.2 as well as the drug-related parameters IC50,d,i and hd,i which were
obtained from published literature (Lin et al. 2006; Zhou et al. 2007, 2008) as
discussed in the previous section.

The remaining parameters were estimated using all the available patient data.
The telaprevir-resistant variants are HCV genotype dependent. Table 18.3 lists the
variants analyzed for HCV genotypes 1a and 1b in this model. The parameters
estimated for the different treatment groups (control [PR], T/PR in genotype 1a
patients, and T/PR in genotype 1b patients) are listed in Table 18.4.

Nonlinear optimization was used to determine these parameters by minimizing
the squared residuals between the model predictions and the observed HCV RNA

Fig. 18.3 Comparison of
discrete telaprevir PK with the
smooth approximation

Table 18.2 Parameters fixed
in the multi-variant HCV viral
dynamic model

Parameter Value

Tmax 10 cells (normalized)

s 0.084 h−1

R0,WT 55.24

dnodrug 5.2 (10−3) h−1

b 0.05 h−1 virion−1
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levels on-treatment. Both the viral load data and the model predictions were con-
verted to log10 change from the baseline viral load before determining the residuals.
Viral load data at the limit of quantification (LOQ) or LOD are problematic because
they do not provide precise quantitative information with which to fit model
parameters. Consequently, only the first LOQ or LOD data point was fitted with the
assumption that the viral load was the LOQ or LOD value at that time. Multi-start
nonlinear optimization, where the optimizer starts from different initial guesses of
the parameters, was used to determine optimal parameters as this parameter esti-
mation problem is prone to local or poorly-defined optima. During the multi-start
optimization, starting the parameter estimation from differing η values (the Peg-IFN
blockage parameter) is particularly helpful as the primary variation in treatment
outcome results from variability in the interferon response.

18.2.4 Model Predictions and Validation

Originally this model was developed using data from Phase 2 clinical studies of
telaprevir (Hézode et al. 2009). As shown in Fig. 18.4, the model was fit to data
from these studies (PROVE1 and PROVE2) which evaluated 12 weeks of
telaprevir in combination with 12–48 weeks of PR in HCV treatment-naïve patients
(i.e., never been previously treated for HCV). Subsequently, the model was used to
computationally explore the treatment outcomes expected from different patient
populations (e.g., patients who did not achieve SVR with prior PR treatment) and
different durations of telaprevir treatment. Model predictions were made by
selecting patients with similar characteristics (e.g., genotype, prior response to PR,
cirrhosis status, etc.) to the analysis of interest. Because patients who did not
achieve SVR with prior PR treatment were not included in the training data set,
response to PR for treatment-naïve patients given T/PR was simulated by setting the
telaprevir dose to zero. Data from treatment-naïve patients with the appropriate PR

Table 18.3 Telaprevir-resistant variants for each HCV genotype

HCV genotype Resistant variants

1a R155K, A156T, V36M/R155K

1b V36A, A156T

Table 18.4 Estimated parameters for each treatment group

Study arm Estimated parameters

Control (PR only) c, dPeg-IFN, jPeg-IFN, jRBV, jη
Genotype 1a (T/PR) c, dPeg-IFN, dTVR, jTVR, jPeg-IFN, jRBV, jη, fR155K, fA156T, fV36M/R155K

Genotype 1b (T/PR) c, dPeg-IFN, dTVR, jTVR, jPeg-IFN, jRBV, jη, η, fV36A, fA156T
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responses (e.g., null response) were used in lieu of data from patients who did not
achieve SVR with prior PR treatment.

As shown in Fig. 18.4, the SVR rates for the vast majority of subsequent Phase 2
and Phase 3 studies were within the 90 % confidence intervals of the model pre-
dictions. The model was also used to explore and eliminate study designs that were
predicted to yield low SVR rates. Another critical contribution of the model con-
cerned the determination of the telaprevir treatment duration. The design of the
Phase 3 clinical studies was based on this prediction, with the results of the studies
ultimately validating the model predictions.

Data are from the clinical studies PROVE1 (Hézode et al. 2009), PROVE2
(Hézode et al. 2009), PROVE3 (McHutchison et al. 2010), C206, ADVANCE
(Jacobson et al. 2011), ILLUMINATE (Sherman et al. 2011), and REALIZE
(Zeuzem et al. 2011). The notation “TxPRy” indicates that telaprevir and PR were
dosed for x and y weeks, respectively. “DS” indicates that PR was dosed for
4 weeks prior to the start of telaprevir dosing. “rel” indicates that patients relapsed
in previous PR48 treatment. “NR” indicates that patients never had undetectable
HCV RNA during previous PR48 treatment (null and partial responders).

Fig. 18.4 Model verification: comparison between observed and predicted SVR rates (Adiwijaya
et al. 2012)
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18.3 Future Challenges

While viral dynamic modeling was successfully used to guide the clinical devel-
opment of telaprevir, there are many challenges that need to be overcome in future
modeling efforts. In this section, those challenges are reviewed as they pertain to
both interferon-based and interferon-free regimens.

18.3.1 Incorporation of Sequencing Data

Resistance to DAAs is a key factor that contributes to the failure of these regimens
to suppress an HCV infection. Viral sequencing is routinely performed in clinical
studies to understand the dynamics of this viral resistance in individual patients.
The three most common types of sequencing methods used for this purpose are
population sequencing, clonal sequencing, and deep sequencing (DS), all of which
require sequencing of RT-PCR products amplified from patient plasma. These
sequencing methods differ in their sensitivity to detect the frequency of resistant
variants. Population sequencing provides only qualitative information about the
frequency of the variant and has a relatively insensitive LOD of 20 % for minority
variants. Clonal sequencing is more sensitive than population sequencing (*5 %
LOD versus 20 %) and provides a quantitative estimate of the frequency of resistant
variants. Like clonal sequencing, DS is also quantitative but has a lower LOD
(*1 %) (Thomas et al. 2012).

The multi-variant viral dynamic model was originally developed using clonal
sequencing data to inform key model parameters governing the dynamics of the
viral variants (Adiwijaya et al. 2010). However, the subsequent modeling effort
(Adiwijaya et al. 2012) did not include any sequencing data. Rather, the parameters
estimated from the prior modeling effort (Adiwijaya et al. 2010) were used for the
initial parameter estimates.

The viral dynamic model was developed using efficacy data from primarily one
telaprevir dosing regimen (750 mg q8h). Therefore, it is reasonable to question
whether or not the model is correctly sensitive to the telaprevir concentration. To
answer this question clinically, the data from population sequencing analysis of
patients who did not achieve SVR with a telaprevir-based regimen were evaluated
(Kieffer et al. 2012). It was found that the majority of patients experiencing viral
breakthrough during telaprevir treatment had variants that were highly resistant to
telaprevir, implying that telaprevir was dosed sufficiently to suppress variants with
lower levels of resistance to telaprevir. It is expected that sequencing data can be
also used to construct viral dynamic models that are sensitive to the varying
time-course of antiviral concentrations, even if the majority of the data are from
studies evaluating only one dosing regimen for the antiviral. The sensitivity of
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different viral variants to the antiviral, combined with the inherent variability of
exposures in a population of patients, can be used to understand such effects from
both the on-treatment and post-treatment dynamics of viral variants observed from
the sequencing data.

The model of Adiwijaya et al. (2012) was developed by fitting solely
on-treatment data. Accordingly, the PK approximations given by Eq. 18.4 account
only for the dynamics resulting from the initial drug administration period. These
approximations should be revised to account for the dynamics of time-varying
doses and the post-dosing period. Additionally, the constraints used to enforce SVR
(whereby individual viral species are eradicated once their HCV RNA levels fall
below a pre-defined threshold; see the equation for the viral species in Fig. 18.2b)
will likely hinder the post-treatment reversion back to drug-sensitive virus over time
at the end of treatment (Sullivan et al. 2012). Consider the scenario shown in
Fig. 18.5a, where WT virus and the V36A variant are eradicated by the SVR
constraints in the Adiwijaya et al. model. These constraints prevent WT and the
V36A variant from re-emerging after treatment, and consequently the model makes
the unlikely prediction that the unfit A156T variant takes over the viral population.
One way to overcome this problem is to implement the viral eradication boundary
used by Snoeck et al. (Snoeck et al. 2010). In this framework, the number of
infected cells must be greater than 1 in order for those cells to produce virus. As
shown in Fig. 18.5b, this method allows the drug-sensitive virus and infected cells
to be eradicated during treatment, then re-emerge after treatment. The mechanism
for this re-emergence is as follows: first mutation from a drug-resistant variant
repopulates the drug-sensitive infected cells, and then the drug-sensitive infected
cells repopulate the drug-sensitive virus. Thus, this framework elegantly allows for
scenarios which the Adiwijaya et al. approach cannot account.

Fig. 18.5 Comparison of the variant dynamics for a hypothetical patient with HCV genotype 1b
infection using the eradication criteria of a Adiwijaya et al. (2012) and b Snoeck et al. (2010).
Note that the latter criterion permits eradication and re-emergence of drug-sensitive variants after
the end of treatment whereas the former boundary criterion does not. The treatment phase is
depicted by the gray bar
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One further complication results from the fact that large-scale studies of resis-
tance currently utilize the population sequencing method due to its relatively low
cost. As previously noted, population sequencing data provides only qualitative
information about the resistance variant’s presence. To incorporate these data, new
modeling techniques such as those pioneered by Sullivan et al. (2012) will need to
be adapted to viral dynamic models to account for the lack of precise, quantitative
information. In their work, Sullivan et al. constrained quantitative models of
resistance dynamics using the qualitative data provided by population sequencing
(Sullivan et al. 2012). In the future, it is anticipated that large-scale resistance
studies will be performed using DS as the cost of next-generation sequencing
technologies rapidly decreases.

18.3.2 Modeling Interferon-Free Regimens

Several interferon-free HCV regimens have moved into clinical development and
are likely to be approved. Many of these regimens have demonstrated high SVR
rates even in difficult-to-treat patients. Additionally, the majority of these regimens
quickly bring the viral loads below the LOD. For these regimens, since there are
only a few measurable viral loads during the rapid initial decline, if any, most of the
useful information for the modeling exercise is contained in the viral dynamic data
from both on-treatment breakthrough and post-treatment relapse. Therefore, vari-
ants identified by sequencing provide important information on how to model the
effect of the exposure of each drug in the combination therapy.

For regimens containing the potent nucleotide inhibitor (nuc) sofosbuvir, no
virologic breakthrough has been observed (Lawitz et al. 2013). In four Phase 3 trials
with sofosbuvir and ribavirin with or without pegylated interferon, no resistance to
sofosbuvir was detected (Svarovskaia et al. 2013). In addition, different patient
populations such as treatment-naïve and prior PR null responders can exhibit
dramatic differences in SVR rates even when the on-treatment viral dynamics are
indistinguishable. Here, the majority of the viral dynamics fall below the LOD. For
example, when sofosbuvir was dosed for 12 weeks in combination with ribavirin in
the ELECTRON study, SVR rates of 84 versus 10 % were observed for the
treatment-naïve and prior PR null responder populations, respectively (Gane et al.
2013a, b). When another potent DAA such as ledipasvir is added to the regimen,
then SVR rates of 100 % were observed in both of these populations (Gane et al.
2013a, b). One possible explanation consistent with these observations is that
resistance to a potent nucleotide inhibitor results in a relatively unfit mutant that
replicates below the LOD. Such dynamics are graphically illustrated in Fig. 18.6a,
where the gray lines below the LOD (the third phase of viral decline) denote the
mutant dynamics in different patients. Attainment of SVR depends on whether or
not an individual patient can clear this unfit mutant during treatment. When another
potent DAA is added to the original regimen, this unfit mutant must be resistant to
both the nuc and the DAA, and therefore the genetic barrier (i.e., the number of
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mutations from WT to this resistant mutant) is increased. Consequently, the vari-
ability of the third phase of viral decline occurs farther below the LOD for a
regimen containing both a nuc and another DAA (nuc + DAA; see Fig. 18.6b) than
with the nuc alone (see Fig. 18.6a). As a result, the chances of SVR are increased in
the nuc + DAA regimen. Because the mutant dynamics occur exclusively below
the LOD and are thus unobservable, assumptions must be made to parameterize the
mutant for viral dynamic modeling. The fact that prior PR response results in
different SVR rates suggests these parameters may be related to those obtained by
fitting PR data.

When the viral dynamics above the LOD contain rich dynamic information,
nonlinear mixed-effect (NLME) modeling is a useful tool to quantify the variability
in parameters. For example, Snoeck et al. (2010) and Guedj et al. (2013c) used
MONOLIX to model viral dynamics in patients treated with PR and alisporivir,
respectively. For interferon-free regimens, NLME modeling is expected to have
more limited utility because the most important dynamics occur below the LOD.
That is, patients who exhibit similar on-treatment viral dynamics and achieve SVR
are expected to have differing dynamics below the LOD (see, for example,
Figs. 18.1b and 18.6). In order to accurately predict viral dynamics in these
patients, particularly when reducing the efficacy of the regimen (e.g., shortening the
treatment duration), assumptions will need to be made concerning the variability
below the LOD.

18.4 Conclusions

Viral dynamic modeling is a powerful tool for interpreting and predicting the
efficacy of HCV regimens. The Adiwijaya et al. model of telaprevir-based regimens
(Adiwijaya et al. 2012) demonstrates the utility of these models for helping guide

Fig. 18.6 Hypothesized response for interferon-free regimens: a a potent nucleotide inhibitor
(nuc) and b a nuc combined with another DAA (nuc + DAA). The variability in these regimens is
consistent with a resistant virus that replicates to at differing degrees below the LOD (gray lines).
The initial drop decrease in the viral load for the first two phases of viral decline is proportional to
(denoted by the / symbol) the genetic barrier of resistance for the regimen
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the design of clinical studies. As the HCV treatment landscape continues to change,
challenges for viral dynamic modeling include incorporating viral sequencing data
to better inform model predictions and modeling regimens in which most of the
viral dynamics occur below the LOD. These challenges will require development of
novel methods and clever assumptions that are derived from better understanding of
viral infection systems pharmacology. These investments will facilitate the use of
viral dynamic modeling for designing clinical studies and analyzing their results.
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Chapter 19
Using Systems Pharmacology to Advance
Oncology Drug Development

Daniel C. Kirouac

Abstract Cytotoxic chemotherapies have been the foundation of oncology for the
last 50 years. The emergence of molecularly targeted anti-cancer drugs promises to
deliver inherently safer and more effective treatments by attacking the unique
biochemical vulnerabilities of tumor cells. However, the promise of these agents is
fundamentally limited by the heterogeneity of cancer genomes and the robustness
of protein signaling networks which control tumor cell growth. By quantifying
these cellular and molecular properties, computational systems biology has the
potential to accelerate progress and increase success rates of anti-cancer drug
development programs. Mechanism-based computational models which integrate
molecular cell biology and drug pharmacology may thus enhance the predictive
power of pre-clinical research, the utility of clinical data, and ultimately inform
critical drug development decisions. Examples are provided through which
orthogonal computational modeling approaches, from data-driven statistical models
to physicochemical-based differential equations, have been used to address chal-
lenges arising at different stages of such programs. These include drug target
selection, therapeutic design, identification of biomarkers for patient stratification,
dose selection, and the design of combination regimens.
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19.1 Introduction

19.1.1 A Brief History of Oncology Drug Development

Military rhetoric is often used to describe the human experience of cancer—Richard
Nixon declared war on cancer, patients battle the disease, and oncologists employ
arsenals of drugs. The war metaphor is perhaps appropriate, as the first effective
chemotherapy agents, nitrogen mustards, were derivatives of the chemical warfare
agent mustard gas. Characteristic injuries stemming from mustard gas exposure
include bone marrow hypocellularity and cytopenia, the inverse symptoms of blood
cancers, characterized by the excess production of white blood cells. Following the
Second World War their use was audaciously re-purposed in last ditch attempts to
treat childhood leukemias and lymphomas. These attempts produced unprecedented
symptomatic remissions, in what was then an untreatable death sentence. Thus were
born the first class of anti-cancer chemotherapies, Alkylating agents, which function
by attaching alkyl groups to DNA and impeding its proper replication and tran-
scription (DeVita and Chu 2008).

These were followed by other anti-proliferative chemotherapies, including
anti-metabolites (5-flourouracil, methotrexate, capecitabine, gemcitabine), anthra-
cyclines (doxorubicin, epirubicin, mitomycin), platinum-based agents (cicplatin,
carboplatin, oxaliplatin), topoisomerase inhibitors (campotecan, irinotecan), and
anti-microtubule agents (paclitaxel, docetaxel). All of these drugs function by
directly damaging and/or inhibiting the replication of DNA. A degree of selectivity
for cancerous vs. healthy tissue arises from two distinctive properties of cancer cells
—an enhanced rate of proliferation (perhaps the quintessential hallmark of cancer),
and impaired DNA damage repair machinery (required to accommodate the
mutational processes underlying neoplastic transformation). Given the razor thin
and highly variable therapeutic index of these drugs, serious toxicities associated
with their use are an expected part of therapy, biased to tissues with higher rates of
cellular turnover such as the gastrointestinal tract and hair follicles.

As a result of the narrow therapeutic index, clinical dosing regimens for
anti-cancer drugs have been based around toxicity. That is, establishing a maximum
tolerated dose (MTD) beyond which toxicities are unbearable, and pushing as close
as possible to this bar. Chemotherapies are rarely effective as single agents, and are
thus typically administered as multi-drug combination regimens. While such
combination regimens are the mainstay of clinical oncology, and in some cases
curative, they have largely been established via trial and error rather than rational
design. Very few have been evaluated pre-clinically to optimize doses or schedules,
fewer still are considered to display synergistic efficacy, and no regimens in current
use are selected based on biomarkers predictive of individual patient responses
(Dancey and Chen 2006). The practice of developing drug regimens by empirical
clinical testing is not only slow and inefficient, but borne out of the misery of
patients and their families.
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19.1.2 Molecularly Targeted Agents

Oncology drug development has been transformed over the last decade, from a focus
on deriving broadly cytotoxic agents toward molecularly targeted drugs, designed to
attack the molecular underpinnings of cancerous growth rather than the character-
istic phenotypes. This movement began with development of anti-estrogens and
anti-androgens, used to treat hormone-dependent breast and prostate cancers,
respectively. Imatinib, the first marketed tyrosine kinase inhibitor (TKI) was a
trail-blazer. A selective inhibitor of the protein Ableson kinase (ABL) which is
constitutively activated in the majority of chronic myeloid leukemias (CML) through
a chromosomal translocation (BCR-ABL), the drug produces durable clinical
remissions in the majority of patients (Druker et al. 2001; Kesselheim and Avorn
2013). In addition to transforming the management of the disease, these results also
validated the concept that molecular defined cancers could be cured using relatively
non-toxic agents, a discovery which set a goal post for a flurry of successive TKIs.
Examples include gefitinib and erlotininb (Epidermal Growth Factor Receptor
[EGFR] inhibitors used in lung cancer), crizotinib (an Anaplastic Lymphoma Kinase
[ALK] inhibitor also used in lung cancer), vemurafinib (a B-Raf inhibitor used in
melanoma), and lapatinib (a Human Epidermal Growth Factor Receptor-2 [HER2, or
ERBB2] inhibitor used in breast cancer). While these drugs have been transforma-
tive, the degree of success of imitainib for the treatment CML has not been repeated
—likely due to the unique monogenetic origin of the disease in contrast with the
bewildering mutational diversity of most cancers (Ciriello et al. 2013).

Oncology drug development has similarly been transformed by new therapeutic
modalities capable of achieving highly selective and potent target engagement.
Monoclonal antibodies (mAbs) in particular have proven highly effective, as they
are able to both inhibit signaling through oncogenic cell surface receptors, and
engage anti-tumor immunity through the induction of antibody-dependent cell
mediated cytotoxicity (ADCC). Trastuzumab (Herceptin®) was the first mAb
approved for the treatment of cancer. It binds to the receptor tyrosine kinase
(RTK) HER2, an ErbB-family receptor expressed on approximately 25 % of breast
cancers and associated with aggressive disease. Clinical studies showed the agent to
be effective only in patients with elevated expression of the protein in their tumors
(HER2+), necessitating development of a companion molecular diagnostic
(HerceptTestTM) along with the drug, becoming the first example of a
molecularly-stratified cancer therapy (Slamon et al. 2001). Following Herceptin, as
of 2013, thirteen mAbs approved by the FDA for the treatment of cancer
(Sliwkowski and Mellman 2013). The target specificity achievable with these
molecules has more recently been employed for directing traditional cytotoxic
payloads to cancerous tissue, either through chemical coupling as antibody-drug
conjugates (ADC), or embedded in immuno-liposomes (Sliwkowski and Mellman
2013). Small interfering RNA (siRNA) represents another emerging therapeutic
modality, holding great promise for blocking the synthesis oncogenic proteins if
delivery problems can be adequately addressed (Whitehead et al. 2009).
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19.1.3 Challenges to Developing Effective Targeted Agents
in Oncology

The poor and declining efficiency of modern pharmaceutical research has been
widely reported and opined upon. It currently costs over two billion dollars on
average to bring a new medicine to market (Scannell et al. 2012), the main driver
being the capitalized cost of clinical failures, particularly in Phase 2 proof of
concept studies (Paul et al. 2010). This is where pre-clinical hypotheses, developed
and honed over years of research, are first evaluated in actual patients. Attrition
rates at this stage of development are estimated at 50–70 % across the industry
(DiMasi et al. 2010), where failures are most often due to lack of efficacy
(Arrowsmith and Miller 2013). These failures imply that the fundamental
assumptions on which multimillion dollar and decade-long drug development
programs rest, are frequently incorrect.

Focusing on oncology, the probability that an agent entering clinical testing will
eventually attain regulatory approval is currently estimated at 13 % (DiMasi et al.
2013), poorer than all other major disease indications (Hay et al. 2014). Changes to
in clinical strategy could help alleviate expensive late stage clinical failures. In
particular, the use of surrogate measures of drug activity such as pharmacodynamic
readouts or changes in tumor growth kinetics (Ferté et al. 2013) would help in
establishing clinical proof of concept as early as possible (preferably in Phase I).
Prioritizing candidates for larger Phase II and III trials using even such imperfect
metrics of clinical responses could improve the likelihood of success (Paul et al.
2010). This will also require a shift away from fixed 2-arm comparative trials,
towards biomarker-based, multi-agent, adaptive designs (Yap et al. 2010). So-called
multi-arm “bucket trials” may be an effective and increasingly common strategy.
These types of trials are designed to prospectively evaluate multiple biomarkers and
multiple experimental agents simultaneously, with adaptive randomization proto-
cols such that arms can be added or purged as information is gleaned during the
course of an ongoing study (Kaplan et al. 2013).

Prior to the initiation of clinical testing, the success of a drug development
program ultimately depends upon a variety of factors, including the appropriate
selection of drug targets and agents capable of achieving pharmacologically-
relevant target modulation, the selection of appropriate patient populations, the use
of biologically active doses and dosing schedules, and the design of effective
combination regimens. The unique biological properties of cancer cells pose fun-
damental challenges to each of these decisions and cumulatively hinder the success
of drug development programs.
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19.2 Oncogenic Signaling Networks and Drug
Development

Knowledge of the molecular underpinnings of cancer has grown at an unprece-
dented rate over the last decade, fueled by advances in high-throughput measure-
ment technologies such as next generation DNA sequencing, gene expression
arrays, quantitative proteomics, and robotic platforms for high-throughput screen-
ing (Watson et al. 2013). The number of molecular targeted drugs approved or
developed for the treatment of cancer has also greatly expanded. As of 2012, there
were almost 1000 new cancer medicines in clinical testing from American phar-
maceutical companies alone (PhRMA 2012). While this offers tremendous hope for
patients, there remain significant scientific and technical obstacles to fully realize
the potential of these resources. As such, we have yet to witness commensurate
advances in curative therapies, particularly for metastatic disease. When used in
molecularly-defined populations, targeted therapies can demonstrate profound
efficacy, reducing tumor burden, and extending lives. However, a substantial
fraction of patients, even within prospectively selected populations, fail to respond,
and those that do almost universally relapse within a year. The challenge of pro-
ducing durable remissions with current targeted drugs can be interpreted through
the fundamental properties of cancer cell biology.

19.2.1 Molecular Heterogeneity

Oncologists have long recognized that each patient is unique with respect to their
clinical presentation, disease progression, and response to drug therapy. Genome
sequencing projects have revealed that at the molecular level as well, no two
cancers are identical. Even within individual patients, clonal diversity is often
evident between lesions and within different areas of the same tumor (Gerlinger
et al. 2012). Despite the well documented heterogeneity, a paucity of molecular
biomarkers exists that can reliably identify patients most likely to respond to
treatment, or rapidly predict whether an effective dose has been attained (Schilsky
2010). Molecular biomarkers used in current clinical practice are limited to genetic
mutations or amplified expression of the drug target. Prototypic examples include
sequencing the BRAF gene for V600E mutations to guide vemurafinib therapy in
melanoma, and immunohistochemistry measurements of HER2 gene amplification
for trastuzumab treatment in breast cancer (Majewski and Bernards 2011).
However, single gene/protein measurements have limited clinical utility, as
objective response rates to targeted inhibitors within pre-selected (biomarker+)
patient populations are most less than 20 % (Sharma et al. 2010). The complexities
of molecular biology simply outwit efforts to characterize disease using a single
measurement.
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Genome sequencing projects have revealed that mutations are incredibly dis-
parate even within histologically similar tumors. However, when mutations are
mapped onto protein interaction networks, a limited number of cell regulatory
pathways and functional modules are found to be recurrently altered (Yaffe 2013).
Most notable are the Phosphatidylinositide 3-kinase (PI3K) and Mitogen Activated
Protein Kinase (MAPK) cascades, and the receptor tyrosine kinases (RTKs) which
regulate their activities. Others include the TP53 and cell cycle control modules, the
apoptotic caspase machinery, as well as a handful of other more indication- and
tissue-specific pathways such as Wnt, Hedgehog, and Transforming Growth Factor
(TGF)-beta (The Cancer Genome Atlas 2008; Hammerman et al. 2012; Stephens
et al. 2012; Ciriello et al. 2013). Mutations within these network modules are
generally found to be mutually exclusive, prototypic examples being PI3KCA-
activating mutations versus PTEN deletions and KRAS versus BRAF-activating
mutations (Ciriello et al. 2012). This indicates that what “matters” to the cell is the
activation state of network modules rather than individual genes or proteins per se
(Vogelstein and Kinzler 2004). Following this, metrics of network activity could be
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more informative predictors of functional pathway dependence and drug sensitivity
than single gene or protein measurements (Fig. 19.1).

19.2.2 Network Redundancy

Redundancy is observed at multiple levels within biochemical networks. As
mentioned, mutations within a network module often display functionally equiva-
lent (or at least highly similar) effects. This is a consequence of biochemical
information flow- disrupting a signal at different points along the transmission route
will have similar effects (“vertical” redundancy). An alternative form of “hori-
zontal” redundancy arises from cellular capacity for alternative biochemical wiring.
A consequence of evolutionary recycling of protein binding domains, network
modules, and their constitutive proteins are capable of combining in alternate
configurations. Consider the signal “input” level to the cell: while at least 58
receptor tyrosine kinases exist (Blume-Jensen and Hunter 2001), through the
recurrent use of adaptor proteins they activate a relatively conserved set of signaling
cascades. This topological feature has been referred to as “bow tie” architecture,
wherein signals emanating from diverse extracellular ligands converge on a limited
set of intracellular “hub” proteins such as AKT, ERK (extracellular signal-related
kinase), and TP53 (Kirouac et al. 2012). The clinical consequences are becoming
increasingly appreciated in oncology through the phenomena of “oncogenic shift.”
Tumors displaying “addiction” to a single oncogenic kinase are often capable of
switching dependency to an alternate, but functionally equivalent node following
inhibitor treatment (Wilson et al. 2012). RTKs have even been found to be func-
tionally exchangeable within individual tumors (Snuderl et al. 2011).
A consequence of such molecular redundancies is that the number of potential
resistance pathways is staggering. For example, activation of at least 20 alternate
kinases have been reported to mediate resistance to EGFR inhibitors in lung cancer
(Chong and Jänne 2013) and a similar number to BRAF inhibitors in melanoma
(Lito et al. 2013). These patterns of dependency switching are however difficult to
predict, and are not necessarily apparent from genetic changes if arising from subtle
shifts in protein expression patterns (Niederst and Engelman 2013). The core
cytosolic signaling cascades themselves also display a degree of horizontal
redundancy. For example, the PI3K and MAPK cascades coverage on an over-
lapping set of effectors (Sos et al. 2009; She et al. 2010).

19.2.3 Network Adaptation

A distinguishing feature of living versus non-living matter is the ability to maintain
internal stasis in the face of a continually shifting environment. Homeostatic reg-
ulation typically involves feedback control circuits, and many such biochemical
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feedback circuits have been characterized in cancer cells. Feedback controls within
signal transduction cascades buffer the effect of targeted inhibitors and other per-
turbations, an example being active (phosphorylated) ERK inhibiting the activation
of its upstream kinases RAF and RAS (Cirit et al. 2010; Fritsche-Guenther et al.
2011). The activities of intracellular signaling cascades are also fine-tuned through
the regulated expression of cell surface receptors (Chandarlapaty et al. 2011;
Duncan et al. 2012). Pathway inhibition can thus result in the compensatory acti-
vation of parallel, redundant pathways through the relief of antagonistic feedback
circuits. Expression of a range of RTKs are elevated in response to both PI3K/AKT
(Chandarlapaty et al. 2011) and MAPK/ERK pathway inhibition (Duncan et al.
2012). This phenomenon is particularly well documented for the ErbB3 receptor,
where EGFR and HER2 inhibitors such as lapatinib and gefitinib increase com-
pensatory ErbB3-mediated PI3K/AKT signaling (Chakrabarty et al. 2012;
Chandarlapaty et al. 2011; Garrett et al. 2011; Amin et al. 2010; Sergina et al.
2007). These receptor-coupled feedback circuits underlie the so called “Whac-a-
Mole®” effect, named after the popular arcade game, wherein suppression of a
single RTK or pathway induces compensatory activation of a parallel, functionally
redundant pathway.

19.2.4 Combating Network Robustness Using
Biomarker-Based Drug Combinations

The rational application of combination therapies has been widely touted as a
strategy for battling these mechanisms of network resilience (Creixell et al. 2012;
Robin et al. 2013). By simultaneously blocking functionally redundant pathways or
co-targeting an adaptive feedback circuit along with the primary oncogenic driver,
one could in theory substantially enhance therapeutic efficacy, delay the onset of
resistance, and provide durable disease remissions (Fitzgerald et al. 2006). Indeed,
evolutionary dynamic models predict that therapy with two drugs, if appropriately
chosen to target distinct oncogenic driver pathways, could produce curative treat-
ments (Bozic et al. 2013). However, given the number of molecularly targeted
agents currently available for testing combined with the diversity of human cancers,
the number of possible drug-drug and drug-genome combinations is rapidly
exceeding what is feasible through empirical screening. Strategies for prioritizing
the most promising combination regimens and predictive biomarkers could there-
fore greatly advance clinical practice (Dancey and Chen 2006). In silico screening
offers a possible solution if predictive computational models of cancer biology and
pharmacology can be developed.

Model-based drug development (MBDD) was advocated by the FDA Critical
Path Initiative as a potentially powerful but underutilized approach to improving
pharmaceutical industry efficiency (Lalonde et al. 2007). Implementation to date
has largely focused on clinical pharmacometrics, and evidence suggests this
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investment has improved clinical decision making across the industry (Lee et al.
2011). However, by the time a compound is tested in humans, the risk/benefit
properties are largely pre-determined and many critical decisions underlying the
success or failure of the program are irrevocably locked in (Milligan et al. 2013).
Computational modeling at this stage can be used to extract efficacy and safety
signals from noise, but little can be done to correct fundamental problems buried in
the program’s history. Developing computational models at the earliest stages of a
drug development, based around the biology of the disease rather than a specific
compound, could help bridge the gap between discovery-stage research, pre-clinical
development, and clinical testing. Importantly, many of the described properties of
cancer cell regulatory networks which make them robust to targeted therapies
(molecular heterogeneity, redundancies, and adaptation) can be represented math-
ematically, and thus formulated as computational models. By contextualizing drug
targets within the networks they are embedded, and linking network responses to
tumor growth, mechanism-based models could prove pivotal in improving rates of
Phase 2 success and realizing the promise of precision medicine (Pe’er and
Hacohen 2011).

19.2.5 Approaches to Model Cancer Signaling Networks

There are a wide variety of computational modeling tools available to draw from,
each with specific limitations, biases, and data requirements. Because no modeling
framework is intrinsically superior, the choice between alternatives depends largely
on the data available for model calibration and the specific questions to be addressed.
Methods can be roughly mapped onto a continuum based on their degree of
mechanistic abstraction, from data-driven statistical models at one end, to mass
action kinetic-based chemical reaction networks at the other (Kholodenko et al.
2012). While statistical modeling approaches have the advantage of being relatively
free of predefined hypotheses, ignoring prior knowledge about the function of
biomolecules and their relationships is also a limitation. Incorporating established
mechanisms enables one to focus on the most relevant questions, rather than using
statistical power to re-discover what is already known. There are a multitude of
resources available to draw from, in which pathways and regulatory relationships are
commonly represented as interaction networks (Bauer-Mehren et al. 2009).
Pathguide (www.pathguide.org) currently links to over 500 databases covering
metabolic pathways, signaling pathways, transcription factor targets, gene regulatory
networks, genetic interactions, protein-compound interactions, and protein-protein
interactions (Bader et al. 2006). Pathway Commons (www.pathwaycommons.org) is
a web-based portal, enabling researchers to browse information and download
source data from 9 of the most commonly used pathway and molecular interaction
databases such as Reactome, MINT, and NCI-PID (Cerami et al. 2011).

These resources are typically used as platforms to functionally interpret genomic
and other molecular profiling data (Carter et al. 2013). While the derivative graphs
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have limited predictive power, they can serve as a starting point towards developing
causal models. Boolean or Fuzzy Logic-based networks for example start with a
defined network topology and describe the activities of components connected using
logical operators, as found in electronic circuits (Morris et al. 2010). While these
model formalisms are causal in that they describe information flow through net-
works, they are gross abstractions of the underlying biochemical processes.
Physicochemical-based models aspire to describe biochemical networks from the
“bottom-up”, based on fundamental biochemical processes. Such models are gen-
erally implemented as sets of ordinary or partial differential equations, which can be
derived from lists of reactions using the principles of mass action kinetics. As the
level of molecular detail increases, the number of free parameters expands accord-
ingly. Parameterization then becomes the main challenge, necessitating as substantial
amount of training data and fast optimization algorithms to estimate unknown rate
constants and initial conditions. As such, mass action kinetic-based ODEs are likely
best-suited to describing the dynamics of networks with well-defined mechanisms
and richly-sampled time-course data (Aldridge et al. 2006).

Hybrid modeling approaches are possible, which may overcome limitations
associated with alternate forms, or capture different levels of biological detail (Karr
et al. 2012). For example, one can imagine using a detailed mass action kinetic-based
model to describe interactions between a drug and receptors at the cell surface, and
then a statistical or logic-based model to link receptor engagement to intracellular
signaling and phenotypic responses. As mathematical models are often
problem-specific, multiple orthogonal models could be developed to describe dif-
ferent aspects of the same biological process. By focusing on successive stages of drug
development, the next sections will provide examples of how different computational
approaches (statistical, causal, and physicochemical models) can be applied to
specific problems along the path from discovery to clinical testing (Fig. 19.2).

19.3 Modeling Signaling Networks for Drug Target
Identification

Appropriate target selection is perhaps the most important decision underlying a
drug development program. However, it is quite challenging as the effects of target
inhibition or antagonism are often context dependent. Genetics and epigenetics, the
choice of animal or cell culture model, and experimental details all affect biological
responses. Due to these multiple confounding factors, the majority of landmark
cancer target discovery publications have been reported to be irreproducible in
industry laboratories (Begley and Ellis 2012; Prinz et al. 2011). Even under highly
controlled experimental conditions, relationships between target modulation and
biological responses are often nonlinear and multivariate, and thus difficult to
deduce from intuition alone (Janes and Lauffenburger 2013). Mathematical models
can serve as a framework for integrating information learned about key system
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variables and their quantitative relationships, and subsequently exploring these
system behaviors computationally. Simulations can then be used to evaluate
potential therapeutics in silico, and establish design specifications for effective drug
candidates (Hendriks 2010).

19.3.1 Physicochemical-Based Models of Signaling
Pathways

The PI3K and MAPK signaling cascades are two of the most frequently deregulated
pathways in human cancers (Kan et al. 2010; Zack et al. 2013). Currently, there are
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at least 33 inhibitors targeting components in these pathways in clinical develop-
ment, not including cell surface receptors which normally regulate their activity
(Saini et al. 2013). The cascades can be hyper-activated by multiple mechanisms,
including gene amplifications, point mutations, and micro-deletions in cell surface
receptors such as EGFR or HER2 and cytosolic kinases such as RAS, RAF, or
PI3KCA, deletions of inhibitory phosphatases such as PTEN and NF1, and excess
autocrine or paracrine growth factor secretion (Tamborero et al. 2013; Kan et al.
2010; Zack et al. 2013). The dynamic properties of these pathways have been
extensively explored through the use of mass action kinetic-based ODE models,
demonstrating that known behaviors can be reconstructed “bottom up” from
physicochemical mechanisms. For example, a foundational mass-action
kinetic-based model of the three tier enzymatic cascade connecting RAF, MEK,
and ERK was shown to produce switch like-behavior, consistent with its functional
role in converting variable external stimuli into discrete cell fate decisions such as
proliferation (Huang and Ferrell 1996). The complexity in such models have
expanded over time with the incorporation of negative feedback circuits within the
cascades (Asthagiri and Lauffenburger 2001), the inclusion of receptor activation,
internalization and recycling in response to ligand binding (Schoeberl et al. 2002),
and combinatorial patterns of ligand-receptor interactions linked to both MAPK and
PI3K cascade activation (Chen et al. 2009). However, the building blocks remain
the same, as the principles of mass action allow one to convert any set of reactions,
regardless of size or complexity, into ordinary differential equations.

The precise molecular mechanisms connecting intracellular signals to cellular
responses such as proliferation and survival remain obscure (Courcelles et al.
2013). Using physicochemical models for target identification thus relies on sur-
rogate readouts of efficacy, such as downstream pathway effectors phospho-AKT or
ERK. Parameter sensitivity analysis can then be applied to identify critical network
components, which may serve as optimal points of therapeutic intervention.
Sensitivity analyses can be performed under different conditions (i.e., stimulation
by alternate growth factors) and cellular contexts (i.e., mutations and protein
expression levels) to assess robustness of the potential target to biological variation,
and identify mechanistic biomarkers which may influence cellular responses to
target modulation. Using this approach, the ErbB3 receptor was identified as a
novel target in ErbB signaling network-driven cancers. This was surprising at the
time, as ErbB3 lacks intrinsic kinase activity found in ErbB1 (EGFR) and ErbB2
(HER2), and was not known to be mutated or amplified in cancers (Schoeberl et al.
2009). Ligand–driven tumor growth via the ErbB3-binding growth factor Heregulin
has since been identified as an alternate mechanism of oncogenic growth in a
variety of cancers (Campbell et al. 2010), and mutations in the ERBB3 gene have
been identified as recurrent in colon and gastric cancers (Jaiswal et al. 2013). This
model-guided insight motivated three clinical programs at Merrimack based around
ErbB3 inhibition, MM-111, M-121, and MM-141.
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19.3.2 Modeling Network Robustness: Feedback Circuits
and Redundancy

Extensive redundancy between alternate RTKs underlie resistance to their targeted
inhibitors (Wagner et al. 2013). For example, activation of ErbB3, cMET, and
FGFR family members by their respective ligands can attenuate the effect of
inhibitors targeting ErbB2 (lapatinib), EGFR (erlotinib), cMET (crizotinib), and
PDGFR (sunitinib) and FGFR (PD173074) (Wilson et al. 2012). Models incor-
porating more than a single activating receptor are thus critical for understanding
patterns of RTK inhibitor sensitivity and resistance. For example, incorporating
both Insulin Receptor (IR) and EGFR-mediated activation of the PI3K and MAPK
cascades into a single model was necessary to quantify signal amplification and
compensation between these pro-metabolic and mitogenic growth factors (Borisov
et al. 2009). Similarly, a model integrating Insulin-like Growth Factor-1 Receptor
(IGF1R) and ErbB3 receptor signaling pathways served as a basis for design of
MM-141, an tetravalent antibody targeting the two receptors and thus disabling this
compensatory signaling axis (Harms et al. 2014; Fitzgerald et al. 2014).

The PI3K and MAPK cascades both regulate transcription and subsequent cell
surface expression of their upstream driving RTKs, forming complex feedback
regulatory circuits. Characterizing these feedback circuits is thus important for
predicting cellular responses to pathway inhibitors. For example, negative feedback
regulation of EGFR expression by phospho-ERK was included in a model of EGFR
and IGF1R-mediated signaling. Co-targeting of EGFR (erlotininb) and MEK
(GDC-0973) was identified as an optimal means of inhibiting tumor growth in silico
and validated across a genetically diverse panel of colon cancer cell lines (Klinger
et al. 2013). The strategy of targeting intracellular kinases in tandem with their
activating receptors has proven successful in other pre-clinical systems and is
currently being pursued in clinical trials. Resistance to the BRAF inhibitor vemu-
rafenib for example has been found to be mediated by compensatory up-regulation
of ERBB3 (Abel et al. 2013), IGF1R (Villanueva et al. 2010), and EGFR (Prahallad
et al. 2012), such that co-treatment with respective inhibitors re-sensitized tumors to
drug treatment. Similarly, KRAS-mutant colorectal cancer models have been found
to be insensitive to MEK inhibition via feedback-mediation activation of IGFR and
subsequent PI3K signaling. Co-treatment with a MEK and IGF1R inhibitor blocked
the adaptive response, resulting in robust apoptosis and regression in xenograft
models (Ebi et al. 2011).

Intracellular feedback circuits embedded within the MAPK and PI3K cytosolic
cascades can also modulate responses to signal inhibitors. Physicochemical models
of MAPK signaling revealed the negative feedback from ERK to RAS functions to
stabilize pathway output under both extrinsic noise and pharmacological pertur-
bations. This provides a mechanistic explanation for the poor clinical efficacy
observed with MEK inhibitor monotherapies (Fritsche-Guenther et al. 2011; Sturm
et al. 2010; Cirit et al. 2010). As previously mentioned, cellular robustness to MEK
inhibition is also mediated by partial functional redundancy between the MAPK
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and PI3K cascades. The pathways converge on downstream effectors of cell cycle
progression such as CyclinD and P27, as well as apoptotic regulators such as BIM
and BAD (She et al. 2010). Predicting cellular responses to targeted inhibitors thus
necessitates the consideration of both canonical cascades (Kirouac et al. 2013). As
an additional complexity, the MAPK and PI3K cascades are not insulated but
“cross-talk”; signaling through one pathway may affect activity of the other. The
precise mechanisms and dynamics mediating these interactions are still incomplete
and context-dependent, modulated by exogenous growth factor stimulation and
genetic heterogeneity (Aksamitiene et al. 2012; Wang et al. 2009a).

19.3.3 Using Perturbation-Response Experiments
to Develop Causal Network Models

While mathematical models of cellular signaling networks can be used in drug
discovery, targeted inhibitors themselves also serve as tools for building and
parameterizing models. Implemented as chemical probes, the topology and
dynamics of cellular networks can be inferred by measuring molecular and phe-
notypic responses to combinations of growth factor stimulation and/or drug treat-
ments (Nelander et al. 2008; Mitsos et al. 2009). Logic-based modeling formalisms
such as Boolean Logic (Saez-Rodriguez et al. 2009), Quantitative/Fuzzy Logic
(Morris et al. 2011), or logic-based ODEs (Nelander et al. 2008), have been
developed for semi-automating the process of network inference and parameteri-
zation from systematic perturbation-response data. Such causal models, which
describe signal flow through networks but omit mechanistic details, can be pow-
erful tools for developing comprehensive yet granular descriptions of cellular
information processing. For example, data from perturbation-response experiments
utilizing 14 TKIs against the PI3K, MAPK, and JAK/STAT cascades was recently
used to develop a model connecting cell signaling to growth regulation in
liposarcoma cells. Simulations identified that inhibition of the cell cycle regulator
CDK4 in combination with blockade of the PI3K pathway (either via PI3K inhi-
bitors directly, or the upstream RTK activator IGF1R) as a potent synergistic
combination, motivating design of a multi-drug clinical trial (Miller et al. 2013).
This demonstrates that model simulations can rapidly transform into clinical
strategy, given buy-in at an exploratory clinical center.

19.3.4 Molecular Heterogeneity and Single Cell Modeling

Models are fundamentally limited by the data available, and the data used to build
biochemical network models is typically derived from cell populations. Such
measurements represent averages across pools of many thousands of cells,
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smoothing out cell-to-cell variability. However, this variability can contain relevant
information, analogous to population-based pharmacometric models. Cell
population-based models can similarly be developed to account for the mechanistic
basis of cell-cell variation by using quantitative single cell-based measurements,
such as multi-color flow cytometry or light-centered microscopy (Bendall and
Nolan 2012). Heterogeneous cell populations can then be simulated by Monte Carlo
sampling across the observed distributions of biochemical measurements. This
approach has been applied to interrogate cell-cell variability in response to
TRAIL-induced apoptosis. Natural variation in protein concentrations was found to
account for cell-cell variability in treatment sensitivity (Spencer et al. 2009), and
co-variation in the distribution of protein abundances was found to change the
relative importance of signaling nodes as determined by parameter sensitivity
analysis (Gaudet et al. 2012). Biochemical cell-cell variability can also affect the
shape of dose-response curves, with heterogeneity producing in lower apparent Hill
coefficients (Fallahi-Sichani et al. 2013). These findings have important implica-
tions in drug target and biomarker identification, which rely on such analyses.

In summary, causal models of cellular signaling networks can be valuable tools
for quantitatively interrogating potential drug targets. By building a quantitative
understanding of how molecular network structure and dynamics underlie cellular
pathologies, mechanistic models can help prioritize drug targets, explore alternative
modes of intervention, and define quantitative relationships between the degree and
duration of target modulation and biological responses. These criteria then set
design specifications for drug candidates, enabling in silico evaluation of potential
therapeutics (Hendriks 2010).

19.4 Using Physicochemical Models to Guide Therapeutic
Design

19.4.1 Model-Guided Antibody Engineering

Monoclonal antibodies have become an important therapeutic modality, and their
clinical usage is expected to continue to grow relative to synthetic small molecules
(Sliwkowski and Mellman 2013). The modular format of these proteins enables
their combinatorial assembly through genetic engineering to produce designs not
seen in nature. However, it is often not intuitively apparent what an optimal design
or format should be to achieve therapeutic objectives. Physicochemical-based
models describing protein-protein interactions on the cell surface and/or in solution
can be a useful tool for understanding the properties of these molecules, and
prospectively specifying design constraints. Given target expression levels and
turnover rates, antibody-target binding affinity, tissue partition coefficients, and
clearance rates, fairly simple mathematical models can be used to evaluate rela-
tionship between such properties target engagement/inhibition.
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Optimizing antibody potency provides a unique challenge as compared to small
molecules, as target binding is driven by two forces. The first is the intrinsic affinity
of the monovalent fragment antigen-binding (Fab) arms for the target, and the
second arises from the multivalency of antibodies. Following the binding of the first
Fab arm to an antigen on the cell surface, the second free Fab arm becomes spatially
restricted to a shell around the target, increasing the local concentration and thereby
binding kinetics. The increased affinity due to multi-valency is referred to as the
avidity effect, and can be quantified by a cross-linking factor (v), an epitope and
format-dependent biophysical property. While cross-linking can be an important
determinant of potency, it cannot be measured directly. However, it can be com-
putationally inferred given monovalent Fab binding affinities and dose-binding
curves for a panel of cell lines with different receptor densities (Harms et al. 2012).

Molecules with high v values can have significant potency advantages. For
targets with low surface expression (<105 mol/cell), high avidity can improve the
apparent binding affinity of mAbs by up to 10-fold. Furthermore, for such low
abundance targets, bi-specific antibodies (targeting two antigens) can be designed to
leverage the avidity effect and increase potency by selecting a highly expressed
(>106 mol/cell) tumor antigen to serve as a cell surface “anchor”. Performance of
bi-specific mAbs depends on the ratio of anchor-to-target expression level, as well
as the cross-linking factor. Using this approach, target inhibition can be improved
up to 100-fold, a feat not easily achievable via affinity maturation. Mass action
kinetic-based models of antibody-receptor interactions can be used in design and
analysis of this novel drug class, as was used in the development of MM-111, a
bi-specific antibody directed against ErbB2 and ErbB3. The targeting of ErbB2 (a
highly expressed antigen) is exploited to enhance the potency of ErbB3 inhibition
(a relatively low expressed drug target) in ERBB2-amplified tumors (McDonagh
et al. 2012). Similarly, avidity can be utilized to increase the potency of bi-specifics
targeting two oncogenic receptors over what could be achievable with two inde-
pendent antibodies (Harms et al. 2014). This strategy motivated design of MM-141,
a tetravalent bi-specific antibody targeting two compensatory signaling growth
factor receptors, IGF1R and ErbB3, with 10-fold improved potency over the single
IgG combinations (Xu et al. 2013).

19.4.2 Model-Based Liposome Design

Liposomes function as nanoparticle drug carriers, capable of preferentially accu-
mulating in tumors and slowly releasing their drug depot into the diseased tissue. In
comparison to free drug, liposomal encapsulation can extend pharmacokinetics,
increase local exposure, and decrease systemic toxicities. The leaky vasculature and
impaired lymphatic clearance characteristic of solid tumors give rise to the
Enhanced Permeability and Retention (EPR) effect, wherein large molecules such
as liposomes (on the order of 100 nm) are preferentially retained (Noble et al.
2004). This principle is the basis for the design of MM-398, a nanoliposomal
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formulation of irinotecan currently being evaluated for the treatment of patients
with metastatic pancreatic cancer (Ko et al. 2013). It is not however readily
apparent how liposome design parameters and tumor characteristics interact to
affect tumor drug exposure. To enable such insight, a multi-scale kinetic model of
liposomal doxorubicin was developed, accounting for drug pharmacokinetics,
tumor deposition, cell binding, and liposomal uptake. Parameter sensitivity analyses
were used to identify critical features affecting drug potency, identifying liposome
clearance and tumor permeability (a function of liposome and vascular pore size) as
the two most sensitive parameters. Prospective identification of patients with high
liposomal tumor deposition could thus increase the successful use of this thera-
peutic class (Hendriks et al. 2012).

Tumor selectivity can be improved by the inclusion of monoclonal antibodies
against tumor-selective antigens into the lipid bi-layers (Kirpotin et al. 2012). The
choice of tumor cell antigen and the density of liposomal antibody then become two
additional therapeutic design parameters. To quantify the relationship between
antigen expression and performance characteristics of targeted nanoparticles, a
computational model was developed for MM-302, a HER2-targeted liposomal
formulation of doxorubicin. Parameter sensitivity analysis was again applied to
rank the relative importance of key drug and cellular variables. Target expression
on tumor cell surfaces was identified as the most sensitive parameter. Due to the
high multi-valency of antibodies on the liposome surface and resultant binding
cooperativity, a threshold effect occurs such that cells expressing receptor densities
below a threshold density will not uptake significant amounts of the active drug
(Hendriks et al. 2013). Appropriate choice of target antigen and disease indication
is thus critical for designing specificity into this class of drugs.

These examples demonstrate how a quantitative understanding of the relation-
ships between target expression, binding affinities, and avidity can be used to
optimize the design of antibodies and liposomes for increasing the therapeutic
window between target and non-target tissues. A next step in the development path
is to assess the activity of prospective drugs in pre-clinical disease models.

19.5 Cancer Cell Line Selection and Biomarker
Identification

Drug development relies on the use of model systems to predict drug efficacy and
safety. Anti-cancer drugs are typically evaluated by quantifying their effects on the
growth kinetics of immortalized cancer cell lines in vitro and in vivo. While these
are derived from primary tumor resections, the process of passaging cells in tissue
culture likely selects for additional mutations which enable in vitro propagation. For
cell line models to maintain their biological relevance, it is essential that the genetic
and epigenetic history of the derivative cancer is maintained. Currently, the degree
to which this assumption holds true is unclear.
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The most widely used group of cell lines in the NCI-60 panel, established in the
1980 s by the Developmental Therapeutics Program (DTP) of the National Cancer
Institute, representing 9 solid tumor types. These 60 lines are capable of growing
both in tissue culture and as orthotopic grafts in immunodeficient mice, and
thousands of anti-cancer compounds have been evaluated for growth inhibition
across the panel (Shoemaker 2006). Given the extensive genetic diversity of human
neoplasms, larger cell line collections have since been established to more thor-
oughly cover this heterogeneity, such as the Center for Molecular Therapeutics
CMT1000 (Sharma et al. 2010), and the Cancer Cell Line Encyclopedia (CCLE)
(Caponigro and Sellers 2011) collections of over 1000 cell lines each.

19.5.1 Molecular Characterization of Cancer Cell Lines

Given the availability of cancer cell line collections, a new challenge arises in
rationally selecting among hundreds of cell line models for use in pre-clinical
studies. Furthermore, patterns of drug sensitivity and resistance across cell lines can
be used to develop predictive biomarkers which may translate into clinical practice.
The availability of comprehensive molecular profiling data for both cell lines and
primary tumor tissue now provides a means of systematically assessing relationships
between genomic and proteomic profiles, pathway dependencies, and pharmaco-
logical sensitivities. Due to its extensive history, the NCI-60 panel is the most
comprehensively characterized set of cell lines. Whole exome sequences are now
available (Abaan et al. 2013), complementing mRNA expression profiles and pro-
liferative responses to hundreds of FDA-approved anti-cancer agents (Reinhold et al.
2012). Comprehensive pharmacogenomic databases consisting of both gene muta-
tion and mRNA expression profiling linked to drug responses are now available for
larger collections of cell lines, such as the Welcome Trust Sanger Center COSMIC
database (Garnett et al. 2012), the Cancer Cell Line Encyclopedia (CCLE) (Barretina
et al. 2012), and the Cancer Therapeutics Response Portal (Basu et al. 2013).

19.5.2 Identifying Disease-Representative Cell Line Models
for Study

Immortalized cell lines have adapted over many generations for survival in highly
non-physiological environments. As a result of this sustained selective pressure, the
molecular characteristics of these cells may have diverged substantially from the
tissues from which they were derived (Horrobin 2003). In addition to genetic
changes, anatomical constraints (heterotypic cell-cell and cell-ECM interactions),
micro-environmental conditions (nutrients, oxygen supply), and exogenous stimuli
(endocrine and paracrine hormones and growth factors) will substantially differ
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between culture dishes and in vivo environments. The importance of such elements
is revealed by the fact that culture conditions, such as media components and
stromal cell co-culture, affect drug responses (Straussman et al. 2012). Alternatives
to immortalized cell lines are becoming more common, such as primary
tissue-derived xenografts (Williams et al. 2013) and genetically engineered mouse
models (Sharpless and Depinho 2006), which recapitulate primary tumor structure
and physiology more accurately. However, it is still too early to determine whether
these alternative experimental models offer clear predictive advantages over tradi-
tional immortalized cell line modes. Due to their ease of use and extensive history,
immortalized cell lines and xenograft assays are likely to remain the dominant
platform for the immediate future, and available comprehensive molecular data-
bases should enhance their predictive utility.

As part of The Cancer Genome Atlas (TCGA), tens of thousands of primary
tumors have now been characterized by exome and whole genome sequencing,
copy number variations, and mRNA expression profiling (Chin et al. 2011). By
comparing molecular features of experimental cell lines to these resources, it is now
possible to quantify how representative immortalized cell line models are of their
derivative diseases. For example, by comparing somatic mutations, CNVs, and
mRNA expression data from ovarian cell lines in the CCLE database to primary
ovarian cancers in TCGA, cell line models were classified by similarity to ovarian
tumor resections (Domcke et al. 2013). Cell lines were identified which appeared to
neatly recapitulate the molecular profiles of underlying disease, as well as some that
appeared to be egregious outliers, and thus likely to be poor predictors of clinical
responses.

19.5.3 Predictive Biomarker Identification from Genomic
Databases

Extracting predictive molecular biomarkers from these databases presents formid-
able statistical and computational challenges. The strongest statistical relationships
pulled from analyses of these resources are generally the most obvious drug-target
correlations. The acid test of their utility rests on their ability to produce
non-intuitive, but clinically meaningful relationships. Epigenetic context appears to
affect even the most ostensive relationships, as genomic features can correlate with
drug sensitivity only within specific tissue lineages. For example, effectiveness of
the EGFR inhibitor neratinib appears restricted to non-small cell lung cancer
(NSCLC) cells, consistent with clinical development of the drug. However, it is not
obvious why this would be so, given that EGFR signaling dependence occurs in
many indications. Along the same lines, Wnt/b-catenin signaling was found to
predict sensitivity to the Bcl-2 inhibitor navitoclax (Basu et al. 2013). Though this
finding needs further validation, there is no immediately obvious connection
between the Wnt/b-catenin signaling pathway and sensitivity to apoptotic
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induction. These resources can also be used as a means to evaluate
mechanism-based hypotheses. For example, sensitivity to the EGFR inhibitors
gefitinib and erlotinib were found to be negatively correlated with elevated
expression of the RTKs MET (Wagner et al. 2013) and AXL (Meyer et al. 2013),
validating predictions emanating from focused experiments.

19.5.4 Limitations of Genomic Biomarkers

Mutant genes and their expression patterns do not directly control cancer cell
growth. Rather it is the proteins they encode, and their subsequent assembly into
signaling and regulatory networks. The utility of genomic resources may therefore
be fundamentally limited, as the relationship between genetic changes and alternated
protein signaling networks is often nonlinear (Brennan et al. 2013). Basal protein or
gene expression measurements represent a homeostatic, quasi-equilibrium state,
from which it may not be possible to infer the activity of multi-layered feedback
circuits. The activity of such nested cellular feedback loops thus obscures the rela-
tionship between such biochemical measurements and pathway dependencies.
However, molecular measurements following gross cellular perturbations of key
pathways by growth factor stimulation and selective inhibitors can reveal the con-
duits by which information flows through cellular regulatory circuits, and may be a
more accurate prediction of functional responses to drug treatment (Bendall and
Nolan 2012). As a proof of principle, this approach was used to predict respon-
siveness to 23 targeted therapeutics across a panel of 43 breast cancer cell lines. Both
basal and growth factor stimulated responses of a subset of key signaling proteins
(ERK, AKT, STAT, and RTKs) were used to train partial-least squared regression
models (Niepel et al. 2013). Growth factor-induced signaling profiles were found to
be better predictors of drug response than basal biochemical profiles, which in turn
were better than mutational status or clinical subtype alone. Several non-obvious
predictors were also identified in this approach. For example, sensitivity to PI3K
inhibitors was effectively predicted by phospho-ERK responses to stimulation by the
ErbB3 ligand heregulin, while the abundance of phospho-AKT or mutational status
of the pathway components did not. The intuitive connection between basal
phospho-AKT abundance and PI3K inhibitor sensitivity was also found to be absent
in models of leukemia (Casado et al. 2013), as was the connection between
phospho-ERK and MEK inhibitor sensitivity in melanoma and colorectal cancers
cells (Pratilas et al. 2009). These results highlight the challenge of translating basal
biochemical measurements into predictive biomarkers, as well as the potential pit-
falls of using intuition alone to guide biomarker strategies.
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19.5.5 Clinical Translation of Biomarker Strategies

The resources described in Sect. 19.5.2–19.5.4 are still in their infancy, hence their
long-term utility remains to be seen. Statistical challenges emanate from the “Large
p Small n” problem—the number of predictor variables to test (i.e., genes) vastly
exceeds the number of samples cell lines. In addition, the multivariate and nonlinear
nature of cellular information processing means that single gene predictors of drug
sensitivity are likely to be the exception rather than the norm. Going forward,
methods to extract multiple biomarkers and combine them in nonlinear models will
likely be essential to better represent the underlying biology and improve predictive
accuracy.

How to best translate pre-clinical biomarkers into clinical strategy remains an
open problem. The traditional approach would be to run an “all-comers” (unse-
lected) phase 2 clinical trial and collect patient biopsies for subsequent profiling and
retrospective analyses. Biomarker-response correlations could then be used to
define thresholds for prospectively stratifying patients in subsequent trials to assess
clinical benefit. However, if biomarker-positive patient populations are rare, such
designs may be statistically under-powered to specify such relationships. An
alternative approach is to use cutoffs estimated from preclinical research and run
early clinical studies in prospectively enriched biomarker-positive patients (Freidlin
and Korn 2013; Freidlin et al. 2012). Given initial signals of efficacy, such as
pharmacodynamic readouts or tumor size changes (Hansson et al. 2013), the study
could subsequently be expanded to evaluate benefit in wider patient populations
and validate the predictive value of the biomarker. This strategy has been applied in
cases where biomarker expression is limited to small patient populations with
compelling pre-clinical evidence supporting the biomarker hypothesis, as in the
approval of crizotinib (Kwak et al. 2010) and vemurafenib (Chapman et al. 2011)
for EML4-ALK and BRAFV600E cancers, respectively. When biomarker positivity is
limited to rare patient segments (i.e., less than 25 % of a population), such designs
would ideally be implemented as “bucket trials”, simultaneously evaluating mul-
tiple drugs and corresponding biomarkers in parallel arms. Such designs leverage
the limited availability of patient biopsies and increase a patient’s chance of getting
placed on a study (Kaplan et al. 2013). While this may not be a universal or ideal
solution, changes to the standard paradigm of clinical trial designs are necessary if
the practice of oncology is to keep up with the pace of research. Statistical models
(beyond the scope of this text) can be used to test the sensitivity of a particular trial
design to assumptions about the prevalence and clinical benefit of particular
biomarkers (Freidlin et al. 2012; Kaplan et al. 2013).

Without an appropriate dosing schedule, a program based around a valid target
and selective inhibitor can still fail. Methods for rationally optimizing drug dosing
schedules are thus highly valuable. In the next section, modeling strategies for
predicting optimal dosing regimens from preclinical data will be discussed.
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19.6 Tumor Growth Models for Translational
Pharmacology

The defining characteristic of cancer is uncontrolled cellular growth, and the goal of
cancer therapy is largely to deplete tumor mass. Growth in tumor size is thus a logical
endpoint for translational models, both due to clinical relevance and the relative ease
of measurement clinically (via X-ray, CT, or MRI scans) and experimentally (by
counting cells or measuring tumor volume). Empirical, population-based models of
tumor growth kinetics have been found to be predictive of patient survival from
multiple clinical trials in lung, colorectal, and breast cancers (Wang et al. 2009c;
Claret et al. 2009, 2012, 2013; Cameron et al. 2000). Results to date suggest that
changes in tumor growth kinetics may serve as an indication-specific, but
treatment-agnostic early metric of clinical efficacy (Ferté et al. 2013).

19.6.1 Dynamic Models of Tumor Growth

Bulk tissue growth is the result of cell replication, which is a discrete and partially
stochastic process at the level of individual cells. However, considering that a
1 mm3 tissue may contain 200,000 cells, cell-level stochasticity will average out at
the macroscopic level. Changes in cell numbers or tumor size over time are thus
amenable to approximation by differential equations. Many ODE-based models of
tumor cell growth have been developed, using simple linear or exponential growth
kinetics, Gompertz, and Logistic equations which account for limited carrying
capacity of the host, and the modified-Gompertz or Simeoni model, describing
initial exponential and later linear phases of tumor growth kinetics (Simeoni et al.
2004). In all forms, variations change in tumor size (V) over time is expressed as a
function of the current size, and nonlinear system parameters [P]:

dV
dt

¼ gðV ; ½P�Þ ð19:1Þ

In any population of cells there will be continuous turnover of cell birth (µ) and
death (d), the net balance of which determines the apparent rate of cell growth (a):

a ¼ ðl� dÞ ð19:2Þ

The ratio of cell birth to death thus determines whether the tumor mass is growing
(µ/d > 1), regressing (µ/d < 1), or in stasis (µ/d = 1). Exposure-response effects on
cell proliferation and death can be quantified using Hill-type equations and com-
bined within a tumor growth model:
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dV
dt

¼ g Vð Þ � lMAX � 1� CK1

EC150 þCK1

� �
� dMAX � CK2

EC250 þCK2

� �
� V ð19:3Þ

In this generalized equation, g(V) is the tumor growth kinetic model, µMAX the
maximal rate of proliferation, and dMAX the maximal rate of cell death, modulated
by drug concentration (C) and response parameters (K1, K2, EC150, EC250).
Implementing the commonly used Logistic growth model for example, wherein
constraints limit tumor size to VMAX, produces:

dV
dt

¼ V � 1� V
VMAX

� �
� lMAX � 1� CK1

EC150 þCK1

� �
� dMAX � CK2

EC250 þCK2

� �� �
ð19:4Þ

The effects of cytotoxic chemotherapeutics are typically described as inducing cell
death, and kinase inhibitors as reducing cell proliferation, thus eliminating either the
respective first or second Hill function. Given the functional pleitropy of most
proteins and the distributed nature of cell regulatory networks, it is highly unlikely
that anti-cancer drugs will specifically affect only one of these cellular processes.
However, without direct measures of proliferation and cell turnover rates, these
parameters cannot be parsed from bulk tumor size measurements alone. Transit
compartments are also commonly included to account for the delay between drug
exposure and cell growth responses (Yang et al. 2010; Sun and Jusko 1998). In
addition to the obvious utility in simulating the activity of alternate dosing regi-
mens, the drug-specific parameters in these equations allow for the quantitative
comparison of agents independent of dose or schedule effects (Rocchetti et al.
2007).

19.6.2 Mechanism-Based Pharmacodynamic Models
of Tumor Growth

The tumor growth models described thus far have been empirical, in that rates of
cellular proliferation or death are described as direct functions of drug exposure. Of
course, drugs do not directly affect these cellular processes, but act on regulatory
proteins and pathways. Mechanism-based pathway models thus pose to link drug
exposure to efficacy via the intermediating biochemical networks. This may enable
the prediction of novel drug combination effects and biomarker-response relation-
ships, not feasible with empirical exposure-response models which are inexorably
bound to the model system on which they were parameterized. Clinically,
mechanism-based pharmacodynamic models may be crucial in shifting the current
paradigm of dose optimization in oncology from toxicity, toward on
biologically-based endpoints such as pharmacodynamics measures of pathway
inhibition (Marshall 2012).
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19.6.3 Semi-mechanistic Models of Signal Transduction
Inhibitors

Given the centrality of MAPK and PI3K signaling pathways in human cancers (Kan
et al. 2010; Zack et al. 2013), a variety of pharmacological strategies have been
implemented to attenuate the activity of these cascades. These include biologics
which block signaling and down-regulate expression of the cell surface RTKs
(EGFR, ErbB2, ErbB3, IGF1R, MET, FGFR), and ATP-competitive tyrosine
kinase inhibitors (TKI) directed against these receptors as well as the intracellular
pathway components RAF, MEK, ERK, PI3K, AKT, and MTOR. Phosphorylation
status of canonical pathway outputs AKT and ERK are commonly quantified as
molecular readouts of drug activity (pS), and changes from baseline levels (pS0) can
be linked to drug concentrations using direct response models:

pS ¼ pS0 � 1� IMAX
Ck1

ICk1
50 þCk1

� �
ð19:5Þ

Signal attenuation can then be linked to tumor growth using a second equation,
either describing the induction of cell death or inhibition of proliferation:

dV
dt

¼ gðVÞ lMAX � pSk2

GI1k250 þ pSk2

� �
� dmax 1� pSk3

GI3k350 þ pSk3

� �
ð19:6Þ

Again, substituting in the logistic growth equation for exemplary purposes:

dV
dt

¼ V � 1� V
VMAX

� �
lMAX � pSk2

GI1k250 þ pSk2

� �
� dmax 1� pSk3

GI3k350 þ pSk3

� �� �
ð19:7Þ

Models are typically parameterized using data from xenograft experiments: mice
are treated with various doses of an inhibitor, and tumors are extracted for signal
measurement shortly after treatment to parameterize the first equation [IMAX, IC50,
k1]. Tumor growth kinetics of the xenograft are quantified following similar
treatment regimens to establish an appropriate kinetic model [g(V)] and parame-
terize the second equation [dMAX, µMAX, GI50, K2, and K3]. After parameterizing
drug-signal-response models from experimental data, human pharmacokinetics and
tumor growth rates can be substituted to simulate clinical responses to alternate
dosing regimens. Such approaches were used in the development of the MEK
inhibitor GDC-0973 (Cobimetinib) for BRAFV600D mutant melanoma (Wong et al.
2012), and the PI3K inhibitor GDC-0941 in breast cancer (Salphati et al. 2010)
using phospho-ERK and-AKT as the respective pharmacodynamic signals.
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As the level of receptor expression on the cell surface is a dynamic balance of
turnover and production, indirect response models may be more appropriate for the
description of RTK inhibitors:

dpR
dt

¼ kin pR0 � IMAX
Ck1

ICk1
50 þCk1

� �
� k� � pR ð19:8Þ

Tumor growth kinetics may then either modeled as direct functions of
phospho-Receptor activity (pR), or mediated by downstream intracellular signals
(pS) such as phospho-AKT or -ERK, coupled by an indirect response model:

dpS
dt

¼ kon � pR � ST � pSð Þ � koff � pS ð19:9Þ

Additional transit compartments can be incorporated to account for downstream
signaling processes and temporal delays between receptor inhibition and cellular
responses. That is, considering a cascade of N successive signals (Si):

dSi
dt

¼ ki Si�1 � Sið Þ for i ¼ 1 : N ð19:10Þ

Semi-mechanistic PK/PD models of the form above have for example been
developed for the EGFR inhibitor gefitinib in EGFR mutant and wild-type
glioblastoma, using phospho-EGFR as the target receptor and pERK as the effector
signal (Wang et al. 2008, 2009b). For the multi-TKI inhibitor crizotinib, two
separate PD models were developed to quantify PD and efficacy relationships of the
drug in different clinical settings; MET and ALK-oncogene driven cancers using
phosphor-MET and -ALK as direct tumor growth effectors (Yamazaki 2013;
Yamazaki et al. 2008).

19.6.4 Multi-pathway Pharmacodynamic Models of Tumor
Growth

The pharmacodynamic tumor growth models discussed thus far have been limited
to the study of single agents. This contrasts with the way in which many oncology
drugs are used in clinical practice, as part of combination regimens. The
non-additive effects of drug combinations on tumor growth can be captured using
empirical “interaction parameters” (u), specifying the EC50 of one agent as a
dependent upon the concentration of another (Pawaskar et al. 2013; Choo et al.
2013):
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dV
dt

¼ V 1� V
VMAX

� �
� lMAX 1� I1MAX � CN1

1

u � EC1N150 þCN1
1

� �
� 1� I2MAX � CN2

2

EC2N250 þCN2
2

� �
� dMAX

� �
ð19:11Þ

Here, u <1 implies synergy, u >1 antagonism, and u = 1 independence. The
equation is highly similar to the Bliss independence model, wherein drug synergy
or antagonism is quantified by comparison of measured responses (ΔV) as com-
pared to that expected with u = 1 (Fitzgerald et al. 2006).

While these empirical models may be useful tools for quantitative analyses, they
are inherently incapable of predicting the effects of novel combinations, or even
combination effects emanating from alternate dosing schedules. To do so necessi-
tates the incorporation of mechanisms by which drug treatments affect regulatory
pathways, and how respective pathways interact to control tumor cell growth.
Developing more biochemically detailed multi-pathway models is thus a logical
step forward in improving their translational relevance.

Another critical limitation of the tumor growth models described so far is that the
PD parameters are estimated using a single, or at best, limited number of xenograft
models, and thus “locked” to the experimental model. Translating predictions from
such models to clinical strategy then depends on an assumption that the parameters
are invariant from model systems to human patients. There are a number of
examples of predictions from xenograft studies translating faithfully to clinical
responses (Haddish-Berhane et al. 2013; Shah et al. 2012). However, growth
inhibition in xenograft models is often a poor predictor clinical activity, as evi-
denced by the high clinical failure rates of oncology drug programs, all of which
have been vetted in these assays. The PK/PD-efficacy relationships encoded in by
4-parameter Hill equations often represent complex, multistep reaction sequences.
These lumped parameters summate the concentration and kinetics of multiple
components (including receptors, adaptor proteins, enzymes, transcription factors)
which are likely to vary between cell lines and among patients. By incorporating
some of the underlying biological complexity learned from pre-clinical research,
mechanistically detailed models may be able to retrospectively explain and
prospectively simulate both drug combination effects and response heterogeneity,
based on the structure and dynamical properties of cellular regulatory networks.
Enhanced PD (ePD) models are beginning to bridge the divide between discovery
research-focused systems biology and PK/PD models used in translational phar-
macology (Iyengar et al. 2012).

The properties of signaling networks which foster robustness to therapeutic
intervention, signal redundancy and adaptation, can be described mathematically.
Multi-pathway integration can be modelled using quantitative logic gates, which are
simply multi-input derivatives of Hill Equations. For logical OR-gates, the output
signal output (Y) is a function of two weighted inputs (X1, X2) of the form:
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Y ¼ YMIN þ YMAX � YMINð Þ � ðw1 � X1 þw2 � X2Þk
sk þ w1 � X1 þw2 � X2ð Þk1

 !
ð19:12Þ

Logical AND-Gates can be defined by multiplying individual Hill Equations:

Y ¼ YMIN þ YMAX � YMINð Þ � Xk1
1

sk11 þXk1
1

� �
� Xk2

2

sk22 þXk2
2

� �
ð19:13Þ

Using this formalism one can, for example, describe convergence of alternate RTK
inputs (Xi) on single pathway output (Y) such as phospho-AKT. In cases where the
output requires both input signals must be active, Eq. 19.13 is more fitting. For
example, proliferation in some cancer cells requires activity of both PI3K/pAKT
and MAPK/pERK signals (Kirouac and Onsum 2013).

Feedback regulation of upstream signals (such as RTKs) via downstream
effectors (such as pAKT or pERK) can be described using control theory-based
equations:

dX
dt

¼ rx � Xbasal 1þGX � 1� Yk

sk þ Yk

� �� �
� X

� �
ð19:14Þ

Where X represents receptor expression, Xbasal the steady-state “set point” when
downstream signaling is fully activated, GX the “gain”, or fold-induction in
response to the output Y suppression, and rR the symmetric rate of X (receptor)
turnover and synthesis.

The preceding equations describe cell signal transmission, interaction,
feedback-mediated adaptation, and regulation of cell growth. These can be com-
bined, altered, and integrated with mass action kinetics-based equations as desired
to capture the structure and dynamics of a wide variety of cell signaling networks.
The size and complexity of such models is no longer limited by mathematics or
computational power, but rather by the availability of data required for parame-
terization. Establishing an optimal degree of model complexity involves striking a
nuanced balance between detailing the molecular mechanisms, and allowing for
sufficient granularity such that model parameters can be estimated using the data
available. Reviews on experimental methods and strategies for generating such
multivariate proteomic data (Albeck et al. 2006) and global optimization algorithms
required for making use of it can be found elsewhere (Moles et al. 2003; Cvijovic
et al. 2014; Kreutz and Timmer 2009).

Two recent studies used multi-pathway models of tumor growth to computa-
tionally explore the combination effects between targeted drugs, and mechanistic
biomarkers predictive of drug combination efficacy. While exploring very different
diseases (HER2+ breast cancer (Kirouac et al. 2013) and non-Hodgkin lymphoma
(Harrold et al. 2012)) with different cell surface receptors (HER2 and HER3 vs.
CD20 and death receptors DR4/DR5) and associated intracellular signaling pathways
(PI3K/AKT and MAPK/ERK cascades vs. extrinsic apoptosis (Bcl-xL) and NF-kB),
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in both cases a similar balance was struck between the mechanistic complexity
typical systems biology models versus parametric identifiability and predictive
power typical of pharmacometric models. Synergistic anti-tumor effects of clinically
relevant drug combinations were predicted for both models and subsequently vali-
dated in vivo using xenograft experiments. While model parameterization and testing
in both cases were based around single cell line models, the inclusion of molecular
mechanisms enables one to vary putative biomarkers (protein expression, mutations,
and receptor feedback circuits) and create panels of synthetic tumors for assessing the
effects of such biomarkers on treatment responses in silico (Kirouac et al. 2013;
Iyengar et al. 2012).

19.6.5 Modeling Molecular Targeted and Cytotoxic Drug
Combinations

While combinations of targeted therapies are becoming an increasingly critical
element of clinical practice, the vast majority are currently being combined with
standard of care cytotoxic chemotherapy regimens. A key question then, is how do
signaling networks regulating cell proliferation and apoptosis interface with cellular
responses to DNA damage and cytotoxic stress? Given limitations in our knowledge
about the underlying molecular biology, coupled with the broad spectrum effects of
cytotoxic agents on cellular processes, mechanistically detailed models are likely to
be unfeasible at present. Data-driven statistical models however can be implemented
to overcome these limitations and elucidate the molecular relationships underlying
drug combination effects. By quantifying a wide panel of molecular readouts in
parallel with cellular responses to drug treatments, input-output relationships can be
specified using statistical models, and critical proteins or pathways mediating the
responses identified. As a recent example, interactions between DNA-damaging
chemotherapies and targeted kinase inhibitors in breast cancer cells were investi-
gated (Lee et al. 2012). Multiple proteomic technologies were used to quantify the
activation of pathways regulating cell survival (PI3K/AKT), proliferation
(MAPK/ERK, cyclins), apoptosis (caspase), stress response (MAPK/p38), and
genetic integrity (p53, HDAX) in response to multiple kinase inhibitor-genotoxic
drug combinations. Sequence-dependent effects were identified, where suppression
of ErbB receptor signaling 24 h to prior to doxorubicin treatment potentiated the
chemotherapy’s activity. A partial least squared regression (PLSR) model was
developed, predicting cell viability as a function of multivariate signaling dynamics.
Through analysis of the model parameters, apoptotic potentiation via caspase 8 was
identified as the convergence point between DNA damage and signaling pathways.
As this example illustrates, multivariate statistical models can be useful tools for
interrogating the mechanisms by which cytotoxic drugs and targeted inhibitors
interact, and ultimately optimizing combination dosing regimens.
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19.6.6 Limitations of Tumor Growth Models: Clonal
Heterogeneity, Stem Cells, and Metastasis

In the process of building and parameterizing tumor growth models, it is often
noted that reliance on a specific signal or pathway will depreciate over time (i.e., the
EC50 parameter will increase over an extended course of treatment). This is con-
sistent with clinical observations, as tumors initially dependent on an oncogenic
driver will often develop resistance. The phenomena can be empirically described
by setting the EC50 as a time-dependent variable (Kay et al. 2012). However, it
would be much more informative to account for the mechanistic basis of drug
resistance, such as through the activation of redundant survival pathways or clonal
competition. Mechanism-based dynamic models could then be used to optimize
dosing or combination strategies which pre-emptively combat its development
(Al-Lazikani et al. 2012). Cell compartment-based models are a possible approach,
wherein tumor mass is described as consisting of two or more cell sub-populations
of drug sensitive and resistant cells. Key parameters are the net growth rates of the
cell sub-populations as functions of drug concentration, and the compartment
transition rates (i.e. the acquisition of genetic mutations which confer drug resis-
tance). The relative contribution of each to bulk tumor mass is then a dynamic
function of drug concentration.

Consider the simplest scenario wherein a tumor is composed of two clonal
sub-populations, sensitive vs. drug resistant as defined by proliferation rates in the
absence versus presence of drug. This is not an entirely unrealistic simplification.
During treatment with the EGFR TKI gefitinib, resistance most often develops
through the acquisition of a single T790M “gatekeeper” mutation, which affects
drug binding to the ATP pocket (Engelman and Jänne 2008). A two compartment
model was developed to desicrbe the phenomoenon, quantifying differential pro-
liferation rates of the two genetically defined sub-popultaions (resistant (R) versus
sensitive (S)) as functions of gefitinb concentration (C), and parameterized using
in vitro cell culture of an EGFR-dependent lung cancer cell line:

dVS

dt
¼ aSðC;VSÞ ð19:15Þ

dVR

dt
¼ aRðC;VRÞ ð19:16Þ

V ¼
X

VS þVR ð19:17Þ

Model simulations were then used to optimize dosing schedules so as to limit the
development of resistance, defined as dominance of the resistant clone (VR/VS > 1).
A pulsatile dosing schedule (high weekly doses, followed by lower daily mainte-
nance doses) was predicted to significantly delay the onset of resistance.
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This finding was subsequently validated in vivo using a xenograft model, and has
been followed up with clinical trials (Chmielecki et al. 2011).

In addition to genetic heterogeneity, tumor cells with identical genomes can
display extensive phenotypic diversity. This highlights a flaw in the commonly
employed simplifying assumption of modeling tumors as a homogenous mass of
clonogenic cells. This may be a reasonable approximation for bacterial cultures or
perhaps clonally-derived cell lines. However, only a minority of cells (termed
cancer stem cells; CSCs) are capable of initiating tumor formation and recurrence
(Dick 2008). The existence of cancer stem cells is however still controversial.
While broadly accepted in hematological malignancies, it is still debatable whether
they fuel growth of all solid cancers or a subset, and the cellular frequency of CSCs
in human tumors remains highly contested (Meacham and Morrison 2013). It is also
still debated as to whether CSC represent a stable cell type at the base of a fixed
developmental hierarchy (as in normal tissue), vs. a transitory cellular phenotype
(Meacham and Morrison 2013). The implications for basic drug discovery are
profound, as tumorigenic stem cells and their non-tumorigenic progeny may depend
on distinct signaling pathways (Tam et al. 2013). Agents designed to kill bulk
tumor cells may be ineffective in CSCs, and thus incapable of achieving sustained
remissions or cures. Understanding the population structure of tumors and mech-
anisms of drug efficacy (what parameters are affected and in which populations) has
implications for the interpretation of tumor growth responses to drug treatment, as
has been documented for responses to imatinib in chronic myeloid leukemia
(Roeder et al. 2006; Tang et al. 2011; Michor et al. 2005), and radiation therapy in
glioblastoma (Leder et al. 2014).

It is important to highlight another crucial discrepancy between the mathematical
models of tumor growth described and clinical reality. Cancer mortality is most
often attributed to metastases rather than growth of the primary tumor. Quantitative
models with functional outputs of cancer cell migration, tissue invasion, systemic
dissemination, and colonization would therefore be highly complementary to
models of tumor growth, and provide a more complete description of disease
progression. However, tumor size is fundamentally easier to quantify than the
complex, multistep process leading to metastasis. As such, cancer research and drug
discovery, and by extension the derivative computational models, have primarily
focused on cell proliferation and survival. In fact, there are no drugs currently
available that specifically target the metastatic process. Advances in biomaterials,
3D cell culture, and microscopy are however increasing our ability to quantify
cancer cell invasiveness in vitro and in vivo (Zaman 2013), and such data should be
leveraged to build more comprehensive models of metastatic disease. A more
quantitative understanding of the networks underlying these processes could enable
metastasis-oriented drug development programs to target signaling pathways
driving the process, such as TGF-b, Wnt, and PDGF- b (Lu et al. 2013; Tam and
Weinberg 2013; Wan et al. 2013).

Regardless of the underlying pathways involved, the metastatic potential of a
carcinoma appears to depend on phenotypic plasticity of the cells. That is, the
capacity for de-differentiating via epithelial-mesenchymal transition (EMT) for
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dissemination, and then re-differentiation (MET) for metastatic site colonization and
re-growth (Brabletz et al. 2013). Notably, the molecular and morphological char-
acteristics of cancer stems cells are highly overlapping with post-EMT cells, sug-
gesting the terms may refer to similar or perhaps the same sub-populations, in at
least some tumor types. Integrating the emerging science of genetic heterogeneity,
phenotypic plasticity, and cancer stem cells into mathematical models would add
significant breadth to current models of tumor growth and improve their transla-
tional relevance.

19.7 Next Generation Translational PD Models

Tumor growth models used in translational research have been evolving from
highly empirical formulations which describe the effects of cytotoxic drugs, towards
mechanism-based descriptions for interpreting the pharmacology of
molecularly-targeted therapies. This has been driven by both supply and demand.
On the demand side, the critical challenges in oncology drug development—in-
cluding target identification, therapeutic design, dose selection, combination regi-
men design and biomarker stratification strategies—necessitate a mechanistic
understanding of how drugs interact with oncogenic regulatory networks. On the
supply side, the availability of potent and selective inhibitors combined with
multiplex and high-throughput profiling technologies mean that the data necessary
to parameterize such models is increasingly attainable. A particular area of focus is
the expansion beyond single pathway-focused models (vertical integration),
towards quantitative descriptions of multi-pathway interactions and cellular
dependencies (horizontal integration). Particularly notable are the interfaces
between PI3K and MAPK signaling, apoptotic and cell cycle regulatory controls,
and DNA damage repair pathways.

19.7.1 Leveraging Available Data

Much of the data necessary to develop mechanism-based translational models are
either available or at least readily attainable. Discovery and translational researchers
now regularly explore the effects of combining inhibitors of key regulatory pathways,
and quantify dynamic molecular readouts in tandem with in vitro or in vivo phe-
notypic responses. Studies can be conducted across panels of genomic-characterized
cell lines, enabling cell regulatory networks to be interpreted within tissue and
genetic-context. For example, the effect of PI3K/AKT and MEK inhibitor combi-
nations on cell signaling and survival have been profiled in vitro using cell line
models of breast cancer (Hoeflich et al. 2009), non-small cell lung cancer (Meng et al.
2010), thyroid cancer (Jin et al. 2011), colorectal cancer (Ebi et al. 2011),
KRAS-mutant but indication-diverse panels (Wee et al. 2009; She et al. 2010), as
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well as in genetically engineered mouse models (Roberts et al. 2012). The interplay
of apoptosis and pro-survival signaling pathways have also been studied using
combinations of Bcl-2 inhibitors with MEK and PI3K inhibitors in in panels of cell
lines (Tan et al. 2013; Corcoran et al. 2013). An important facet often unexplored
in vitro is the impact of signal inhibition dynamics on cellular responses, and the
reversibility of signal-response relationships (i.e., how long does a critical survival
signal need to be suppressed to inhibit proliferation or induce cell death, and what is
the cellular recovery time?). This is a particularly critical consideration for molecules
with short serum half-lives. A number of published in vivo xenograft studies have
explored the effects of both kinase inhibitor dose and timing on anti-tumor efficacy,
including measurements of key signaling nodes (kinases) and effectors of apoptosis
and cell cycle regulation. These include studies of the ErbB2 inhibitor lapatininb in
breast cancer (Amin et al. 2010), the BCR-ABL inhibitors dasatinib and imatinib in
CML (Shah et al. 2010), the EGFR inhibitor gefitinib in breast cancer (Solit et al.
2005), and MEK and PI3K inhibitor combinations in various indications (Hoeflich
et al. 2012).

There is no technical reason that mathematical modeling could not play an
essential component of such studies. One of the challenges of applying
systems-modeling in industry is the time sensitive nature of decisions. When critical
decisions related to clinical development arise, there often is not sufficient time or
resources available to develop biologically-based models of drug activity from
scratch. However, by building drug-agnostic but disease-specific models as a key
element of discovery research, one could leverage such resources repeatedly across
different programs and continually fold in new information as it accumulates.
A cultural push is required for modeling and simulation to play a more prominent
role in early discovery and translational research, following what has begun to
occur over the last decade in clinical pharmacometrics.

19.7.2 Remaining Challenges to Modeling Cancer Cell
Biology for Drug Development

19.7.2.1 Toxicity

Mechanism-based PD models have focused extensively on the single endpoint of
drug efficacy—largely tumor growth inhibition or molecular surrogates of prolif-
eration and survival. This contrasts sharply with standard clinical practice of dose
selection based around toxicity. Ultimately, clinical dosing regimens should be
designed around a therapeutic window—the region between minimally accepted
efficacy and maximally tolerable toxicity. Toxicity for oncology drugs is often due
to on-target effects at non-target (healthy) tissues (Muller and Milton 2012).
On-target toxicity mechanisms imply that it should be possible to include toxicity
endpoints in mechanism-based models. Predictive models of drug safety have been
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advocated by the FDA (Abernethy et al. 2011) and would be a highly valuable tool
to complement contemporary empirical approaches (Lesko et al. 2013). At mini-
mum, hybrid models incorporating empirically-defined toxicity thresholds could be
integrated within mechanism-based efficacy models for translational regimen
designs.

19.7.2.2 Tumor Architecture

It has long been recognized and explicitly described in physiologically-based PK
models that drug concentrations in tumors may be different from that in the serum
or other body tissues. This is a particularly important consideration in oncology,
given the abnormal vasculature of tumors and resulting poor perfusion. Drug
penetration into tumor tissue, particularly for large molecules such as biologics and
liposomal formulations, can be a critical determinant of efficacy. Models incorpo-
rating spatial information and tissue architecture, including vascular and tissue
permeability of drugs, may thus be essential in certain situations (Thurber and
Weissleder 2011).

19.7.2.3 Non-cell Autonomous Pharmacology

Tumors are not simply collections of autonomous replicating cells, but complex
multi-cellular tissues, wherein communication with local vasculature, stromal tissue
(such as fibroblasts), extra-cellular matrix, and infiltrating immune cells govern
disease progression and response to pharmacological intervention (Hanahan and
Weinberg 2011). Vascular disrupting agents such as VEGF inhibitors (Ribba et al.
2011), or immune checkpoint antagonists against PD1 or CTLA4 (Mullard 2013)
could not be studied though the cell signaling models described thus far. A more
thorough understanding of the heterotypic cell-cell interactions involved in tumor
development and progression are necessary to build out more realistic models of
cancer cell behavior as integrated tissue responses. Unfortunately, our basic sci-
entific understanding of these relationships remains primitive. Further research in
this area would not only improve our ability to interpret the pharmacology of drugs
currently in development, but may open up entirely new drug targets and phar-
macological strategies against the supporting niche rather than cancer cells
themselves.

19.7.2.4 Interfacing Signaling, Gene Expression and Metabolism
Networks

Protein signal transduction networks do not function as isolated entities, but rather
interface with extracellular stimuli, transcriptional regulation, and metabolism.
Oncogenic pathways such as PI3K/AKT signaling are key regulators of cellular
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metabolism, and the concept of metabolic re-wiring is opening up new targets in
cancer drug discovery (Galluzzi et al. 2013). More comprehensive models of cancer
cell biology will require consideration of signal transduction, gene expression, and
metabolic networks, though mathematical methods to integrate these biological
processes are in their infancy (Gonçalves et al. 2013).

19.7.2.5 The Dark Matter of Cancer Biology

The majority of cancer genes identified to date through The Cancer Genome Atlas
(TCGA) sequencing projects map onto a relatively limited number of known
oncogenic pathways (Vogelstein et al. 2013; Tamborero et al. 2013; Ciriello et al.
2013). However, there have been some surprises. Chromatin regulators and mRNA
splicing factors are two novel classes of cancer genes which do not fit neatly into
established knowledge. Given the wide ranging effects that such mutations would
have on gene expression patterns, it has yet to be seen how (or if) such processes
can be consolidated with our current understanding of cancer cell biology. Another
finding from the cancer genome sequencing projects is that mutational frequencies
display “long-tail” distributions. While established oncogenes and tumor suppres-
sors such as TP53, PI3KCA, as RAS are highly recurrent across many tumors, a
comprehensive understanding of how such drivers interact with less frequent, and
likely less potent mutations has yet to be established (Davoli et al. 2013). Outside of
cancer research, recent genetic studies have revealed deeper complexities in the
molecular regulation of cell biology than was ever assumed. The ENCODE
(Encyclopedia of DNA Elements) project has reported a mere 5.5 % of expressed
RNAs consist of protein coding exons (Bernstein et al. 2012), overturning previ-
ously held protein-centric view of genetic material. It is humbling to consider that
the precise function of the majority of transcribed DNA elements remain
mysterious.

19.8 Summary

Biological systems are unnervingly complex. Given the incessant pace of paradigm
shifting discoveries in molecular biology, current conceptual and computational
models are likely to contain yawning gaps and mistakes. Incorporating a strong
dose of humility and skepticism in the predictions emanating from our models is
thus critically important to realizing their promise. As the boundaries of knowledge
about cancer biology progressively advance, computational modeling has a vital
role to play in navigating the unknown, and forging the next generation of
medicines to better serve the needs of patients.
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Chapter 20
Systems Pharmacology Modeling in Type
2 Diabetes Mellitus

James R. Bosley, Tristan S. Maurer and Cynthia J. Musante

Abstract This chapter provides an introduction to quantitative systems pharma-
cology (QSP) modeling of type 2 diabetes mellitus (T2DM). For practical reasons,
biological scope is limited to those factors which determine glucose homeostasis as
is commonly determined in 12-week, Phase 2 intervention trials via measurements
of glycated hemoglobin (HbA1c). A review of information essential to a QSP effort
in T2DM is provided. This includes a biological overview of the physiology and
pathophysiology of glucose regulation along with the pharmacology of therapeu-
tically relevant mechanisms of intervention. Literature references of use in quan-
tifying key physiological and therapeutic effects are provided in this context.
Although an explicit QSP model of T2DM is not provided, diagrams representing
key pathways and organs are included along with an outline of the requisite steps in
constructing such a model. Finally, two illustrative case examples of QSP model
application in both preclinical and clinical pharmaceutical research are provided.
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20.1 Introduction

Diabetes Mellitus, a disease clinically characterized by hyperglycemia, has been
estimated to affect as much as 9.5 % of the adult population, or about 347 million
people worldwide (Danaei et al. 2011). The disease exists in two forms: type 1,
characterized by insulin-deficiency resulting from pancreatic b-cell loss; and type 2,
characterized by insulin resistance and compensation/decompensation of pancreatic
b-cell function. Both forms are associated with serious micro- and macro-vascular
sequelae which impose significant morbidity and mortality for patients. Debilitating
complications include neuropathy, nephropathy, and retinopathy, with diabetes
being a leading cause of renal failure, new blindness, and non-trauma amputations.
These complications, in turn, impose a significant economic burden to society, with
indirect and direct costs estimated at $245 billion for the U.S. alone in 2012
(American Diabetes Association 2013). Even more alarming, diabetes is a rapidly
growing global epidemic for which the Centers for Disease Control estimate will
affect 1 in 3 adults in the U.S. by 2050 if current trends continue (Boyle et al. 2010).
This is despite the fact that diabetes is an ancient disease; the term being coined by
Demetrius of Apameia in the 1st or 2nd century BC and symptoms being recorded
in Indian texts dating as far back as the 5th century BC (Eknoyan and Nagy 2005).
Enormous research investments have generated a substantial body of information
related to diabetes etiology, manifestation, progression, and response to treatment.
Although great strides have been made in the last century with the discovery of
insulin and oral anti-diabetic agents, there is currently no well-functioning phar-
maceutical intervention for diabetes. Furthermore, like many therapeutic areas,
pharmaceutical research in diabetes is costly and associated with an unacceptably
low probability of clinical success (Paul et al. 2010).

In order to address the unmet needs of diabetic patients, improvements in
decision-making within the pharmaceutical industry are required with regard to
both: (1) the selection of viable molecular targets and novel therapeutic molecules
and (2) the design of cost effective clinical trials. With regard to the former, clas-
sical reductionist approaches have provided insight into specific molecular mech-
anisms related to diabetes metabolism and disease pathophysiology, but the
associated therapeutic implications for relevant clinical trial outcomes (e.g.,
HbA1c) are not clear, as the etiology, manifestation, and progression of diabetes
occurs across multiple metabolic and signaling pathways, organs, and cell types.
Descriptive pharmacostatisical models are effective tools in analyzing clinical data
to design optimal subsequent studies. However, they are of more limited value
when used to predict clinical outcomes where there is no direct prior clinical
experience as with novel therapies, new combinations, or untested patient popu-
lations. These challenges and limitations to decision-making have motivated
physiologically-based systems modeling approaches. In fact, diabetes represents
one of the more tractable diseases for a quantitative systems pharmacology
(QSP) approach due to an abundance of available biochemical biomarker infor-
mation, which have defined some of the key metabolic pathways of importance in
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conditions of normal and impaired glucose homeostasis. The need for the type of
quantitative framework provided by QSP modeling is also clear due to the complex
network of interacting diabetes mechanisms. For example, the system has multiple,
interacting feedback loops (e.g., insulin effect on glucose storage, release, and
disposal), multiple parallel pathways (e.g., the effects of glucose, incretins, and
glucagon on insulin secretion), nonlinear responses (saturation effects of drugs,
endogenous hormones, and metabolites), time-dependent responses (e.g., plasma
glucose can be higher, the same, or lower than baseline in response to a meal or
glucose challenge, depending upon relative sampling time), and state-dependent
responses (e.g., the net flux of some pathways can change sign depending upon fed
or fasted condition and differs by disease state). Other complexities common to
disease modeling are also present, such as inter-subject variability (e.g., disease
state, genetic and phenotypic differences in metabolism, disease etiology, diet, and
therapeutic intervention history) and intra-subject variability (e.g., assay variability,
day-to-day compliance with treatment(s), food intake, and exercise). As described
by Cedersund and Strälfors (2009), such models must represent the physiological
knowledge of glucose homeostasis at multiple levels including the whole-body,
organ, and cellular level to allow clinical predictions for decision support. This QSP
approach (also called multiscale, hierarchical, or mechanistic modeling) is required
for the aforementioned pharmaceutical applications as it allows linkage of drug
mechanisms and disease pathology occurring at the cellular level to clinical
whole-body manifestations. Such an approach also allows for some practical
modularity at the organ level where evolving details of cellular metabolism and
signaling within an organ can be incorporated and evaluated with respect to the
arteriovenous balance of key metabolites (e.g., glucose, insulin, GLP-1, glucagon,
and FFA) within an organ as it functions in the context of the whole-body model.
Although many isolated and incomplete components of such a modeling approach
exist at the whole-body, organ, and cellular metabolism/signaling levels, there are
few examples where these components have been functionally integrated in this
manner (Ajmera et al. 2013).

The first and perhaps most complex published example of such a systems
pharmacology model of glucose homeostasis is that by Kim et al. (2007), which
describes hormonal control over relevant cellular metabolic processes in response to
60 min of moderate intensity exercise in fasting healthy subjects. This particular
model captures the dynamics of carbohydrate and lipid metabolism within key
organs (e.g., brain, heart, liver, gastrointestinal (GI) tract, muscle, and adipose
tissue) and interaction at the whole-body level with respect to blood/tissue transport
of numerous circulating metabolites (e.g., glucose, insulin, pyruvate, lactate,
glycerol, alanine, fatty acids, triglyceride, oxygen, and carbon dioxide). A short
duration of moderate exercise is assumed to affect epinephrine concentrations as a
function of time and work rate, which in turn, modulates glucagon and insulin
secretion through a controller that maintains a constant blood glucose concentra-
tion. Metabolic fluxes upon exercise are modulated in a number of ways including:
as direct step change to ATP hydrolysis (due to neural activation in heart and
muscle); as a function of glucagon/insulin ratio (in the liver); as a nonlinear function
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of epinephrine (in tissues not expressing glucagon); and as a combined nonlinear
function of epinephrine and insulin (lipolysis in GI and adipose). The model is
parameterized from literature information at several levels including: tissue flow
and size; O2 and CO2 consumption; steady-state arterial and tissue concentrations of
metabolites; and steady-state uptake and release rate of metabolites in tissues. These
data are used to determine the 25 intracellular metabolic fluxes across 6 organs at
rest via flux-based analysis. Finally, twenty-seven parameters related to hormonal
control and dynamic responses of epinephrine, glucagon, and insulin to a change in
work rate are either estimated by “adjustment” or a nonlinear optimization algo-
rithm matching whole-body glucose appearance/disappearance rates and arterial
metabolite concentrations. Another notable model of this nature is that of Chew and
colleagues (2009a, b), which includes cellular level detail regarding insulin sig-
naling. In this work, two independent publications of insulin signaling (Sedaghat
et al. 2002) and whole-body glucose homeostasis (Cobelli and Mari 1983) are
combined in a manner that maintains fidelity with the underlying data in response to
a glucose challenge at both levels. Interstitial insulin from the whole-body model is
used as input to the insulin signaling model, and glucose uptake rate from the
insulin signaling model is fed back to the whole-body model via a Michaelis–
Menten function (with Vmax as a function of the fraction of GLUT4 receptors at
the cell surface as output from the insulin signaling model). Two parameters are
estimated, namely a theoretical upper limit to Vmax for the entire body (assuming
all GLUT4 are at the cell surface) and a Km for GLUT4 transport. Although this
model seems to imply that insulin signaling can be scaled in this manner, it is not
highly constrained by the whole-body model and generates parameters that are
either inconsistent with independent estimates (Km) or which cannot be indepen-
dently verified (Vmax). Perhaps the most ideal approach published to date is that
from Nyman et al. (2011) which links insulin signaling in adipocytes to whole-body
glucose homeostasis. At the top physiological level, several key organs (gastroin-
testinal tract, liver, pancreas, muscle and adipose tissue) interact via glucose and
insulin to govern glucose homeostasis at the whole-body level. Each organ is highly
constrained by insulin and glucose input/outputs in keeping with that modeled from
triple-tracer studies performed following a meal challenge in healthy subjects (Dalla
Man et al. 2007). A model of insulin control of glucose determined in primary
adipocytes was then modified by constraints imposed by glucose uptake in adipose
tissue according to the whole-body glucose homeostasis model. Finally, this
approach was further used to incorporate more detailed models of insulin signaling.
The result is a mathematical model that could feasibly be used to scale new in vitro
data obtained in adipocytes (e.g., novel therapeutic interventions) to an expectation
in whole-body glucose homeostasis. This approach is attractive in that the modu-
larity provides a means for codifying and constraining increasing levels of detail,
both at the top and subcellular level, necessary to support drug discovery efforts.
This aspect is particularly important as the currently published models lack the
degree of detail necessary to support drug discovery efforts. More specifically, the
models mentioned focus largely on the healthy state; lack one or more key hor-
monal controls of relevance to drug action (e.g., glucagon, GLP-1, and/or FFA); do
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not include the ability to simulate glucose control in daily life, and; lack linkage to
clinically relevant endpoints (e.g., HbA1c). Other more comprehensive models,
such as those described in the case examples later in this chapter, exist but are
proprietary and therefore not freely available to the scientific community. For this
reason, while the number of mathematical models being developed in support of
diabetes research has been steadily increasing over the past 50 years (Ajmera et al.
2013; Landersdorfer and Jusko 2008; Li et al. 2010), there are no publications that
describe the application of such a human systems diabetes model to support
pharmaceutical research. With this application in mind, we define fit-for-purpose
quantitative systems pharmacology models as those having a structure based upon
physiological knowledge, with adequate mechanistic detail to represent patho-
physiological dysregulation and drug action.

This chapter provides information to those seeking to develop such a QSP model
of diabetes. Although an explicit model is neither published nor described in detail
herein, case examples are provided to illustrate how critical development decisions
can be supported by the prediction of changes in glycated hemoglobin (HbA1c) in
response to novel therapeutic interventions as typically observed in a 12-week
Phase 2b trial. Until there are widely available, detailed, and comprehensive dia-
betes models, the information here is offered as a starting point and guide to
creating and using such models, with brief accounts to show how this is already
being done within the industry.

20.2 Diabetes Biology Overview

Glucose homeostasis—the balance between the pancreatic hormones, insulin and
glucagon, to maintain healthy blood glucose concentrations—is a tightly regulated
process involving multiple organs and pathways. Diabetes is a complex disease
characterized by chronically elevated blood glucose concentrations in the fasted
state (overnight fasted or postabsorptive plasma glucose), the fed state (postprandial
glucose), or both. The American Diabetes Association (ADA) (2014) has defined
four criteria for diabetes diagnosis:

• HbA1c � 6.5 %

OR

• Fasting plasma glucose (FPG) � 126 mg/dL (7.0 mmol/L)

OR

• 2-h plasma glucose � 200 mg/dL (11.1 mmol/L) during an oral glucose tol-
erance test (OGTT)

OR
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• A random plasma glucose � 200 mg/dL (11.1 mmol/L), in patients with classic
symptoms of hyperglycemia or hyperglycemic crisis.

In addition, the ADA has classified individuals at increased risk for developing
diabetes (i.e., pre-diabetes) as having impaired fasting glucose (IFG) or impaired
glucose tolerance (IGT):

• IFG: fasting plasma glucose (FPG) concentrations of 100–125 mg/dL (5.6–
6.9 mmol/L)

• IGT: 2-h plasma glucose (2-h PG) in the 75-g oral glucose tolerance test
(OGTT) of 140–199 mg/dL (7.8–11.0 mmol/L).

20.2.1 Glucose Homeostasis in Non-diabetic Subjects

Normal glucose tolerant individuals are capable of maintaining blood glucose
concentrations in a healthy range under a variety of conditions. The primary
mechanisms responsible for glucose homeostasis differ under fed and fasted con-
ditions. In response to food intake, carbohydrates and other nutrients in the stomach
are released into the lumen of the proximal small intestine at a gastric emptying rate
that varies depending on a number of factors, including the volume of food in the
stomach and the composition of the meal (energy content, nutrient composition,
etc.). Nutrients are digested and absorbed as they travel through the intestinal tract,
while a small amount remain unabsorbed and are excreted in the feces. Blood
glucose concentrations rise and the incretin hormones, glucagon-like peptide 1
(GLP-1) and gastric inhibitory peptide (GIP), are produced from intestinal L and K
cells, respectively. GLP-1 and GIP released into the circulation signal pancreatic
beta cells to produce and secrete insulin. The first-phase of insulin secretion, from
pre-formed insulin stored in vesicles in the beta cells, begins just minutes after meal
ingestion and is followed by a second phase of insulin production and secretion that
continues until glucose concentrations return to baseline.

In this postprandial state, glucose concentrations are controlled largely through
the action of insulin (Fig. 20.1). Glucose-stimulated insulin secretion (GSIS) from
the pancreas suppresses glucagon production and signals the body to preferentially
utilize glucose and store excess energy as glycogen or fat. In the liver, hepatic
glucose production is suppressed, hepatic glucose uptake through the enzyme
glucokinase is increased, and glucose that is not oxidized is stored in the form of
glycogen primarily under the action of glycogen synthase. In adipose tissue,
lipolysis is inhibited by insulin action, free fatty acid (FFA) uptake is increased, and
excess fat is stored in the form of triglycerides. Skeletal muscle is responsible for
taking up the majority of glucose after a meal through the action of GLUT4
transporters; glucose is oxidized to meet the energy needs of the tissue and excess is
stored in the form of glycogen to meet future energy demands. In this way,
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postprandial glucose excursions are controlled until all nutrients have been absor-
bed and pre-meal glucose concentrations are restored.

In the overnight fasted state (Fig. 20.2), blood glucose concentrations are
maintained primarily through hepatic glycogenolysis and gluconeogenesis, each
contributing approximately 50 % to hepatic glucose output. Gluconeogenesis is the
process by which the body converts non-sugar substrates (mainly lactate, alanine,
and glutamine) to glucose. An increase in adipose tissue lipolysis supplies fatty
acids for fuel to peripheral tissues, sparing glucose for use by the brain. The brain
has limited capacity to store nutrients to meet its energy demands and, therefore, a
continuous supply of fuel in the form of glucose or ketone bodies is necessary for
survival. During a prolonged fast lasting a day or more, glucagon concentrations
increase in response to hypoglycemia, hepatic fatty acid (FA) uptake and meta-
bolism are increased along with ketone production, providing an alternate fuel
source to maintain brain function. Under these conditions, when muscle and liver
glycogen stores are low, hepatic and renal gluconeogenesis are the primary sources
of glucose to the circulation. The reader is referred to Frayn’s text (2010) on human
metabolism for more information.

Fig. 20.1 Metabolic fluxes in the fed state, with glucose (blue), incretins (green), insulin (purple),
and lipids (yellow). Major fluxes are shown as arrows, with the effects of insulin and incretins
highlighted
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20.2.2 Impaired Glucose Regulation in Individuals
with Type 2 Diabetes

The pathogenesis of type 2 diabetes includes pancreatic beta cell insufficiency (the
inability to secrete sufficient insulin to meet glucose demands) and insulin resis-
tance (impairment of signaling of insulin at various tissues). Although the sequence
of events leading to the diabetic state are unclear, early in the disease the beta cells
increase insulin production to compensate for peripheral insulin resistance. As the
disease progresses, beta cell function gradually declines and may result in beta cell
failure, requiring exogenous insulin delivery to maintain adequate glucose control.

Diabetes may result from a combination of environmental (e.g., diet and exercise)
and genetic predispositions (Leahy 2005; Nolan et al. 2011; Ostenson 2001). Current
treatment options (Table 20.1) may slow or delay the progression of the disease;
however, as evidenced in the UKPDS trial (UK Prospective Diabetes Study
(UKPDS) Group 1998a, b), treatment effects are not durable. Persistently elevated
glucose and lipid concentrations, characteristic of the diabetic phenotype, lead to
further progression of the disease and have been attributed to gluco-, lipo-, or glu-
colipotoxicity, at the pancreatic beta cells and cells of other organs (Ostenson 2001).

Fig. 20.2 Metabolic fluxes in the fasted state, with glucose (blue), glucagon (red), and lipids
(yellow). Major fluxes are shown as arrows, with the effects of glucagon highlighted
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Table 20.1 Anti-diabetic drugs and insulin analogs

Main
pathway

Function Type/target Subclass and examples

Insulin Sensitizers Biguanides Metformina, Buforminb, Phenforminb

TZDs/
“glitazones”
(PPAR)

Pioglitazone, Rivoglitazonec, Rosiglitazone,
Troglitazoneb

Dual PPAR
agonists

Aleglitazarc, Muraglitazard, Saroglitazar, Tesaglitazard

Secretagogues K + ATP Sulfonylureas—1st
Generation

Acetohexamide/Carbutamide,
Chlorpropamide,
Metahexamide, Tolbutamide,
Tolazamide

Sulfonylureas—2nd
Generation

Glibenclamide (Glyburide)a,
Glibornuride, Glipizide.
Gliquidone, Glisoxepide,
Glyclopyramide, Glimepiride,
Gliclazide

Meglitinides/`̀ glinides” Nateglinide, Repaglinide,
Mitiglinide

GLP-1
agonists

Exenatide, Liraglutide, Taspoglutidec, Albiglutidec,
Lixisenatide

DPP-IV
inhibitors

Alogliptin, Anagliptin, Gemigliptin, Linagliptin,
Saxagliptin, Sitagliptin, Teneligliptin, Vildagliptin

GPR40 Free
fatty acid
receptor 1

Fasiglifamc

Analogs/other
insulins

Insulin or
insulin
receptor
ligand

Fast acting Insulin, lispro, Insulin aspart,
Insulin glulisine

Short-acting Regular insulin

Long-acting Insulin glargine, Insulin
detemir, NPH insulin

Ultra-long acting Insulin degludece

Other Alpha-
glucosidase
inhibitors

Acarbose, Miglitol, Voglibose

Amylin analog Pramlintide

SGLT2
inhibitors

Canaglifozin, Dapaglifozin, Empaglifiozinc,
Remoglifozind, Sergliflozlnd, Tofogliflozinc,
Ertuglifozinc

Other Bromocriptine, Benfluorexb, Tolrestatb

Adapted from Wikipedia contributors (2015)
aTherapy is a WHO essential medicine, bWithdrawn from market, cPhase 3 clinical trials, dDid not
progress to Phase 3, eApproved in Europe and Japan, FDA has declined to approve and requested more
information, trial underway
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A hallmark characteristic in the development of type 2 diabetes is impairment of
first-phase insulin release in response to a glucose challenge (Del Prato et al. 2002;
Bunt et al. 2007). Several studies have demonstrated the importance of early insulin
secretion in the control of postprandial hyperglycemia, although insufficient sup-
pression of glucagon secretion and endogenous glucose production may also
contribute to this effect (Bruce et al. 1988; Luzi and DeFronzo 1989; Markovic
et al. 1995). Deficiency in insulin secretion and impairment of insulin signaling
result in an imbalance in the rate of glucose appearance and disappearance in the
postprandial state, leading to hyperglycemia (Aronoff et al. 2004). In the overnight
fasted state, elevated glucagon secretion and hepatic glucose production contribute
to fasting hyperglycemia, although the contribution of hepatic glucose production
likely is less than originally reported (Beck-Nielsen et al. 2002).

Several clinical protocols have been developed for diabetes diagnosis or
assessment (Table 20.2). Although we primarily have focused on differences
between glucose, insulin, and glucagon concentrations and signaling between the
non-diabetic and diabetic conditions, many other metabolic changes occur with
progression from the healthy to disease state. Some of these differences have been
referenced in Table 20.3. The data contained in the sample references from
Tables 20.2 and 20.3 may serve as calibration or validation data for a diabetes
systems pharmacology model, as discussed in the next section.

20.3 Quantitative Systems Pharmacology Modeling
Approach

The first step in diabetes QSP modeling is to define the research question or
decision that the modeling will support or change. A written model plan should
include: modeling program goals, model scope, data to be used, criteria that define
testing and stopping points, and specific predictions that will be needed to support
the research goals.

Scoping and planning

1. Define the research question in a way that supports program goals and timelines
2. Define the data required to build and test the model
3. Define and graphically formalize the necessary scope and level of model detail

required

Develop the model

4. Mathematically formalize a parsimonious model of glucose regulation
5. Enhance the model by adding function and detail as required for the research

question
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Table 20.2 Clinical protocols in diabetes diagnosis or assessment

Test Protocol Direct or indirect
measures

Sample references

Oral glucose
tolerance test
(OGTT)

Ingestion of 50-, 75-,
or 100-g glucose
solution

Overnight fasted and
2-h glucose and
insulin measurements
frequently utilized as
diagnostic test;
beta-cell sensitivity to
glucose; tissue
sensitivity to insulin

Færch et al. (2008),
Ceriello et al. (2011),
De Gaetano et al.
(2013), Møller et al.
(2014), Meyer et al.
(2004)

Intravenous glucose
tolerance test
(IVGTT);
frequently sampled
IVGTT (FSIVGTT)

Glucose injected into
vein at 300 mg/kg for
1 min

First-phase insulin
response; beta-cell
sensitivity to glucose;
tissue sensitivity to
insulin

Bergman et al.
(1981), Quddusi et al.
(2003)

Hyperglycemic
clamp

Plasma glucose levels
are acutely raised to
125 mg/dL above
basal and maintained
at this level by
variable glucose
infusion

Beta-cell sensitivity to
glucose; tissue
sensitivity to insulin

DeFronzo et al.
(1979), Rave et al.
(2010)

Hyperinsulinemic,
euglycemic clamp

Plasma insulin levels
are acutely raised to
100 µU/mL and
maintained at this
level by continuous
insulin infusion.
Plasma glucose levels
are held constant at
basal (euglycemic)
levels by a variable
glucose infusion

Tissue sensitivity to
insulin; considered
“gold standard” for
assessment of
whole-body insulin
sensitivity;
endogenous glucose
production

DeFronzo et al.
(1979, 1985)

Two-step
hyperinsulinemic,
euglycemic clamp

Hyperinsulinemic,
euglycemic clamp
protocol at low and
high insulin infusion
rates (protocols vary)

Hepatic and peripheral
insulin sensitivity

Johannsen et al.
(2014), Perriello et al.
(1994)

Short-term fast Calorie deprivation for
2–3 days

Plasma glucose,
insulin, free-fatty
acids, ketone bodies,
and other biomarker
concentrations

Horowitz et al.
(2001), Beer et al.
(1989), Browning
et al. (2012), Watts
and Digirolamo
(1990)

Multiple mixed
meal tests

Protocols vary;
typically consist of
three standardized
meals over the course
of one day

Plasma glucose and
insulin time-course
measurements

Polonsky et al.
(1988a, b), Peter et al.
(2010)
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6. Augment model to allow simulation of required protocols
7. Evaluate sensitivity of model outcomes to parametric and structural changes
8. Create sets of parameters representing inter-subject variability
9. Evaluate and document model performance

Apply the model

10. Exploit the model to support research goals

Table 20.3 Sample references illustrative of those that may be used in the calibration and
validation of select metabolic parameters, pool sizes, or pathways in a diabetes systems
pharmacology model

Parameter, pool,
or pathway

Types of protocols Sample references

Plasma
C-peptide
concentrations

Single nutrient or mixed meal
challenges; incretin infusions

Meier et al. (2007), Christensen
et al. (2014)

Plasma incretin
concentrations

Single nutrient or mixed meal
challenges; incretin infusions

Bagger et al. (2011), Vilsbøll et al.
(2003), Christensen et al. (2014)

Plasma
glucagon
concentrations

Single nutrient meals or mixed meal
challenges; incretin infusions

Lund et al. (2011), Christensen
et al. (2014)

Gastric
emptying rate

Imaging following liquid and solid
meals, paracetamol absorption

Seimon et al. (2013), Horowitz
et al. (1991), Bagger et al. (2011),
Samsom et al. (2009)

Endogenous
glucose output

Euglycemic, hyperinsulinemic clamp;
tracer techniques

Ferrannini et al. (2014), Merovci
et al. (2014), Toffolo et al. (2006)

Liver glycogen
content

In vivo analytical imaging techniques
(e.g., nuclear magnetic resonance
(NMR) spectroscopy)

Stephenson et al. (2013),
Tomiyasu et al. (2010), Petersen
et al. (2001)

Muscle
glycogen
content

In vivo analytical imaging techniques
(e.g., NMR)

Stephenson et al. (2013), Roden
(2001)

Glomerular
filtration rates
(GFR, eGFR)

Inulin, 51Cr-EDTA, or 99mTc-DTPA
plasma clearances (GFR); or estimated
from serum creatinine levels (eGFR)

Mussap et al. (2002), Premaratne
et al. (2005), Zhang et al. (2010)

24-h urine
glucose
excretion

Urine collection over a 24-h period Zhang et al. (2010), Kapur et al.
(2013)

Insulin response
to GLP-1
infusion

IVGTT + GLP-1 infusion; graded
glucose infusion + GLP-1;
meal + GLP-1 infusion

Ahrén et al. (2003), Kjems et al.
(2003), Brandt et al. (2001),
Quddusi et al. (2003)
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20.3.1 Scoping and Planning

20.3.1.1 Define the Research Question in a Way that Supports
Program Goals and Timelines

QSP models can support a range of research questions relevant to pharmaceutical
research and development, including predictions of: (1) efficacy relative to stan-
dards of care, (2) efficacy in combination, (3) efficacy in diabetic subpopulations,
(4) durability of efficacy with respect to disease progression (5) safety risk (e.g.,
hypoglycemia), (6) different dose regimens to determine an optimum for efficacy
and safety, and (7) identification of biomarkers related to efficacy or safety. The
research question of interest strongly influences model scope. For example, if
co-morbidities of diabetes are of interest, the macro- and micro-vascular patho-
physiologies that occur secondary to impaired glucose homeostasis must be
included. The discussion here is focused on efficacy of glucose regulation in
response to a novel compound. The HbA1c endpoint is the clinical standard for this
and must be included in a way supporting predictive simulations for a represen-
tative trial duration (chosen here as 12 weeks). The model must allow replication of
data for the intended trial population, for example, in moderate to severe diabetic
subjects ranging from normal weight to obese. The model scope should include a
list of physiological components necessary to give accurate response to target
modulation of the drug of interest in the population of interest. Exclusions to scope
should be explicitly stated. In this chapter, disease progression and beta cell health
are excluded, but these can be (and have been) represented in other models.

20.3.1.2 Define the Data Required to Build and Test the Model

A key advantage of QSP modeling is the ability to exploit a wide range of data
directly by providing physiological context to integrate disparate data sets to predict
human outcomes. This allows building and testing model components individually
(e.g., specific rate equations) or as an integrated system (whole-body tests). There
are nearly half a million diabetes references in PubMed, leading to a strong rec-
ommendation that the modeler work closely with a diabetes domain expert(s)
familiar with the pathophysiology of the disease. Such an expert can efficiently find,
evaluate, curate, disqualify, and select data needed to build a model.

Each individual reaction or flux in the model requires data to establish the
appropriate kinetics. Fitting individual reactions with small data sets is a
well-developed skill in pharma R&D and is not covered here. The model components
are integrated using pathway analysis, known physiology, and mass conservation
laws. The list of required data must be sufficient to build and test the integrated disease
model. This is best done using data from a variety of different experiments.

As the QSP model is created and improved, whole-body testing using standard
diabetes clinical protocols may guide development and provide tests for the model.
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The data set should support this for normal and diabetic physiology. The data set
includes the types of clinical study data listed in Table 20.2. Clamp studies are
useful in modeling for the same reason that they are useful in the clinic: they
eliminate confounding changes. For example, fixing glucose concentrations with
infusions allows assessment of beta cell sensitivity to glucose or hepatic/peripheral
insulin sensitivity. Acute nutrient challenges, such as intravenous or oral glucose,
meals of mixed macronutrient composition, or caloric restriction, are also useful.
Many of the protocols listed in Table 20.2 include references to relevant data,
collected in both the healthy and diabetic state.

The model must not only match steady-state (e.g., clamps, fasting) data, but also
must reproduce the size and timing of various challenges and therapeutic inter-
ventions. These data include dynamic responses of other endogenous compounds
(e.g., incretins, glucagon); physiological processes (e.g., gastric emptying,
glomerular filtration rate (GFR), renal glucose excretion, and endogenous glucose
output); and physiological pools (e.g., liver and muscle glycogen, plasma c-peptide,
incretin, and glucagon). Table 20.3 provides illustrative examples of these types of
data with reference to both the healthy and diabetic conditions.

QSP models can use clinical data from studies of existing therapies for building
and testing of the model. Especially useful are data for existing drugs that have
pathways that overlap with that of a novel study drug. For example, GPR119
agonists affect the release of GLP-1; therefore, a base QSP model for GPR119
should account for therapeutic responses to DPP-IV inhibitors and GLP-1 agonists.
Likewise, the SGLT2 model described in the case examples was built in part from
publically available data, such as glucose clamp data (which characterize the renal
glucose threshold) and emerging clinical pharmacology data on the effect of SGLT2
inhibition on renal glucose threshold. Table 20.1 provides an overview of the range
of therapeutic mechanisms available for the construction of a fit-for-purpose dia-
betes QSP model.

20.3.1.3 Define and Graphically Formalize the Necessary Scope
and Level of Model Detail Required

Once the research question is defined and relevant data cataloged, a graphical rep-
resentation of the relevant biology is indispensable in defining the scope of a model.
Biological diagrams are ubiquitous; however, schematics used for modeling require
a stricter formalism. A useful discussion of modeling diagrams, as well as examples
of process diagrams for biology are available (Kitano et al. 2005). The simple
“process diagram with reduced notation” approach from Kitano et al. is used here.

Figures 20.3, 20.4, and 20.5 are schematic diagrams (available in the supple-
mental material) representing important components of diabetes physiology,
pathophysiology, and treatments for a model consistent with the research goal in
this chapter. They are implemented in freely available software called Pathway
Designer (formerly JDesigner, available at pathwaydesigner.org) (Bergmann et al.
2006; Bergmann and Sauro 2006; Hucka et al. 2002). The diagrams are based upon
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many literature sources, including those cited in the biology subsection.
A comprehensive collection of detailed metabolism-related diagrams relevant to
diabetes is also available (Salway 2004). The figures are similar to several models
the authors have built and applied, including those models described in the case
study section, which contain a level of detail intended to define a model that can
predict HbA1c over a range of experimental conditions. These diagrams are
illustrative, and are meant as a starting point for experienced modelers.

Each graphical component in Pathway Designer has a formal mathematical
meaning. These are exemplary of many software packages and are illustrative.
A “bubble” or node represents a quantity. Some nodes represent a balance equation
for a specific biological entity, in a specific state, in a specific location. These are
called state or floating nodes. Arrows represent fluxes, which can be reaction rates or
fluxes between state nodes. Another type, a boundary node, represents values that
are either set by the user as a fixed parameter or calculated by the model based upon
algebraic calculations. The influences of states and fixed and calculated values on the
various fluxes between state nodes are shown graphically as modifiers (dashed lines
ending with crossbars or open circles to designate inhibition or induction). Concrete
examples of what state nodes represent include both small molecules (e.g., amount
of glucose in plasma) and larger molecular structures (such as GLUT4 transporters

Fig. 20.3 Important aspects of the physiology of energy metabolism in diabetes
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internal to vesicles in the muscle cells and the mass of glycogen in the liver). Fluxes
can represent reactions (e.g., phosphorylation of glucose in the liver) or translocation
(e.g., GLUT4 moving from vesicles in the cytosol to muscle cell surface due to the
effect of insulin). The main metabolic fluxes are shown in Fig. 20.3, where the most
important fluxes relate to trafficking of carbohydrates (mostly as glucose) in the
intestines, liver, plasma, muscle, red blood cells, adipose, and brain tissues. Based on
the research question that was defined earlier, lipid metabolism is represented in
limited form in order to simply account for macronutrient intake, oxidation, and
storage. Hormonal signals are shown originating in the pancreatic alpha and beta
cells, and in the intestinal L and K cells, in Fig. 20.4. Figure 20.5 illustrates details
involved in enzyme activation, hormone production, and release by specific cells,
and again, alias nodes provide links.

QSP models should be written to allow simulation of a variety of protocols to
facilitate the use of a broad range of data, including different clinical studies. In
addition to what is shown in the supplemental diagrams, the model should include
structure and parameters to allow such things as daily dosing and meals, various

Fig. 20.4 Details of hormone synthesis and release
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useful metrics such as the area-under-the-curve (AUC) of glucose, and pharma-
cometric models for both the investigational drug and any other relevant therapy for
which data are available.

Figure 20.6 is an expanded portion of Fig. 20.4. Bound and unbound receptors,
and active and inactive enzymes, are represented as different nodes. Movements
(e.g., insulin migrating from reserve- to ready- to immediately-releasable pools) or
change of state (e.g., inactive to active adenylate cyclase) are represented explicitly
as fluxes between nodes. This emphasizes the clear differences between mass flux
(beta_immediate_insulin being released to the Plasma_Insulin) and influence on
flux (in this case, of cytosolic beta_Calcium). Modeling assumptions and

Fig. 20.5 Hormone and metabolites interact to influence both hormone balance and energy
metabolism, connect to other diagrams via plasma glucagon and insulin, or by
synthase/phosphorylase balance

Fig. 20.6 A representative section of a physiological schematic. The specificity of the diagram
supports efficient modeling and communication
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simplifications are also clear, as is shown by the beta cell calcium node where an
exclusively external source is shown (i.e., with endoplasmic reticulum calcium
ignored).

20.3.2 Develop the Model

20.3.2.1 Mathematically Formalize a Parsimonious Model of Glucose
Regulation

Experience suggests an efficient model-building process starts with a model that is
simpler than that shown in Figs. 20.3, 20.4, and 20.5. The model should capture the
gross features of physiology—glucose and insulin systems at a minimum—and
should replicate to some degree the behavior contained in a selected subset of data.
Several models of this nature have been described in the literature and can provide a
reasonable starting place (Cobelli and Mari 1983; Dalla Man et al. 2007; Silber
et al. 2010). The model by Dalla Man et al. (2007) is used here as an example.
Figure 20.7 shows key components of metabolic physiology and their interactions
at a high level.

The Dalla Man model has features that make it a useful starting point. Tritiated
glucose is accounted for separately, allowing the use of a triple tracer database to
determine rates and to understand physiological behavior at the level of key tissues
(e.g., liver, kidney, muscle, adipose tissue, pancreas, and GI tract). The modular
approach facilitates subsequent model enhancement, allowing the use of a wide

Fig. 20.7 A conceptual starting point with a modular structure, after Dalla Man et al. (2007).
Each of the modules must be populated by states, rates, and mechanisms
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variety of relevant datasets for glucose homeostasis such as fasting, various glucose
challenges, and clamp-type studies. The influence of hormones, drugs, and
metabolite pool sizes on the mechanism of action can be studied, and various data
can be used to augment mechanistic detail. Different disease states should be
modeled. It is most useful to start modeling with healthy subjects, modifying the
model to account for aspects of disease (e.g., insulin resistance and impaired
secretion of insulin). Dalla Man et al. (2007) provide two sets of parameters to
represent normal and diabetic behavior (Fig. 20.8).

The modular structure allows the use of data specific and relevant to each
module, which were integrated and tested with standard input-output data (e.g.,

Fig. 20.8 The model of Dalla Man et al. (2007) expressed in the same schematic format as
Figs. 20.3, 20.4, and 20.5 as implemented in Pathway Designer
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glucose and insulin). The authors note that these data were insufficient to capture
system behavior, and therefore they obtained data containing several intermediate
measurements such as fluxes, rate of appearance, and production. This illustrates
how QSP modeling can identify data gaps and focus lab and clinical work on
obtaining data that informs not only model development but understanding of
disease. The model predictions match not only the magnitude of changes of inputs
and outputs, and of intermediate values, but also replicate the rates of rise and
decay, times for maximum values, and other temporal trajectories. Taken together,
extensive strict testing ensures that the model is suitable for purpose and builds
confidence in predictive simulations.

In almost all cases, a simple model must be expanded before it can meet research
needs. The prior scoping work will have defined the data to be used, and these data
sources provide a checklist of experiments that the model must be able to replicate.
Diagrams such as Figs. 20.3, 20.4, and 20.5 include the physiological detail to
match the data and the components necessary to make predictive simulations to
meet research needs. Moving from the simple model to the fit-for-purpose model
involves three driving forces: protocol, mechanistic detail, and subject variability.
These enhancements are covered sequentially in following sections and often
proceed simultaneously.

20.3.2.2 Enhance the Model by Adding Function and Detail
as Required for the Research Question

A prediction of the response of HbA1c over a representative trial duration is often
desirable. This requires additions to an initial parsimonious model. For example,
there are several possible approaches to relating glucose to glycated hemoglobin.
There is a good correlation, albeit with wide confidence limits, between long-term
average plasma glucose and HbA1c. Rohlfing et al. (2002) derived an algebraic
correlation between average plasma glucose (PG) and HbA1c, which can be written
as:

HbA1cð%Þ ¼ 0:505� PG(mM)þ 2:17 ð20:1Þ

This equation reflects a steady-state relationship, ignores the time-dependency that
is needed, and is reflected in Fig. 20.9a. Figure 20.9b shows a more realistic rep-
resentation of glucose and hemoglobin binding. A simplification, which assumes
that the plasma glucose pool is not significantly depleted by the glycation reaction,
is shown in Fig. 20.9c. The latter approach has been found satisfactory in many
cases. However, when erythropoesis or reticuloendothelial clearance is altered, the
production or clearance of red blood cells may change the time-course of the effect
of glucose on hemoglobin in the blood. For this case, Hamrén et al. (2008) have
proposed a model that includes the blood cell life cycle (Fig. 20.9d). The authors
used this approach to account for the hemodilution effect of tesaglitazar.
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The manner in which insulin clearance is codified provides another example
where a researcher may add varying degrees of mechanistic detail. A naïve
first-order model of insulin release does not match data for an oral glucose chal-
lenge (Seino et al. 2011). Intravenous (i.v.) glucose challenge data have an insulin
response that is closer to a first-order lagged model (i.e., an indirect response model
with linear kinetics) (Zimei 2013). In an oral challenge, the insulin response is both
larger initially and more sustained than can be represented by a simple model
(Perley and Kipnis 1967). Physiology gives insight into additional model structure
needed at this point. Cephalic effects help stimulate an early response (Taylor and
Feldman 1982). Beta cells have a significant pool of readily releasable insulin that
facilitates an initial release, which leads to adding a “readily releasable pool” of
insulin to the beta cell model (Bratanova-Tochkova et al. 2002). Candidate
sub-models for glucose-stimulated insulin secretion can be formulated in isolation
and tested using stimulation of time-course data of glucose tests from the literature.
Proinsulin is produced and cleaves to form insulin and C-peptide. C-peptide has a
different clearance rate, and so may be used to quantify insulin secretion rates and
determine transient secretion and clearance parameters.

Considering only insulin clearance, Fig. 20.10 illustrates four possible levels of
detail and approaches. One level is represented as a simple flux from plasma to
“Cleared_Insulin”, using an appropriate rate law. Early development of the insulin
receptor model was provided by Quon and Campfield (1991). Hovorka et al. (1993)
added hepatocyte and peripheral tissue binding, and receptor-mediated clearance
and recycling. Koschorreck and Gilles (2008), and others (notably Cedersund et al.;
Brännmark et al. 2013; Cedersund et al. 2008; Nyman et al. 2011, 2012; Palmér
et al. 2014), have proposed more complex binding, phosphorylation, clearance, and
receptor recycle schemes. Shown in the figure is the scheme of Koschorreck and
Gilles for insulin binding, clearance, and receptor recycling in adipose tissues
(Fig. 20.10). Cedersund et al. (2008) also describe a useful methodology for
deciding which structure is appropriate for matching data. The level of detail
actually included in the model should reflect the research context.

A first step is to determine the rate of insulin secretion using both insulin
concentration and C-peptide concentration data (Cauter et al. 1992). Using datasets
for healthy individuals that provide glucose and insulin data, as well as the source
documents that describe the more complex models, the several alternatives shown
in Fig. 20.10 can be parameterized and compared with data. As can be seen in the

Fig. 20.9 Alternative methods of representing hemoglobin glycosylation to support HbA1c assay
prediction
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GPR119 case, a simple first-order insulin clearance from a small number of com-
partments can be adequate in some cases. A more detailed and fundamental
understanding, as provided for example by Nyman et al. (2011, 2012) and
Brännmark et al. (2013), may be needed in other cases to provide a broader range
over which the model is quantitative or to provide mechanistic sites of action for
some therapies.

20.3.2.3 Augment Model to Allow Simulation of Required Protocols

The model needs to be able to simulate the protocols in the data list developed in
scoping, and the protocols needed to support the research goal. At a minimum,
non-physiological constructs are required, such as a 24-h clock to allow for meals,
dosing, and testing at specific times. Other non-physiological protocol additions
involve assays, which will have been identified in the data sources used to build the
model. These may be simple mathematical constructs using existing model ele-
ments, such as an integrator of plasma glucose, to get an AUC. Other tests may
require some logical programming, as for sampling the fasting glucose and insulin
for HOMA test results, so that models of insulin resistance (Matthews et al. 1985;
Levy et al. 1998) and beta cell function can be easily compared with data. Published
data often describe glucose or meal challenges, administered at different times in the
trial, and conditions for simulating these experiments. Protocol flexibility must be
sufficient to match published protocols. For example, we may wish to predict the
outcome of a 12-week trial where three mixed meals are given every day, with
specific interest in oral glucose tolerance test results given on the first and last day
of the trial. Conditions for implementing glycemic and insulinemic clamps are also
necessary. Also required are pharmacokinetic and pharmacodynamic models of any

Fig. 20.10 Clearance of insulin by different pathways, showing examples of the different levels of
physiological detail that may be chosen
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therapies to be used in building, testing, or using the model. It is very useful to have
components in the model that allow isolation of specific modules for simulation and
testing. This requires considerable effort. Sets of parameters that specify the length
of simulation, the type of clinical protocol, the assays used, and how the results will
be stored or displayed, are called virtual protocols and facilitate easy and repeatable
setup of simulations. Protocols used to isolate systems of interest from confounding
influences, for example glycemic or insulinemic clamps (Table 20.2), are also very
useful for modeling. They allow for the direct assessment of physiological mech-
anisms in isolation, removing the confounding effect of changing glucose or insulin
concentrations.

20.3.2.4 Evaluate Sensitivity of Model Outcomes to Parametric
and Structural Changes

Model sensitivity analysis is a well-developed field in statistically-based modeling
(Saltelli et al. 1999, 2004). Here, we focus on model outcome parametric sensi-
tivity. Sensitivity analysis methods for systems biology models have been described
(Marino et al. 2008; Sumner 2010), and at least one treatise focusing on glucose
homeostasis (Sumner 2010). In large causal models, some of the underlying global
statistical and analytical sensitivity treatments are not tractable. Whereas rigorous
analytical approaches have appeal, a more practical approach may be to simply vary
each model parameter in a “reasonable” or “physiological” range and observe the
effect on outputs of interest. QSP model parameters often have physical meaning,
and there may be lists of representative values published that may suggest this
range. For example, finding a range of hepatic extraction of insulin is preferred over
setting a range for an arbitrary parameter with no physiological meaning. A diabetes
model will have nonlinearities and state-dependencies, and so the sensitivity
analysis may need to be performed using different model states (e.g., normal and
diabetic) or experimental conditions (e.g., fed or fasted) to be useful.

Several key outcomes may result from a sensitivity analysis. First, we may
identify “potent” parameters to which the model is very sensitive. A large confi-
dence interval for a potent parameter identifies a gap and suggests the need for
additional data. This focuses lab and clinical work toward obtaining the most useful
data. Parameters that do not affect model outcome strongly, or for which we have a
very good estimate, do not require additional data. Parameter sensitivities should be
reviewed with domain experts, and a subset of variables can be selected as useful in
creating representative patients or patient-types. In a model with several hundred
parameters, there are not sufficient experimental data that allow for classical
simultaneous fitting of all parameters. Sensitivity analysis is used to select a subset
of perhaps 5 to 20 parameters for use in differentiating between, for example,
normal and diabetic subjects, or patients with impaired insulin resistance and
secretion. Outcome sensitivity is a computation based upon mechanism, in the
context of a specific clinical protocol. Therefore, the sensitivity in a complete model
may indicate improvements in a protocol useful to the clinician. In addition, the
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sensitivity analysis may highlight areas of improvement in drug design useful to the
medicinal chemist (e.g., pharmacology, binding kinetics, specificity, fat solubility,
and pKa).

20.3.2.5 Create Additional Sets of Parameters Representing
Inter-subject Variability

For our example, a model representative of a healthy subject is adjusted paramet-
rically to represent diabetic subjects. The parameters used to create diseased con-
ditions are based upon physiology and inferred from the results of the sensitivity
analysis. A cohort of “Virtual Patients” (or VPs) can be created to meet research
needs. Each VP is a set of parameters that fit a given subject or patient type. They
are generated from proprietary and published clinical data (we emphasize the
usefulness of placebo patient data here), and from databases such as UKPDS
(1998b) and NHANES (2015).

Manual approaches are available to create hundreds of VPs with a diabetes
model by experts using the most influential and physiologically sound parameters
(Han et al. 2008). The subset of influential parameters identified by the sensitivity
analysis is used, and direct adjustment is made for parameters like weight, sex,
body mass index, and age. The domain expert may suggest changes to some
specific parameters based upon desired virtual patient characteristics. An example
would be to set values to realize a specific level of insulin resistance, with
adjustments made to ensure that fasting plasma glucose and insulin (and other
hormones) are as desired. Other tests (e.g., oral glucose and meal tolerance) will
require additional adjustments. This process continues until the VP reflects the
disease characteristics desired, and responds as expected to different challenges and
therapies. VP creation represents significant effort, and brief treatment is meant to
emphasize that VP creation involves a sequential use of many different tests and
protocols. The approach can be automated, one example being the creation of 5000
VPs with a rheumatoid arthritis model (Chang 2014).

A useful strategy is to create a representative VP for each of several categories,
including elevated fasting glucose, pre-diabetic conditions, mild-diabetes (impaired
secretion or insulin resistant), and also moderate and severe diabetes with varying
degrees of impaired secretion or insulin resistance. Additional variations include
normal weight, overweight, and obese subjects. A cohort of VPs can be used to help
build and develop the model and for simulations investigating research goals, such
as predicting the efficacy of a novel compound. One early example of this approach
included accounting for the physiological parameters, by sampling (with replace-
ment) a population of several hundred VPs, and pharmacokinetic parameters, by
sampling parameter distributions (Han et al. 2008). The cases described in this
chapter also made use of VP cohorts. A diverse VP cohort was implemented in the
Entelos model used for the SGLT2 case, and a focused subset of VPs was created in
the GPR119 example and used for trial simulation. However, not all of these
categories need to be considered for every research question.
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20.3.2.6 Evaluate and Document the Model Performance

Model qualification (National Research Council 2012) is the process of ensuring
that a model is suited for its intended purpose. It is recognized, however, that
qualification of QSP models (Friedrich 2016) is fundamentally different than that of
traditional PK/PD models (Agoram 2014). For a model consisting of hundreds of
compartments, and perhaps thousands of parameters, standard statistical methods
may not be appropriate.

Qualification starts with tests of modules (e.g., specific reaction pathways
comprising the insulin secretion module) using relevant data sets. Tests of the
integrated model exploit a variety of clinical trial data, especially including placebo
data, for glucose challenge and meal tests. Trial data for a variety of therapies are
especially useful at both the component and whole-body level. The diversity of the
data used to build and test a model, the veracity of the physiological relationships
expressed in the mathematics, and the diversity of protocols and experimental
conditions used to generate the data all combine to provide confidence in the
predictive power of a model.

Most QSP model variables and parameters have physiological meaning. This
allows values from literature to be used in bounding and fixing such values.
Throughout model creation, testing ensures that model components remain within
physiologically reasonable bounds for each VP in protocols, and builds confidence
in model performance. For example, 24-h fasting, IVGTT, OGTT, and mixed-meal
tests are simulated with each VP, and key variables such as glucose, insulin and
other hormones, and stored liver glycogen are checked to ensure that the model is
stable (e.g., liver glycogen is not building up or completely depleting) and that all
variables remain within physiological bounds for each VP. This is relatively easy:
assays in the models invoke no cost, so simulated values are available for and can
be compared with experimental data of any type. When the best value of a model
parameter differs significantly from reported values, it may reflect an error in the
modeling that must be addressed. It also may indicate a gap or error in the best
current knowledge, which can be an opportunity for improved understanding or
insight.

The model structure is determined by physiological relationships and physical
laws such as mass conservation, and the entire model and model subsections are
tested using multiple protocols (including different therapies) and datasets using a
range of virtual patients. In modeling systems of this complexity with this level of
data support, a comprehensive written documentation of testing is critical if the
modeling work is to have appropriate influence. In the GPR119 case, such anno-
tation resulted in a proprietary document with several dozen experiments and trial
data, citing nearly 700 sources. This provided decision-makers with the confidence
needed to support critical decisions.
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20.3.3 Apply the Model

Research questions are frequently addressed in the process of building and testing a
model. In other cases, an extensive set of simulations, such as simulated clinical
trials with a variety of virtual patients, may be needed. These simulations may be
useful for decisions ranging from selection of high-confidence targets to optimized
clinical trial design. Outcomes can include efficacy, safety, and indirect benefits
such as cardiovascular or renal health, if these aspects have been included in the
model scope. In cases where clinical results are ambiguous, or modeling suggests a
candidate is “borderline,” QSP models can be (and have been) used to identify
“de-risking” biomarkers in early-stage trials that can support and/or confirm deci-
sions. In cases where high-risk decisions must be made, such as acquisition of
external assets, extensive interactions, and what-if scenarios may be required.
Although much of the potential area for QSP application in diabetes research
remains to be realized, examples are beginning to emerge.

The following case examples highlight two successful projects in which QSP
models delivered significant value. In the first, a systems pharmacology model was
used to determine the non-viability of a therapeutic target in the preclinical phases
of R&D. In the second, a systems model was used to significantly accelerate clinical
development by obviating the need for a dose finding study in diabetic patients
prior to a 12-week clinical trial measuring HbA1c.

20.3.3.1 Case Example of Systems Modeling to Support Therapeutic
Viability of G Protein Coupled Receptor 119 (GPR119)
Agonism for the Treatment of Type 2 Diabetes Mellitus
(T2DM)

GPR119 is a member of family-A, rhodopsin-like G-protein coupled receptors
(Fredriksson et al. 2003). The major sites of GPR119 expression include pancreatic
islets (e.g., insulin containing b-cells) and gastrointestinal enteroendocrine cells
(GLP-1 containing L cells) (Chu et al. 2007). This receptor is activated by a series of
phospholipids (e.g., lysophosphatidylcholines) and free-fatty acid metabolites (e.g.,
oleoylethanolamide, 5-HEPE), which are known to have roles in glucose stimulated
insulin secretion, appetite, and energy homeostasis (Overton et al. 2006; Soga et al.
2005). Activated GPR119 couples with Ga proteins to induce adenylate cyclase
activity and subsequently increase intracellular cyclic adenosine monophosphate
(cAMP). In the pancreas, activation of GPR119 results in stimulation of insulin
secretion in a glucose-dependent manner. In the intestine, GPR119 activation also
promotes glucose-dependent insulin secretion indirectly through the release of
GLP-1. This dualmechanismof action has provided a compelling qualitative rationale
for the pursuit of small molecule agonists for the treatment of T2DM (Table 20.4).

In the years between 2008 and 2010, GPR119 was one of the most heavily
researched drug targets for the treatment of T2DM, with 58 patents being filed by
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11 pharmaceutical companies over this time (Carpino and Goodwin 2010). These
efforts have led to the identification of multiple small-molecule GPR119 agonists,
of which several have advanced to the clinic where a degree of initial promise has
been demonstrated (e.g., JNJ-38431055, GSK-1292263, MBX-2982, and
PSN-821).

One key concern in the preclinical stages of research was whether a GPR119
agonist would produce meaningful glycemic efficacy as defined by reductions in
HbA1c. Much of the initial work regarding the glucose-dependent insulin secretion
of endogenous and synthetic agonists demonstrated no insulin release under nor-
moglycemic conditions, but an increase in insulin secretion is observed in islets at
glucose concentrations of approximately 16 mM, well above the aforementioned
threshold that defines T2DM clinically (Chu et al. 2007; Soga et al. 2005; Ning
et al. 2008; Kogure et al. 2011). Furthermore, data with endogenous and synthetic
agonists suggested that the degree of active GLP-1 elevation might be less than that
commonly observed with DPP-IV inhibitors (Kogure et al. 2011; Hansen et al.
2011). As such, it was unclear whether the direct and indirect effects of GPR119
agonism, alone or in combination, would provide compelling glycemic efficacy. In
order to better evaluate the therapeutic potential of both effects in combination, a
systems pharmacology model was developed at the inception of the R&D effort.
Feasibility of constructing a credible model was considered high due to the wealth
of clinical data for drugs working through increases in GLP-1 (GLP-1 agonists,
DPP-IV inhibitors) as well as insulin secretagogues (sulfonylureas). Additional
rationale for the effort included the ability to leverage emerging public information
for this highly competitive molecular target and the potential ability to reuse the
model for other novel targets operating through these common physiological
pathways.

The model was constructed with several key physiological components,
including: (1) insulin and C-peptide metabolism, (2) glucose metabolism, (3) glu-
cagon metabolism, (4) incretin metabolism, and (5) meal composition/absorption.
The major effects of GPR119 agonism are expected to result from indirect and

Table 20.4 Qualitative rationale for GPR119 as a molecular target for the treatment of type 2
diabetes

Effect Target rationale Clinical precedent

GLP-1 release GLP-1 based efficacy already
established

Parenteral GLP-1 agonists (e.g.,
exenatide, liraglutide, lixenatide)
Oral DPP-IV inhibitors (e.g.,
sitagliptin, saxagliptin,
vildaliptin)

Direct
glucose-dependent
insulin secretion

Glucose-dependent nature of
insulin (i.e., limited release below
a threshold plasma glucose value)
secretion limits hypoglycemic
risk commonly attributed to
insulinotropic agents

Hypoglycemic risk with glucose
independent insulin secretion
(e.g., sulfonylureas)
Reduced hypoglycemic risk with
glucose dependent insulin
secretion (e.g., GLP-1 agonists,
DPP-IV inhibitors)

20 Systems Pharmacology Modeling in Type 2 Diabetes Mellitus 491



direct effects on insulin secretion, and a depiction of the insulin and C-peptide
metabolism component is provided in Fig. 20.11.

In this component, insulin is produced at a rate proportional to beta cell mass
into a storage pool that equilibrates with docked readily releasable insulin. Glucose
stimulates insulin secretion in two phases, namely; immediate release of the docked
pool followed by prolonged secretion as a function of increased production. In the
model, both phases of insulin secretion are potentiated by GLP-1 and GPR119.
Finally, secreted insulin and equimolar C-peptide partition between liver, plasma,
and peripheral tissues from which they are eliminated. The integration of the 5
components into the systems pharmacology model, composed of 44 state variables
and 84 rate constants, is shown in Fig. 20.12.

The model structure and parameter values were implemented in order to be
consistent with over 1200 literature reports, where a portion was used for training
and another for testing. This process included development and testing of each
individual component as well as the integrated model. For example, the insulin
component model was tested for its ability to recapitulate data from a number of
references, including that from Mari et al. where a quasi-linear relationship between
the rate of insulin secretion and glucose concentration was observed in healthy
subjects (Mari et al. 2001). The integrated model was also tested for its ability to
reproduce the dynamics of whole-body regulation, including changes in glucose,
insulin, and GLP-1 during fasting, following IV and oral glucose challenge, and
following mixed meal tests (Mari et al. 2001; Dalla Man et al. 2005a, b; Hojlund
et al. 2001; Vicini and Cobelli 2001). Virtual patients were constructed by modi-
fying key parameters (e.g., beta cell mass and glucose responsiveness) within the
healthy subject model in order to recapitulate key pathophysiological characteristics
of representative diabetic patient populations (e.g., fasting plasma glucose, glucose,
insulin and incretin excursion upon glucose and meal challenges, mean daily glu-
cose, and HbA1c in NHANES database). The model was further constrained by
literature pharmacokinetic and pharmacodynamic data gathered following phar-
macological intervention with glyburide, sitagliptin, exenatide, and metformin. In
addition to providing some degree of mechanistic overlap with GPR119 agonism
(i.e., potentiation of GSIS via GLP-1 elevation with sitagliptin and exenatide),

Fig. 20.11 Representation of the insulin component of the GPR119 systems pharmacology model
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inclusion of these standards of care was considered to be important to support future
cross-compound comparisons and combination therapy projections. Finally, the
primary pharmacological effects of GPR119 on GLP-1 excretion and potentiation of
glucose stimulated insulin secretion were codified in the model. This portion of the
model was the most speculative initially, with effects being parameterized
according to in vitro studies in islets as well as animal studies. For example, in vitro
studies in rat islets indicated that GPR119 agonism causes both a concentration
dependent left-shift in GSIS as well as an increase in maximal insulin secretion. In
addition, animal studies indicated that the maximum increase in GLP-1 would be
less than twofold. Even with these assumptions, there remained significant uncer-
tainty regarding the net effect of the combined direct (GPR119 potentiation of
GSIS) and indirect (GLP-1 potentiation of GSIS) effects of GPR119 on insulin
secretion. It was unclear if the elevations in maximal insulin secretion between the 2
effects would be additive or something less than additive (e.g., in the event that
insulin secretion would be nonlinear with increases in intracellular cAMP).
Fortunately, the availability of emerging clinical data from competitors in this space
allowed for further constraint around these aspects of GPR119 agonism. In par-
ticular, reported changes in GLP-1 concentrations (healthy volunteers) and changes
in glucose excursions following mixed meal tolerance tests (healthy volunteers,

Fig. 20.12 Depiction of the integrated systems pharmacology model for GPR119
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subjects with impaired fasting glucose and pre-diabetic patients) enabled explo-
ration of the appropriate parameterization of the effect on GLP-1 secretion and
GSIS (example of model-based characterization of MMTT results shown in
Fig. 20.13).

With the final model, 14-day simulations of plasma glucose were performed
across the full dose-response for a theoretical full agonist in a diabetic patient
population. Anticipated changes in HbA1c associated with simulated changes in
mean daily glucose at 14 days were determined according to previously published
relationships (Nathan et al. 2007). Results indicated that the maximal potential
change in HbA1c would be inferior to sitagliptin (dHbA1c * 0.4 %). Based on
these results, the program was discontinued in the preclinical stages of R&D despite
the availability of a candidate molecule for clinical development. Subsequently,
independent 14-day clinical studies in diabetic patients with two GPR119 agonists
(JNJ-38431055 and GSK-1292263) failed to show compelling glycemic efficacy
and were discontinued (Katz et al. 2012; Nunez et al. 2014). The model-predicted
HbA1c reduction for 100 % modulation of the target corresponded to 0.42 %,
while the actual clinical outcome for a significant modulation was 0.30 %. Using
cost figures for Phase 2 and 3 development alone (Paul et al. 2010), this decision
provided approximately $55 million in savings and, perhaps more importantly,
allowed deployment of resources to molecular targets with a greater probability of
success.

20.3.3.2 Case Example Modeling to Accelerate the SGLT2 Program

Glucose is filtered out of the blood by the kidneys, and under normal conditions, it
is almost completely reabsorbed primarily through the action of sodium/glucose
co-transporter 2 (SGLT2), a high capacity, low affinity transport protein located in
the proximal tubules and responsible for approximately 90 % of renal glucose

Fig. 20.13 Reported decreases in glucose AUC associated with administration of a MMTT in
healthy subjects (diamonds), subjects with impaired fasting glucose (triangles), and pre-diabetic
subjects (circles) at different plasma concentrations of a competitor agent. The red line represents
the calibrated model behavior. The data representing the pre-diabetic group receiving the lowest
dose (with overlaid red X) was assumed to be an outlier and was eliminated from the calibration
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reabsorption (Wright et al. 2007). SGLT2 inhibitors (SGLT2i) impair glucose
reabsorption by the kidney, allowing for glucose excretion in the urine and thereby
lowering plasma glucose. SGLT2 inhibition in type 2 diabetes patients has been
shown to reduce HbA1c concentrations with chronic treatment, along with modest
reductions in body weight and systolic blood pressure (Cefalu et al. 2013; Nauck
et al. 2014). Competition for market share for this class of drugs is high, with
several compounds in clinical development or recently approved.

By the time Pfizer entered the first-in-human trial for its lead compound, ertu-
gliflozin, several competitor molecules already were in clinical development. To
accelerate the program, a systems pharmacology approach was applied, in addition
to other model-based approaches, utilizing published competitor data on the
mechanistic biomarker (urine glucose excretion, UGE) and other clinical endpoints
(e.g., changes in plasma glucose, plasma insulin, body weight, etc.). Information
from the public literature regarding the target (e.g., SGLT2 glucose reabsorption
kinetics), relevant human physiology (e.g., glomerular filtration rates, urine glucose
excretion under various conditions), disease state (e.g., urinary glucose excretion
and glomerular filtration rates in healthy vs. type 2 diabetes subjects), and clinical
PK/PD data on a competitor compound (dapagliflozin) were integrated into a
proprietary, comprehensive model of human metabolism (Entelos Metabolism
PhysioLab®).

The process for updating the existing Entelos QSP model was similar to the
method described in the “Modeling Approach” section of this chapter. First,
existing cohorts of healthy and type 2 diabetes Virtual Patients were parametrically
modified to reflect reported variability in renal glucose threshold (Ruhnau et al.
1997), glucose reabsorption rates (Rahmoune et al. 2005; Wolf et al. 2009;
Mogensen 1971), and glomerular filtration rates (Premaratne et al. 2005), resulting
in a range of urinary glucose excretion in the Virtual Population consistent with
published data (Zhang et al. 2010). Urinary glucose excretion (UGE, in mg/min) in
the Metabolism PhysioLab is represented as a function of glomerular filtration rate
(GFR, in dL/min), renal glucose threshold (RGT, in mg/dL; the concentration of
glucose in plasma at which glucose appears in urine), renal glucose reabsorption
rate (RGR, in mg/min), and plasma glucose (in mg/dL) (Wolf et al. 2009):

UGE ¼ 0 PG�RGT
GFR � PG� RGR; PG[RGT :

�
ð20:2Þ

Note that this implementation includes an implicit representation of SGLT2
activity. To represent inhibitor PK/PD, a two-compartment, first-order elimination
PK model for dapagliflozin was implemented by fitting parameters to published
population-based PK data (Komoroski et al. 2009a, b), and an Emax model to
represent SGLT2 inhibitor-mediated effects on glucose reabsorption also was
included (Fig. 20.14). Parameter values for the E max model were determined by
fitting to 24-h urine glucose excretion data from single- and multiple-dose trials for
the competitor compound in healthy and type 2 diabetes subjects (Komoroski et al.
2009a, b). Finally, the systems model for SGLT2i was validated by comparing
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simulation results to published data for 12-week dapagliflozin trials in type 2
diabetes subjects (List et al. 2009; Wilding et al. 2009).

Importantly, the validated SGLT2i QSP model was developed prior to the start
of Pfizer’s Phase 1 trial so that researchers could estimate ertugliflozin-specific PK
and Emax model parameters in real-time as clinical data became available. This
allowed model predictions of the 12-week, Proof of Concept trial for ertugliflozin to
be completed prior to study start, to de-risk key design decisions including dose
range, biomarker collection times, and effect of concurrent therapy (e.g., met-
formin). This process allowed doses for the Phase 2 trial to be set prior to the last
subject last visit in the First-In-Human trial, greatly reducing the time between
Phase 1 start and Phase 2 end to 14.6 months; moreover, predictions from the in
silico investigation of the target and compound, within the context of a model of
type 2 diabetes, were a key component in the decision to collapse Phase 2a and 2b
into one trial. A post hoc comparison of the 12-week clinical observations to the
model predictions showed very good agreement for the HbA1c endpoint, and
increased confidence for further investment in QSP modeling efforts within the
organization (Fig. 20.15).

In summary, the availability of a type 2 diabetes systems pharmacology model
for SGLT2i and the established link between the mechanistic biomarker (UGE) in
healthy volunteers and long-term efficacy (HbA1c) in type 2 diabetes subjects
provided the project team with confidence to design an aggressive and informative
Phase 1 program, providing dose rationale and design for dose ranging for later
stage trials and to combine Phase 2a and Phase 2b studies. The model has continued
to be applied in support of the ertugliflozin program as the compound has moved
into Phase 3 co-development.

Fig. 20.14 Representation of
the renal glucose reabsorption
rate for a typical diabetic
virtual patient in the Entelos
Metabolism PhysioLab
platform (black line). SGLT2
inhibition is represented as a
reduction in the renal glucose
reabsorption rate (red line),
using an Emax model.
Filtered glucose
load = plasma glucose �
glomerular filtration rate.
Black dot = renal glucose
threshold (RGT). Red
dot = SGLT2i-mediated
reduction in renal glucose
threshold
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20.4 Challenges and Future Directions

Developing effective novel therapies for complex diseases like diabetes has become
expensive to the point of threatening future investments in the search for more
effective agents. The ability to better understand the clinical implications of early
data (basic science, in vitro, and preclinical) is a key to improve the efficiency and
return of R&D. There are clear cost and time advantages over “brute force”
methods in which every target is tested in the clinic (sometimes iteratively).
Quantitative outcome predictions for several therapies for novel targets represents a
huge opportunity for better decisions, higher yield, and saved costs. With diabetes,
where there are hundreds of untested novel targets, the ability to select those with
greater likelihood of success has enormous leverage. Denis Noble has emphasized
the high leverage of better trial candidate selection, with even slight improvements
yielding very large returns (Bertau et al. 2008).

Future QSP efforts must evolve in concert with emerging thinking about what
constitutes success in diabetes therapy. While short term HbA1c changes provide a
tractable and useful endpoint upon which to define biological scope, future QSP
efforts will need to incorporate an even larger scope of biology necessary to address
critical issues of therapeutic durability, disease progression, and pathological
sequela (neuropathy, nephropathy, and cardiovascular events).

In addition, future QSP efforts must evolve to accommodate and exploit data
from emerging technologies (e.g., omics, synthetic biology, 3-D cell/organoid
cultures, and CRISPRs) as this will enable a continued evolution of insights and
applications. In particular, QSP diabetes models have a role to play in under-
standing and exploiting the tsunami of ’omics data becoming available. Interpreting
the data in the context of the physiological constraints of a QSP model can allow a

Fig. 20.15 a Cumulative urine glucose excretion for ertugliflozin Phase 1 trial in healthy subjects.
Model predictions in red symbols, dotted line; clinical data in blue box plots; b Placebo-adjusted
change in HbA1c in ertugliflozin Phase 2 trial in type 2 diabetes patients. Model predictions with
90 % confidence interval in shaded area; clinical data with 80 % confidence interval in red
symbols and bars. From Milligan et al. (2013)
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more efficient and focused search for causal relationships or “hits.” Heinzel et al.
(2014) illustrates an integrated ’omics approach for diabetic nephropathy, with a
goal of identifying predictive biomarkers. The approach is not limited to diabetes
comorbidities and markers. There is no reason not to apply ’omics to modeling
outcome predictions for targets, and such data also support better QSP modeling.
Wilmes et al. (2013) have integrated transcriptomic, proteomic, and metabolomic
data to determine mechanisms for drug-induced cell stress, and Hamon et al. (2014)
have created a systems biology model using these data. Lee et al. (2016) have
integrated GEnome scale Metabolic (GEM), Transcription Regulatory Network
(TRN), and Protein-Protein Interaction Network (PPIN) models into an Integrated
Network Model and have used the model to identify mannose as an improved
biomarker for insulin resistance. Clearly, the same techniques can be applied in
diabetes modeling. Integrating QSP diabetes models and omics databases will result
in better correlative searching of the databases and better predictive models of the
disease. We expect this to lead to use of QSP models for target identification and
evaluation, and for use with patient genotyping to advance precision medicine.

While QSP is increasingly being used to support decision making in search for
novel diabetes therapeutics, there are also many cultural and operational challenges
that must be overcome in the adoption and continuous improvement of this science.
Among the numerous challenges, the dearth of published examples represents one
the most significant, which may be within control of the QSP community. Even
publications at the case study level provided in this chapter are relatively rare.
Currently, there are no whole-disease models of the type and level of detail shown
in the figures here for which modeling source code and details have been publicly
disclosed. There are many useful papers describing components of diabetes, and
there are descriptions of “large-grained” (more in the range of 20 compartments
rather than 200) whole-disease models (Magni et al. 2007), but a comprehensive
model with enough mechanistic detail to make quantitative predictions sufficient to
inform pharma R&D decisions has yet to be published. Most papers with significant
modeling detail are academic and focus on only a part of diabetes, and most models
of the comprehensive type are proprietary. Commercial considerations aside,
publication of QSP models can be difficult. Models with hundreds of reactions and
parameters lead to high page- and citation-counts, and even abstracted models
violate journal constraints. For example, a proprietary bibliography of the GPR119
model, with about 700 of the 1300 source documents listed, was over 60 pages. The
SGLT2 model has over 4500 references. Nevertheless, open source publication of
diabetes QSP models should be considered a strategic imperative underwriting the
continued evolution and application of this science. Such publically available
models would provide a platform from which to leverage ongoing efforts and
applications in academia, industry, and regulatory agencies.

In summary, diabetes QSP modeling has been used to improve critical decision
making in pharmaceutical R&D. The overwhelming number and diversity of new
data create an additional incentive to use QSP models to integrate these data into a
scientifically sound predictive tool. As such, although diabetes QSP is in early
stages of adoption, it is anticipated to grow.
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