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Introduction to Research Methods and Data

Analysis in the Health Sciences

The ‘health sciences’ are a broad and diverse area. Health sciences include
public health, primary care, health psychology, psychiatry and
epidemiology. The research methods and data analysis skills required across
them, however, are very similar. Moreover, the ability to appraise and
conduct research is emphasised within the health sciences – and students
are expected increasingly to do both.

Introduction to Research Methods and Data Analysis in the Health
Sciences presents a balanced blend of quantitative research methods, and
the most widely used techniques for collecting and analysing data in the
health sciences. Highly practical in nature, the book guides you, step by
step, through the research process, and covers both the consumption and the
production of research and data analysis. Divided into the three strands that
run throughout quantitative health science research – critical numbers,
critical appraisal of existing research, and conducting new research – this
accessible textbook introduces:

Descriptive statistics
Measures of association for categorical and continuous outcomes
Confounding, effect modification, mediation and causal inference
Critical appraisal
Searching the literature
Randomised controlled trials
Cohort studies
Case-control studies
Research ethics and data management
Dissemination and publication
Linear regression for continuous outcomes
Logistic regression for categorical outcomes.

A dedicated companion website offers additional teaching and learning
resources for students and lecturers, including screenshots, R programming
code, and extensive self-assessment material linked to the book’s exercises
and activities.



Clear and accessible with a comprehensive coverage to equip the reader
with an understanding of the research process and the practical skills they
need to collect and analyse data, it is essential reading for all undergraduate
and postgraduate students in the health and medical sciences.

Gareth Hagger-Johnson is a Senior Research Associate in the Department
of Epidemiology and Public Health at University College London, UK.
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Evidence-based health research
 
 
 
The term ‘health sciences’ is broad, referring to public health, primary care,
health psychology, psychiatry and epidemiology. Students in the health
sciences are not necessarily aligned to any one discipline. However, there
are large numbers of students taking health sciences courses. Although the
courses taken tend to differ, the research methods and data analysis skills
required are very similar. In most cases, courses require students to:

locate, understand existing research
appraise existing research
design, collect and analyse data from their own research.

There are four themes in health sciences learning and teaching which have
all become more prominent in recent years [5]:

evidence-based practice
research-based learning
learning research methods
linking staff research activity and teaching.

Evidence-based practice is perhaps the most prominent change within the
health sciences in recent years. It is defined as the ‘process of
systematically finding, appraising and using contemporaneous research
findings as the basis for clinical decisions’ [6]. Originating from ‘evidence-
based medicine’ [7], it is characterised by a shift from relying on internal
knowledge, to relying on both internal and external knowledge:



•

•
–
–

Internal evidence is composed of knowledge acquired through formal
education and training, general experience accumulated from daily
practice, and specific experience gained from an individual clinician-
patient relationship. External evidence is accessible information from
research. It is the explicit use of valid external evidence (eg,
randomized controlled trials) combined with the prevailing internal
evidence that defines a clinical decision as ‘evidence-based’. [8]
The evidence-based approach is becoming the norm in the health

sciences [5], as is the requirement for students to produce their own
evidence. Very few books are available which cover both the consumption
and the production of research (see Table 1.1 below). More typically, books
will either address epidemiology, statistics and critical appraisal
(consumption) or research design and data analysis (production) – rarely
both.

Currently, students in the health sciences tend to rely on ad hoc
combinations of textbooks from nursing, medicine, psychology and social
sciences. Existing books rarely offer the breadth and depth to cover health
sciences in its entirety, while still appealing to specific subject areas. Health
sciences are multidisciplinary, which presents challenges for any book
trying to introduce students to research methods covering such diverse
areas. However, this book aims to capture the three important strands than
run through health sciences research: statistics, critical appraisal and
conducting new research. Again, the ability to appraise and conduct
research is becoming more strongly emphasised in the health sciences –
students need to learn how to do both, but are rarely offered a single book
that shows them how.

The book is aimed at postgraduate students studying courses in the health
sciences, chiefly in the UK (since many readers will work for the NHS) but
also internationally. It should also be relevant for:

medical undergraduates (e.g. epidemiology, critical appraisal,
statistics)
research students

ordinary PhD students
doctoral students in clinical psychology



Health sciences students have very different backgrounds, and few
assumptions can be made about their level of existing knowledge. Unlike
vocational subjects, health sciences are drawn from very different levels of
experience. This book tries not to make too many assumptions.

In my experience, students in the health sciences have two key concerns
– their summative assessment and their requirement to analyse data using
appropriate statistical software. The book will support students by linking
the exercises and activities to formative assessment (in MCQ format) on the
book website. Given that student learning is driven by assessment, I hope
that students will appreciate having available a formative tool to guide their
learning. Formative assessment allows students to take control of their own
learning [9], in preparation for summative assessment.

The second concern is particularly relevant for health sciences students.
Many health sciences students work in the NHS or voluntary/community
sector, and do not have access to popular statistical packages such as Stata
or SPSS (these require a licence). To address the second issue, this book
makes reference to the open source statistical package called R. Although
this is less familiar to many readers, it is growing in popularity, as
evidenced by the number of books now available on R. As an open source
package, it requires no licence fee and can be run on any PC or Mac. The
book and supporting website contain screenshots and R programming code.
I do not think that students should have to spend any additional money
simply in order to run their statistical models.



•
•
•
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2

Preliminary exercise and installing R
This preliminary chapter includes a simple formative numeracy exercise,
which you can use to decide whether you need to refresh your memory of
basic mathematics. It also contains instructions for downloading and
installing R, a program which will be used throughout the book as a
calculator, for statistical analysis, and for making graphs.

Intended learning outcomes
By the end of this chapter, you should be able to:

complete a formative numeracy exercise
identify areas of numerical skill that you need to improve
download and install the R software
perform basic calculations using the R software.

Before reading on, you may find it useful to complete a quick formative
numeracy exercise. This will help you identify numeracy skills that you
need to learn or revisit. The exercise is adapted from a standard measure of
numeracy scale, used in research settings [10]. Don’t worry if you can’t
answer them all. Several of the questions involve concepts that will be
introduced in the next few chapters, and there will be plenty of opportunity
to practise them.

Box 1.1 Exercise: Formative numeracy exercise (adapted from [11]).
Imagine that we have a fair, six-sided die (for example, from a
board game or a casino craps table). Imagine we now roll it
1000 times. Out of 1000 rolls, how many times do you think
the die would come up even (numbers 2, 4, or 6)?
In the Big Bucks Lottery, the chance of winning a $10.00 prize
is 1%. What is your best guess about how many people would
win a $10.00 prize if 1000 people each buy a single ticket to
Big Bucks?



3

4

a
b
c

5

a
b
c

6

7

8

9

10

In the Acme Publishing Sweepstakes, the chance of winning a
car is 1 in 1000. What percentage of tickets to Acme
Publishing Sweepstakes win a car?
Which of the following numbers represents the biggest risk of
getting a disease?

1 in 100
1 in 1000
1 in 10

Which of the following numbers represents the biggest risk of
getting a disease?

1%
10%
5%

If person A's risk of getting a disease is 1% in 10 years, and
person B’s risk is double that of A's, what is B's risk?
If person A's chance of getting a disease is 1 in 100 in 10
years, and person B's risk is double that of A's, what is B's
risk?
If the chance of getting a disease is 10%, how many people
out of 100 would be expected to get the disease?
If the chance of getting a disease is 10%, how many people
out of 1000 would be expected to get the disease?
The chance of getting a viral infection is 0.0005. Out of
10,000 people, about how many of them are expected to get
infected?

Answers can be found towards the end of this chapter.
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2

3
4

5

6

7

How to install the R program
The R program is the software used throughout this book. R is an open
source program, meaning that it has no licence fee. R can be used both as a
calculator (for example, in this chapter) and for statistical analysis (in later
chapters). R is increasingly popular in many health sciences, particularly
epidemiology and biostatistics. It is a good idea to install R at this stage,
and practise some basic calculations, in order to become familiar and
comfortable with the R interface.

Installing R
You can install R on your own PC or laptop relatively easily. If you are
working at the university, hospital or other organisation, check with your IT
support team. Not all organisations allow software to be downloaded
without restriction, as a security precaution.

Visit the R website at htt p://cr an.r-pro ject. org
Click on Download R for your platform (e.g. Windows, Mac or
Linux).
Now click on base or click install R for the first time.
The most recent version of the software will be displayed. R is
updated regularly. Click on the Download R link, which will also
show the version number and the platform you chose at step 2.
Double click on the file you have downloaded (ending in .exe) to
start the installation.
You will be asked to choose a language (e.g. English), click Next
to continue, read the GNU general public license information
(click Next to continue) and then choose a location to install the
software. For readers using a PC, typically, the location is
C:\Program Files\R\ followed by the most recent version number,
but other locations can be chosen.
You will then be asked to choose which component you want to
install. The default setting (32-bit user installation) is fine for

http://www.cran.r-project.org/
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most purposes including all of the examples used in this book.
On the next screen, you can choose to customise the start-up
options, but you can select No here to accept the default settings.
You are also asked where R should place the program's shortcuts.
For readers using a PC, the default suggestion (a folder called R
in the Start Menu folder) is fine, so click Next to continue.
Finally, you can choose whether to have R shortcuts on the
desktop (click Next).
When the installation has been completed successfully, you will
see a message confirming that R has finished installing. Click
Finish to complete the process.

Figure 1.1 Comprehensive R Archive Network download page

Starting R
When you have installed R, for readers using a PC, it can be opened using
the start menu or double clicking the program icon in the Program Files
folder or location that you chosen during the installation.



1

2

3

Figure 1.2 R program icon

When you open R, the interface shown is called the R graphical
user interface (GUI, pronounced ‘gooey’). This is simply called
the ‘interface’ hereafter.
The first thing to do each time you open R is choose a local
Comprehensive R Archive Network (CRAN) ‘mirror’ that will
allow you to download and install the different ‘packages’ that
you will use. Choose the location nearest to you (e.g. London,
Bristol). We might assume that locations nearby will download
packages faster, although faster download speeds in recent years
have made this kind of choice less important.
The second thing to do each time you open R is to set the local
working directory. This is very important, because R needs to
know where your data files will be located. You may prefer to
use the desktop, or My Documents, a USB storage device, or
some other location. As an example, to set the desktop as the
working directory, click on File, Change dir… and then locate the
desktop. You may have to type the location manually (e.g.
C:\Users\Gareth\Desktop) and click on OK. The interface is now
ready for use.

Figure 1.3 Selecting CRAN mirror



Figure 1.4 Selecting mirror location

Figure 1.5 Setting working directory

Box 1.2 Exercise: Simple equation.
Note down your answer to the following equation:

4 + 5 × 8 = ?
Did you get 44 or 72? You might well have reached either answer,
depending on how your approached the equation. If you did 5×8 first,
then added 4, this would give 44. If you did 4 + 5 first and then
multiplied by 8, this would have given 72. The fact that two answers can
be reached illustrates the need to have some rule, or order of operations.



The BODMAS rule is provided for exactly this reason. It stands for
brackets, orders, division, multiplication, addition and subtraction. The
list is the order in which you should approach an equation, working from
left to right. If you follow this order, you will arrive at the correct answer.
In our example, the correct answer was 44. We should have done the
multiplication first (5 × 8) and then addition (add 4), according to the
BODMAS rule. This gives the answer of 44. To avoid an ambiguity,
researchers will sometimes add brackets for you, but not always.

A second convention which can help avoid ambiguity is to avoid using
the times (×) symbol altogether. This may seem strange to those of you
who are used to using the mathematical symbols ×, ÷, + and −. The
problem is, the symbol x is usually reserved for referring to a variable (as
in x, y or z). The x usually represents a variable, and should not be
confused with a multiplication sign. Multiplication and division do not
need symbols, because the need to multiply or divide should be clear
from the context. For example when working by hand using an equation,
xy means multiply x and y together, x/z means divide x by z. There is no
need to have a separate symbol for multiply or divide. In Excel and in R,
the symbols used are + (addition), − (subtraction),* (multiplication) and /
(division).

Basic calculations in R
R can be used for basic calculations. For example, to work out the answer
to 4 + 5 × 8, you can type 4+5*8 as shown in the Figure 1.6. This gives the
correct answer of 44. If you wanted to specify that 4+5 should be performed
first, you can simply add brackets to make this clear. A useful list of
arithmetic operators is shown in Table 1.1.

Figure 1.6 Performing a calculation in R



Table 1.1 List of arithmetical operators
Arithmetic operator Description Example Result

+ Add 4+5 9
− Subtract 2−5 −3
* Multiply 8*6 48
/ Divide 1/2 0.5
^ Exponentiate (raise to a

power)
4^2 16

Throughout the book, R code is shown in a box, with a monospaced font
for the specific code that should be entered into the program. It is assumed
that you will then ‘Enter’ to run any piece of code. Comments are often
provided at the end of the code, after hash symbol #. R will ignore anything
that is after a hash symbol, so it does not matter if you include these
comments or not. Their purpose is simply to help you understand what each
line of code is doing.

Box 1.3 An aside: numbers raised to a power
It is important to familiarise yourself with numbers raised to a power, if
you are not already familiar. The following apology appeared in The
Independent newspaper (13 September 2008), following an error that
appeared in a report about the launch of the Hadron Collider:

‘Last week, a formatting error led to us inadvertently suggesting that
there was a one in 1,019 chance of the world ending before this edition.
That should have read, er, one in 1019 – rather less likely. Sorry. Feel free
to remove the crash helmef’.
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Answers to the formative numeracy exercise using
R
The answers to the formative numeracy exercise above are now explained,
together with examples of R code for doing these calculations.

Three out of six sides of a dice are even numbers, so you could
think of this as a fraction and convert it into a decimal,
multiplying by 1000. 3/6*1000 # or equivalently 1/2*1000, since
3/6 is the same as 1/2.
One out of every 100 people win, and 1000 buy a ticket, so
1/100*1000. = 10.
One in 1000 as a decimal is 1/1000, which as a percentage is
.0001*100. = 0.1%.
This is fairly straightforward without needing to do any
calculations, but if you wanted to convert all three fractions to
decimals this might help you to visualise which is the largest.

1/100 # 1/100 = 0.1
1/1000 # 1/1000 = 0.001
1/10 # 1/10 =0.1, which is clearly the largest.

This should not require any calculations, because it is clear that
10% is the largest risk.
To double the risk, simply multiply the figure by 2. 1% if 1/100
so 1/100*2 =0.02 or 2%.
This is the same as question 6. Both refer to the same time period
(10 years) but the risk is exactly the same in both scenarios (1%).
This is fairly straightforward. 10/100*100 = 10.
This happens to be the same percentage as question 7, but is a
different calculation. 10/100*1000.= 100.
This question involves multiplying the probability of the event by
the number of people at risk (0.0005*10000 = 5).



Summary of answers: (1) 500; (2) 10; (3) 0.1%; (4) c; (5) b; (6) 2% in 10
years; (7) 2 in 10 in 10 years; (8) 10; (9) 100; (10) 0.0005*10000 = 5.
Question 10 is the most difficult question. It involves thinking about
probability, multiplication and proportions. In Chapter 2, we will introduce
proportions and rates in more detail.

You can use this exercise to identify which numeracy skills require
revision. For example, many students find question 10 the most difficult,
since it involves decimals, probability, multiplication and is not intuitive.
You may find the Table 1.2 useful for refreshing your memory about
decimals, fractions and percentages.



Further reading

Evidence-based health research:
Long A, Harrison S, Evidence-Based Decision Making. Health Service Journal 1997, S6:1–11.

Basic mathematics and numeracy:
Bittinger M, Basic College Mathematics. London: Pearson Education, 2009.
Johnson T, Neill H, Teach Yourself Mathematics, 3rd edn. London: Teach Yourself, 2008.

R
Allerhand M, A Tiny Handbook of R (SpringerBriefs in Statistics). Heidelberg: Springer, 2011.
Crawley M, The R Book. Chichester: Wiley, 2012.
Field A, Miles J, Field Z, Discovering Statistics Using R. Thousand Oaks, CA: SAGE Publications

Ltd, 2012.

Table 1.2 Decimals, fractions and percentages
Decimal Fraction Percentage
0.01 1/100 1%
0.05 1/20 5%
0.1 1/10 10%
0.2 1/5 20%
0.25 1/4 25%
0.333333… 1/3 33.33…%
0.5 1/2 50%
0.75 3/4 75%
0.9 9/10 90%
1.0 NA 100%
1.1 11/10 110%
1.25 5/4 125%

 
Table 1.3 Relational operators in R
Relational operators in R Description
== Equal to
< Less than



<= Less than or equal to
> Greater than
>= Greater than or equal to
!= Not equal to



Part II
Critical numbers
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Descriptive statistics part 1
Levels of measurement and measures of central
tendency
 
 
Descriptive statistics are an important preliminary step prior to any
statistical analysis. They are also important in their own right for people
who want to make sense of the results. Well-presented descriptive statistics
(or simply ‘descriptives’, a popular shorthand) communicate important
features of the data. They tell the reader which variables were included in
the study, their units of measurement, their range, and their frequency or
distribution. Descriptives are the first thing to concentrate on when
conducting your own research, and when appraising others' research, which
we will do in later chapters.



•
•
•

•
•
•
•

Intended learning outcomes
By the end of this chapter, you should be able to:

identify the level of measurement for a variable
define and calculate proportions
define and calculate measures of central tendency

mean
median
mode
range



Introducing key terms
It is important to define key terms that will be used throughout this book.
Suppose that the table below represents some data we have collected as part
of a research study. The table represents a data set, and this might be stored
in a data file (for example, an MS Excel spreadsheet or a comma separated
file for R). The cells in the data set contain the data values, and these are the
realised measurements. Put simply, the cells contain our data. The columns
represent variables, the characteristics being measured. The rows represent
participants in the study, also known as cases or observations. These are the
people who we have observed in our study. Finally, measurement is the
process by which we got our data. We might have used a ruler to measure
height, and a questionnaire for people to self-report their sex. The ID
number would have been assigned sequentially, starting with the first
participant who joined the study.
Table 2.1 Sample data
ID Sex Height (cm)
1 2 168.7
2 1 172.0
3 1 176.5
4 1 160.5
5 2 174.0
6 1 168.6
7 2 160.0
8 2 163.0
9 1 175.0
10 2 161.4



Levels of measurement
Different variables produce data with different levels of measurement.
Broadly speaking, there are two types of data: categorical or continuous.
There are different types of categorical and continuous data, which we will
explore in more detail below. Categorical data are usually described by
presenting the number of people in a category, and the percentage of people
this represented. Continuous data are usually described using some measure
of central tendency and some measure of dispersion (both are terms
described properly below). When doing your own research, deciding
whether data are categorical or continuous is very important, because it
determines the type of statistics which are appropriate to use. This is
particularly important for ‘outcome’ variables in a study, that is, variables
which we think should change following an intervention, or which are
changed by some exposure (see Chapter 4).

Categorical data
Four types of data are ranked from the lowest level of measurement, to the
highest: nominal, ordinal, interval and ratio.

Nominal data
Nominal data can be classified into mutually exclusive categories. That is,
each person can belong to one category only. Examples include vital status
(dead, alive), ethnic minority status (minority, not a minority), method of
travelling to work (bus, car, train, walk, other) incidence of coronary heart
disease (yes, no). Sex is usually recorded as male or female, but there have
been calls to allow transgender persons to report their gender differently.
Nominal data that have only two categories are called binary data. Example
includes yes/no, present/absent, and pass/fail.

Ordinal data
Ordinal data are similar to nominal data in that each person can only belong
to one category. The categories, however, are ranked in a meaningful way.



For example, in a marathon race, athletes might come first, second, or third.
This way of recording the measurements produces ordinal data. We know
the order in which runners finished the race, but nothing more. We did not
record finishing time, or any more detail than their race position. Ordinal
data provides more information than nominal data, because it is possible to
make comparisons. For example, I could say that the runner finishing
second was slower than the one finishing first, but faster than the one
finishing third.

Continuous data
Continuous data are measured on a scale, with meaningful distance
information between the points. There are two types of continuous data:
interval and ratio.

Interval data
Interval data (sometimes called discrete data) contains meaningful distance
information. The intervals between points are equidistant, and the values
are not restricted in the way that ordinal data are. It is possible to perform
addition and subtraction on an interval scale. It is also possible to have
negative values, unlike with ordinal data. It is important to note however,
that there is no true zero point on an interval scale. This means that
multiplication and division are not possible on an interval scale. Examples
include degrees Celsius and degrees Fahrenheit. Both are interval scales,
but neither has a true zero point. It is incorrect to claim that 40 degrees
Celsius is twice as hot as 20 degrees Celsius, because this calculation
implies some zero point.

Likert scales, which ask respondents to a questionnaire to endorse
response options such as ‘strongly agree’ to ‘strongly disagree’ are often
thought of as interval level. This is controversial, and may depend on the
number of response options, among other issues. Psychologists have
suggested that Likert scales should have at least five and preferably seven
options, in order to be reasonably treated as interval data. The more
response options, the more normally distributed (a term introduced below)
the data are likely to be.



Figure 2.1 Interval data

Ratio data
It is not until we reach the ratio level of measurement that multiplication
and division are possible. Ratio data have a true zero point. For example,
degrees Kelvin are recorded on a truly ratio scale, where zero really does
represent the absence of temperature. Out of interest, 0 degrees Kelvin is
equivalent to −273.15 Celsius. You might wonder why we bother having 0
degrees Celsius at all, if Kelvin has useful measurement properties and a
true zero point. This is clearly for convenience, because 0 degrees Celsius
(273.15 Kelvin) happens to be the point at which water freezes. It does not
imply that there is no temperature at 0 degrees Celsius. Other examples of
ratio level data are speed, time, weight, height, probability (risk) and odds.
These latter two terms are introduced in the next chapter. Multiplication and
division are perfectly permissible with these kinds of data, because all have
a true zero point. There are other useful things we can do with continuous
data, particularly statistical techniques. Several statistical techniques
assume that your data are ratio level, which is one reason why it is so
important to clarify exactly what level of measurement your data have.



Although I have described levels of measurement as ranging from lowest
(nominal) to highest (ratio), this should not imply that they range from
worst to best. The level of measurement depends entirely on what is
appropriate for the variable concerned, and the research question. There are
also situations in which you may decide to change your level of
measurement. Indeed, several examples appear in this book, such as the
decision to categorise body mass index (BMI) into specific categories
(underweight, normal weight, overweight, obese). This is useful in many
different situations, but you must be clear about what the level of
measurement was to begin with, and what you have changed it to.
Generally speaking, there are a greater range of statistical techniques
available for continuous data than for categorical data. In Chapter 13, the
importance of collecting data as continuous is emphasised, so that data are
preserved with as much detail as possible. There are several different
reasons why this is useful, but none imply that ratio data are necessarily
‘better’ than categorical data. I should also point out that the four different
levels of measurement are not as unambiguous as I have implied here. This
is illustrated in Exercise 2.1.

Box 2.1 Exercise: Levels of measurement 1
See if you can identify the level of measurement for each of the
following variables. Tick one box only for each variable, then check your
answers on the book website. Note that not all of these variables can be
clearly identified as belonging to one level of measurement only – it
sometimes depends on the context. Indeed, the purpose of this exercise is
to sensitise you to the ambiguity that can arise when attempting to decide
if your data are categorical or continuous. There is not always a clear
answer.
Variable Categorical Continuous
Level of measurement Nominal Ordinal Interval Ratio
Stage of cancer classified as stage I
to IV
Age (years)
Serum cholesterol (mg/dL)
HIV status (positive or negative)
Score on the Glasgow Coma Scale



(which ranges from 3 to 15)
Smoker (current, former, non-
smoker)
CHD onset (yes or no)
BMI (weight in kgs/height in
metres2)
Weight (kg)
Temperature (Celsius)
Temperature (Kelvin)
ID number given to volunteers in a
study
General Health Questionnaire score
(a measure of anxiety and
depression)
Patient reported outcome measure
(PROM) on a Likert scale (strongly
agree = 5, strongly disagree = 1)

Table 2.2 Permissible statements for each level of measurement
Level Permissible statements Statistics
Nominal =, ≠ Mode
Ordinal =, ≠, <, > Median
Interval =, ≠, <, >, +, − (Arithmetic) mean, standard deviation
Ratio =, ≠, <, >, +, −, ×, ÷ Geometric mean, coefficient of variation



Why is determining the level of measurement
important?
The statistical analysis that can be performed on data depends on the level
of measurement. It is important to clarify what the level of measurement
actually is, because this will determine what statistics are appropriate. In the
next chapter, basic descriptive statistics are introduced which are only
suitable if we know what the level of measurement is. In Table 2.2 is a
summary of the permissible statements for these kinds of data for each level
of measurement

The geometric mean and coefficients of variation are not covered in this
book, but are included in the table for completeness. In most cases, when
people use the term ‘mean’ they actually refer to the arithmetic mean. For
the remainder of this book, the same convention is adopted. The key point
to remember is that the higher the level of measurement, the more
operations can be performed. The statistics which can be used are shown in
the rightmost column and are introduced below.

Box 2.2 Exercise: Levels of measurement 2
See if you can identify the levels of measurement in this extract. The
variables are highlighted in bold for you. Check your answers on the
book website.

The dwarfing apple rootstock ‘M27’ was raised in 1929 from a
cross between ‘M9’ and ‘M13’. As a dwarf bush, it makes a tree 1.2
to 1.5m in height and spread. A well-grown apple tree should yield
on average 4.5 to 6.8kg of fruit each year. At planting, side-shoots
are cut back to three buds and the leader pruned by about one
quarter, cutting to an upward facing bud. ([17], p. 56)



•
•
•
•

Are levels of measurement potentially misleading?
Some commentators have argued that dividing data into ‘types’ (nominal,
ordinal, discrete, continuous) can be misleading. It is not always possible to
choose the appropriate level of measurement. For example, suppose that in
a raffle ticket number 24 has won a prize. These are four responses from
different people who have entered the raffle:

Grace: ‘I can only win or lose, and have lost.’
Ruby: ‘It doesn’t look like there are 24 people here.’
Olivia: ‘I arrived too soon.’
Emily: ‘If I knew the rate and regularity of arrivals, I could have
arrived at the right time.’

You can probably tell that each person has a different level of
measurement in mind, when they think about their ticket in relation to the
winning ticket. Grace has adopted nominal level thinking (win or lose).
Ruby looks around and says ‘It doesn’t look like there are 24 people here’,
interpreting the number as interval level. Olivia compares her number (23)
to winning number (24) and says ‘I arrived too soon’. This shows ordinal
level thinking. Emily wondered if she could work out the rate and regularity
of arrivals, she could have arrived at the right time. This is ratio level
thinking, because Emily is thinking of the variable time, rather than the
order in which people arrived. This example illustrates that nominal,
ordinal, interval and ratio typologies can sometimes mislead [18]. In reality,
the distinction between levels of measurement is not clear-cut and is a
choice made by the researcher, or conventions adopted by a particular
research community.
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Descriptive statistics part 2
Measures of dispersion
 
 



•
•
•

Intended learning outcomes
By the end of this chapter, you should be able to define and calculate
measures of dispersion:

variance
standard deviation
standard error.

The purpose of statistics is to simplify the presentation of data, often
complex data, in a way that makes them easier to understand. Although
they may seem complicated to the beginner, statistics does make appraising
and conducting research easier, not more difficult. Statistical modelling is a
useful term, invoking that researchers are making models of their data, as
simplified representations of the real thing. Some models are more
complicated than others. And some models are more accurate than others.
In a statistical model, there is a balance to be made between presenting a
simple model and presenting an accurate model. If it is too simple, it may
be wrong. If it is too accurate, it may be too complicated to understand and
communicate. In the example in Table 3.1, a small data set is shown. As
with all data sets in this book, it is available for download on the book
website. There are ten participants in the study, and their height was
recorded in centimetres. On the right hand side is a model of the data. This
is not a very good statistical model, because it has not been simplified. Put
differently, it is not parsimonious. There are ten data points in the original
data set and ten in the model. The model is equally complex as the original
data [19]. Although it is an accurate model, data sets are frequently very
large and making copies of them is not practical. Researchers might
consider presenting results from a small case study in this way, but what if
the study contained 10,000 participants? Clearly, a simpler model of the
data is required.
Table 3.1 Example data set
ID Height (cm) Model
  1 168.70 168.70
  2 172.00 172.00
  3 176.50 176.50



  4 160.50 160.50
  5 174.00 174.00
  6 168.60 168.60
  7 160.00 160.00
  8 163.00 163.00
  9 175.00 175.00
10 161.40 161.40



Mean
The model we present to the audience is a choice, and it is important to
make the right choice, because some models are better than others. A good
statistical model is first and foremost simpler than the original data. It
should also make the most of the data, making full use of what is available.
Clearly, it would be a waste of time and resources to collect data that is not
actually used. Finally, a model should communicate the right story, and not
a misleading story that hides or amplifies particular features. So can we
make a model of our data that has less than ten pieces of information? We
can model the central tendency of the data by calculating the mean or the
average height. We can calculate the average height, simply by adding (or
summing) the data values and dividing by the sample size which is ten:

(168.7+172+176.5+160.5+174+168.6+160+163
+175+161.4)/10=168.0

This is called the mean height. The mean height is 168.0 cm, which is a
good model of these data. Strictly speaking, this statistic is called the
arithmetic mean because there are other types of means available, which
aren’t discussed here. The mean, then, is a model that simplifies the data. It
is a descriptive statistic which in this example, can summarise ten pieces of
information using only one number.

Box 3.1 R code to calculate the mean
After loading in the heights data, you can request the mean using the
simple function mean(x) where x is the name of the variable.
data <- read.table(‘height.csv’, header=TRUE, sep=‘,’)
#Note that the <- symbol is used to tell R that the data is #in the table.
attach(data)
mean(height)



Sample and population mean
The sample mean is an estimate of the mean in the population from which
the sample was taken.

Larger sample sizes will provide a mean that is closer to the population
mean (μ). Very small samples are more likely to under- or over-estimate the
true population mean. As the sample size becomes very large, there is no
benefit to having larger sample sizes. The sample mean becomes almost
exactly the same as the population mean. Clearly, if a sample was so large
that it included the entire population, the sample mean and the population
mean would be exactly the same. There are methods for determining the
appropriate sample size, discussed in Chapter 11.



Median
The median is also a model of the central tendency in a set of data. The
median is the middle value, but only if the data have been sorted, as they
have been here. It is the value that divides a distribution in half. If someone
has been kind enough to sort your data for you (Table 3.2), you can find the
median by taking the middle observation (if the data have an odd number),
or the average of two middle ones (if the data have an even number, as they
do here). The median is also the 50th percentile, if the data are divided into
100 percentage points. In this example, the median height is (after rounding
up), 168.7. So is the median a good model here? It is certainly simpler than
the data, because it is one value and the data has 10 values. However, it
only uses one or perhaps two of the data points, out of all of the data that
has been collected. The mean is often preferred to the median for this
reason; because the mean takes into account all of the data values. And yet,
in our example, the median tells the same story as the mean – that the
average person is about 168cm tall. This is not the case for all data – the
median can often tell a very different story to the mean.

Table 3.2 Calculating the median
ID
sorted from smallest to largest

Height (cm)

  7 160.0
  4 160.5
10 161.4
  8 163.0
  6 168.6
  1 168.7
  2 172.0
  5 174.0
  9 175.0
  3 176.5
Median 168.7

Table 3.3 Comparing the mean and the median
ID Annual salary (£)



  1   12,000
  2   13,000
  3   12,000
  4 100,000
  5   15,000
  6   13,000
  7   12,500
  8     9,000
  9   13,500
10   24,000

 

Box 3.2 An aside: misleading medians
Stephen Jay Gould wrote that he was diagnosed with cancer in 1982. The
doctor told him that the cancer was incurable, with a median mortality of
eight months after discovery:

When I learned about the eight-month median, my first intellectual
reaction was: fine, half the people will live longer; now what are my
chances of being in that half. I read for a furious and nervous hour
and concluded, with relief: damned good. I possessed every one of
the characteristics conferring a probability of longer life: I was
young; my disease had been recognised in a relatively early stage; I
would receive the nation’s best medical treatment; I had the world
to live for; I knew how to read the data properly and not despair.
Another technical point then added even more solace. I immediately
recognised that the distribution of variation about the eight-month
median would almost surely be what statisticians call ‘right
skewed.’
(http://www.stat.berkeley.edu/users/rice/Stat2/GouldCancer.html)

In fact, Gould died 20 years later, so he was correct not to adopt the
median (eight months) as the best model for his own survival time.

The example in Table 3.3 helps to illustrate important differences
between the mean and the median. Suppose you saw a recruitment poster,

http://www.stat.berkeley.edu/users/rice/Stat2/GouldCancer.html


which claimed that the average salary was £22,400. This is correct, because
the mean salary is £22,400. But is it a good model of the data? Again, it is
simpler than the data, and it uses all of the available data, but it tells a
misleading story. The relatively high salary of £100,000 has skewed the
distribution of income values, pulling the mean away from the centre of the
distribution. The median is still the middle value, which is a better measure
of the central tendency in this example. The median salary is just £13,000.



Mode
The mode is another measure of central tendency. The mode is the most
frequently occurring value. In the example in Table 3.4, the modal hospital
stay is two days. It is rare to see the mode reported in the literature.
Although it is simpler than the data, in our example it only makes use of
four values. And in many data sets, there is no mode. It does tell the right
story here, because most people stay for two days, or something else. The
median is three, which doesn’t really reflect the typical or most frequent
length of stay.

Table 3.4 Calculating the mode
ID Length of hospital stay

(days)
  1   2
  2   2
  3   2
  4   1
  5   3
  6   3
  7 28
  8   7
  9 21
10   2



Range
The range is sometimes used to summarise data. To calculate the range, sort
the data, and note the smallest (minimum) value and the largest (maximum)
value. Subtracting the minimum from the maximum (in other words, the
difference between them) gives the range. In the example in Table 3.5, the
range is £91,000. Is the range a good model? It is simpler than the data,
uses two values, and could tell a misleading story. It does not give a clear
indication of the central tendency, and tends to underestimate the population
range. The maximum is often used to mislead, particularly in advertising.
The phrase “up to” allows strong claims to be made about products. A
shampoo that offers “up to 70 per cent less breakage”, is reporting the
maximum or best possible improvement, giving no indication of the central
tendency or range of values, for that matter. Put differently, it is only telling
part of the story.

Table 3.5 Calculating the range
ID Annual salary (£)
  8     9,000
  1   12,000
  3   12,000
  7   12,500
  2   13,000
  6   13,000
  9   13,500
  5   15,000
10   24,000
  4 100,000

 

Box 3.3 R code to calculate the range
range(x) #provides the range of a variable x



Interquartile range
The interquartile range is the middle half of the data, or the middle 50 per
cent. To calculate the interquartile range, first calculate quartile 1 (Q1), the
first quarter. Then calculate the third quartile (Q3). Subtracting Q1 from Q3
gives the interquartile range. A quick method is to divide the sorted values
in half, and then find the median in each half. The median of the first half is
the first quartile. The median of the second half is the third quartile. If you
have a data set with an odd sample size, include its median in both halves.
 

Box 3.4 R code to calculate quartiles
quartile(x) # gives the quartiles of x: 0%, 25%, 50%, 75% # and 100%

Figure 3.1 Normal distribution



The normal distribution
The graph in Figure 3.1 is a frequency histogram. This frequency histogram
shows a larger sample of heights taken from the population. Histograms are
used for continuous variables. Unlike bar charts, used for categorical
variables, there are no gaps between the bars. This can be a helpful way to
identify what kind of variable is being shown.

This distribution is normally distributed, having a bell-shaped curve.
When data are normally distributed, the mean, median and mode are usually
found in the same place. The mode can easily be identified as the tallest bar
in a histogram, representing the most popular value.
 

Box 3.5 R code for normal distributions
x<-rnorm(1000, mean = 100, sd = 15) #generates a normal # distribution
for a sample size of 1000, having a mean of 100 # and standard deviation
of 15. Recall that x<- means “x is” hist(x) #shows a histogram of the data
you generated, # illustrating a normal distribution



Other kinds of distributions
Figure 3.2 shows kinds of distribution. Many variables are normally
distributed, such as height, weight or blood pressure (top panel). We saw
that when data are normally distributed, the mean, median and mode are in
the same place. However, the distribution in the middle panel is skewed to
the left. This is negative skew, because there is a build-up of negative
values, leaving a longer tail toward the right. When data are skewed to the
right (lower panel), this is called positive skew. The median is the best
measure of central tendency for these types of distributions, because it
better represents where the true central tendency lies.

The main point here is that you should always consider the distribution of
your data before deciding what the best model of central tendency should
be. For data which are not normally distributed, you can report the median
and interquartile range. Alternatively, you can report the five-point
summary. This is the minimum, first quartile, the median, the third quartile
and the maximum [3]. You could also consider transforming the data (see
the section on ‘Transformations’ below). A simple way to obtain several
different measures of central tendency for your data is to use the summary
function in R, shown in Box3.7



Figure 3.2 Kinds of distribution

 

Box 3.6 R code for generating skewed and normal distributions
data1<-exp(rnorm(1000,0,1))
data2<-rnorm(1000,0,1)
data3<-log(rnorm(1000,0,1))
par(mfrow=c(3,1))
hist(data1, main=“Normally distributed”)
hist(data2, main=“Skewed to the left”)
hist(data3, main=“Skewed to the right”



new<-data.frame(data1,data2,data3)
write.table(new, file = “mydata.csv”, sep = “,”, col.names = NA)

Box 3.7 R code for summarising variables
After loading in the heights data, you can request a summary of your
variable(s) by using summary(x) where x is the name of the variable.
data <- read.table(‘height.csv’, header=TRUE, sep=’,’) attach(data)
summary(height)



Measures of dispersion

Error
The mean is only part of the story data have to tell. The histograms in
Figure 3.3 show the frequency of different heights in two populations. Both
populations have the same mean height, which is 168cm. They also have
the same sample size, which is 10,000. In both cases, the mean is simpler
than the data. It also makes full use of the available data, providing a model
that is one piece of information – rather than 10,000 separate values.
However, it hides two very different patterns. Data 2 is more spread out, in
other words, more dispersed. To tell the two stories, we need another model.
The second model needs to communicate the dispersion around the mean. It
needs to accompany the mean – in fact we would always report measures of
central tendency and dispersion together. This will complete the story, while
still providing a useful model that describes the mean and the dispersion
using just two pieces of information.



Figure 3.3 Different distributions

A measure of dispersion needs to communicate an important pattern in
the data. How ‘spread out’ are the data? How dispersed are the data? We
want to model the variability in the data, but variability from what? The
answer is variability from the mean. The mean is a centre of a normal
distribution and we need to know how variable the data are from this point.
How far away is each height from the mean height? In other words, what is
the variance between the model of everyone’s heights, and the raw data?
This is called the error. How much error is there between the model and the
data?

To find out how much error there is, we can subtract the mean from the
raw data. The mean is the model, so this calculation will tell us the
difference between the model and the data, which is the error. The error is
also called the residual, meaning ‘left over’, or deviation, meaning



deviation from the mean. If we add up (sum) the error, this should tell us the
total amount of deviation from the mean (Table 3.6).

Table 3.6 Calculating error
ID Height (cm) Subtract mean Error
  1 168.7 167.97   0.73
  2 172.0 167.97   4.03
  3 176.5 167.97   8.53
  4 160.5 167.97 −7.47
  5 174.0 167.97   6.03
  6 168.6 167.97   0.63
  7 160.0 167.97 −7.97
  8 163.0 167.97 −4.97
  9 175.0 167.97   7.03
10 161.4 167.97 −6.57

Sum   0

Variance
The answer we obtained was zero, so why did this strategy not work? It is
clearly not true that there is no error between the model and the data. The
sum of deviations from the mean is zero, but this does not mean that the
data deviated from the mean. The answer is because of the direction of
these deviations – some deviances are positive and some are negative. A
solution is simply to square the deviances from the mean. Squaring values
means we can ignore the direction of the errors, while still modelling their
size. This is because the square of a negative number is a positive number.
Calculating the sum of square errors gives 362.90, which should be divided
by the sample size minus 1. This is the variance (Table 3.7).

We have calculated the variance of the height data, which is 40.32 cm2. Is
the variance a good model? It is clearly simpler than the data. It also makes
the most of the data, if we acknowledge that we have used up a degree of
freedom (see the section of degrees of freedom below). It does tell the right
story – that the average error in the data is 40.32 cm2. However, this is not
very appealing for the audience. It is better to convert this back into
centimetres, by taking the square root of the variance. This is the standard
deviation (SD), described below.



Box 3.8 R code for variance
Use var(x) where x is the variable name. For example:

var(height)

Table 3.7 Calculating variance and standard deviation

Standard deviation
The standard deviation is calculated by taking the square root of the
variance:

The sample standard deviation s, estimates the population standard
deviation – just as the sample mean estimates the population mean. Larger
standard deviations suggest that there is more dispersion, or variability.
Smaller standard deviations suggest that there is less dispersion or
variability. The mean and standard deviation are descriptive statistics and
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should be reported together. Taken together, are they good models? They
are more simple than the data. In our example, they describe ten pieces of
information using two values. They make the most of the data, because all
of the data is used in the calculation. They also communicate a better story
than the mean alone. They model the central tendency and spread.

Box 3.9 An aside: converting standard errors to standard deviations
You can convert standard errors (SE) to standard deviations, and vice
versa, using the following formulae:

This is sometimes helpful to know, because you might have access to the
standard error but not the standard deviation, or vice versa, particularly
when appraising other people’s research (Chapters 7 to 11).

Remember that the purpose of modelling data is to simplify it by
communicating its important features to a specified audience. We can
communicate three important features of this data using just three values
(mean, standard deviation and n). When reporting the mean and standard
deviation and working by hand, remember these four rules:

Work to four decimal places.
Round up or down at the last step, remembering that values of 5 or
greater should be rounded up.
Avoid what has been called ‘pseudo-precision’ [3]. If the data are
measured at one decimal place, there is no point in reporting at two or
more decimal places. There is no added value in reporting height at
two decimal places, if it was recorded to the nearest centimetre.
Always report the mean and standard deviation together, with the
units and the sample size.



Box 3.10 R code for standard deviation
Use sd(x) where x is the variable name. For example:

sd(height) #note that sd function is R uses the denominator # n–1, as in
this chapter

Degrees of freedom
The equation for the variance shows that we divide by the sample size
minus 1, not by the sample size. This happens because we only have one
degree of freedom left, when reaching nine of the ten deviations in the table
(or in any sample, n−1 degrees of freedom). Once we have calculated nine,
the remaining one can be calculated from all the others because they all add
to zero. For this reason, only nine of the ten deviations are independent
from each other, a situation described as having nine degrees of freedom. It
has been shown that dividing by n−1 rather than n better estimates the
variance in the population [20]. Be careful when using Excel however,
because there is more than one way to calculate the standard deviation
=STDEV.P(A1:A10) and =STDEV.S(A1:A10). It is recommended that you
use STDEV.S since this uses n−1, which provides a better result because it
acknowledges that the data are from a sample, not a population. The
terminology is slightly confusing, because we might think that STDEV.S
would be the appropriate command to use when working with a sample. In
fact, it means standard deviation of a sample.

Box 3.11 R code for a summary of central tendency and dispersion
The sample size, mean, median and standard deviation for any variable
can be obtained in the epibasix package using the function univar(x)
where x is the name of the variable. For example:

require(epibasix) #you may need to install the epibasix # package if not
already available univar(height)



Standard error
We know that larger samples estimate the mean more precisely than smaller
samples. But how much more precisely? We can model precision using a
statistic. It is called the standard error of the mean. You might say, ‘we
don’t know what the population mean is – how can we possibly model how
precisely it is measured?’ Well, we can estimate precision by using the
sample standard deviation and the sample size. The following section will
explain how this is achieved.

Sampling distribution of the mean
The reason why we take samples from a population is because we want to
estimate what the value might be in that population. Table 3.8 shows the
notation used to distinguish sample from population statistics for mean and
standard deviation. It is important to use the correct notation, to be sure that
we know which statistic we are talking about. We can calculate the mean
and standard deviation in our sample, but rarely do we know the mean and
standard deviation in the population. We hope that the mean and standard
deviation in our sample are close to what they would be in the population,
but how close are they? How much margin of error is there? In turns out
that although the population mean cannot be known, the sample standard
deviation can be used to estimate the population standard deviation. This is
extremely useful because it allows us to calculate a standard error of the
mean, used to construct confidence intervals (CIs) around the sample mean.

Suppose that we took many, many different samples from a population.
We could calculate many different means from these samples. These could
be plotted in a histogram. This frequency distribution of all the different
means is called the sampling distribution (of means). It is a hypothetical
distribution of all possible means from all possible samples of the same
size, from the same population. The sampling distribution has three
important and useful features:

Table 3.8 Sample notation
Mean Standard deviation

Sample s

Population μ σ
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it is normal, if the data are normally distributed in the population;
its mean is the same as the population mean;
its standard deviation can be used to show how precisely the sample
mean estimates the population mean.

These three facts have been established previously and can be shown to
be true in simulation studies. The book website contains a link to a
simulation demonstration on the web, where you can explore these
assumptions in more detail. For now, we can use these facts to calculate a
statistic called the standard error of the sample mean. The standard error of
the sample mean is the statistic used to show how precisely the sample
mean estimates the population mean.

Larger standard errors indicate that the sample mean estimates the
population mean less precisely. Smaller standard errors indicate the sample
mean estimates the population more precisely. The standard deviation in our
sample tells us something about the variability in the population, and
therefore how precisely we are likely to have estimated the population
mean. The sample standard deviation, then, provides a linkage between the
sample and the population. The standard deviation in the sample becomes a
proxy for the standard deviation in the population.

In this equation, you can see that the standard deviation of the sample is
adjusted for the (square root of) the sample size. Larger samples, then,
produce smaller standard errors. They estimate the mean more precisely.
You can also see that the standard error depends on the variation in the
population. If the population has less variation, the sample standard
deviation we obtain would be smaller, and so would the standard error.

Z-scores
Z-scores refer to the normal distribution expressed in standardised units
(mean = 0, standard deviation = 1). This means that a z-score of 1 is one
standard deviation (SD) above the mean, and a z-score of −1 is one SD
below the mean. It is also helpful to know that one standard deviation
covers 68 percent of values, two standard deviations cover 95 per cent and
three cover 99.7 per cent. For example, the SF-36 Physical and Mental
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Component Summaries (www.sf36.org) are often used as measures of self-
reported health status. The scales have a mean of 50 and SD of 10. This
means that:

68% of people will score 40 to 60;
95% of people will score 30 to 70;
99.7% of people will score 20 to 80.

Figure 3.4 Standard deviations and coverage of population

T-scores
T-scores have a mean of 50 and a standard deviation of 10 (the SF-36 has a
T-score scoring method). This can be more intuitively appealing than z-
scores. Knowing that the mean is 50 can be easier to visualise than a mean
of 10. The range for T-scores, however, is obscure. Although it conceptually
ranges from 0 to 100, it is possible to have extremely low scores that are
below 0 (negative) and above 100.

Confidence intervals for a mean
Once we know the mean and standard deviation of a variable in a sample,
we can calculate confidence intervals around this estimate. Confidence

http://www.sf36.org/


intervals provide a range of plausible estimates for the population mean.
They are often interpreted as meaning that there is a 95 per cent probability
that the population mean is somewhere within their range. This is
intuitively appealing, but incorrect. It is more accurate to say that if we kept
taking samples from the same population, 95 per cent of the confidence
intervals would be expected to contain the population mean [20]. This
means that 1 in 20 studies (5 per cent) would produce confidence intervals
that do not contain the population mean – a point worth remembering.

When the sample size is small the assumption that the data are normally
distributed is often violated. This means that you should use the t-
distribution rather than the z-distribution to calculate the confidence interval
(see z-tables in Appendix 3 and t-tables in Appendix 1). Historically,
different cut-points for determining ‘large’ sample sizes have been
advocated. Traditionally, a t-value has been used to create confidence
intervals around the mean for a small sample, a z-value for large samples.
This was necessary when working by hand with a calculator. Most of the
time in practice, we use statistical software to compute the p-value, and this
distinction between ‘small’ and ‘large’ is perhaps unnecessary.

x ± (t·SE)

Example: Confidence interval for the mean (small sample)
The BMI values for ten patients undergoing spinal surgery was recorded by
a nurse. Calculate the confidence intervals for the mean in the population
(all candidates for spinal surgery).

When the sample size is large, use the z formula:
x ± (z · SE)

 
Table 3.9 Confidence interval for the mean (small sample)
ID BMI Subtract mean Error Squared error
1 30 –26.7   3.3 10.89
2 22 –26.7 –4.7 22.09
3 27 –26.7   0.3   0.09
4 30 –26.7   3.3 10.89
5 25 –26.7 –1.7   2.89
6 28 –26.7   1.3   1.69



7 21 –26.7 –5.7 32.49
8 22 –26.7 –4.7 22.09
9 29 –26.7   2.3   5.29
10 33 –26.7   6.3 39.69
Calculating the 95% confidence interval for the mean Sum of squared

errors
148.1

SE = 4.06 / 9 = 1.35 Variance   16.46
Lower interval = 26.7 − (1.96×1.35) = 24.05 SD     4.06
Upper interval = 26.7 + (1.96×1.35) = 29.35 SE     1.35
How this should be reported: Lower   24.05
The mean BMI was 26.7 (95%CI 24.05 to 29.35) Upper   29.35

Box 3.12 Exercise: Confidence interval for the mean (large sample)
Suppose that the mean (SD) forced expiratory volume in one second
(FEV1) is 2.97 (0.78) litres in a sample of 6735 adults from the general
population. Assuming that the sample is representative of the population,
what is the 95% CI for the mean FEV1 value?

Lower interval = 2.97 − (1.96 × 0.0095) = 2.9514
Upper interval = 2.97 + (1.96 × 0.0095) = 2.9886

How this could be reported:
The mean FEV1 value was 2.97 (95% CI 2.95 to 2.99) litres.
In this example, I would suggest working with the standard error at

four significant figures and reporting the confidence intervals to four
decimal places.

You can also calculate 99% confidence intervals, by using the value of
3.72 from the z distribution. This is less commonly done, but is perfectly
valid:

Lower interval = 2.97 − (3.72 × 0.0095) = 2.9347
Upper interval = 2.97 + (3.72 × 0.0095) = 3.0053

How this could be reported:



The mean FEV1 value was 2.97 (99% CI 2.94 to 3.00) litres.
The 99% confidence intervals are wider, but not much wider, in this

example.
There is clearly no need to take a sample of 6735 people from the

population in order to estimate the mean FEV1 value in the population.
A smaller sample would produce a reasonably narrow 95% confidence
interval. But how small? Choice of sample size is governed by a formal
sample size calculation, discussed in Appendix 7.

Comparing the mean to a known value
It may be useful to compare a sample mean to a known value. For example,
suppose that we are conducting a research study in which height might be
an important variable to consider. The research assistant has been asked to
display a poster advertising the study in the student union building.
Unfortunately, he places it below the area on the notice board reserved for
the male basketball team. The professor is now worried that tall males are
more likely to become over-represented in the study, and the sample is
therefore not representative. He has asked you to find out if it differs
significantly from the population value. The Health Survey for England
(2008) data provide the population mean height (175.3, SE = 0.11) for
males [21]. Our sample (n= 30) has a mean height of 175.9 (SE = 2.00) and
we are concerned that they are slightly taller than the general population.
Notice how much larger the standard error is here – the sample is only 30
people. Does the height in our sample differ significantly from population
height? In order to determine this, we need to find out how far away our
sample mean is from the population mean.

This formula assumes that the variable (height) is continuous and normally
distributed.

z = (175.9 – 175.3)/2.00 = 0.30
The z-value of 0.30 tells us that the mean difference is 0.3 standard errors

away from zero (the null value). We can obtain the probability of getting a



mean difference of this size from the z-table. The first decimal place is 3,
the second is 0. The probability shown in the cell is 0.3085. This is greater
than the value of 0.05 traditionally adopted as the threshold for statistical
significance. Therefore, the null hypothesis that any difference between the
mean is due to chance, is retained. The data we observed are not statistically
significantly different from the population. In this example, this could
mitigate concerns that the individuals in the sample are taller than the
population. They might be unrepresentative in other ways, however, and
you might have concerns that sampling from student union buildings will
lead to bias. These kinds of issues are considered in the critical appraisal
chapters. For now, our main concern is the difference in means.

You might also have concerns that the sample is too small. As mentioned
previously in the exercise and in Appendix 7, sample size should ideally be
determined using a formal sample size calculation. Assuming that 30 people
is sufficient for this study and is the final sample available, our main
problem is that the data are not normally distributed. In this situation you
can use the t-statistic, unless the data are severely non-normal and should be
transformed or ranked (see separate sections on ‘Transformations’ and
‘Ranked data’ on these topics).

The t-table involves a different method to the z-table. First locate the
appropriate number of degrees of freedom (29) then the level of statistical
significance required. This is usually 0.05 and a two-sided p-value, if we
did not make a prediction about which direction the means would differ in.
Since we hypothesised that our sample would be taller, a one-sided test is
required. The appropriate cell indicates that a value of 1.70. This is the
value of t that would be required in order to reject the null hypothesis that
any difference in means is due to chance. Our value is smaller than 1.70 at
0.30, again suggesting that the difference we observed is due to chance.

Certainty or precision?
It may be helpful to calculate 99 per cent confidence intervals rather than 95
per cent confidence intervals. A 99 per cent confidence interval obviously



has greater certainty, capturing a wider range of plausible values for the
population mean. On the other hand, a 99 per cent interval is necessarily
wider than a 95 per cent interval, and so is less precise. This shows that
there is always a trade-off between certainty and precision, when choosing
the size of a confidence interval to use. The convention is to use 95 per cent
confidence intervals, although this is somewhat arbitrary. The z-value of
1.96 is the 5 percentage point of the normal distribution: 95 per cent of
distribution lies between −1.96 and 1.96. Table 3.10 shows different z-
values that can be used to change the width of confidence intervals, to some
popular alternatives.

Table 3.10 z-values and confidence intervals
Length of interval z-value
68% 0.99
95% 1.96
99% 2.58



Transformations
Many variables are measured on scales which produce negatively or
positively skewed distributions (see section of ‘Other types of
distribution’). Examples include C-reactive protein (a measure of
inflammation), salivary cortisol (often used as a marker of sensitivity to
psychosocial stressors) and incomes (because there is a small number of
people with very high incomes). Reporting the median, a measure of central
tendency described above, is one solution. When attempting to describe the
standard deviation however, particularly in several different groups, skewed
data can produce misleading results. Transformations are another possible
solution.

When data are positively or negatively skewed, it can sometimes be
useful to transform them onto a different scale. Changing the scale does not
change the data itself, but it does change the relative distance between each
point on the scale. A familiar example is the Richter earthquake magnitude
scale, which communicates the strength of earthquakes. A magnitude of
less than 2 is so small that people do not generally notice the quake.
Earthquakes with a score of 4 would shake and rattle indoor objects. A
score of 7 would cause serious damage over a large area. Extremely large
earthquakes are much more powerful than is implied by the Richter scale, if
we misinterpreted to imply equal distances between each value. You might
think that the transformed scale has the same distance between 1 and 2 as
between 7 and 8, but this is not correct. Transformations are useful because
they compress large values, bringing the tail of the distribution inwards.
They also have the additional advantage of decompressing smaller values.

Logarithms to the base 10 transform data so that the difference between 1
and 10 becomes the same as the distance between 10 and 100, 1,000 and
10,000, and so on. The principle is exactly the same as for the Richter scale,
producing a new scale that is easier to visualise and therefore more
intuitive. As shown in Table 3.10, the distance between 1 and 2 is the same
as the distance between 9 and 10, when using the transformed scale. The
transformation is achieved using the following formula:

Table 3.11 Logarithmic scales
ID x log10(x)



  1             −1 Not possible
  2               0 Not possible
  3               1 0
  4             10 1
  5           100 2
  6         1000 3
  7       10000 4
  8     100000 5
  9   1000000 6
10 10000000 7

x = 10u = log10(x)

For example:
1000000 = 10 × 10 × 10 × 10 × 10 × 10=106 = log10(6)

Put differently, this means that the logarithm to base 10 of 6 (log10(6)) is
the same as ten to the power of six, or ten times ten six times. So if we were
told that someone had a score of 6 on a logarithmic scale (having base 10),
we would know that this actually means their true score was 1000000 (see
Table 3.11). We can take the antilog (10x) to reverse the transformation,
since 106 is 1000000. In Excel and R, this is achieved by using 10^x.

106 = 1000000
Distributions with very large numbers can therefore be converted into

more manageable numbers.

Box 3.13 An aside: a war magnitude scale
Lewis Fry Richardson was a statistician put in charge of organising data
on war causalities [22]. Since a terrorist campaign might involve around
100 casualties, but larger wars might involve over 1 million, he decided
that the data were suitable for logarithmic transformation. He proposed
that logarithmic to base 10 could be used to classify wars. A terror
campaign resulting in 100 deaths would receive a score of 2, a war with



1 million deaths a score of 6, and so on. The Vietnam War, for example,
would receive a score of 4.7 (around 50,000 deaths). This war magnitude
scale is psychologically helpful, because people can more easily interpret
the impact of human violence on one scale [22], since larger numbers are
often harder to visualise.

Table 3.12 C-reactive protein (CRP) data
ID CRP ln(CRP)
  1 2.718282   1
  2 7.389056   2
  3 20.08554   3
  4 54.59815   4
  5 148.4132   5
  6 403.4288   6
  7 1096.633   7
  8 2980.958   8
  9 8103.084   9
10 22026.47 10

Note that log transformations are not permissible on negative values or
on zero. Sometimes a constant is added to all the data values to get around
this problem, typically one, to make all the values positive. If so, this should
be reported when describing results. It may be necessary to remove the
constant, particularly when transforming data back to the original scale
(back transforming).

It is more common to use the natural logarithm, rather than base ten. The
natural logarithm uses a mathematical constant called e, but the principle is
the same as for base ten. The value of e is 2.7182818 for reasons which are
not important here, and e is usually built into most calculators so that it can
be used automatically.

403.4288 = e × e× e × e × e × e=e6

e6 = 403.4288
To illustrate, we will look at some data on C-reactive protein (CRP),

which is a measure of inflammation (Table 3.12). The distribution is
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positively skewed, having a long tail to the right. Taking the natural
logarithm of these values produces something closer to a normal
distribution (middle column). With only 10 values, we would not expect to
see a perfectly symmetrical bell shaped curve, but we have improved the
distribution. For checking purposes, we can take the antilog, which returns
the values back to their original scale (right hand column). CRP can be said
to have a lognormal distribution, because it is normal when shown on the
log scale. The natural logarithm uses base e, a mathematical constant often
used in a variety of situations.

Many people find logarithms to base 10 easier to understand than the
natural logarithm. Many statistical methods and software packages use the
natural logarithm, however, and so this is used throughout this book.
Logistic regression, for example, requires that you understand how to take
the exponent (antilog) for values which are presented on a natural logarithm
scale.

Here is a summary of reasons why we might want to transform data:

associations between the skewed variable and other variables will not
appear to be linear, when in fact they might be;
people find logarithmic scales easier to visualise (e.g. the Richter
scale) and understand;
standard deviations in different groups could be very different;
logistic regression produces results which are on a natural logarithmic
scale (Chapter 14).



Summary
In this chapter several statistics have been introduced. Some are measures
of central tendency (mean, median, mode, range). Some are measures of
dispersion (error, standard error, variance, standard deviation). Two
approaches to statistical analysis have also been introduced: methods of
estimation (confidence intervals) and hypothesis testing (p-values).
Remember that the variance is the average squared distance from the mean
divided by n−1. The standard deviation is the square root of the variance,
and is therefore a measure of dispersion using the same units as the original
observations. The standard deviation qualifies the mean, and is essential to
report alongside it (when the mean is the best measure of central tendency).
If data are skewed, the median is the best measure of central tendency.
Qualify the median by also reporting the five-point summary.
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Measures of association for categorical
outcomes
 
 
 
The chapter will demonstrate how to differentiate risk and odds and how to
decide which is a more appropriate method to use in a particular context.
When diseases are common, the risk and odds could provide seemingly very
different information, and this chapter will show you how to calculate them
in ways that help you to estimate the probability of an event happening. The
chapter uses the example of smokers and non-smokers to demonstrate how
to calculate the risk of lung cancer among smokers. It also shows you how to
calculate the risk difference, attributable risk or excess risk; this is the
difference in risk between the exposed and unexposed group.

The chapter builds on this by showing you how to calculate the number
needed to treat (NNT) and the number needed to harm (NNH). These
statistics tell you how many patients would have to receive an exposure, in
order to prevent or produce a single case of the disease. It also helps you to
differentiate between the individual and the population. This is a useful way
to inform cost-effectiveness calculations in, for example, public health
interventions such as smoking cessation campaigns. The chapter then
demonstrates how to calculate relative measures of risk, which communicate
the population view and therefore also usefully informs public health
intervention decisions.

Researchers often need to gather data using a variety of methodologies,
including postal questionnaires. The chapter includes an exercise which uses
relative risk calculation to help you to maximise the response rate for postal
questionnaires during research. The chapter then discusses odds ratios, a way
of working out the odds of a disease developing based on an exposure when
using a case control study, which means we cannot calculate the relative risk.



The odds ratio approximates the relative risk in this case. Odds ratios are
also useful as they are used to adjust for confounding factors in statistical
models which take into account more than two variables.

The chapter closes with an exercise enabling you to test your
understanding of absolute versus relative risk. In practical terms, this allows
you to work out the value of prescribing a new drug, both in terms of the
efficacy of the drug and the cost of preventing the disease.



Introduction
A great deal of health research is concerned with outcomes which are
categorical. Is a disease present or not? Did the patient die, or are they still
alive? Did the event occur, or has it not occurred? Similarly, we are often
concerned with relationship of a health outcome to an exposure. Exposures
are frequently categorical. Was someone exposed or not exposed? Did the
patient receive the treatment, or not? Which people smoked and which did
not smoke? This chapter introduces measures of association for categorical
outcomes, and we will focus on situations in which an exposure is also
categorical. The term ‘exposure’ is a general one, referring to variables that
can be either protective or harmful. For example, an exposure could be a risk
factor in the environment, or a new drug intended to reduce the risk of a
disease occurring.
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Intended learning outcomes
By the end of this chapter, you should be able to define, calculate and
interpret:

risk and odds
absolute measures of risk
relative measures of risk
number needed to treat and number needed to harm
simple tabular data from published research studies.

Calculations will be performed by hand, and also in R. Throughout this
chapter, we will use the generalised notation for two-by-two contingency
tables, shown in Table 4.1. The outcome is categorical and binary, meaning
that it can only take two values. For example, the outcome might be disease
or healthy, event or non-event. We will also be working with exposures that
are categorical. For example, exposed or unexposed, smoker or non-smoker,
treatment or control. For these kinds of examples, people in the study can
only belong to one of four cells. They can either be exposed or unexposed,
diseased or healthy.
Table 4.1 Generalized notation for 2 × 2 tables in this book

Disease Healthy Total
Exposed a b e
Unexposed c d f
Total g h N



Risk and odds

Risk
Risk concerns the chance that something will happen, in relation to the
chance that everything will happen. The term ‘risk’ is synonymous with the
term ‘probability’. Probability is a continuous variable, ranging from 0 to 1.
The zero is a true zero, and this would mean that there is no chance of the
event occurring. The one is the maximum number available, meaning that
the event definitely will happen. The risk that a disease will occur has to lie
between 0 and 1. For example, suppose that the risk of dying from heart
disease is 0.2 or 20 per cent. This is the same as saying that 1 in 5 people die
from heart disease.

Risk always lies between 0 and 1, or equivalently, between 0 and 100%.

Odds
Odds concerns the chance that something will happen, in relation to the
chance that something will not happen. Odds are slightly less intuitive than
risks, because most people tend to prefer thinking about chance as a
probability. People who bet on horses tend to be more familiar with odds. To
illustrate the odds of something happening, take the example of heart
disease. Death from heart disease occurs in one person to every four people
who do not die from heart disease. Therefore, the odds are 1 to 4, or 0.25.

Odds can range from 0 to infinity, moving above 1 if the event is more
common than the non-event. This is usually not encountered in the health
sciences, where we tend to study disease outcomes that are less common
than non-disease outcomes. Odds are a different way of communicating the
chance of the same event. We can choose to calculate the risk or the odds.
However, risks and odds often take different values. In the heart disease



example, the risk is 0.2 and the odds are 0.25. These appear, at first reading,
to communicate quite different things. Neither is necessarily a better or more
accurate way of communicating the chance of dying of heart disease,
providing that we are clear what the number refers to. Why then, do health
scientists need to use two different ways of communicating chance? Why
not focus on risks, since they are more intuitively meaningful? The short
answer is, that both risks and odds have specific advantages, in different
contexts. A longer answer is provided later on in this chapter and in the
chapter on logistic regression.

Table 4.2 illustrates the risk and odds for a range of ‘everyday’ events
[23]. What do you notice about the risk and odds, as you move down the
table?

You should notice that the risk and odds are different for common events,
such as heart disease, but gradually become more similar. We can see that
risk and odds are generally the same, but only for rare events. This is worth
bearing in mind because it will become important later. When diseases are
common, the risk and odds could provide seemingly very different
information. Odds tend to over-estimate the chance that something happens,
when the event is common. For rare diseases, it doesn’t often matter whether
we use risk or odds. However, most researchers tend to use odds, for
varieties of reasons, which are discussed below.
Table 4.2 Familiar events expressed as risk and odds

Chance 
expressed as 
risk

Risk Chance 
expressed as 
odds

Odds

Dying from heart disease 1 in 5 0.2000000 1 to 4 0.2500000
Dying from cancer 1 in 7 0.1428571 1 to 6 0.1666667
Getting three balls in the UK
national lottery

1 in 11 0.0909091 1 to 10 0.1000000

Transmission of measles 1 in 100 0.0100000 1 to 99 0.0101010
Annual risk of death,
smoking 10 per day

1 in 200 0.0050000 1 to 199 0.0050251

Death by air travel incident 1 in 20 000 0.0000500 1 to 19 999 0.0000500
Death playing football 1 in 50 000 0.0000200 1 to 49 999 0.0000200
Death by murder 1 in 100 000 0.0000100 1 to 99 999 0.0000100
Death by rail accident 1 in 500 000 0.0000020 1 to 499 999 0.0000020
Drowning in the bath in the
next year

1 in 685 000 0.0000015 1 to 684 999 0.0000015



Getting six balls in the UK
national lottery

1 in 2 796 763 0.0000004 1 to 2 796 762 0.0000004

Death from a nuclear power
accident

1 in 10 000 000 0.0000001 1 to 9 999 999 0.0000001

Box 4.1 An aside: odds and risk
Odds are commonly used by gamblers in betting shops. Suppose that the
odds of Barking Football Club winning the cup are 10 to 1. This means
that the bookmaker thinks the chance of Barking not winning are ten
times the chance that they will. Put different, for every time that the team
will win, they will lose 10 times. Counter-intuitively, bookmakers
normally express the likelihood of the non-event (10), compared to the
event (1). Therefore, the odds are 0.1 in this scenario. Most people are
more familiar with the probability (risk) of an event. Fortunately, we can
easily convert odds to risk, and vice versa.

In this example, the odds and risk are fairly similar. This is because the
outcome is relatively rare.



Calculating absolute risk
Measures of absolute risk tell us what the chance is that an event happens,
taking into account all of the possible events. Put differently, what is the
chance that an event happens, out of the chance that everything happens? In
this hypothetical data [20] (Table 4.3), we are shown the incidence of lung
cancer after one year, following recruitment into a prospective cohort study.
What is the chance (risk) of lung cancer among smokers?
Table 4.3 Risk of lung cancer among smokers

Lung cancer one year later Healthy Total
Smoker 39 29 961 30 000
Non-smoker   6 59 994 60 000
Total 45 89 955 90 000

Calculating the proportion of disease cases in the exposed group
To calculate the risk of lung cancer among smokers, we want to know the
proportion of cases of lung cancer among the exposed group. That is, the
risk of lung cancer in the exposed group. This can be done by calculating the
proportion of those with the disease in the exposed group (p1), who
developed lung cancer (see equation below). To calculate the proportion
exposed, we divide 39 (the number of people with the disease who were
exposed) by 30 000 (the total number of people exposed). This gives a
proportion of 0.0013, or 0.13 per cent. This is the absolute risk of lung
cancer among the exposed group. They have a 0.13% chance of developing
lung cancer one year later.

Risk difference, or attributable risk
The risk difference is the difference in risk between the exposed group and
the unexposed group. To calculate the risk difference, we need to work out
the proportion of people with the disease among the unexposed group (p0),
and then subtract this from the proportion in the exposed group. Dividing 6



(the number of people with the disease who were unexposed) by 60 000 (the
total number of people unexposed) gives a proportion of 0.0001 or 0.01 per
cent.

The absolute risk difference is simply the difference between the two
risks. It is sometimes called the ‘attributable risk’ or ‘excess risk’, meaning
the proportion of extra risk which is accounted for by the exposure.
Depending on the sign of the answer, the risk difference could refer to an
absolute risk increase, or an absolute risk reduction (RD).

RD = p1 − p0 = 0.0013 − 0.001 = 0.0012

There is a proportion of 0.0012 or 0.12 per cent difference between the
two groups. The risk among those exposed is higher, an absolute risk
increase of 0.12 per cent. This seems rather small, but remember, that this is
the excess risk for one individual over a relatively short time frame. It does
not tell us how many times more likely the disease is for smokers, compared
to non-smokers. Nor does it tell us how many smokers would have to stop
smoking, in order to prevent one case. To work out these problems, we need
to consider relative risks and the number needed to treat, which are
introduced below. Additionally, if we wanted to work out the longer-term
association between smoking and lung cancer over many years, a longer
follow-up period would be necessary. This is not the focus of this chapter,
concerned only with illustrative examples. Plenty of these kinds of studies
have been conducted, reviewed elsewhere [24].

The risk difference is a useful starting point, but suppose that you wanted
to calculate the impact of an exposure on your local community or a larger
population. By impact, we mean the proportion of cases which are accounted
for (and therefore preventable) by the exposure. To do that, we need to know
what the prevalence of the disease in our population actually is. We can then
simply subtract the rate of the disease in the population from the rate of
disease in the unexposed group:
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It may be helpful to express this as a percentage of the cases which are
attributable to the exposure. This is called the ‘population attributable risk
per cent’ (PAR%). To calculate it, divide the PAR by the proportion with the
disease in the population (pt), then multiply by 100 to obtain the percentage:

This indicates that 80 per cent of the risk of lung cancer during the follow-
up period is attributable to smoking, according to the data provided. This
estimate assumes that no other factors are involved, which is rarely the case,
but for now we will assume that we have estimated the true association
between smoking and lung cancer. If our assumption is correct, 80 per cent
of cases of lung cancer might be preventable if we could remove this
exposure from the environment. The other 20 per cent are due to other
factors. The term ‘population attributable risk’ is used differently in different
contexts, by different researchers, which can be confusing. For example,
some people use the term ‘attributable risk’ to refer to the risk difference. Do
not worry too much about differences in terminology. The key point to
remember is that you should understand the difference between the absolute
risk difference (which is simply the difference between two proportions) and
the population attributable risk (which takes into account the prevalence of
the disease in the population, and which can be expressed as a percentage).
When appraising existing research, it should be clear from the context what
the author is referring to. If it isn’t clear, it may be possible to work it out for
yourself, or ask the author for clarification.

Key points about absolute measures
Absolute measures take into account the risk to an individual if they
are not exposed.
Absolute measures communicate the benefit to an individual of
removing a risk factor or taking a treatment.
Absolute risk measures can distinguish between small and large
exposure
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Number needed to treat (NNT) and number
needed to harm (NNH)
The number needed to treat (NNT) and the number needed to harm (NNH)
are useful statistics. They tell you how many patients would have to receive
the exposure, in order to prevent or produce a single case of the disease. For
example, a number needed to treat of 100 for a new drug tells us that 100
patients would have to be exposed to the new drug, in order to prevent one
case. A number needed to harm of 50 for an exposure, means that 50 people
would have to be exposed, to result in one case. The calculation for NNT is
very simple. It is the reciprocal of the risk difference, which means the
inverse of the risk difference, ignoring the sign. Put differently, we simply
divide 1 by the size of the risk difference. Horizontal bars are used in
equations, to indicate that we should ignore the sign. Returning to the
example of smoking and lung cancer, we can calculate the NNH from the
risk difference (rd) of 0.0012:

This tells us that for every 833 smokers, 1 person would be expected to
develop lung cancer one year later (rounded to the nearest whole person).
This may surprise you, because we are used to thinking that smoking is a
strong risk factor for lung cancer. However, it illustrates once again the
importance of thinking about the bigger picture of population health.

Key points about NNT and NNH
NNT is an intuitive way to think about absolute and relative risks, and
the connection between them.
Absolute measures communicate the clinical view. How many of your
patients would have to receive the treatment, to prevent one case?
NNT can be used to inform cost-effectiveness calculations.

Public health implications of NNT



From a public health perspective, it is worth encouraging 833 people not to
start smoking (or 833 smokers to quit) so that one case of lung cancer can be
prevented each year. From the perspective of an individual smoker, there
may or may not be any meaningful reduction in risk associated with quitting.
Many public health interventions are based on the premise that large
numbers of people have to change their behaviour, in order to benefit the
wider population, even if there is little benefit to those individuals in doing
so. This is one reason why public health interventions are often unpopular
with the general public. Why modify your lifestyle if there is little benefit to
you as an individual? We return to this issue throughout the book. For now,
just remember that there are always two sides to the story – the individual
and the population. NNT is a useful and intuitive statistic for thinking about
both, and is popular in clinical settings for this reason. Clinicians have to
think about the benefit to individuals and their practice population.

Relative risk
The absolute risks from smoking, in the example above, seemed to be rather
small. There is an absolute risk difference of just 0.12 per cent, an increase
of 0.12 per cent for smokers. Absolute risk can tell us what the risk to the
individuals exposed might be. The NNT can provide the clinical view,
suggesting how many patients would have to be treated, to prevent one case.
However, they can’t tell us how many times more likely the exposed people
are, than the unexposed, to develop a disease (the population view). To get
this information, we need to know what the relative risk of the disease is,
comparing the two groups. Relative risks are useful from the population
perspective, because they take into account the fact that some outcomes are
rare. Absolute risk differences can be small, but when we think of the bigger
picture, the relative risk across the whole population might be cause for
concern. This example will illustrate the difference between absolute and
relative risks. So, we need to work out how many times more likely it is for
the smokers to have lung cancer. That is, what is the relative risk of lung
cancer, comparing those who smoked to those who did not? Relative risk
(RR) is calculated by dividing the proportion exposed by the proportion
unexposed:
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This indicates that lung cancer after one year is 13 times more likely for
smokers, than for non-smokers. Whereas the risk to an individual was an
extra 0.0013 or 0.13 per cent, the risk when taking the population view is
much larger. In Chapter 5, we will learn how to estimate how precisely this
relative risk has been estimated, and whether or not it is statistically
significant. For now, keep in mind that relative risks communicate a very
different message about the association between smoking and lung cancer.
The absolute risk increase and the relative risk are both accurate. They are
simply two ways of communicating information about the size of the
association. When deciding whether to communicate absolute or relative
risks, your decision should be based on several different factors. These
include the intended audience, the research question and whether the
individual or population view is most appropriate. Very often, it is useful to
calculate both the absolute and relative risk, particularly when conducting
and reporting your own research.

Key points about relative measures of risk
Relative risks are stable across different populations, even if those
populations have different risks to begin with.
Relative risks communicate the population view, which is important
from a public health perspective.
Relative risks do not tell us about the risk to individuals, and tend to
overestimate the size of the effect. For this reason, drug companies
and media may be choose to communicate the relative risk or relative
risk reduction [25].

Exercise: Calculating a relative risk
Researchers are often keen to explore new ways of increasing the response
rate for postal questionnaires. It has been suggested that a ‘veiled threat’ can
make it more likely for people to return a postal questionnaire. A follow-up
letter saying something along the lines of ‘we have not yet received your
questionnaire’ contains a mild but implicit threat that further questionnaires
will be sent, and that the respondent is being monitored. Table 4.4 shows



some actual data from a randomised trial, which we can use to test this
hypothesis [26]
Table 4.4 Postal questionnaire data

Event 
(Returned 
questionnaire)

Non-event 
(Did not return 
questionnaire)

Total

Veiled threat 129 213 342
No threat 74 255 329
Total 203 468 671

Here, we have a slightly unusual situation in which the outcome is not a
disease, but is a different kind of event – an event we want to happen. For
this reason, the disease column has been relabelled as ‘event’, because the
questionnaire coming back (the event) is the outcome we are interested in.
The presence of a veiled threat does seem to increase the likelihood of the
questionnaires coming back. We can probably determine this by scanning the
data table, but we can calculate the relative risk to find out exactly how
many times more likely it is. First, we calculate the proportion of responders
in each group. Then we calculate the risk ratio.

The relative risk is 1.68, confirming our hypothesis that a veiled threat
makes it more likely for a questionnaire to be returned (1.68 times more
likely). We can see from the proportions that about 38 per cent of
questionnaires are returned when a threat is present. About 23 per cent are
returned even when no threat is present. If you decide to think about risks as
percentages, it is important to distinguish percentages from percentage
points. The risk difference is 0.1522, or 15.22 per cent (15.22 percentage
points higher when a threat is present). The risk ratio suggests a 68 per cent
increase in the probability of it being returned when a threat is included,
compared to when it is not included.



Relative risk reduction
When the exposure has a protective effect, which is usually anticipated if the
exposure is a treatment or intervention, it may be useful to calculate the
relative risk reduction. This is the reduction in risk associated with having
the treatment. For example, suppose that a new drug has an RR or 0.45 for
reducing hospitalisation of children due to RSV infections (as shown in the
real-life example below). We might want to calculate relative risk reduction
(RRR) by:

RRR=1−RR=1−0.45=0.55

This represents a relative risk reduction of 0.55 or 55 per cent.

Calculating 95% confidence intervals for the risk ratio
To calculate 95 per cent confidence intervals for the risk ratio (Table 4.5),
first calculate the standard error of the RR on the log scale. Next, calculate
an ‘error factor’ and then use this to calculate the lower and upper intervals.
Finally, calculate the z-statistic to determine if the association is statistically
significant (Chapter 2). The exact p-value can be obtained using R.
Table 4.5 Calculating CI for risk ratios

Table 4.6 Oesophageal cancer study data

Oesophageal cancer Healthy Total
Exposed   65   30   95
Unexposed 235 570 805
Total 300 600 900



Odds ratios
Odds ratios are used to approximate the relative risk of a disease. They are
very similar to the relative risk, when the disease is rare. You may wonder,
then, why would we want to calculate an odds ratio? This is best illustrated
with an example. The data in Table 4.6 is taken from a case control study, a
type of study design which we will explore more fully in Chapter 10.
Suppose that a researcher was interested in whether drinking steaming hot
tea, rather than warm tea, increased the risk of oesophageal cancer [27].

We could work out what the absolute risk of the event (cancer) might be,
for people who reported drinking steaming hot tea. What is the risk of cancer
among steaming hot tea drinkers? The risk appears to be 0.68 or 68 per cent
in the exposed group, and 0.2919 or 29 per cent in the unexposed group:

Here is the calculation for the unexposed group:

However, this is clearly not a sensible interpretation. Look at the overall risk
of lung cancer (the prevalence of lung cancer) for this study:

It is 33 per cent, which is clearly far too high. A third of the population
surely did not develop oesophageal cancer! In this study, researchers have
deliberately chosen a set of controls, who do not have the disease, but are
matched to patients who have the disease. This is a case-control study. They
have selected twice as many controls as cases, but might have selected the
same number, or more than twice as many. The number of cases to controls
is not important. What is important is that the sample does not reflect the
prevalence of the disease in the population. The risk of cancer is not 33 per
cent, nor is it 68 per cent and 29 per cent in the exposed and unexposed
groups. These people were selected artificially, to ensure that for each case, a
control was selected who was as similar as possible to the case. We cannot



calculate the risk of cancer here, because we do not know what the risk is for
controls. The row and column totals are very misleading. We cannot
calculate the risk, which means that we cannot calculate the relative risk
either.
Table 4.7 Illustrative table showing numbers of people with risk (exposure) and disease (outcome)

Disease present (cases) Disease absent (controls)
Risk present 100 58
Risk absent 225 45

What we can do is calculate the relative odds, or odds ratio. It is
meaningful to compare the odds of the disease among the exposed, to the
odds of disease among the unexposed. Odds ratios were invented for case
control studies for precisely this reason. Whereas relative risk concerns the
ratio of events to the total number of events, odds ratios concern the ratio of
events to non-events.

Having calculated odds ratios by hand, now try the same procedure using
R for the following data. R will also provide a chi-square test of statistical
significance and the associated p-value.

Box 4.2 R code for 2 × 2 tables (epibasix package)
The epibasix package was developed by Michael A Rotondi at the
University of Western Ontario.

To install the epibasix packages, click on Packages, Install package(s)
and then scroll down the list of packages to select epibasix.

Figure 4.1 Installing a package in R

The command below creates a 2 × 2 table for analysis in the R epibasix
package. Each column of values (100, 225) and (58, 45) is concatenated



(joined together) using the cbind command. The summary command
produces the chi-square statistic, p value, odds ratio, relative risk and risk
difference. There are two different results for the risk difference,
depending on whether the study was a cohort (Chapter 9) or case-control
(Chapter 10) design.

require(epibasix) #this ‘activates’ the package, telling R
# that epibasix is required
data <- cbind(c(100, 225), c(58, 45)); #top to bottom, then
# left to right (a, c, b, d).

summary(epi2×2(data));

Figure 4.2 Selecting the epibasix package

> data <- cbind(c(100, 225), c(5S, 45)); #top to bottom, then left to right (a, c, b, d).
> #A helpful way to remember this sequence is that the cell names have the same order in
data<cbir.d
> summary(epi2×2(data));
Epidemiological 2×2 Table Analysis



Input Matrix:

Disease Present (Cases) Disease Absent (Controls)
Risk: Present 100 58
Risk: Absent 225 45

Pearson Chi-Squared Statistic (Includes Yates’ Continuity Correction): 20.827
Associated p.value for HO: There is an association between exposure and outcome vs. HA: No
association: 0 p.value using Fisher’s Exact Te3t (1 DF): 0

Estimate of Odds Ratio: 0.345
95% Confidence Limits for true Odds Ratio are: [0.219, 0.544]

Estimate of Relative Risk: (Cohort, Col1): 0.759
95% Confidence Limits for true Relative Risk: are: [0.667, 0.865]

Estimate of Risk Difference (p1 – p2) in Cohort Studies: −0.2
95% Confidence Limits for Risk Difference: [−0.293, −0.108]

Estimate of Risk Difference (p1 – p2) in Case Control Studies: −0.255
95% Confidence Limits for Risk Difference: [−0.355, −0.156]

Note: Above Confidence Intervals employ a continuity correction.

Figure 4.3 Using the epibasix package

Box 4.3 Exercise: Calculating an odds ratio
This is the formula for calculating an odds ratio (OR), which you must
use when data are from a case control study. We will use the study which
investigated the odds of cancer for steaming hot tea drinkers, to illustrate.
This study was a case control study, which means that we cannot calculate
the relative risk. The odds ratio will approximate the relative risk.

The equation rearranges to give ad/bc, but you can calculate a/b and c/d
separately first, if you prefer. Calculating them separately will show you
what the odds are in the exposed and unexposed groups. Either approach
will ultimately provide the same answer. We will now try calculating the



odds ratio for the hot tea study, and see if this provides a more meaningful
interpretation.

Reporting at two decimal places, the odds ratio is 5.26. This suggests
that there is a 5.26-fold increase in the odds of cancer in the exposed
group, compared to the unexposed group. The interpretation is similar to
that for risk ratio, but strictly speaking, they are not the same thing. We
cannot really say that the odds are 5.26 times higher, but the odds ratio is
usually a good approximation to the relative risk. The term ‘fold’ is used
throughout this book, to help distinguish odds ratio (‘five-fold increase’)
from a relative risk (‘five times more likely’). This distinction is not
always made in research reports, however, but should hopefully be clear
from the context. Odds ratios can also be calculated for other study
designs. If we calculate the odds ratio for lung cancer for smokers versus
non-smokers, using the previous data, we obtain the following:

The odds ratio is 13, the same as the risk ratio of 13 we found
previously for this data set. Odds ratios are similar to risk ratios, when the
disease is rare. Table 4.8 shows how to calculate confidence intervals for
odds ratios.

Table 4.8 Calculating CI for odds ratios
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Why use odds ratios?
Initially, most students tend to prefer thinking about relative risks, than odds
ratios, particularly early in their training. However, it is important to work
with odds ratios as well. There are four reasons why we use odds ratios:

Risk ratios are not available in case control studies. Therefore, we
have to rely on odds ratios to approximate the relative risk.
Odds ratios are used to adjust for confounding factors in multivariate
models. That is, statistical models which take into account more than
two variables. In real-life research, multivariate models are more
typical and risk ratios are not available here.
Risk ratios become constrained for common events. That is, there is a
‘ceiling effect’ which makes the estimate unstable and less
meaningful. In Table 4.9, you can clearly see that the odds ratio is 2
without even calculating it. However, the risk ratio is 1.33, which
might surprise you. This is because the event is very common,
constraining the risk ratio.
The interpretation of odds ratios is effectively the same as for risk
ratios. Both refer to the relative occurrence or absence of an event of
interest. Given that odds ratios address the first three points in the list,
the sensible choice in most cases is to work with them.

Absolute versus relative risks
Suppose Lazar’s disease, entirely fictional from the BBC’s ‘Doctor Who’, is
a rare disease. A drug representative arrives with some glossy promotional
material, which claims that Hydromel reduces the risk of Lazar’s disease by
80 per cent:
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Our drug reduces the risk of Lazar’s disease by 80%!
Start prescribing today!

They suggest that you start prescribing the drug. Intrigued, you contact the
drug company and ask to see the raw data. They only provide the
information in Table 4.9. Complete the table, and answer the following
questions:

Calculate the relative risk and interpret what it means.
Calculate the relative risk reduction (also known as the efficacy of the
drug). Is the drug rep correct that the risk is reduced by 80 per cent?
Calculate the absolute risk difference. Would you be convinced
enough to start prescribing Hydromel?
How many patients would have to be treated with Hydromel, to
prevent one case of Lazar’s disease?
Suppose that Hydromel would cost £1.60 per month per patient (5p
per day). What is the cost of preventing one case of Lazar’s?

Table 4.9 Hypothetical data for Hydromel and Lazar’s disease adapted from [25]

Lazar’s disease Healthy Total
Hydromel 1 9 999
Unexposed 5 9 995
Total

Answers are available on the book website.

Box 4.4 An aside: Contraceptive use and risk of thrombosis
Is ‘third generation’ contraceptive use associated with increased risk of
thrombosis? A meta-analysis published in the BMJ suggested that there is
an association [28]. The odds ratio of 3.1 (95% confidence intervals 2.0 to
4.6; based on four studies) suggested a 3.1-fold increase in the risk of
venous thromboembolism for women using third generation oral
contraceptives rather than second generation oral contraceptives. The
confidence intervals do not include 1, suggesting that the odds ratio is
statistically significant. The odds ratio was adjusted for relevant
confounding factors.

The absolute risk of thrombosis, for individuals using third generation
contraceptives, presents a different picture. The authors report an excess



risk of 1.5 per 10 000 woman years (for regular users) and 6.6 per 10 000
woman years (for new users). The excess risk corresponds to the absolute
risk difference, which is just 0.00015 or 0.015 per cent. The risk to an
individual is therefore extremely small indeed. It is only if we want to
consider the relative risk (or odds ratio) across the whole population that
this association becomes meaningful. Commentators noted that this
increased risk should be balanced against the risk of thrombosis in
pregnant women, reductions in unintended pregnancies and protective
benefits offered by oral contraceptives against other kinds of morbidity
and mortality [29].



Summary
Relative risks and odds ratios can mislead, because they provide no
indication of the absolute risk to an individual associated with an exposure.
The study in Box 4.4 is a good example of why it is essential to consider
both absolute and relative risks. The appropriate way to communicate a risk
depends on the intended audience, and this is particularly important when
research findings are reported to the media. The public may not understand
that a relative risk of 3.1, which the media might report as ‘more than three
times more likely’ is consistent with an increase of 0.015 per cent in their
own risk as a third generation contraceptive user. It is also worth noting that
the odds ratio was different in studies conducted by the pharmaceutical
industry (OR = 1.3, 95% CI 1.0 to 1.7) compared to other sources of funding
(OR = 2.3, 95% CI 1.7 to 3.2). The consistency of an association across
different studies is an important factor to consider when deciding if an
association is causal or not (introduced later), and may be important when
critically appraising a paper.
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Measures of association for
continuous outcomes
 
 
We often want to know whether an exposure or a treatment is associated
with a continuous outcome variable. For example, is smoking associated
with reduced walking speed? Does drug A lower blood pressure compared to
drug B? Is negative emotionality associated with cholesterol? When the
exposure is categorical, we want to know the difference between the two
groups concerned on the outcome variable. How much slower do smokers
walk than non-smokers? When the exposure is continuous, we want to know
whether the exposure and outcome co-vary. For example do people with
higher negative emotionality have higher cholesterol, meaning that they are
positively correlated? Methods for determining the magnitude, confidence
intervals and significance of such differences and relationships are
introduced in this chapter. These methods build heavily on the standard error
and confidence interval, which we learned about in the previous chapter.
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Intended learning outcomes
By the end of this chapter, you should be able to:

calculate the size of the difference between two groups exposed to a
risk factor or a treatment;
calculate confidence intervals around the estimated difference;
determine whether this difference is statistically significant:

z- and T-test for differences in means
one-way ANOVA
z- and T-test for differences in means when data are paired (repeated
measures)
non-parametric tests for ranked data

calculate a correlation coefficient for two continuous variables;
calculate confidence intervals around a correlation coefficient;
determine if the correlation is statistically significant.



•

•

•

Differences between two means
In Chapter 1, we determined the magnitude, confidence and significance of
the difference between a sample mean and a hypothesised value (the known
population mean). In this chapter, we follow the same process, but consider
the more common situation where two means from the sample are compared
(or two means from the same people, measured at different times, in the
same sample).

Assumptions of parametric tests
Some of the tests in this chapter are parametric tests, which require three
assumptions to be met:

the level of measurement for the dependent variable should be at least
interval;
normally distributed values in the population (although testing whether
a distribution is normal can be controversial);
similar variances (as a general rule, one no more than twice the size of
the other [20]).

In practice, it is difficult to determine if data are normally distributed.
There are tests available which compare the data to a normal distribution,
but these tests can be too strict. Visually inspecting a histogram of the values
is more typically done, but this can be too subjective, and it is difficult when
working with small sample sizes. There is a plot called the Q-Q plot in R
which can help, but this too involves subjective decision making. It is
important to remember that the test assumes a normal distribution in the
population, not the sample. Similarly, it is difficult to determine if variances
are dissimilar enough to warrant concern, since many tests perform quite
well even if the variances are different.

Box 5.1 R code for Q-Q plots
You can compare the data to how the data should look if they were
normally distributed, using a Q-Q plot. The example below illustrates



how to do this for the heights data.

data <- read.table(‘height.csv’, header=TRUE, sep=’, ’)
attach(data)
qqnorm(height, ylab = “Height (cm)”, pch=”+”)
qqline(height)
points(qnorm(c(.25, .75)), quantile(height, c(.25, .75)) , pch=16, col=2,
cex=2)

The data points (+) would lie on the solid line, if they were normally
distributed. Although the data points in Figure 5.1 are tending towards
normality, it appears that the distribution is non-normal. Given the small
sample size (n=10) and the fact that we know height is normally
distributed in the population, in this situation we can assume that the
assumption of normality has been met.

Figure 5.1 Q-Q plot



Z-test (large samples)
To perform the one-sample z-test, calculate the difference between the
sample mean and the population mean, and divide it by the standard error of
the difference:

The z-test is suitable for large samples, and tests whether the observed
mean in the sample is consistent with the hypothesized mean in the
population.

Unrelated t-test (small samples)
The unrelated (Student’s) t-test assumes that even if your data are not
normally distributed, the population distribution from which they came is
normal. It is preferable to the z-test when you have small samples, but when
using a computer the results are unlikely to differ materially.

The t-statistic is calculated by subtracting the mean of the comparison
group from the mean of the reference group, and dividing by their pooled
standard error. This standard error of the difference between the two means
should be calculated in the following way, and then you can insert this into
the equation above:

This is the standard deviation, multiplied by the square root of the sum of
the inverse of each group’s sample size. You first need, however, the
common standard deviation:



This is the pooled standard deviation, and although the formula looks
complicated, you only need to calculate the standard deviation in each
group, and the rest is relatively straightforward. When you have calculated
the t-statistic, use the t-table in Appendix 1 and appropriate degrees of
freedom to determine if the two groups have significantly different means or
not. In the unrelated t-test, the degrees of freedom are always the total
sample size minus two, the number of groups. A complete example is shown
below.

Worked example
Waist–hip ratio (WHR) is calculated by dividing waist size (cm) by girth at
the hips (cm), usually the widest point or the mean of several measurements.
WHR is used variously as an indicator of adiposity, physical fitness and
health status. Empirical support for these claims is provided by evidence that
higher waist–hip ratios are associated with all-cause mortality risk, and
cardiovascular mortality risk in particular. Our interest however, for this
exercise, is simply to test whether a sample of men and women actually have
different WHRs. Using a small data set, we will test the hypothesis that men
have higher WHRs. This is a one-tailed hypothesis, because we have made a
prediction about the direction of the difference (males = higher).

The t-statistic obtained is 2.34, which is greater than the cut point of 2.10
for a two-tailed test at p < .05. Therefore, we reject the null hypothesis that
any difference between the means is due to chance. The probability of our
data, if the null hypothesis were true, is very small (less than 5 per cent, as
indicated by a p value less than .05). The exact p value can be obtained in
Excel, R or other statistical software. As with all statistics, it is important to
calculate confidence intervals in addition to determining the magnitude and
significance of the differences observed. The method for calculating
confidence intervals for an unrelated t-test is shown below.

Table 5.1 Data for waist–hip ratio





Confidence intervals
In the formulae below, you need to replace t with the appropriate value from
the t-distribution (Appendix 1). This depends on the percentage point, and
the (two-sided) degrees of freedom. For 18 degrees of freedom, the correct
value is 2.10. If the sample sizes are different from 10 in each group, this
value should be changed as required.

lowerCI = (x¯1 − x¯0) − (t × SE) = (0.0670) − (2.10 × 0.0286) = 0.01

upperCI = (x¯1 − x¯0) + (t × se) = (0.0670) + (2.10 × 0.0286) = 0.13

The results suggest that men have a significantly higher WHR than
women, consistent with [20] a small difference to a moderate difference (t =
2.34, mean difference = 0.07, 95% CI 0.01 to 0.13, p < .05). This is a
concise way of summarising what we have found, and is typically what to
expect in a journal article. Most academic journals in the health sciences will
now insist that the exact p value is reported, rather than the historic tradition
of reporting either p <.05 (significant) or p < .01 (highly significant). Some
epidemiology journals do not allow p values at all, preferring to report
confidence intervals only. We return to these issues in the critical appraisal
chapters.

Box 5.2 R code for unrelated t-test
This method produces equivalent results to the example shown by hand,
and to the t.test function available in R. It uses however, the regression
method (Chapter 13) which treats the t-test as a special case of multiple
regression, where there is only one categorical predictor (sex). Sex is
coded 1 for male and 2 for female.

data <- read.table(‘whr.csvₑ,
header=TRUE, sep=‘,’)
attach(data)
library(gplots)
sex<- factor(sex)
plotmeans(whr~sex, xlab=“Sex”, ylab=“WHR”, main=“Mean Plot\n
with 95% CI”) #\n creates a line break



male <- (sex==“1”)*1 #dummy variable for male
female <- (sex==“2”)*1 #dummy variable for female
results<- lm(whr~male) #produces the same t value as by hand
summary(results)

The graph in Figure 5.2 shows that the mean WHR for males is higher
than the mean WHR for females, and also that there is more variance
among females. The regression line connecting the two group means is a
significantly better fit to the data than is relying on the overall mean
(0.8735). We return to regression lines in more detail in Chapter 13.

Figure 5.2 Graph of t-test from R

t-test for repeated measures (paired) data



It often happens that data are paired, so that the observations are not
independent. For example, scores on a test could be measured before and
after some intervention, on the same people. In case-control studies, two
different people are measured on the same variable, but their scores are not
independent – the data are paired. When data are paired, it is not appropriate
to conduct a t- or z-test on their difference in means. Instead, use one of the
following formulae, depending on the sample size:

To illustrate with an example, suppose that General Health Questionnaire
(GHQ-12) score was measured using a computerised test, and a paper and
pencil version (counterbalanced, so that a random half of participants
received the computerised version first). The hypothesis is that there would
be no significant difference between the two conditions, supporting the use
of either version.

The formula for calculating a 95 per cent confidence interval around the
mean differences is slightly different than before, because we have ten pairs,
meaning nine degrees of freedom are available. The five per cent point is
2.26 in the t table, when there are nine degrees of freedom.

CI = x− ± (z × SE) (>=60 pairs)

CI = x− ± (t × SE) (<60 pairs)
 
Table 5.2 t-test for repeated measures (paired) data
ID Paper condition Computer condition Difference  
  1 18   8 10.0000
  2 19 18   1.0000
  3 17 22 −5.0000
  4 13 20 −7.0000
  5 18 11   7.0000
  6 18 18   0.0000



  7 12 17 −5.0000
  8 20 17   3.0000
  9 15 12   3.0000
10 20 26 −6.0000
Mean Mean difference   0.1

Variance 33.6667
SD of differences   5.8023
SE of mean   1.8348
t   0.0545
d.f.  9

See text for calculation Lower interval −4.0500
See text for calculation Upper interval   4.2500

p   0.96

We have a small sample of nine pairs. The standard error of the
differences is 1.8348, therefore:

0.1− (2.26 × 1.8348) = −4.046648

0.1+ (2.26 × 1.8348) = 4.246648

The results show that there is only a very small difference between GHQ-
12 scores in each condition (0.1 points, 95% CI). The probability that we
observe this result, if the null hypothesis of no difference were true, is very
high (p = 0.96). The confidence intervals include zero, also suggesting no
significant or reliable difference between the scores in each condition (mean
difference = 0.1, 95% CI −4.05 to 4.24).

One-way ANOVA
One-way analysis of variance (ANOVA) is used to test the differences
between means in more than two groups. The unrelated t-test should not be
used when there are three or more groups. For example, which of three
dietary interventions lead to the lowest systolic blood pressure at follow-up
six months later (Table 5.3)? In this hypothetical data, 30 participants have
been randomly assigned to three groups, each given a different dietary
intervention. Here, we cannot use the independent t-test to compare three
groups at the same time.



ANOVA partitions the variance in the dependent variable (total
variability) into two parts: the variability between the groups (between-
groups variance) and variability within the groups (within-groups variance).
The variability between the groups is most important to us, because that
concerns the effect of each diet on the outcome (blood pressure). Variation
within the groups is not due to diet, this reflects individual differences and
other random error. Assuming that participants have been randomly assigned
to each diet, we can therefore consider variation within groups to be ramdon
error for our purposes. If the diets had no effect on systolic blood pressure,
the variability between groups would be the same as the variability within
groups. Therefore, the ratio of between-group variance to within-group
variance would be 1. This is the variance ratio test, which produces the F-
statistic. If the F-statistic is significantly different from 1, then the means are
significantly different, suggesting that diet did have an effect on systolic
blood pressure.
Table 5.3 Data for three-group dietary intervention
Diet A Diet B Diet C
129 131 107
135 127 106
141 151 122
108 120 141
119 129 141
146 113 157
112 154 133
161 176 114
122 117 119
129 126 118

 

Table 5.4 Total variation



1
2
3
4
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Table 5.5 Between groups variation

Table 5.6 Responses to three scenarios by patient subgroups (P values are
for differences across subgroups)

There are five steps to performing a one-way ANOVA by hand, outlined
below:

check that the variances in each group are not substantially different;
calculate the total variation;
calculate the between-groups variation;
calculate the within-groups variation;
calculate the F-statistic, which is the ratio of between- to within-group
variance . Here 1 is the larger variance and 0 is the smaller

variance [30].
This gives



The largest variance is not twice as large as the smallest, suggesting that the
variances are not significantly different. To calculate the degrees of freedom,
subtract 1 from n (group 1) and m (group 2). We have ten people in each
group so there are 9 and 9 degrees of freedom. In Appendix 2, the critical
value can be found by selecting the appropriate row (9) and column (9) for
these particular degrees of freedom. Our result of 1.5 does not exceed the
critical value of 3.18, showing that the variances are indeed not significantly
different. This satisfies the assumption of equality of variances, and we can
therefore proceed with the ANOVA. The calculations and explanations are
given in Tables 5.4 to 5.7

Having obtained the F-statistic, we can now look at the F table (Appendix
2) and find out if our F value of 0.60 exceeds the critical value shown, with
2 (row) and 27 (column) degrees of freedom. The nearest critical value is
3.316, and therefore we have not found evidence that the means are
significantly different. The three diets resulted in similar systolic blood
pressure values at follow-up.

One limitation of ANOVA is that when significant differences are found
between groups, it is not immediately clear which group this might refer to.
Methods do exist that allow us to find out where the differences lie. A
straightforward method for doing this is shown in chapter 13, on regression
models.
Table 5.7 Variance ratio: table of result
In English Value Degrees of

freedom
Mean square F statistic

Maths notation df
Between groups 369.8667 2 184.9333 0.60
Within groups 8375.6 27 310.2074
Total 8745.4667 29

Box 5.3 R code for one-way ANOVA
The ANOVA function in R produces different results to the method in this
chapter, because it uses a different method for calculating sum of squares.



The reasons for this are not crucially important at an introductory level,
but you can read more about this issue elsewhere [31]. To obtain
comparable results in R, it is better to run ANOVA as a regression model.
ANOVA is a special case of regression (introduced in Chapter 13) in
which a single predictor variable is a categorical variable (here, type of
diet) rather than a continuous variable. The results are exactly the same,
whether calculating the F-statistic using ANOVA or regression. The
regression line is the line of best fit, when connecting the three means
together. As shown in the plot below, there is a steady decrease in mean
systolic blood pressure as we compare diet 1, diet 2 and diet 3. The
question is, whether these differences are significantly different, or due to
chance. We should also ask whether the differences are clinically
significant, which is discussed in Chapter 12. Focusing on whether the
differences are statistically significant, another way of phrasing the
question is to consider whether the regression line is a better model of the
data than simply using the grand mean. If the mean systolic blood
pressure for all groups describes the data well, then why bother
attempting to model the differences in means across groups?

If the regression line is steep enough, this would imply that there is
more variation between the groups than variation within the groups. In
our example, we can see that there is more variation within the groups,
than between them. The confidence intervals overlap each other, which is
a useful way to visually determine if group differences are significant.
The F-ratio test confirms that there is a high probability that the
differences observed are consistent with the null hypothesis.

data <– read.table(‘diets.csv’, header=TRUE, sep=’,’)



attach(data)
names(data)
#Visual results, adapted from htt p:/ /ww w.s tat met hod s.n et/ 
# stats/anova.html
library(gplots)
diet <– factor(diet)
plotmeans(sbp~diet,xlab=“Diet”,ylab=“Systolic blood
pressure”, main=“Mean Plot\n with 95% CI”) #\n creates a
# line break
d1 <– (diet==“1”)*1 #dummy variable for diet 1
d2 <– (diet==“2”)*1 #dummy variable for diet 2
d3 <– (diet==“3”)*1 #dummy variable for diet 3
results<– lm(sbp~d1+d3) #produces the same F value as ANOVA

Chapter 13 will explain how to interpret the results from the regression
output. For now, the important thing to note is that the F-value is the same
as that calculated by hand.

Continuous exposure (correlation, covariance)
The association between two continuous variables (e.g. strength and speed)
can be measured by their covariance and by their correlation coefficient
(example Table 5.8 from [32]). Covariance and correlation are similar, but
the correlation coefficient is standardised to range from −1 to 1 .

Ranked data

Wilcoxon rank sum test [Mann-Whitney U test] (for unpaired data)
The data in Table 5.9 are from a real data set, a nice example included within
the R program. They are permeability constants for chorioamnion values, a
placental membrane, at term and at 12–26 weeks gestational age.
Chorioamnion is hypothesised to be more permeable for pregnancies at term.

http://www.statmethods.net/
http://www.stats/anova.html


In this test, we first rank the data together in ascending (lowest to highest)
order, giving the same rank to any values that are the same. Make sure you
rank both groups together. Ignore any missing values, for example, if the
sample sizes are different. Next, take the sum of the ranks in each group.
Here, they are 90 and 30. The sum of the ranks in the smaller group (N = 5)
provides the T-statistic (not to be confused with the t-test), sometimes called
the U-statistic. In Appendix 4, if our T/U is smaller than the value shown in
the table, we reject the null hypothesis. Our value of 30 is larger than the
critical value of 8 (for N = 5 and N = 10), suggesting a high probability that
this difference is due to chance. Note that our hypothesis is one-tailed,
because we did have a specific direction for our hypothesis.

Table 5.8 Calculation of correlation coefficient

Table 5.9 Data for permeability constants for chorioamnion values
Chorioamnion at term Rank Chorioamnion at 12–

26 weeks
Rank

0.8 1 1.15 1



0.83 3 0.88 3
1.89 4 0.9 4
1.04 7 0.74 7
1.45 10 1.21 10
1.38 11 NA
1.91 12 NA
1.64 13 NA
0.73 14 NA
1.46 15 NA
Sum of ranks 90 Sum of ranks 30
T = sum of ranks in group with smaller N = 30
W = sum of ranks in larger group – sum of ranks in smaller group = 90 − 30 = 60

Box 5.4 R code for Mann Whitney U test
data <– read.table(‘chorioamnion.csv’, header=TRUE, sep=’,’,
na.strings=“NA”)
attach(data)
names(data)
wilcox.test(x,y,paired=FALSE,correct=FALSE) #note that R
# produces the W not the T statistic

Wilcoxon signed rank test (for paired data)
Suppose a researcher wanted to determine whether a standard leaflet about
breast cancer screening, or an interactive game designed to highlight risk
factors for breast cancer, were better at increasing awareness of these risk
factors. The design was a repeated measures design, counterbalanced so that
a random half of participants read the leaflet first, and a random half did the
game first. All women took part in both conditions, producing paired data.
Scores were the number of correctly identified risk factors, ranging from 0 to
7. The data however, are considered nonparametric because the differences
are not normally distributed. The median score is 5 for the leaflet and 7 for
the game, indicating that women are better at correctly identifying risk
factors after the game. To determine if this is significantly different however,
a nonparametric equivalent to the related t-test is required.



Table 5.10 Wilcoxon signed rank test

The Wilcoxon signed rank test begins by calculating the difference
between the scores in the game and the leaflet conditions. Any zero
differences are ignored. Next, the differences scores are assigned a rank from
smallest to largest, ignoring the sign. Any tied ranks, ranks that have the
same value, are averaged and assigned the same rank score. The difference
score of −1 is given the rank 1. There are four scores with the value of 3
which are given the rank 3.5, because they occupy positions 2, 3, 4 and 5:

(2 + 3 + 4 + 5) / 4 = 3.5

The score of 4 is given rank 6. Because the four zero differences are
ignored, our sample size is actually 6 rather than 10.

The next step is to add up the positive and negative ranks separately. The
sum of positive ranks is 6, and the sum of negative ranks is 15. The T-
statistic, which is not to be confused with the t-test, is the smaller of these
two values. If the null hypothesis were true, the two values would be similar.
If the null hypothesis is false, and there is a difference, then one will be
smaller and one will be larger. The smaller value is used for the Wilcoxon



test and is compared to the values in Wilcoxon table (Appendix 5). The
differences are significant if our T is less than the value shown in the table
(the critical value). Our sample size (N) is 6, because we ignored four zero
differences. For a one-sided test and p at 0.05, the critical value shown in the
table is 2. Our value of T is 6, which is greater than 2. Therefore, the
differences are consistent with the null hypothesis. This could be a chance
finding. The sample size however, was quite small, and we may not have
enough statistical power to detect a reliable difference (see Appendix 7:
Statistical Power).

Box 5.5 R code for Wilcoxon signed ranks test
data <– read.table(‘leafet-game.csv’, header=TRUE, sep=’,’)
attach(data)
names(data)
wilcox.test(game, leafet, paired = TRUE, alternative =
“greater”) #The V statistic is the same as T

Spearman’s rho (correlation for nonparametric data)
The data in Table 5.11 are taken from a Health and Lifestyle Survey in
Wakefeld in 2008 [33], which included measures of alcohol use at the last
sexual encounter (event-level sexual behaviour) and of mental health.
Mental health was measured using the General Health Questionnaire 12
(GHQ-12). The number of drinks at the last sexual encounter is
nonparametric, since several people drank nothing at all and some people
reported many drinks. The data are not normally distributed. Additionally, it
is questionable whether number of drinks is interval data, even if it were
normally distributed. For these reasons, a Pearson correlation coefficient is
not appropriate. Spearman’s rho is a nonparametric version, which assigns
ranks to the data rather than using the actual values. It is fairly
straightforward to calculate. First we rank the data for each variable
separately, then simply calculate the Pearson correlation coefficient on the
ranks, not the data.
Table 5.11 Spearman’s rho
Number of drinks Rank GHQ-12 score Rank



prior to last sexual
event
  0   2 18   3.5
  0   2 24   7
  0   2 24   7
  1   4 15   2
  2   5 12   1
  3   6 27 10
  4   7 18   3.5
  9   8 24   7
15   9 25   9
20 10 19   5



Summary
This chapter has introduced methods for identifying associations between
continuous outcome variables. For example, we used a t-test to identify
differences in means. We calculated correlation coefficients to summarise
how strongly two continuous variables are associated with each other, and
we used methods for ranked (ordinal) data. We also calculated confidence
intervals for these statistics, as we did for measures of association for
categorical outcomes in the previous chapter.
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Confounding, effect modification,
mediation and causal inference
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Intended learning outcomes
By the end of this chapter, you should be able to:

distinguish between confounding, effect modifcation, mediation and
antecedent variables;
adjust an odds ratio to control for confounding in a simple 2 × 2 table;
summarise odds ratios for different levels of an effect modifer;
evaluate the criteria for determining if an association is causal;
situations in which a variable or mechanism may mediate or transmit
the effect of an exposure on an outcome variable.



1
2
3
4
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Introducing key terms
In previous chapters we have mostly been concerned with simple situations
in which an exposure (X) is associated with a health outcome (Y). In reality,
determining whether X has caused Y is rarely this simple [34]. There are at
least fve ways in which X and Y might appear to be related, and each may
require different models or ways of thinking about the data:

confounding variables
effect modifying variables
mediating variables
antecedent variables
causal variables

It is important to become familiar with these different scenarios,
particularly when critically appraising research articles. Few researchers are
able to evaluate all of the possible scenarios that might have generated their
data, particularly within the same paper or often within the same study. This
chapter will introduce the fve scenarios, provide an example of each, and
suggest an appropriate method for estimating the association between X and
Y in each. The frst four scenarios concern a third variable A.



•
•

•

Confounding variables
Confounding occurs when the third variable A is associated both with X and
with Y. Ignoring the confounding role of A would lead to a distorted estimate
of the association between X and Y. The term ‘confound’ originates from
Latin, where it meant to confuse or to puzzle. Confounding can indeed
produce confusing or puzzling results. Consider, for example, a study which
claims to have found an association between heavy alcohol drinking (X) and
lung cancer (Y). The researchers fnd an odds ratio of 1.5 for heavy (vs.
moderate) alcohol drinking and subsequent lung cancer. Would you believe
that this association is genuine? Probably not, because we know from several
decades of prior research that heavy alcohol drinkers are more likely to
smoke. Is it more likely that smoking is causing the apparent association
between alcohol and lung cancer? Because there tend to be more smokers
among heavy alcohol drinkers, this creates a spurious or confounded
association. Smoking is said to be a confounding factor because it is causally
related to X and Y. A second example is the apparent association between
keeping pet birds and lung cancer [35–39]. Smoking is a confounding
variable in this example, because people who keep pet birds are more likely
to smoke, and smoking is associated with lung cancer. In both examples, the
arrows point from A to both X and Y which is an important criterion for
determining whether confounding is plausible. Confounding can distort
results in different ways:

producing an apparent association between X and Y where none exists;
creating a larger association between X and Y than the smaller one
which actually exists;
creating a smaller association between X and Y than the larger one
which actually exists.

What we want to fnd out is the true association between X and Y, once
confounding factors have been considered. This could be no association (OR
= 1), a negative association (OR < 1) or a positive association (OR > 1).
Until we take the confounder (A) into account, often we do not know how
much distortion has taken place. This is normally addressed by adjusting
(controlling, or ‘holding constant’) the association for A in regression
models, which we will consider in Chapters 13 and 14. Below, we will use a



simplifed method for summarising the adjusted OR in a simple 2 × 2 table. It
is useful to calculate this by hand at least once, in order to familiarise
yourself with how confounding works.

Figure 6.1 Confounding variables

Addressing confounding in a simple 2 × 2 table
The Mantel-Haenszel odds ratio (OR) is an adjusted OR, taking into account
the confounding factor A. First we calculate the OR separately in each
stratum. Next, we calculate weights to determine how much each stratum
should contribute to the summary OR. Finally, we calculate the summary
OR, which is weighted to allow for the fact that the sample sizes differ in
different strata.

Do these two separately in each stratum, so that you have OR1 and
weight1 for the frst stratum, and OR2 and weight2 for the second stratum.
Finally, combine the values to produce the Mantel-Haenszel OR.

Here is an example; data are again from a study in Wakefeld about alcohol
and sexual health [33]. Participants completed a questionnaire that included
questions on unprotected sexual intercourse in the last six months, and the
Alcohol Use Disorders Identifcation Test (AUDIT) where scores of 8 or



more were classifed as hazardous drinking patterns. Our research question
concerns whether hazardous alcohol drinking patterns (the exposure) are
associated with unprotected sexual intercourse (the outcome). Having one or
more unprotected penetrative sexual partner (PSP) is classifed as the
outcome. We also want to consider the potentially confounding role of
gender, which could be associated both with the exposure and the outcome.

Table 6.1 shows the 2 × 2 tables for women and men separately, and the
combined table. Calculating the overall OR on the combined table might
produce an estimate of the OR which is confounded by sex. We want to
calculate the Mantel-Haenszel OR.

In both men and women, a hazardous alcohol drinking pattern is
associated with 1+ PSPs (OR = 1.34), although the estimate is a little larger
for men (OR = 1.88). The combined estimate is OR = 1.49 which indicates a
nearly 50 per cent increase in risk, adjusting for sex. This adjusted OR lies
between the OR for men and women, as we might expect. Had we ignored
the confounding role of sex, we might have falsely concluded that the OR
was 1.33. The estimate of 1.33 is not adjusted for sex, and is sometimes
called a ‘crude’ estimate of the OR. It is likely to be biased. The true OR is
likely to be around 1.49, higher than we would have estimated before
calculating the adjusted OR. In this example, the adjusted OR is not
statistically signifcant which could refect low power because the sample size
is small. It is consistent however, with an increase in risk.

Table 6.1 Calcinatine Mantel-Haenszel odds ratio
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Figure 6.2 Confounding variable in the alcohol and sexual health study

Confidence interval for the adjusted OR
The formula for calculating a confdence interval for the adjusted OR
(ORMH) is [20]:

to ORMHEF

We frst need to calculate the error factor (EF). This can be worked out in a
series of steps, each involving separate formulae, ending with the error
factor calculation (note that Q, R and V are arbitrary values used to represent
three different steps).

calculate Q
calculate R
calculate V
calculate the standard error of the adjusted OR, SEMH
calculate the error factor (EF)
calculate the ORMH, using a quick method
calculate the lower confdence interval
calculate the upper confdence interval

We will now work through these sequentially using the data above. In the
equations that follow, the notation has been intentionally simplifed. Several
of the formulas below involve calculations being performed on each stratum
(for men, for women) separately and then added together. When using full
notation, subscripts are used to indicate that calculations should be done on
each stratum separately. The sigma symbol (S) is used to indicate that these
results should be added together. To reduce visual clutter, we will use a



•
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simplifed version of the notation which does not show the subscript as in the
table below:

As usual, we will work at four signifcant fgures and round to two signifcant
fgures at the last step.

Step 1. Calculate Q

Step 2. Calculate R

Step 3. Calculate V
V stands for ‘variance’ and captures the variability across the strata.
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Step 4. Calculate the standard error of the adjusted OR, SEM.

Step 5. Calculate the error factor, EF.

Step 6. Calculate the ORMH, using a quick method.
This step allows you to calculate the adjusted OR using a quick method,
dividing Q by R. It gives nearly the same result (1.50) due to rounding error,
and so is equivalent to the calculations we did above.

Step 7. Calculate the lower confidence interval.



• Step 8. Calculate the upper confidence interval.

In summary, the adjusted odds ratio is 1.49 (95% CI 0.76 to 2.92). This
means that on this occasion, the adjusted odds ratio is not statistically
significant (the confidence intervals include 1).
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Effect modifying variables
In the second scenario, A could modify the association between X and Y.
This means that the association is different, depending on the level of A.
Effect modification is also called ‘interaction’ (particularly in psychology
and other behavioural sciences), or ‘heterogeneity between strata’. All of the
following situations are hypothetical examples of effect modification:

Figure 6.3 Effect modifying variables

X has a stronger effect on Y in men than in women;
X has a stronger effect on Y as body mass index (BMI) increases;
X is only associated with Y among adults without a university degree;
X is only associated with Y in older age groups;
X increases risk in one group, but decreases risk in another group.

As an example, research has shown that personality traits such as
neuroticism are associated with increased risk of psychiatric morbidity. For
example, neuroticism is associated with increased risk of personality
disorders, mood disorders, obsessive compulsive disorders and minor
psychiatric morbidity. Other studies have suggested however, that socio-
economic status (SES) may modify this risk. Put differently, the risk
associated with personality traits might vary, depending on one’s level of
SES. Some traits might have stronger effects among low SES groups.

The data below are from the Health and Lifestyle Survey (1984), a
representative sample of the UK population at the time. The analytic sample
comprises 4570 participants with available data on personality traits, social
class and psychiatric morbidity.



Neuroticism is considered the exposure of interest. High scores on
neuroticism indicate a personality trait characterised by negative
emotionality, anxiety, distress and worry. To obtain this score, participants
completed the Eysenck Personality Inventory (EPI) which was used to create
a neuroticism score. The scores were divided into tertiles (thirds) and the
highest tertile are considered ‘high neuroticism’ in this exercise. The
outcome of interest is being in the highest tertile of General Health
Questionnaire-30 (GHQ-30) scores. The GHQ-30 measures minor
psychiatric morbidity on a scale ranging from 30 to 120, derived from 30
questions (scored 0 to 3) which measure different aspects of this outcome.
Participants were asked these question in relation to the past few weeks.
Examples include: ‘Have you recently’ been able to concentrate on whatever
you’re doing?’ and ‘… lost much sleep over worry?’

The effect modifier we want to evaluate is low SES, measured by having a
manual occupational social class. Occupational social class was measured
using the Registrar General system, which divided participants into six
groups (I, II, III non-manual, III manual, IV, V). Manual social class (III
manual, IV or V) is considered a potential effect modifier. It could also be
considered an exposure, since we know that low SES is associated with
psychiatric morbidity. For the purposes of this exercise however, we are
interested in how it might change the relationship between neuroticism and
GHQ-score. Chapters 13 and 14 will explain how to include two exposures
and their interaction within the same statistical model. Here, we use a
simplified approach which is to stratify groups according to the level of the
effect modifier. That is, we will calculate the OR in non-manual and manual
groups separately, determine if the OR is different in each group, and test
whether any effect modification observed is significant. The process is
similar to how we approached confounding. Essentially, we are breaking
down the main 2 × 2 table into a set of smaller tables, one per group. The
research question is, ‘does low socio-economic status modify the association
between neuroticism and minor psychiatric morbidity’? The data are shown
in Table 6.2 for the whole analytic sample and for non-manual and manual
groups separately.

First look at the crude OR for the combined group, the rightmost column
at the bottom of the table. There is clearly a strong association between
neuroticism and being in the worst GHQ tertile. Now look at the OR for
manual social class groups and compare this to the OR for non-manual



social class groups. The OR is stronger in manual groups. This could suggest
that social class modifies the risk. The effect of neuroticism is stronger if
you also have manual social class. Put differently, the combined effect of
having manual social class and high neuroticism will increase your risk of
minor psychiatric morbidity further. The OR is apparently different in each
group, but are they significantly different?

We can test whether the ORs are significantly different using the chi-
squared test for heterogeneity. If there was no effect modification, each of
the stratum-specific ORs would be the same or nearly the same as the overall
summary odds ratio. In the example above, the logic that follows is:

ORMH = ORmen = ORwomen
The chi-squared test is based on a weighted sum of squares of the

differences between the odds ratios. By ‘weighted’ we mean that the test
allows for the fact that the sample sizes are different in each stratum. The
formula below uses V, which we encountered above when calculating the
confidence intervals for the adjusted OR when looking at confounding.

In the equation, the calculations are performed on each stratum separately
and then added together. This equation may look complex, but we can break
it down into steps. Some of the steps will be familiar, because they are also
used when we calculate confidence intervals for the adjusted OR (see above,
steps 1, 2, 3 and 6 are also used below). Remember however that we are
testing for significant effect modification, we are not adjusting for
confounding. As discussed below, confounding and effect modification are
quite different things.

Table 6.2 Data from the SES and psychiatric morbidity study



Before starting, we need to calculate Q, R and V, because Q/R provides
the adjusted OR and V provides the variance. These were steps 1, 2 and 3
above. Both are needed for chi-square test of heterogeneity.

Having calculated Q, R and V, three additional steps are needed as shown
in Table 6.3.

Since there are two groups, there is one degree of freedom (2–1=1). The
chis-quare statistic is 4.1132, which is significant at the p < .05 level with 1
degree of freedom. Therefore, we reject the null hypothesis that there is no
heterogeneity in the odds ratios across the two strata (non-manual and
manual social class). The association between neuroticism and minor
psychiatric morbidity is different in the two strata (5.68 in the non-manual
group, 7.77 in the manual group). The probability of attaining this result, if
the null hypothesis was true, is very small.

The example shown above is intentionally a relatively simple one, in
which we assumed there were no confounding factors, and there were only



two strata. In reality, there may be one or more confounding factors and
more than two strata. To take into account both confounding and effect
modification, other statistical methods are usually deployed such as
regression (Chapters 13 and 14).

Understanding the difference between confounding and effect
modification
There is an important difference between stratification to control for
confounding and stratification to evaluate effect modification. The modifier
does not ‘distort’ the association between the exposure and the outcome, the
modifier changes the association. The overall OR of 6.72 for both groups is
broadly equivalent to the average effect for manual and non-manual groups.
Confounding can produce distorted estimates which do not show the
existence, correct size, or even correct direction of an effect. Researchers try
to remove confounding as far as possible at the analysis stage. In contrast,
effect modification can reveal estimates closer to the truth. Researchers try
to identify effect modification and report this at the analysis stage.
Confounding is a nuisance which we want to correct; effect modification is
inherently interesting and we want to understand it.

Table 6.3 Chi-squared calculation

The exercise below may help you understand the different between
confounding and effect modification. It also illustrates an important point
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worth remembering – both confounding and effect modification can exist at
the same time.

Box 6.1 Exercise: confounding and effect modification
The following hypothetical set of results (adapted from [40]) shows the
relative risk (RR) of cigarette smoking and developing oral cancer,
grouped by heavy alcohol drinking status. Use Table 6.4 to answer
questions 1 to 4.
Table 6.4 Data for exercise on confounding and effect modification
scenario
(A–D) Heavy alcohol drinker (RR) Non-heavy alcohol drinker

(RR)
Combined alcohol drinking
groups

  (RR)
A 4.0 1.0 2.0
B 4.0 4.0 1.0
C 4.0 2.0 1.0
D 4.0 4.0 4.0

Which scenario in Table 6.4 shows that heavy alcohol use is most
likely to be a confounder but not an effect modifier?
Which scenario in the table shows that heavy alcohol use is most
likely to be an effect modifier but not a confounder?
Which scenario in the table shows that heavy alcohol use is most
likely to be neither a confounder nor an effect modifier?
Which scenario in the table shows that heavy alcohol use is most
likely to be an effect modifier and a confounder?

Answers are given on the book website.



Mediating variables
Rarely does an exposure have a direct influence on a health outcome. In
reality, exposures are connected to health outcomes through a series of
different events. Exposures often influence physiological variables, and it is
pathophysiological changes that actually cause disease, rather than the
exposure itself. Nonetheless, we often simplify statistical models to consider
only the exposure and the health outcome. Models should always be as
simple as possible. In some situations however, it is necessary to illustrate
which intermediate variable(s) connect an exposure with a health outcome.

Figure 6.4 Mediating variables

Intermediate variables are called mediators, because they inter-mediate an
association between an exposure (X) and an outcome (Y). Mediators can be
physiological variables, but they could be health behaviours (e.g. smoking),
psychosocial characteristics (e.g. mood, stress) among other things.

In the Figure 6.5 (adapted from [41], p.15), we can see that risk factors
may exert their influence on health and disease through a complex chain of
risks. There are several mediators, some of which are closer to the health
outcome (more proximal) and some of which are further away (more distal).
The risk factor could influence the outcome over many years, perhaps even
decades. This kind of situation cannot be captured in a simple 2 × 2 table,
where one exposure is associated with one outcome.

Consider a simple mediation model in which an exposure influences a
health outcome, through a mediator. In Figure 6.5, childhood socio-
economic status (SES; e.g. measured by the father's social class at birth)
influences educational attainment, which influences self-rated health in
adulthood in turn. The mediator (education) lies on the causal chain. People



with higher childhood SES may be more likely to have better self-rated
health in adulthood, because they obtain higher levels of education. This
situation is entirely plausible, because we know that parental SES influences
how long children stay in the education system for, and the qualifications
they obtain. We also know that educational attainment is associated with
better health outcomes. The arrows point from childhood SES to education,
and from education to self-rated health, illustrating the proposed sequence of
events. This situation is different from confounding. Confounding factors are
illustrated with arrows that point to the exposure and to the outcome,
implying that the confounder causes the exposure and the outcome (and
hence the confounding or spurious association). In the mediation situation,
the third variable is not a confounding factor. It is part of a real causal
sequence.

Figure 6.5 Chain of risk factors

Figure 6.6 A simple mediation model



Mediators are also known by other names, depending on the context. For
example, they are often called mechanisms particularly when the meditator
is a physiological/biological variable. Smoking is associated with lung
cancer, but one of the key mechanisms is DNA damage in the lungs.
Mediators are also called explanatory variables, because if they can be
shown to mediate an association, they have explained the association. If we
can show that X is associated with M (A in the Figure 6.6) and M with Y in
turn, then we have explained why X is associated with Y (assuming that
confounding is not present and the variables have been measured reliably
and are valid). As we shall see below, traditional approaches to mediation
analysis have focused on what happens to the X–Y association when the
mediator is added to a statistical model. Finally, mediators are sometimes
called ‘causal confounders’. This is because mediators can produce an
apparently confounded association between X and Y. Unlike confounding
however, causal confounding occurs for a specific reason – the causal
sequence.

The traditional approach to testing for mediation is called the Barron and
Kenny [42] approach and involves linear regression, which is discussed in
Chapter 13. We will consider the Barron and Kenny approach in that chapter.
Briefly, researchers first establish that X and Y are associated. Then they
establish that X and M are associated. Then they try to predict Y using both X
and M. If X is no longer associated with Y when we use information about M
to predict Y, then full mediation is said to have occurred. If X is still
associated with Y even when M is considered, then partial mediation is said
to have occurred. For now, it is worth thinking about why X and M might
both be associated with Y. Sometimes however, X might have a direct
association with Y which is not fully accounted for by the mediator. For
example, childhood SES might influence health for reasons other than
educational attainment. In this situation, we have partial mediation. To help
clarify situations in which this happens, researchers distinguish between two
types of effects: direct and indirect.

Direct effects are the association between X and Y that remains, after the
mediator has been considered. As the name implies, we assume that X is
partly causing Y, although some of the effect is transmitted by the mediator.
The indirect effect is the pathway from X to M to Y. It is important to
remember that direct and indirect pathways may exist, and often do exist.
Statistical models to represent these kind of situations are beyond the scope



of this book, but it is important to understand conceptually what full
mediation (only an indirect effect exists) and partial mediation (direct and
indirect effects exist) mean. It is also important to remember the distinction
between confounding and mediation. It is the direction of the arrow between
X and M that clarifies this distinction.



Antecedent variables
Antecedent variables (A in Figure 6.7) are variables that occur before the
proposed exposure (X). A common situation in the health sciences is for
researchers to claim to have found an association between X and Y, when in
fact an unobserved antecedent variable is the ‘true’ exposure. In fact, we
could re-label the antecedent as X, in which case the originally proposed
exposure would then become a mediator.

Sometimes we cannot be sure which of the variables is the antecedent and
which is the exposure. This is particularly problematic in cross-sectional
studies or in prospective studies where both variables were measured at the
same time. We might not know when each exposure actually occurred. For
example, suppose that we measure educational attainment and a measure of
‘confidence in academic ability’ in a questionnaire, at the baseline of a
prospective cohort study. We then follow participants to observe their
subsequent health outcomes. Did the participant have stronger confidence in
their ability because they had good educational attainment, or did prior
confidence in academic ability influence their educational success?

Understanding antecedent variables depends on having information about
them. This may not be available, which you should keep in mind when
appraising the results of research studies. Without information about
antecedent variables, we cannot rule out the possibility that earlier exposures
are the ones we should really be interested in. When critically appraising a
paper, it is important to ask yourself if there might be antecedent variables
which the authors have not considered. The importance of early life
exposures is one of the reasons for the growth in popularity of life course
approaches to health and disease, which consider sequences of events
beginning in childhood, tracking participants through adolescence,
adulthood and eventually old age. Such data are relatively rare, but quite a
few studies have ‘life course data’ covering at least part of the life course.
Examples of antecedent variables that you should keep in mind are:
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Figure 6.7 Antecedent variables

exposures earlier than birth, such as genetic factors;
epigenetic effects (interactions between genes and environments, over
several generations);
prenatal exposures;
early nutrition;
parenting style;
childhood SES;
early educational exposures;
occupational environments (e.g. asbestos);
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Causal variables
If X is associated with Y, and this association is not confounded, modified or
better explained by an antecedent variable, then it might be deemed a cause
of Y. The temporal sequence must be clear, which is why prospective cohort
studies provide better quality evidence about causality than cross-sectional
observational studies. However, establishing the temporal sequence (X came
before Y) is only one of several criteria which need to be met, before we can
declare that X is a cause of Y. In this section we will consider how causality
is evaluated.

The first step is to rule out alternative explanations for an association.
Before determining if an association is causal, we have to rule out alternative
possibilities:

the scenario has not been specified correctly; one or more third
variables should be considered – are they confounders, mediators,
effect modifiers or antecedents?
the association occurred by chance;
bias (see Appendix 8).

If these alternative explanations can be ruled out, the next step is to
consider the nine Bradford Hill criteria for establishing causality. The
Bradford Hill criteria comprise:

Figure 6.8 Causal variables

Strength: stronger associations between exposures and outcomes are
more likely to be causal, assuming that they are not confounded.
Consistency: if an association is causal, then the exposure should be
associated with the outcome consistently.
Specificity: if an association is causal, it should have mechanisms
(mediators) that explain it. It follows that exposures should be
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associated with specific biological pathways and events, rather than
general outcomes.
Temporality: the exposure should be known to occur before the
outcome, as discussed above.
Biological gradient: sometimes called ‘dose-response’ association, a
biological gradient implies that more exposure should lead to more
harm. We should see that as exposure increases, so does the risk. We
should not see the same risk, regardless of how much people were
exposed.
Biological plausibility: the association should be plausible, usually
meaning that there are biologically plausible mechanisms (mediators) to
explain why the exposure and outcome are linked. These do not
necessarily have to be shown in the same study, but a claim that an
exposure causes a disease is more believable if plausible mechanisms
exist. Having said that, we should not assume that just because
mechanisms are (as yet) unknown, the association cannot be causal. It
takes time to understand mechanisms fully, and there may be
sufficiently strong evidence that an exposure is harmful, without
knowing why it is harmful. Bradford Hill noted that what we think is
biologically plausible ‘depends upon the biological knowledge of the
day’ [43](p.10).
Coherence: the association should ‘fit’ with existing knowledge about a
disease or a health problem. Coherence refers to conference with
‘generally known facts of the natural history and biology of the disease’
[43] (p.10).
Experiment: randomised controlled trials (Chapter 8) that assign one
group an exposure/treatment are able to produce evidence that the
exposure caused the outcome, because the randomisation process deals
with known and unknown confounding factors. The two groups differ
only in terms of the exposure. Observational studies (Chapter 9)
however, cannot produce this kind of conclusion – there may be
unknown confounding factors, even if the known confounding factors
have been taken into consideration. It is often possible however, to
supplement knowledge about an association discovered in a cohort
study with evidence from experiments that show how an exposure
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might cause the kinds of outcomes seen in observational data. Animal
work for example, can be used to demonstrate ‘proof of concept’, or
other lab-based experiments.
Analogy: analogy with similar exposures or similar diseases can help
establish causality. For example, we would be more likely to expect
drug X to cause Y if a similar drug also caused Y. Analogy involves
finding something which is like the given thing in some way. For
example, suppose that exposure A is like exposure B. Chemical M is in
exposure A. Chemical N is in exposure B. So chemical M is like
chemical N. This thought process is called analogical reasoning, and
can be used to support causal inference.

It is not possible for any single study to satisfy all of these criteria.
Consistency of an association, for example, can only be observed if we look
at the results from several studies. We often have to appraise the totality of
evidence from across the wider scientific literature. This is achieved through
systematic reviews and meta-analysis, which are introduced in Chapter 7. As
an example of an exposure that has been shown to be causal, consider
cigarette smoking as a cause of lung cancer mortality. We can demonstrate
that cigarette smoking meets all nine criteria:

Strength: Smoking is strongly associated with cancer. The risk of lung
cancer mortality for smokers is around 15 times higher than for non-
smokers [44], a large association.
Consistency: Smoking is consistently associated with lung cancer
mortality. Smoking is associated with lung cancer mortality in different
countries, in men and women, across different birth cohorts
(generations), across the age range, and across all socio-economic
groups [45]. This is clearly a highly consistent association. Bradford
Hill was particularly keen on results that were similar but obtained in
different ways (e.g. from different study designs), which is indeed seen
in studies of smoking and cancer risk.
Specificity: Smoking is strongly associated with the different kinds of
lung cancer [46], but less strongly associated with other kinds of cancer
and with all-cause mortality risk. This is evidence that the association is
more specific to biological pathways that are exposed to tobacco
smoke. Specificity in the magnitude of the association points to a
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specific increase for lung cancer risk. When evaluating specificity of an
association however, we have to keep in mind that diseases may have
multiple causes (multi-causation, discussed below). This can make it
difficult to draw strong conclusions about specificity, given that for
example, lung cancer may occur for other reasons.
Temporality: In evaluating the association between smoking and
subsequent lung cancer risk, smoking occurs earlier in time than the
outcome (lung cancer).
Biological gradient: The relative risk of lung cancer increases with the
number of cigarettes smoked [44]. Those exposed to more cigarettes
have more risk. This is strong evidence for a ‘dose-response’
association.
Biological plausibility: It is biologically plausible that smoking
increases lung cancer risk, because cigarettes contain more than 70
known carcinogens [45] that can cause DNA damage in the lung.
Coherence: Analysis of pathophysiological changes in lung tissue from
smokers, and animal research showing how cigarette smoke affects skin
tissue, are examples of evidence that is coherent with the smoking-lung
cancer mortality association. So is the observation that lung cancer
increased during the twentieth century as cigarette smoking increased.
Experimental evidence: Mice exposed to cigarette smoke have a higher
risk of cancers compared to unexposed mice. Since only the exposure
differed between these groups, this is good quality evidence that the
cigarette smoke caused the cancers. We would not perform this kind of
experiment with humans, but would expect the same results.
Analogy: Cigarette smoking is associated with lung cancer, and so are
hand rolled cigarettes, pipes and cigars.

Bradford Hill concluded his article [43] by stressing that all research is
incomplete. He said we should not ignore the data that we already do have,
waiting until evidence is complete before taking action [43].

Necessary and sufficient causes



In Rothman's component causes model, [47, 48] a necessary cause is defined
as a causal factor X which is necessary, but not sufficient, in order to produce
an effect (e.g. exposure to the HIV virus is necessary but not sufficient for an
individual to become HIV positive). A sufficient cause is a chain of events
that will produce an effect (e.g. repeated exposure to an individual with HIV,
repeated unprotected sexual intercourse, genetic susceptibility to HIV
infection, absence of antiretroviral drugs). In this conceptual model, a cause
is not a single entity but a set or chain of events (sufficient causes) that
produce an effect. If one of the events is missing, the outcome will not
happen.

Taking action before the cause is known and understood
Many people working in the applied health sciences, particularly public
health, do not have the luxury of waiting even for good quality evidence –
they have to act on the best quality evidence available, even if it lower down
in the hierarchy of evidence than they would like. Arriving at the decision to
interpret X as a cause always involves some subjectivity. If you decide that it
is worth taking action based on the best available evidence to date, be sure
that you are up to date with the evidence and be prepared to change your
decision if required, as new data become available. Strategies for conducting
reviews of the available literature are covered in Chapter 7.



Part III
Critical appraisal of existing
research
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Literature reviewing and database
searching
 
 
Whether you work or intend to work in the health sciences, or become a
health sciences researcher, regularly searching the existing published
literature is essential. In this chapter, we will learn about major search tools
used by health scientists, covering the two main databases which contain
the majority of health sciences research (PubMed and PsycINFO). We will
also look at methods for searching the literature systematically, and keeping
good records of the searches you have made. Next, the chapter introduces
social networking approaches to keeping on top of the literature and getting
yourself organised, using CiteULike as an example. Finally, the chapter will
show you how to import references into bibliographic software, using a
popular program called EndNote.
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Intended learning outcomes
By the end of this chapter you should be able to:

understand the difference between narrative and systematic reviews;
know what the stages of a systematic review are;
design a systematic search strategy;
find suitable medical subject headings (MeSH) for research articles;
search PubMed and PsycINFO to identify published research papers
on a topic;
appreciate the need to search at least two databases;
export references from your search into CiteULike;
import references into bibliographic software (e.g. EndNote or
Reference Manager).

Once you know how to search the literature to identify previous studies,
you will be well-placed to start ‘critically appraising’ the literature, which is
covered in the next three chapters. You will also be well-placed to design
new research questions, which build on the work of others, adding new
evidence for the scientific community to consider.



Narrative reviews of the literature
Narrative reviews of the literature are articles that describe several key
studies in a particular field. These studies are selected by the author and are
described in a ‘narrative’ without claiming to have searched the totality of
articles available [2]. They may have been selected in ‘pick and mix’
fashion, because the author preferred these articles over others, or for
various reasons. Narrative reviews can be very useful, particularly if you
want a nice introduction to a topic. Textbooks can sometimes take the form
of narrative reviews. Narrative reviews are subject to bias, however,
because we usually do not know why the articles mentioned by the author
were selected, in favour of other articles. What if one or more important
articles were excluded from the review, for reasons unknown? Systematic
reviews address this problem.
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Systematic reviews of the literature
Conducting a systematic review of the literature will help you identify:

the relevant studies on a topic;
the best quality studies;
a set of studies selected without bias, where possible;
a set of studies that another researcher could reproduce, if they used
the same methods as you.

The stages of a systematic review are:

clarify the research question;
conduct a scoping search;
create and refine a set of search terms;
choose which databases you should search;
search the databases;
export references into bibliographic software;
identify and remove duplicates;
remove references which are clearly unsuitable or ‘off topic’;
save the ‘high quality’ list of references in another file;
retrieve the references;
read the articles;
search the reference lists of the articles you retrieved;
search for other articles which have cited the articles in your list;
report your search, when it was conducted, what you found;
optionally, conduct a meta-analysis of existing findings

meta-analysis does not necessarily follow a systematic review, but
often does. Meta-analysis is discussed in the chapter on other
research designs.
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The Cochrane Collaboration have produced a manual (The Cochrane
Handbook for Systematic Reviews of Interventions htt p:/ /ww w.c och ran e.o‐ 
rg/ traini ng/ coc hra ne- han dbook) which instructs researchers how to conduct
a full-scale and high-systematic review (see Chapter 6 of the Cochrane
Handbook), often considered the ‘gold standard’ (best quality) for a
systematic review. For most student projects, a systematic review of this
standard is rarely required. It is important however, to decide how
systematic you want your review to be. Be guided by your course
requirements and your supervisors – and how much time you have. If you
are searching a topic that is relatively novel or under-researched, searching
the literature systematically might only take a few weeks or months. If you
struggle to find many articles at all on your topic, you may even have to
expand your search to make it less specific. If you are searching a topic that
is very broad and is well-researched, with a large literature, a systematic
review could take months or even years. In this situation, you may want to
refine your search to make it more specific.

Even if your review is purely for a student project, and you have no
intention of publishing your review, it is important to keep good records
throughout the entire process, so make sure that you keep notes along the
way. Ideally, you should be able to present your review as a study flow
diagram. Figure 7.1 is an example, reproduced from the Cochrane
Handbook.

If you decide to publish your literature review, which is something you
may want to consider at a later date, do consult the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines
first (see www .pr ism a-s tat eme nt. org). This is a minimum set of guidelines
that people will expect you to have followed, in conducting your review.

Researchers frequently rely on less formalised methods of reviewing
the literature. Examples of strategies often used are:
Narrative reviews: these have been described ealier.
Searching Google and Google Scholar. This is particularly useful at
the ‘scoping’ stage of a review before you decide to approach the
literature systematically.
Grey literature. Research which is not peer-reviewed and published in
traditional academic outlets; examples include research conducted by

http://www.cochrane.org/training/cochrane-handbook
http://www.prisma-statement.org/
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charities or voluntary/community sector organisations. Grey literature
databases are available (e.g. www .op eng rey .eu, www .nt is. gov,
www .gr eyne t.org).
Journals. Reading journals of particular interest to the researcher; for
example, if you work in nursing you may regularly read nursing
journals, where research in nursing will be published. As you become
familiar with a topic, you will start to learn which journals tend to
publish research on that topic. Avoid relying on this approach
however, because restricting your reading to a narrow set of journals
can mean that you miss other useful publication outlets.
Attending academic conferences. This is an excellent way to keep up
to date with the newest research in your area, but be careful – the
findings should always be interpreted as provisional and have usually
not undergone peer review at this stage.
Word of mouth. This is obviously not a reliable or systematic way to
identify existing research, but occasionally our peers can be a useful
source of information. Talking to people who work in your area,
particularly if they have expertise on the same topic, can help you
retrieve sources that might otherwise have been missed.
Edited books. Some researchers publish excellent work in book
chapters, providing overviews and narrative reviews of an area.
Textbooks. Textbooks can be nice comprehensive introductions to a
field, providing a good range of references to existing research. They
date quickly however, and many are not updated regularly. Consider
using text books as a starting point, to familiarise yourself with a new
field or area of study. You must however, read more recent papers on
a topic, particularly if you plan to conduct your own research in order
to add something new to the evidence base.
Social networking websites. such as CiteULike or Aca demia. edu (see
below).

http://www.opengrey.eu/
http://www.ntis.gov/
http://www.greynet.org/
http://www.academia.edu/
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Figure 7.1 Systematic review flow diagram (reproduced from the Cochrane
Handbook, Figure 11.2.a)

The methods above all have their uses, but none of them should be relied
upon if you want to conduct a thorough review of the literature. Think of
these methods as ways to complement a literature review, or ways in which
to extend your knowledge even further. All literature searching should
involve at least some systematic elements.

Before you start
Before searching the literature, have a clear research question in mind. For
example, use the PICO acronym in order to clarify your research question
(see Table 7.1):

Patient/population. What is the population you are interested in?
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Intervention (or exposure). What is the intervention (for trials and
other intervention studies) or the exposure (in epidemiological studies
such as cohort designs)?
Control group. What is the control group or reference group?
Outcome. What is the outcome variable?

Your research question needs to be specific enough to identify a
manageable set of articles to read, but sensitive enough to ensure that you
do not exclude too many articles from your search.

Next, make some tables that will help you keep good records throughout
your literature review. You may want to update your search in the future, or
be asked to show how you obtained your search results. For these reasons,
detailed tables of what you did, and when you did it, are useful; Table 7.2
shows an example.

Searching the literature with PubMed
PubMed is a popular web-based search tool for searching the medical

literature (published papers or manuscripts ‘in press’ which are nearly
published). From 1996, access to MEDLINE was made public through a
search tool known as PubMed. PubMed is a web-based retrieval system. Its
key features are:

more than 22 million articles are indexed;
some books are indexed;
new articles “in press” or still in production are included;
worldwide coverage (although more than 80 per cent of articles are in
English or have an English abstract)

Table 7.1 Using PICO to clarify research questions



Table 7.2 Records of searches in a literature review
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Using medical subject headings (MeSH)
Medical subject headings (MeSH) are used to help organise PubMed
articles. They are very similar to ‘keywords’ that you might use when
searching the web, but are more formally organised. MeSH are described as
controlled vocabulary controlled in the sense that these words are used
consistently throughout the database, to help avoid confusion. For example,
if you wanted to search for articles about the term ‘hospital addiction’, the
appropriate MeSH term is ‘Munchausen syndrome’, a disorder
characterised by fabrication of symptoms in order to receive repeated
hospital care unnecessarily.

This returns the following MeSH headings, which are the standardised
search terms (controlled vocabulary) you should use in PubMed:

Munchausen Syndrome
Hospital-Addiction Syndrome
Syndrome, Hospital-Addiction



Figure 7.2 MeSH search page

Figure 7.3 Searching MeSH

A row will appear called ‘Annotation’ which provides a definition and
also suggests the related term ‘Munchausen syndrome by proxy’. Clicking
on this link explains that symptoms can be fabricated by parents for their
children.
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The row ‘See also’ can also be quite useful, because it suggests other
related terms that might interest you. Here, the term ‘Health Services
Misuse’ is provided.

MeSH has a hierarchical structure, which you can learn more about from
the MeSH website (www .nl m.n ih. gov /me sh).

Some key points about how PubMed uses MeSH terms:

If you search a MeSH term, all narrower terms are automatically
included (called ‘explosion’).
If you search a MeSH term that appears elsewhere in the hierarchy, all
narrower terms from each instance will be included.

There are many other useful features of PubMed, and it is worth
investing some time in learning how to use them. There are tutorials
available on the PubMed website or on YouTube.

Designing a systematic search strategy
It is helpful to search databases systematically, rather than chopping and
changing various keywords you happen to think might capture the literature
you are interested in. Articles are often, but not always, indexed using key
words and in the case of PubMed, MeSH headings. It is useful to spend
some time thinking about which key words you should search with.

If you enter a set of terms into the search feld on PubMed, it will try to
match what you enter into the search field to its own lists. PubMed will
attempt to match what you have entered sequentially:

MeSH headings
journal
author names

http://www.nlm.nih.gov/mesh
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Figure 7.4 PubMed search

For example, if you enter ‘Munchausen syndrome’, a match will be
found to the MeSH term for this disorder. It will also look for combinations
of ‘Munchausen’ and ‘syndrome’ in any field, and the phrase ‘Munchausen
syndrome’ in any field. In this example, a match is made to a MeSH
heading and so PubMed stops there – it will not continue looking at journal
or author names. If it cannot find a MeSH heading match or find the term in
other fields, it will try looking for journals then authors.

The search results are displayed in the main PubMed window, and the
search details box provides the exact syntax used to retrieve this list of
articles:

“munchausen syndrome” [MeSH Terms] OR (“munchausen” [All Fields]
AND “syndrome” [All Fields]) OR “munchausen syndrome” [All Fields]

To the left, you can filter the results according to the type of article (e.g.
review articles only, recent articles only).

This can be a useful starting point, particularly at the scoping stage of a
review, but ideally you should design a systematic search string. This
involves selecting relevant search terms and combining them with Boolean
operators.

Boolean operators
Databases including PubMed use Boolean operators in order to specify the
relationship between search terms.

AND specifies that both terms must be present
OR specifies that either term must be present



• NOT specifies that the second term is not present (but the first term is
present)

Table 7.3 Using Boolean operators in search strings

Search string Results
Stroke ~26,000
Ischemic Attack, Transient ~1600
stroke OR Ischemic Attack, Transient ~27,000
stroke AND Ischemic Attack, Transient ~900
stroke NOT Ischemic Attack, Transient ~25,000

~=around this figure, which is likely to have increased since time of writing.

You should become familiar with these Boolean operators, because they
help you to create systematic search strings. Your searches will be more
specific, more relevant and more manageable if you use clearly thought-out
operators to connect your search strings. Consider this example, using
Boolean operators to combine ‘stroke’ with ‘Ischemic Attack, Transient’
(the MeSH term for transient ischemic attack) in different ways:

In general, the operator OR will result in a larger number of results. For
this reason, AND and NOT are useful if you want a more specific search.
The OR operator results in a more sensitive, but less specific search.
Depending on the topic you are searching for, you will have to think
carefully about how to combine search terms in order to balance sensitivity
with specificity in your search.

An alternative to using AND to specify that two terms should appear
together, is to force them together using quotation marks. Quotation marks
tell PubMed to treat the terms as a phrase. For example ‘intermittent
explosive disorder’ might return around 20 results, whereas treating these
terms separately might return more than 800. You might want to try using
terms without quotation marks first, before restricting the results to include
your phrase.
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Figure 7.5 Boolean operator results

Searching the literature with PsycINFO
Although PsycINFO is a database of psychology research, a large amount
of research relevant to the health sciences can be found here. For example,
you will find research about cognitive function, health behaviours, theories
of behaviour change, community psychology, sexual behaviour and social
marketing approaches to behaviour change. Some of the papers in
PsycINFO are also indexed by PubMed, but by no means all of them. The
journal Intelligence, for example, does not currently appear on PubMed, but
does contain research about epidemiology, cognitive function and dementia.
It is important however, not to rely on a single database when searching the
literature. The study described below illustrates why.

PsycINFO has several attractive features for health scientists:

coverage begins in 1887
it uses controlled vocabulary for easier matching between search
terms and key words
books, book chapters and dissertations are included, not only journal
articles
covers behavioural, social and psychological aspects of health
has over 1.5 million entries (although compared to PubMed, this is
relatively few!)

PsycINFO is often, but not always, accessed through the OVID interface.
Check with your librarian or information services support team to find out
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how you can access PsycINFO.

Searching PsycINFO
In this example, we will learn how to use PsycINFO to identify articles and
book chapters for a research question ‘Are sedentary behaviours in
adolescence associated with common mental disorders?’ Using the PICO
acronym, we can separate this into three sets of key words that might be
worth searching.

Population adolescents.
Intervention/exposure: sedentary behaviours (this is an
epidemiological or observational research question, not an
intervention study.
Control: this is not applicable; sedentary behaviours are the exposure,
so the unexposed group (equivalent to control group) are simply those
with lower levels of sedentary behaviour.
Outcome: common mental disorders, sometimes called minor
psychiatric morbidity; this refers to symptoms of anxiety, depression,
obsessive compulsive disorder and panic disorder.

Table 7.4 Using PsycINFO search terms

Sedentary behaviours AND Adolescents AND Common mental disorder
(exposure) (population)

(outcome)
sedentary behavio*
television viewing
screen-based media
inactivity
computer
video
screen time

adolescen*
boys
child*
girls
schoolage
teenage
youth

depress*
anxi*
psychological distress
mood
affective
phobia
ocd
obsessive compulsive
disorder
panic
dysthymia
mental disorder
psychiatric morbidity



Before we begin our search, it can be helpful to make a list of all the
synonyms for each set. Use an asterisk to indicate that all terms starting
with the letters in the word should be included. For example, depress*
would include depression, depressive and depressed.

To get started, find the link to PsycINFO on your library's website. Often,
it can be found in an alphabetical list. Click on the link to open the search
interface.

PsycINFO is often provided by the OVID interface, but not always, so
please check with your institution if the examples shown here differ
substantially from what you see.

In OVID, PsycINFO, it is best to search for each set separately and then
combine the results using AND to reduce the number of results. Because
the term ‘computer’ might include computer-assisted interviews, a method
used in a study rather than the topic of investigation, the keyword NOT is
used to exclude interview from the results.

We will limit the search to results that have an abstract of the research
available, human rather than animal studies and English language studies.

Figure 7.6 Accessing PsycINFO



Figure 7.7 PsycINFO search page

These three sets of words can be combined as follows. Select the ‘Title’
radio button and tick the box ‘Map Term to Subject Heading’. This will
focus the search to ensure that sedentary behaviours, adolescence and
common mental disorder all appear in the title. Mapping the term to subject
headings will ask OVID to match our keywords to other subject headings
we might have missed.

Search 1. sedentary behavio* OR television viewing OR screen-based
media OR physical inactivity OR computer OR video OR screen time
OR sitting time (Figure 7.7)
Enter the search terms, then click on ‘Search’ to run the search (Figure

7.8).



Figure 7.8 PyscINFO search results

The search returned 18,427 results, shown on the left hand side under
‘Search Information’. The results themselves are shown in the main area of
the screen. Obviously this is too many articles to read as part of a literature
review, but remember that we have only searched for one of three parts of
our search terms. The next step is to search for the second set of terms.
OVID will automatically save the first search, so you can go ahead and
enter the second set straight away, then click ‘Search’ again.

Search 2. adolescen* OR boys OR child* OR girls OR schoolage OR
teenage OR youth
This produced 341,873 results. Obviously, these populations are

commonly studied by psychologists and this has resulted in a large number
of entries in the database. Continue with the third set of terms.

Search 3. depress* OR anxi* OR psychological distress OR mood OR
affective OR phobia OR ocd OR obsessive compulsive disorder OR
panic OR dysthymia OR mental disorder OR psychiatric morbidity
This produced 147,516 results.
The actual searches conducted by OVID PsycINFO are shown in the

Search History. Scroll to the top of the screen to ‘Search History’, and click



on the blue area to see them (Figure 7.9).
The term m_titl means that the search is restricted to titles and that terms

are mapped to subject headings (Figure 7.10).
Having conducted three separate searches, we can now combine them

with Boolean logic, to make the search more focused. This will reduce the
number of results, because we are asking PsycINFO to return results
containing all three of our searches. Tick the three boxes next to searches 1,
2 and 3. Then click ‘And’ to the right of ‘Combine selections with’ (Figure
7.11).

Figure 7.9 PyscINFO search history tab

Figure 7.10 PsycINFO search history page

Figure 7.11 Combining PsycINFO search results
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Figure 7.12 PsycINFO search: result 11

Figure 7.13 PsycINFO search: result 19

This search combined searches 1 to 3 in a new search, resulting in 23
articles. Many however, are obviously not relevant to our research question.
This is clear when looking at the articles which are retrieved. The search
has picked up several studies looking at ‘computer anxiety’ in children,
which is not what we are interested in. Result number 11 does look relevant
(Figure 7.12)

Result number 19 could also be relevant (Figure 7.13).
Given that our search of PsycINFO produced only two articles, we might

want to consider searching other databases, particularly PubMed. Although
the research literature on sedentary behaviours in adolescence and common
mental disorders is quite small, we should not conclude that there are only
two studies based on this single search.

Search tips for PsycINFO

Use wildcards to replace one letter. For example, able# would find
abler and ables but not ablest.



•

•

•

•

•

•
•
•

•

•

•

If you select the title button, you can search for a title of a paper,
book, book chapter or dissertation.
If you select the author button, you can search for all entries by author
last name.
If you search for a journal, it helps to know the full journal name,
because if you enter one word, only the journals beginning with that
word will be retrieved. For example, Health Psychology would
retrieve Health Psychology but not the British Journal of Health
Psychology.
You can limit your search according to the following: age, date,
methodology, population, publication type.
You can export your results to bibliographic software such as
EndNote or Reference Manager.
Remember that you should always search at least two databases.
If you have too few results, your search may be too specific.
Additional to a search, look at the references cited in the articles that
you read. Did your search miss any of these references?
Look at any articles citing articles you retrieve. These are displayed
by many search interfaces, including Web of Knowledge and Google
Scholar. This can be a useful way to identify relevant articles you
might have missed, particularly those which are relatively new.

Other databases to consider searching
Although PubMed and PsycINFO are a good place to start, take a look at
some of the many other databases of health research available.

Cochrane Library: this is an excellent resource for research on
efficacy and effectiveness of interventions or treatments. Systematic
reviews are included in the Cochrane Library, as are ‘Cochrane
Reviews’ which are considered the best quality quantitative research
in the hierarchy of evidence.
Current Index to Nursing & Allied Health Literature (CINAHL): this
database includes primarily nursing research, but also disciplines
allied to medicine, complementary medicine, consumer health.
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EMBASE: this covers biomedical and pharmacological research, with
a slightly more European emphasis than PubMed.
Google Scholar: Google Scholar can be very useful because it can
find articles, book chapters and books on a topic. The search results
look very similar to an academic database search, rather than a
traditional Google search. It claims to cover all scholarly literature.
You can also look at citations to publications and create your own
author profile.
Grey Literature Network Service (GreyNet): this is a collection of
‘grey literature’ which includes research not published in traditional
academic outputs. Grey literature can sometimes be a useful
supplement to peer-reviewed academic articles, although you should
appraise its quality carefully. The voluntary and community sector
often produce good-quality research which they do not submit for
publication in academic journals [49]. This does not mean that you
should ignore the research, but it does mean that it has not undergone
the formal peer review process.
Science Direct: this is not a database as such, but an ‘interface’ which
allows you to search for articles and access .pdf versions of
documents where available. Some researchers find it quite useful.
Web of Science: this is a popular database which includes science,
social science and arts/humanities research. There is considerable
overlap with PsycINFO but Web of Science does not include book
chapters.

Many of these databases require a licence or subscription, so you should
check with your institution to see if you are able to access them.

The need to search more than one database
A team of researchers who were planning to conduct systematic reviews for
the Cochrane Collaboration decided to do a study in order to find out which
psychiatry journals were indexed by which databases

Initially, they checked a resource called the Ulrich's Periodicals Directory
for any journals relating to psychiatry or neurology. Although 122 journals
were found to be captured by four popular databases, several journals were



only found in one database (7 in MEDLINE, 25 in BIOSIS, 50 in
EMBASE, 94 in PsycLIT – now PsycINFO). The degree of overlap
between four databases is shown in Figure 7.14. The conclusion from this
study was that relying on one database would exclude many psychiatry
journals. In general, you should search at least two databases and ideally
more than two, if you have time. This is particularly important in the health
sciences, which often involves several disciplines, with research published
in many different outlets. The example above involved just one discipline
(psychiatry) – and yet journals publishing psychiatry research were spread
across four different databases. Higher-impact and more well-known
journals are more likely to be captured in several databases. The authors of
this study, for example, found that the American Journal of Psychiatry was
indexed in over 40 abstracting or indexing services.

Figure 7.14 Overlap of BIOSIS, EMBASE, MEDLINE and PsychLIT for
psychiatry journals (adapted from [50])



Social networking approaches to searching the
literature
This section introduces a popular social networking tool which you may
find useful when searching the literature, called CiteULike.

CiteULike
Increasingly, students and researchers work in multiple locations using
different PCs, laptops and other devices. Storing all your references in one
place can become difficult. To help you stay organised, one option is to
store them on the web or the cloud, so that your databases are available
from any location. CiteULike is one example of a web-based library that
you can personalise and share with others (see ww w.citeul ike. org).

CiteULike allows you to install browser buttons, so that a paper you find
can be quickly added to your library, stored online. The service is
compatible with many journals, and with Amazon, allowing you to quickly
store articles and books in your own online library. If you look carefully,
you can sometimes see a CiteULike button on a journal website itself. The
example below is from the British Journal of Health Psychology, where
you can quickly add a paper to your CiteULike library by clicking on the
blue CiteULike button (to the right of ‘Share’).

Figure 7.15 CiteULike button on a web page

http://www.citeulike.org/


You can organise your library according to keywords called tags. The
tags are displayed in a tag cloud, with larger words for the tags you use
more frequently. This provides you and others with a visual representation
of your research interests. The tag cloud is useful because when you click
on a tag, you will see all of your papers on this topic as a list. Similarly, you
get a tag cloud for the authors you read most frequently. The tag cloud in
Figure 7.16 is from the author's library (www .ci teu lik e.o rg/ use r/g‐ 
areth/tags). CiteULike tag clouds are public. By tagging articles with key
words, you are helping other people find articles that might interest them.
They have lots of articles tagged with cardiovascular, change, correlates,
depression, health, immunity, longitudinal and measurement, for example.
This tells you that this CiteULike user probably has research interests on
psychobiology and cardiovascular health. If you go to their library online,
you can click on these key words to see what articles have been tagged and
stored. Similarly, other people can view your library, so by tagging articles
you are helping others to find articles that might interest them.

Figure 7.16 CiteULike tag cloud

http://www.citeulike.org/user/gareth/tags


Figure 7.17 CiteULike bookmark link in Firefox

Getting started with CiteULike
To get started, sign up at www .ci teul ike.org and choose a username. Then
install a CiteULike browser button on your browser, following the
instructions on the CiteULike website (www .ci teu lik e.o rg/ post). If using the
Firefox browser, for example, find the link ‘Post to CiteULike’, click and
drag this to the bookmarks toolbar (below the address bar, as shown Figure
7.17) and then let go. A button labelled ‘Post to CiteULike’ should now be
installed.

You may want to install browser buttons on more than one of your
devices, but your account will be the same on every device. All your
references will be stored in one place.

How to upload a paper to CiteULike
If the journal website has a CiteULike button, click the button. If not, click
the button you have installed on your browser (‘Post to CiteULike’). You
will be taken to a page with the heading ‘New Article: where would you
like to file it?’ (see Figure 7.18). If not, the journal may not be compatible
with CiteULike. Check the CiteULike website and blog for information
about which journals are currently compatible.

Figure 7.18 CiteULike new article page

http://www.citeulike.org/
http://www.citeulike.org/post


Figure 7.19 Tagging a CiteULike entry

In most cases, the article title, date, abstract and authors will have been
automatically extracted for you. You may have to fill some of these fields in
manually. In all cases, you should choose tags to help you find this article in
your CiteULike library in future. Enter each tag, separated by commas
(Figure 7.19).

The tags chosen for this article are: health, behaviour, change,
dissonance, theory, systematic, review. Obviously, you need to choose tags
that describe the article you want to store in your own library.

A really nice feature of CiteULike is the ability to upload and store .pdf
versions of articles, and access these from anywhere. This avoids the need
to keep paper or electronic copies of articles in several locations, because
you always know that your CiteULike library has everything. There is an
option to share .pdfs of your articles with other CiteULike users, but do
check for any copyright or other restrictions before doing this. Often,
publishers request that you do not circulate .pdfs of journal articles. They
are usually restricted to your own use. You can upload a .pdf of the article
by clicking on “Choose File’ under ‘Attachment’. Finally, when you are
ready to add the article to your library, click on ‘Post Article’.

You may be wondering why CiteULike is considered a social network.
This is because other people can see your tag cloud, and you can identify
research interests shared by other people. People who read the same papers
as you are likely to have similar research interests. In time, they may
become colleagues, friends or competitors (or all three)! It can sometimes
be handy to see what other people are reading, to keep up to date with the
literature.

How to export an item from your CiteULike library
You may want to export articles or books from your CiteULike library to
bibliographic software, such as EndNote (introduced later in the chapter).



To do this, find the article you want to export from your library, then click
on the ‘Export’ button.

You will then be shown a series of options for exporting the article details
(Figure 7.21). If you are using Endnote or Reference Manager, you should
click on ‘RIS’. This will download the details. Click on the file that is
downloaded to automatically store the reference in your bibliographic
software.

To summarise, CiteULike allows you to store articles that you have
found, tag them, store details of the articles in your own online library, store
.pdfs of the articles themselves, and export them to bibliographic software.
Your library, but not the .pdfs, are automatically shared with other users.

Figure 7.20 CiteULike toolbar

Figure 7.21 CiteULike export options



Bibliographic software

EndNote
EndNote and Reference Manager are two popular bibliographic software
packages (others are available) which will help you organise your literature
review, keep a record of your references, and when you get to the writing
stage, create a reference list for your thesis or manuscript. Check with your
information support specialist, librarian or IT support team, to find out what
software is available at your institution. Reference Manager is very similar
to EndNote, but EndNote is generally more widely available at universities.
For this reason, the examples shown below refer to EndNote.

References can be exported from PubMed, Web of Knowledge and many
online journals, into EndNote. From EndNote, you can identify and remove
duplicates. You can also type in your own references (e.g. books, book
chapters, reports). Usefully, EndNote integrates with MS Word, so that
reference lists can be generated automatically.

Figure 7.22 Google Scholar menu

Figure 7.23 Google Scholar Bibliography Manager

Exporting from Google Scholar to EndNote



Click on the settings symbol which can be found on the top right of Google
Scholar (Figure 7.22).

Under Scholar Settings > Bibliography Manager, select the ‘Show links
to import citation into’ button, then choose ‘EndNote’ (Figure 7.23).

Next time you conduct a search on Google Scholar, you will now see the
option to export to EndNote (‘Import into EndNote’) for each reference
retrieved (Figure 7.24).

Figure 7.24 Google Scholar search results



Figure 7.25 Inserting a citation using EndNote

Cite while you write
As mentioned above, when you get to the stage of writing your literature
review, thesis, or manuscript, EndNote can help. You can insert references
automatically and it will generate the reference list for you. Open MS Word
and the EndNote database you want to use.

In the Figure 7.26, a reference has been inserted and a reference list
generated. Additional references will be added automatically to this list, as
you continue writing and inserting references.

You may want to change the output style of the reference list. To do this,
choose a style from the ‘Style’ list on the EndNote tab (Figure 7.27). if the
style you want is not shown, choose ‘Select Another Style’. Additional
styles can be downloaded from the EndNote website (htt p:/ /en dno te.‐ 
com /do wnl oads/s tyles).

http://www.endnote.com/downloads/styles


Figure 7.26 A citation and reference inserted in a Word document using
EndNote

Figure 7.27 Choosing a bibliographic style in EndNote



Summary
This chapter has explained how to use the major search tools used in the
health sciences in order to conduct your research, stay up to date, and
inform your day-to-day work. The chapter has differentiated between
narrative reviews and systematic reviews. Narrative reviews describe key
studies in the field and provide a selective summary of your topic, and are
therefore subject to bias and omissions. Systematic reviews provide a more
thorough and comprehensive study of a topic, help you to find the most
relevant publications, and provide a method which another researcher could
replicate. To help you conduct this kind of literature search, the chapter has
explained in detail how to design a systematic research strategy that will
enable you to find, save and process the most relevant research in your
field, using the useful PICO acronym to focus your research questions and
using Boolean operators to refine your search terms. It has shown why you
should search at least two databases to cross-reference your results and
draw inclusively on multidisciplinary research and overlapping sources, and
suggested some useful current databases as well as other less formal sources
of research such as conferences and social media. It has stressed the
importance of keeping good records throughout the process in order to
manage the review and to allow others to replicate your research, and has
also shown that a systematic review can be an effective piece of original
research in its own right. It has also explained how to manage your research
results, by exporting references from your search into CiteULike which
allows you to swiftly store and organise your sources, process your results,
and export references into bibliographic software such as EndNote or
Reference Manager when you are writing up your research. Using a web-
based citation library like CiteULike enables you to access your search
results from anywhere, and share them with other users.

You should now feel confident to conduct narrative and systematic
reviews, incorporate the results into your work, and design new research
questions which will enable you to build on the existing research and make
a contribution to your field. The next three chapters show you how to
critically appraise the literature, enabling you to assess and evaluate the
relevance and usefulness of published work to your particular research
topic.



Web links
htt p:/ /ww w.a cad emi a.edu
htt p:/ /ww w.n lm. nih .go v/b sd/dis ted/p ubmed tut orial/
htt p:/ /ww w.y out ube .co m/w atch?v =LkNe EUV4 sPs
htt p:/ /en dno te. com /tr ain ing
htt p:/ /ww w.r efm an. com /tr aining/
htt p:/ /ww w.c och ran e.o rg/ training

http://www.academia.edu/
http://www.nlm.nih.gov/bsd/disted/pubmedtutorial
http://www.youtube.com/watch?v=LkNeEUV4sPs
http://www.endnote.com/training
http://www.refman.com/training
http://www.cochrane.org/training


•
•
•
•
•
•

•
•
•

•

8

Randomised controlled trials
 
 
 
This chapter presents three examples of how the critical appraisal approach
can be applied to randomised controlled trials (RCTs). Each of the trials is
quite different, but they share essentially the same study design. Extracts
have been reproduced from each paper, and important parts of the papers
are also shown, but you should read each paper in full if you want to get the
most out of the chapter. All three are open access journal articles, meaning
that you can obtain them free of charge.

The chapter will help you to critically evaluate questions (adapted from
the Critical Appraisal Skills Programme (CASP) website [116]) such as:

Does the study ask a clearly focused question?
Was the question focused in terms of the population studied?
Was the question focused in terms of the intervention studied?
Was the question focused in terms of the outcomes considered?
How appropriate were the research methods used?
How were the research participants chosen and what might the
composition of the participant groups tell us?
How was the study followed up and how was data collected?
How are the results presented and what is the main result?
How precise are the results and how can we apply them in future?

Before proceeding it is useful to list the three trials discussed in this
chapter:

a cognitive behavioural intervention to reduce sexually transmitted
infections among gay men: randomised trial;



•
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the effect on smoking quit rate of telling patients their lung age: the
Step2quit randomised controlled trial;
effect of physical activity on cognitive function in older adults at risk
for Alzheimer’s disease: a randomised trial.

As well as helping you to understand how randomised controlled trials
work, the chapter is intended to help you think critically about the trials
conducted by others, enabling you to evaluate the usefulness of published
results of such trials to your work, and also setting out signposts which will
enable you to design such trials yourself.
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Intended learning outcomes
By the end of this chapter, you should be able to:

identify the essential features of an RCT;
read and understand published journal articles which report the
results of RCTs;
critically appraise a journal article or paper describing the results of
an RCT;
summarise the strengths and limitations of a paper describing an
RCT.
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Introducing key terms
Part of the difficulty of appraising an RCT or another type of study as a
student, is that you may be unfamiliar with the topic, the research methods
and statistics used in the study. If you don't understand what the authors of
the paper did, how can you comment on the quality of the paper? It is worth
noting however, that even if you don't understand all of the details of a
study, a well-written paper should be understandable without having to
know all these details. Even if you have no prior knowledge of the area,
research papers are structured and presented in a way that should make
them as accessible as possible. To illustrate, the three papers chosen for this
chapter concern quite different topics.

Kinds of research questions
An RCT can address focused research questions that concern a population,
intervention, control group and some outcome. Recall that the acronym
PICO is helpful to remember when you try to identify the research question
which an RCT was designed to address:

Participants: What sample, and from what population?
Intervention: What is the intervention, treatment or exposure?
Control: Who are the control group? Were participants randomised?
Outcome: What was the outcome? How was it measured?

What are the essential features of an RCT?
In the hierarchy of evidence, RCT designs are placed at the top. This is
because RCTs can address both known and unknown confounding factors,
because randomisation ensures that differences between treatment and
control groups are minimised. Additionally, it is usually clear that the
treatment or intervention is responsible for any difference in the outcome.
In contrast, observational studies (e.g. cohort studies, Chapter 9) require
researchers to adjust for known confounding factors in the analysis, and
cannot address unknown confounders. There are three features of an RCT
which should be distinguished:
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Randomisation: Participants should have an equal probability of
receiving a new intervention or being in the ‘control’ condition. This
is achieved by randomisation. If successful, randomisation ensures
that differences between the treatment and control groups are
minimised. This addresses both known and unknown confounding
factors, by distributing them randomly across both groups.
A control group: The control group does not receive the intervention
which is of interest. They either receive treatment as usual, treatment
according to existing guidelines or a placebo (e.g. a sugar pill).
Participants and/or staff involved in the study may or may not be
‘blinded’, a term explained below:

Single blinded: If the RCT has been single blinded, participants do
not know which group they are in (treatment or control).
Double blinded: In double blinded trials, neither participants nor
research staff know which group participants were assigned to.
Triple blinded: In triple blinded trials, participants, research staff
and data analysts do not know which group participants were
assigned to.

An intervention: As indicated by the term ‘trial’, an RCT evaluates
some intervention, procedure or drug. It is important to note that not
all trials are randomised, controlled or blinded.

It is worth noting that the terms single, double and triple blinding have
started to fall out of favour. Double and triple blinding can mean different
things to different people, causing ambiguity. The CONSORT statement
recommends that researchers simply explain who was blinded, and how this
was achieved [51]. If researchers follow this recommendation, then this
should make it easier to understand whether an RCT involved blinding, and
the impact this might have on how we interpret the results.



Figure 8.1 Structure of a randomised controlled trial



A cognitive behavioural intervention to reduce
sexually transmitted infections among gay men:
randomised trial [52]
We will appraise this first paper in more detail than the next two papers,
because concepts will be introduced for the first time with which you may
be unfamiliar. This paper attracted great interest when it was published back
in 2001, because very few attempts had been made to evaluate whether
cognitive behavioural therapy (CBT) could be used to reduce sexual risk-
taking among gay/bisexual men. When this RCT was conducted, human
immunodeficiency virus (HIV) infection rates had started to rise again and
this has continued. HIV has high morbidity, mortality, treatment and care
costs. Left untreated, it usually leads to acquired immune deficiency
syndrome (AIDS), leading to severe damage to the immune system. Self-
reported condom use is often found to be higher among gay/bisexual men
than among heterosexuals [53]. This is attributed partly to the success of
community-based interventions, such as peer education, and partly to an
early response to the HIV epidemic during the 1980s [54]. However, men
who have sex with men account for the largest proportion of new HIV
infections acquired in the UK. For this reason, they are a priority for
interventions to reduce HIV and other sexually transmitted infections
(STIs).

Download this paper from
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC32307/

Did the study ask a clearly focused question?
We can find the research question towards the end of the introduction. It is
not phrased as a research question explicitly, but the authors do tell us what
they wanted to know and how they intended to find out:

We developed a small group intervention aimed at gay men, which
draws on several psychological models of behavioural change. We
evaluated its effects in a pragmatic randomised controlled trial using

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC32307


clinical end points (new sexually acquired infections) as well as self-
reported changes in behaviour (p. 1452).

Was the question focused in terms of the population studied?
The population is defined reasonably clearly, but we are not told how men
were deemed to be ‘homosexual’. Presumably this was based on self-
reported sexual behaviour as being with men only, but the authors do not
say how bisexual men were classified. The inconsistent terminology used
throughout the manuscript adds to the ambiguity. The intervention was
‘aimed at gay men’ but not all men who have sex with men identify as
‘gay’, a frequently observed feature of some ethnic minority groups. In
epidemiology, the term ‘men who have sex with men’ is used for precisely
this reason – it clearly focuses the population in terms of their behaviour,
rather than their identity, which is a different component of sexual
orientation

Was the question focused in terms of the intervention studied?
The intervention is described briefly and we are referred to the British
Medical Journal (BMJ) website for a more detailed description. Owing to
restrictions on space, it is often difficult for authors to describe complex
interventions in detail. Complex interventions can be compared to
medicines that might have several active ‘ingredients’. It is difficult to
determine which part of the intervention might have an effect. The Medical
Research Council (MRC) guidelines on complex interventions [55] were
developed in order to improve the way in which complex interventions are
conducted and reported. The intervention drew on ‘several psychological
models’, adding to the complexity. Have a look at the description of the
intervention, and see if you can determine exactly what the intervention
involved. This is not easy. This kind of intervention has also been described
as a ‘black box’ intervention, a metaphor referring to a process that cannot
be observed directly in order to determine exactly what happened. The term
‘pragmatic RCT’ is often used in this kind of situation, where the
intervention is less clearly defined.

Was the question focused in terms of the outcomes considered?
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The outcomes considered are clearly described. Clinics and laboratory
diagnoses were used to identify new STIs, and questionnaires were used to
record self-reported behaviour change, which is an established and
acceptable method. There is no practical alternative to self-reported sexual
behaviour.

In summary, the research question was clearly focused on a population
(gay/bisexual men), intervention (CBT), control group (treatment as usual)
and outcome (STIs).

Overall, we can conclude that it is worth continuing to read this paper,
because it is focused and is the right kind of study for the research question.
Therefore, we move on to more detailed questions about the study.

Was this an RCT and was it appropriately so?
The study was an RCT, and this is appropriate for evaluating new
interventions. Participants were randomised, discussed in more detail
below. There was a control group.

Were participants appropriately allocated to intervention and
control groups?
Participants were randomly allocated using sealed opaque envelopes. This
is probably sufficient, but we need to be careful that baseline differences
between the intervention and control groups do not exist. Particularly when
sample sizes are small, randomisation can still result in intervention and
control groups that differ in respect to one or more important variables. One
method of addressing this is to first stratify participants (e.g. by age groups)
and then randomise within each group. No method of balancing is reported,
but we can look at the paper0027;s Table 1 to determine if the groups were
different after randomisation. This shows that the intervention group and
control group were not significantly different, meaning that randomisation
worked. There are two important differences between those who declined to
participate and those who were randomly allocated into the study, however:
education and ethnicity:

non-white people eligible for the study were more likely to decline to
participate (p = .06, indicating a non-signifcant trend);
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men with secondary school education or lower were significantly
more likely to decline (p = .04).

These kinds of differences can be important, because this means that non-
white and less educated men were under-represented in the study. It is also
worth noting that men were randomised as individuals, but 18 had a long-
term partner and were assigned to the same arm as their partner. This is not
random, which the author addressed by removing these participants from
the analysis. We cannot determine the impact of the intervention on
couples, this being a different research question. There were also potentially
important differences between those who attended the workshop
intervention and those who completed the questionnaire at 12 months:

attenders were significantly more likely to have attended one before
(p = .01);
attenders were more likely to complete the questionnaire at 12
months (p < .001);
those completing the questionnaire were significantly older (p <
.001).

Were participants, staff and study personnel ‘blind’ to participants’
study groups?
With an intervention that consists of a training course, it is obviously not
possible to blind participants to the fact that they are in the intervention
condition. The research staff analysing the data were blinded. Arguably,
blinding does not matter in this study. We might worry about Hawthorne
effects, even in the participants who did not receive the intervention but
were asked to complete postal questionnaires. The emphasis on clinical end
points, outcomes which study personnel were blind to, addresses these
concerns to some extent.

Were all of the participants who entered the trial accounted for at
its conclusion?
None of the intervention group participants got a control group option,
which can sometimes happen in trials if patients cannot receive the
intervention for some reason. The flow diagram reported in the paper does a



good job of showing that all participants were accounted for. This is one
reason why the CONSORT recommendations include a flow diagram – they
are extremely helpful. It is worth noting that there was loss to follow-up and
this appears to differ between the two groups. A total of 59 of the
intervention group and 40 of the control group were lost to follow-up, but
other than withdrawing from the study, emigration or death, there is a large
category “other loss to follow-up” which is really twice as large in the
intervention group (42 men in the intervention group, 24 in the control
group).

Were all participants in all groups followed up and data collected
in the same way?
The methods of data collection were the same in both groups. Participants
in both conditions were followed up in the same way (questionnaires and
clinical end points), although as mentioned above, we don't know why
“other loss to follow-up” was twice as high in the intervention condition.
Men in the control group however, did not receive the same amount of
attention from researchers and health workers. A placebo effect induced by
men taking part in the workshop can be addressed because the groups are
randomised. Hawthorne effects however, may remain, because even men
receiving questionnaires in the control group are receiving “attention” from
researchers or healthcare workers. Uptake of counselling and other
prevention services was not significantly different between the two groups.
We do not need to worry therefore, about men attending the workshop and
then deciding to obtain counselling. If this had happened, we might worry
that the counselling rather than the workshop had influenced the outcome.

Did the study have enough participants to minimise the play of
chance?
A power calculation was reported, but only for the primary outcomes (see
Appendix 6: Statistical Power). The authors wanted to detect a reduction in
the number of newly acquired sexually transmitted infections from 20 per
cent (the current incidence rate for one year) to 8 per cent, and a reduction
in unprotected anal intercourse (UAI) from 50 per cent to 30 per cent. It is
not clear why a reduction in UAI from 50 per cent to 30 per cent has been



chosen. This is equivalent to using a condom with 5 out of 10 partners,
compared to using a condom with 7 out of 10 partners. No distinction was
made between regular and casual partners. To some extent, the effect size
chosen is arbitrary, particularly for a new intervention because the
effectiveness of the intervention is not known. If the intervention works, but
has a smaller effect size, then the study may have required more
participants in order to have the statistical power necessary to detect it. Loss
to follow-up was estimated to be 25 per cent by the authors.

How are the results presented and what is the main result?
The main results are presented in Table 2 (UAI) and Table 3 (STIs). Let's
look at the results from Table 2 first, which show the association between
having the intervention and UAI reported in the past month. The numerator/
denominators show the proportion reporting UAI out of the total,
presumably the total without missing data because these numbers do not
match the totals shown for each group (column headers).

In the paper, results are also shown for UAI in the past year and for
partners with a different or unknown HIV status. The intervention and
control groups are compared. There are no significant differences between
them. We can see a trend towards the intervention reducing UAI at six
months (p = .07) but this is not statistically significant at the traditional p =
.05 level. This may be a small effect which was not detected because of low
statistical power. The main result here is that the intervention did not
significantly reduce UAI at six months or 12 months, adjusting for STIs and
baseline UAI.

The odds ratio and 95 per cent confidence intervals for STIs are shown in
Table 3, and these are the ‘clinical endpoints’ which the authors are keen to
emphasise because of their objectivity. There is an association between
receiving the intervention and all new infections, a broad definition
covering hepatitis B, herpes, genital warts, syphilis, gonorrhoea, chlamydia
and non-specific urethritis (NSU). The odds ratio is 1.69 (95% CI, 95% CI
1.03, 2.77) which would seem to indicate that the intervention has actually
increased the risk of STIs in the year of follow-up! After adjustment for
infections at recruitment however, this reduces to 1.66 (95% CI 1.00 to
2.74) which is not statistically significant because the confidence intervals
include 1. For a more specific definition of STIs comprising ‘bacterial
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infections’ (syphilis, chlamydia, gonorrhoea), there was no association
before or after adjustment, although the effect was in the direction of
increasing risk (OR = 1.84 after adjustment). Possible reasons for this are
discussed by the authors in their discussion section, and we will think about
this later.

Table 8.1 Table 2 from ‘A cognitive behavioural intervention to reduce
sexually transmitted infections among gay men: randomised trial’

Results other than the main results are often described as ‘secondary
outcomes’. It is important to focus on primary outcomes because these were
the original focus of the study, and the study was powered for the primary
outcomes. Secondary outcomes are more likely to produce chance findings,
because they involve making additional comparisons. However, secondary
outcomes can often be informative and can help us understand some of the
main findings. Here are some of them:

no association between the intervention and use of other clinics or
community prevention services (Table 3);
improvement in several self-reported psychometric measures in the
questionnaire at follow-up (Table 4)

an improvement in communication skills of 0.23 points (95% CI
0.02, 0.45);
an improvement in safer sex efficacy of 0.25 points (95% CI
0.03 to 0.47);
an improvement in interpersonal barriers of 0.28 points (95% CI
0.07, 0.49).
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Since sexual risk-taking might be reduced by some of these
psychological mechanisms, it might be worth noting that the intervention
had some effect on these. However, these could have arisen by chance and
the study was not powered to detect changes on these secondary outcomes.
These are not the true end points for the study, and it is not wise to consider
them as surrogate endpoints – we cannot simply assume that these
differences would eventually translate into a reduction in STIs at a later
stage.

How precise are the results?
The confidence intervals for the results are quite wide, which may reflect
the modest sample size. For UAI, no confidence intervals are reported
(Table 2) although a p value is reported (see above). Concerning new STIs,
the lower end of the interval is 1.03 and the upper end is 2.77. If you had to
decide whether or not to implement this intervention, your decision might
not be the same at the lower end as the upper end. After adjusting for
baseline STIs, the lower end of the interval is 1.00 (no difference) and the
upper end is 2.74 (around 2.7 times more likely to acquire new STIs).
Leaving aside the problem that the direction of the effect seems to go in the
wrong direction, the estimated effect is not precise.

Were all important outcomes considered so the results can be
applied?
The decision about whether results from a paper should be applied will
depend on your situation, and on many other factors. Rarely will a single
paper lead to a new intervention being adopted. For the purpose of the
current paper, let's assume that you are a public health consultant and are
unsure whether or not to provide funding for this intervention in your local
area. Will the workshop reduce STIs among gay/bisexual men? Here are
some issues we should consider:

The people included in the trial could be different from the local
population. Men attending clinics may be more health aware, may
have engaged in more UAI, may have more casual partners, and may
have different socio-economic characteristics. White and more
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educated men were over-represented in the study. Some men were
lost from the intervention group and we cannot determine why.
Did loss to follow-up in the intervention group reflect low
acceptability of the intervention? Did some participants react
negatively to the workshop? Very little information is provided.
Indeed, the intervention was originally designed to be three separate
workshops, but was shortened because too few men attended all of
them.
The local setting may differ from that of the trial, which was London
based. Gay/bisexual men are a ‘hard to reach’ population and STI
clinics do not provide a representative sample of this population. This
may not be the best place to recruit such men for an intervention of
this kind, particularly if we wanted to target MSM (men who have
sex with men) who do not identify as gay/bisexual.
We may not be able to provide the same intervention. Although some
information is provided about the intervention on the BMJ website,
complex interventions are difficult to replicate [55]. The exact
content of the workshop is not known, and the delivery method may
change if we tried to replicate it. There are aspects of the intervention
which are difficult to measure (e.g. rapport between the trainer and
the participants, levels of trust, enjoyment during the day). Would it
matter to the participants if the trainer identified as gay/bisexual, or
male/female, for example?
The primary outcomes were not significantly changed, although a
trend toward UAI reducing was apparent. There was a slightly
worrying trend towards an increase in STIs following the
intervention. We should be careful about unintended consequences,
which the authors suggest may have occurred if attendees moved
from UAI to other kinds of sexual activities, such as oral sex. It
would be useful to look at each STI separately in a larger study – is
the reduction in UAI likely to translate into fewer HIV infections, but
more STIs of other kinds, and does the cost/benefit of this situation
matter? HIV is more expensive to treat than STIs, many of which are
fully treatable. The benefit to individuals (improved communication,
safer sex efficacy and interpersonal barriers) may need to be balanced
with a potential increase in STIs, which would not benefit the wider
population. These are two competing perspectives. Policy makers
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may also have to consider the cost of treating additional STIs. The
study may need to be replicated with a larger sample, in order to
determine if and why this unintended effect actually occurs.
Policy and practice should not change as a result of the evidence
contained in this trial, without further research. It may have
unintended consequences, and we do not know enough about the
intervention in order to implement it (or to rule it out altogether). An
intervention that has efficacy during a trial may not have
effectiveness when it is introduced in practice, and low acceptability
is one of many reasons why interventions that work in trials do not
always work in practice.

The discussion section contains a summary of the main findings, the
strengths and weaknesses (according to the authors – it is important to
appraise your own perceived strengths and weaknesses as you read it),
comparison to other studies, meaning of the study and possible
implications. The authors suggest that ‘the intervention was more likely to
be harmful’ but remember that this was not significant after adjustment.
There is a suggestion that the intervention discouraged UAI but encouraged
‘low risk, non-penetrative sex’, although this effect attenuated over time
leading the authors to describe this as a ‘transient’ effect. The authors
correctly note that the broad and narrow definitions of sexual behaviour
may have masked the true situation. It would have been interesting to see
HIV versus other STIs and a cost-effectiveness calculation, although these
are usually not reported in the same paper as the main results from an RCT.
You may not agree that self-reported outcomes ‘tend to overestimate
benefits’, particularly when these outcomes can only be evaluated using
self-report (e.g. condom use, self-efficacy, communication). Also, the study
was not powered to detect changes in all of these secondary outcomes. The
study focused on clinical end points but other end points matter to different
people – the participants themselves, for example, might view a reduction
in UAI but an increased risk of STIs other than HIV as acceptable.
Clinicians may have different views.

In conclusion, the paper reports a generally well-designed RCT but raises
several new questions:
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How many sessions are necessary, and it is necessary to reduce the
intervention from three to one sessions?
Is the workshop acceptable to gay/bisexual men and more generally,
to MSM? How can it be replicated and standardised? Which aspect of
the workshop is most successful?
If the workshop results in reduced UAI but a transient increase in risk
of STIs because lower risk behaviour is adopted instead, is the
additional risk worth the reduction in risk from new HIV infections?
A cost-effectiveness analysis would be helpful here.
What do the men prioritise themselves, reducing new HIV infections
or reducing all infections considered equally harmful? It is unlikely
that all STIs have equal salience/importance for this group.
Does the author's own view that such interventions can have the
‘unintended effect of encouraging greater sexual activity’ introduce a
political dimension into the research? The authors have previously
suggested that promoting condom use could increase sexual risk-
taking [56] and that ‘it is hard to show that condom promotion has
had any effect on HIV epidemics’. Such views are controversial. The
‘partner reduction’ approach has been used to claim that people
should ‘abstain’ from casual sexual encounters, which LGBT
community activists have objected to on ethical and political grounds.
We should also consider the politics of HIV prevention funding at the
time as the study was conducted. Clinical services were often
competing with community organisations in order to obtain funding
to deliver HIV prevention interventions. Many gay men's health
organisations used peer education approaches, and some used CBT. It
was difficult to show that peer education had an influence on HIV
transmission. Evidence that CBT has an impact on STIs or on sexual
behaviour could have been used to argue for a change in how funding
was allocated. This could disadvantage community interventions,
who would find it more difficult to collect evidence on how their
approaches might influence these outcomes.



Effect on smoking quit rate of telling patients
their lung age: the Step2quit randomised
controlled trial [57]
Practitioners working in several disciplines in the health sciences,
particularly public health and primary care, are always keen to identify
ways to encourage people to stop smoking. This research into the effect of
telling patients their ‘lung age’ on subsequent quitting is therefore quite
interesting. Biomarkers have been used in other settings as tools to motivate
patients to change behaviour, but a Cochrane Review found few studies that
had used RCT designs [58]. Lung function offers a relatively cheap, and
therefore potentially cost-effective, way to motivate patients to quit
smoking. Telling patients their lung age is a psychological technique
designed to motivate this behaviour change.

Download this paper from http://www.bmj.com/content/336/7644/598

Did the study ask a clearly focused question?

Was the question focused in terms of the population studied?
The authors are very clear about the population they have studied. Their
introduction explains that chronic obstructive pulmonary disease (COPD)
can be detected as young as age 35, but on average it is detected at age 50.
Focusing the study on smokers at age 35 or older is therefore sensible,
because we need to know more about how to encourage quitting earlier in
midlife:

We searched computerised patient records from five general practices
in Hertfordshire to identify people aged 35 and over who had been
recorded as a smoker in the previous 12 months (p.2).
There were several exclusion criteria, most of them to ensure that people

with pre-existing disease were not included. This focuses the population on
smokers without disease at baseline.

http://www.bmj.com/content/336/7644/598


Was the question focused in terms of the intervention studied?
The intervention is focused and described clearly. Figures 1 and 2 in the
paper illustrate how patients were shown their ‘lung age’. The paragraph
‘Information given to participants’ provides sufficient information for this
trial to be replicated, because anyone reading the paper could find out what
the intervention involved.

Was the question focused in terms of the outcomes considered?
The primary outcome was smoking cessation at 12 months, confirmed by
salivary cotinine testing. Secondary outcomes were less focused, but
included the number of cigarettes smoked and newly diagnosed COPD.
There are two other outcomes reported in Table 3 which are not covered in
detail in the paper (attended NHS smoking clinics, used smoking cessation
help).

In summary, the research question was clearly focused on a population
(adults aged 35 or older), intervention (telling patients their lung age),
control group (treatment as usual) and outcome (smoking cessation).

Was this an RCT and was it appropriately so?
The study was an RCT, appropriate for evaluating the effectiveness of
interventions. Participants were randomised, and there was a control group
who received usual care.

Were participants appropriately allocated to intervention and
control groups?
Participants were randomly allocated using sealed opaque envelopes, which
contained a computer generated number (odd numbered envelopes received
the intervention). Table 2 shows the baseline characteristics of the
intervention and control groups. It does not however, show results from
statistical tests that can help determine if the groups were significantly
different at baseline or not. In the text, we are informed that the control
group contained ‘significantly more people with a history of stroke’ (p.4)
and that there were ‘few differences’, but it would have been nice to see p
values in Table 2 for all variables. Baseline differences can occur by



chance, even after randomisation, so the higher rate of stroke in the control
group is not a major cause for concern.

Were participants, staff and study personnel ‘blind’ to participants’
study groups?
The clerk who dealt with randomisation using sealed envelopes took no
further part in the study. Although it is highly unlikely that the study team
would try to influence which patients received the intervention, it is
theoretically possible, so this statement was probably included simply to
reassure those readers who are particularly sceptical. The staff
administering the intervention clearly knew that they were giving the
intervention, because they were telling patients their lung age. This is a
necessary limitation of the study design because blinding is not feasible
here.

Were all of the participants who entered the trial accounted for at
its conclusion?
The flow diagram in Figure 3 shows that the authors have followed the
CONSORT guidelines, showing what happened to participants throughout
the trial. Loss to follow-up was fairly low, around 11 per cent in both
groups, much lower than the 50 per cent which the study team expected. It
is not clear why 50 per cent was expected, but the low rate of loss to follow-
up could indicate characteristics of the sample which are associated with
greater participation in health research, such as higher socio-economic
status (SES), health consciousness or interest in the study. It is quite
unusual to have such a high participation rate after one year.

Were all participants in all groups followed up and data collected
in the same way?
All participants in both groups were followed up and data collected in the
same way, for the primary outcome measure. There were some differences
in how the control group were treated, which existed by necessity. The
control group were not given their lung age results but were invited to have
a second test after 12 months (after the trial had finished) ‘to see if there



had been any change in lung function’. There was an option to ‘receive a
letter with more information from the research doctor within four weeks’.
We are not told how many patients were sent this letter, and whether it
contained standard spirometry results (simple FEV1), lung age, or
something else. If it contained lung age, this means that these participants in
the control group actually received the intervention, which could be
problematic. It might distort the results by underestimating the true effect of
the intervention. The option to have a second test after 12 months, or a
letter after 4 weeks, helps satisfy ethical guidelines that discourage
researchers from withholding potentially helpful interventions or drugs. For
trials that show beneficial effects of the intervention, it is arguably not
ethical to withhold this intervention from the control group indefinitely.
Some trials have been terminated early for similar reasons. For example,
once it was established that aspirin was effective at reducing heart attack
risk, the control group were given the intervention option. Ethical issues are
discussed in Chapter 11 in more detail.

Did the study have enough participants to minimise the play of
chance?
A statistical power calculation is reported, showing that 300 participants
would produce 80 per cent power to detect an effect size of 10 per cent
reduction in smoking cessation rate. The study team estimated an attrition
rate of 50 per cent, although it is not clear where this figure comes from.
Previous studies or pilot studies can be used to estimate attrition rates, or
they can be simple guesstimates. Based on these figures, they aimed to
recruit 600 participants. They achieved a sample size of 561, showing that
the study was powered to detect a 10 per cent reduction, because this is
greater than the 300 needed. The study was not powered to detect
differences in secondary outcomes (daily cigarette consumption), or the two
additional outcomes shown in Table 3 (attending smoking clinics, using
cessation help).

How are the results presented and what is the main result?
The results are presented by comparing the number and percentage of
participants in each group, who were confirmed as having quit smoking 12



months later (Table 3). In the control group, 18 (6.4 per cent) had quit. In
the intervention group, 38 (13.6 per cent) had quit. The difference is 7.2 per
cent, meaning that around 7 per cent more participants told their ‘lung age’
had quit, compared to those who were not told their lung age. The effect
size is slightly smaller than the 10 per cent expected by the study team, but
the sample size has still achieved sufficient statistical power to detect that
this difference is statistically significant (p = .01). The p value indicates that
it is highly unlikely that this difference is due to chance. It is worth noting
that the actual lung age did not seem to matter, which is perhaps surprising.

How precise are the results?
The confidence intervals surrounding the difference of 7.2 per cent are
shown (p.4) as 2.2 percent to 12.1 per cent. Although fairly wide, they do
not include zero. We can be fairly sure that the effect is to increase, rather
than decrease, smoking cessation. Even at the lower end of this interval (2.2
per cent), we would still conclude that the intervention encouraged people
to quit smoking.

Were all important outcomes considered so the results can be
applied?
As discussed above, other important outcomes were considered in the trial.
Not only did the intervention improve the smoking cessation rate, it reduced
the number of cigarettes smoked per day (Table 3). People in the
intervention group smoked on average two cigarettes less (11.7 vs. 13.7
cigarettes) per day, 12 months later, compared to the control group.
Although small, this effect was statistically significant (p = .03) and we
need to keep in mind that small effects can be important when applied at the
population level, and over time. The effect of larger populations of smokers
reducing their consumption by two cigarettes per day, over many years,
may have some benefit. The difference in the number of people attending
NHS smoking clinics was not tested, presumably because of small numbers
(5 vs. 4). The difference in those accessing cessation help was not
significant (p = .20) but the study was not powered to detect this difference.
Overall, we do not know what the effect of telling patients their lung age
might be on outcomes other than quitting and cigarette reduction, but it is
likely to be a beneficial effect.



The people in the trial could be different from your local population.
Consider the setting. The characteristics of the Hertfordshire GP practices
are not known, and we may want to consider the socio-economic profile of
this region before making strong conclusions about the effectiveness of the
intervention across the UK. Randomisation however, ensures that known
and unknown confounding factors are addressed. If the intervention works,
this is still good-quality evidence, but the evidence can only generalise to
patients with a similar socio-economic profile. You can check the socio-
economic profile of a region on the Network of Public Health Observatories
website (www.apho.org.uk/default.aspx?RID=49802) under Health profiles.
In 2011 for example, Hertfordshire performed well on nearly all indicators
of socio-economic status and health inequalities, with the exception of
physical activity in children. Would this intervention be equally as effective
in a region with high levels of deprivation and low levels of educational
attainment, such as Wakefield (identified as an NHS ‘Spearhead’ region,
performing poorly on many indicators)?

Finally, according to the stage of change theory cited in the paper,
participants will move from a pre-contemplative stage, to contemplative,
preparation and action stages, before quitting. Table 2 indicates that only
around 20 per cent of participants were at the action stage in both
conditions. If however, telling patients their lung age motivates them to take
action, why hadn't more patients moved through these stages? There may be
other mechanisms at work which the theory has not accounted for. As the
authors note, the mechanism accounting for why this intervention works
remains unknown. For now, our conclusion is that whatever the mechanism,
it seems to work.

http://www.apho.org.uk/default.aspx?RID=49802


Effect of physical activity on cognitive function in
older adults at risk for Alzheimer’s disease: a
randomised trial [59]
Many older adults do not meet the recommended levels of physical activity,
which are published by the World Health Organisation [60]. Physical
inactivity may be a risk factor for cognitive decline, mild cognitive
impairment, and dementia [61]. Therefore, researchers have speculated
whether physical activity may be a possible intervention, to slow down
cognitive decline. The paper we will now critically appraise involved a
physical activity intervention and its effects on cognitive decline over 18
months. Given that cognitive decline occurs over several decades [62], do
keep in mind that this is a relatively short follow-up period, and we should
therefore expect a small effect.

Download this paper from http://jama.jamanetwork.com/article.aspx?
articleid=182502

Did the study ask a clearly focused question?
Yes, the research question is stated at the end of the introduction section and
it is clearly focused:

We designed the present randomised trial to test whether a 24-week
home-based physical activity intervention reduces the rate of cognitive
decline among older adults at increased risk of dementia.
The population is defined as ‘older adults…at increased risk of

dementia’, the intervention is ‘a 24-week home-based physical activity
intervention’, there is presumably a control group (although we will have to
check the methods section to be sure), and the outcome is ‘the rate of
cognitive decline’ which presumably the authors predict will be slower in
the intervention group at the end of follow-up. Therefore, all four of the
PICO criteria have been described.

http://jama.jamanetwork.com/article.aspx?articleid=182502
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The control group and the intervention group both received standard
materials covering memory loss, stress management, diet, alcohol and
smoking but not physical activity. The intervention involved encouraging
participants to perform 150 minutes of moderate intensity physical activity
per week, in three 50-minute sessions. If already doing this at baseline,
participants were asked to add another 50 minutes per week (one session).
This was delivered as part of a one hour interview with a study team
member and consisted of a home-based workbook, a diary that was mailed
to the study team every month, and recommended activities such as walking
(although participants were free to choose their activities). Eight newsletters
were mailed out during the study, aimed at reinforcing the
recommendations, which should also be considered part of the intervention.

In summary, the research question was clearly focused on a population
(older adults at risk of dementia), intervention (physical activity), control
group (treatment as usual) and outcome (cognitive decline).

Was this a randomised controlled trial (RCT) and was it
appropriately so?
This was an RCT, which is the right research approach for evaluating the
effectiveness of a new intervention. Since the population is studied in
community settings, it may also provide useful information about the
efficacy of the intervention.

Were participants appropriately allocated to intervention and
control groups?
The ‘Participants’ section of the paper is rather complex, because there are
several different inclusion criteria – even before we get to randomisation.
Although the population was defined broadly as ‘older adults’, this section
is more specific about the inclusion criteria:

age 50 or older;
attending memory clinics or responding to media advertisements;
Telephone Interview for Cognitive Status (TICS) score of 19 or
higher;
Geriatric Depression Scale lower than 6;
drinking 4 units of alcohol per day or less;
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no chronic mental illness (e.g. schizophrenia);
no medical conditions likely to compromise survival (e.g cancer) or
prevent engagement in physical activity (e.g. cardiac failure);
no severe sensory impairment;
fluent in written or spoken English.

On top of all these requirements, participants were then invited to a
screening interview and were excluded if any of the following criteria were
met:

Mini-Mental State Examination score <24;
Clinical Dementia Rating Scale score of 1 or more;
unable to walk for six minutes without assistance.

Importantly, volunteers were eligible for randomisation if they answered
yes to ‘Do you have any difficulty with your memory?’, regardless of
whether or not any of the tests given showed an impairment. This means
that participants had to report subjective memory complaints, which may
not be reliable indicators of objective memory problems. Subjective
complaints are often not associated with objective cognitive function, and
may be confounded by depression and personality traits (particularly
neuroticism or negative emotionality) [63]. This means that participants in
the sample may be self-selected, to some extent, and the results may not
generalise to patients who have memory problems but are not aware of
them.

Mild cognitive impairment (MCI) was defined as having scores 1.5 SD
lower than the age and sex-specific mean on four subtests (verbal fluency,
object picture naming, word list immediate and delayed recall, praxis) from
a battery of cognitive tests called the Cognitive Battery of the Consortium
to Establish a Registry for Alzheimer's Disease. A reference is provided for
this battery, should we want to find out more about it. It provides population
norms, normative data, so that the study sample can be compared to the
population. The ‘Randomisation’ section explains how eligible participants
(after all of the above inclusion and exclusion criteria were met) were
randomised. Randomisation was performed using computer generated
numbers. Table 1 shows the baseline characteristics in each group, allowing
us to check if randomisation worked. The groups look very similar, but



there is no clear statement that these values were compared formally, to see
if there were any statistically significant differences.

Were participants, staff and study personnel ‘blind’ to participants’
study group?
The authors acknowledge that blinding was not really practical for this kind
of intervention: ‘Due to the nature of the intervention, participants were not
blinded to group membership, but research personnel undertaking cognitive
assessments were’ (p. 1029). Additionally, participants were asked not to
discuss the intervention with study staff. We should bear in mind that some
participants might have done this anyway, which could potentially have
introduced some bias. This risk was minimised by having analysis staff in a
separate building from where the participants were seen.

Were all of the participants who entered the trial accounted for at
its conclusion?
The authors provide a flow diagram (p. 1030 in the paper) which is helpful
because it shows that all of the participants were accounted for, from
recruitment to end of follow-up. Flow diagrams are recommended by the
CONSORT statement [51]. We can see what happened to each participant,
and who was lost. The figure shows that 85 people were in each condition
(exercise and control), but that only 69 of these people came to the 18-
month visit (6-, 12-, and 18-month follow-ups were performed). The reason
why 85, rather than 69, people were included in the primary analysis is
because they were analysed on an intention-to-treat basis. Multiple
imputation was used to replace missing values, which often reduces bias
compared to simply excluding participants with missing data from the
analysis. The authors also conducted a complete-case analysis (repeating
the results using only participants with complete data at all time points),
allowing them to compare results and see if multiple imputation changed
conclusions drawn. The information provided is detailed and reassuring.

Were the participants in all groups followed up and data collected
in the same way?



Yes, both groups were followed up and data collected in the same way. This
is clear from the flow diagram and from other results reported. It is worth
noting however, that adherence to the recommended increase in physical
activity in the intervention group was evaluated by using self-reported
physical activity questionnaires. Self-reported physical activity may be
under- or over-reported, introducing bias. It is also worth noting that
according to this criterion, 78 per cent achieved adherence, meaning that 22
per cent did not actually receive the intervention as intended. Compare this
to a drug trial, where not all participants in the drug condition actually take
the drug as instructed – it could weaken any apparent effects.

Did the study have enough participants to minimise the play of
chance?
A power calculation is reported (p. 1030). The effect size was estimated
based on clinically meaningful differences of 2.5 points on the ADAS-cog,
a cognitive test used to evaluate treatment effects in trials. To be able to
detect an intervention effect capable of preventing a 2.5 point drop in
cognitive function, a sample size of 168 was deemed necessary (85 in each
group, dropout estimated at 20 per cent, 90 per cent power). Since the
sample size was 170, the study has adequate power to detect 2.5 point
differences on ADAS-cog.

How are the results presented and what is the main result?
The bottom line results are that the exercise group experienced significantly
less cognitive decline than the control group (see Table 2 in the paper,
p.1032). At 18 months for example, the exercise group had ADAS-cog
scores −0.38 lower than their baseline score, and the control group had
scores 0.45 higher. Overall (across 6, 12 and 18 months), this was
statistically (p = .04) but not clinically significant (given the definition of
2.5 points as clinically significant). The authors acknowledge this small
effect: ‘The average improvement of 0.69 points on the ADAS-Cog score
compared with the usual care control group at 18 months is small but
potentially important when one considers the relatively modest amount of
physical activity undertaken by participants in the study’. The study was not
powered to examine decline on other cognitive tests, although a significant
result was found for word lists. This could be due to chance.



How precise are the results?
The precision of the results is difficult to gauge because of the way in which
the results in Table 2 are presented. The confidence intervals shown refer to
the mean difference from baseline in each group. It might have been more
informative to see the mean difference between groups and the confidence
intervals surrounding this mean difference. A figure might have been more
useful. Nonetheless, the p value of .04 indicates that the intervention group
had significantly better cognitive function compared to the control group.

Were all important outcomes considered so the results can be
applied?
Adverse events were reported but were not thought to be caused by the
intervention. Other points we might want to bear in mind, should we
consider replicating this intervention in local settings, are that women were
more likely to drop out than men. Secondary outcomes might include
performance on specific tests, other than general ADAS-cog score, in a
larger study with more statistical power, in future. In the complete case
analysis (Table 4 in the paper, p. 1034), there is a non-significant trend
suggesting better Mental Component Summary (MCS) scores in the
intervention group (p = .08). Although the study was not powered to detect
this effect, it is suggestive that the intervention might also have secondary
benefits, including improved mental health, worth exploring in other
studies. We should also note, as acknowledged by the authors, that the
sample was relatively young and healthy, were drawn from a single
community, mechanisms that might explain the effect are not known, the
study was not designed to evaluate subsequent dementia risk, and not all
participants received the intervention as intended, because they did not do
the recommended levels of exercise. Additionally, only participants with
subjective memory complaints were eligible, excluding those with objective
but perhaps unrecognised complaints. Overall, the study was well-executed
but a cost-effectiveness calculation would be required, given the small
effect which the intervention produced. Is the cost of the intervention worth
the small improvement in ADAS-cog scores?



Summary
In this chapter, we have performed a critical appraisal of three randomised
controlled trials: a cognitive behavioural intervention for gay/bisexual men
aimed at reducing sexually transmitted infections, telling patients their lung
age and its effect on quitting smoking 12 months later, and a physical
activity intervention for older adults and its effect on cognitive decline over
18 months. All three studies were selected because they provided you with
experience in appraising quite different kinds of populations, interventions
and outcome measures. All three share important characteristics: they
involved randomisation, they had controlled groups, and they were trials.
The most important thing to remember about RCTs is that they deal with
both known and unknown confounding factors, which can produce good-
quality evidence.
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Cohort studies
 
 
 
This chapter presents three examples of how to critically appraise cohort
studies. A cohort is a group of people who share common characteristics or
experiences; for example, they were born within a particular period (a birth
cohort); they may have been exposed to a particular risk factor for disease;
or they may have undergone a particular medical procedure. A cohort study
is a form of research design which longitudinally observes a group of
people with particular attributes in order to monitor the health outcomes, for
example, a cohort exposed to cigarette smoke in order to discover how
many of them develop cancer. A cohort study can be conducted either
prospectively, or retrospectively (historically) from existing recorded data.

The critical issues you will engage with are similar to those discussed in
the previous chapter:

Did the study address a clearly focused issue?
Did the study use an appropriate method to answer the research
question?
Was the cohort recruited in an acceptable way?
Was exposure (to risk), and study outcome, accurately measured to
minimise bias?
Have the authors identified all the important confounding factors,
including those which are part of the design and analysis?
Was follow up of subjects complete enough and long enough?
What are the results of the study, and how precise are they?
Do you believe the results, important for a cohort study, which may
involve self-reporting? Can the results be applied to the local
population, and do they fit with the other available evidence?
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The studies discussed in this chapter are:

environmental tobacco smoke and tobacco related mortality in a
prospective study of Californians, 1960–98;
joint effect of cigarette smoking and alcohol consumption on
mortality;
institutional risk factors for norovirus outbreaks in Hong Kong elderly
homes: a retrospective cohort study.
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Intended learning outcomes
By the end of this chapter, you should be able to:

identify the essential features of a cohort study;
read and understand published journal articles which report the results
of cohort studies;
critically appraise a journal article or paper describing the results of a
cohort study;
summarise the strengths and limitations of a paper describing a cohort
study.
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What are the essential features of a cohort study?
Cohort studies generally fall into one of two types:

Prospective cohort study: the researchers identify whether or not
participants have been exposed to a risk/protective factors, then
follow-up the participants to see what happens to them. The disease
outcome is not known at the start of the study. Did the participants get
the disease or not?
Retrospective cohort study: The disease outcome is known at the start
of the study. The researchers then identify whether or not participants
were exposed to the risk/protective factor in their past.

Prospective cohort studies are generally more common than retrospective
cohort studies. In this chapter, we will appraise two prospective cohort
studies and one retrospective one. Retrospective studies may rely on self-
reported exposures by participants. For example, mothers may be asked
how much coffee they drank during pregnancy. Patients attending a sexual
health clinic may be asked how much alcohol they drank prior to their last
sexual encounter. People attending a memory clinic may be asked about
their usage of mobile phones in the years previously.

A clear limitation of retrospective studies is that the exposure status may
not be accurate, due to recall bias. This could lead us to underestimate the
association because misclassification will push the association towards a
null effect. Stronger designs will obtain information about exposure status
from other sources (e.g. record linkage to other databases). A limitation of
prospective cohort studies is that researchers may have to wait a long time
before finding out whether or not participants develop the disease outcome.
It may be quicker to go for the retrospective approach, starting with a group
of people who may or may not already have the disease. A case-control
design (Chapter 10) is another possibility, particularly if the disease is rare.



•

•

•

Environmental tobacco smoke and tobacco related
mortality in a prospective study of Californians,
1960–98 [64]
This paper generated much debate when it was published. The debates
centred around the role of the tobacco industry which contributed some of
the funding. Perhaps unfairly, many of the responses and letters about the
paper did not appraise the results themselves. It is the methods, data, and
analysis of a study which we should focus on, not the funding source. It is
helpful however, to know a little of the background/context to this paper.
The authors are known for their claims that the harms associated with
environmental exposure may have been exaggerated by public health staff
and policy makers, and have called for balanced appraisal of the harms and
benefits of smoking bans.

Download this paper from htt p:/ /ww w.b mj.‐ 
com /content/326/7398/1057

Did the study address a clearly focused issue?
The study addresses a clearly focused issue, in terms of the population, risk
factor(s), the outcome and whether they tried to detect a harmful or
beneficial effect:

The population is adults in California who originally took part in a
study of cancer prevention in 1959 (N = 1,078,894) and who were
followed until 1998. They were age 30–96 at baseline.
The risk factor is exposure to second-hand smoke (environmental
tobacco smoke), with particular reference to the ‘never’ smokers who
had a smoking spouse.
The outcome is tobacco related mortality, which includes deaths from
coronary heart disease (CHD), lung cancer, chronic obstructive
pulmonary disease (COPD) related to smoking in spouses.

http://www.bmj.com/content/326/7398/1057


• The effect is hypothesised to be harmful, although the authors are keen
to emphasise that several studies and meta-analyses have not found a
reliable association between environmental tobacco smoke and
mortality.

Did the authors use an appropriate method to answer their
question?
A cohort study is a good way of answering the question under the
circumstances. It would not be ethical or feasible to expose people to
second-hand smoke in a randomised controlled trial, for example. Animal
experiments would be an alternative, but ethics committees (see Chapter
11) may question whether other kinds of evidence can be looked at first,
before considering animal work. Additionally, animal studies may lack
external validity (see Appendix 7), because the research question is
concerned with the domestic second-hand smoke which the partners and
children of smokers are exposed to in domestic settings.

Was the cohort recruited in an acceptable way?
Many papers that describe results from cohort studies do not include details
about recruitment, because they can provide a reference to an earlier paper
which provides those details. It would be unfeasible for a large cohort study
to describe details of recruitment each time a paper was published. Cohort
studies are usually expensive, involve many exposure variables, and several
outcomes. Many papers are published from the same study, focusing on one
research question at a time. Sensibly, the authors provide references to
earlier papers which describe recruitment in more detail. Unfortunately this
means that we would have to read these additional papers to learn more
about recruitment. Here, the authors provide an earlier reference which
describes the Cancer Prevention Study I cohort recruitment and follow-up
in more detail [65, 66].

When appraising results from cohort studies, you may want to familiarise
yourself with the cohort study itself. Although this involves extra reading, it
can be helpful to learn about these cohorts. The International Journal of
Epidemiology regularly publishes ‘cohort profiles’ which summarise major
cohort studies, a helpful resource. Keep in mind that few cohorts are
representative of the population, each share some common characteristic



(e.g. birth years, time, place), and many are ‘convenience cohorts’. This
doesn't necessarily mean that results are biased, however, and often the
evidence these cohorts produce is the best available evidence. We discuss
issues of bias, external validity and generalisability in this and other
chapters.

Was the exposure accurately measured to minimise bias?
The exposure was not measured objectively. Methods do exist for objective
measurement of smoking, including passive smoking, such as salivary
cotinine. This may not have been practical in this study, as in many studies,
due to cost and the large sample size. This is not necessarily a serious
limitation, but remember that misclassification of an exposure (e.g. some of
the unexposed were actually exposed to the risk factor) can attenuate the
association and push the OR towards 1 (no association). Relying on self-
reported exposure can lead us to underestimate the effect of the exposure.

The participants are male never smokers, classified according to smoking
status of their partner. The exposure was measured in male never smokers,
the focus for analysis, and was classified ‘according to the smoking status
of the spouse: 1–9, 10–19, 20, 21–39, >=40 cigarettes per day’ for men and
women, with the addition of a pipe/cigar category for women. The reasons
for these cut points, and the different approach to classifying pipe/cigar use
for women is not clear, but may reflect peaks in the distribution at 10 and
20 cigarettes per day, and the fact that pipe/cigar use in women is relatively
unusual.

To summarise, the exposure is “never smoker, married to
current/exsmoker” compared to “never smoker, married to never smokers”.
This ensures a ‘clean’ sample where the only smoking, in theory, is done by
the spouse – not the study participant. This means that the exposure is
environmental/passive smoking rather than primary smoking.

Was the outcome accurately measured to minimise bias?
Mortality is an objective outcome. The authors did not consider all-cause
mortality but decided to focus on mortality related to CHD, lung cancer and
COPD. It is unclear why they did not consider the broader category of
cardiovascular disease deaths (CVD) in addition to the narrower category of
CHD. CVD includes stroke deaths, for example, which CHD does not.



Mortality records were obtained by matching participants on the California
death file and the social security death index, to names, drivers' licences,
dates of birth and heights. Some participants were not matched (p.4), which
could lead to misclassification (e.g. classifying someone as alive who was
actually dead).

Have the authors identified all important confounding factors?
The authors list seven confounding factors, in addition to age, which they
think could be causally related both to the exposure (smoking status of the
spouse) and the outcome (mortality): ethnic group, educational level,
physical activity, body mass index, urbanisation (grouped into five
population sizes), fruit/fruit juice intake and health status (good, fair, poor,
sick). Additionally, analyses were repeated on all participants, then on those
without baseline chronic diseases (cancer, heart disease, stroke). What other
confounding factors do you think they might have missed? Socio-economic
status is one possibility, which could be measured using occupation,
income, or an area-based measure of socioeconomic deprivation. We should
also keep in mind that cohort studies can produce healthy survivor effects,
meaning that healthier participants are more likely to remain in a study.
This should be distinguished from ‘health selection’.

Have they taken account of the confounding factors in the design
and analysis?
The authors used Cox proportional hazards regression, so that they could
adjust the relative risk of death over folow-up (hazard ratio) for the
confounding factors listed above. We will learn more about adjustment in
Chapters 13 and 14. They also conducted some sensitivity analyses, which
involve repeating analyses to check whether the results were the same in
those without baseline prevalent disease.

Was the follow up of subjects complete enough?
The cause of death was available for 93 per cent of the 79,437 deaths which
were available for analysis. This is fairly complete. It is worth noting
however, that deaths are sometimes classified into their primary ‘underlying
cause’ and secondary causes. We assume here that this cause of death is the



underlying cause, but environmental exposure to tobacco smoke might have
influenced secondary causes of death. Completeness of follow-up is shown
in detail in Table 1 in the paper. In 1999, another questionnaire was sent out
to help clarify whether the matching process had been successful. This
questionnaire showed that at least 99 per cent of the participants had been
accurately matched.

Was the follow up of subjects long enough?
The analysis is based on three follow-ups (1959 = baseline/recruitment,
1965, and 1972; p.4) where the smoking status of the spouse was available.
This is helpful because repeated assessments reduce measurement error in
the exposure. If the authors had relied on smoking status of the spouse at
baseline only, they would have missed possible changes in this status over
time. The spouse might have stopped smoking or starting smoking, during
follow-up, for example. The start time was set at 1960 (for convenience, the
remainder of 1959 was excluded and so were 36 people who died in 1959
itself), until people had died, withdrawn from the study (defined as ‘date
last known alive’), or end of follow-up for the study (end of December
1998). Overall, 38 years of follow-up are available (1998–1960=38) which
is sufficient time for deaths to occur. Because many participants will still be
alive at follow-up, they have to be ‘censored’ from the analysis, which is
why the authors chose Cox regression as a statistical model. Cox regression
is beyond the scope of this introductory text, but it is worth noting here that
Cox regression is appropriate because it takes into account this ‘censoring’
and deals only with the deaths that actually occurred during follow-up.
Longer follow-up times result in more deaths, which results in more
statistical power, because the regression model has more power if there are
more deaths to consider. One of the most famous studies of smoking in
relation to mortality has over 50 years of follow-up available [44].

What are the results of this study?
In men who reported never smoking, there was no association between
smoking in the spouse and each of the three outcomes (CHD, lung cancer,
COPD). First, let's look at the ‘Total of current smokers’ (Table 7, p.6 in the
paper) which groups all the cigarette categories into ‘smokers’ vs. never
and former smokers, from baseline to end of follow-up (the first column,



labelled ‘All 1959 participants, followed 1960–98’). We should focus on the
‘Fully adjusted relative risk’ and its confidence intervals, because the age-
adjusted risk is not adjusted for the seven other confounding factors. In
actuality, these figures are hazard ratios, used to estimate the relative risk of
death over follow-up after censoring has been taken into account, but some
authors prefer to simply call them relative risks. The relevant figures are
shown in Table 9.1.

All three of the hazard ratios are consistent with no association (HR = 1)
because the confidence intervals include 1. The hazard ratio for COPD
suggests an increase in risk (1.28) but the hazard ratio of 0.57 for lung
cancer suggests a decrease in risk; a protective effect of current smoking in
the spouse. Aside from the wide confidence intervals which mean this
should not be considered reliable, it could be picking up a healthy survivor
effect [4]. Those most susceptible to the exposure may already have died in
1959 when recruited into the study, leaving healthier participants in the
cohort. Healthy survivor effects are more common in older cohorts.
Table 9.1 Fully adjusted relative risks (Table 7 in the paper)

CHD Lung cancer COPD
Total of current
smokers

HR = 0.92, 95% CI
0.80, 1.05

HR = 0.57, 95% CI
0.26, 1.26

HR = 1.28 = 0.72, 2.27

Table 9.2 Analysis of CHD deaths
CHD deaths Number of deaths

(number of
participants)

Fully adjusted HR
(95% CI)

Notes

1–9 81/392 0.98 (0.78, 1.24) No association
10–19 99/513 0.82 (0.66, 1.02) No association
20 81/458 0.89 (0.70, 1.13) No association
21–39 27/129 1.13 (0.76, 1.68) Threshold effect?
>=40 13/45 1.24 (0.70, 2.19) Evidence for doser-

esponse association

One finding that is potentially important is that above 20 cigarettes per
day, CHD risk is increased and there is some evidence of a dose-response
association here. This is not statistically significant, but there are relatively
few people in these categories, which could lower statistical power:



These results are consistent with a 13 per cent increase in risk of CHD
death when the spouse smoked 21–39 cigarettes per day, rising to 24
per cent increase in risk for >=40 cigarettes per day. Wide confidence
intervals could reflect low power. A threshold effect may exist,
whereby only heavy smoking in a spouse is associated with increased
risk. This is consistent with what we might expect, because if there is
an association, it must be weaker than for primary smoking, and is
likely to be picked up at the higher number of cigarettes smoked by the
spouse. The absolute risk reduction is not shown.
The authors conclude ‘The relative risks were consistent with 1.0 for

virtually every level of exposure to environmental tobacco smoke, current
or former’ (p.6) but acknowledge that ‘they do not rule out a small effect’
(p.9).

How precise are the results? How precise is the estimate of the
risk?
As mentioned above, the results are not very precise because the confidence
intervals are wide. This could reflect misclassification of the exposure
(including measurement error in how spouse smoking was recorded), and
low power (particularly for the dose-response results for CHD deaths).
There may be residual confounding, including by widowhood. If the
association between environmental exposure is small (e.g. HR = 1.05), then
very large sample sizes may be required to estimate this effect precisely.

Do you believe the results?
The results show a potentially important association between heavy
smoking in spouses and CHD deaths, and between smoking and COPD
deaths, not statistically significant. This is consistent with expectations,
because environmental exposure to smoking will inevitably have a smaller
risk than that for primary smoking. Heavy smoking in a spouse is
biologically plausible as a risk factor for non-smokers experiencing adverse
health outcomes, including mortality. Given the relatively small number of
heavy smoking spouses, and few deaths available, it is premature to draw
conclusions.



Can the results be applied to the local population?
The authors suggest that public health advocates have exaggerated the
claims about passive smoking. Although their study was based on a large
sample of people with a long follow-up time, there were relatively few
deaths among participants who had heavy smoking spouses. The effect of
passive smoking could be small, only detectable at >20 cigarettes/day for
example. This study was not powered to detect such an association. Even a
small effect could be considered important when applied across the whole
population. It would be premature to conclude that passive smoking has no
association with CHD, lung cancer or COPD mortality. We also have to
remember that mortality is only one endpoint. Passive smoking could be
related to morbidity, self-rated health, mental health and other outcomes.
Public health advice should continue to emphasise the importance of
smoking cessation, or cutting down for people who feel unable to quit – for
all adults.

Do the results of this study fit with the other available evidence?
The results suggest no association between environmental exposure (as
measured by spouse smoking) and CHD, lung cancer and COPD mortality.
This is not consistent with other evidence showing that there is an
association between passive smoking and lung cancer, for example [68].
These results are consistent with a small effect at heavier levels of smoking
and could reflect low statistical power arising from the small number of
deaths in these categories.



Joint effect of cigarette smoking and alcohol
consumption on mortality [69]
Smoking and heavy alcohol consumption may produce multiple risk of
mortality, meaning that each is a risk factor. Sometimes however, the
combined effect of two different exposures (risk factors) is also greater than
the effect of each exposure separately. When this happens, it is called an
interaction, because the two exposures do something differently when
combined. For example, the combined effect may increase risk over and
above any risk conferred by the exposures on their own. Interaction is also
called ‘effect modification’, and was discussed in more detail in Chapter 6
and in several journal articles [70-73].

Here, we are going to critically appraise a paper where researchers claim
to have found an interaction between cigarette smoking and alcohol
consumption on mortality risk. This has important implications in public
health and other disciplines, because interventions for individual behaviours
may offer a double divided. When two exposures interact, removing one of
them does not only remove the risk associated with that exposure, it
removes any excess risk from its interaction with the other exposure [74].
For example, suppose that smoking and heavy alcohol consumption both
increase risk of mortality, but their combined effect is even stronger.
Smoking cessation would reduce the risk of mortality, because it increases
risk on its own, but it would reduce it even further because the combined
effect would no longer exist. For this and other reasons, interactions
between risk factors are important to know about [75, 76]. Knowledge
about interactions can improve the evidence base, and offer patients even
more reasons to change their health behaviours. In the example here, heavy
committed smokers who feel unable to quit smoking, might be encouraged
to reduce their alcohol consumption instead. This might reduce some of the
risk from alcohol and from the interaction. Interactions are notoriously
difficult to replicate however, so let's first focus on whether the study
actually shows evidence that these two behaviours interact.

Download this paper from htt p:/ /ww w.n cbi .nl‐ 
m.nih.gov/pmc/articles/PMC2997335/
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Did the study address a clearly focused issue?
The paper seems to be clearly focused, in terms of the population, risk
factor(s), the outcome and whether they tried to detect a harmful or
beneficial effect:

the population studied is husbands of women enrolled in the Shanghai
Women's Health Study (SWHS);
the risk factors studied are cigarette and alcohol consumption (and also
their combined or ‘joint’ effect);
the outcome is mortality, both all-cause and cause-specific (CVD and
cancer mortality);
the researchers note that smoking is expected to have a harmful effect,
alcohol is expected to have a non-linear effect (moderate consumption
may be beneficial, heavy consumption may be harmful) and their
combined effect is not clear at this stage.

It is acceptable for a research hypothesis to be left open in this way.
Because the literature about how smoking and alcohol might interact is
relatively small, there may not be sufficient background in order to make a
prediction about the direction of the effect.

Did the authors use an appropriate method to answer their
question?
A cohort study is a good way of answering the question under the
circumstances. As with the previous paper on passive smoking we
appraised, it would not be ethical or feasible to expose people to cigarette
smoke and alcohol, to see if it increased their mortality risk. Following a
large group of people, some of whom smoke and drink alcohol, to see what
happens to them, is appropriate.

Was the cohort recruited in an acceptable way?
This cohort was recruited from another cohort, the Shanghai Women's
Health Study (SWHS). It is not clear why the husbands of women in SWHS
were used, rather than the women in the SWHS cohort themselves. From



the description under ‘Methods’ (p.314) it seems that cigarette and alcohol
information was contained within a questionnaire for the husbands, and by
implication, not for the women themselves. It is also possible that the
original focus of the SWHS cohort was diet, and this is why smoking and
alcohol were not originally included in the women's questionnaire. The
cohort covers seven geographical regions, and is therefore likely to
generalise beyond one region. The cohort being used for analysis comprises
only married men. Since the biologic effect of smoking and/or alcohol is
unlikely to be different in unmarried men, this is acceptable, although we
should consider marital status as a potential confounder. The results will not
be confounded by sex differences, because women are not included, but the
interaction may behave differently in women if there are sex differences in
the biologic effect of either behaviour on mortality.

Was the exposure accurately measured to minimise bias?
Both behaviours were measured by self-report. This is commonplace for
large epidemiological studies, and we know that self-reports are reasonably
accurate. Alcohol consumption may be susceptible to recall bias [77], and
this is particularly important when looking at dose-response effects.

Was the outcome measured appropriately to minimise bias?
The survival status was available for 96.7 per cent (p. 314) of the men,
which was obtained by self-report (presumably by their wives). A
population-based death registry system was then used to verify the cause of
death. The cause however, could be determined by medical professionals,
community health workers, or legal medical experts. The accuracy of
causes of death may differ according to who made the judgement. This
should not influence results however, because it is unrelated to the
exposures.

Have the authors identified all important confounding factors?
The authors identify several confounding factors, which we can see at the
bottom of Table 2 in the paper (p. 316): age, education, body mass index,
and several chronic diseases. These may be causally related to smoking,
alcohol and mortality. Other confounding factors might include



occupational social class and income, because educational attainment may
not capture all aspects of SES. Sex and marital status are not relevant here,
because the sample comprises only married men. By definition, sex and
marital status cannot be confounding factors here (see Chapter 6).

Have they taken account of the confounding factors in the design
and/or analysis?
Yes, their model makes adjustment for these factors.

Was the follow-up of subjects complete enough?
The authors acknowledge that they did not perform a record linkage (p.
317) for all cohort subjects. Instead, they relied only on those who were
reported to have died. This means that some men may have died, but were
treated as alive in the analysis. This would bias results towards ‘no
association’ (HR = 1) leading the researchers to under-estimate any
association.

Was the follow-up of subjects long enough?
Participants were followed for a mean of 4.6 years (1996 to 2000), which is
not very long. The effects of smoking, alcohol use and their combined
effect may accumulate over many years, perhaps even decades [44].
However, if they do find effects within such a short follow-up time, this
strengthens confidence in the results because it means the effect is
detectable quite quickly.

What are the results of this study?
The results are quite complicated, so we will first look at the results
concerning smoking, then the results for alcohol, then the combined effect.

The results are shown in Table 2 (cigarette smoking and alcohol
consumption), with some additional results on type of alcohol beverage
(Table 3) and then another table, Table 4, looking at the joint effect. We will
focus on Table 2 and Table 4 here. The relevant results from Table 2 in the
paper are shown here in Table 9.3. For each health behaviour, we are shown



the hazard ratio (HR) and 95 per cent confidence intervals for all-cause,
CVD and cancer mortality separately.
Table 9.3 Cause of death (from Table 2 of the paper)

All-cause CVD Cancer
Smoking status of spouse HR (95% CI) HR (95% CI) HR (95% CI)
Non-smokers (reference group) 1 1 1
Former smokers 1.6 (1.4, 1.8) 1.8 (1.5, 2.2) 1.3 (1.1, 1.7)
Current smokers 1.4 (1.3, 1.6) 1.7 (1.5, 2.1) 1.3 (1.1, 1.5)
Non-drinkers (reference group) 1 1 1
Former drinkers 1.3 (1.1, 1.5) 1.1 (0.8, 1.4) 1.4 (1.1, 1.8)
Current drinkers 0.9 (0.8, 1.0) 1.0 (0.9, 1.2) 0.8 (0.6, 0.9)

Non-smokers are the reference group, against which ex-smokers (former
smokers) and current smokers are compared. Non-drinkers are the reference
group, against which ex-smokers and current drinkers are compared.

The first thing to notice is that both current smokers (HR = 1.4) and
exsmokers (HR = 1.6) have an increased risk of death from all-causes, CVD
and cancer. The effect is strongest for CVD mortality (HR = 1.7 and 1.8),
weakest for cancer mortality (HR = 1.3 for both groups), and somewhere in
between for all-causes (HR = 1.4 and 1.6). This is in line with expectations,
given that we know smoking is a strong risk factor for CVD, and also a risk
factor for several different kinds of cancer (e.g. lung cancer).

The picture for alcohol drinking is more complex. Former drinkers have
an increased risk of death from all-causes (HR = 1.3) and cancer (HR =
1.4). There is a non-significant trend suggesting that current drinkers have a
reduced risk of death from all-causes (HR = 0.9, but the upper confidence
interval touches 1). Current drinkers have a reduced risk of cancer mortality
(HR = 0.8). All other results are non-significant.

Dose-response evidence provides more convincing data that an
association is causal. Let's now look at the association from lower to higher
levels of consumption, also shown in Table 2 but extracted in Table 9.4.

For smoking, there is a clear dose-response association from less (1 to 9)
to more (>=10) cigarettes smoked, for all-cause and CVD mortality. For
cancer mortality, no association is seen in the >=40 cigarettes/day group,
which is surprising. Note however, that there were fewer people in this



group, and also that very heavy smokers may have already died, introducing
a healthy survivor effect which could bias the results.

For alcohol, the pattern is less clear. There seem to be protective effects
of alcohol at the low to moderate levels of consumption, but then harmful
effects at the higher levels. This pattern is a non-linear pattern, often seen
by other researchers, who describe a ‘U shaped’ or ‘J shaped’ association
between alcohol and mortality risk [78]. The risk is lowest for moderate
drinkers, higher for non-drinkers and heavy drinkers, for example. Some
commentators have argued that the higher risk in non-drinkers might be
confounded by health status of non-drinkers. People may abstain from
drinking alcohol for health reasons for example.
Table 9.4 Cause of death: levels of consumption (from Table 2 of the paper)

All-cause CVD Cancer
HR (95% CI) HR (95% CI) HR (95% CI)

Never smoked (reference group) 1 1 1
1–9 (cigarettes per day) 1.2 (1.1, 1.4) 1.5 (1.1, 1.8) 1.0 (0.8, 1.4)
10–19 1.3 (1.2, 1.5) 1.4 (1.2, 1.8) 1.3 (1.0, 1.6)
20–39 1.7 (1.5, 1.9) 2.1 (1.8, 2.5) 1.5 (1.2, 1.8)
≥ 40 1.9 (1.6, 2.4) 2.8 (2.0, 3.8) 1.0 (0.6, 1.6)
Never drinkers (reference group) 1 1 1
1–7 (standard drinks – approx 12g

ethanol)
0.7 (0.6, 0.9) 0.8 (0.6, 1.0) 0.7 (0.5, 1.0)

8–14 0.9 (0.7, 1.0) 1.0 (0.8, 1.3) 0.7 (0.5, 0.9)
15–21 1.0 (0.7, 1.4) 1.2 (0.8, 1.9) 1.0 (0.6, 1.8)
22–28 1.0 (0.8, 1.2) 1.1 (0.8, 1.6) 0.9 (0.6, 1.4)
29–42 1.1 (0.8, 1.6) 1.2 (0.7, 2.1) 0.7 (0.3, 1.8)
> 42 1.6 (1.3, 2.1) 1.7 (1.1, 2.5) 1.5 (0.9, 2.6)

 
The authors present a p-value for the interaction which was not

statistically significant (p = 0.87). This suggests that the combined effect of
each behaviour is not significantly greater than their separate effects, and
that there is no strong evidence supporting effect modification. To illustrate
how the combined effect has been shown in Table 4 in the paper, Table 9.5
offers a simplified version of the results. Think about what you would
expect to see if the risk of mortality was even greater when smoking was
combined with heavy alcohol drinking. You would expect to see an even



stronger hazard ratio for that group, shown in the box in Table 9.5. This is
exactly what we see.

The results are slightly complicated by the fact that moderate alcohol
drinking may be protective, so we do not see a linear increase from never,
to moderate, to heavy alcohol consumer (as with the results focusing on
alcohol only, in Table 2 in the paper). In both moderate smokers and heavy
smokers, we see a decrease in the risk from never to moderate alcohol
consumption, then an increase from moderate to heavy. This is consistent
with a ‘U-shaped’ association. The effects are stronger among heavy
smokers. In fact, what we do see is the strongest association in the
combined, ‘super-exposed’ heavy alcohol and heavy smoker group (HR =
1.9). However, this combined effect is not significantly stronger overall,
because the p-value for interaction was 0.87.

How precise are the results?
The confidence intervals are fairly narrow, reflecting the sample size and
substantial number of people in each group. The results are not as precise
for alcohol drinking, with many groups having confidence intervals that
include or touch 1.
Table 9.5 Combined effect (extracted from Table 4 of the paper)

Never alcohol
consumer

Moderate alcohol
consumer (1–21
drinks per week)

Heavy alcohol
consumer (>=22
drinks per week)

HR (95% CI) HR (95% CI) HR (95% CI)
Never smoker 1 (reference group) 0.8 (0.6, 1.0) 1.0 (0.6, 1.6)
Moderate smoker (<20
cigs/day)

1.3 (1.1, 1.4) 1.0 (0.9, 1.2) 1.7 (1.2, 2.2)

Heavy (>=20 cigs/day) 1.7 (1.5, 2.0) 1.4 (1.2, 1.7) 1.9 (1.6, 2.4)

Do you believe the results?
The results for cigarette smoking are believable, although it is strange that
the effect sizes for ex-smokers are similar to those for current smokers.
Since quitting smoking is associated with a reduction in risk, we would
expect to see stronger effects for current smokers. The results for alcohol
drinking are more complex. The fact that ex-smokers have increased risk of



mortality could reflect morbidity, and the phenomenon known as ‘sick
quitters’. Have people stopped drinking alcohol, because they have been
diagnosed with a chronic disease? This could reflect confounding by health
status, although the authors did control for several chronic diseases. They
also report repeating results after excluding those with chronic illness (p.
315) and say that results did not change materially. It is unclear why current
drinkers have less risk of cancer mortality, although if we believe the wider
literature, there may be some protective effect of moderate drinking on
some types of cancer. Based on the p-value for interaction, we should not
believe that the two behaviours interact, at least for these outcomes and for
this length of follow-up time. Cumulative damage resulting from both
behaviours may occur [76], but perhaps this needs a longer follow-up
period to be detectable.

Can the results be applied to the local population?
The biologic mechanism underlying the association between smoking and
mortality, and between alcohol and mortality, will be the same in men and
women, and in China vs. elsewhere. The pattern of results, however, does
not fit with other available evidence, (see below), so we might be reluctant
to apply the results to our local population – particularly if that involved
concluding that alcohol protected against cancer mortality. This may not be
a wise public health message.

Do the results of this study fit with the other available evidence?
The dose-response analysis for alcohol seems to show stronger effects for
moderate drinking and cancer mortality. Existing systematic reviews
suggest that alcohol may be associated with oral cancer [79]. Concerning
mortality, there is some evidence of a protective effect of moderate wine
consumption on all-cause and cancer mortality [80], which does fit with this
study. The null results for CVD mortality do not fit with other evidence,
suggesting a protective effect of moderate alcohol consumption on CVD
mortality [81]. In the literature however, the apparent protective effect of
moderate alcohol drinking has been called into question. Does moderate
drinking actually reflect SES for example, or a ‘moderate personality’ type?
There could be residual confounding in this association. The pattern of
results showing a potentially stronger combined effect of smoking and



heavy alcohol consumption fits with other evidence [75, 76, 82], but is not a
significant interaction here. Longer follow-up times are needed, and it
would be helpful to look at systematic reviews and metaanalysis [76, 81] to
see what the ‘totality’ of available evidence suggests.



Institutional risk factors for norovirus outbreaks
in Hong Kong elderly homes: a retrospective
cohort study [83]
Our final paper to critically appraise in this chapter is a retrospective cohort
study.

Download this paper from htt p:/ /ww w.b iom edc entral.com/1471-
2458/11/297

Did the study address a clearly focused issue?
The research question was fairly focused, asking which institutional factors
in care homes for the elderly might be associated with norovirus outbreak.
A range of factors were chosen, widening the focus slightly from any one
risk factor. Whether these were harmful or beneficial was left open.

Did the authors use an appropriate method to answer their
question?
A cohort study is a good way of determining which factors in homes for
elderly persons might be associated with norovirus outbreaks. A
prospective cohort study might take a long time to conduct, because this
would involve noting the characteristics of each home and then monitoring
whether or not outbreaks occurred over a period of time, perhaps several
years. It is more practical to conduct a retrospective cohort study, as done
here. The authors first looked at norovirus outbreaks across all homes, and
then went back to look at the characteristics of the homes in order to
identify possible risk factors for the outbreaks.

Was the cohort recruited in an acceptable way?
The units of observation were care homes, rather than the individuals living
in those care homes. The study is therefore a cohort of homes, rather than a
cohort of people. The research team included 748 out of 760 homes in the

http://www.biomedcentral.com/1471-2458/11/297


region, which is good coverage. We can expect this sample of homes to be
representative of all homes in the region, for this reason. We might be
slightly concerned that one of the homes seemed to have a duplicate ID
number, which might suggest some error in the data surveillance system
(p.3). Self-care hostels were excluded, because they were not comparable
with standard homes, meaning that the results may not generalise to those
types of institutions. They were included in sensitivity analyses however,
which are reported in the results section, mitigating concerns that results
would have been different had they been included.

Was the exposure accurately measured to minimise bias?
The exposures were accurately measured, although the choice of exposures
is not explained. The various institutional risk factors may have been
selected on the basis of previous research, or for convenience because data
on them was available from the Territory-wide Infection Control Checklist
Survey (described on p.2 in the paper). The researchers may have had to
rely on what data had previously been collected, which is acceptable. The
survey seems reasonably objective, although there is clearly room for some
subjective assessment of things like ‘hygiene condition of toilets and
kitchens’.

Was the outcome accurately measured to minimise bias?
The measurement of the outcome (norovirus outbreak) depends on whether
or not the outbreak was actually reported. As the authors acknowledge in
their discussion section, outbreaks may have been under-reported by the
homes. This could reduce the likelihood of finding significant risk factors in
their analysis. The data came from the Public Health Information System in
Hong Kong, which relies on hospital clinicians or staff from the elderly
homes reporting an outbreak. If they report an outbreak, it is verified using
stool samples. If they do not report it, this introduces bias because the
outcome would be classified as having no outbreak (misclassification). The
system has some unreliability, which is difficult to quantify. The outcome
assessor was not blinded to exposure, but this arguably does not matter.

Have the authors identified all important confounding factors?



The institutional factors identified could be considered risk factors, or
confounding factors. The status of each variable is unclear, perhaps because
the research question is quite exploratory. None of the factors has been
proposed a single ‘risk factor’. This is not necessarily problematic, but it
does make it difficult to think about what should be included in the
statistical model. As an example, homes with more bedridden residents
might have more outbreaks, but since homes with older residents have more
bedridden residents, the age structure of the homes is a confounding factor.
Older age may also be a risk factor in its own right. As the authors
acknowledge, individual behaviours (e.g. of staff and residents) are not
included because the study is only focused on institutional factors.

Have they taken account of the confounding factors in the design
and/or analysis?
The authors have used a special kind of Cox Regression model to control
for confounding factors. The kind of model they used takes into account the
fact that outbreaks may be clustered in each home, because homes are likely
to have multiple events from different people in the same home. The model
they used also takes into account the fact that outbreaks are rates, producing
a Poisson distribution (Figure 1 in the paper is a Poisson distribution, often
seen when plotting outbreak rates) unsuitable for standard Cox regression
analysis. Their model addresses both these issues. It also makes adjustments
for each of the institutional factors included in the model, although as
mentioned above, it is not clear which are risk factors and which are
confounding factors. Another potential problem is that they explored
bivariate (two variable) associations between each factor on its own and
outbreaks, and then used these results to inform their decisions about what
to include in the multivariate Cox model:

Significant factors identified in the univariate analysis (P < 0.10) were
included in the multivariate Cox regression model to further explore
their relationships with the norovirus outbreak rates (p.4)
This can be problematic because variables might behave differently when

considered on their own, and when considered in the full model. It is only
after adjusting for all known confounders that we can arguably get a handle
on what the associations are. For a discussion of this issue, see a paper by



Babyak [84]. He recommends against univariate pre-testing or screening for
significant associations and then ‘culling’ non-significant predictors prior to
multivariate analysis:

variables in isolation may behave quite differently with respect to the
response variable when they are considered simultaneously with 1 or
more other variables (p.417).
The authors have addressed the problem of time-varying confounding,

which may occur if the covariates change their relationship with the
outcome over time. For example, the age structure of a home might change
over the three years of the study, or a home might become more hygienic
over time if more hygienic practices have been adopted.

A similar issue is raised by the statement that,
If two variables were believed to be proxies for similar biologic
meaning, and were highly correlated with each other, the one most
significant in the univariate analysis was included in the multivariate
model (p.3).
The authors are correct that including highly correlated variables in the

same model can introduce multicollinearity. It is often better to choose one
variable, because including both can distort the estimates produced by the
model (see Chapter 13 for more discussion of this). Their approach is
reasonable, but the criterion of selecting the most significant variable is still
a form of pre-testing or screening. It might be better to choose a single
indicator that represents the intended variable beforehand.

Was the follow up of subjects complete enough?
All of the homes were monitored by the same surveillance system, meaning
that follow up was complete. This study was retrospective, starting with the
data and then going back to identify the characteristics of residential homes
that might be associated with the outbreaks. In this situation there is no
‘loss to follow-up’.

Was the follow up of subjects long enough?
Three years is sufficient time for norovirus outbreaks to occur (2004–2007)
and 748 were recorded. A statistical power calculation is not provided,



however, which means we cannot evaluate whether the study had a
sufficient number of events to detect smaller associations than those found.

What are the results of this study?
From 2004–2007, three years of follow-up, there were 3 × 748=2244 home
years and 100 × (276/2244) = 12.3 outbreaks per 100 home years, using
whole years to calculate by hand. There were 3 × 365.25 × 748=819,621
bed days, meaning that there were 1000 × (276/819,621) = about 0.0034
episodes per 1000 bed days. The figures above use whole years rather than
the number of days in each year, which will differ in leap years, explaining
small differences with the figures in the paper. It is often helpful to quickly
calculate figures yourself in this way, using the numbers shown (p.4 in the
paper), to check that you get something nearly the same as what is reported.
If we wanted to express the outbreaks in terms of a rate per person (person-
years), we could take the number of infected residents/the number of
residents in total = 3452/57321 = 0.06 or 6 per 100 person/years. However,
the authors sensibly exclude outbreaks where one person was infected (not
really an ‘outbreak’) which works out at 2.0 per 100 person/years.

In univariate analysis, homes with a larger capacity were 50 per cent
more likely to have norovirus outbreaks, those with higher staff to resident
ratios were 20 per cent more likely, those with older residents were 20 per
cent more likely and those with better wheelchair accessibility were 3.5
times more likely. Home with partitions between beds were less likely to
have outbreaks (RR = 0.25, which is 1/0.25=4 times less likely). The very
large estimate for infection control training (RR = 3.5) and its wide CI seem
strange (0.5–25.6) particularly because training is associated with increased
risk of outbreaks, but this could reflect small cell sizes in the 2 × 2 tables, or
a strong tendency for homes having undergone training to report outbreaks
(a form of bias, the same problem with under-reporting mentioned above).
These figures come from Table 1 in the paper and are crude RRs. As
discussed above however, looking at univariate results can be misleading,
because we do not know how these variables might behave in multivariate
model. Many of them will be correlated with each other, requiring
adjustment, and some are confounding factors for other risk factors. When
you look at the main results, bear in mind that the authors have pre-tested



variables using the results from Table 1, before deciding what to include in
their model.

In multivariate analysis, Table 2 in the paper, each additional 30 residents
was associated with a 40 per cent increase in the rate of outbreaks (RR =
1.4). Each 1/30 increment in the staff/resident ratio was associated with a 20
per cent increase, that is, having one less resident for each staff member
available. Having an extra 10 per cent of residents being older than 75
increased the risk by 2.1 times, although this was not statistically
significant. Wheelchair accessible homes were twice as likely to have
outbreaks. Having partitions between beds cut the risk by 1.67 times. No
absolute risk reduction is reported.

How precise are the results? How precise is the estimate of the
risk?
Most of the confidence intervals are fairly precise, with the exception of age
(percentage of residents being older than 75) which was non-significant
(95% CI 0.7 to 6.1 = consistent with both a decrease in risk and an
increase). The widest estimate was for wheelchair accessibility, from 1.3 to
3.2, suggesting some imprecision but still a significant association.

Do you believe the results?
The results are difficult to interpret, and we may have concerns about how
variables were selected for the model, as discussed above. There are some
potentially useful findings however. The authors are sensibly cautious in
their interpretation and offer a balanced appraisal of their study’s strengths
and limitations. As they note, homes with older residents may have
increased risk because they have worse infection control practices, but this
could also reflect impaired immunity among older adults. Larger homes
also had increased risk, perhaps reflecting more opportunity for person-to-
person contact which would increase risk. Interestingly, homes with more
staff per residents also have increased risk. Again, this might reflect greater
person-to-person contact. More staff means more people bringing in viruses
from the outside world. Having better wheelchair accessibility seemed to
increase risk of outbreaks, but do we believe this? It is more likely that
wheelchair accessibility is picking up another variable.



Many of the variables identified in this study as possible ‘risk factors’
may actually be proxies for something else – such as person-to-person
contact or other vectors of transmission. Some may be confounding factors
rather than exposure variables. Some may be mediators, which are
mechanisms in the causal chain between an exposure and an outbreak
(mediators were introduced in Chapter 6). Wheelchair accessibility could be
a proxy for greater opportunity for movement by residents. If they move
around more, there is more opportunity for person-to-person contact, with
staff and other residents. There is also the possibility raised by the authors,
that the surface of wheelchairs can carry norovirus. Wheelchair
accessibility however, could also reflect other things including: investment
in the home by its owners, socio-economic status of the residents
(particularly income – more expensive homes might have better facilities,
but also have better opportunities for social interaction, visitors etc.), age
structure of the residents, health status of the residents and other factors as
yet unknown. Are these homes more accessible but also better quality in
other ways, ways that actually encourage more person contact? The finding
that having partitions between beds greatly reduces the risk of norovirus
outbreaks is believable, important and potentially useful to know.

Can the results be applied to the local population?
Any biologic mechanisms that connect institutional factors to norovirus
outbreaks will be the same worldwide, so the fact that this study was
conducted in Hong Kong should not matter. Cultural differences in how
staff and residents interact may differ. Overall, the results suggest that
person-to-person transmission is the strongest candidate for being a risk
factor. Rather than use the findings to suggest that homes should be made
smaller, with fewer staff, or with less wheelchair access (this would not be
sensible), the findings can be used to illustrate the importance of good
hygiene practices (e.g. hand washing) and reminding staff and residents that
viruses can easily be transmitted between people. We should not read too
much into these institutional variables (size, staff/resident ratio,
accessibility) because they are confounded by person-to-person contact –
probably the true causal risk factor here. Having appraised this paper, we
might be encouraged to install partitions between beds or make these
available, depending on their cost. This seems to be a strong protective



factor against outbreaks. It would have to be balanced against possible
risks, such as increasing feelings of isolation among residents. Further
research should identify individual behaviours and risk factors (e.g. hygiene
practices, hand washing, wheelchair cleaning) before drawing any
conclusions about behavioural risk factors, not the focus of this study. A
major limitation of the study was that it relied on homes reporting
outbreaks. Homes should be encouraged to report all outbreaks, no matter
how small, to improve the quality of future data collection.



•

•

•

Cohorts do not need to represent populations: a
note about internal and external validity of cohort
studies
Prospective cohort studies do not need to be representative of a larger
population. Even if they were representative, this situation would quickly
change as the larger population changed – populations are not unchanging
entities [85]. A study could represent a population (have external validity)
but have poor internal validity (see Appendix 7). Similarly a study might
not represent any population but have good internal validity. Examples of
cohort studies that are not representative of populations but have produced
valid results are [85]:

the British doctors study demonstrating that smoking is associated with
mortality (the fact that the cohort are doctors is not relevant);
the Whitehall II study of British civil servants, demonstrating that
lower status white-collar occupations are associated with worse heart
health (there is no reason why this would not generalise to white-collar
occupations outside the civil service);
the nun study showing that people (not only nuns) who use more
emotionally expressive adjectives in their writing, tend to live longer
(the mechanism is not understood, but is very unlikely to be specific to
nuns).



Summary
This chapter has demonstrated how to critically appraise about a cohort
study enabling you to critically evaluate its usefulness to your research. It
has discussed some of the limitations of a cohort study such as recall bias
and inaccuracy which may skew the association between exposure and
disease, and the length of time that may be required before researchers get
their results. It is important to remember that the interaction of risk factors
may increase risk overall as the effect modifier means that combined risk is
more harmful than the sum of two separate risks. The chapter has raised
issues about appropriate research methods, both ethical and methodological,
including cohort recruitment, exposure and outcome measurement,
confounding factors and follow-up. You should now feel confident to
critically appraise published cohort studies, identify the limitations of an
existing cohort study evaluate the validity and utility of the results, and
design your own cohort study.

The next chapter discusses the strengths and limitations of case-control
studies, and approaches for critically appraising published research which
uses case-control studies.
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Case-control studies
 
 
A case-control study is an observational study design which allows you to
compare two existing groups or subjects – cases and controls. Case-control
studies are often used to identify potential risk factors in illness by
identifying and comparing groups or subjects (controls) without the illness,
who otherwise have similarities to the groups or individuals (cases) with the
illness. For example, a comparative study of smokers with non-smokers
who are otherwise similar (in age, sex, general health) might highlight risk
factors for development of lung cancer. Because of its observational nature,
and the often limited number of cases available, a case-control study can be
less reliable than a randomised control trial.

This chapter introduces the case-control study design. It also shows you
how to appraise the results from a case-control study, using three different
papers. Each of the papers is different, but once again, they share the same
design. As with previous critical appraisal chapters, you should print a copy
of the paper first and read the paper before appraising it. As you become
more experienced, you will learn to locate the essential information in a
paper without having to read the entire paper. As a beginner, it is helpful to
read through a paper in its entirety first. Do keep in mind however, that
what the authors say in their introduction and discussion should not distract
you from your mission, which is to determine whether their results actually
do provide evidence for a protective/harmful effect of some exposure. The
information you need is usually in the methods and results sections.

The critical issues raised in this chapter to form your critical assessment
framework are similar to those in the previous two chapters.

Did the study address a clearly focused question?
Did the authors use an appropriate method to answer their question?
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Were the cases recruited in an acceptable way?
Were the controls selected in an acceptable way?
Was the exposure accurately measured to minimise bias?
What confounding factors have the authors accounted for?
What are the results of this study?
How precise are the results?
Do you believe the results?
Can the results be applied to the local population?
Do the results of this study fit with other available evidence?

The case studies examined in this chapter are:

pet birds and risk of lung cancer in Sweden: a case-control study;
association between maternal sleep practices and risk of late stillbirth:
a case-control study;
mobile phone use and brain tumors in children and adolescents: a
multicentre case-control study.
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Intended learning outcomes
By the end of this chapter, you should be able to:

identify the essential features of a case-control study;
read and understand published journal articles which report the
results of case-control studies;
critically appraise a journal article or paper describing the results of a
case-control study;
summarise the strengths and limitations of a paper describing a case-
control study.



1

2

3

What are the essential features of a case-control
study?
Case-control studies are popular when the disease is rare, when there is
insufficient time to wait for a disease to develop, or where it is impractical
to conduct an RCT or cohort study. Consider these three examples:

A researcher was interested in whether drinking steaming hot tea,
rather than warm tea, increased the risk of oesophageal cancer [27].
Oesophageal cancer is a rare disease, and so a cohort study might not
produce a sufficient number of cases, reducing statistical power to
detect an association.
A public health specialist is asked by a manufacturer for immediate
advice on whether a new mattress product should be recalled, because
there have been reports of cases of sudden infant death by parents
whose babies have been sleeping on them. In this scenario, there is
simply not enough time to develop a new cohort study, and then wait
and see if the mattress is associated with infant deaths. A case-control
study could be performed relatively quickly, giving more immediate
evidence that could be used in making a decision.
A dentist is interested in whether individuals with Prader-Willi
syndrome have an increased rate of salivary flow, compared to
patients without the disease. Here, the ‘exposure’ is a rare disease,
and so it would not be practical to conduct a cohort study. The dentist
would struggle to recruit a large enough cohort to find enough people
with the exposure of interest.



Introducing key terms

Cases
Cases are selected on the basis that they already have the disease. This part
of a case-control study is relatively straightforward, particularly if the
existence of several cases motivated the development of the study in the
first place. A clinician in a hospital for example, might have several dozen
cases of disease on her records, and be interested in whether a risk factor
might have contributed to the development of the disease.

Control
An important part of a case-control study is in the selection of controls,
which is achieved by a process called ‘matching’. Controls are matched to
cases on important characteristics, such as age, sex and geographic location.
Cases are matched with at least one control, and often several controls. It is
not necessary to have the same number of cases and controls. Matching
reduces systematic differences between cases and controls, often thought to
reduce confounding. This is often true, but note that matching can
sometimes actually introduce confounding. Matching itself does not remove
confounding, it simply facilitates the adjustment we can make for
confounding factors in the model, which needs to comprise cases and
controls. Additionally, matching on variables such as age and sex is useful
even if these variables are not thought to be confounding factors. Matching
can be a convenient way to create a sample, for example. It is possible to
adjust for confounding factors even if the cases and controls were not
matched in relation to these factors.

Odds ratios, not risk ratios
A second important difference which you need to remember, is that case-
control studies cannot be used to calculate risk ratios. This is because the
cases and controls are selected on the basis of having the disease outcome
or not. We cannot calculate the risk of having the disease, because we
cannot calculate the prevalence of the disease in either of the groups. The
solution is to calculate the odds ratio, which simply compares the odds of



the disease in the cases with the odds of the disease in the controls. In fact,
the odds ratio was invented for precisely this kind of situation. Odds ratios
have other advantages too, because they are used in logistic regression
models (Chapter 14). If you want to refresh your memory about how to
calculate an odds ratio, check back to Chapter 4 where they were first
introduced.

Exposure measurement
Finally, an important thing to consider when appraising the results from
case- control studies, is how the exposure was measured in each group. This
applies to any study design – the exposure should be measured in the same
way for all participants. In case-control studies however, this often does not
happen. Data is not collected from the controls in the same way. This can
introduce bias. Consider for example, if pregnant women with a disease
were interviewed by nurses in hospitals about their smoking habits,
compared to controls who returned self-administered postal questionnaires.
People may give different answers to a nurse than when responding to a
postal survey, resulting in their smoking status being misclassified,
introducing bias.



•
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Pet birds and risk of lung cancer in Sweden: a
case-control study [38]
The possible association between keeping pet birds in the home and
developing lung cancer has been mooted several times [35, 36, 39].
Researchers have debated whether early reports of an association were
actually confounding by smoking or socio-economic status [35, 36, 38, 39].
People who keep pet birds tended to be from lower socio-economic groups,
particularly for certain kinds of birds such as pigeons [38]. Additionally,
they are more likely to smoke. Does an association between keeping pet
birds and lung cancer still exist, after these confounding factors are
considered? This was the aim of the authors of our first case-control study
which we will now critically appraise. When you read the paper, think
about the essential features of this study design: the selection of cases,
selection of controls, measuring the exposure correctly and in the same way
for both groups. As with all study designs, pay particular attention to
confounding factors.

Download this paper from htt p:/ /ww w.n cbi .nl m.n ih. gov /pm c/a rti cle‐ 
s/P MC2 352 554/

Did the study address a clearly focused question?
The study does address a clearly focused question:

the population studied is adults attending hospitals in southwest
Sweden;
the risk factor studied is keeping pet birds;
the study tried to detect a harmful effect, motivated by prior research
suggesting that bird keeping is a risk factor.

Did the authors use an appropriate method to answer their
question?

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2352554/


A case-control study is an appropriate way of answering the research
question. Lung cancer is a rare disease, and if they had conducted a cohort
study, they may not have enough cases of lung cancer to analyse. The study
might have been under-powered. This study does attempt to address the
research question at hand. It is therefore worth continuing.

Were the cases recruited in an acceptable way?
The cases are defined fairly precisely. Look at the section marked ‘Subjects
and methods’ in the paper (p. 1236). The authors say that patients who had
been referred to hospitals with ‘suspected cases’ of lung cancer were invited
to participate in the study. Further down, they say that these suspected cases
were interviewed, and some of them decided not to participate. Some were
deemed too unwell to take part. Next, suspected cases were matched with a
national cancer registry, using standard ICD code 162.1 which defines lung
cancer. Only cases with a verified report from a clinician as well as
pathologist were classified as cases, the rest were excluded and were not
used as controls either. This is an acceptable method of determining cases
and it is an objective, reliable system for selecting all cases. Therefore,
cases were recruited in an acceptable way. The time period was 1989–1994
which allowed the researchers to collect the data. No power calculation is
reported however, which is a limitation of this study.

Were the controls selected in an acceptable way?
Controls were people who were not diagnosed with lung cancer. In the
‘Subjects and methods’ section, we are told that controls were ‘the next
person in the respective county who was of the same sex and closest in birth
date in the regional population register’. This is an example of matching.
The researchers have matched the cases according to sex, age (closest birth
date available) and geographic area (same county). Because no power
calculation was reported, we cannot determine if a sufficient number of
controls were chosen, a limitation of the study. Another possible limitation
is that controls were interviewed either at hospital departments or at home,
whereas cases were only interviewed at hospitals. This may produce bias
because the controls were interviewed in different circumstances.

Was the exposure accurately measured to minimise bias?



The exposure was measured using questionnaires, which including
questions on keeping pet birds for at least six months, and the length of
contact and kind of bird. This is a reasonable way of measuring the
exposure, because objective verification would not be practical, although
the method has not been validated to our knowledge. It is worth noting that
the questionnaire did not contain information on where these birds were
kept (in the house? in the garden shed?) or on the number of birds, as
acknowledge by the authors (p.1238 of the paper). This could introduce
error into how the exposure was recorded. If we really want to measure
exposure, these questions would have been useful because people with
more birds and in closer proximity will be more exposed to them. Blinding
was not feasible in this study. The proposed temporal sequence (horse and
cart) is correct – the researchers propose that bird keeping comes before
lung cancer, which is sensible.

What confounding factors have the authors accounted for?
This information can be found on p.1237 in the paper, in Table 1 and in the
paragraph ‘Statistical analysis’. The authors adjust for age, number of
cigarettes smoked per day, number of years smoked, time since quitting
smoking, marital status, occupational social class, and diet. They decided to
classify those quitting within the last four years as current smokers. One
gram of tobacco was treated as one cigarette, similar to other studies [86].
They did not adjust for other measures of SES such as educational
attainment and income, or area-based socio-economic deprivation. Do
people living in polluted areas tend to keep more birds? It is not clear why
the authors have decided to analyse men and women separately, because
they did not have a prior hypothesis that the association would be different
in men and women (see Chapter 6 which discussed effect modification).
The authors use logistic regression which is a suitable method for adjusting
an association for confounding factors, when the outcome is categorical
(disease vs. no disease; see Chapter 14).

What are the results of this study?
The main results are reported on p.1237 of the paper in the text and in Table
2. In men, there was no association between keeping pet birds and lung
cancer (OR = 0.94, 95% CI 0.64, 1.39) after adjustment for the confounding



factors chosen by the researchers. Comparing those ever vs. never keeping
pet birds, this indicates an OR consistent with either moderate decrease or
increase in risk. In women, results were similarly null (OR = 1.10, 95% CI
0.64, 1.90). There was also no evidence of a dose-response association.
More years exposed to birds did not increase risk, which can be seen in
Table 2. If there was a causal association, we would expect more risk
among those exposed for more years. This is not what we see in the table.

How precise are the results?
The results are not precise, as indicated by the wider confidence intervals
surrounding the odds ratios for men and women. As noted above, there was
no power calculation. If the association was small (e.g. OR = 1.10), we
cannot determine if this study had a large enough sample size to reliably
detect a 1.1-fold increase in the odds. Another thing you should consider is
that some cases, and some controls, refused to take part in the study. They
are described on p.1236 of the paper, but no comparison is made between
their characteristics and those who did take part. If those taking part
differed on key characteristics (e.g. bird keeping, smoking, health status),
this could have introduced bias.

Do you believe the results?
As described below, the results fit with other available evidence also
reporting no association between keeping pet birds and lung cancer. There
were some important limitations of the study, which may urge caution
before taking the results at face value. For example, there was no power
calculation, no questions on the number of birds, and no questions on the
amount of contact with birds. Categorising the exposure into ‘ever’ vs.
‘never’ will lose precision and lower statistical power. There was no reason
to separate men and women for analysis; pooling them may have narrowed
the confidence intervals.

Can the results be applied to the local population?
This study was conducted in Sweden, and there may be cultural differences
in bird keeping. For example, in this Swedish sample, few people kept
pigeons. Earlier studies in the UK have found pigeon keeping to be



relatively common, particularly in lower socio-economic groups [37]. The
number of birds which people tend to keep in the local population may be
important, and the location. Do residents in the local area who keep large
number of pigeons, for example, keep them outside in a shed? Do people
who keep canaries and who tend only to have one or two, keep them in the
living room? More precise measures of the exposure would be needed.
Overall, we wouldn’t be particularly worried by anything we’ve seen in this
paper.

Do the results of this study fit with other available evidence?
We may not be experts on lung cancer, or on the literature about keeping pet
birds and associated health risks. In Chapter 7, we learned how to conduct a
literature review, which would be helpful for situations like this, where one
case-control study is not going to have ‘the last word’ on an issue. Rarely
can one study allow us to make a decision. It may be useful to know
however, that other studies published at the same time [87] and more
recently have also reported no association, even those which considered the
number of birds, the method of contact and where they were kept [87].
Overall then, the results from the study we appraised ft with the totality of
evidence available. To be sure, we would want to conduct a systematic
review and perhaps a meta-analysis (Chapter 7). For now, there is no need
to make any recommendations that people should not keep pet birds.
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Association between maternal sleep practices and
risk of late stillbirth: a case-control study [88]
This study attracted media interest, including from the Daily Mail, the
Mirror, the Independent and the Guardian.

Journalists reported that women should sleep on their left hand side
during pregnancy. Although the Independent and Guardian emphasised that
the absolute risk of stillbirth was low, the overall impression given by this
coverage was that of a causal, definitive link. We will now critically
appraise the original paper ourselves, to see if there is evidence supporting
this causal link.

Download this paper from htt p:/ /ww w.b mj. com /co nte nt/ 342 /bm j.d‐ 
340 3

Did the study address a clearly focused question?
The study does address a clearly focused question, although the specific
hypotheses were left quite broad:

the population studied was pregnant women in the Auckland region
of New Zealand, 2006 to 2009;
the risk factor studied was ‘maternal sleep practices’, broadly
defined;
the study tried to detect a harmful effect of particular sleeping
positions on the risk of stillbirth.

Did the authors use an appropriate method to answer their
question?
A case-control study is a suitable design, because stillbirth is a relatively
rare event. Clearly, an RCT would not be possible because women cannot
be instructed to sleep in a particular position and then the risk of stillbirth
monitored. Additionally, a cohort study may not have been practical,
although is certainly a possibility.

http://www.bmj.com/content/342/bmj.d3403


Were the cases recruited in an acceptable way?
Cases were clearly defined, as ‘birth of a baby that died in utero during the
antenatal or intrapartum periods’. Clinicians and hospital birth records were
used for checking purposes. The geographic region was Auckland,
comprising three districts, clearly defined. Deaths from congenital
abnormalities were excluded from the definition, as were multiple
pregnancies. A statistical power calculation was reported (p.3 of the paper).
This claims that for 80 per cent power, an odds ratio of 2 can be detected
from the available sample size. Overall, we can conclude that cases were
recruited in an acceptable way. There was a high participation rate of 72 per
cent.

Were the controls selected in an acceptable way?
The authors describe the recruitment of controls on p.2 of the paper. Two
controls were selected from the same district as cases, matched according to
gestation. There was nothing particularly special or unusual about the
recruitment of controls. There were some potentially important differences
between the cases and controls (Table 1 in the paper, which we will discuss
below), but these do not concern recruitment strategy. There were no
differences in the participation rate of cases and controls (described on p.3
of the paper) or in terms of ethnicity, age or parity between those
participating and declining.

Was the exposure accurately measured to minimise bias?
The researchers collected data using interviewer administered
questionnaire, in the weeks following stillbirth (for cases) or during an
equivalent gestation period (for controls). Neither cases nor controls were
told what the research question was. One of the main exposures was
maternal sleep position, described a little further down in the methods
section. This was recorded as ‘left side, right side, back, other’. These
positions were recorded for different time periods: before pregnancy, in the
last month, in the last week, the [last] night of the pregnancy. The term ‘last
night’ was defined as ‘the night before when the woman thought that her
baby had died or, for the controls, the night before the interview’. Other
questions were asked about sleep characteristics, such as daytime



sleepiness, getting up to go to the toilet in the night etc. Sleep position
cannot be accurately measured without special technology, so self-report
was used by the authors instead. This may introduce bias. The exposure was
measured in different ways for cases and controls. For cases, there was an
average of 25 days between the stillbirth and the interview, which could
introduce recall bias. For controls, they were asked about sleeping position
on the previous night (see p.5 of the paper where the authors discuss this).
This could misclassify participants and bias the odds ratio towards null.

What confounding factors have the authors accounted for?
The researchers included questions about snoring and daytime sleepiness,
as a proxy for disordered breathing, which might be considered a
confounding factor if it changes women’s sleep position or risk of stillbirth.
Age, ethnicity, parity, social deprivation level, BMI at booking and smoking
are considered possible confounding factors and are mentioned in the paper.
There were significant differences between cases and controls in terms of
ethnicity, parity, social deprivation, BMI and smoking (as shown by the p-
values). For example, stillbirths (case) were more common for women who
were obese, deprived, smoking and having high parity. These differences
underscore the importance of adjusting for confounding factors in the
analysis. Snoring and daytime sleepiness were not associated with stillbirth
in bivariate analyses, suggesting that they are probably not confounding
factors. If women with poor sleep quality tended to sleep in a different
position, but it was sleep quality that was a risk factor for stillbirth, then we
might have been concerned that sleep position was confounded by sleep
quality, which does not seem to be the case. In bivariate analysis of sleep
position, sleeping in any position other than the left side on the last night of
pregnancy was associated with an increased risk of stillbirth (fourth set of
results in table 2 in the paper). The odds ratio for left side is 1 because this
is the reference category (equivalent to ‘unexposed’). We will learn more
about reference categories (when discussing dummy variables in Chapter
13):
Table 10.1 Sleep position on last night of pregnancy and risk of stillbirth:
unadjusted OR

Unadjusted OR (95% CI)
Left side (reference group) 1



Right side 1.88 (1.14, 3.10)
Back 3.28 (1.46, 7.34)
Other (includes front, sitting up, both sides, unsure and don’t
remember)

2.00 (1.20, 3.33)

These odds ratios are unadjusted (the authors’ term is ‘univariable’)
meaning that confounding factors have not been adjusted for yet. This is
sometimes called a crude or unadjusted association, or sometimes a basic
model. The authors adjust for confounding factors in the results shown in
Table 5.

There may be unknown confounding factors which are not considered,
which influence both sleeping characteristics and stillbirth (e.g. underlying
disease, psychiatric morbidity).

What are the results of this study?
The prevalence of stillbirth was 3.09 per 1000 births (p.3 of the paper).
After adjustment for age, ethnicity, overweight or obesity, parity, social
deprivation, smoking, regular sleep in daytime during the last month of
pregnancy, hours of night time sleep in last month of pregnancy, and
number of times getting up to go to the toilet during the last month of
pregnancy, there was an association between sleeping on the back, and
‘other’ in the last night of pregnancy, and stillbirth. Sleeping on the right
side was not significantly associated with stillbirth, because the confidence
intervals include 1. The effect size is quite large – more than twice the risk
of stillbirth of women reporting sleeping on the back or in ‘other’ positions.
Table 10.2 Sleep position on last night of pregnancy and risk of stillbirth:
adjusted OR
Last night of pregnancy Adjusted OR (95% CI)
Left side (reference group) 1
Right side 1.74 (0.98, 3.01)
Back 2.54 (1.04, 6.18)
Other (includes front, sitting up, both sides, unsure and don’t
remember)

2.32 (1.28, 4.19)

Other results were that sleeping regularly during the daytime in the last
month of pregnancy was associated with stillbirth (OR = 2.04), having more
than eight hours sleep was marginally associated with stillbirth (OR = 1.71
but the p value was .05 which is technically .05 or higher), and not getting



up to go to the toilet during the last night of pregnancy was also associated
with increased risk (OR = 2.42). Daytime sleepiness did not increase risk
but sleeping during the day did, but as the authors note in the discussion
section, this is not necessarily contradictory and the two variables do not
correlate. Women who were able to sleep during the day may not feel as
sleepy during the day, explaining the apparent discrepancy. Given that the
absolute risk of stillbirth was 3.09 per 1000 births, the authors extrapolate
that sleeping on the left reduces the absolute risk to 1.96 per 1000 births,
and not sleeping on the left increases the absolute risk to 3.93 per 1000
births. They do not provide a formula to explain how they worked this out,
but we can use a formula called the number of patients needed to be treated
for one additional patient to be harmed (NNTH) to estimate the absolute
risk [89], and get a handle on how large in absolute terms this association
is:

1/(1–OR)UER

where UER is the ‘unexposed event rate’ which is 3.09 per 1000 births (this
is reported at the start of the results section on p.3). If we take 2.54 as the
OR for sleeping on the back (vs. left) from their Table 4, this gives
=1/((2.54–1) × (3.93/1000)) = 165 people. Therefore, 165 women sleeping
on their back would be expected to result in one additional stillbirth. This
may have relevance when considered at the population level.

How precise are the results?
The confidence intervals are fairly wide, ranging from just above 1 to over
6 times more likely (sleeping on the back). For ‘other’ positions, they range
from 1.38 to 4.19 which is narrower but still quite wide. Getting more than
eight hours sleep was not precisely estimated; the confidence interval is
under 1 at the lower end (p = .05 exactly). A larger sample size might have
allowed the researchers to detect this effect more precisely. Although a
power calculation was reported, it is not clear whether this made allowances
for multiple testing. The authors have conducted several different sets of
results for different outcomes (sleeping position, sleeping in the day, hours
of sleep, getting up to use the toilet). Some of these differences may have
arisen by chance.



Do you believe the results?
In addition to concerns about multiple testing, and the rather broad research
question, a major concern about this paper is the measurement of the
exposure. Sleeping position, for example, is difficult to recall and report
accurately. The measure used has not been validated, even on a small
sample of participants. People may change sleep positions at different times
in the night, and may not remember changing positions. Although the
authors report that ‘non-left sided maternal sleep position’ is associated
with stillbirth, the adjusted results do not show this. Sleeping on the right
was not associated with increased risk of stillbirth once confounding factors
were considered. It was only sleeping on the back and in ‘other’ positions
that survived adjustment. It is important to replicate the risks before making
strong conclusions about sleeping positions. Without knowing too much
about biological plausibility of the association, we can accept the authors’
claim that ‘cardiac output and fetal oxygen saturation’ might be involved.
However, we would wait for replications before looking for biological
explanations for these results. Getting too little or too much sleep has been
associated with poor health outcomes of other kinds, which the authors note
in their discussion section.

An additional point which the authors acknowledge is that the timing of
fetal death is unknown, making a question about the ‘last night’ of
pregnancy obscure. The authors claim that results for the ‘last month’ were
similar, but Table 5 does not show these results adjusted for confounding
factors. A prospective cohort study might be a good next step, in which
detailed attention is paid to validating the measures of sleeping position.
Finally, it is important not to rule out the possibility of reverse causation.
Could the outcome actually be influencing the supposed exposure? It is
plausible that the death of the baby might influence the position in which
women sleep, for as yet unknown reasons. This would produce an
association, but a spurious one.

Can the results be applied to the local population?
Biological processes linking sleep position and other sleep characteristics in
pregnant women will be the same in New Zealand as in our region. Without
replicating these results however, we should wait before making
recommendations about sleeping position and whether this should be



modified. Sleeping in a comfortable position may have other benefits which
cancel out any small increase in absolute risk of stillbirth, which remains a
comparatively rare event. It may be wise to encourage women to see their
GP if they experience problems with sleeping during the day, getting too
much sleep, or to discuss reasons for not getting up in the night to use the
toilet.

Do the results of this study fit with other available evidence?
This the first study to look at risk factors for stillbirth using a case-control
design. I would wait for stronger evidence, such as prospective cohort
designs, using validated measures of sleeping position. The results are
potentially biologically plausible but there is not enough available evidence
to make a decision at this stage.
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Mobile phone use and brain tumors in children
and adolescents: a multicentre case-control study
[90]
Mobile phone usage has increased considerably in recent decades,
particularly among children. One notable finding is that the incidence of
brain tumours has not increased in the US in the past 20 years, despite an
increase in the proportion of children using mobile phones since the 1990s.
In fact there was an increase in brain tumours in the mid-1980s but this has
been attributed to improvements in diagnostic technologies [91].

Several studies have examined the possible association between mobile
phone usage and brain tumours, with few affirmative results. Given that
brain tumours are relatively rare, a case-control design is a sensible way to
approach this question. In the article we now appraise, keep in mind the
Bradford Hill criteria for establishing a causal association (see Chapter 6),
with particular reference to dose-response effects. If an association is
causal, we would expect to see a stronger association for those using mobile
phones more often.

Download this paper from htt p:/ /jn ci. oxf ord jou rna ls. org /co nte nt/‐ 
103 /16 /12 64.long

Did the study address a clearly focused question?
The study does address a clearly focused question.

the population studied was children and adolescents (age range 4 to
17) in four European countries (Denmark, Sweden, Norway and
Switzerland);
the risk factor studied was mobile phone use;
the study tried to detect a harmful effect.

Did the authors use an appropriate method to answer their
question?

http://www.jnci.oxfordjournals.org/content/103/16/1264.long


A case-control study is a suitable design. Brain tumours are relatively rare,
which could make a prospective cohort study difficult. The cohort would
need to be large. In some countries, mobile phone usage now approaches
100 per cent, which could result in ‘empty cells’ when trying to analyse the
data. Imagine trying to calculate an odds ratio in a 2 × 2 table (Chapter 4) if
everyone was exposed to an exposure – this would be impossible.
Additionally, a cohort study could take many years to show an association,
particularly if the risk accumulates over several decades. Clearly, an RCT is
not practical because children cannot be assigned to use a mobile phone or
not.

Were the cases recruited in an acceptable way?
Cases were clearly defined, using ICD-10 codes to classify brain tumours:

All children and adolescents who were diagnosed during the study
period with intracranial central nervous system tumors and who were
aged 7–19 years at the time of diagnosis were eligible to become case
patients. The brain tumors had to be coded as C71, D33.0–33.2, D33.9,
D43.0–43.2, D43.9, or C72.9 according to the International
Classification of Diseases, tenth revision (ICD-10) to be included.

Were the controls selected in an acceptable way?
The authors selected ‘two control subjects per case’, matching by age and
geographical region. Switzerland did not have a national population
registry, so the authors used a community registry instead.

Was the exposure accurately measured to minimise bias?
Mobile phone usage was self-reported. The minimum requirement for being
considered exposed to mobile phone usage was ‘spoken on a phone more
than 20 times during their lives’ and owning a mobile phone. Owners were
asked about their number of subscriptions, the start/end dates, hands-free
devices, the side of head typically used, number of calls per day and
duration of calls. This detail is quite useful for ascertaining dose-response
information (compared to simple use/non-use of mobile phones) and for
determining cumulative effects (compared to current usage only). Usage six
months before the study was not considered. Regular use was defined as



making at least one call per week for six months prior to the study. Hands-
free devices were used to correct the information, presumably on the
assumption that participants were less exposed if the phone was further
away from the head. The self-reported information was supplemented by
data from mobile phone operators in Sweden and Denmark.

What confounding factors have the authors accounted for?
The confounding factors considered by the authors (p.1266 of the paper)
were: SES (defined as educational attainment of parents), family history of
cancer, past medical radiation exposure to the head, maternal smoking
during pregnancy, head injuries, wireless baby monitor usage, cordless
phone usage, contact with animals, urban/rural location, siblings, birth
weight, premature birth, asthma, eczema and hay fever. Unusually, the
authors only included confounders in the model if the OR for mobile phone
usage changed by 10 per cent or more. They cite two references to support
this strategy, but it is worth noting that few researchers adopt this technique.
Confounders might behave differently when considered together in a
multivariate model, making it unwise to consider the impact of each
confounding factor on an association separately [84]. Arguably, the markers
of SES are relatively weak because they only concern parental education.
The authors could have additionally considered income, occupational social
class or socio-economic deprivation of the area in which they lived.

What are the results of this study?
There was no association between regular mobile phone use and brain
tumours, although the OR was consistent with an increase in risk of 36 per
cent (OR = 1.36). There were some non-significant trends, suggesting that
greater usage increased risk: having been a phone user for a longer period
of time, having longer subscriptions, making longer calls, and the
cumulative number of calls. When the researchers looked for specificity of
an association, they did find an association in the parts of the brain where
radiation exposure would be the lowest (OR = 1.92, 95% CI 1.07, 3.44).
This could have arisen by chance, given the multiple testing performed.
When they looked at information from mobile phone companies, the
researchers found an increased risk of tumours for those with the longest



period since first subscription (OR = 2.15) which was more than 2.8 years,
although they do not say if this was adjusted for age.

How precise are the results?
The 95% confidence intervals include 1 (0.92 to 2.02) showing that the
association between mobile phone use and tumours is not statistically
significant. This was similar for other results reported. However, the OR
was consistent with an increase in risk. Perhaps the study was
underpowered to detect an association (no power calculation was reported).

Do you believe the results?
Time since beginning mobile phone use was associated with an increased
risk of tumours, but a dose-response association was not seen for those
making longer and more frequent calls. If there was an association, we
would expect to see this pattern. An important point to remember,
emphasised by the authors in their discussion section, is that low-dose
radiation like that from mobile phones is not known to be carcinogenic.
Reverse causation may have contributed to the time since first subscription
result. The authors suggest that children who had been diagnosed with a
tumour may have been given a mobile phone by their parents, because they
wanted to protect them and make sure that they could be contacted in an
emergency. The finding that regions of the brain less exposed to radiation
actually had stronger associations than those exposed to more, also suggests
there is no causal association. We would expect to see stronger associations
in specific regions exposed to more radiation. This result is probably a
chance finding.
Overall, the results are believable. The study was well-designed, had high
participation rates (over 70 per cent) and collected data that allowed several
of the Bradford-Hills criteria to be evaluated. Although there is a
biologically plausible link between radio waves and magnetic fields, mobile
phone have been deemed safe by the government (see htt p:/ /ww w.h pa.‐ 
org .uk /we bc/ HPA web Fil e/H PAw eb_ C/1 317 133 827 077), although there
remains some concern that young children may be more at risk.
Recommendations have been made for people to use them for as brief
periods as possible. Mobile phones have only been used widely since the
1990s, so if there is cumulative exposure, we may require longer term

http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1317133827077


studies to identify this. This study does not provide any evidence that
mobile phones are associated with brain tumours. Mobile phone usage may
be associated with other risks, particularly accidents while driving, which
should continue to be emphasised in messages to the public.

Can the results be applied to the local population?
It is appropriate to apply these results to the local population (e.g. UK)
since any biological mechanism would be the same, mobile phone usage is
similar to these countries, and mobile phones are not manufactured
differently in different countries.

Do the results of this study fit with other available evidence?
This study fits with other studies that also found no association. However,
some studies have found increased risks among adults who use mobile
phones heavily [92], and the authors also note that children may absorb
more radiation [93, 94]. Given that mobile phone use is highly prevalent
and is increasing, and many children use phones heavily, this should be
considered a priority area for future research and we should continue to
monitor evidence as it develops.



Summary
This chapter has demonstrated how to ask key critical questions about a
case-control study, enabling you to critically evaluate its usefulness. It has
discussed some of the limitations of a case-control study such as the
problem of objective verification of measurement of risk factors.

In critically assessing existing case-control studies, the chapter has raised
issues about appropriate research methods, including identification of cases,
recruitment and matching of controls, identification of risk factors,
exposure and outcome measurement, and confounding factors. Case-control
studies cannot be used to calculate risk ratios, but can be used to calculate
odds ratios, comparing the odds of the disease in the cases with the odds of
the disease in the controls. The chapter has highlighted the problem of fully
eradicating confounding factors and raised issues around possible
variability of measuring exposure, introducing bias into the study. You
should now feel confident to critically appraise published case-control
studies, identify the strengths and limitations of an existing case-control
study, evaluate the validity and utility of the results, and design your own
study.

The next chapter develops the ethical issues raised in the discussion of
recruitment and methodology in the previous chapters, by examining in
more detail questions around research ethics, study design, and data
management.
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Research ethics and data management
 
 
This chapter introduces the concept of research ethics, and then provides
practical examples of how researchers might go about obtaining ethical
approval for their research. To illustrate, a real example of an application for
ethical approval is presented. The Integrated Research Application System
(IRAS) is frequently used to obtain ethical approval for health research, and
so we will focus on questions typically asked as part of an application
through IRAS. Note however, that many of the questions apply to ethical
issues in general, and are asked by other kinds of ethics committees. This
means that the chapter will still be useful to you, even if you have no plans
to apply for ethical approval using IRAS. For example, some university
departments have their own ethics committees who can approve your study.
In some cases, ethical approval may not be required at all. The chapter also
discusses sample size, data collection, data analysis and data management.
Although they may not appear to be ethical issues, they are essential for
conducting a good quality and ethical study.



•
•
•
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Intended learning outcomes
By the end of this chapter, you should be able to:

design a clear research question;
understand why obtaining ethical approval for research is important;
complete an application for ethical approval for a study;
appreciate the importance of sample size as an ethical issue;
plan your data collection, with particular reference to questionnaire
design;
plan your data management, including data cleansing.



1

2

3

4

Introducing key terms
Ethics is formally defined as the science of morals and principles of human
duty. The British Psychological Society (BPS), for example, defines research
ethics as moral principles that guide research from inception to completion
[1]. Other professions that may undertake health sciences research have
similar definitions.

There are four main components to research ethics:

Maximising benefit while minimising harm. This acknowledges that no
research is entirely free from potential harm. Even the most seemingly
benign questionnaire could have unanticipated consequences. Consider
for example, if certain questions were particularly upsetting for an
individual, or if the answers to certain questions were seen by others in
a workplace. Many drugs have side effects, and interventions of many
kinds can have unpredictable consequences. For this and other reasons,
ethical research involves designing a study that maximises the value
added by the new evidence, while minimising possible risks associated
with the research.
Respect for autonomy and dignity. This refers to the requirement to
acknowledge that participants in research are free to choose, should be
treated with respect, should be informed about the nature of the study
(so that they can provide informed consent, or choose not to consent, as
described below), and have the right to confidentiality and fair
treatment.
Scientific value. It is not ethical to produce poor quality research. Poor
quality research wastes participants' time, your time, and since it is
unlikely to be published, it will not make a contribution to the field.
Although student projects are often designing as learning exercises
rather than intended to be published, it is still not ethical to ask people
to take part in research that has not been carefully designed. Study
designs should be appropriate to the research question, and capable of
producing data that can answer the research question.
Social responsibility. Researchers should respect individuals but also
groups of people, communities and the ‘common good’. Researchers



should think about the impact their work might have on society and the
wider public, and in some cases, the environment.

Informed consent in reserach
The Medical Research Council (MRC) guidelines on good research practice
say that:

Where practicable, consent that is freely given and informed should be
sought from all competent participants' [95].
Guidance on writing participant information sheets and consent forms is

available from the National Research Ethics Service (NRES). Guidelines
from other funding councils (e.g. the ESRC) make similar reference to
informed consent, and there may be differences in how informed consent is
interpreted by different disciplines. Usually, informed consent means that
participants have been informed about the nature of the research. There are
notable exceptions to this rule. For example, psychology research often
involves some degree of deception about the true nature of the research. If
participants take part in an experiment about prejudice and social stigma of
people living with diabetes, for example, it may not be scientifically sound
to tell participants beforehand what the research question actually was. If
participants knew, they might change their behaviour and this would produce
poor data. It would be essential to tell participants what would be involved in
the study, but providing too much information can actually raise ethical
issues if it changes people's behaviour. Poor-quality research is not ethical
research – it is a waste of time and resources (for the research community
and for participants). Part of the role of ethics committees is to help find a
balance between research designs that are scientifically sound, and
protecting participants from harm that might arise if they are not fully
informed before consenting to take part.

For many research designs, informed consent is practically sought by
providing a participant information sheet. The information sheet explains the
research in plain English, provides contact details for the researchers
involved who can answer questions about the study, and explains any risks
or benefits that might be involved if the person decides to participate. Often
a researcher, nurse or clinician will also be available to answer questions.
For some research designs (e.g. postal or web questionnaires), this is not



feasible and an information sheet should contain all the necessary
information about the study.



Practical example of an IRAS application
To begin an IRAS application, go to www.myresearchproject.org.uk and
click on ‘Enter’.

This will take you to a starting page, headed ‘Welcome to the Integrated
Research Application System (IRAS)’. If you do not already have a user
account, click on ‘First time and new users please click here’ and follow the
instructions to create one.

After logging in, you will be taken to a page that displays any current or
recent applications that you have been working on, or recently made. In our
example, a new project needs to be created, by clicking on ‘New Project’.

The next page is the IRAS Project Filter. We are asked to enter a short title
for the project (as an example to illustrate the UK Women's Cohort Study
2014/15).
Is your project research?

This may seem like a strange question, given that we are applying for ethical
approval for a research study! There are however, other kinds of research
activity not classified as research. Audit for example, might involve analysis
of health records and protocols, but may not be classified as research by an
NHS ethics committee. If you are not sure whether or not your project
should be classified as research, contact NRES.

http://www.myresearchproject.org.uk/


Figure 11.1 IRAS homepage

Figure 11.2 IRAS: creating an account



Figure 11.3 IRAS: creating a new project

Figure 11.4 IRAS Project Filter

Figure 11.5 IRAS toolbar

Select one category from the list below



This particular research study happens to involve postal questionnaires, and
so ‘Study administering questionnaires/interviews for quantitative analysis’
should be selected.

Once you have completed this page, click on ‘Navigate’ to go to the
navigation screen.

Figure 11.6 IRAS: REC form navigation

Based on your answers to the project filter, IRAS has specified which
pages of the application you should fill in. These are indicated with white
boxes. Questions that are not relevant to your application will be grey.

You can access the navigation page at any time by clicking on ‘Click here
to go directly to the Project Filter questions’ under ‘Project Filter’ in the left-
hand panel, or by clicking ‘Navigate’ if you are completing the application
form.

Completing the application form
The application form itself is largely self-explanatory, and therefore there is
no need to explain how to answer every question in detail. Some questions



however, make implicit or explicit reference to ethical issues, and these will
be discussed below.

Click on ‘Proj. Title-A1’ which will take you to page 1 of the application.
This will take you to ‘PART A: Core study information’ where you are asked
to enter administrative details such as the full title of the research, the chief
investigator (usually but not necessarily yourself).

The next page asks ‘Who is the contact on behalf of the sponsor for all
correspondence relating to applications for this project?’ To answer this
question, you need to find out from your institution which person's name and
contact details should go here. Check with your research and development
office, manager or supervisor.

Figure 11.7 IRAS: navigating to Project Filter questions

A5-2. Is this application linked to a previous study or another current
application?

If your research study is a new study, then there is no need to answer this
question in the affirmative. Many studies however, involve contacting
participants from a previous study, extending a prior research project, or run
in parallel with a ‘parent’ study. For example, our example involves adding
an additional wave of data collection to an existing cohort study. This means



that the application is linked to a previous study. This should be explained in
the response given.

The UK Women’s Cohort was selected from responders to the World
Cancer Research Fund’s direct mail survey. Women aged 35–69 years,
residing in England, Wales and Scotland who were willing to
participate in a more detailed survey were contacted. To warrant the
comparisons relating to intake of fruit and vegetables and associated
nutrients and their effect on cancer and coronary heart disease,
emphasis was put on recruiting similar, large numbers of vegetarians,
fish eaters and meat eaters.
Three waves of data collection have taken place so far: 1995/98 (food

frequency questionnaire), 1999/02 (4-day food diary, 1-day physical activity
diary, familial diet/medical history), 2010/11 (follow-up questionnaire,
personality assessment, online cognitive function assessment). At
recruitment in 1995/98, NHS number, full name and date of birth were
provided by participants in the questionnaire, submitted to the Office of
National Statistics to be fagged on the NHS central register (now NHS
Information Centre). Flagged participants were subsequently followed for
mortality and cancer events.

A6-1. Summary of the study
Please provide a brief summary of the research (maximum 300 words)
using language easily understood by lay reviewers and members of the
public. This summary will be published on the website of the National
Research Ethics Service following the ethical review.

This question is fairly self-explanatory, but note the importance of writing in
language that the general public could understand. Applications for ethical
approval will be read by a panel that contains scientists, clinicians and lay
people. You must write in a way that everyone can understand what you are
proposing to do.

The UK Women’s Cohort study (UKWCS) is one of the largest UK
cohort studies which was set up to investigate the association between
nutrition, cancer and coronary heart disease (Cade, Burley, &
Greenwood, 2004). Three waves of data collection have been
completed (1995/98, 1999/02, 2010/11).



For the intended fourth wave of data collection (2014/15),
participants will be invited to complete a follow-up questionnaire and
online assessment. The questionnaire will record important aspects of
successful ageing, such as self-rated health, quality of life, physical
functioning, mental health and wellbeing, satisfaction with life,
malnutrition, body weight, finances including ‘fuel poverty’. The online
test will measure reaction time, reasoning skills, memory and
vocabulary. These are different kinds of mental skills, also considered
an important aspect of successful ageing.

As part of this wave, we also intend to recruit offspring of the
UKWCS participants by asking women to provide contact details for
any offspring. Offspring will receive an invitation letter and
questionnaire, if their mother provided their name and address.
Offspring of UKWCS will be aware that their mother provided their
contact details, but will be under no obligation to take part and data will
never be shared (they are linked anonymously with a secure code). This
will establish a generational linkage for proposed future research on
diet, ageing and health across generations.

Perhaps the most important question is

A6-2. Summary of main issues
Please summarise the main ethical, legal, or management issues arising
from your study and say how you have addressed them.

Here, we focus on the ethical issues. Postal questionnaires rarely involve
complex legal and management issues, but if you study does involve them,
you also need to address that here.

There are four main ethical issues.

1 Participant burden.
Participants have been contacted three times before. As with all
longitudinal research involving repeated follow-ups, participants may
feel burdened. To address this, we emphasise that there is no obligation
to complete the questionnaire or online assessment. Participants can
withdraw from the study entirely. Participants who have already
withdrawn from any previous wave will not be contacted at this wave.



2. Participants feeling obliged to take part.
When participants are already enrolled in a study, ethical issues can
arise if participants feel obliged to complete any additional tasks which
are proposed by the researchers at a later stage (called ‘the foot in the
door’ phenomenon). Having enrolled at baseline, participants may not
want to complete repeated follow-ups with additional tasks, but feel
obliged to do so because they have already started. To address this
issue, we emphasise that participation is voluntary, participants do not
have to respond, and participants can request not to be contacted again.

3. Internet-based tasks.
Participants may not be familiar with internet-based tasks, possibly
leading to anxiety and frustration. In 2010/11, we introduced internet-
based testing for the first time to this cohort and evaluated self-rated
distress and difficulty with the task, and the response rate to this part of
the study as an indicator of its acceptability. Women that completed the
task reported low levels of distress and difficulty, and the response rate
was moderately high. We will emphasise that this task is voluntary,
women can choose to complete the paper questionnaire only, and that if
they feel any discomfort (e.g. due to dexterity or mobility problems)
they should not complete this task. It is not described as a requirement
for the study.

4. Proxy responding.
As the cohort become older, many will require help with completing the
questionnaire. We observed in 2010/11 that for some participants, their
partner or carer had completed the questionnaire for them (‘proxy’
responding). Although in most cases women had probably asked their
partner to do this, we cannot be sure that these questionnaires are
‘authentic’ responses. In 2014/15, an additional ethical issue will arise
because the questionnaire will record several aspects of health and
wellbeing which are very personal. In our view, proxy responding is not
appropriate for these topics, which include psychological health,
wellbeing and satisfaction with life. Women may not want their partner
to know their responses to these questions, or may give unreliable
responses because their partner is writing their answers down for them.
To address this, we decided as a study team to ask participants to take
part only if they can complete the questionnaire themselves. A message



on the questionnaire will emphasise that ‘you should not complete this
questionnaire on behalf of someone else’. The study team will also
check questionnaires on return for any indication that someone other
than the participant has completed it. For example, a written comment
such as ‘Ella has had a stroke so I have completed this for her’ would
indicate a proxy response which we would exclude from the study.

5. Invitation letters to offspring of UKWCS.
Women may provide contact details for their offspring, but the
offspring themselves may not wish to be contacted. Given that offspring
can choose not to respond to our invitation, and will only be contacted
once, in our view the inconvenience of receiving an unwanted
questionnaire is relatively minor, outweighed by the potential benefit of
collecting new data and establishing a generational link in the database.
All new participants will be assured that no data is shared, to address
any concern that personal information is communicated back to their
mother.

A7. Select the appropriate methodology description for this research.
The following are ticked: cohort observation, cross-sectional study,
epidemiology, questionnaire, interview or observation study. Although the
original UKWCS cohort is a cohort observation, the proposed 2014/15 wave
can ‘stand alone’ as a separate cross-sectional study, in addition to
potentially being linked to previous waves of data collection. The study is
also epidemiology, since it involves studying risk factors for disease in
relation to health outcomes. The main method used for data collection is a
questionnaire, indicated by ticking this box.

A10. What is the principal research question/objective?
Here, introduce the background to your study and state the main (primary)
research question. There is space later on to describe any secondary research
questions, but you may want to mention these briefly here.

People are living longer, but some people live longer and in better
health than others. There is increasing interest in identifying why some
women appear to age more successfully than others, having greater
quantity but also greater quality of life, in the transition from midlife to
old age.



Our principal research questions are:
How many women in the UK Women’s Cohort Study have aged

successfully in 2014/15?
What can data collected in 1995/98, 1999/02, 2010/11 tell us about

why some women are ageing more successfully than others?
What new data can we collect in 2014/15 that might influence future

successful ageing?
Our objective is to administer a new wave of data collection in

2014/15, involving a postal questionnaire and internet task, described
below.

A11. What are the secondary research questions/objectives if applicable?
It is important not to have too many secondary research questions, because a
study should be focused on one clear question. Nonetheless, there may be
important questions that can be answered in addition to the main question.
These should be explained in this section.

A secondary objective is to ask women to provide contact details for
any sons/daughters who might want to take part in future research.
Records will be linked anonymously and stored securely, only for
women and their offspring who provide informed consent for this
linkage. This will build capacity for future research that will consider
how dietary patterns and other behaviours influence health across
generations.

A12. What is the scientific justification for the research?
This question implicitly refers to an important ethical issue, which is the
balancing of risks and benefits of research. The ethics committee want to
know if the research question is worth asking (the scientific justification),
whether your study is of sufficient quality to be able to answer the question,
and whether the anticipated benefits outweigh any risks for the participants
(or for the researcher).

Successful ageing is broadly defined as surviving into old age free from
disease and disability, although many different definitions have been
proposed. In a recent review of successful ageing, the three most
frequently used definitions referred to physical health, cognitive
function and satisfaction with life or wellbeing. Having avoided obesity



can also be considered an important aspect of successful ageing, given
that weight management in order to reduce the number of older adults
who are overweight, obese or underweight in old age has been
identified as a public health priority.
In our previous study (2010/11), we defined successful ageing among

women enrolled in the UK Women’s Cohort Study as reporting good
physical health, being satisfied with their lives, having good mental function
and having a healthy body weight. We also established that more than 60 per
cent of women would provide data on mental function using a web-based
task.

Although our definition of successful ageing covers four important
aspects of successful ageing, there are others. In this proposed wave of the
UK Women’s Cohort Study (2014/15), we plan to measure a wider range of
successful ageing outcomes. These include: self-reported physical health,
life satisfaction, body weight, mental function, physical function, chronic
disease/disability, common mental disorders, quality of life (physical, social,
psychological and environment) and an overall measure of self-rated
successful ageing. All of these outcomes will be measured using recognised
questionnaire items, with the exception of mental function, which will be
measured using an optional web-based task. In 2010/11 we only measured
one aspect of mental function (reaction time). In 2014/15, we plan to
measure a wider range of mental skills.

Ageing is a continuous process, and so it is important to measure
additional factors in 2014/15 that might influence successful ageing in the
future. We propose to measure the following in the same questionnaire:
physical activity, sitting time (e.g. number of hours spent sitting watching
TV), smoking, alcohol consumption, financial difficulties (e.g. fuel poverty,
not having enough money for food/bills), malnutrition, leisure activities and
lack of social support.

A13. Please summarise your design and methodology.
Think about whether your design is an RCT, cohort, cross-sectional or other
design. It may comprise elements of both, as the example below illustrates.

The UK Women’s Cohort Study is a prospective cohort study with
repeated follow-ups (1995/98, 1999/02, 2010/11). The 2014/15 wave is
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a further follow-up, but can also standalone as a cross-sectional design.
Data are linked anonymously across all follow-ups.

Participants (see inclusion/exclusion criteria) will be sent a postal
questionnaire in 2014/15, with a freepost reply envelope. It will explain
the purpose of the study, provide contact details for the study team, and
contain clear instructions on how to answer the questions. An optional
web-based reaction time task is included in the questionnaire. For
participants who choose to complete it, they will be asked to go to a
specified website address, complete a web-based task, and write in the
results onto the postal questionnaire. To maximise the response rate,
one reminder letter may be sent.

For women who provide contact details for their sons/daughters, the
study team will write to each contact with an invitation to participate in
the study. Existing and new data from women who provide this
information will be linked anonymously only to offspring who respond
and who provide informed consent to take part. The Participant
Information Sheet provided to women and any nominated offspring
explains the purpose of this data linkage.

A171. Please list the principal inclusion criteria

Participated in 1995/98, 1999/02, 2010/11
Data on physical activity and food diary
Contact details available
Flagged at NHS Information Service for cancer and mortality
surveillance

A172. Please list the principal exclusion criteria

Died
Cancer registration
Withdrawn from the study

A22. What are the potential risks and burdens for research participants
and how will you minimise them?



This is another important question that refers to balancing of risks and
rewards of research. Nearly all research involves inconveniencing
participants in some way. The ethics committee will want to see that you
have thought about this, and thought about any risks. Will you burden people
with lengthy questionnaires? Will the experiment make them tired? Will they
have to travel to see you? Does the drug have any side effects? Will the
interview upset people?

The questionnaire is fairly lengthy, and some participants have
previously reported that they think there are lots of questions. However,
discomfort associated with completing the questionnaire can be offset
against the need to provide detailed information about diet, and the fact
that participation is voluntary. Participants have the opportunity to see
all of the questions in the survey, in a home setting.

The internet-based task is likely to cause some inconvenience, and
some participants may not have internet access. The inconvenience is
minimised by emphasising that the internet task is optional, and the
questionnaire can be returned without that information.

A24. What is the potential benefit to research participants?
Research can have benefits to participants, which might include payment for
their time, being entered into a prize draw, finding out more about
themselves, trying a new treatment, enjoyment, and feeling that they are
making a valuable contribution to science and society. Implicitly however,
this question is also asking ‘What is in it for them?’ Potential participants
will also be asking themselves the same question! Think about what you are
offering that people might like.

Some participants report that they enjoy taking part and completing the
questionnaire, because it helps them reflect on their health and well-
being. Findings are communicated to participants on the study website.
As with many prospective cohort studies, the benefits of participation
are not always immediately obvious. However, at recruitment and
follow-up we have emphasised that the scientific data generated will
improve knowledge about health and disease in the longer term. We
always thank women for their continued participation, time and
commitment, and will continue to do so.



A30-1. Will you obtain informed consent from or on behalf of research
participants?

Obtaining informed consent is an important part of most health research.
Exceptions include research where obtaining consent is not necessary, but
often this is better described as audit. In epidemiology and public health,
population datasets such as the census or mortality records might be used for
research purposes without consent. Generally, ethics committees will expect
you to obtain informed consent where necessary. Obtaining a paper record of
consent (e.g. with a signature) is not always necessary. For example, when
people respond to postal or web questionnaires, ethics committees usually
accept that people who have responded have consented to take part. You
must obtain informed consent if you plan to use an intervention or
experiment in your research (see Appendix 5: Consent Form).

A57. What is the primary outcome measure for the study?
This is one of the most important questions, but if you have more than one
outcome, it can be difficult to answer. Usually there is a primary outcome,
meaning the outcome variable you are most interested in. For trials this is
usually clear, because the intervention is designed to change this outcome.
For cohort, cross-sectional and several other research designs, you may be
interested in several outcomes. It is commonplace for several outcomes to be
analysed separately in a prospective cohort study, for example. It is good
practice however, to design a study with at least one clear outcome, and use
this to help you determine sample size. Ethics committees will not be
impressed if you have no clear outcomes in mind, or seem unable to
determine which of your variables are exposures/predictor variables and
which are outcomes. In the example, meeting the criteria for successful
ageing is a primary outcome.

The proportion of women meeting the criteria for successful ageing

A58. What are the secondary outcome measures?
If you have other outcome measures, this is the place to describe them. In the
example, the secondary outcomes are the specific components of successful
ageing. The overall measure of success would be analysed first, and then its
individual parts. Additionally, the researchers wanted to collect contact
details for sons/daughters of women enrolled in the study. The proportion of



women providing such details is considered a secondary outcome measure in
this study.

The proportion of women qualifying for specific components of
successful ageing (i.e. each indicator separately).

The proportion of women who provide contact details for
sons/daughters, and the response rate for these offspring.

A60. How was the sample size decided upon?
At first sight, you may not think that this question is about ethics. What does
sample size have to do with ethics? In fact, deciding a sample size is a very
important part of an ethical research study. This is because sample sizes
determine the statistical power of a study. Miles has argued ‘power is not
just a statistical or methodological issue, but an ethical issue’ [96].
Participants in health research are giving up their time in the hope that this
will help reduce disease and disability in the future. A sample size that is too
small will be under-powered, reducing the likelihood that a true effect is
found. A sample size that is too large is a waste of time and resources. Why
recruit too many people when you can estimate the right number of people
needed to find an effect? If you do not have a statistician or someone to help
you perform a power calculation, there are several good software packages
available and various web resources. Additionally, there are books dedicated
to statistical power analysis, some of which are listed at the end of this
chapter. When thinking about sample size and statistical power, it may be
important to think about clinical significance and minimally important
difference (MID).

The sample size of 3721 is based on a detectable odds ratio of 1.30, a
proportion of cases in the ‘exposed’ group of 0.15, and a ‘disease’
prevalence rate of 0.48. This estimate is illustrative and based on data
from the cohort at 2010/11 and a modest effect size. In reality, models
will be run for more than one outcome and all available data will be
used, so the analytic sample size will vary. Assuming a response rate of
45 per cent, mailing 9000 questionnaires should achieve 4050
responses, although this is likely to be closer to 3700 because the cohort
are older than at 2010/11.



Figure 11.8 Power/sample size calculation
(http://www.dartmouth.edu/~eugened/power-samplesize.php)

A62. Please describe the methods of analysis (statistical or other
appropriate methods, e.g. for qualitative research) by which the data will
be evaluated to meet the study objectives.

Ethics committees want to know how you will analyse your data. You may
think that statistical analysis is a statistical rather than an ethical issue, but
remember that poor-quality research is unethical research – it wastes time
and resources. If you appear to have no clue how you will analyse your data,
are you really ready to conduct your study? It helps to give at least some
indication of the kinds of methods you will be using. For many quantitative
study designs, regression models and methods related to regression
(including ANOVA) will be expected. If you plan to use more unusual
methods, the committee may want to see more detail. It may help to say how
you will do descriptive analyses (e.g. chi-square tests, t-tests).

Data will be analysed using logistic regression (categorical outcomes)
or linear regression (continuous outcomes).

A69-1. How long do you expect the study to last in the UK?

http://www.dartmouth.edu/~eugened/power-samplesize.php


•

•

•

You will be expected to submit regular progress reports, notify the
committee of any delays, and submit a final report. Things can get delayed,
which is not problematic, but it shows evidence of good planning if you have
a clear end point in mind. Research that could apparently run indefinitely is
unlikely to be perceived favourably.

Planned start date: 01/01/2014
Planned end date: 31/12/2015

Informed consent in the IRAS application
The guidance notes in the IRAS application form note that ethics committees
are increasingly asking, ‘Can you, or whoever will seek consent, assess
capacity and do you understand the ethical principles underpinning informed
consent?’ This raises a related but different issue to informed consent, that of
capacity.

Capacity
The Mental Capacity Act (2002) requires researchers to consider whether
potential participants actually have the capacity to provide informed consent
for research. Some patients may not, and so special arrangements will need
to be made (e.g. with carers and relatives) if you want them to take part in
your research.

Other things ethics committees may ask for include:
Study protocol. This is a concise summary of what will happen in the
study – to whom, how many times, and in what order. It is good
practice to have a study protocol before you start writing the ethics
form, not least because it helps you get clear in your own mind what
your study will actually involve
Participant information sheet. This is an information sheet for
participants, usually written in question and answer format.
Consent form. Often following the information sheet, the consent form
is a written and signed record that the participant has agreed to take part
in the study as described in the information sheet. For anonymous
surveys however, ethics committees may not consider this necessary.
Returning a questionnaire can act as a proxy for providing consent – if



•

people did not want to take part, they probably wouldn’t return it. An
example of a consent form is provided in Appendix 6.
Questionnaire or other data collection methods.
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Questionnaires
The best advice about designing a new questionnaire is arguably, not to do
it! If you can possibly avoid it, it is nearly always better to use an existing,
validated measure of the variables you are interested in.

If you use an existing questionnaire, scale, measure or question

Check that the measure(s) is(are) reliable (i.e. internally consistent, and
stable when administered repeatedly / test-retest reliability).
Check for evidence that the measure has been validated (measures what
it claims to measure).

If you must design a new questionnaire

Make absolutely sure that there are no existing questionnaires, scales,
measures or single questions which you can use – check, for example,
the Survey Question Bank at the UK Data Service
(http://ukdataservice.ac.uk).
Creating a new measure is highly challenging, because you have to
demonstrate reliability and validity yourself, before people appraising
your results will accept your findings.
Think about how you will show reliability (e.g. Cronbach’s alpha for
internal consistency reliability, repeated the questionnaire on a sub-
sample of participants three months later, to provide test-rest
reliability).
Think about how you can demonstrate validity (e.g. showing that your
measure correlates with things you would expect it to, and does not
correlate with things you do not expect it to correlate with).
You need to study guides to questionnaire design before launching into
your own.
Choose closed questions (e.g. choose from the following options:
always, sometimes, never) if you want people to complete the questions
quickly, and to save time at the data entry stage.

http://ukdataservice.ac.uk/
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Choose open-ended questions if you want people to express their own
views in their own way, and you are not concerned about the additional
time their answers will take to code and analyse. Open-ended questions
may require qualitative methods in order to analyse the data.
Think carefully about the participants’ literacy and numeracy levels.
Might visual scales or pictures be more appropriate than complex
numerical response options?
Check the readability of your questionnaire. For example, use MS Word
to calculate a Flesch-Kincaid reading score (under the Review tab, click
on Spelling & Grammar, Options, Tick the box ‘Show readability
statistics’ under ‘When correcting spelling and grammar in Word’)
Pilot your questionnaire before starting the data collection. Do people
understand the questions and layout? Do they tend to miss particular
questions? Should the design be improved?

Figure 11.9 Selecting readability statistics in Word

Questionnaire design
Table 11.1 is reproduced from a series of three guides to questionnaire
research published in the BMJ [97–99]. It is worth reading these guides if
you plan to design a questionnaire yourself.



Data management
Good data management involves keeping detailed records of everything you
do during the research project. If you are storing personally identifiable
information, you need to comply with current data protection legislation. If
you are conducting research at a public institution, or have a contract with a
public body, then you should be prepared to share any information (except
information that is personally identifiable or exempt for other reasons) in
response to any ‘Freedom of Information’ request.

Data protection
You must ensure that your data collection meets the requirements of the Data
Protection Act 1998. In particular, you need to check where and how to store
any personally identifying or sensitive information. Check with your data
protection officer to find out more.

Freedom of Information (FOI)
Any member of the public can request information about your study,
including protocols, emails between you and colleagues, meeting notes and
so on. Your research may be funded by a public body, and be conducted at a
university or college. This makes you accountable for what you do, and you
should be prepared to share anything that would pass the ‘public interest
test’. The Freedom of Information Act is designed to promote transparency
and accountability, which should help improve decision-making. The
Information Commissioner's office say we should be moving away from
‘need to know’ toward ‘the right to know’, toward a new culture of openness
[100]. You should be prepared to be transparent and accountable when
undertaking research. FOI should not be confused with data protection,
which concerns personally identifiable information. Following a FOI
request, personally identifiable information is often removed because it is
one of the exceptions to FOI (data protection requires that personal
information not be disclosed). Check with your local FOI officer for
information.
Table 11.1 Guidelines for questionnaire design (adapted from [97–99])



Section Quality criterion

Title Is it clear and unambiguous?
Does it indicate accurately what the study is about?

Is it likely to mislead or distress participants?
Introductory letter or
information sheet

Does it provide an outline of what the study is about and what the overall
purpose of the research is?
Does it say how long the questionnaire should take to complete?

Does it adequately address issues of anonymity and confidentiality?
Does it inform participants that they can ask for help or stop completing
the questionnaire at any time without having to give a reason?
Does it give clear and accurate contact details of whom to approach for
further information?

If a postal questionnaire, do participants know what they need to send
back?

Overall layout Is the font size clear and legible to an individual with 6/12 vision? (Retype
rather than photocopy if necessary)
Are graphics, illustrations and colour used judiciously to provide a clear
and professional overall effect?

Are the pages numbered clearly and stapled securely?
Are there adequate instructions on how to complete each item, with
examples where necessary?

Demographic
information

Has all information necessary for developing a profile of participants been
sought?
Are any questions in this section irrelevant, misleading or superfluous?

Are any questions offensive or otherwise inappropriate?
Will respondents know the answers to the questions?

Measures (main body
of questionnaire)

Are the measures valid and reliable?
Are any items unnecessary or repetitive?

Is the questionnaire of an appropriate length?
Could the order of items bias replies or affect participation rates (in
general, put sensitive questions towards the end)?

Closing comments Is there a clear message that the end of the questionnaire has been reached?
Have participants been thanked for their co-operation?

Accompanying
materials

If the questionnaire is to be returned by post, has a stamped addressed
envelope (with return address on it) been included?
If an insert (eg leaflet), gift (eg book token) or honorarium is part of the
study protocol, has this been included?

Databases
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You may store your research data in any number of formats (e.g. Excel,
Access, R, SPSS, SAS, STATA), but do remember the following:

Personally identifiable and sensitive data should be stored separately in
a secure database.
Even when data are anonymised or linked-anonymised (an ID number
could be used to link data back to named participants in a separate
database), certain combinations of variables could be used to identify
people. In a sparsely populated area, for example, simply knowing the
job title and age of a participant might be sufficient for someone to
identify them. Think carefully about the level of detail you actually
need.
Participants should have been informed if you plan to share data, and
provided consent to do this. Will you share the anonymised data? Will
you pass on personal details to other researchers? Will you remove
some variables to reduce the risk of identification? These are all
important questions that should be answered before you start the study,
and they should all be clearly explained to participants so that informed
consent is truly informed.

Data cleansing
Here are some tips for checking that your data have been entered

correctly:
Check the minimum and maximum for each variable. Are there any
variables out of range?
If there is a blank cell, is this a data entry error or a true missing value?
It is better to assign missing values with a specific number (e.g. 9999)
to make it clear that the value is actually missing. Do not forget
however, to specify that this value should be treated as missing in your
software package. If you do not, it will treat 9999 as a numeric value.
If you have time/funding, do data entry twice (‘double data entry’) to
allow checking for any inconsistencies.
Keep the original data or questionnaires in case you need to refer back
to them.
Check that all variables are labelled correctly, that you know what each
value means, and what the units are (e.g. litres, fluid ounces).
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Create a ‘data dictionary’ or coding book which describes all of the
variables, their labels and their possible values. This will help you and
others who might use the data for future analysis.
Check for outliers (very low or very high values) and refer back to
original questionnaires or raw data, to find out if this was a data entry
error or a true value.
Enter data gradually, rather than waiting for all questionnaires to be
returned, for example. It will reduce the burden on the person doing the
data entry.
Save data with a new file name (‘save as…’, rather than ‘save’) each
time you work on the dataset, preferably with the date. For example, if I
was entering data across three days, I might end up with three files like
this:

2013_07_06_data
2013_07_05_data
2013_07_04_data

This means that should a mistake be made, it is easy to go back to the
previous file and remember which date it was created on. You can also
sort the files by date, to quickly identify the newest one.



Summary
You should not underestimate the time involved in planning your research,
which includes writing a study protocol, submitting your study for ethical
approval, data entry, data checking and data management. Even small-scale
studies take considerable time, even before you can start analysing the data.

This chapter has demonstrated the importance of a clear primary research
question in focusing your research and identifying the key objectives and
outcomes of your study. The chapter has raised related methodological
issues such as study protocol, sample size, data collection, data analysis and
data management which will help you to design your research project, but
also to consider the ethical implications. As a researcher, particularly in the
health sciences, you have a moral duty towards your research subjects,
which involves maximising benefit while minimising harm, respecting the
autonomy and dignity of research participants, ensuring the quality and
value of your research, and social responsibility towards the wider public.
This latter point underlines the ethical importance of research design factors
such as sample size, which affects the statistical power of a study and its
practical application.

The chapter has discussed the MRC guidelines on good research practice
and stressed the importance of informed participant consent, as well as
ethical issues around participant burden in a longitudinal study, difficulty in
responding, and proxy responding. It has offered a step-by-step practical
demonstration of how to use the IRAS application system which gives you a
good model for identifying key methodological and ethical issues in your
study design. It has also raised issues around the advisability of designing a
questionnaire for your study when there may be existing questionnaires
which you could use. Data management is also an ethical issue, particularly
where you are storing personal information and the chapter has raised the
issue of data protection legislation which may affect your research design.

You should now feel confident about identifying the main ethical issues in
your study, completing an application for ethical approval for a study, and
anticipating the issues in research design, data management, data analysis,
and ethical questions which ethics committees may raise.

Good study design is vital if you are to seek publication of your research,
which is important for your career progression and professional
development. The question of practical applications of your research leads



us to the importance of distributing and publishing your work, which the
next chapter now considers.



Part IV
Conducting new research
 



12

Dissemination and publication
 
 
 
Sooner or later, you may think about preparing your results for publication
in a scientific paper. This section briefly reviews the different kinds of
papers published by health scientists, and then shows how you might write
a manuscript and prepare to submit the manuscript to a peer-reviewed
journal.



•

•

•

•

•

Intended learning outcomes
By the end of this chapter, you should be able to:

identify different ways of disseminating your results;

avoid plagiarism and possible conflicts of interest;

understand the importance of acknowledging your sources;

prepare your results for publication;

identify suitable journals where you can submit a manuscript.



Types of published writing

Research articles
Research articles make up the majority of published academic writing and
are used to disseminate the results of original research. In the critical
appraisal chapters, we appraised several examples of original research
articles that had been peer-reviewed and published in academic journals.
Research articles in the health sciences are typically 2500 to 5000 words in
length, although social sciences and psychology tend to be longer. More
medical disciplines tend to have shorter introductions than psychology, for
example, where longer introductions provide more room to discuss
theoretical background and introduce psychological constructs referred to in
the paper.

Review articles
As we saw in Chapter 7, review articles summarise several existing
research articles, to provide an overview of the ‘totality’ of available
evidence that has been published. Review articles are particularly useful
when there have been many studies published on a topic and the reader
would like to orient themselves to the area without having to read all of the
existing studies. Review articles are divided into two kinds – narrative
reviews and systematic reviews. Narrative reviews provide a ‘story’ of the
research but the papers are selected by the author as they see fit. Systematic
reviews specify a set of criteria showing how the research databases were
searched, the search terms used, which studies would be included, which
would be excluded, and how results would be synthesised. It is generally
thought that systematic reviews give a less biased account of the literature
than narrative reviews, because an author writing a narrative review could
‘cherry pick’ only those articles which they thought were most interesting.
Narrative reviews can be quite subjective, and give a misleading impression
of the evidence base. Systematic reviews however, do not necessarily
provide a complete account because the evidence reported depends on the
criteria used to select the studies. If the author used a different set of



criteria, they would end up with a different review. The criteria selected also
involve some degree of subjectivity and personal preference.

Meta-analysis
It is important not to confuse systematic reviews with meta-analysis. Meta-
analysis usually follows systematic review, but not always. Meta-analysis
involves combining the results of several studies into a single summary
result or effect size, and with confidence intervals. The studies may have
been selected using systematic criteria, but not necessarily. An author may
choose to conduct a meta-analysis of several studies simply because they
had access to the results for those studies. Another author might choose to
conduct a meta-analysis on all of the published results on a topic.
Systematic reviews followed by meta-analysis arguably provide better
quality evidence that either narrative reviews or meta-analysis without a
systematic approach to choosing studies. In recent years, meta-analysis of
individual participant data (MIPD) has become popular. This involves a
researcher collecting the original data and then analysing all of the studies
simultaneously, to produce a summary result. Traditional meta-analysis
involves synthesising the existing results, usually but not always published
results, from the studies. There is much greater control in MIPD because
researchers can choose which variables to control for, how results are
presented, and consider effect modification. Decisions made prior to
publication of the original studies can be revisited in MIPD, which is an
attractive feature.

Letters
Letters to the editor are short opinion pieces, often reacting to published
research articles. Letters pages are an arena for debate and discussion. If a
reader disagrees with the interpretation made by an author concerning their
results, or has reservations about the methods used, then a letter is a suitable
method for communicating these views. Letters may suggest additional
confounding factors that authors did not consider, alternative ways to
analyse the data, or different conclusions that could be made. Letters are
typically very short, and are submitted for publication very soon after the
research article they refer to is published.



Book reviews
Given that there are so many academic books being published each year, it
is often helpful to read book reviews. Book reviews are written by readers
of the journal they appear in, which is helpful because the review is written
by someone working in a similar discipline to yourself. Book reviews
typically give an overview of what the author(s) included, the structure of
the book, strengths, weaknesses and a recommendation about suitable
audiences. For example, the review might suggest that students should be
told to read the book as part of a course.

Cohort profiles
The International Journal of Epidemiology has published many cohort
profiles in recent years and this type of paper is proving increasingly
popular. Cohort profiles provide background information about a cohort,
such as when the cohort was recruited, the types of people in the cohort,
what has been measured and when the cohort were followed up. This means
that authors presenting results from a cohort do not need to provide a
detailed description of the cohort in every paper – they can simply cite the
cohort profile. Cohort profiles are an excellent way of familiarising yourself
with new and on-going cohort studies.

Case reports
Case reports are common in the medical sciences, and consist of a single
patient or ‘case’ being described to the readers. Typically this is an unusual
case, perhaps of a rare condition or presentation, but not necessarily. A rare
case does not in itself mean that a case report should be published – a
common disease with a particularly unusual presentation or set of
symptoms might also be worth publishing as a case report. A case report
includes a description of the patient, the sequence of events, and what the
clinician did to manage the case. Sometimes photographs are included but
care should be taken to ensure confidentiality, and ideally informed consent
from the patient should have been given. The purpose of case reports is
typically to educate readers, and so publication in a relevant speciality
journal is necessary.



The structure of original research articles
Original research articles typically follow a classic structure called
‘IMRaD’ – Introduction, Methods, Results and Discussion. An abstract of
the paper will be presented at the start of the article and in research
databases.

Abstract
Abstracts are 200–300-word summaries of the article and can be described
as a miniature version of the article itself. Structured abstracts have the
same headings that appear in the paper (introduction, methods, results and
discussion) for this reason. Often, the abstract is the only part of the paper
that will be read. Many readers will search databases for relevant articles
and only read the abstract. Therefore, it is essential that abstracts are clear,
concise, and include the most important information.

Introduction
The purpose of the introduction section is to briefly introduce the topic,
summarise the previous research in the area, clarify an important gap in the
evidence base, and propose a research question which fills the gap. When
planning an introduction section, imagine a funnel shape – start fairly
broad, and then end the introduction with a narrow, specific focus on the
research question which your paper will address. In the health sciences,
introduction sections are quite short. You can cite previous research and if
available, review articles, which allow readers who want to learn more
about the topic to find relevant references. Good introductions identify what
the paper will add to the evidence base. They answer the question ‘why
does this paper need to exist?’ Although replicating research findings is
important, few editors of journals will want to publish an article that simply
repeats what has been found already. An original research article will ‘move
the field forward’. Although it can raise new questions, it should answer at
least one important question. When writing an introduction section, resist
the temptation to provide a detailed narrative review of the field. Although
you should have read the relevant papers before starting your own study, it
is not necessary to cite all of these papers simply to show the reader that
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you have read them. Cite references selectively, focusing on key papers,
more recent findings, and review articles. Introductions typically end with a
clear statement of the gap in the existing evidence base and the research
question which will be answered. Here are some examples:

The concept of “lung age” (the age of the average person who has
an FEV1 equal to the individual) was developed in 1985 as a way of
making spirometry data easier to understand and also as a potential
psychological tool to show smokers the apparent premature ageing
of their lungs. We tested the hypothesis that telling smokers their
lung age would lead to successful smoking cessation, especially in
those with most damage [57].

As keeping birds is fairly common in Sweden, a relative risk of the
magnitude reported in any of these earlier studies could have a
substantial impact on the nation's public health. We therefore
included questions concerning bird ownership in our population
based case-control study of lung cancer conducted in the city of
Gothenburg and counties of Bohus and Alvsborg in southwest
Sweden [38].

Although the individual effects of smoking and alcohol consumption
on mortality have been well established, the joint effect of these two
lifestyle factors on mortality remains unclear (Ebbert et al., 2005;
Martelin et al., 2004; Yuan et al., 1997). We took advantage of the
data collected in the Shanghai Women's Health Study (SWHS)
about the lifestyles and health conditions of husbands of the cohort's
married women and prospectively examined the relationship
between cigarette smoking, alcohol consumption and mortality of
the husbands. In this husband cohort, many participants were both
cigarette smokers and alcohol drinkers, providing us with a good
opportunity to evaluate the effects of the interaction between
cigarette smoking and alcohol intake on mortality [69].

Methods



The methods section describes the methods used by the researchers. Ideally
it should provide enough information to allow readers to repeat the
procedure, if they wanted to replicate the study. The methods section should
cover who, where, when, why (inclusion/exclusion criteria) and how.
Additionally, it is necessary to provide information about who provided
ethical approval for the study. For example, ‘The study was approved by the
University College London and University College London Hospitals
Ethics Committee’ [52]. Depending on the journal, methods sections are
sometimes divided into further sections: design, participants, measures,
procedure, statistical analysis.

Design
Describe the type of research design (e.g. RCT, cohort, case-control, cross-
sectional). For cohort studies, it is worth describing the cohort briefly, and
citing a cohort profile (if available) or an earlier paper which contains more
detail on the cohort, recruitment, baseline measures and so on. For example:

The Whitehall II study is based on employees of the British Civil
Service [101]. At study inception (phase 1, 1985–1988), 10 308
participants (67% men) underwent a clinical examination and
completed a self-administered questionnaire. Subsequent phases of
data collection have alternated between postal questionnaire alone
(phases 2 [1988–1990], 4 [1995–1996], 6 [2001], and 8 [2006]) and
postal questionnaire accompanied by a clinical examination (phases 3
[1991–1994], 5 [1997–1999], 7 [2002–2004], and 9 [2007–2009]).
[102]

Participants
The participants section describes who was included, and why. Any
inclusion/exclusion criteria should be specified. For example:

From September 1995 to November 1997, we invited homosexual men
attending a sexual health clinic in London to enter the trial if they
presented with an acute sexually transmitted infection, reported having
had unprotected anal intercourse with a partner of different HIV status
in the past year, or expressed concern about their sexual practices. Men



were only excluded if they were deemed by clinic staff to be unsuited
for a group education and counselling intervention. Participants were
randomly allocated using sealed opaque envelopes. [52]

Measures
Information about the exposure, outcome and covariates should be provided
here. For example, in this paper, the exposure was sitting time and the
outcome was mortality:

Exposure assessment. The amount of time participants spent sitting
during work, school, and housework was obtained from the lifestyle
questionnaire. Participants were asked to indicate the amount of time
they spent sitting during the course of most days of the week as either
1) almost none of the time, 2) approximately one fourth of the time, 3)
approximately half of the time, 4) approximately three fourths of the
time, or 5) almost all of the time [103].

Ascertainment of mortality. The CFS database was linked to the
Canadian Mortality Database (CMDB) at Statistics Canada. The
CMDB contains all recorded deaths in Canada since 1950 and is
regularly updated using death registrations supplied by every province
and territory. [103]

Statistical analysis
This section describes the statistical techniques used to analyse the data.
Normally this includes basic descriptive statistics used to describe the study
variables, and will include t-tests for continuous variables and chi-square
tests for categorical variables. For example, tables may be presented in the
results section which compares study variables across exposed or
unexposed participants. The descriptive statistics should compare whether
the exposed and unexposed participants differ significantly. For RCTs,
baseline differences should be evaluated and any significant differences
evaluated. Next, describe the techniques used for the main analysis. These
might include linear regression, logistic regression, Cox regression or
ANOVA, for example. Finally, describe any sensitivity analyses conducted.
Sensitivity analyses are important because they evaluate whether certain
aspects of the data might have influenced results. For example, a small



number of participants with extreme values or deaths which occurred very
soon after baseline, might have generated spurious results. If you repeated
analyses after excluding these people, explain this here. In this section, do
not report the results of any analysis, simply describe the methods used.

For example:
We used a proportional hazards regression model to examine the
relation between cigarette smoking, alcohol consumption at
recruitment and subsequent risk of death. [69]

Results
Results are the most important part of a research article. Having said that,
we saw in the critical appraisal chapters that the methods section is arguably
what should be appraised first. If the methods are not suitable for answering
the research question, then the results are not worth reading. Results
sections are usually divided into two main sections, descriptive statistics
and then the main analysis. The main analysis where the ‘inferential
statistics’ are presented, typically involving regression models, ANOVAs or
other multivariate models.

Descriptive statistics
Descriptive statistics are usually presented in the first table of a research
article. Typically, each study variable is listed in the rows of the table.
Researchers often use the columns to divide the analytic sample according
to exposure status (for cohort studies) or treatment status (for RCTs). Cross-
sectional studies might be divided into men and women, different socio-
economic groups, or some other relevant grouping. Taking cohort studies as
an example, the purpose of presenting statistics separately according to
exposure status is to show the reader what the ‘crude’ bivariate differences
look like, before any adjustments have been made. Are those in the highest
blood pressure tertile also more likely to smoke? Is the mean age of heavy
alcohol drinkers higher than moderate drinkers? Are there more men
diagnosed with clinical depression than women? These are the sorts of
questions which the reader is likely to be asking, as they scan your table of
descriptive statistics.



• Tip: when preparing a research article, start with Table 1. Clear and
neatly presented tables influence the perceived quality of a paper, help
reviewers understand the data quickly, and allow reviewers to check
aspects of your work. Additionally, they may help you write the paper.
It can be useful to have tables beside you as you write, so that you can
refer to them easily. After publication, tables will help readers
understand what you have done – which is ultimately the most
important feature of a paper.

Given what we have learned about confounding, you should realise that
simplistic bivariate relationships presented in such tables are not necessarily
informative because they can be influenced by confounding factors. They
are very important however, because they can show which variables are
associated with exposure status, and therefore, which might be important to
control for in the main analysis. Similarly, some authors present tables
grouped according to the outcome status, which also provides information
about possible ‘confounding structures’ in the data. In the case of RCTs,
comparison of study variables according to treatment status tells the reader
if randomisation has been successful. If randomisation was unsuccessful,
we will see significant differences between the groups at the start of the
study.

Table 12.1 is an example of a table of descriptive statistics, taken from a
prospective cohort study of older men [104]. The exposure is depression
status (no depression vs. depression) and so the authors have used columns
to group the participants. The rows are the study variables.

A note on p values in descriptive tables
The p-value is a chi-square test used to help the reader determine if the
differences across the columns are statistically significant or not. When you
present a p-value in this way, think carefully about which test you want to
use. A Pearson chi-square test will tell readers if the distribution of cell
sizes differs significantly from what we would expect by chance. When
your study variables have more than two categories however, it will not tell
you if there is a linear trend across the categories. For example, if the
outcome is no depression, moderate depression and severe depression, does
the proportion of current smokers steadily increase as we move through



these categories? Researchers would conduct a test for a linear trend in
these circumstances.

It is useful to present data in this way because the readers can scan the table
to identity that men with depression are significantly older, less educated,
comprise more smokers and have more comorbidities. This helps
characterise the data and also illustrate why it might be important to control
for these variables in the main analysis. An alternative method favoured by
many, is to show the n(%) in one of the categories (e.g. current smoker)
rather than all of the categories (never, past, current). This saves space but
still provides the important information. Most of the data are categorical,
but for continuous variables (e.g. Charlson index, a measure of the expected
burden of comorbidities), you should present the mean and standard
deviation. Differences across the columns can be compared using a t-test.

Tables of descriptive statistics are followed by one or more tables that
show results from the main analysis. It is quite common to first present a
‘crude’ estimate of relative risk, from a model that contains only the
exposure of interest (here, depression). If the crude estimate is not sensible
to report, for example, because it is heavily confounded by age and sex,
then you may want to consider presenting a ‘minimally adjusted’ estimate
(e.g. adjusting for age and sex). Next, show the results adjusted for the
proposed or possible confounding factors. This allows readers to see what
happens to the association when the confounding factors are added to the
model. This provides a sense of how biased the crude or minimally adjusted
association might have been, had the confounders been ignored. Some
authors present several sets of adjustments, perhaps adding additional
confounders to the model, or perhaps showing separate models which
contain different variables. In Table 12.2 the authors have also shown the
association between the confounding factors and the outcome, which is
something you might want to consider doing. It does take up additional
space, which is why many authors would only present the measure of
relative risk for the exposure. Nonetheless, here we are able to see that other
variables have an association with the outcome (chiefly age and Charlson
index score) which is quite interesting.
Table 12.1 Baseline characteristics of 5411 men with valid 15-item
Geriatric Depression Scale ratings, by depression status



Group, percentage of participants
Characteristic No depression

(n = 5072)
Depression
(n = 339)

p value

Age group, in years < 0.001
69–74 35.6 25.1
75–79 43.1 44.2
80–84 17.2 23.0
>85   4.1   7.7
Education < 0.001
None   0.4   1.2
Primary 15.1 24.5
Some secondary 37.8 37.8
Secondary 26.2 20.9
Postsecondary 20.5 15.6
Smoking < 0.001
Never 33.2 20.4
Past 61.8 70.4
Current   5.0   9.2
Duke Social Support
Index tertile

< 0.001

Highest 44.7   9.0
Middle 31.8 21.3
Lowest 23.4 69.7
Missing values   0.4   1.8
Charlson index
(weighted), mean (95%
CI)

1.17 (1.12, 1.22) 2.21 (1.94, 2.48) < 0.001

Missing values 11.3   4.1

Source: [104]

Table 12.2 Example table showing the association between confounding
factors and outcome before and after adjustment for covariates



IRR = Incidence rate ratio

Discussion
Having presented your results, it is now time to move on the discussion
section. The discussion section is where you reflect on what was found,
consider how the research questions were answered, summarise the
strengths and limitations of your study, and appraise your study in light of
the existing literature. A good discussion section is well-structured, and will
allow nontechnical readers to understand what you did, even if they did not
understand your results section. Whereas the introduction section begins
broad and ends with a narrow research question (imagine a funnel shape),
the discussion section does the opposite. The discussion begins with a
succinct summary of what was found, and then gradually broadens out to
consider the wider implications of the study. Several commentators have
proposed that discussion sections should have a tight structure, perhaps
even with subheadings. Although many journals do not use subheadings in
the discussion section, you may find it helpful to write the different parts of
your discussion under these headings, each of which we will now consider.



Restate the main findings
In one or two sentences, tell the reader your ‘bottom line’ results. What did
you find? Avoid simply repeating material from the results section. Imagine
that you have only two sentences to describe the most important
conclusions that can be drawn from your study. The discussion section is
often written in plain English, rather than scientific or statistical language.
For this reason, many readers, particularly journalists, might skip your
methods and results sections entirely. They might go straight to your
discussion section, and so you must grab their attention quickly but without
over-simplifying things.

Strengths and limitations of the study
Every study has both strengths and limitations, and so does your study.
Think of this section as a place where you can critically appraise your own
research. It is important to show the readers that you are aware of the
methodological and other shortcomings of what you did. When you have
spent a long time conducting a piece of research, perhaps a year or perhaps
even longer, it is tempting to think that your study has fewer limitations
than it actually does. It is often said that that every mother thinks her baby
is the most beautiful. Researchers can suffer from the same bias, often
having a biased view about their work. Stand back from the research and
imagine yourself to be a critical reviewer or reader. Was the research
question really that important? Does the sample truly reflect the intended
population? Was the exposure measured without bias? Was the statistical
test used in fact the right one? Do the conclusions stay within the confines
of the data? Really? When describing the strengths and limitations of your
study, keep things balanced. Some limitations are widespread and readers
will be sympathetic. Generally, we all have to rely on self-reports in
questionnaires at some point, even if we would rather have available a gold
standard. If the measures you used were reliable and validated, do not dwell
too much on the well-known limitations of self-report. If you have
conducted a trial, loss to follow-up is not a major flaw, unless it is severe
and those dropping out were different kinds of people. Focus on the
limitations which are more specific to your study. Before writing this



section, have a look at other researchers' papers in academic journals. This
will give you a sense of what kinds of issues should be discussed here.

Strengths and limitations in relation to other studies
In this section, start to make connections back to your introduction section,
which would have briefly summarised the existing literature and identified
important gaps in it. Compare your study with previous studies in the area,
particularly more recent or more important ones, allowing readers to think
about where your study ‘fits’ in the wider literature. Was your study bigger,
better, more powerful and more useful than all previous studies? Probably
not. Do not try to over-sell your paper – people will not buy it. Other
studies may have had strengths which yours did not, although you may have
moved the field forward by improving on key aspects. Explain how what
you did was different, particularly emphasising any improvements on prior
work. Do not get personal in this section. Focus on the research, not on the
people who did it! If there are any important differences in the results, make
sure you identify possible reasons for this. Was your population different in
some important way? Did you measure the outcome differently? Finally, it
should go without saying that it is much easier to write this section if you
are familiar with the literature. This is another reason why it is so important
to conduct a literature review prior to starting a research project. Remember
that the literature may have changed since you did your literature review. It
takes time to do research, and so new papers are likely to have been
published since you began your project, particularly if your topic is popular,
fast-moving or ‘crowded’ (meaning that many researchers are working in
the same area). Return to the databases before you write up your results, to
identity new studies. The last thing you want to do is claim that you were
the first to find X, when in fact someone else published a paper finding X
just last month!

Meaning of the study
The results are one thing, but what they mean is another. People critically
appraising your research should be asking ‘so what’? Too many research
studies are published with little regard for their practical importance or
reflection on how they move health sciences forward. For health sciences



which are more theoretical in nature, such as health psychology, this section
is where you need to say what your findings mean in terms of theory. Do
your findings mean that the theory is supported, that it needs to be
modified, or that it is simply wrong? For more data-focused disciplines, this
section will tend to focus on practical implications. If you evaluated an
intervention and it improved your outcome measure better than in a control
group, then the meaning is fairly clear – it works. However, take great care
to distinguish statistical from practical or clinical significance. Finding a
statistically significant effect is one thing, but if the effect size is very small
this might not be meaningful (in fact, it may be meaningless). Depending
on the focus of your study, you might want to mention any economic
implications of your results here. Health economists are interested in how
much an intervention costs, in terms of the number of quality adjusted life
years (QALYs) or other ways in which health can be measured. The impact
of removing an exposure on population health might also be useful for
readers. If you found that reducing coffee consumption would reduce the
risk of having migraines for example, what are the public health benefits if
people stop or reduce coffee consumption? How many people would it
affect? For more applied health sciences, such as nursing or occupational
therapy, in this section you should focus on what readers should do
differently in their work. Based on your findings, should they continue
doing what they always do, or do something differently?

Next steps and future
The final section of your discussion section should think ahead to the
future. End your discussion as broadly as you opened your introduction
section. Think about the wider field and the larger, ultimate implications.
Avoid the temptation to become grandiose, and also avoid stepping beyond
what you have actually found. Do, however, remind readers why the topic is
important. They may have gotten lost in your results section and forgotten
why the research question was worth asking at all. In the health sciences,
different disciplines often share the same ultimate aims, so some of these
statements make similar references (health improvement, population health,
removing health inequalities, reducing costs of healthcare etc.). Each does
an excellent job of making a final statement which should leave a lasting
impression on the reader.
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It is worth noting that someone skim-reading your paper, perhaps a
journalist, might only look at the opening and closing sentences of your
discussion section (assuming they get beyond the abstract). Make sure that
these sentences count.

Co-authorship
It is important that all people who contributed to the manuscript are named
as co-authors on the paper. Deciding who should be a co-author, and in
what order they should be listed, is ideally done in advance of writing the
paper. Disagreements can arise, and often do arise, at various stages of the
writing process, including after publication. To avoid conflict, it is better to
agree who the co-authors are before you start writing. If you are a student,
do not assume that because the manuscript is from your project, you have
sole claim as author. You are drawing on the contributions made by others,
including your supervisor. Here are some of the people you might want to
consider naming as a co-author:

people who have made a substantive contribution to a study in other
ways;

study conception (i.e. the person who first had the idea to conduct
the study);

study design;

data collection, analysis and interpretation;

drafting the article and revising it (but not minor copy-editing).

If in doubt, seek advice from your supervisor. If you are taking the lead
on writing up your results for publication, then you should be named as first
author. If you decide not to write up your results however, your supervisor
may write them up themselves. Do not forget that supervisors often make a
substantial contribution to your work.

References
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The reference list should be shown at the end of the article, usually before
the figures and tables. In a dissertation, the reference list is likely to be quite
long, because you need to cite all your sources. In a paper, journals often
have limits on the number of references that you can include (e.g. 30 or 40).
For this reason, you need to be selective and only cite references where you
need to show the source of an idea, method or previous set of results.

Different journals have different guidelines for how reference lists should
be presented. Software is available to help you format your reference list
appropriately (e.g. EndNote or Reference Manager). You can also format
yourself by hand, but this can be time-consuming, particularly if the journal
asks for a numbered sequence of references. If you want to insert a new
reference, you have to change the order of all subsequent numbers.

References are useful for people who read your research, because they
can find out the source of the material for themselves. Similarly, when you
read others' research, you will often follow-up their references in order to
learn more. Referencing helps leave a ‘trail of breadcrumbs’ for other
people, helping them navigate their way through the literature.

Plagiarism
Plagiarism is defined as the ‘failure to credit sources of information used
for an essay, report, project, journal article or book’ (www .uc l.a c.u k/c urr‐ 
ent -st ude nts /gu ide lin es/ pla gia ris m). Any contribution from others should be
explicitly acknowledged as such (e.g. by naming co-authors). Given that
most research builds on previous research, the contribution of other
researchers is acknowledged by referencing their work. Great care must be
taken to avoid taking other people's work and presenting this as your own.
Good note keeping can help avoid situations in which you cannot remember
the source of an idea or method. When quoting directly (e.g. three or more
words), put the quotation in inverted commas to acknowledge that you are
taking the exact words from a source.

The following are all examples of plagiarism:

several quotations from different sources are combined together
without identifying their sources;

http://www.ucl.ac.uk/current-students/guidelines/plagiarism
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another person's ideas or theories are summarised without reference
to that person in the text;

a quotation is reproduced exactly, and without quotation marks
(inverted commas);

an idea expressed in a grant application to do a specific piece of
research for the first time, is used by co-applicants who each
publishes a paper stating that they are the first to do the same idea.

Check your institution's policy on plagiarism, and also the policy of any
journal or publisher you intend to submit your work to. Policies may vary
but as a general rule, reference anything that isn't purely your own original
idea. Even following this rule can lead to problems, if for example, you
forget that you had read an idea somewhere and then subsequently believe
that you generated the idea. The term ‘implicit memory’ is often invoked to
explain why some academics appear to have absorbed an idea but forgot
that they read it somewhere. Be careful, and keep detailed notes when you
conduct literature reviews. Use reference management software, social
bookmarking (e.g. CiteULike) and any tool that helps you keep track of
your sources.

Conflicts of interest on other papers and grant applications
Conflicts of interest, or situations which be perceived as possible conflicts
of interest, should either be avoided, or be declared. It is not wrong to have
conflicts of interest, but trouble can arise when these interests might
influence the publication process. Here are some examples of situations that
may be considered conflicts of interest:

Your line manager is a co-applicant on your grant application, but is
writing a paper with someone else on the same topic, but he forgets
to tell you.

One of your co-authors is funded by the tobacco industry.



• You are paid to write an article about psychotropic medication for
children with mood disorders, by a pharmaceutical company. The
company says you cannot publish your article unless you the results
are significant.

In the first example, your line manager should avoid this situation by
declaring a possible conflict of interest and then withdrawing from your
grant application. In the second example, it is not clear how to proceed. The
fact that your co-author has received funding from the tobacco industry may
not influence the results, but it may be perceived as having the potential to
influence the results. In any case, this funding must be declared to the
journal and publisher. In the third example, this is a clear conflict of
interest. As an academic, you are entitled to freedom of expression. A
funding body or other funding source should not have any influence over
the analysis of results or of literature, nor the decision to publish. This
situation should be avoided. If you are paid to write an article, you should
be clear from the outset that you will publish regardless of the conclusions
drawn. You should also declare that you were paid to write the article, even
if you think the funder had no influence over your work.

If in doubt about whether you have a possible conflict of interest, it is
better to make a declaration than not. Most journals will ask you to make a
declaration when you submit a manuscript. Answers all questions honestly,
and keep a detailed record of all declarations made. Many possible conflicts
of interest are non-financial in nature. Conflicts of interest cannot be
avoided all the time, there are often ‘secondary’ influences (e.g. personal
rivalry, commitment to an institution, preference for a particular theory)
which can influence decisions made in the research process. These are
sometimes called ‘dual commitments’ or ‘competing loyalties’. The
important question is, how are you going to manage your conflicts of
interest when they arise?



Choosing a journal
It is sometimes difficult to decide which journal is suitable to submit your
paper to. You need to balance the impact factor of the journal, with the
appropriate ‘fit’ to your paper. Impact factors are calculated based on the
average number of times an article is cited during a specified time period
(e.g. two years). Higher-impact health journals tend to be aimed at
clinicians (e.g. Lancet, BMJ, JAMA). Lower-impact papers tend to be aimed
at specific disciplines (e.g. JAMA Dermatology), or multidisciplinary
readers (e.g. Social Psychiatry and Psychiatric Epidemiology). You can
look at impact factors for various journals on their websites (also see imp‐ 
act fac tor .we ebl y.c om). One strategy is to look at your own reference list –
what journals do you seem to be using? If several of your references are to
papers published in Social Science and Medicine, then perhaps you should
consider submitting your work there.

A tool called JANE (Journal/Author Name Estimator) can automatically
search your abstract and generate a list of possible journals. To try it, go to
htt p:/ /ww w.b ios ema nti cs. org /ja ne.

Copy and paste your abstract into the box, then click on ‘Find journals’.
An example is shown below, using an abstract from a paper that was, in the
end, submitted to the BMJ Open.

The top three suggestions, based on the content of the abstract, were
Journal of Homosexuality, BMC Public Health, and Archives of Pediatrics
& Adolescent Medicine.

When considering suggestions based on your abstract, as mentioned
above, you need to think about the impact factor of the journal, not just the
‘best fit’ to your content. Both are important issues, and it can be difficult to
get the balance right.

The manuscript submission process
Most manuscripts are submitted online, through a journal's online
submission portal. Manuscript submission websites are often very similar to
each other, but the requirements and attachments requested often vary. For
example, to submit a paper to the BMJ Open, we would go to htt p:/ /mc .ma‐ 
nus cri ptc ent ral .co m/b mjo pen . After logging in, we click on ‘Author

http://www.impactfactor.weebly.com/
http://www.biosemantics.org/jane
http://www.mc.manuscriptcentral.com/bmjopen


Centre’ to submit a manuscript (‘Reviewer Centre’ is for when you have
been asked to review someone else's manuscript).

You are taken through a series of pages, each prompting you to provide
information about the manuscript you are submitting. For example, the first
page asks for the article type, title, short title, and abstract. After this page,
you are asked for attributes about the manuscript, who the co-authors are,
which peer reviewers you would prefer, any comments, the Word files
containing your manuscript, and finally, you are asked to review a PDF of
your manuscript generated by the website submission system. When you
approve the manuscript PDF, it is sent to the editorial office for checking.

Figure 12.1 JANE home page

Figure 12.2 JANE suggestions page



Figure 12.3 Accessing submissions page

In conclusion, there is a variety of ways of disseminating your results.
The majority of researchers however, focus on peer-reviewed journal
articles. Journals are ranked according to impact factor, but this does not
necessarily mean that a high-impact journal is always the best home for
your research. When preparing a paper, you should reflect on publication
ethics and think about who should be acknowledged – either as a co-author,
in the reference list, or perhaps simply as an acknowledgement note.
Learning how to write scientifically takes time, but we have a responsibility
to take that time, because all results should eventually be published. Avoid
the temptation to focus only on significant and important results. There is
an ethical argument that researchers should always publish their work,
regardless of the impact factor they would like aim for.

Figure 12.4 Submission description page
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Linear regression for
continuous outcomes
 
 
In previous chapters we have considered statistical models that contain only
one exposure and a continuous outcome. T-tests and one-way ANOVA are
examples of models that contain only one exposure. Typically this indicates
whether people were exposed or unexposed, including where the exposure
is a treatment condition in an experiment, compared to the control
condition. We have learned that in observational studies, where
confounding factors can distort the association between an exposure and an
outcome, we may have to adjust for the confounder. In simple confounding
scenarios this is relatively straightforward, using the stratification method
introduced in Chapter 6. In reality, there are often several possible
confounders and it is not straightforward to adjust by confounding by
stratification. In this chapter, multiple linear regression is introduced as a
method for adjusting for one or more confounding factors. The chapter
starts by introducing simple linear regression before we add additional
variables to the model.



•
•
•
•
•
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•
•

Intended learning outcomes
By the end of this chapter, you should be able to:

interpret the equation for linear regression;
calculate the intercept and slope for a line of best fit;
interpret regression coefficients;
run multiple regression with more than one predictor variable;
use categorical and dummy coded predictor variables;
evaluate assumptions made by linear regression;
transform predictor and outcome variables;
understand standardised regression coefficients.



Introducing key terms
The term ‘regression’ originates from Francis Galton’s observation that
taller fathers tend to have shorter sons, and shorter sons tend to have taller
fathers. This is because an extremely high or low measurement is likely to
be followed by a less extreme value, closer to the mean than to the original
measure. Values are said to ‘regress’ to the mean. Galton used regression
equations to regress a set of observations on another set of observations,
observing the tendency for the highest and lowest values to drift towards
the average. Regression to the mean occurs in many different situations. A
very good day at the stock market is likely to be followed by a more
average day, rather than another very good day. An extremely hot week of
weather is likely to be followed by a cooler spell, than another unusually
hot week. The worst performing hospital one year is likely to improve the
following year – it cannot ‘move’ to a worse position in a league table and
so moves closer to the mean. Regression to the mean can be problematic
when working with longitudinal data, for this reason. We are often unsure
whether a change over time represents a real change, or the tendency for
those with extreme values to move closer to the mean on the next
measurement occasion. Most of the examples in this chapter treat
observations as cross-sectional. The analysis of change using more complex
regression models is beyond the scope of this book.

Regression models are widely used in the health sciences. When the
outcome variable of interest is continuous, linear regression models are
appropriate. When the outcome variable is categorical, logistic regression
(discussed in the next chapter) is appropriate. If the outcome is time to
event data, such as in survival analysis, then Cox regression is typically
used (Chapter 9). Regression models are actually a family of models called
generalised linear models, and they include t-test and ANOVA. As
discussed below, ANOVA is actually a special case of linear regression
when the predictor variables are categorical, and running the same analysis
as regression will produce the same results as ANOVA. A good
understanding of linear regression is necessary when conducting
quantitative health research, and for interpreting the results of other
people’s studies.
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The linear regression equation
The linear regression equation is used to create a statistical model that best
predicts y (the dependent variable, or outcome) from x (the predictor
variable, or exposure). The model is called a regression model. The linear
regression equation is the equation of a straight line that best describes how
y increases or decreases with each increase in the level of x. This is
achieved using the method of least squares, described below. In practice,
linear regression equations are usually obtained using statistical software. In
this chapter, we will use the lm function in R to run linear regression
models.

y = β0 + β1x + e

The beta symbols refer to the parameters of the regression equation, and
are often called ‘beta coefficients’.

y is the predicted value of the outcome
x is the value of the predictor variable
β0 is the intercept parameter, which represents the estimated value of y
when x = 0
β1 is the slope parameter, which represents the increase in y for every
unit increase in x
e represents the residual (error)

There are several assumptions made by the regression model, which are
covered in more detail below.



The method of least squares
We need to find the parameter values for β0 and β1 that minimise the sum of
the squared vertical distances between the data points and the regression
line (line of best fit). We do this by estimating them, from these two
formulae:

To illustrate, Table 13.2 shows data from ten women who provided data on
their waist measurement and on their age.



Linear regression in R
In the code below, we use the R function lm (linear model) to run a simple
linear regression of waist (cm) on age at recruitment into the study at 1991.
The dependent variable (waist) is regressed on the independent variable
(age) as indicated by the tilde symbol (~). The model is given a name (lm1)
and then we can type lm1 to obtain the results. Next, we can ask for a
scatterplot showing the bivariate relationship between age and waist
measurement. Finally, we ft the line of best fit from the regression model,
onto the scatterplot.

Table 13.1 Example data for calculating least squares

Box 13.1 R code for linear regression
For the ten women in Table 13.1:



data <− read.table(‘age-waist.csv’, header=TRUE, sep=’,’)
attach(data)
example <− lm(waist ~ age)
example
# We obtain an intercept coefficient of 70.2982 and a
# coefficient for age of 0.1879. This shows that the lm
# package in R produces the same results as when working by
# hand.
summary(lm)

For the larger data set (UK Women’s Cohort Study):

data <− read.table(‘H:/My Documents/Book/Health sciences/
Worksheets/ukwcs_regression.csv’, header=TRUE, sep=’,’) attach(data)
lm1 <− lm(waist_2010 ~ age1991)
lm1
plot(age1991,waist_2010,main=’Regression line predicting
waist measurements from age’,xlab=’Age in years’,ylab=’Waist (cm)’)
abline(lm1)
summary(lm1) #asks for the full output

The function abline adds the regression line to the scatterplot. This is a
useful visual representation of the regression model. In the section below,
we will think about what the regression coefficients mean.



What do the regression coefficients mean?

The intercept
The intercept refers to the point at which the regression line intercepts
(crosses) the y-axis, and is the expected value of y when x is zero. The β0
intercept of 98.32 therefore refers to the expected waist measurement when
age is zero. This is not a meaningful value here, for two reasons. First, we
should avoid using regression equations to predict values of y beyond that
which are provided by the data. The available age range was 35 to 72 and
so it could be very misleading to attempt to predict waist values below 35
or above 72. No data were available in the sample for these ages. Second,
waist measurements at birth will not be this large. The association between
age and waist is not linear across the life course, and so a different set of
data with a different set of regression equations would be needed to predict
values of waist in childhood and early adulthood. Our regression line only
describes the linear relationship between age and waist between age 35 and
72. One way to make the intercept more meaningful is to ‘centre’ the
predictor variable at its mean, described below. Although the intercept is
often not useful, it is a necessary part of the regression equation. It provides
the location/height of the regression line (see Figure 13.1).

The slope
The β1 coefficient of −0.3769 refers to the expected change in waist
measurement with each additional unit increase in age. Therefore, as age
increases by one year, estimated waist measurement is expected to decrease
by 0.38 cm. This coefficient provides the slope of the regression line.



Interpreting the output
The first part of the output simply reminds us that we have ‘called’ the lm
function and shows us the model we requested (the regression of waist in
2010 on age in 1991). Next, the residuals are described. The smallest is –
28.01, meaning that for one participant, the observed waist value was 28cm
lower than the regression line. The largest residual is 41.87, meaning that
for one participant, the observed waist value was 42cm higher than the
regression line. The median residual was −1.50 showing that the regression
line ran fairly centrally through the data points. The first and third quartiles
are also shown.

Figure 13.1 Regression line predicting waist measurements from age



Figure 13.2 R output for linear regression

Next, the regression coefficients are shown. The intercept is estimated at
77.01 and this is the expected value of waist when age in 1991=0. The
standard error is 2.61 and thet-statistic is provided. Thep-value is
statistically significant atp < 0.001, as indicated by the three asterisks. Of
more interest is the coefficient for age in 1991, which is 0.13. This shows
for each increase in age (in years), waist is predicted to increase by 0.13cm.
This is statistically significant atp < 0.05 as indicated by the single asterisk.
We can also obtain 95 per cent confidence intervals for the regression
coefficients, by multiplying the standard error by 1.96 and either
subtracting/adding this to/from the coefficient to obtain the lower/upper
interval around the estimate. The standard error of the residuals refers to the
average deviation of eachy value around the estimatedy values by the
regression line. It is calculated by taking the square root of the sum of
squared error and dividing this by the degrees of freedom.

Box 13.2 R code showing residuals from a simple linear regression
model
data <- read.table (‘age-waist.csv’, header=TRUE, sep=‘,’) 
attach(data)
example <- lm(waist ~ age)
plot(age,waist,main=‘Regression line predicting waist
measurements from age’,xlab=‘Age in years’,ylab=‘Waist
(cm)’,type=“n”)



text(age,waist, labels=id)
abline(example)
points(age,fitted(example), pch=18, col=“blue”)
segments(age,waist,age,fitted(example),col=“pink”)
residuals(example)->lm.res; lm.res



The F-statistic and equivalence to ANOVA
The total variation in the outcome variable can be described using the total
sum of squares. The variation described by the regression model can be
described using the regression sum of squares. If we subtract the regression
sum of squares from the total sum of squares, this provides the residual sum
of squares, which is the sum of the squared deviations from the regression
line. The partitioning of the variation in the outcome into two parts can be
shown in an analysis of variance table.

If the regression line was a poor model of the association betweenx andy,
the regression sum of squares would be similar to the residual sum of
squares. AnF-test can be used to test this (d.f. =n−2), using exactly the
same method as described in Chapter 5.F- andt-tests are equivalent to linear
regressions, and you get exactly the same results if you run at-test or
ANOVA as a linear regression model.

Table 13.2 Sources of variation in a linear regression

SStotal = ∑(y−y¯)=1052.3404 (this value can be found in Table 13.1)

SSregression = [∑(y−y¯)(x−x¯)]2/∑(x−x¯)2 = 167.222/890 = 31.4186

The degrees of freedom are 1 for the regression sum of squares, andn−2
(= 8) for the residual sum of squares (total = 9).

R-squared and adjustedR-squared refer to the proportion of variance iny
that is accounted for by the predictor variable. This statistic is more useful
in multiple regression and is therefore discussed below.



Standardising predictor variables
Some predictor variables are not measured with meaningful units. For
example, many psychosocial variables (e.g. quality of life, personality
traits, mood) are self-reported on numerical scales where the meaning of the
units is not clear. Similarly, a test of cognitive function might provide a
score ranging from 5 to 50, but what does 1 point represent and how does
this compare with another test of cognitive function? One solution is to
standardise the scale, by subtracting the mean and dividing by the standard
deviation of the variable. This produces a new variable, with a mean of 0
and a standard deviation of 1 (also called az-score). One unit increase on
this new scale refers to a one standard deviation increase, rather than a one
unit increase. This can be helpful when comparing scales without
meaningful units, with each other. A one standard deviation increase on a
cognitive test can be compared to a one standard deviation increase on
another test. Without knowing much about a test, it is useful to know what a
1 SD better score would be produce a one unit change in they variable.
Researchers also use standardised regression coefficients in a similar way to
compare predictor variables and the outcome variable in terms of standard
deviation change (described below).



Regression using centred age
It is often not sensible to use a regression model that refers to values outside
the range ofx ory available in the data. The intercept refers to the predicted
waist at age 0 (i.e. birth) but our data did not contain any women at this age.
Sometimes it is helpful to change the model so that the intercept refers to
the mean age, rather than age 0. We can achieve this by first ‘centring’ age
and then using centred age in the model, instead of actual age. Centring is
achieved by subtracting the mean age from every value of age.

Box 13.3 R code for regression using centred age
data <- read.table(‘ukwcs_regression.csv’, header=TRUE,
sep=‘,’)
attach(data)
age_c=age1991-mean(age1991)
lm1 <- lm(waist_2010 ~ age_c)
lm1
plot(age_c,waist_2010,main=‘Regression line predicting waist
measurements from age’,xlab=‘Age (centered)’,ylab=‘Waist
(cm)’)
abline(lm1)
summary(lm1)

As you can see from Figure 13.3, the regression line has exactly the same
slope, but the interpretation of the intercept has changed. It is now the
estimated waist value for someone with mean age, rather than age zero.



Figure 13.3 Regression line predicting waist measurements from age using
centred age



Multiple linear regression
Thex variable does not perfectly predict they variable because the residual is
not zero. There are probably other variables which predicty and the fact that
we have a lot of residual variation is a clue that we might want to consider
more than one (multiple) predictor variables to try and improve our
predictive model and reduce the size of the residuals.

The residual + mean is the value ofy if all the participants had the samex
value. That is, the value ofy controlling forx. Other terms are used
synonymously with controlling for, such as conditioning on, residualising,
partialling out, holding constant.

Educational attainment might also predict waist measurement, because
we know from previous research that women with lower levels of
educational attainment tend to have higher body mass index and waist
measurements. In the data set, educational attainment is coded as a semi-
continuous variable (0 = no qualifications, 1 = ‘O’ level, 2 = ‘A’ level, 3 =
‘university degree’). We can use this variable as a continuous predictor
variable. Strictly speaking, this variable is categorical or perhaps ordered
categorical (ordinal). However, when there are several ordered categories
researchers often treat such variables as continuous, since this is unlikely to
cause too many problems. There are alternative approaches to handling
semi-continuous and categorical predictor variables however, discussed
below.

A strategy you might be tempted to try would be to conduct two linear
regressions, one with age and one with educational attainment as the
predictor variable. If we run these two models separately, we find that age
explains 1per cent of the variance in waist measurements and educational
attainment explains 2 per cent.

Box 13.4 R code for running two simple linear regression models
separately
data <- read.table(‘ukwcs_regression.csv’, header=TRUE,
sep=‘,’)
attach(data)
lm1 <- lm(waist_2010 ~ age1991)
lm2 <- lm(waist_2010 ~ high_edu)



summary lm1
summary lm2
correlate(waist_2010,high_edu)

This does not mean however, that we have explained 1 + 2 = 3% of the
variance. Age is negatively correlated with educational attainment (r =
-0.23) indicating that younger women in the study had tended to reach
higher levels of educational attainment. This means that variance in waist
shared with age is also shared with educational attainment. We need to find
a way to identify the unique contribution of age and educational attainment
in predicting waist measurements, allowing or adjusting for the fact that
these two predictor variables are correlated. Multiple regression is a good
way to do this.

It might appear sensible to run a linear regression of waist on age first,
and then use the residuals to perform another regression with educational
attainment as the predictor. However, there is no particular reason why age
should be given priority first, leaving educational attainment to predict
whatever is left over. Multiple regression provides an estimate of the
intercept and two slopes and calculates these simultaneously without giving
priority to either variable. There are situations in which you might want to
assume that one or more variables have priority over other variables,
discussed below under hierarchical multiple linear regression, but for now
we will focus on a simple example with two predictors having equal status.

Multiple regression is usually performed using statistical software rather
than by hand. The equation for multiple regression with two independent
variables however, is shown below.

y = β0 + β1x1 + β2x2 + e

There is still one intercept, but there is a separate regression coefficient
for each predictor variable. Effectively, this equation is estimating a three-
dimensional ‘plane’ of best fit, rather than a line of best fit. It may be
helpful to visualise a three-dimensional graph with three axes,x1,x2 andy. If
we wanted to predicty, we would multiply eachx variable by its regression
coefficient and then add this to the intercept value.



Running a multiple regression in R
The code for multiple regression is very similar to simple regression, using
a plus sign (+) to add additional predictor variables.

Box 13.5 R code for multiple regression with two predictor variables
lm3 <- lm(waist_2010 ~ age1991 + high_edu)
summary(lm3)

Interpreting the output
The interpretation of the intercept in the output from multiple regression is
different to that from simple linear regression. It is the predicted value of
waist when age is zero and when educational attainment is zero (81.24cm).
The beta coefficients for the predictor variables are the expected change in
the outcome variable per unit increase in the predictor variable, holding the
other predictor variable constant. For example, as age increases by one year,
we expect waist to increase by 0.09cm (holding education constant). As
educational attainment increases by one level, we expect waist to decrease
by −1.29cm (holding age constant). The coefficients differ from those
obtained when running two separate regressions, because this multiple
regression allows for the fact that age and educational attainment are
correlated.



Figure 13.4 R output for multiple regression

Using regression coefficients from multiple regression to predict
outcome variables
We can use the coefficients above to estimate values of our outcome
variable using known values of our predictor variables. This is the ultimate
aim of regression models – prediction. For example, suppose that a woman
is 55 years old and has a university degree. What is her expected waist
measurement value?

y = 81.2386 + (0.0938 × 55) + (−1.2936 × 3) = 82.52

Here, you can see that we ‘insert’ the known (observed) value ofx1 (age)
andx2 (educational attainment) into the regression equation, multiplying
each coefficient by the known value. We predict a waist size of 82.52cm for
this person. Note however, that overall the model explains rather little of the
variance in waist measurements, so this may not be a particularly accurate
prediction. Now suppose a woman is 80 years old and has no educational
qualifications. What is her expected waist measurement value?

y = 81.2386 + (0.0938 × 80) + (−1.2936 × 0) = 88.74



The expected value this time is 88.74cm. Note that having no educational
qualifications is coded 0 in the data, and when we multiply the coefficient
for education by zero this equals zero.



Hierarchical multiple regression
Multiple regression models can be ordered sequentially, to evaluate whether
the addition of new predictor variables improves the prediction capacity of
the model. Here, we compare a ‘basic’ model containing only age, with
three additional models: one with socio-economic status variables
(educational and occupational social class), one which additionally controls
for health behaviours (smoking, alcohol, fruit and vegetable intake) and one
which additionally controls for self-rated health. These are labelled
lm_basic, lm_ses, lm_hb, lm_full.

Box 13.6 R code for hierarchical multiple linear regression
lm_basic <− lm(waist_2010 ~ age1991)
lm_ses <− lm(waist_2010 ~ age1991 + high_edu + nssec_max)
lm_hb <− lm(waist_2010 ~ age1991 + high_edu + nssec_max + 
smoker + drinker)
lm_full <− lm(waist_2010 ~ age1991 + high_edu + nssec_max + 
smoker + drinker +healthy)
# We can compare the performance of models using the anova 
# command.
anova(lm_basic, lm_ses)
anova(lm_ses, lm_hb)
anova(lm_hb, lm_full)

Interpreting the output
Comparing the basic model with the SES model (Figure 13.5), we can see
that the SES model fits significantly better than the basic model (p < 0.01).
Athough not shown in this figure, the health behaviours model however,
does not fit significantly better than the SES model (p = 0.92), suggesting
that these variables (smoking and alcohol drinking) add little to the
prediction of waist measurements. Adding self-rated health however,
significantly improves model fit (p < 0.01) suggesting that this is worth
including.



Figure 13.5 R output for hierarchical multiple linear regression Conducting
new research



•
•
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Categorical predictor variables
We may want to include categorical predictor variables (e.g. sex, smoker vs.
non-smoker) in a regression model. This is quite straightforward when the
categorical predictor has only two values (e.g. 0 or 1). These variables can
be entered into the regression model in the same way as continuous
variables. The interpretation of the coefficient is the change in the outcome
variable as the categorical predictor changes from 0 to 1. For ordered
categorical variables (e.g. a scale ranging from 1 to 5) the interpretation
would assume a linear increase per unit increase on this scale. This assumes
that the distance between 1 and 2 is the same as the distance between 2 and
3. Such an assumption may not be correct. Researchers, particularly in
psychology, often treat ordered categorical variables with at least 5 and
preferably 7 categorical as continuous. They assume that the scale
represents some underlying variable which does have continuous properties.
If you have a categorical variable where this assumption is questionable,
you may want to consider creating categorical variables from the scale. To
achieve this, we create dummy variables and use these in the regression
model instead of the original scale. Dummy variables involve choosing a
reference group (e.g. no educational qualifications) and then creating a new
binary variable for all of the other variables, coded 1 for those who belong
in that category and 0 for those who do not. In the case of the educational
attainment variable, this results in three new dummy variables from the
original four values on the scale:

O level (vs. no qualifications)
A level (vs. no qualifications)
degree (vs. no qualifications)

These three variables are then entered into the regression, treated as
binary variables in the usual way. A straightforward way to do this in R is
to create a copy of the original scale, which we will call edu_cat, and then
declare this to be a ‘factor’ variable (categorical variable). When edu_cat is
entered into a regression model, R will create dummy variables
automatically. In the example below, we will use the weight data and



evaluate whether educational attainment categories predict waist, holding
age constant.

Box 13.7 R code for transforming a continuous variable into a
categorical variable
attach(data) edu_cat <− factor(high_edu, labels =
c(“(none)”,”(O level)”,”(A level)”,”(Degree)”))
lm_educat <− lm(waist_2010 ~ age1991 + edu_cat)
summary(lm_educat)

Figure 13.6 R output using dummy variables

Interpreting the output
All three of the dummy variables show the estimated change in waist, for
the educational category shown compared to the reference group (no
educational qualifications). Women with O levels have estimated waist
measurements 3.39cm lower than the reference group, with A levels 4.53cm
lower, and with a degree 5.30cm lower. This is evidence for a dose-response
association between educational attainment and waist measurement (as
educational attainment increases, waist decreases). Such evidence could be



used to support the conclusion that treating educational attainment as a
continuous scale is justified – there is a clear graded linear relationship.
Linearity should be tested rather than assumed however, so it is worth
checking whether results differ when treating ordered categorical variables
as categories compared to treating them as linear.



Adjusting for possible mediators to evaluate
attenuation of an effect
We may be interested in a particular exposure x and its association with y,
but also in possible mediators that explain the association between x and y.
The concept of mediation was introduced in Chapter 6. One way to evaluate
the explanatory role of possible mediators is to add them to a regression
equation, one at a time, an equation that already contains the exposure of
interest and key confounders such as age or sex. The percentage attenuation
of the x–y association (available from the coefficient for x in the first
model) when the proposed mediator is added (available from the coefficient
for x in the second model, additionally containing the mediator) can be
calculated using the formula below. This attenuation indicates by how much
the mediator explains the association between x and y.

100 × [(Bmodel1−Bmodel2)/Bmodel1]

As an example, suppose that we are interested in the association between
number of cigarettes smoked and weight in female smokers. First, we will
create a nested sample of smokers from a dataset that contains information
on weight, smoking and diet. Next, we will calculate the association
between number of cigarettes smoked and weight. Following that, we will
additionally adjust for dietary quality (defined as eating five or more fruits
or vegetables per day). Finally, we will consider another possible mediator,
number of alcoholic drinks consumed, to see if this explains the association
between cigarettes and weight.

dietdata <− read.table(‘ukwcs_regression_diet.csv’,
header=TRUE, sep=’,’)
attach(dietdata)
(smokers <− dietdata [dietdata$smoker ==1, ]) #subsets the 
# smokers, created a nested sample of smokers 
attach(smokers) #attach the nested sample of smokers 
lm_smokers <− lm(weight_kg2010 ~ age1991 + n_cigs) 
summary(lm_smokers)
lm_smokers_diet <− lm(weight_kg2010 ~ age1991 + n_cigs +
gooddiet)
summary(lm_smokers_diet)
100*((0.2674-0.2564)/0.2674) #4.11% attenuation
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Diet explains 4 per cent of the association between number of cigarettes
smoked and weight. Now let's evaluate another possible mediator. Women
who smoke more cigarettes might also engage in less physical activity and
have poor diets, leading to higher waist measurements. Perhaps waist
mediates the association between cigarettes and weight?

lm_smokers_waist <− lm(weight_kg2010 ~ age1991 + n_cigs + 
waist_2010)
summary(lm_smokers_waist)
100*((0.2674-0.0389)/0.2674) #85.25% attenuation

Waist appears to explain 85 per cent of the association between smoking
and weight. There are two important points to note about these results:

The status of the mediating variable should be guided by substantive
knowledge about the variables, existing evidence, and theory. It may
not be appropriate to assume that diet or waist measurements lie on a
causal chain between cigarettes. This is particularly true for cross-
sectional data. Ideally, mediators should be measured later in time than
exposures (they come after the exposure). Such longitudinal
measurements are not always available, and so researchers frequently
use theory to justify claiming that a variable might be a mediator.
Health behaviours other than smoking might be confounding factors,
rather than mediators.
Unlike hierarchical regression, where we add further variables to
existing groups of variables, this ‘effect decomposition’ approach
involves adding each proposed mediator separately to the basic model.
Do not add mediators to existing models that already contain other
mediators. Calculate the percentage attenuation for one proposed
mediator at a time.



Adding interaction terms to evaluate effect
modification
Effect modification was introduced in Chapter 6. In linear regression, effect
modification is evaluated by adding an ‘interaction term’ between the
exposure and the possible modifier. The interaction term is created by
calculating the product of (multiplying) the exposure and the modifier. This
term is entered into the regression model, along with the exposure and
modifier.

attach(data)
lm_modifier <− lm(waist_2010 ~ age1991 + nssec_max + 
age1991:nssec_max)
summary(lm_modifier)

The interaction term represents the combined effect of scoring one unit
higher on both variables, after the unique effect of each variable has been
held constant. It can also be described as the ‘excess risk’ due to interaction,
if the combined effect of each variable increases the risk of a hazardous
outcome. To identify significant effect modification, we can create a
‘global’ test of interaction for the whole model, comparing this to a nested
model that does not contain the interaction term.

lm_basic<− lm(waist_2010 ~ age1991 + nssec_max)
summary(lm_ basic)
anova(lm_modifier, lm_basic)

Although the p value of 0.06 is not statistically significant at the p < 0.05
level, many commentators argue that values < 0.10 or even 0.20 warrant an
exploration of possible effect modification. We could simply report the
model coefficients including the interaction term, but this may be difficult
for readers to interpret. One solution is to separate results by stratifying the
modifier (age), in other words, creating age groups.

(professional <− data [data$nssec_max==1 ,]) #subsets 
# professional women
attach(professional) #attach the nested sample of professional 
# women
lm_professional<− lm(waist_2010 ~ age1991)
summary(lm_professional)



The coefficient for age in the professional group is 0.22, indicating a 0.22
increase in waist per year of age among this group.

(lower <− data [data$nssec_max==2 | nssec_max==3 ,]) #subsets 
# lower than professional women (intermediate or manual)
attach(lower) #attach the nested sample of lower women 
lm_lower<− lm(waist_2010 ~ age1991)
summary(lm_lower)

The coefficient for age in the intermediate and manual group is −0.01 and
is not statistically significant, indicating that age is not a significant
predictor of waist in this group. We can conclude that occupational social
class appears to modify the association between age and waist: the
association is specific to the professional group. Note however, that there
may be confounding factors we have not considered, such as chronic
disease and smoking.



R-squared
R-squared is the square of the correlation coefficient r, and is calculated as
SSregression/SStotal. It is the proportion of variance in y that has been
explained by the regression model. Put differently, it tells us how much
variation in y is accounted for by the set of x variables. A ‘better’ regression
model will account for more variation in y, a less good model will account
for less. As a set, age and educational attainment account for 2.2 per cent of
the variance in waist measurements. This still leaves much variation
unexplained, suggesting that we need to find additional predictors for our
model.



•
•
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•

Checking assumptions

These are some important assumptions made in multiple regression:
absence of multicollinearity;
the residuals (errors) are normally distributed;
the variance of the residuals is consistent across y;
the residuals are independent;
no influential cases and outliers;
no skewness and kurtosis in y

There are other assumptions made in regression models, but these three
are arguably the most important. You should also consider outliers and
influential cases, described below, because these can influence the model
and the regression coefficients and therefore conclusions you might draw.
In this section we will evaluate these assumptions using R for a basic
regression model, predicting waist from age in the same sample of ten
women used earlier. When evaluating your own data, modify the R code
accordingly.

Box 13.8 R code for regression model ‘example’ used to illustrate
checking of assumptions
data <- read.table(‘age_waist.csv’, header=TRUE, sep=’,’) 
attach(data)
example <- lm(waist ~ age)

Absence of multicollinearity
Multicollinearity can be evaluated by requesting a correlation matrix
showing the bivariate correlation between each pair of variables. Look for
high or perfect correlations, as this could indicate multicollinearity. It is
relatively unusual to have multicollinear variables. Another example, which
you could not check simply by looking at correlations, is if you had scores



from four parts of a test, and then also the total score. You could not put the
four scores and the total score in a regression model – the total score is a
linear combination of the four scores. Multicollinearity can also be
evaluated using variance inflation factor (VIF). In multiple linear
regression, you can request VIF values when there are more than two
variables, using the command vif(example) where example is the label for
the regression model. Values above 10 are thought to indicate strong and
therefore worrying linear relationships between each variable and other
variables in the model. Consider dropping one or more of these additional
variables in such a situation, focusing on the most substantively important
variable instead. For example, you might want to include only the total
score on a test rather than scores from separate parts of the test.

Normally distributed residuals
To check whether the residuals are normally distributed, use the R function
hist(lm.res) to request a histogram. With the small sample size (n = 10) used
in our example, we are unlikely to achieve a good normal distribution, but
you can modify this code for your own data or try it on a larger data set.
The functions qqnorm(lm.res) and qqline(lm.res) are used to request a
normal Q-Q plot which is also useful for evaluating normality. Look for
points along the straight line. A curvy S-shape can indicate non-normality
of the residuals (see Figure 13.7: Panel C). The
shapiro.qqnorm(lm.res,type=“n”) command available in the epicalc package
provides a p-value comparing the distribution to an equivalent normal
distribution having the same mean and standard deviation. If the p-value is
non-significant, it indicates that our distribution is not significantly different
from this normal distribution. Note, however, that in large sample sizes the
Shapiro–Wilk test often produces significant p-values owing to small and
often trivial non-normality. Arguably, although it is more subjective, a
visual approach to evaluating non-normality using the Q-Q plot is more
useful when working with large sample sizes.

Box 13.9 R code for evaluating the normality of residuals assumption
hist(lm.res) #The distribution of residuals, if the model 
# fits well, should be normal
require(car)



qqPlot(example, main=“QQ Plot”)

The variance of the residuals consistent across Y
If this assumption is violated, the data are said to show heteroscedasticity.
We do not want more variance at certain levels of y, and less variance at
other levels of y. We can plot the predicted values against the residuals, to
evaluate this assumption.

Box 13.10 R code for evaluating heteroscedasticity
require(car)
ncvTest(example)
spreadLevelPlot(example)

The residuals are independent
This means that there is no autocorrelation in the residuals, that is, one
participant's residual is correlated with another participant's residual. This
might occur for example, if the same participant has appeared twice in the
data set, perhaps in error. It is important that each observation is unique and
not from the same person. The Durbin–Watson test is used to evaluate
independence of the residuals.

Box 13.11 R code for evaluating independence of the residuals
durbinWatsonTest(example)

Outliers and influential cases
An outlier is a case that might exert too much influence on the regression
line, perhaps because it is an extreme value. For example, someone with an
age of 110 is relatively unusual, and could bias the regression line by
changing the intercept and the slope. Univariate outliers refer to extreme
values on one variable. Multivariate outliers can also be problematic. These



concern extreme combinations of two or more variables (e.g. consider
someone with an age of 18, but a salary of £100,000. Both values are
plausible when considered separately, but when considered together this
person is probably a multivariate outlier). Univariate outliers can be
identified using Cook's distance (see below). Multivariate outliers can be
identified using Mahalanobis distance.

Box 13.12 R code for identifying influential cases
Values which are univariate outliers, multivariate outliers and values of
the outcome variable which have a strong influence on the predictor
variables (said to have high ‘leverage’) can be identified using the code
below.

outlier_data <- read.table(‘age_waist_outlier.csv’, 
header=TRUE, sep=‘,’)
attach(outlier_data)
outlier_example <- lm(waist ~ age)
plot(age,waist,main=‘Regression model (with outlier)’,xlab=‘Age’,ylab=‘Waist (cm)’)
abline(outlier_example)
summary(outlier_example)
require(car)
avPlots(outlier_example)
cutoff <- 4/((nrow(mtcars)-length(outlier_
example$coefficients)-2))
plot(outlier_example, which=4, cook.levels=cutoff) #Panel C influencePlot(outlier_example,
id.method=“identify”,
main=“Influence Plot”, sub=“Circle size is proportial to Cook's Distance”) #Panel D

Figure 13.7 shows how an outlier (a women with an age of 90) can have
a dramatic effect on the regression line. In Panel A, the regression line is
flattened because this high value of age has a strong influence on the line of
best fit. The coefficient for age is −0.0060. This implies a flat regression
line and no association between age and waist. Removing this outlier results
in a positive slope (B = 0.1879), and may better reflect the relationship
between age and waist. It is important to note that an outlier can have a
small residual, because the line of best fit will still take this person into
account. Nonetheless, this participant's data has strong leverage (influence)
on the regression line.



Skewness and kurtosis
Positive and negative skew were introduced in Chapter 1. When the
distribution of a variable is negatively skewed, log transformation can be
used to normalise the distribution. When a distribution is positively skewed,
taking the square root of the variable can help normalise the distribution.
Different kinds of transformations, and the situations in which you might
want to use them, are discussed in more detail below.

Figure 13.7 R output showing outliers

Box 13.13 R code for quick check of model assumptions



The following code can be used as a quick check for skewness, kurtosis
and heteroscedasticity.

library(gvlma)
gvmodel <- gvlma(example)
summary(gvmodel)



Transforming variables

Log transformations
Negatively skewed distributions (skewed to the left) often occur. Reaction
time is a good example of a variable that usually produces a negatively
skewed distribution. We can measure people's reaction times, but some will
be quite slow to respond, producing a long tail in the distribution. Log
transformation of the variable can help address the problem. If the predictor
is log transformed, then the coefficients still imply a linear change in y per
increase in logx.

Box 13.14 R code for linear regression with a log transformed predictor
variable
rt_data <- read.table(‘ukwcs_regression_rt.csv’, 
header=TRUE, sep=‘,’)
(rt_data2 <- rt_data [rt_data$srt_mean<1000,]) #removes 
# outliers above 1000m/s
attach(rt_data2) #attach the data with outliers removed 
hist(srt_mean)
lnsrt<-log(srt_mean)
hist(lnsrt)
diet<-vegetables+fruit
diet_example <- lm(diet ~ age1991+nssec_max+lnsrt)
summary(diet_example)

The coefficient for log reaction time is −5.5167. This means that for each
increase in log reaction time, diet decreases by 5.52 points. The
interpretation of this coefficient is not straightforward, unless we work out
the expected increase between two values on the original scale
(milliseconds). For example, suppose we can estimate the difference in y
between 750 milliseconds and 500 milliseconds reaction time. These two
scores can be labelled r1 and r2 respectively. The formula below shows how
to do this:



This means that as reaction time increases from 500 to 750 milliseconds,
the diet score decreases by 2.24 points. An alternative approach would be to
express the increase in reaction time as a percentage. For example, to
estimate the change in diet score for a 50 per cent increase in reaction time,
use the log of 1.5 in the equation:

y = α1 × log(1.5) = −2.2368

Figure 13.8 R output for linear regression with a log-transformed predictor
variable

This means that for a 50 per cent increase in reaction time, diet score
decreases by 2.24 points.



Outcome variables with a preponderance of zeros
If your outcome variable has a preponderance of zeros there are several
strategies available. For example, you could compare the zeros with other
values, grouping the other values together, and then use logistic regression
(see Chapter 14). Alternatively, you could use zero-inflated regression,
which is beyond the scope of this book. You could also restrict the
regression to people with non-zero values (e.g. only the smokers).



1
2
3

Non-normality in outcome variables
If an outcome variable in not normally distributed, you may want to
transform it to normalise the distribution. As mentioned above, taking the
natural logarithm of a positively skewed variable, for example, can
normalise a distribution. The log transformed variable can be used as an
outcome variable in linear regression.

If the outcome is log-transformed, the regression coefficient refers to the
expected log change in y per unit increase in the xvariable, holding other x
variables constant. To obtain the one unit increase in y, you have to take the
exponent of the coefficient exp(B). For example, using log reaction time as
an outcome variable, the coefficient for age is 0.006812 in a simple linear
regression model (see Box 13.15). This means for each year of age, reaction
time increases by log(0. 006812) or 1.0068 milliseconds (the exponent of 0.
006812 is 1.006835254).

Predictor variables with a preponderance of zeros
Although predictor variables do not have to be normally distributed, there
are some distributions that may require transformation. Number of
cigarettes smoked, for example, has a preponderance of zeros because many
people are non-smokers. We can create a new variable (smoker/non-smoker
coded 1/0) and put this variable into the regression along with number of
cigarettes smoked.

There are three models shown in this example:
including only smokers and controlling for number of cigarettes;
including all participants and controlling for number of cigarettes;
including all participants and controlling for smoking status and
number of cigarettes.

Box 13.15 R code for linear regression with a natural log-transformed
outcome variable
rt_data <− read.table (‘ukwcs_regression_rt.csv’, 
header=TRUE, sep=’,’)
attach(rt_data)



hist(srt_mean)
lnsrt<−log(srt_mean)
hist(lnsrt)
rt_example <− lm(lnsrt ~ age1991)
summary(rt_example)

Box 13.16 R code for linear regression of waist on number of cigarettes
smoked per day, among smokers
rt_data <− read.table (‘ukwcs_regression_rt.csv’,
header=TRUE, sep=’,’)
(smokers <− rt_data [rt_data$smoker ==1, ]) #subsets the 
# smokers, created a nested sample of smokers
attach(smokers) #attach the nested sample of smokers
lm_example1 <− lm(waist_2010 ~ age1991 + n_cigs)
summary(lm_example1)
attach(rt_data)
lm(example2) <− lm(waist_2010 ~ age1991 + n_cigs)
summary(example2)
attach(rt_data)
lm_example3 <− lm(waist_2010 ~ age1991 + smoker + n_cigs)
summary(lm_example3)

Figure 13.9 R output for linear regression of waist on number of cigarettes
smoked per day: example 1

In the first example, the coefficient of 0.2219 shows that among smokers
and adjusted for age, each additional cigarette per day is associated with a
0.22 cm increase in waist measurement. The second example shows what
would happen if we included both smokers and non-smokers in the
regression model. The coefficient is reduced to 0.11 and is non-significant,
probably because the model is incorrectly specified. In the second example,
the dose-response association between number of cigarettes smoked and
waist measurement is under-estimated.



In the third example, the coefficient of −2.17995 for smoking status
means that for smokers, the waist measurement is 2.18cm lower than for
nonsmokers. However, the coefficient of 0.22081 means that controlling for
smoking status, each cigarette is associated with a 0.2208cm increase in
waist measurement. The regression coefficient for n_cigs is the linear effect
among the exposed group of smokers. The regression coefficient for the
smoker variable represents the difference between the non-smoking group
and the extrapolated linear trend for the number of cigarettes when the
number of cigarettes is zero. Put differently, smokers have waist
measurements −2.18cm different than non-smokers if they theoretically
smoked 0 cigarettes, −2.18 + 1 × (0.22) if they smoked 1 cigarette, −2.18 +
20 × (0.22) if they smoked 20, and so on. This method captures the
distribution of cigarettes appropriately, allowing for the group of non-
smokers and a linear trend (dose-response effect) among smokers, in the
same model. Our results suggest that smokers have smaller waist
measurements than non-smokers, but that heavier smokers tend to have
larger waist measurements.

Figure 13.10 R output for linear regression of waist on number of cigarettes
smoked per day: example 2



Standardised regression coefficients
Standardised regression coefficients can often be useful in multiple
regression, because they allow us to compare the effect sizes across
variables measured on different scales. A standardised regression
coefficient refers to the predicted standard deviation change in the outcome
per standard deviation change in the predictor variable. One way to obtain
them is to first standardise the predictor variables by subtracting the mean
and dividing the standard deviation (as described above) and then run the
regression model with these new variables. However, many statistical
packages provide them automatically. To obtain standardised coefficients in
R:

#The scale function creates a new version of the dataset with
# mean=0 and SD=1
data.std <− scale(data)
#This is converted from a matrix to a data frame
data.std <− as.data.frame(data.std)
#Check that the means are 0 and the SDs are 1
mean(data.std)
sd(data.std)
#Run the regression model again with the new dataset
data.mod.std <− lm(waist_2010 ~ age_c, data = data.std)
#This provides the standardised regression coefficients
summary(data.mod.std)

When there is one predictor variable, the standardised regression
coefficient is equivalent to the Pearson correlation coefficient (r, which
means ‘regression’). In the regression context, x is thought to predict y,
whereas in the correlation context we may not make a prediction about
which variable predicts the other. Some researchers might refer to each as
x1 and x2, for this reason. Statistically, both approaches produce the same
value, and both simply summarise the variance shared by both variables.



Summary
In this chapter we have introduced simple and multiple linear regression,
and explained that several other techniques (including ANOVA) are special
cases of regression models. Regression modelling is central to many forms
of data analysis and so it is worth learning about regression in order to
analyse your data and interpret the results from published studies. In the
next chapter, we will consider regression models where the outcome is
categorical using logistic regression.



Further reading
Tabachnick B, Fidell L, Using Multivariate Statistics. Harlow: Pearson Education, 2007.
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Logistic regression for categorical
outcomes
 
 
If you want to model the association between an exposure/intervention and
an outcome that is categorical, then linear regression is not suitable.
Logistic regression is a widely used method for modelling categorical
outcomes. This chapter introduces logistic regression, explains the
assumptions it makes, and then illustrates how to perform logistic
regression using practical examples. Finally, some common pitfalls are
explained and methods for avoiding them are provided.



•

•
•
•
•
•

Intended learning outcomes
By the end of this chapter, you should be able to:

understand why linear regression is not suitable for categorical
outcomes;
run a simple logistic regression model;
interpret the results of logistic regression;
add additional covariates to a model;
perform likelihood ratio and Wald tests to compare two models;
present results as probabilities.



Why linear regression is not suitable for
dichotomous outcomes
When you have an outcome variable that is dichotomous, taking only two
values, linear regression is not suitable. Examples of dichotomous variables
are cardiovascular disease (yes/no), HIV status (positive, negative),
hazardous alcohol drinking pattern (yes/no). Here is a hypothetical data set
used to illustrate this point. It is data to study the possible association
between financial hardship in midlife (the exposure) and common mental
disorder in old age (the outcome), controlling for the possible confounding
role of age.
Table 14.1 Example data for dichotomous variables
ID Financial hardship Age Common mental

disorder
1 0 35 0
2 1 55 1
3 1 57 1
4 1 63 0
5 0 45 0
6 1 65 1
7 0 52 1
8 1 66 1
9 0 40 0
10 0 68 0

You might think that linear regression can be used in exactly the same
way, but it cannot. This can be illustrated in two ways. First, one of the key
assumptions of linear regression is violated. Second, the interpretation of
the beta coefficients is not valid.

Residuals are not normally distributed
data <− read.table (‘plate-dysphagia.csv’, header=TRUE, sep=’,’)
attach (data)
head (data) #this shows the first few lines of data and the
# column headings



fit <− lm (dysphagia ~ age_years)
resid <− fit$residuals
sd.resid <− sd(resid)
stdres = rstandard(fit)
qqnorm(stdres, ylab=“Standardised Residuals”, xlab=“Normal
Scores plotted against Standardized Residuals”)
qqline(stdres)

You can see here that the residuals are not normally distributed, making the
data unsuitable for linear regression.

One of the most important assumptions of linear regression is that the
residuals are normally distributed. If they are not, then the beta estimates
and standard errors are probably wrong.

The interpretation of the beta values is not valid
fit <− lm (dysphagia ~ plate+age_years+male)
summary(fit)



Figure 14.1 Plot showing that residuals are nor normally distributed for
categorical outcomes using linear regression

Consider the model above, which is a linear regression of dysphagia, or
difficulty swallowing (yes coded 1, no coded 0) on plate (described in Box
14.1), age and sex. The coefficient obtained is 0.2618 which is statistically
significant, but what does the coefficient mean? It is the expected linear
change in dysphagia per unit for those with a plate inserted compared to
those without, holding age and sex constant. Yet we know that the outcome
can only possibly be 0 or 1 – it cannot be 0.2618! The beta coefficient is not
meaningful. We need to find a type of regression model that can handle
categorical outcomes



Introducing logistic regression
Logistic regression is designed for modelling categorical outcomes with one
or more predictor variables. It is ideally suited to the situation where you
have an exposure, a set of confounders or possible mediators, and a
categorical outcome. When running a logistic regression, you need to think
about the probability that someone will experience the outcome, rather than
their estimated value. We can for example, calculate the probability of
having dysphagia or not having dysphagia. This produces a linear,
graduated scale. It is not meaningful to predict someone will have an
outcome of dysphagia, but it is meaningful to say that they have a
probability of 0.65 of experiencing the outcome, for example. Logistic
regression will estimate the probability of the outcome, based on a non-
linear function. It is therefore more suitable to categorical outcomes than
linear regression.

The trouble with probabilities in this situation is that they can exceed 1
(e.g. 1.20). To address this, we transform the probability into an odds ratio.
Odds ratios in logistic regression are interpreted in nearly exactly the same
way as we have encountered before (e.g. in Chapter 4).

The trouble with odds ratios however, is that they cannot estimate scores
below zero. To address this, we take the log. The log odds ratio is called the
logit. The logit is not bounded at zero or one.

The trouble with logits, however, is that we cannot use ordinary least
squares regression. To address this, we have to use software and maximum
likelihood (ML) estimation to work out what the beta values are. ML is an
iterative method, meaning that many different attempts are made to find the
best values, which can take some time. For this and other reasons, ML is
usually done using statistical software.

This may all sound very complicated, but since this is an introductory
textbook, the most important thing to remember when starting out is that
logistic (not linear) regression is needed when you have a dichotomous
outcome and more than one predictor variable. Although logistic regression
calculates probabilities of an outcome occurring, these are presented as
logits and as odds ratios rather than probabilities. At the end of the chapter
is a very brief explanation of how you can convert odds ratio to
probabilities of an outcome occurring, following logistic regression.



•

•
•

•

Preparing for logistic regression
There are some important points you should remember about logistic
regression:

the model is intended to explain the effect of the predictor variables
on the dichotomous outcome variable;
the outcome is dichotomous or binary;
predictor variables (exposure, covariates) can be either categorical or
continuous;
ff predictor variables are ordered categorical variables, you need to
create dummy variables (see Chapter 13).

Logistic regression is not suitable for categorical outcomes that have
more than two possible values. There are techniques available for such
situations, including multinomial logistic regression, but these are beyond
the scope of this book. Further reading around this topic is provided at the
end of the chapter.



The logistic regression equation
The logistic regression equation looks very similar to the linear regression
equation

ln(odds) is the log odds or ‘logit’
x is the value of the predictor variable
β0 is the intercept parameter
β1 is the slope parameter
p^ is the probability of the outcome occurring (the ‘hat’ symbol indicates
that this is the estimated probability, not the actual probability)

The key difference here is that the odds are calculated on a natural
logarithmic scale. We calculate the log odds ratio (or ‘logit’), not the odds
ratio itself.



1
2

Recap: log odds, odds, probability
Table 14.2 Log odds, odds and probability
Log odds (logit) Odds p
−6.90676       0.001001 0.001
−0.59512       0.010101 0.01
−1.38629       0.25 0.2
−0.8473       0.428571 0.3
−0.40547       0.666667 0.4
  0       1 0.5
  0.405465       1.5 0.6
  0.847298       2.333333 0.7
  1.386294       4 0.8
  2.197225       9 0.9
  6.906755   999 0.999
  9.21024 9999 0.9999

Box 14.1 Data set: surgical plate insertion during cervical spine surgery
data and subsequent dysphagia
These data were used to evaluate whether inserting a plate during surgery
would lead to dysphagia (difficulty swallowing). Cervical spine surgery
can often lead to dysphagia. Some clinicians have wondered if the
insertion of a surgical plate during surgery is a risk factor for subsequent
dysphagia. The outcome (dependent) variable is a binary variable, which
takes the value 0 if dysphagia was not reported following surgery, and 1
if dysphagia was reported. The exposure of interest is having a plate
inserted, coded 0 if a plate was not inserted and 1 if a plate was inserted.
We want to control (adjust) for age, sex, American Society of
Anaesthesiologists (ASA) status score, having had previous neck
surgery, and smoking status. The ASA score is a system for rating
patients’ suitability for surgery, developed by anaesthesiologists [106]:

normal and healthy;
mild systemic disease;



3
4
5
6

severe systemic disease;
severe life-threatening systemic disease;
moribund not expected to survive without operating;
brain-dead and organs to be removed for donor purposes.

A table of descriptive statistics is shown in Table 14.3, so that you can
get a feel for the data. In the table, ASA status is treated as categorical. It
shows the number and percentage of people classified as having
severe/incapacitating systemic disease. In our logistic regression model
however, we will treat ASA score as continuous. In reality however, it is
an ordinal scale.

Data source: Dr. Jon Short



Getting started with logistic regression
Before we begin modelling, as always, it is sensible to create a table of
descriptive statistics. In Table 14.3 we can see that dysphagia looks more
likely among those patients who had a plate inserted, but this a descriptive
result. We want to consider possible confounding factors (age, sex, ASA
score, previous neck surgery, smoking).

The column percentages were used in this table, to show the proportion
of people with the variable of interest in each group (no dysphagia,
dysphagia). The chi-square test is used to test the independence of
categorical predictor variables (i.e. the exposure and covariates, listed in the
first column) and the categorical outcome variable (dysphagia).

Box 14.2 R code: comparing categorial study variables according to
dysphagia status

mytable<-table(plate, dysphagia)
mytable
prop.table(mytable, 2) #2 indicates column percentages
# (change to 1 for row percentages)
chisq.test(mytable)

Table 14.3 Descriptive statistics for study variables according to dysphagia
No dysphagia
(n = 94)

Dysphagia
(n = 28)

Total
(n = 122)

p

n (%) n (%) n (%) a
Plate 19 (20.1) 15 (53.6) 34 (27.9) 0.001
Male 57 (60.6) 14 (50.0) 71 (58.2) 0.43
ASA status = severe or
incapacitating

23 (24.5) 9 (32.1) 32 (26.2) 0.57

Previous neck surgery 13 (13.8) 7 (25.0) 20 (16.4) 0.27
Current regular smoker 37 (39.4) 9 (32.1) 46 (37.7) 0.64

Mean (SD) Mean (SD) Mean (SD) b
Age (range 27 to 84) 53.24 (12.7) 58.21 (11.82) 54.39 (12.63) 0.07



a = Chi-square test for differences in proportions, b = t-test for differences in means.

The code in Box 14.2 was repeated for each variable (male, ASA status,
previous neck surgery etc.)

For the continuous variable age_years, the mean and standard deviation
were obtained separately for each group using the subset option, which runs
the command requests only on a subset of the data (here, those without
dysphagia and then those with dysphagia separately) (Box 14.3)

Box 14.3 R code: comparing continuous study variables according to
dysphagia status

mean(subset(data$age_years,  dysphagia  ==0))
mean(subset(data$age_years,  dysphagia  ==1))
sd(subset(data$age_years,  dysphagia  ==0))
sd(subset(data$age_years,  dysphagia  ==1))



Results from a simple logistic regression model
This model contains plate, age and sex. It is a ‘minimally adjusted’ model,
because we consider that age and sex are key confounding factors.

Box 14.4 R code for logistic regression

library(aod) #remember that if a package such as aod is not # installed,
you need to install it first library(ggplot2)
data <− read.table(‘plate-dysphagia.csv’, header=TRUE, sep=’,’)
attach(data)
#basic model (minimally adjusted for age and sex)
mylogit <− glm(dysphagia ~ plate + age_years + male , data =data,
family = “binomial”)

Figure 14.2 R output for logistic regression

The ‘Call’ shown at the start of the output in Figure 14.2 is simply a
reminder of what model we asked for. You can see that R has repeated the
syntax we specified for this model.



The deviance residuals are a measure of goodness-of-fit for the model.
This is not particularly useful except when you want to compare the
goodness-offit of competing models, described below.

The coefficients are shown next, and are the most important part of the
output. The estimates, their standard errors, a z-statistic (Wald statistic) and
a p-value are shown in columns. In rows, we have the intercept, the
exposure (whether a plate was inserted), and two covariates (age and male).

The intercept is the log odds for those without a plate inserted, who are
age 0 and are female.

Note that the coefficients refer to expected changes in the log odds
(logits) of an outcome occurring, they are not odds ratios.

Information on how to create model-estimated probabilities is given at
the end of this chapter.

Next, we will break down the modelling process in order to better
understand what is happening. First, we will explore a simple logistic
regression model that has no predictor variables. Then we will run a model
containing only the exposure. Finally, we will add our proposed
confounding factors.

Logistic regression: intercept only
In order to understand the intercept in logistic regression, it may help to
think about a basic logistic regression that contains no predictors. This code
will produce such a model, but note that R will automatically drop
dysphagia as a predictor variable, knowing that this is not possible.
Dysphagia is only mentioned because we have to name at least one
predictor variable in order to get the model to run. You can therefore ignore
the warning message that ‘the response appeared on the right-hand side and
was dropped’.



Figure 14.3 R output showing proportion of patients with dysphagia

intercept <− glm(dysphagia ~ dysphagia, data = data, family = “binomial”)
summary(intercept)

This produces an intercept value of −1.2111. Because log(p/(1–p))
=−1.2111, p is the overall probability of having dysphagia. This will
correspond to a simple frequency table of the dysphagia variable.

mytable<-table(dysphagia)
mytable
prop.table(mytable) #gives cell proportions

log(0.2295/(1–0.2295)) = −1.2111

The intercept is the log odds of having dysphagia for the entire study
population. The odds of having dysphagia is exp(−1.2111) = 0.2979. The
probability of having dysphagia is 0.2979/(1 + 0.2979) = 0.2295 or 23 per
cent.

Logistic regression: exposure only
In this model, we will use the exposure (plate) without any adjustment for
covariates. This is purely to illustrate how a basic model works. In reality,
we would nearly always want to adjust for a minimal set of covariates such
as age and sex. It is always sensible to cross-tabulate your exposure and
outcome variable beforehand, to check that the data look suitable for
logistic regression. As above:



•
•
•

mytable<-table(plate, dysphagia)
mytable
prop. table(mytable, 2) #2 indicates column percentages (change # to 1 for
row percentages)

This shows that there are no empty cells, which would cause problems in
trying to run the model. If you want, use the standard method for
calculating the odds of dysphagia in each group (plate, no plate), but
remember that we have not adjusted for any confounding factors yet.

Dysphagia No dysphagia
Plate 15 19
No plate 13 75

for patients who had a plate inserted, the odds are: (15/19) = 0.7895;
for patients who had no plate inserted, the odds are: (13/75) 0.1733;
the odds ratio for dysphagia is therefore: 0.7895/0.1733 = 4.56.

Now compare this to the output obtained from logistic regression.

intercept <- glm(dysphagia ~ plate, data = data, family = “binomial”)
summary(intercept)

The intercept is −1.7525 and this is the log odds for those without a plate
inserted, because they are the reference group.

We previously calculated the odds for those without a plate to be 0.1733.
The log odds is log(0.1733) = −1.7525 which corresponds to the output
obtained from R.



Figure 14.4 R output for logistic regression: exposure only

The coefficient for ‘plate’ is the log of the odds ratio comparing the
group who received a plate with those who did not: 1.5161. To obtain the
odds ratio, simply take the exponent of this log odds ratio: exp(1.5161) =
4.56.

Logistic regression: exposure and covariates
When adding covariate (e.g. age and sex). The coefficients obtained in the
output are adjusted (controlled, held constant) for other predictors in the
model. So the coefficient for plate in our next model is the log odds ratio for
plate, holding age and sex constant. Similarly, the coefficients for age and
sex are the expected change in the log odds (logit), holding other variables
in the model constant. We often call this model the ‘minimally adjusted’
model because it necessary to control for age and sex in many situations.

#basic model (minimally adjusted for age and sex)
mylogit <- glm(dysphagia ~ plate + age_years + male, data = data, family =
“binomial”)
summary(mylogit)



•

•

•

The coefficient of 1.33 for plate corresponds to an odds ratio of 3.78
(95% CI 1.39, 10.31), adjusting for age and sex. This could be
considered the minimally adjusted odds ratio. It is consistent with an
increase in the odds of dysphagia for patients who had a plate
inserted.

Figure 14.5 R output for logisitic regression: exposure and covariates

The coefficient for age_years of 0.01669 refers to the expected
increase in the log odds of dysphagia per increase in year of age. It is
not statistically significant.
The coefficient for male f-0.5453 is the expected change in the log
odds of dysphagia comparing males to females. It is consistent with
lower odds of dysphagia for males, but is not statistically significant.

Next, we will consider other possible confounding factors and add these to
the model.



•

•

•

Comparing the goodness of fit of two logistic
regression models: loglikelihood test
Suppose we want to compare the fit of our minimally adjusted model (plate,
age, sex) and a more complex model, than contains further covariates. We
can compare the fit by conducting a likelihood ratio test. This subtracts the
loglikelihood value of the nested model from that of the comparison model,
and multiplies the difference by two. The resulting scores from this
equation happen to have a chi-square distribution. This means that we can
find out if a model is significantly different from another, using a chi-square
table to test the null hypothesis. There is 1 degree of freedom in most cases,
because we tend to test the fit of a model that has one additional predictor
variable.

LRT = 2(L1−L0);

L1 = contains the variable you are interested in;

L0 = contains the model without the variable.

In practice, this test is performed by statistical software in most situations.

library(lmtest)
model1 <- glm(dysphagia ~ plate + age_years + male, data = data, family =
“binomial”)
summary(model1)
model2 <- glm(dysphagia ~ plate + age_years + male + asa, data = data,
family = “binomial”)
summary(model2)
lrtest(model2,model1) #the first model is said to be nested
# within the second

Model 2 does not fit the data significantly better than Model 1, so it may
be unnecessary to add ASA score to the model.

We might want to consider adding smoking and previous neck surgery to
the model.



Figure 14.6 R code for likelihood ratio test, comparing models 1 and 2

Figure 14.7 R code for likelihood ratio test, comparing models 1 and 3

model3 <- glm(dysphagia ~ plate + age_years + male + smoker + prevneck,
data = data, family = “binomial”)
summary(model3)
lrtest(model3,model1) #compares model3 and model1

Model 3 does not fit significantly better than Model 1, so we may
conclude that Model 1 is a sufficiently parsimonious model of the data.
Plate insertion during surgery is associated with dysphagia, independently
of age, sex, ASA score, smoking and previous neck surgery. Note however,
that you should avoid evaluating the fit of models by repeatedly re-running
them after adding different variables. This can be interpreted as ‘pre-
screening’ your data to see which variables are significant. A related
technique called stepwise regression has also received similar criticism
[84]. It is arguably better, in most situations, to decide beforehand which
variables should be in your model and why. Then run the analysis as
planned, and do not re-run analysis unless there is good reason to do so. For
example, you might want to compare the fit of a model containing smoking
and one without, in order to determine if smoking is an informative variable
for prediction purposes. You should report that you have done this
comparison however, so that your results describe what actually happened.



Identifying whether a variable significantly
improves fit of the model: Wald test
The Wald test is useful if you want to compare whether two regression
coefficients are zero. If the Wald test fails to reject this assumption, the
variables appear not to be particularly useful because they are unnecessary
in the model.

Figure 14.8 Wald test: logistic regression

#this example is adapted from the UCLA web page:
http://www.#ats.ucla.edu/stat/r/dae/logit.htm
data <- read.table(‘plate-dysphagia.csv’, header=TRUE, sep=’,’)
attach(data)
head(data)
library(aod)
library(ggplot2)
xtabs(~dysphagia + plate, data = data)
data$asa <- factor(data$asa)
mylogit <- glm(dysphagia ~ plate + age_years + male + asa, data = data,
family = “binomial”)
summary(mylogit)
confint.default(mylogit) #obtain confidence intervals
exp(cbind(OR = coef(mylogit), confint(mylogit))) #odds ratios
wald.test(b = coef(mylogit), Sigma = vcov(mylogit), Terms = 3:5) #This
tests whether the 3rd–5th coefficients in the model # significantly improve
the fit of the model

The effect of ASA score is shown to be not statistically significant.

http://www./#ats.ucla.edu/stat/r/dae/logit.htm


Obtaining predicted probabilities
data$plate <- factor(data$plate)
mylogit <- glm(dysphagia ~ plate + age_years + male, data = data, family =
“binomial”)
summary(mylogit)
newdata1 <- with(data, data.frame (age_years = mean(age_years), male = 1,
plate = factor(0:1)))
newdata1$rankP <- predict(mylogit, newdata = newdata1, type =
“response”)
newdata1

This shows the estimated probability of having subsequent dysphagia for
those with and without a plate insertion, at mean age (54.39 years) and for
men. It is necessary to specify some value for covariates in the model, so
that the probability is conditional on all variables included in the original
model. Many people find these probabilities easier to understand than odds
ratios. If you publish your research, reviewers might find the following
statement more readily interpretable than odds ratios:

Figure 14.9 Predicted probabilities following logistic regression

For men at age 55, the probability of dysphagia was 12.5% if they had
no plate inserted during surgery but it was 35.0% if they did have a
plate inserted.

Note however, that you must report odds ratios and confidence intervals as
your main results – readers will expect to see these.



Summary
In this chapter you have been introduced to logistic regression, a technique
widely used in the health sciences to predict categorical outcomes from a
set of predictors. The predictors can be continuous, categorical or a mixture.
One of them is usually the exposure of interest, the others are considered
covariates. Covariates can be confounding variables or possible mediators.
The choice of covariates should be guided by prior research, theory and
existing knowledge.



Further reading
Tabachnick B, Fidell L:_Using Multivariate Statistics: Pearson Education; 2007.
Hosmer D, Lemeshow S: Applied logistic regression: Wiley Interscience; 2000.



Appendix 1



Critical values for the t-test
 

One-tailed significance
0.05 0.025 0.01 0.005
Two-tailed significance

df 0.1 0.05 0.02 0.01
      2 2.920 4.303 6.965 9.925
      3 2.353 3.182 4.541 5.841
      4 2.132 2.776 3.747 4.604
      5 2.015 2.571 3.365 4.032
      6 1.943 2.447 3.365 3.708
      7 1.895 2.365 2.998 3.500
      8 1.860 2.306 2.897 3.355
      9 1.833 2.262 2.821 3.250
    10 1.813 2.228 2.764 3.169
    11 1.796 2.201 2.718 3.106
    12 1.782 2.179 2.681 3.055
    13 1.771 2.160 2.650 3.012
    14 1.761 2.145 2.625 2.977
    15 1.753 2.132 2.603 2.947
    16 1.746 2.120 2.583 2.921
    17 1.740 2.110 2.567 2.898
    18 1.734 2.101 2.552 2.878
    19 1.729 2.093 2.539 2.861
    20 1.725 2.086 2.528 2.845
    21 1.721 2.080 2.518 2.831
    22 1.717 2.074 2.508 2.819
    23 1.714 2.069 2.500 2.807
    24 1.711 2.064 2.492 2.797
    25 1.708 2.064 2.485 2.787
    26 1.706 2.055 2.479 2.779
    27 1.703 2.052 2.473 2.771
    28 1.701 2.048 2.467 2.763
    29 1.699 2.045 2.462 2.756



    30 1.697 2.042 2.457 2.750
    35 1.690 2.030 2.438 2.724
    40 1.684 2.021 2.423 2.704
    45 1.679 2.014 2.412 2.690
    50 1.676 2.009 2.403 2.678
    55 1.673 2.004 2.396 2.668
    60 1.671 2.000 2.090 2.660
    65 1.669 1.997 2.385 2.654
    70 1.667 1.994 2.381 2.648
    75 1.665 1.992 2.377 2.643
    80 1.664 1.990 2.374 2.639
    85 1.663 1.988 2.371 2.635
    90 1.662 1.987 2.369 2.632
    95 1.661 1.985 2.366 2.629
  100 1.660 1.984 2.364 2.626
  200 1.653 1.972 2.345 2.601
  300 1.650 1.968 2.339 2.592
  400 1.649 1.966 2.336 2.588
  500 1.648 1.965 2.334 2.586
1000 1.646 1.962 2.330 2.581
        • 1.645 1.960 2.326 2.576
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Critical values for the F-test
 



Appendix 3



Table of z-values
 
Critical values of the normal distribution (source: [115])





Appendix 4



T/U table for Mann Whitney U test
 



Appendix 5



Critical values for the Wilcoxon test
 

One-tailed test
0.025 0.01 0.05
Two-tailed test

N 0.05 0.02 0.01
    6     2     1
    7     4     2
    8     6     4     0
    9     8     4     2
  10   11     8     3
  11   14   11     5
  12   17   14     7
  13   21   17   10
  14   26   21   13
  15   31   25   16
  16   36   30   20
  17   42   35   24
  18   47   40   28
  19   54   46   33
  20   60   52   37
  21   68   59   42
  22   76   66   47
  23   84   74   54
  24   92   81   60
  25  101   90   67



Appendix 6



Consent form
 

Anonymous Identification Number for this study:



1

2

3

CONSENT FORM
Title of Project:

Name of Researcher:
Initial box

I confirm that I have read and understand the above participant
information sheet and have had the opportunity to ask
questions.

I understand that my participation is voluntary and that I am
free to withdraw at any time without giving any reason without
my legal rights being affected.

I agree to take part in the above study.

__________________________________________
Print your name

__________________________________________
Signature and date



Appendix 7
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•
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Statistical power
 

A statistical power calculation tells us that for a given effect size, and a
given sample size, the probability of avoiding a type II error (a ‘false
negative’ result). Traditionally researchers try to have power at 80 per cent,
so that there is a 20 per cent chance of missing an effect that is actually
there in reality.

Effect size. The size of the effect we want to detect. Some researchers
have arbitrarily defined these as ‘small’, ‘medium’ and ‘large’ but this
is not recommended. Instead, we should think about the clinical and
public health significance of the effect. If a reduction of half a standard
deviation in a measure of psychological distress, for example, is
considered important for the population, then this is the effect size we
should be concerned with. Interventions may have small effects, which
can have considerable benefit when applied at the population level.
Research studies should have the power to detect such effects, or they
may be missed.
Type I error. The null hypothesis (no effect) is true, but researchers
conclude that there is an effect. This usually happens because the alpha
value is set at .05, corresponding to the traditional p-value of .05. This
means that 5 per cent of the time, p-values <.05 are found by chance.
Type II error. The null hypothesis is false (there is an effect), but
researchers conclude that there is no effect. This usually happens
because the sample size is not large enough to detect the effect.
Alpha. The probability of incorrectly rejecting the null hypothesis, .05
or 5 per cent. Sometimes called a “false positive” result, or a result that
is due to chance.
Beta. The probability of incorrectly retaining the null hypothesis. This
is arguably more serious, because there was an effect but we didn’t
find one. A statistical power calculation reduces the risk of making this
kind of error.



• Statistical power. Statistical power is 1–β, or “1 minus the probability
of making a type II error”, which is .80 or 80 per cent.



Appendix 8



Validity and bias
 



•

•

Validity
There are two kinds of validity, external and internal [108]:

Internal validity is defined as the extent to which systematic error
(bias) is not present during data collection. Bias is when error produces
results that are consistently pushed in one direction because of non-
random variables.
External validity is defined as the extent to which results generalise to
other participants, settings, follow-up times and so on.

Taken together, both kinds of validity allow researchers to be confident
that the claims they are making about their findings are justified. It is
possible for a study to have good internal validity, and yet not generalise to
a wider population (this is discussed in more detail in Chapter 9 on cohort
studies). It may still have perfectly useful results. However, if a study has
poor internal validity, external validity becomes irrelevant – an internally
invalid study cannot generalise because bias is present:

External validity is the degree to which the conclusions in a study
would hold for other persons in other places and at other times. As
such, internal validity is a prerequisite for external validity. [109]
We can therefore say that internal validity is necessary, but not sufficient,

for external validity. There are several kinds of internal validity which are
now discussed.



Confounding bias
Confounding is an important source of internal bias. It is important to
eliminate confounding as far as possible. Possible strategies include:
randomisation of the exposure across groups (e.g. randomised controlled
trials), stratification into different levels of the confounder (e.g.
cohort/observational studies), adjustment for the confounder using
regression methods (Chapter 13). Confounding is a greater cause for
concern in observational and cross-sectional studies than in RCTs.
Addressing confounding is an important prerequisite for establishing
causality (exposure x caused y, and this is not due to confounding factor a),
and the ability to make causal inferences implies high internal validity.



•

Selection bias
Selection bias occurs when participants are put into groups for a study, and
this is not done randomly. For example, suppose a doctor is investigating
whether a new treatment x improves survival time for cancer patients. She
might select patients with the worst prognosis to get the new treatment. This
is perfectly understandable from a clinical viewpoint, but it would introduce
selection bias. If the treatment group is compared to a control group who do
not receive the new treatment, the groups need to be created randomly.
Randomised controlled trials are designed for exactly this reason (Chapter
8). It is also important, if the group to which patients belong has changed,
that data are analysed in the way originally intended. That is, the data
should be analysed according to treatment intention. This method is called
intention to treat (ITT) analysis. There are several types of selection bias
[110]:

Nonresponse bias
Participants may be eligible for a study but may never respond to an
invitation to participate. This introduces selection bias because we never get
information about these people. As an example, lower socioeconomic
groups are more likely to be non-responders. This means we have less
information about them. Some researchers ‘over-sample’ low SES groups in
order to address this problem.

Hospital admission bias
Participants with diseases who are in hospital are more likely to have
comorbidities (other illnesses) and are more likely to have unhealthy
behaviours. This introduces selection bias, as is particularly problematic in
case-control studies (Chapter 10). In case-control studies, the following
situation is an example of Berkson’s paradox [111], a form of hospital
admission bias:

the association will be distortedly larger if controls are from
community-dwelling settings rather than hospital settings;



• the association will be distortedly smaller if controls do not have the
disease but are from hospital settings.

The solution is to select both cases and controls from community
settings, rather than hospital settings. However, this is often unrealistic and
impractical [111].

Exclusion bias
Researchers may exclude certain groups in order to address confounding.
For example, we might want to investigate the association between caffeine
consumption and cardiovascular disease risk, and decide to exclude people
with prevalent (existing) CVD at the baseline of the study. This would
remove confounding by prevalent CVD but would introduce exclusion bias,
because information about these people is not included in the analysis.

Awareness/publicity bias
Awareness bias occurs when participants are aware of a possible or claimed
association between an exposure and disease, perhaps because media
reports have raised their concern. Members of the public may be more
likely to report exposure to industry, heavy mobile phone usage, pollutants
and so on, if the media has raised their awareness of possible harmful
effects. One example illustrating the possible impact of awareness bias
comes from a study that found concern about illness was a stronger
predictor of self-reported illness than was actual proximity to emissions
from industrial outlets [112]. Awareness bias can be addressed by objective
measures of exposure and outcome. In summary, left unchecked, selection
bias can distort an association between exposure x and outcome y, because
of how participants were selected.



Attrition bias and loss to follow-up
Attrition bias can result from loss to follow-up, although loss to follow-up
itself does not imply bias. Loss to follow-up is when participants drop out
of a study (attrition) [108]. This can occur because the participant has
decided to drop out, because they are uncountable, or because the study
team have decided not to contact them for some other reason. In a trial
comparing, for example, a new treatment x with an existing treatment, we
would want to follow patients up to see what their health outcomes were. It
is perfectly normal for people to drop out. The question is, are those
patients who have dropped out different from those who remained in the
study? If they are different, then attrition bias could be present. For
example, if we were investigating the success of a new treatment designed
to stop people from smoking, and the heaviest, most committed smokers
dropped out (perhaps they were less interested in quitting), we might falsely
conclude that the treatment appeared to be more successful than it really
was. The smokers who were verified as quitters happened to be the ones
who were more interested in quitting, and so they remained in the study.
Two kinds of attrition bias are particularly common:

Healthy survivor bias
Healthy participants tend to stay in a longitudinal study, which can distort
the association between x and y. For example, healthy participants who
smoke could introduce apparent ‘healthy smoker effects’, incorrectly
suggesting that smoking is less hazardous for health outcomes than it really
is (because the more unhealthy smokers have dropped out). This situation is
sometimes called ‘health selection’, implying that participants have been
unintentionally ‘selected’ for having healthier characteristics.

Healthy volunteer bias
Participants who are healthy may have higher levels of interest in health,
health consciousness, health literacy and health knowledge. For these
reasons, they may be more likely to participate and then remain in health
research than people who are less healthy. This introduces healthy volunteer
effects, worrying for cross-sectional studies (if healthier people agreed to



take part) and additionally for longitudinal studies with repeated follow-ups
(if healthier people agreed to continue taking part).

In trials, attrition bias can be addressed by imputing missing data (e.g.
one method involves using the last known value of the health outcome)
which is sometimes combined with ITT. In cohort studies (Chapter 9),
attrition bias can be evaluated by comparing the characteristics of people
who remained in the study to characteristics at recruitment, by imputing
missing data, or by techniques that ‘weight’ the data to take drop out into
account. These techniques are controversial but are often better than
ignoring missing data or drawing conclusions based only on people with
complete data.



Performance and detection bias
Performance bias occurs in a trial if participants who receive a new
treatment are also given additional treatments. A similar kind of bias can
occur if outcomes are more likely to be monitored by staff who know which
treatment group patients are in, called detection bias. Both kinds of bias can
easily be prevented by blinding patients and staff involved in a trial [108],
so that no one knows which participants are receiving the new drug. Not all
treatments can be blinded however, as we saw in Chapter 8. When blinding
is not present, additional treatments could happen unintentionally. For
example, if a nurse knows that a patient is receiving a new drug x for
treating depression, he might spend slightly longer talking to the patient
about his situation, and keep a closer eye on monitoring the patient over
time. Has the drug or the additional support from the nurse influenced the
improvement in the patient’s mental health? Bias has been introduced into
the study.



Observer bias
Observer bias can occur when members of the research team know the
exposure status of a participant, and are involved in classifying the
outcome. For example, a participant known to have a history of heavy
alcohol drinking might be more likely to receive a diagnosis of alcoholic
cirrhosis of the liver if the pathologist knows about their drinking habits
[113].



•
•

•

•

Information bias
Information bias concerns measurement error. Has the exposure been
measured correctly? Has the outcome been measured correctly? Think back
to the 2×2 tables used to introduce odds ratios in Chapter 4. Suppose that
the exposure x was smoking and the outcome y was lung cancer. If a
number of smokers were misclassified as non-smokers (e.g. because they
smoked but self-reported that they were a non-smoker), then they would be
in the wrong cell of the table. Similarly, if the outcome was not recorded
correctly, cases of lung cancer could in fact be classified as non-cases. Both
of these situations introduce information bias. Both would bias the odds
ratio towards 1 (null) because more ‘noise’ is introduced into the data.
Information bias can happen unintentionally and for many reasons,
including:

Data quality. Data entry errors, data coding errors, faulty equipment.
Interviewer bias. Interviewers may be unintentionally more accurate
for participants with diseases than for healthy participants, particularly
common in case-control studies (Chapter 10).
Recall bias. Participants asked to recall past events may not be
accurate, particularly worrying in retrospective cohort studies that are
concerned with exposures in the past.
Reporting bias. Participants may over- or under-report exposures. For
example, patients with brain tumours may be more likely to report
greater mobile phone usage than those without. Pregnant women may
under-report smoking given that smoking during pregnancy is not
recommended and is stigmatised. Awareness/media bias can also
encourage reporting bias.

Consider the following hypothetical data in Table A.1, in which two
different methods for classifying smoking status were used, in an
occupational cohort study. People were asked to report their own smoking
status (self-report) and one of their colleagues was asked to report the
participants’ smoking status (informant-reported). Both kinds of report were
compared to a gold standard (salivary cotinine). Using the generalised



notation for diagnostic tests shown below, we can calculate the sensitivity
and specificity of title self-report ‘test’ compared to the gold standard.

It was found that self-reported smoking status was reasonably accurate,
having high sensitivity (most smokers, but not all, reported that they were
smokers) and perfect specificity (no non-smokers said that they smoked).
Ten smokers self-reported as non-smokers, reducing sensitivity. As you
might expect, informant-reported smoking status was less accurate.
Sensitivity was lower, because fewer smokers were identified as smokers by
their colleagues. Smoking is increasingly discouraged, and can be a
stigmatised behaviour. It can be hidden from colleagues, who may not be
aware that this person smoked. Both methods lead to misclassification bias,
although this is less problematic for self-report than for informant reports.
Table A.1 Notation for diagnostic tests
Generalised notation
for diagnostic tests

Gold standard positive Gold standard negative Total

Test positive a b e
Test negative c d f
Total g h N

Table A.2 Self-reported vs. informant-reported smoking



Misclassification of exposure status can bias the odds ratio towards no
association. We can see this when calculating the odds ratio across the three
scenarios: having salivary cotinine data (the gold standard, providing the
true OR), having self-report data and having informant-report data. You can
see that the greater the degree of misclassification bias, the more the
association is pushed towards 1. The informant-report OR is only 1.86,
much lower than the true OR of 4.75. This scenario assumes that the
misclassification is the same across disease/healthy groups and that no other
confounding is present. In reality, misclassification might be different
among disease/healthy groups, further distorting the true effect.

Misclassification occurs when the sensitivity or the specificity of the
measure used to ascertain exposure status becomes lower. As shown in the
example above, the lower the sensitivity of a test, the more the association
is pushed towards null. Similarly, the figure shows that the lower the
specificity of a test, the more the association is pushed to null. When
sensitivity and specificity are low (0.50 each), the apparent RR is 1. To
summarise, left unchecked, information bias can distort the apparent
association between risk factor x and outcome y. It is important to measure
exposure status accurately, to reduce bias.

Table A.3 Gold standard, self-report and informant-report odds ratios



Glossary
 
 

ADAS-cog A cognitive test battery designed to measure cognitive function,
often used in RCTs. It is often considered more reliable and valid than
MMSE.

Adjustment An association between an exposure and outcome can be
adjusted for confounding factors, in order to reduce the distorting effect
of the confounder on the association (see Chapter 6).

All-cause mortality Deaths from any cause.

Antagonism The combined effect of two exposures is smaller (e.g. less
harmful) than the effect anticipated by one of them. The effect modifier
‘cancels out’ some of the risk. Biologic or real-world interaction means
one of two things happens when the risk factors are combined:
antagonism or synergism.

Cause-specific mortality Deaths from specific causes; for example, often
grouped into the major causes of death (cardiovascular and cancer
mortality).

Centring Subtracting the mean from x so that 0 represents the mean value
of x (and the intercept represents the expected value of y when x is at its
mean).

Charlson index A score reflecting the number and severity of co-
morbidities. The original scale assigned a score of 1/2/3/6 for different
conditions. The scale has since been revised, because survival
probabilities have changed (e.g. AIDS mortality has decreased, cancer
mortality has increased).

Cochrane Reviews Systematic reviews of primary research in human
health care and health policy, and are internationally recognised as the
highest standard in evidence-based health care. They investigate the
effects of interventions for prevention, treatment and rehabilitation. They



also assess the accuracy of a diagnostic test for a given condition in a
specific patient group and setting. They are published online in the
Cochrane Library.

Cognitive behavioural therapy (CBT) A type of psychotherapy which
aims to change cognitions and behaviours by using a systematic approach
that replaces patterns of thinking and reacting with more adaptive
responses.

Complex interventions Interventions with several interacting components,
which may not be standardised in delivery, and may be sensitive to local
contexts. Complex interventions may have lengthy causal chains between
the intervention and outcome.

Consolidated Standards of Reporting Trials (CONSORT ) Statement
An evidence-based set of recommendations and reporting requirements
for RCTs. The guidelines provide a standard way to report results, and
should be followed in papers submitted for publication.

Cotinine A metabolite of nicotine, used as a biomarker of exposure to
tobacco. Salivary cotinine is thought to better reflect actual exposure than
self-reported cigarettes smoked per day, for example.

Cox Regression A type of regression model that deals with time to event
data (e.g. survival time before death). The model has to ‘censor’
participants who have not experienced the event before the end of follow-
up, because they might still experience the event. Typical outcomes for
Cox Regression models include all-cause mortality, cause-specific
mortality, cancer and infection.

Cumulative exposure Exposures which happen more often, for longer
periods, and are more severe, may result in cumulative damage to
biological systems or psychological outcomes. Accordingly, it can be
useful to collect information about exposures over many years (e.g. pack
years of smoking).

Dose-response association When an increase in the exposure strengthens
the size of the association between the exposure and outcome, and a
decrease weakens it. For example, smoking has a dose-response



association with lung cancer because smoking more cigarettes increases
risk in lung cancer.

Effectiveness The benefit of an intervention under normal ‘real world’
conditions, in practice or routine situations.

Efficacy The benefit of an intervention under ‘ideal’ conditions, such as
RCTs. Efficacy is not the same as effectiveness (see effectiveness).

Efficiency The impact on outcomes in terms of the resources used. When
efficacy and effectiveness are known, efficiency is a measure of the cost
of achieving this impact.

Freedom of information Any person requesting information from a public
authority is entitled (a) to be informed about whether or not this
information exists and is held; (b) if it is held, to have the information
communicated to them.

Google Scholar A free web search engine, covering the scholarly literature.

Grey literature Literature that has not been through the formal peer-review
and commercial publication process. For example, reports, grant
applications, technical papers, working papers.

Hawthorne effect When awareness of being in a study changes the
outcome, usually improving it. This can apply to treatment or control
groups, and is not addressed by randomisation. Effects can be over-
estimated in treatment and control groups because there is some benefit
to participating in the research, whatever the reason.

Health selection When participants are selected, typically at recruitment,
on characteristics that produce a healthier sample than the wider
population.

Healthy survivor effects A form of selection attrition whereby healthier
participants tend to remain in the study. Smokers for example, will tend
to die and drop-out from a study, producing a sample that contains
healthier smokers than in the population (a ‘healthy’ smoker effect) [4].

Hierarchy of evidence Study designs are ranked according to the quality or
reliability of the evidence they can provide: RCT, cohort, case-control,



observational or cross-sectional

Incidence rate ratio This is a relative measure of the greater/smaller
incidence in rate in an exposed group, compared to an unexposed group.
for example, if the rate of a new infection is 0.002 in an exposed group,
0.001 in an unexposed group, then the incidence rate ratio is 2. The rate
of infection is twice as high.

Index Medicus Prior to 1979, the National Library of Medicine (NLM)
used a printed record called Index Medicus.

Interaction Statistical interaction means that the combined association is
greater than the sum of the two separate exposures. This can be
protective or harmful.

Intentional to treat (ITT) analysis A method of analysing results from
randomised controlled trials where participants are analysed according to
the original treatment intention. Some participants may be lost to follow-
up or change treatment groups, as often happens in real clinical practice,
and so an ITT analysis takes this into consideration.

Intercept The predicted/estimated value of y when x=0. The ‘origin’ of the
line of best fit.

International Classification of Diseases (ICD) A diagnostic tool which
applies standard codes to diseases and other health problems, including
mortality records.

Lung age The age of the average person with a forced expiratory volume in
one second (FEV1) value the same as the individual. Considered a
‘biomarker’ of lung function.

MEDLINE The National Library of Medicine in the USA has been
indexing medical literature since 1979.

Mini Mental State Examination (MMSE) MMSE scores range from 0
(worst possible score) to 30 (best possible score) and 25+ is considered
normal. Various cut points for categorising people have been proposed,
and are debated, but for illustrative purposes: 25 or more = normal, 18 to
24 = mild to moderate cognitive impairment, 17 or less = serious



impairment. Age and educational attainment may influence MMSE
score, which should be kept in mind.

Misclassification When a value is put into the wrong category. For
example, if a non-smoker is classified as a smoker, they have been
misclassified.

Multiple imputation A method for addressing missing data by estimating
the missing values and replacing them, often resulting in multiple
datasets which are each analysed and the results combined.

Multiple risk When two risk factors increase risk, either because of their
additive effects (e.g. if 2 + 2 = 4) or because of a synergistic interaction
(e.g. if 2 + 2 = 6).

Narrative review These are often used in expert summaries, student
dissertations, polemics, talks and opinion articles[2]. Studies are selected
by the author with no explicit search or inclusion criteria.

Negative predictive value (NPV) Proportion of people with a negative
result who actually are negative (d/f).

Number needed to harm (NNH). Number of patients needed to be treated
for one additional patient to be harmed (NNH). A measure of clinical
significance. 1/(1–OR)UER (UER = unexposed event rate). Number
needed to treat (NNT) is the equivalent in reverse.

Poisson distribution A distribution seen with count data, having a peak
and a long tail. Shows how many discrete events have occurred in a
given time period.

Positive predictive value (PPV) Proportion of people with a positive result
who actually are positive (a/e).

Public Health Observatories Public Health Observatories (PHOs) produce
information, data and intelligence on people’s health and health care for
practitioners, commissioners, policy makers and the wider community
(see www .ap ho. org .uk).

Public interest test If releasing information is in the public interest, it is
considered to service the interests of the public. An example of when

http://www.apho.org.uk/


releasing information would not be in the public interest, would be to
release information that would prevent prosecution of an offender.
Crucially, the public interest test does not refer to things which are
interesting to the public.

Recall bias When a self-report, usually relating to an exposure, is
inaccurate or incomplete. This introduces systematic error into the
measure.

Regression line Line added, usually to a scatter plot, showing the expected
value of an outcome variable according to the predictor variable, and a
line of best fit that best illustrates the relationship between the two
variables.

Regression to the mean The tendency of values at the tails of a distribution
to move closer to the mean at the next measurement occasion.

Research ethics The moral principles guiding research from its inception
through to completion and publication of results [1].

Reverse causation When the supposed exposure is actually influenced by
the supposed outcome, rather than vice versa.

Sensitivity The proportion of people with the result correctly identified by
the measure (a/g).

Slope. The predicted/estimated change in y when x increases by 1 unit. The
‘gradient’ of the line of best fit.

Specificity The proportion of people without the result correctly identified
by the measure (d/h).

Standardised regression coefficient Predicted standard deviation change
in y per standard deviation increase in x.

Surrogate endpoint Surrogate endpoints or markers of variables (e.g.
blood pressure) which might correlate highly with the real clinical
endpoint (e.g. heart disease) and are used as a substitution.

Synergism The combined risk is stronger (e.g. more harmful) than the sum
of the two separate risks. The effect modifier strengthens some of the



risk. This is equivalent to ‘effect modification’ when one exposure
modifies the risk of another (Chapter 6). It may not be immediately
obvious which variable is the supposed causal variable and which is the
modifier. They may modify each others’ risks.

Threshold effect When there is an association between an exposure and an
outcome above a certain threshold value, but no association below this
threshold.

Time-varying confounding Time-varying variables which are confounding
factors, may introduce time-varying confounding. Allowing interactions
between a confounding factor and time can be used to adjust for time-
varying confounders. Obviously, this means that the variables need to
have been measured repeatedly over time, which is often not done in
cohort studies.

Ulrich’s Periodicals Directory A database of popular and academic
journals, magazines, newspapers and periodicals. htt p:/ /ww w.s eri als‐ 
solutions.com/en/services/ulrichs

http://www.serialssolutions.com/en/services/ulrichs
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