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Preface

The authors have written two books on the theoretical and practical
design of reinforced concrete beams, columns and frame structures. This
book, entitled Reinforced Concrete Beams, Columns and Frames –
Mechanics and Design, deals with the fundamental aspects of the mechanics
and design of reinforced concrete in general, both related to the
Serviceability Limit State (SLS) and the Ultimate Limit State (ULS). The
related book, entitled Reinforced Concrete Beams, Columns and Frames –
Section and Slender Member Analysis, deals with more advanced ULS
aspects, along with instability and second-order analysis aspects. The two
books are complementary, and, indeed, could have been presented together
in one book. However, for practical reasons, it has proved more convenient
to present the material in two separate books with the same preface in both
titles.

The books are based on an analytical approach for designing usual
reinforced concrete structural elements, compatible with most international
design rules, including for instance the European design rules Eurocode 2
for reinforced concrete structures. The presentations have tried to distinguish
between what belongs to the philosophy of structural design of such
structural elements (related to strength of materials arguments) and the
design rules aspects associated with specific characteristic data (for the
material or the loading parameters). The Eurocode 2 design rules are used in
most of the examples of applications in the books. Even so, older
international rules, as well as national rules such as the old French rules
BAEL (“Béton Armé aux Etats Limites”, or Reinforced Concrete Limit State
in English) will sometimes be mentioned, at least for historical reasons.
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Whatever the design rules considered, the fundamental concept of Limit
State will be detailed, and more specifically, the Serviceability Limit State
(SLS) and Ultimate Limit State (ULS) both in bending and in compression
will be investigated.

The books are devoted mainly to the bending (flexural) behavior of
reinforced concrete elements, including geometrical nonlinear effects
(second book). However, two major aspects of reinforced concrete design
are not treated. These are shear force effects and the calculation of crack
width as dealt with in the Crack Opening Limit State in Eurocode 2. The
latter represents a major new contribution as compared to some older
European rules such as BAEL. The readers are referred to the very good
monographs devoted to the general presentation of Eurocode 2 for these
additional parts (see for instance [CAL 05]; [DES 05]; [MOS 07]; [EUR 08];
[PAI 09]; [PER 09]; [ROU 09a]; [ROU 09b]; [THO 09]; [PER 10]; [SIE 10];
[PAU 11]).

We would also like to point out that the calculation of crack widths, even
under a simple loading configuration, such as uniform tension loading, still
remains a difficult topic. Moreover, the authors are even convinced that
meaningful efforts should be addressed in the future, for facilitating the
transfer of knowledge from theoretical research in fracture or damage
mechanics, to applied, practical design rules. In connection with this,
cohesive crack models were introduced in the 1970s to investigate the crack
opening in mode I of failure [HIL 76], whereas non-local damage mechanics
models were developed in the 1980s for efficient computations of damage
softening materials [PIJ 87]. Both appear to belong to the families of non-
local models which contain an internal length, for the control of the post-
failure process [PLA 93]. Non-local damage mechanics is now widely used
in the research community for the study of reinforced concrete structures
(see for instance [BAZ 03]; [MAZ 09]). The authors of these books have
also conducted some research in this field to better understand the failure of
some simple reinforced concrete structural elements (research at INSA of
Rennes, University of Rennes I, University of South Brittany or University
of Oslo – see for instance [CHA 05]; [CHA 06]; [CHA 07]; [CHA 08];
[CHA 09]; [CHA 10]; [CHA 11]; [CHA 12]). However, the engineering
community has not yet necessarily integrated these results into the design
process or even into the rules. The gap between the research activity and the
engineering methodology is probably too large at present, and researchers
will probably have some responsibility in the future to make their results
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more tractable to the engineering community. With respect to these books,
some very simple concepts of non-local mechanics will be presented when
necessary. However, the books are mainly devoted to the design of a
reinforced concrete structure at a given limit state, the cracking evolution
problem often being considered as a secondary problem. We have chosen to
concentrate our efforts on the bending design based on the pivot concept, at
both the Serviceability Limit State (SLS) and the Ultimate Limit State (ULS).
The last part of the second book deals with the design of columns against
buckling, and how to take into account second-order effects will be
presented for stability design. In particular, some engineering approaches
practiced by engineers will be detailed, to replace efficiently, when possible,
the nonlinear evolution problem associated with microcracking and failure.

The books are aimed at both undergraduate and graduate (Licence and
master) students in civil engineering, engineers and teachers in the field of
reinforced concrete design. In addition, researchers and PhD students can
find something of interest in the books, including the presentation on
elementary applications of non-local damage or plasticity mechanics applied
to the ultimate bending of reinforced concrete beams (and columns). We
hope that the basic ideas presented in the books can contribute to stimulating
the links between the research community in this field (computational
modeling and structural analysis) and the design community with practical
structural cases. The principles of Limit State design will be introduced and
developed first, both at the Serviceability Limit State (SLS) and the Ultimate
Limit State (ULS), illustrated by some detailed examples to illustrate the
introduced methodology.

Older books (see for instance [HOG 51]; [BAK 56]; [SAR 68];
[ROB 74]; [PAR 75]; [FUE 78]; [LEO 78]; [ALB 81]; [LEN 81]; [BAI 83];
[GYO 88]; [WAL 90]; [PAU 92]; [MAC 97]) have been used in some
section of the books for establishing familiar and well-known equations on
section design (in particular equations based on the simplified rectangular
stress-strain diagram for concrete in compression). In particular, the authors
want to acknowledge the very exhaustive work of Professor Robinson, at
Ecole Nationale des Ponts et Chaussées, whose reinforced concrete teaching
book published in 1974 can still be considered as a main reference with
modern insights into reinforced concrete design [ROB 74]. We have also
been inspired by the more recent and very exhaustive works of Professor
Thonier (see for instance [THO 09]), also at Ecole Nationale des Ponts et
Chaussées.
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The current book, Reinforced Concrete Beams, Columns and Frames –
Mechanics and Design, is organized as follows. Chapters 1 and 2 deal with
the Serviceability Limit State, for both the design and cross-section
verification. The French school of reinforced concrete design have
commonly used the concept of “Pivot”, which is related to the limit behavior
of the cross-section with respect to steel and concrete material
characteristics. The Pivot A (where the steel material characteristics control
the behavior of the cross-section at the Limit State), and Pivot B (where the
concrete material characteristics control the behavior of the cross-section at
the Limit State) concepts are introduced with the Serviceability Limit State
in Chapter 1. Chapter 1 is mainly focused on the design aspects, whereas
Chapter 2 deals with the verification of the reinforced concrete section with
both the bending and the normal forces effects. The general theory presented
in these first two chapters is valid for arbitrary shapes of reinforced concrete
cross-sections including for instance rectangular, triangular, trapezoidal or
T-cross-sections. Chapter 2 ends with the presentation of a cubic equation
for the determination of the neutral axis in the general loading configuration,
including the normal force effects. This elegant equation is also known as
the cubic equation of the French reinforced concrete design rules dating from
1906 (“Circulaire du 20 Octobre 1906”) (and reported in the book by
Magny, 1914 [MAG 14]) or those dating from 1934 (“Règlements des
marchés de l’état de 1934” – also in French), also recently reported by
Professor Thonier for T-cross-sections [THO 09]. Finally, the tension
stiffening phenomenon is introduced in terms of a nonlinear bending
moment-curvature constitutive law and some verification examples are given
to illustrate the theoretical results obtained in the fundamental parts.

Chapters 3 and 4 focus on the fundamental aspects of the Ultimate Limit
State. Chapter 3 starts with a brief introduction to the concept of the
Ultimate Limit State for the bending of a reinforced concrete beam. The
need to use some non-local theory to correctly model the post-failure
behavior of reinforced concrete structural elements is shown in the presence
of global curvature softening. The material characteristics of the steel and
concrete allowed by Eurocode 2 are listed, and compared with each other. It
is possible to derive analytically the normal forces and the resultant bending
moment in the compression block for each considered concrete law,
including the parabolic-rectangle constitutive law, the simplified rectangular
constitutive law, the bilinear constitutive law or Sargin’s nonlinear
constitutive law. These preliminaries will be used later for the design of
reinforced concrete sections at Ultimate Limit State. Chapter 4 discusses
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some possible bending moments – curvature law of typical reinforced
concrete sections. These cross-sectional behaviors can be deduced from the
local characteristics of the steel and concrete constituents. The relevancy of a
bilinear approximation for the moment-curvature constitutive law is
discussed, with possible tractable analytical results for engineering purposes.
Chapter 4 concludes with some buckling and post-buckling results obtained
for a reinforced concrete column modeled with a simplified nonlinear
bending-curvature constitutive law. It is shown that reinforced concrete
columns typically behave like imperfection-sensitive structural systems.

The related book, Reinforced Concrete Beams, Columns and Frames –
Section and Slender Member Analysis, is organized as follows. The
advanced design of general reinforced concrete sections is treated in Chapter
1. The reinforced concrete section can be optimized for a given loading (in
terms of minimization of the steel quantity for instance), with some
constrained equations. Also discussed is how the Serviceability and the
Ultimate Limit States can be compared, depending on the material and
loading features of the problem. A design of the cross-section in biaxial
bending is also proposed. More generally in this chapter, the reinforced
concrete section is designed for various constitutive laws for the behavior of
concrete and steel, including possible steel hardening, with possible
analytical solutions for the optimized design. Some design examples are
included for the various solicitations including simple bending, bending
combined with normal forces or bi-axial bending. The last part of Chapter 1
discusses the possible use of moment-normal forces interaction diagrams
available in international codes, and some new possible improvements of
these simplified diagrams.

Chapter 2 is devoted to general aspects of instability of second-order
effects in slender compression members, and in frames that include such
members. For such cases, it is necessary to consider second-order load
effects in the analysis and design. The concepts of braced, unbraced and
partially braced systems as well as associated moment formulations are
presented, and the useful distinction between local and global second-order
effects discussed. The general principles of analysis and design of individual
reinforced concrete columns and frame systems are reviewed in order to
provide a general understanding of the problem area. This includes a
presentation and discussion of fundamental concepts and theory behind
approximate analysis and design methods to provide a reasonable complete
basis for relevant analysis and design requirements as given in existing
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design rules, such as in Eurocode 2. This also includes a discussion of the
applicability of equivalent elastic analysis as an approximation to nonlinear
analyses (accounting for both material and geometric nonlinear effects).
Local and global slenderness limits, allowing second-order effects to be
neglected, are presented and discussed. Chapter 3 deals with approximate
analysis methods used for efficient and practical elastic stability calculations,
and second-order elastic sway and moment calculations. Included in this
chapter are different methods for computing effective lengths, and methods
employing the widely used effective length concept in frame analysis. Basic
concepts are explained and simple and more complex engineering examples
are included to provide a better understanding of the methods.

This book and the first chapter of the related book were mainly written by
Charles Casandjian, Noël Challamel and Christophe Lanos, whereas Jostein
Hellesland mostly contributed to the final two chapters of Reinforced
Concrete Beams, Columns and Frames – Section and Slender Member
Analysis.

Finally, an appendix is provided that gives further developments on the
theoretical background of Cardano’s method, useful for the resolution of a
cubic equation, often encountered in the designing of reinforced concrete
sections at both Serviceability and Ultimate Limit States. An appendix
giving a table of steel diameters is also provided for the quick and efficient
selection of reinforcement sizes in design calculations.

Charles CASANDJIAN,
Noël CHALLAMEL,

Christophe LANOS and
Jostein HELLESLAND

December 2012



Chapter 1

Design at Serviceability Limit State (SLS)

1.1. Nomenclature

1.1.1. Convention with the normal vector orientation

The normal vector is chosen to be oriented toward the external part of the
considered body. The usual conventions of mechanics of continuous media
are chosen, leading to a positive stress for tension and a negative stress for
compression.

Figure 1.1. Definition of the normal unit

1.1.2. Vectorial notation

As opposite to the notation used for figures, where vectors are
represented with an arrow, in the text, vectors are denoted by bold characters
and its components have normal non-bold characters. As an example, we
will have “M = Mxi+ Myj + Mzk”.
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1.1.3. Part of the conserved reference section

The conserved reference part of the beam used for the calculation of
generalized stress in use of the static theorems is the “right” part.

1.1.4. Frame

• Representation of a cross-section.
• Origin of the frame: arbitrary
point of the section.

• x-axis standing out.
• horizontalz-axis, leading to
“negative” moments at the
support level.

• y-axis defined from the
orthonormal direct trihedron.

Figure 1.2. Orientation of the frame for a general section

1.1.5. Compression stress σσc,sup in the most compressed fiber

It is admitted that the neutral axis is located inside the cross-section, thus
delimiting a tension zone and a compressed zone. This last assumption of a
neutral axis inside the cross-section is no more valid when considering
additional meaningful normal forces. Typically, under a positive moment (in
span), the tension zone is located under the neutral axis, and the compression
zone above the neutral axis, as shown in Figure 1.3. Obviously, in the
presence of a negative bending moment, the tension zone and the
compression zone are permuted with respect to the notation of Figure 1.3.
The neutral axis as shown in Figure 1.3 allows the introduction of the
concept of extremal compressed fiber, defined from the most distant parallel
to the neutral axis belonging to the cross-section. The most compressed fiber
in concrete is by definition the fiber associated with the minimal
compressive stress in algebraic value, denoted by sup,cσ .
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Figure 1.3. Concept of extremal compressed fiber

1.2. Bending behavior of reinforced concrete beams – qualitative
analysis

1.2.1. Framework of the study

1.2.1.1. Constitutive law of concrete

The constitutive law of concrete is a strong unsymmetrical law in tension
and in compression, both from the strength and the postfailure response,
which is characterized by its ductility (see Figure 1.4). As a natural choice,
the subscript c refers to concrete whereas the subscript s refers to the steel
material. We adopt by σc,min the extreme stress at the compression peak.

Figure 1.4. Unsymmetrical response of concrete in uniaxial tension and compression
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1.2.1.2. Beam theory in simple bending

In this section, reinforced concrete beams in simple bending are studied
(without axial forces), composed of a rectangular cross-section with a total
height denoted by h and a width b. This section is reinforced by some steel
reinforcement working in tension with a cross-section denoted by As1 and by
steel reinforcement working in compression with a cross-section denoted by
As2. The center of gravity of the tensile reinforcement is at a distance d of the
upper fiber, and one of the compression reinforcements is at a distance d′ of
the upper fiber of the cross-section.

Figure 1.5. Geometrical parameters of the reinforced cross-section; tensile and
compression steel reinforcement

In this case, again, it is implicitly accepted that the bending solicitation
corresponds to a positive moment (the lower fibers are in tension with this
convention, typically in span). Designing under negative moment (typically
at support, for instance) is formally feasible by permuting the behavior of
the cross-section. Furthermore, we can introduce the strain εs1 as the strain of
the tensile reinforcement with the largest tensile stress σs1 and with the
reinforcement area As1.
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1.2.2. Classification of cross-sectional behavior

Three kinds of reinforced concrete beam responses can be distinguished,
depending on the steel reinforcement density (Figure 1.6). These responses
are explicitly detailed in the space of the bending moment with respect to the
stress in the most compressed fiber in concrete.

Figure 1.6. Bending behavior of reinforced concrete beams with respect to the steel
reinforcement density

F: brittle response, which appears when the beam design does not respect the
condition of non-brittleness.

A: beam with low steel reinforcement density, characterized by a global
ductile response. Failure is induced by a large drawing of the tensile steel
reinforcement. As discussed below, the letter A refers to Pivot A.

B: beam with high steel reinforcement density, characterized by the breaking
up of the compressed part of the upper part concrete. The letter B refers to
the behavior classified as Pivot B.

In the following, brittle reinforced concrete beams of type F will not be
investigated.

1.2.3. Parameterization of the response curves by the stress σσs1 of the most
stressed tensile reinforcement

In Figure 1.7, the response curves are parameterized by the stress σs1 of
the most stressed tensile reinforcement. When reading Figure 1.7 in the
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sense of increasing the bending moment (the solicitation), the stress value of
the tensile steel reinforcement also increases. The stress in the compressed
part of the concrete (typically in the upper part of the section for
positive bending moment in span) is limited by a material characteristic
value fcs defined in the National Annexes to the Eurocode 2 - EC2 [EUR 04]
(EC2 7.2.1). This material limitation is defined in the rules for reducing the
longitudinal crack level in the tensile part of the cross-section, for reducing
the microcacking phenomena of concrete in the compressed part and for
limiting the time-dependent induced effects (including the specific creep
effect).

Figure 1.7. Bending sectional behavior of reinforced concrete beams with
respect to the steel reinforcement density; the response curves are
parameterized by the stress level in the tensile steel reinforcement

For the same bending moment, the share taken by tensile reinforcement is
more important in case A. Consequently, the share taken by the concrete is
less important; this generates therefore, in this material, a lower normal
stress. This explains the relative position of two curves.

1.2.4. Comparison of σσs1 of the tensile reinforcement for a given stress in
the most compressed concrete fiber σσc,sup

In this section, the physics of the reinforced concrete beam behavior is
discussed with respect to the steel reinforcement density. For a given value
of the stress in the most compressed concrete fiber, bending moments for the
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two different types of reinforced concrete beams A and B are different
(Figure 1.8). As the reinforced concrete beam of type A has a low density of
tensile steel reinforcement, the following inequality holds:MB> MA.

The stress in the most compressed fiber in concrete is being fixed; the
linear strain of the upper fibers is the same for the two kinds of reinforced
concrete beams. As a result, it is necessary that the compressed part in the
section of type B has to be larger than the one in the section of type A, in
order to fulfill the moment inequality. The linear distribution of strains and
the associated stress in the tensile reinforcement of section of type A are then
larger than the section of type B (see Figure 1.8).

Figure 1.8. Bending behavior of reinforced concrete beams with respect
to the steel tensile reinforcement density; sections of type A and type B

Reciprocally, if the stress value in the tensile steel reinforcement (in the
lower part of the reinforced section) is the same for both types of the section,
the section of type A will have a lower stress value (in absolute value) in the
upper part of the compressed concrete in comparison to the section of type B
(see Figure 1.9).
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Figure 1.9. Stress in the compression concrete block; sections of type A and type B

1.2.5. Comparison of the bending moments

To reduce the non-elastic strain level (existence of permanent strain for a
stress history ended by a vanishing stress value, for instance) leading to
some possible large cracks or some possible structural member strains, the
steel reinforcement tensile stress is limited to a material characteristic value
fss that is also defined in the National Annexes to Eurocode 2 – EC2
(EC2 7.2.2).

For designing the structural members at the Serviceability Limit State
(SLS), we should satisfy the following two simultaneous inequalities that
have to be algebraically fulfilled (see also Figure 1.10 or 1.11):

⎩
⎨
⎧

≥
≤

csc

sss

f
f

sup,

1

σ
σ

[1.1]

For reinforced concrete beams of kind A, slightly reinforced (or with a
low tensile steel reinforcement density), the SLS is controlled by the
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drawing of the tensile steel reinforcement. The bending moment at the SLS
is then calculated for:

⎩
⎨
⎧

≥
=

csc

sss

f
f

sup,

1

σ
σ

[1.2]

Figure 1.10. Introduction to the concepts of pivots A and B at the serviceability
limit state (SLS); in a Pivot B section, stress limitation in concrete occurs

before stress limitation in steel

Figure 1.11. Introduction to the concepts of pivots A and B
at the serviceability limit state (SLS)



10 Reinforced Concrete Beams, Columns and Frames

For reinforced concrete beams of kind B, highly reinforced (or with a
high tensile steel reinforcement density), the SLS is controlled by the
compression in concrete, considered as unacceptable by the rules. The
bending moment at the SLS is then calculated for:

⎩
⎨
⎧

=
≤

csc

sss

f
f

sup,

1

σ
σ

[1.3]

1.3. Background on the concept of limit laws

1.3.1. Limit law for material behavior

1.3.1.1. Definition

A limit law, for a given material, is defined from the overall possible
configurations reached by this material and is compatible with a given state
criterion. A limit law, in its essence, is different from a constitutive law;
the constitutive law implicitly contains all the successive temporal
configurations before reaching the limit state. Therefore, in the concept of
limit law, the notion of the stress or strain path is replaced by the notion of
the limit state, which is the set of configurations compatible with a given
state criterion.

1.3.1.2. Application to the rectangular parabolic diagram, a limit law of the
ultimate limit state

In the case of a parabola–rectangle diagram applied to concrete modeling
(one of the possible limit laws for concrete modeling at the ultimate limit
state (ULS)), if the section reaches the concrete limit law, then the Bernoulli
assumption leads to a nonlinear stress distribution along the cross-section, as
shown by the stress distribution identified by number 5 in Figure 1.11.

In Figure 1.12, for the solicited bending moments M1< M2< M3< M4< M5
= Mu,act, the stress distribution along the cross-section cannot be ranged as a
parabola–rectangle law, for the bending moment M1–M4; for these
solicitations, the stress response curves are transitory curves between the
linear state and the limit state of the parabolic rectangular limit state.
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Figure 1.12. Illustration of the concept of limit law – stress evolution inside the
cross-section; Ultimate limit state parabolic-rectangular stress–strain relationship

However, for the bending moment denoted by M5 (ultimate limit acting
bending moment), the limit state is reached, and the stress limit diagram is
known.

1.3.2. Example of limit laws in physics, case of the transistor

Figure 1.13. Electronic example for limit laws in physics: the transistor

Figure 1.13 shows the setting of a polarized transistor, which is often met
in the field of electronics designs. The characteristics of the transistor are
given in Figure 1.13. The linear part of Figure 1.14 with a softening slope
contains the locus of the static point of this electronic system. In fact, the
working point is located on this loading line.
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Figure 1.14. Limit laws in electronics design

This softening straight line is clearly a limit law: the path from the origin
to reach this limit law is not known a priori, and only the limit state is of
interest.

1.3.3. Design of reinforced concrete beams in bending at the stress
Serviceability Limit State

Figure 1.15. Limit law at the stress serviceability limit state (SLS); stress
distribution along the cross-section

In the case of the limit behavior of concrete at the SLS, a section at its
limit state will have a linear distribution of stress in the compressed part of
the section (as a consequence of Bernoulli kinematics and elasticity behavior
of each material at the SLS), the contribution of concrete in tension being
neglected as a fundamental assumption. This “limit” behavior is visualized
in Figure 1.15 by the linear stress distribution indicated by number 5.
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For the external moments M1, M2, M3, M4 and M5 with M1< M2< M3
< M4< M5 = Mser,act, the stress distribution is theoretically not necessarily
linear along the cross-section, for the moments from M1–M4; such curves are
not known a priori. Only for the moment M5 (limit moment at the SLS), the
stress distribution at SLS is known and is linear. However, for this specific
limit state, it can be also admitted in this case that the limit case
(characterized by linear elasticity) is also reached for the transitory states.

1.4. Limit laws for steel and concrete at Serviceability Limit State

1.4.1. Concrete at the cross-sectional SLS

Concrete, at the cross-sectional SLS, is modeled by a linear elastic
constitutive law in compression, with a stress limitation denoted by fcs. The
strength in tension is neglected (Figure 1.16) and its Young’s modulus is
denoted by Ec.

Figure 1.16. Limit law of concrete at serviceability limit state

1.4.2. Steel at the cross-sectional SLS

Steel at the cross-sectional SLS is also modeled by a linear elastic
constitutive law, with a tension limit denoted by fss (Figure 1.17). A
symmetrical behavior in tension and in compression is also accepted for
modeling the behavior of the steel reinforcement, which means that the
potential buckling of the steel reinforcement in the presence of a crushing
phenomena in concrete is generally neglected, except in so far as the spacing
of transverse reinforcement. As a result, for the compression steel
reinforcement, stress in the absolute value is also limited by the same value
fss. Young’s modulus of the steel reinforcement is denoted by Es.
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Figure 1.17. Limit law of steel reinforcement at serviceability limit state

1.4.3. Equivalent material coefficient

The equivalence coefficient (between steel and concrete) is by definition
the ratio between the steel modulus and the concrete modulus αe = Es/Ec.
This ratio depends on the short-term or the long-term analysis considered at
the SLS. As the Young’s modulus is decreasing with the effects of time, the
equivalence ratio tends to increase with the effects of time. This ratio is also
sometimes denoted by the equivalence coefficient “n” in the earlier
textbooks on reinforced concrete design. A typical order of magnitude for
this ratio is αe = 15.

1.5. Pivots notion and equivalent stress diagram

1.5.1. Frame and neutral axis

Figure 1.18. Neutral axis in a general section
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Let us consider a beam in which the direct orthonormal frame O, x, y, and
z is defined. The beam is solicitated by an external screw given at the SLS.
The frame is in conformity with section 1.1.3. or 1.1.4. Under the action of
the external forces, a neutral axis can be defined (Figure 1.18). It is admitted
that the direction of the neutral axis is already known. In the opposite case,
some symmetrical considerations have to be added in the reasoning or we
can proceed by iterations. The neutral axis separates the tension and the
compression parts of the section.

Each of the “n” steel bars of the reinforced section will be identified by
the subscript q with q ∈ [1;n]. Let Pq be the vector whose origin is denoted
by O and with an extremity defined at the center of gravity of the qth
reinforcement bar. The oriented angle between the axis z and the neutral axis
is denoted by ω.

Let dq be the distance between the center of gravity of the qth
reinforcement bar and the parallel to the neutral axis assigned to pass
through the most compressed fiber. Among the “n” steel bars of the
reinforced section, the most tensioned reinforcement bar is identified by its
subscript r and its cross-sectional area Asr with r ∈ [1;n]. The effective height
“dr” of the cross-section can now be defined as the distance between the
center of gravity of the most tensioned reinforcement bar, and the parallel to
the neutral axis passing through the most compressed fiber (Figure 1.19).

Figure 1.19. Definition of the notion of effective height dr

1.5.2. Conservation of planeity of a cross-section

The conservation law of planeity of a cross-section during the
deformation process allows us to relate due to some geometrical properties,
the strain of each constituent of the cross-section, the compressed part of the
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concrete and each steel reinforcement bar. The ordinate axis “u” can be
defined from a straight line perpendicular to the neutral axis, and oriented
from the less compressed to the most compressed concrete fibers. The origin
of this axis is located at the basis of this axis, positioned from the projection
of the origin point O on this line. The stress field in this section is a function
of this parameter “u”. The following scalar variable can be introduced from
uq = Pq·( j cos ω + k sin ω ), where the point denotes the scalar product
(dot product) between two vectors (Figure 1.20).

Figure 1.20. Parameterization of the stress field with the variable u

The neutral axis is identified by the value ur + (1 − α )dr for the variable
u, where α is a dimensionless distance characterizing the position of the
neutral axis. α is a dimensionless parameter normalized by the total height of
the cross-section. The most compressed concrete fiber is associated with the
projection value u0 for the variable u; the equality u0 = dq + uq is exact
whatever the considered subscript q ∈ [1;n]. The strain εsq in each
reinforcement bar and the strain εc(u) in concrete are related with each other
by the relationship induced by the planeity conservation of the cross-section:

εs1
d1 - αdr

= εs2
d2 - αdr

= …= εsq
dq - αdr

= …

= εsr
dr - αdr

= … = εsv
dv - αdr

= -εc(u)
-u + ur + (1 - α)dr

[1.4]
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1.5.3. Planeity conservation law in term of stress

From equation [1.4], the “limit” laws associated with each material
(namely elasticity for each material constituents), at the SLS, allow us to
obtain a relationship between the stress in the steel reinforcement bars and
the stress in the compressed concrete part along the cross-section. The
following equalities finally hold between the stress in the q reinforcement
bars σsq and the stress distribution in the compressed part of concrete σc(u):

σs1 / αe

d1 - αdr
= σs2 / αe

d2 - αdr
= …= σsq / αe

dq - αdr
= …= σsr / αe

dr - αdr
= … = σsv / αe

dv - αdr
=

-σc(u)
-u + ur + (1 - α)dr

[1.5]

By setting k the proportionality factor of this last equality (proportional to
the curvature), a series of affine relationships for the stress value in both the
tensile and the compression steel reinforcement bars, as for the compressed
part of concrete is obtained, which can be again written as:

/ ( ) [1; ]sq e q rk d d q tσ α α= − ∀ ∈ [1.6]

The calculated stress in the most compressed fiber of concrete is given
by:

( ) [ (1 ) ]c r ru k u u dσ α= − + + − [1.7]

It is worth mentioning that the characteristic limit values in both the steel
and concrete part of the composite section are defined in a algebraic manner,
with the mechanics of continuous media convention, that is fss is positive and
fcs is negative. At the limit state formally, the following equalities can be
viewed to be valid only in the case σsr = fss or σc(u0) = fcs (see section 1.2.5).
We can also consider that the limit state is always reached in elasticity, at
least at the SLS.

We finally obtain in Pivot A, with σsr = fss:

/ ( ) [1; ] and / / forsq e q r sr e ss ek d d q t f q rσ α α σ α α= − ∀ ∈ = = [1.8a]

( ) [ (1 ) ]c r ru k u u dσ α= − + + − [1.8b]
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In Pivot B, the stress relationships are obtained from σc(u0) = fcs:

/ ( ) [1; ]σ α α= − ∀ ∈sq e q rk d d q t [1.9a]

( ) [ (1 ) ]c r ru k u u dσ α= − + + − [1.9b]

1.5.4. Introduction to pivot concepts

Figure 1.21. Definition of Pivot A; αe= Es/Ec

Designing by h the distance between the two extremal parallels to the
neutral axis (h is typically the height of the cross-section), the series of
equalities, equation [1.8], can be presented as:

/ ( ) [1; ]

and / / for
sq e q r

sr e ss e

k d d q v
f q r

σ α α
σ α α

= − ∀ ∈

= = [1.10a]

0 0

( ) [ (1 ) ]
and 0 ( ) [ ; ]
c r r

c cs

u k u u d
u f u u h u

σ α
σ

= − + + −
> > ∀ ∈ − [1.10b]

This system of equations can be interpreted as the analytical expression
of a plane whose trace in the space {u,x} is the straight line appearing in
Figure 1.21. This line crosses the fixed point corresponding to the most
tensioned steel reinforcement with an equivalent tensile stress equal to fss/αe.
This point is called Pivot A (Figure 1.21).
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The series of equalities, equation [1.9], can be written as:

/ ( ) [1; ]

and / / for
sq e q r

sr e ss e

k d d q v

f q r

σ α α
σ α α

= − ∀ ∈

< = [1.11a]

0( ) [ (1 ) ] and 0 ( )c r r c csu k u u d u fσ α σ= − + + − > = [1.11b]

Again, this system of equations can interpreted as the analytical
expression of a plane whose trace in the space {u,x} is the straight line
appearing in Figure 1.22. This line crosses the fixed point, corresponding to
the most compressed fiber with an equivalent compression stress equal to fcs.
This point is called Pivot B.

Figure 1.22. Definition of Pivot B; αe= Es/Ec

These fixed points play the role of a turning point or pivot point, around
which the equivalent stress lines turn, and define the profile of equivalent
stress along the cross-section, which is the stress for the concrete part in
compression, and the equivalent or homogenized stress for the steel
reinforcement bars, typically the stress divided by the equivalent
coefficient αe.

1.5.5. Pivot rules

The planeity conservation assumption at SLS, which is in fact a
fundamental kinematics assumption, leads to an equivalent linear stress
diagram that contains one of the two Pivot points:
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– the point “Pivot A” that corresponds to an equivalent stress fss/αe of the
most tensioned steel reinforcement bars;

– the point “Pivot B” that corresponds to a compression stress fcs in the
most compressed fiber in concrete.

Figure 1.23. Working zone of the composite cross-section in Pivot A and Pivot B

This straight line exactly corresponds to the compression stress field in the
compressed part of concrete, whereas the stress in the steel reinforcement bars,
in tension or in compression, are deduced from the equivalent stress line by
introducing the equivalence coefficient 1/αe. At the cross-sectional SLS, the
diagram of equivalent stresses should cross one of the two pivot points (Pivot
A and Pivot B) and should also respect the limit stress requirement for the
extremal point at the other pivot point (see Figure 1.23). The limit
case between the two pivots is referred as Pivot AB, and is characterized by
the limit value for the relative position of the neutral axis αAB defined from the
upper fiber of the cross-section as αAB = αefcs/(αefcs− fss).

1.6. Dimensionless coefficients

1.6.1. Goal

To characterize the static equilibrium equations of the cross-section, it
is necessary to integrate both the stress field and the moment in the
compressed part of concrete, defined at a given point of the cross-section.
This calculation will lead to the determination of the internal forces screw
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applied to concrete. The total internal screw will then be deduced from the
concrete screw, by adding the tensile and the compression steel
reinforcement screw evaluated at the same point. The calculation of internal
and external screws, both with equilibrium equations will be written, as
much as possible, in a dimensionless format, to avoid dimension confusion
and try to give the more general presentation. Dimensionless numbers are
also important to classify the sectional behavior, in its more general
formulation.

1.6.2. Total height of the cross-section

As indicated in Part 1.5.4, the total height of the cross-section is denoted
by h (h is the distance between two parallels to the neutral axis passing
through the extremity of the cross-section). For a rectangular or a T-beam, h
has its usual definition and is the height of the cross-section.

1.6.3. Relative position of the neutral axis

In section 1.5.2, the position of the neutral axis was identified from the
following equation u = ur + (1 − α) dr, where α is the relative height of the
neutral axis. Even if the understanding of this relative position is quite
intuitive as explained in Figure 1.24, a rigorous mathematical definition can
be given based on geometrical arguments. The height parameter dr can be
defined from the distance between two lines parallel to the neutral axis, one
passing through the most compressed fiber and the other crossing the most
tensioned steel reinforcement. The distance between the most compressed
fiber and the neutral axis is denoted by αdr (Figure 1.24).

Figure 1.24. Definition of the relative height of the neutral axis
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1.6.4. Shape filling coefficient

Figure 1.25. Definition of the shape filling coefficient ψ

The screw of internal forces applied to concrete is calculated for the
normal force Nc, by integration of the compression stress over the domain of
the compressed concrete denoted by Dc:

. . . . . .dy dz dy dzc cD Dc cσ σ= =∫∫ ∫∫N i ic  [1.12]

The resultant can be written in the following form: Nc = Nc i. It is worth
mentioning that the stress function σc(u) is a continuous function within the
compression domain Dc. By virtue of the mean value theorem, it can be
rigorously deduced that there exists a characteristic variable u* belonging to
the domain of variation of u, such as:

( *) .c DcN u dy dzσ ∫∫=  [1.13]

The integral in such a definition represents the area of the compression
domain Dc, which can be denoted by Ac. The shape filling coefficient ψ can
now be defined from this mean value:

ψ =
Nc
fcs Ac =

σ(u*)
fcs [1.14]

The meaning of the shape filling coefficient can be more easily
understood from considerations of the volumes highlighted in Figure 1.25,
and the intrinsic relationship between the actual stress volume and the
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equivalent uniform stress volume. The shape filling coefficient is the ratio
between the volume of a cylinder with a basis equal to Dc and a height equal
to σ(u*) and the volume of another cylinder of the same basis but with
height equal to fcs. It can be remarked that the volume of a cylinder with a
basis equal to Dc and with height σ(u*) is equal to Nc. The stress σ(u*) is
called the mean stress.

1.6.5. Dimensionless formulation for the position of the center of pressure

Figure 1.26. Notion of center of pressure

The internal force of the internal screw including the normal force in
concrete Nc has been evaluated previously; the internal moment needs now
to be calculated for complete equilibrium determination of the cross-section.
By designing Dc, the concrete part in compression, the screw of resultant
moment Mc calculated, for instance, at the origin of the frame will be given
by:

( ) ( . ). .

. . . . . . . .

σ

σ σ

= + ∧

= −

∫ ∫
∫ ∫ ∫ ∫

c

c c

Dc

D Dc c

y z dy dz

z dy dz y dy dz

cM j k i

j k [1.15]

Such an expression of the resultant moment, evaluated at the origin of the
frame, depends on the stress function σc(y,z) that possesses a constant sign,
in the concrete domain in compression Dc. This stress function has lower and
upper bounds, thus also including the vector norm of yj + zk that
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parameterizes the point of the studied compression domain. The conditions
of application of the second theorem of the generalized mean value are
satisfied, and then we can conclude the existence of a vector G = ξ2yj + ξ2zk
whose extremity is inside the compression domain Dc (Figure 1.26), and
such that:

( ) ( . ). .

. . . .

σ

σ

= + ∧

= = ∧

∫ ∫
∫ ∫

c

c

Dc

Dc

y z dy dz

dy dz

c

c

M j k i

G i G N [1.16]

The origin of the frame for calculation of this screw can be chosen to
coincide with the center of gravity of the most tensioned steel reinforcement
bar (Asr). By dividing the different length (associated with the level arm of
the equivalent torque calculation) ξ2y and ξ2z by dr, the dimensionless
parameters δgy and δgz appear as:

2 2(1 ) and (1 )y gy r z gz rd dξ αδ ξ αδ= − = − [1.17]

These size parameters are called the dimensionless coefficient of the
center of pressure. Using some symmetry or mechanical considerations, it is
possible to calculate these dimensionless parameters by engineering rules.
However, in the more general case, for unsymmetrical cross-section, a
mathematical integral calculation is often needed.

1.7. Equilibrium and resolution methodology

1.7.1. Equilibrium equations

The screw of internal forces can be decomposed into two internal
screws, one related to the reinforcement steel bars and the other to the
concrete domain in compression. When considering only the internal screw
related to the reinforcement steel bars, both in tension and in compression,
the normal force resultant Ns and the internal torque resultant Ms are
calculated as:



Design at Serviceability Limit State (SLS) 25

Ns = ∑
q=1

n
Asqσsq i (or Ns = ∑

q=1

n
Asqσsq)

andMs = ∑
q=1

n
AsqσsqPq∧i [1.18]

The cross-sectional mechanics equilibrium in bending, at SLS, can then
be written in the following form (Figure 1.27):

and . .act s c act s c csN N A fψ= + ∧ = +M M G N [1.19]

The moment equilibrium equation can be also rewritten as:

Mact =Ms + ψ(1–αδgz)drAcfcsj–ψ(1–αδgy)drAcfcsk

withMs= ∑
q=1

n
AsqσsqPq∧i and Ns = ∑

q=1

n
Asqσsq [1.20]

The normal force equilibrium equation is simply reduced to the following
scalar equation:

. .act s c csN N A fψ= + [1.21]

Figure 1.27. Equilibrium of a general composite section; calculation of the
screw of internal action
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1.7.2. Discussion on the resolution of equations with respect to the number
of unknowns

It has been shown, from the application of the conservation principle of
planeity coupled with the notions of limit laws and pivot concepts, that the
stress distribution inside the cross-section can be considered as a discretized
function of the following characteristic parameters α, dq(∀ q ∈ [1;n] ), fss or
fcs. The equilibrium equations give a system composed of two vectorial
equations (three scalar equations) in the general case: Mact = Ms + G ∧ Nc
and Nact = Ns + Nc. The mathematical problem, in conformity with the
specifications at the SLS, is a well-posed problem only if the number of
unknowns is also equal to three in the general case. These unknown
variables are of different types and are typically of geometrical nature: steel
reinforcement area, position of the neutral axis, etc.

– General case: three linearly independent scalar equations;

(two moment scalar equations and one normal force
resultant equation).

– Symmetrical case: two linearly independent scalar equations;

(one moment scalar equation and one normal force
resultant equation).

For symmetrical sections, with symmetrical steel reinforcement, and with
symmetrical loading (in this case ω is known), the three-parameter problem
is reduced to a two-parameter problem associated with two equations: one
scalar moment equation and one resultant equation. Different engineering
problems can be envisaged, for reinforced concrete design, which can be
illustrated through the following examples:

– Design of a unique unknown steel reinforcement area (in tension or in
compression) whose center of gravity is known.

One of the steel reinforcement area Asi being unknown (in tension or in
compression), two additional parameters have to be chosen, in the
unsymmetrical case, such as the relative height of the neutral axis α and
the neutral axis direction (angle ω). We have then to solve a problem of
three equations with three unknowns Asi, ω and α. For a symmetrical
section, the two unknown parameters can be the steel reinforcement area and
the relative position of the neutral axis α.
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– Design of a unique unknown steel reinforcement area (in tension or in
compression) with a given neutral axis (related to the variable ω or to the
variable α).

One of the steel reinforcement area Asi being unknown (in tension or in
compression), two additional parameters have to be chosen, in the
unsymmetrical case, such as the two spatial coordinates of the considered
steel reinforcement. For a symmetrical section, the two unknown parameters
can be the steel reinforcement area and the ordinate of the center of gravity
of the steel reinforcement. A current case is the case of a symmetrical
section, where the neutral axis is fixed at the boundary of Pivot A and Pivot
B, to avoid the design of the cross-section at Pivot B (in order to limit the
steel reinforcement quantity). In such a case, the two unknown parameters
can be the areas of the tension and compression steel reinforcement, for a
given fixed location of these steel reinforcements.

1.7.3 Reduced moments

From the equilibrium moment equation, we have Mact = Ms + [ξ2z.j- dr
(1-α.δgy).k].ψ.Ac.fcs, which, by dividing each member by the moment
quantity -dr.Ac.fcs/f(α) where f(α) is a function of the dimensionless
parameter α, can be formulated as:

-f(α).Mact
d.Ac.fcs = -f(α).Ms

d.Ac.fcs -
f(α).ψ.ξ2z.j

d + f(α).ψ.(1–α.δg).k. [1.22]

From this dimensionless equilibrium equation, the dimensionless reduced
moment can be introduced:

µact,ser =
-f(α).Mact
d.Ac.fcs and µres,ser = f(α).ψ.(1–α.δgy) [1.23]

with µact,ser is the acting reduced moment and µres,ser is the reduced concrete
contribution moment.

The function f(α) can be chosen such as the reduced acting moment
which does not contain explicitly the variable α; it is quite efficient to take
f(α) = dr.Ac/(dr2.b) where b is a characteristic length of the cross-section. For
instance, for a rectangular section solicited in its symmetry plane, the natural
choice f(α) = α leads to the following acting reduced moment:
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µact =
-Mact
b.dr2.fcs [1.24]

and the reduced concrete contribution moment is written as:

. .(1 . )res gyμ α ψ α δ= − [1.25]

Another example can illustrate the role played by the function f(α) to
highlight the role of the dimensionless parameters. Let us take the example
of a T-section, solicited in its plan of symmetry. It is possible to choose the
function f(α) is such a way:

f(α) = (
b
bw–1).

h0
dr + α [1.26]

leading to:

µact=
-Mact

bw.dr2.fcs [1.27]

The reduced bending moment is then formulated as:

µres = [(
b
bw - 1).

h0
dr+ α].ψ.(1 –α.δgy) [1.28]

Another choice for the function f(α) in the case of the T-section would be
based on:

f(α) = (1 - bwb ).
h0
dr+ α [1.29]

With this alternative of the function f(α), the reduced bending moment is
normalized with respect to the width of the concrete slab:

µact =
-Mact
b.dr2.fcs [1.30]

The reduced bending moment is then formulated as:

µres = [(1 -
bw
b ).

h0
dr + αbwb ].ψ.(1 –α.δgy) [1.31]
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In the symmetrical loading case with symmetrical cross-section, we
finally obtain, for the reduced moment equation:

-f(α).Mact
dr.Ac.fcs =

-f(α).Ms
dr.Ac.fcs + f(α).ψ.(1–αδgy.) [1.32]

In this relationship, it is convenient to define the physical meaning of
each term:

-f(α).Mact
d.Ac.fcs = µact,ser reduced acting moment

-f(α).Ms
d.Ac.fcs = µres,ser,s reduced steel reinforcement moment

f(α).ψ.(1–α.δg) = µ res,ser,c reduced concrete contribution moment

The total moment equilibrium equation is simply obtained by the sum of
each contribution of the steel and the concrete part of the reinforced concrete
section:

, , , , ,act ser res ser s res ser cμ μ μ= + [1.33]

1.7.4. Case of a rectangular section

Figure 1.28. Characteristics of a rectangular reinforced concrete section
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Using the notations of Figure 1.28, the two equilibrium equations both
for the normal force and the bending moment (only two equations for
symmetrical reasons) are written as:

1 1 2 2act s s s s csN A A bdfσ σ αψ= + + [1.34]

2
2 2 ( ') (1 )act s s g csM A d d bd fσ αψ αδ= − − − − [1.35]

1.8. Case of pivot A for a rectangular section

1.8.1. Studied section

The case of a rectangular cross-section reinforced by both tensile (area
As1) and compressive (area As2) steel reinforcements symmetrically disposed
along the median axis y is now considered. The origin of the frame is located
at the center of gravity of the tensile steel reinforcement. The geometrical
characteristics of the cross-section are denoted by b, h, d and d′ and are
illustrated in Figure 1.28. The concrete and steel material stress limits are
given at the SLS by fss for the steel reinforcement, and fcs for the concrete,
the equivalence coefficient being classically denoted by αe. The acting
solicitation is evaluated at the point O and is characterized by two
components, the acting bending moment Mact = Mactk and the normal force
resultant Nact = Nact.i. The unknown of the problem are, respectively, the
tensile reinforcement area As1 and the relative height of the neutral axis α.

1.8.2. Shape filling coefficient

Figure 1.29. Stress diagram in the homogenized section of the reinforced concrete
section for Pivot A
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The variable α varies in the interval [0;αefcs/(αefcs− fss)], which depends
on both the elastic and the stress limit values at the SLS. Stresses inside the
composite cross-section are related by the equalities:

- σs2
αd - d’ =

fss
d - αd =

- αe.σcsup
αd [1.36]

The stress diagram in the homogenized section is shown in Figure 1.29.
By definition, the normal force in the compressed part of concrete is
calculated as Nc = α ψ.b.d fcs., which is also equivalent after calculation to
Nc = 0,5.σc,sup.α.b.d. The shape filling coefficient ψ is then simply expressed
by:

ψ =
- α

2αe(1 - α) .
fss
fcs [1.37]

1.8.3. Dimensionless coefficient related to the center of pressure

At the SLS, the pressure center of the compressed part of concrete is at a
distance αd/3 of the most compressed fiber (the upper fiber of concrete),
leading to the dimensionless coefficient δg = 1/3 (Figure 1.30).

Figure 1.30. Position of the center of pressure at the serviceability
limit state; Pivot A
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1.8.4. Equations formulation

A third-order polynomial equation of the unknown neutral axis position
has to be solved at the SLS. This polynomial equation is obtained from
writing the equilibrium equations in bending moment and normal forces,
coupled with the kinematics assumptions of the cross-section and the elastic
behavior of the steel and concrete constituents of the composite cross-
section:

1 1 2 2act s s s s csN A A bdfσ σ αψ= + + [1.38]

2
2 2 ( ') (1 )act s s g csM A d d bd fσ αψ αδ= − − − − [1.39]

The stress in the compression steel reinforcement σs2 also depends on the
unknown α.

σs2 =
-fss.(αd - d‘)
d - αd [1.40]

Ιt means that only the second bending moment, equation [1.39], contains
one single unknown α out of the two unknowns of the design problem,
respectively, the tensile reinforcement area As1 and the relative height of the
neutral axis α. As the filling shape coefficient ψ is given by:

ψ =
- α

2αe(1 - α) .
fss
fcs [1.41]

and by setting the section equilibrium M = Mser, equation of the equilibrium
bending moment finally leads to:

M =
As2(d-d‘)(αd-d’)fss

d(1 - α) +
α2(3 - α)
6αe(1 - α) bd

2fss [1.42]

We recognize a third-order polynomial equation:

α3 – 3α2 + 6αe⎝
⎛

⎠
⎞- M

bd2fcs
fcs
fss -

(d-d’)As2
bd2 α +

6αe⎝
⎛

⎠
⎞M

bd2fcs
fcs
fss +

d’(d-d’)As2
bd3 = 0 [1.43]
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Some other dimensionless coefficients can be introduced as:

δ’ = d’d , ρ’cs =
As2
bd and μact =

-M
bd2fcs [1.44]

We note that all these dimensionless coefficients δ ’, ρ’cs and μact are
positive numbers. The third-order polynomial equation can finally be written
as:

3 23 6 [( / ) (1 ’) ’ ]
6 [ ( / ) ’(1 ’) ’ ] 0

e cs ss act cs

e cs ss act cs

f f
f f

αα α α μ δ ρ
α μ δ δ ρ

− + − − +
− + − = [1.45]

Algebraically, this third-order equation can easily be solved using
Cardano’s method (see Appendix 1).

1.8.5. Resolution

Following Cardano’s method, such a third-order polynomial equation can
be presented in a canonical format using canonical parameters:

2

3 6 [( / ) (1 ’) ’ ] and

2 6 (1 ’) ’

α μ δ ρδ
α δ ρ

= − − − + −

= − − −
e cs ss act cs

e cs

p f f

q [1.46]

Both canonical parameters p and q are negative numbers. The solution α
can be extracted from Cardano’s formula as one of the three real equations,
whose solution of interest, for physical reasons, is:

α =1+2
- p
3 cos ⎣⎢

⎢⎡

⎦⎥
⎥⎤Arc cos (-q2 ⎪

⎪
⎪
⎪p
3

-1.5

) - 2π

3 [1.47]

which can be equivalently written as:

3 3cos 2
2

1 2 cos
3 3

qArc
p pp

π
α

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟⎜ ⎟−− ⎢ ⎥⎝ ⎠= + ⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

[1.48]
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If there is no compression steel reinforcement (As2 = 0), the neutral axis
equation to be solved is still a third-order polynomial equation that is now
simplified in:

α3– 3α2 – 6αe μact (
-fcs
fss ) α +6αe μact(

-fcs
fss ) = 0 [1.49]

The canonical parameters in this particular case (As2 = 0) are also
simplified:

3 6 ( / ) and 2e cs ss actp f f qα μ= − − − = − [1.50]

In the absence of compression steel reinforcement (As2 = 0), the solution
for the position of neutral axis α in Pivot A is then calculated as:

1 2 1 2

1.5
cos 1 2 2

cos
3

α α μ

α μ π

= + + −

−
+ − −

⎛ ⎞
×⎜ ⎟

⎝ ⎠

⎡ ⎤⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

fcs
e actfss

fcsArc e actfss
[1.51]

Once the neutral axis position α is calculated, the axial force equilibrium
equation gives the tensile steel area:

As1 =
Nact
fss +

α − δ’
1 - α As2 +

α2bd
2αe(1 - α) [1.52]

In the absence of compression steel reinforcement (As2 = 0), the tensile
steel area in Pivot A is given by:

As1 =
Nact
fss +

α2bd
2αe(1 - α) [1.53]

The stress SLS has been then solved in Pivot A.
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1.9. Case of pivot B for a rectangular section

1.9.1. Studied section

The case of a rectangular cross-section reinforced by both tensile (area
As1) and compressive (area As2) steel reinforcements symmetrically disposed
along the median axis y is considered, but now the section is ruled by Pivot
B. The geometrical characteristics of the cross-section are also denoted by b,
h, d and d′, and are illustrated in Figure 1.28. The concrete and steel material
stress limits are given at the SLS by fss for the steel reinforcement, and fcs for
the concrete, the equivalence coefficient being classically denoted by αe. The
acting solicitation is evaluated at the point O, and is characterized by two
components, the acting bending moment Mact = Mactk and the normal force
resultant Nact = Nact.i. The unknown of the problem are, respectively, the
tensile reinforcement area As1 and the relative height of the neutral axis α.

1.9.2. Shape filling coefficient

In a case of simple bending solicitation (without combined axial forces),
the variable α varies in the interval [αefcs/(αefcs− fss); h/d], which depends on
both the elastic and the stress limit values at the SLS. In case of bending
with combined axial forces, the neutral axis can be located outside the cross-
section. However, in the simple bending case, the neutral axis is inside the
cross-section, which gives the upper bound variation of the dimensionless
coefficient α. Βy definition, the normal force in the compression part Nc is
calculated from:

. . . .c csN f b dψ α= [1.54]

As the stress diagram is linear at the SLS, it can be easily deduced that
the filling shape coefficient ψ in Pivot B is equal to ψ =1/2, as Nc = 0,5.α.
fcs.b.d.

1.9.3. Dimensionless coefficient related to the center of pressure

At the SLS, the pressure center of the compressed part of concrete is at a
distance αd/3 of the most compressed fiber (the upper fiber of concrete),
leading to the dimensionless coefficient of δg = 1/3 (Figure 1.31).
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Figure 1.31. Position of the center of pressure at the serviceability
limit state; Pivot B

1.9.4. Equations formulation

In the more general case, at Pivot B, a third-order polynomial equation of
the unknown neutral axis position α has also to be solved at the SLS. This
polynomial equation is obtained from writing the equilibrium equations in
moment and normal forces, coupled with the kinematics assumptions of the
cross-section and the elastic behavior of the steel and concrete constituents
of the composite cross-section:

1 1 2 2act s s s s csN A A bdfσ σ αψ= + + [1.55]

2
2 2 ( ’) (1 )act s s g csM A d d bd fσ αψ αδ= − − − − [1.56]

The stress in the compression steel reinforcement σs2 also depends on the
unknown α.

σs2 =
αefcs(αd - d’)

αd [1.57]

It is worth mentioning that the stress expression in the compression steel
reinforcement is different in Pivot A and Pivot B. Inserting the value of the
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shape filling coefficient ψ at Pivot B, ψ = ½, and the equilibrium moment
equation is finally given by:

M = –As2
(d-d’)(αd-d’)

αd αefcs -
α(3 - α)

6 bd2fcs [1.58]

This equation is equivalent to the third-order polynomial equation, which
allows us to calculate algebraically the position of the neutral axis at Pivot B:

α3– 3α2 + 6 ⎝
⎛

⎠
⎞-M

bd2fcs -
(d-d’) αeAs2

bd2 α +
6αed’(d-d’)As2

bd3 = 0 [1.59]

The dimensionless coefficients can be introduced as:

δ’ = d’d , ρcs =
αeAs2
bd and μact =

-M
bd2fcs [1.60]

We note that all these dimensionless coefficients δ′, ρ′cs and μact are also
positive numbers. The third-order polynomial equation can finally be written
as:

3 23 6 [ (1 ') ] 6 '(1 ') 0act cs csα α μ δ ρ α δ δ ρ+ + − − + − = [1.61]

In this case, again, this third-order equation can be easily algebraically
solved using Cardano’s method (see Appendix 1). It can be outlined that the
third-order equation in Pivot B is different from the third-order equation in
Pivot A, and the two resolutions are indeed two different mathematical
problems.

1.9.5. Resolution

Following Cardano’s method, such a third-order polynomial equation can
be presented in canonical format using the canonical parameters:

26[ (1 ')] 3 and 6[ (1 ') ] 2act cs act csp qμ ρ δ μ ρ δ= − − − = − − − [1.62]
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Both canonical parameters p and q are generally negative numbers. The
solution α can be extracted from Cardano’s formula as:

3 3cos 2
2

1 2 cos
3 3

qArc
p pp

π
α

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟−− ⎢ ⎥⎝ ⎠= + ⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

[1.63]

If there is no compression steel reinforcement (As2 =0), the neutral axis
equation to be solved is now a second-order polynomial equation which can
be written as:

2 3 6 0actα α μ− + = [1.64]

whose solution is well known in reinforced concrete designs:

α = 1,5(1 – 1 - 83 μact ). [1.65]

Once the neutral axis position α has been calculated, the axial force
equilibrium equation gives the tensile steel area:

As1 =
-αNact

αefcs(1-α)
+

α -δ’
1 - αAs2 +

α2 bd
2αe(1-α)

[1.66]

In the absence of compression steel reinforcement (As2 =0), the tensile
steel area in Pivot B is given by:

As1 =
-αNact

αefcs(1-α)
+

α2 bd
2αe(1-α)

[1.67]

The stress SLS has been then solved in Pivot B.

1.9.6. Synthesis

In Pivot A, the calculation of the position of the neutral axis at the stress
SLS needs the resolution of a third-order polynomial equation, whatever
compression steel reinforcements are incorporated in the cross-section
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(As2 = 0 or As2≠ 0). In Pivot B, the calculation of the position of the neutral
axis at the stress SLS needs the resolution of a polynomial third-order
polynomial equation, when compression steel reinforcement are
incorporated in the cross-section (As2≠ 0). However, only in Pivot B, the
third-order equation degenerates to a second-order polynomial equation in
absence of compression steel reinforcement (As2 = 0).

1.10. Examples – bending of reinforced concrete beams with rectangular
cross-section

1.10.1. A design problem at SLS – exercise

1.10.1.1. Structural problem

Figure 1.32. Simply supported reinforced concrete beam

As a first application of the presented theory, we would like to design the
reinforcement of a given beam with a given rectangular cross-section (see
Figures 1.32 and 1.33). This is a simply supported beam of length L = 6 m.

Figure 1.33. Characteristics of the rectangular cross-section
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The geometrical characteristics are given in Figure 1.33 and detailed
below:

300 mm; 700 mm; 640 mm; ' 50 mmb h d d= = = = [1.68]

For engineering design, the order of magnitude for both the position of
the center of gravity of the tensile steel reinforcement and the compression
steel reinforcement is usually taken as:

~0.9 ; '~0.1d h d h [1.69]

which is almost satisfied in our present case.

1.10.1.2.Material parameters

The reinforced concrete section is composed of B500B steel bars and a
C25/30 type of concrete. In the nomenclature of steel classification B500B,
the first B stands for steel for reinforced concrete. The next three digits
represent the specified characteristic value of upper yield strength fyk = 500
MPa. The last symbol B stands for ductility class. In the nomenclature of
concrete classification C25/30, the first C stands for concrete. The next digits
are related to characteristic strengths. The first characteristic compression
strength is the cylinder characteristic strength fck = 25MPa, whereas the
second characteristic compression strength is the cubic characteristic
strength. Hence, we calculate the limit stresses at the SLS as:

0.8 0.8 500 400MPa and

0.6 0.6 25 15MPa

= = × =

= − = − × = −
ss yk

cs ck

f f

f f
[1.70]

The equivalence coefficient is given for this problem as:αe= 15. The steel
Young’s modulus is equal to Es = 200,000 MPa.

There could be some discussions on the calculation of the concrete
Young modulus Ec. From EC2 (Eurocode 2) [EUR 04], we have (in MPa):

( )
0.3

0
with 22,000 and 8

1 , 10
cm cm

c cm cm ck
E fE E f f

tϕ
⎛ ⎞= = = +⎜ ⎟+ ∞ ⎝ ⎠

[1.71]
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whereϕ is the creep coefficient (time-dependent effects) and the subscript m
represents the mean value of the considered variable. The order of
magnitude of ϕ typically varies between 1 and 2. The formula in this
equation is not homogeneous from a dimensional point of view, except for
the numbers 22,000, 10 and 8 can be viewed as specific stress values given
in megapascals (MPa). We calculate for the mean value of the concrete
Young modulus:

0.33322,000 31475.81MPa
10cmE
⎛ ⎞= =⎜ ⎟
⎝ ⎠

[1.72]

For a specific concrete, the calculation of the equivalent coefficient αe
depends on the creep coefficient ϕ . For a given value of the equivalent
coefficient αe, the creep coefficient can be calculated as:

( )0
15 31,475.81, 1 1 1.361

200,000
e cm

s

Et
E

αφ ×∞ = − = − = [1.73]

It means, in this example, that the value of αe = 15 corresponds to a creep
coefficient ϕ of approximately 1.361. The determination of the equivalence
coefficient is still debated, actually (see also [THO 09] or [PAI 09], for
instance), and the typical value of αe = 15, which was the usual value
employed in the old French rules BAEL 91, which is still relevant to use
with the new EC2 rules.

More generally, the creep coefficient depends on the type of concrete and
on the type of analysis, namely the short-term or the long-term analyses.

1.10.1.3. Loading parameters

The simply supported reinforced concrete beam is loaded by some
uniform distributed loads:

– permanent loads (without the own weight): g1= 24.75 kN/m;

– variable loads: q = 20 kN/m.
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The volumetric density of the reinforced concrete beam can be taken as
325kN/mω = . The permanent loads are then calculated as the sum of g1

and the own weight g2:

1 2 1 24.75 25 0.3 0.7 30kN/mg g g g bhω= + = + = + × × = [1.74]

The combination of action at the SLS is usually one for the permanent
load and one for the variable load, leading to the serviceability distributed
load:

30 20 50kN/mserp g q= + = + = [1.75]

The critical section of this problem is the one where the bending moment
is maximum, that is at mid-span, leading to the bending solicitation for
designing at the SLS:

2 2650 225kN.m
8 8

= = × =ser ser
LM p [1.76]

1.10.1.4. Steel reinforcement at SLS

The exercice consists of designing the steel reinforcement of the
reinforced concrete beam at the Stress SLS for this solicitation Mser= 225
kN.m, and for a higher solicitation:

– Mser= 225 kN.m;

– Mser= 405 kN.m.

We first start from the first solicitationMser= 225 kN.m.

1.10.2. Resolution in Pivot A – Mser= 225 kN.m

As presented in section 1.5.5, the limit value of the neutral axis position
at the boundary of the two pivots, Pivot A and Pivot B, is given from:

15 9 0.36400 2515
15

e
AB

ss
e

cs

f
f

αα
α

= = = =
+−

[1.77]
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The bending moment solicitation at the boundary of Pivot A and Pivot B
can be calculated from:

2
,

2

1
3 2 3
0.36 0.360.3 0.64 15 1 0.29196 MN.m
2 3

α α α⎛ ⎞ ⎛ ⎞= − × − = − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞= × × × × − =⎜ ⎟
⎝ ⎠

AB AB AB
AB c AB cs

dM N d bd f

[1.78]

It is also possible to introduce the dimensionless reduced moment at the
boundary between Pivot A and Pivot B as:

2 1
2 3

0.36 0.361 0.1584
2 3

AB AB AB
AB

cs

M
bd f

α αμ ⎛ ⎞= = −⎜ ⎟− ⎝ ⎠

⎛ ⎞= × − =⎜ ⎟
⎝ ⎠

[1.79]

It can be easily checked, for this solicitation, that Pivot A rules the
behavior of the cross-section at SLS as:

2

0.225 MN.m 0.29196 MN.m or

0.122 0.1584μ μ

= ≤ =

= = ≤ =
−

ser AB

ser
ser AB

cs

M M
M
bd f

[1.80]

Then, the dimensionless position of the neutral axis given by parameter α
should be the solution of the following third-order polynomial equation:

α3– 3α2 – 6αeμact(
-fcs
fss ) α +6αeμact(

-fcs
fss ) = 0, or

3 23 0.41175 0.41175 0α α α− − + = [1.81]

The canonical parameters needed for the resolution of this third-order
polynomial equation by Cardano’s method are then calculated:

3 6 ( / ) 3.41175 and 2e cs ss actp f f qα μ= − − − = − = − [1.82]
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The solution for the position of neutral axis α in Pivot A, for this cross-
section, is calculated as:

3 3cos 2
2

1 2 cos or
3 3

3.41175 0.601393 21 2 cos 0.322737
3 3

π
α

πα

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟⎜ ⎟−− ⎢ ⎥⎝ ⎠= + ⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

−⎡ ⎤= + =⎢ ⎥⎣ ⎦

qArc
p pp

[1.83]

Finally, the tensile steel reinforcement area is obtained from equilibrium
of the normal force component as:

( ) ( )
2 2

4 2
1

0.3 0.64 9.84289 10 m
2 1 2 15 1s

e

bdA α α
α α α

−× ×= = = ×
− × × −

[1.84]

The tensile steel reinforcement area of 9.843 cm2 is needed to verify the
stress SLS of this cross-section for the bending solicitation Mser = 225 kN.m.
Using the abacus of Appendix 2, we can choose 5φ16 (10.053 cm2), which
has to be an upper bound of the minimum tensile steel area of 9.843 cm2. An
example of steel reinforcement location is presented in Figure 1.34.

Figure 1.34. 5φ16 tensile steel reinforcement for Mser= 225 kN.m
at serviceability limit state



Design at Serviceability Limit State (SLS) 45

1.10.3. Resolution in Pivot B – Mser= 405 kN.m

By comparing the reduced moment serμ with the reduced frontier
moment between Pivot A and Pivot B, 0.1584ABμ = , we see that for this
solicitation Mser= 405 kN.m, the section will behave in Pivot B:

2 0.2197 0.1584ser
ser AB

cs

M
bd f

μ μ= = ≥ =
−

[1.85]

In Pivot B, and without additional compression steel reinforcement, the
position of the neutral axis is obtained from resolution of a second-order
polynomial equation whose root of interest is:

3 8 3 81 1 1 1 0.2197 0.53478
2 3 2 3serα μ
⎡ ⎤ ⎡ ⎤

= − − = − − × =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

[1.86]

Finally, the tensile steel reinforcement area is obtained from equilibrium
of the normal force component as:

( ) ( )
2 2

4 2
1

0.3 0.64 39.34 10 m
2 1 2 15 1s

e

bdA α α
α α α

−× ×= = = ×
− × × −

[1.87]

The tensile steel reinforcement area of 39.34 cm2 is needed to verify the
stress SLS of this cross-section for the bending solicitation Mser = 405 kN.m.
Using the abacus of Appendix 2, we can choose 5φ32 (40.212 cm2),
which has to be an upper bound of the minimum tensile steel area of
39.34 cm2.

It can be seen that for a solicitation Mser = 405 kN.m less than twice the
other solicitation Mser = 225 kN.m, the steel reinforcement quantity has been
multiplied by approximately four (from approximately 10 cm2 to 40 cm2).
Even if physically possible, it is generally not interesting to design a section
at Pivot B for economical reasons. This can be explained by Figure 1.35,
where the variation of the steel reinforcement quantity measured by ρs1 is
compared in Pivot A and Pivot B without compression steel reinforcement
(As2= 0).
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Figure 1.35. Evolution of the dimensionless steel quantity 1sρ with respect to
the solicitation expressed with the reduced moment serμ

In Pivot A, we have the following relationships for the calculation of the
dimensionless steel reinforcement area 1:sρ

( ) ( )

2 2 3
1

1
3and

2 1
6 1

e s
s ser

cs
e

ss

A
bd f

f

α α α αρ μ
α

α α

−= = =
− ⎛ ⎞

− −⎜ ⎟
⎝ ⎠

[1.88]

In Pivot B, we have the following relationships for the calculation of the
dimensionless steel reinforcement area:

( )
2 2

1
1

3and
2 1 6

e s
s ser

A
bd

α α α αρ μ
α

−= = =
−

[1.89]

Figure 1.35 shows the change of the slope of the steel area variation with
respect to the solicitation represented by the reduced bending moment.

To avoid a design in Pivot B with too much steel reinforcement, it is
suggested to add some compression steel reinforcement and to design the
section at the boundary between the two pivots: Pivot AB.
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1.10.4. Resolution in pivot AB

Figure 1.36. Decomposition of the cross-section into two parts; Design at Pivot AB

We choose to add some additional compression steel reinforcement with
a section area As2, located at a distance d′ from the upper fiber of the cross-
section (d’≈0.1 h; in the present case, we choose d’ = 5 cm). In order to keep
the design problem as a well-posed mathematical problem, we have to fix an
additional parameter by adding the unknown of the compression steel
reinforcement area. Following the previous analysis, it has been shown that
we have interest to fix the position of the neutral axis in order to behave in
Pivot A. It is chosen to fix the position of the neutral axis such as:

1

,sup

s ss
AB

c cs

f
f

σ
α α

σ
=⎧⎪= ⇒ ⎨ =⎪⎩ [1.90]

The section is decomposed into parts as shown in Figure 1.36, one
section with the compressed part of the concrete and only the tensile
reinforcement, whereas the other section is composed of some tensile and
compression steel reinforcement. The total area of tensile steel reinforcement
is equal to:

1 1 2s st stA A A= + [1.91]

The calculation of the tensile steel reinforcement in the first part of the
cross-section (see Figure 1.36) is obtained from the normal force equilibrium
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equation, having in mind that this cross-section is solicitated by a fictitious
bending moment equal toMAB:

( )
2

1 1

4 2

2 2 1
0.3 0.64 150.36 12.96 10 m

2 400

cs AB
st AB st

ss e AB

f bdbdA A
f

αα
α α

−

⎛ ⎞
= − = ⇒⎜ ⎟ −⎝ ⎠

×= × × = × [1.92]

Considering the second part of the cross-section (see also Figure 1.36),
the stress in the compression steel reinforcement is calculated from the
compatibility of strain in the deformed cross-section:

2

2

1

0.0515 15 1 176.17 MPa
0.36 0.64

s e cs
AB

s

df
d

σ α
α

σ

⎛ ⎞′
= − ⇒⎜ ⎟

⎝ ⎠
⎛ ⎞= − × × − = −⎜ ⎟×⎝ ⎠

[1.93]

The moment equilibrium equation written at the center of gravity of the
tensile steel reinforcement induces:

( )

( )

2
2

6 6
4 2

2 6
0.405 10 0.292 10 10.87 10 m

176.17 10 0.64 0.05

ser AB
s

s

s

M M
A

d d

A

σ

−

−
= ⇒

′− −

× − ×= = ×
× × −

[1.94]

The normal force equilibrium equation gives the tension steel
reinforcement:

2
1 2 2 2 2

4 4 2

0

176.17
10.87 10 4.79 10 m

400

σ
σ

− −

−
+ = ⇒ =

= × × = ×

s
ss st s st st s

ss
f A A A A

f

[1.95]

We finally obtain for this cross-section designed at Pivot AB by adding
some compression steel reinforcement: As1 = 12.96 + 4.79 = 17.75 cm2 and
As2 = 10.87 cm2. We can take 6φ20 (18.85 cm2) for the tensile steel
reinforcement, and 2φ20 + 1φ25 (11.19 cm2) for the compression steel
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reinforcement. The total steel quantity for this alternative less consuming
design is 30.04 cm2 (with As2 ≠0) compared to 40.21cm2 obtained before in
Pivot B without the use of compression steel reinforcement (with As2 = 0). In
this case, adding some compression steel reinforcement allows us to gain
approximately 25% of the total steel reinforcement.

In fact, the interest of adding compression steel reinforcement can be
clearly seen in Figure 1.37 for sufficiently large bending solicitation
μser≥μAB. In the case where compression steel reinforcements are added to
the upper part of the cross-section and the section is designed at Pivot AB,
the total dimensionless steel area ρs is given by:

( )

( )

2

1 2

1 1
2 1

1 1

with

ser AB csAB
s e

AB ss AB

AB

e
s s s

f d
f dd d

d d

A A
bd

μ μαρ α
α α

α
αρ

⎡ ⎤⎛ ⎞⎛ ⎞′− −
= + + −⎢ ⎥⎜ ⎟⎜ ⎟− ⎛ ⎞′ ′⎛ ⎞ ⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦− −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

= + [1.96]

As shown by Figure 1.37, adding some compression steel reinforcement
in this case makes the variation of the steel quantity linear with respect to the
bending solicitation, whereas a design at Pivot B without additional
compression steel reinforcement leads to a strongly nonlinear curve, which
may overestimate significantly the steel quantity needed at SLS.

Figure 1.37. Evolution of the total dimensionless steel quantity sρ with respect
to the solicitation expressed with the reduced moment serμ
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1.10.5. Design of a reinforced concrete section, an optimization problem

In fact, designing the section at Pivot AB at SLS may lead to the
optimized solution with respect to the total steel quantity used in the
reinforced section. It can be shown that the position of the neutral axis (see
Chapter 2 on the so-called “static moment equation”) is obtained from a
second-order polynomial equation written as:

( ) ( ) ( )2
1 2 1 2 1 22s s s s s sα ρ ρ ρ ρ ρ δ ρ′= − + + + + + [1.97]

where the dimensionless coefficient δ' = d'/d has been used. We can
introduce the change of variable:

2 2
1 2cos and sins s s sρ ρ θ ρ ρ θ= = [1.98]

It is easy to check that 1 2S s sρ ρ ρ= + and 2
2 1tan s sθ ρ ρ= . The

optimization consists of finding the optimized valueθ so that the SLS
capacity reduced moment μ is maximized for a given quantity of steel
reinforcement sρ . This optimization problem is illustrated in Figure 1.38 for
the problem with geometrical parameters defined in Figure 1.33.

Figure 1.38. Optimization of the reduced moment serμ with respect to the steel
reinforcement ratio; 2

2 1/ tanρ ρ θ=s s for a given quantity { }0.1;0.2;0.3;0.4;0.5 ;ρ ∈s
0.078125;δ ′ = B500B steel bars and C25/30 type of concrete

The optimization problem can be explicitly formulated from the
analytical expression of the neutral axis position and the reduced moment
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parameters. The position of the neutral axis is then expressed with respect to
the new optimization variables:

( ) ( )2 2 2, 2 cos sins s s sα ρ θ ρ ρ ρ θ δ θ′= − + + + [1.99]

The reduced moment in Pivot A, for ( ),s ABα ρ θ α≤ , is given by:

( ) ( )
( )

( )( )

2

2

3
,

6 1

1sin
1

ss
s

e cs

s ss

e cs

f
f

f
f

α α
μ ρ θ

α α

δ α δρ θ
α α

− ⎛ ⎞
= +⎜ ⎟− −⎝ ⎠

′ ′− − ⎛ ⎞
⎜ ⎟− −⎝ ⎠

[1.100]

The reduced moment in Pivot B, for ( ) ABs αθρα ≥, , is given by:

( ) ( )( )2, sin 1 1
2 3s s

α δ α αμ ρ θ ρ θ δ
α

′− ⎛ ⎞′= − + −⎜ ⎟
⎝ ⎠

[1.101]

As shown by Figure 1.38, the optimization problem is a singular
optimization problem and the optimization parameter is associated with
Pivot AB, leading to the transcendental equation:

( ) ( )2 2 2, 2 cos sins s s s ABα ρ θ ρ ρ ρ θ δ θ α′= − + + + = [1.102]

which can be analytically solved from:

( )
( )

( )

2

2

2
arc cos for

2 1

0.10125
2 1

AB AB s

s

AB
s

AB

α α δ ρ
θ

ρ δ

αρ
α

′+ −
=

′−

≥ =
−

[1.103]

For 0.1584ser ABμ μ≤ = , that is for a Pivot A section with only tensile
steel reinforcement, the best solution is obtained for 0θ = , that is, there is no
need to add some compression steel reinforcement in the reinforced concrete
section.
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However, it can be shown that designing the section at SLS at the
boundary between Pivot A and Pivot B for ser ABμ μ≥ is not necessarily the
best solution for all the range of parameters. The optimization problem
coincides with the Pivot AB design in the problem handled in Figure 1.38,
based on B500B steel bars and the C25/30 type of concrete, and with

0.078125.δ ′ = However, for the same materials but changing the value of
the geometrical ratio δ ′ up to 0.15, it can be seen in Figures 1.39 and 1.40
that the optimized solution is different from the optimized solutionof Pivot
AB.

For instance, this geometrical ratio 0.15δ ′ = corresponds to the
reinforced section based on the following parameters:

b (m)............................................ 0.5
d (m)........................................... 0.06
d (m)............................................ 0.4
h (m)......................................

′

ss

cs

ser

e

..... 0.46
f (MPa).................................... 400
f (MPa)................................... 15
M (MN.m)............................. 0.22
................................................15α

−

[1.104]

Figure 1.39. Optimization of the reduced moment serμ with respect to the steel reinforcement
ratio; 2

2 1/ tans sρ ρ θ= for a given quantity { }0.1;0.2;0.3;0.4;0.5s ;ρ ∈ 0.15;δ ′ =
B500B steel bars and C25/30 type of concrete
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Figure 1.40. Optimization of the reduced moment serμ with respect to the steel reinforcement
ratio; 2

2 1/ tans sρ ρ θ= for a given quantity { }0.1;0.15;0.2s ;ρ ∈ 0.15;δ ′ =
B500B steel bars and C25/30 type of concrete

As an example related to the sensitivity analysis shown by Figures 1.39
and 1.40, we give below an example of an reinforced concrete section in
Pivot B with a total steel quantity lesser than the one associated with the
design in Pivot AB. For this solicitation 0.183serμ = , the design at Pivot AB
leads to:

2 2
2 1

2

0.36; 6.705 cm ; 15.700 cm ;

22.405 cm and then 0.168

α α
ρ

= = = =

= =
AB s s

s s

A A
A [1.105]

whereas the optimized solution, for the same solicitation 183.0=serμ is
given in Pivot B, for:

2 2
2 1

2

0.416 0.36; 1.065 cm ; 20.181cm ;

21.246 cm and then 0.159
opt AB s s

s s

A A

A

α α

ρ

= > = = =

= = [1.106]

In this case, the optimized solution allows the gain of more than 5% of
steel area with respect to the design at Pivot AB.
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1.10.6. General design at Serviceability Limit State with tensile and
compression steel reinforcements

In this section, the design of a reinforced concrete section at SLS with
both tensile and compression steel reinforcements is presented. The section
is not necessarily designed at Pivot AB, as developed in section 1.10.4. In
the general case, the section is decomposed into two parts (see Figure 1.41).

Figure 1.41. Decomposition of the cross-section into two parts; general design

It is assumed to write the total bending solicitation into two terms:

( )1 2 1 2with and 1ser ser serM M M M M M Mξ ξ= + = = − [1.107]

whereξ is a free dimensionless parameter that fixes the neutral axis position.
For instance, if the neutral axis position is fixed at ABα α= , then the
parameter ξ is equal to AB AB serM Mξ = . But this last case is of course a
particular case. The design of the first fictitious section with only tensile
steel reinforcements is first presented (solicitation M1=ξMser). For a given
value of the dimensionless coefficient ξ, the steel quantity As1,1 is calculated

for the reduced moment µser,1 =
-ξMser
b.d2.fcs . If ,1ser ABμ μ≤ , the calculation of

the dimensionless neutral axis position 1α is computed from the cubic
equation:

α1
3– 3α1

2 – 6αeμser,1(
-fcs
fss ) α1 +6αeμser,1(

-fcs
fss ) = 0 [1.108]
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leading to the root:

α1 = 1 +2 1+2αe ⎝
⎛

⎠
⎞-

fcs
fss μser‚1 cos

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫Arc cos⎣

⎡
⎦
⎤1+2αe ⎝

⎛
⎠
⎞-

fcs
fss μser‚1

-1.5

-2π

3 [1.109]

If ,1ser ABμ μ≥ , the calculation of the dimensionless neutral axis position

1α is computed from the second-order polynomial equation:

2
1 1 ser,1- 3 + 6 = 0α α μ [1.110]

leading to the solution:

α1 = 1,5⎝⎜
⎛

⎠⎟
⎞1- 1 - 83 μser‚1 [1.111]

In both cases, in Pivot A or Pivot B, the tensile steel area of section As1,1is
obtained from:

As1,1=
α1

2bd
2αe(1 - α1)

[1.112]

Now considering the second fictitious section with some tensile steel
reinforcement (area As1,2), compression steel reinforcements (area As2),
without any concrete in compression and solicited by the moment
M2=(1-ξ)Mser. If α1 corresponds to Pivot A, then the stresses in the tensile
and compression steel reinforcements are calculated from:

σs2 = -
α - δ’
1 - α fss

σs1,1 = σs1,2 = fss [1.113]
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The bending moment equilibrium equation can be written at the center of the
gravity of each steel reinforcement:

2 2

1,2 1,2

(1 ') (1 )
(1 ') (1 )

s s ser

s s ser

A d M
A d M

σ δ ξ
σ δ ξ

− − = −
− = − [1.114]

It is worth mentioning that a combination of each of these equations is in
fact equivalent to the normal force equilibrium equation As1,2σs1 + As2σs2= 0.
The tensile and compression steel area can be finally obtained from:

As2 =
(1 - ξ)Mser (1 - α1)
(1 - δ’)(α1 - δ’) d fss

As1,2 =
(1 - ξ)Mser

(1 - δ’) d fss
and As1,1 =

α1
2bd

2αe(1 - α1)

As1 =
(1 - ξ)Mser

(1 - δ’)d fss
+

α1
2bd

2αe(1 - α1)
[1.115]

If α1 corresponds to Pivot B, then the stresses in the steel reinforcements
are obtained from:

σs2 =
α1 - δ’

α1
αefcs

σs1,1 = σs1,2 = -
1 - α1

α1
αe fcs [1.116]

Also, using the bending moment equilibrium equation [1.114], the steel
reinforcement areas can be calculated in Pivot B from:

As2 = - α1(1 - ξ)Mser

(1 - δ’)(α1 - δ’) d αe fcs

As1,2 = - α1(1 - ξ)Mser

(1 - δ’)(1 - α1) d αe fcs
and As1,1 =

α1
2bd

2αe(1 - α1)

As1= -
α1(1 - ξ)Mser

(1 - δ’)(1 - α1) d αe fcs
+

α1
2bd

2αe(1 - α1)
[1.117]
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Using these equations, it would be possible to compute the total steel area
As1 + As2 with respect to the dimensionless free parameter ξ. It is also
possible to optimize the design of the reinforced concrete section with
respect to the total steel area by studying the evolution of the total steel area
As1 + As2 with respect to the dimensionless position of the neutral axis α1. In
Pivot A, the dimensionless compression steel area ρs2 is obtained from:

ρs2 =
α1

3 - 3α1
2 + 6αe (fcs/fss)μserα1 - 6αe (fcs/fss) μser

6(1-δ’)( α1 - δ’) [1.118]

and the total dimensionless steel area ρs is then equal to:

ρs =
α1

3 - 3α1
2 + 6αe (fcs/fss)μserα1 - 6αe (fcs/fss) μser

6(1 - α1)( α1 - δ’) +
α1

2

2(1 - α1)
[1.119]

In Pivot B, the dimensionless compression steel area ρs2 is obtained from:

ρs2 =
α1

3 - 3α1
2 + 6 µserα1

6(1-δ’) (α1- δ’) [1.120]

and the total dimensionless steel area ρs is then equal to:

ρs =
α1

3 - 3α1
2 + 6 µserα1

6(1 - α1) (α1- δ’) +
α1

2

2(1 - α1)
[1.121]

Figure 1.42. Evolution of the steel quantity with respect to the dimensionless position of the
neutral axis; B500B steel bars and C25/30 type of concrete;

{ }0.183; 0.078125;0.15serμ δ ′= ∈
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The optimization problem consists of finding the smallest steel quantity
ratio sρ with respect to α, for a given reduced moment 0.183serμ = . It is
clearly shown in Figure 1.42 that the optimization problem is sensible
regarding the value of the parameter d dδ ′ ′= . For the parameter

0.078125δ ′ = (problem analyzed in Figure 1.38), it is confirmed that the
optimization solution is the solution associated with the design at Pivot AB,
whereas for 0.15δ ′ = (problem analyzed in Figures 1.39 and 1.40), the
optimized solution is different from the solution at the boundary between
Pivot A and Pivot B. The optimal solution 0.416 0.36opt ABα α= > = is
obtained in this case for the branch ruled by Pivot B, from the quartic
equation:

4 3 2 2

( ) 0

32(1 ) ( 6 1 2 )
4

3 3(1 ) 0
2 2

s
opt

opt opt ser opt

opt ser

ρ α α
α

α δ α δ δ μ α

δ δ α δ μ

∂ = = ⇒
∂

′ ′ ′− + − − − − + −

′ ′ ′+ + = [1.122]

where ρs is given by equation [1.121] in Pivot B. For this value of 0.15δ ′ = ,
we find ABopt αα ≥ and optα α= is the solution of the constrained
optimization problem. On the other hand, if the solution of the quartic
equation [1.122] was less than ABα , then the optimized solution would be
the one of Pivot AB, as already mentioned for the case with 0.078125.δ ′ =

1.11. Reinforced concrete beams with T-cross-section

1.11.1. Introduction

A T-cross-section is analyzed where both compression (with area As2) and
tensile (with area As1) steel bars reinforce the composite cross-section (see
Figure 1.43).

The geometry of the cross-section is characterized by the different length
parameters b, bw, h, h0, d and d′, where b is the width of the concrete slab, h0
is the depth of the flange (slab) thickness, and the width of the web is
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denoted by bw. The position of the neutral axis is as usual, characterized by
αd from the upper fiber of the cross-section.

Figure 1.43. Geometry of a T-cross-section

If the depth of the compression block is within the flanged portion of the
beam, that is the neutral axis depth αd is less than the flange (slab) thickness
h0, measured from the top of the slab (αd < h0), then the section can be
calculated as an “equivalent” rectangular cross-section with the width equal
to b (as tensile concrete contribution is neglected in the analysis). Then, we
find again the configuration previously investigated, for the design of
reinforced concrete beams with rectangular cross-section at the SLS.
However, when the depth of the compression block is larger than the flange
(slab) thickness, the neutral axis is located in the web of the T-cross-section,
and the calculation has to be based on the T-cross-section calculation, as
detailed in this section.

The concrete and steel material stress limits are given at the SLS by fss for
the steel reinforcement, and fcs for the concrete, the equivalence coefficient
being classically denoted by αe. The acting solicitation is evaluated at
point O and is characterized by two components, the acting moment
Mact = Mactk and the normal force resultant Nact = Nact.i. The unknowns of
the problem are, respectively, the tensile reinforcement area As1 and the
relative height of the neutral axis α. It is assumed that the neutral axis is
located inside the web, that is 0h d hα≤ ≤ .
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To simplify the theoretical study of the T-cross-section analysis, the
summation of the forces resistant screw is induced by a decomposition of the
total cross-section within piecewise rectangular cross-sections, without
forgetting the steel reinforcements, both in tension and compression.

1.11.2. Decomposition of the cross-section

The cross-section S is decomposed into three rectangular parts: two
rectangular parts, S1 that can be added, and S2 that can be subtracted, plus
the additional steel reinforcement S3 that has to be added to the total cross-
section (see Figure 1.44). These subsections have the same neutral axis and
the same curvature for compatibility reasons.

Figure 1.44. Decomposition of the T-cross-section

The characteristics of each subdomain are given in Table 1.1.

S S1 S2 S3

Effective
depth

d d d-h0 /

Relative
depth of
the
neutral
axis

α α α' = (αd-h0)/(d-h0) /

Force / α.ψ.b.d.fcs α’.ψ’.(b-bw).(d-h0).fcs As1.σs1+As2.σs2

Moment
with
respect
to O

/ - α.ψ.(1-α.δg).b.d2.fcs
- α’.ψ’.(1-α’.δ’g).(b-bw).

(d-h0)2.fcs
-As2.σs2.(d-d’)

Table 1.1. Characterization of each subdomain of the T-cross-section
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The center of pressure of the compression block in concrete is at a
distance αd/3 of the most compressed fiber of the cross-section, that is the
upper concrete fiber, and then δg = 1/3. As for the rectangular cross-section,
the shape filling coefficient ψ has been introduced in Table 1.1. The normal
force in the compressed part of concrete can be expressed through this
dimensionless coefficient:

c csN f bdψ α= [1.123]

In Table 1.1, the dimensionless shape filling coefficient ψ depends on the
considered pivot, Pivot A or Pivot B.

ψ =
- α

2αe(1 - α) .
fss
fcs in Pivot A, and ψ = 1/2 in Pivot B [1.124]

In Table 1.1, the dimensionless parameter ψ' denotes another shape
filling coefficient that also depends on the considered pivot, Pivot A or
Pivot B:

0

0

' ( / ) / [2 (1 ) ] in Pivot A,
and ' ( / ) / (2 ) in Pivot B

ss e cs

e

h d f f
h d

ψ α α α
ψ α α α

= − − −
= − [1.125]

1.11.3. Case of pivot A for a T-cross-section

1.11.3.1. Equations formulation

By setting M = Mser, the bending moment equilibrium consideration leads
to a nonlinear equation of the dimensionless relative depth α, similar to what
has been found for the rectangular cross-section in section 1.8.4 as:

M =
As2(d-d’)(αd-d’)fss

d(1 - α) +
α2(3 - α)
6 αe(1 - α)bd

2fss -

(α - h0/d)2(3 -2 h0/d- α)
6 αe(1 - α) (b–bw)d2fss [1.126]
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or, equivalently, by using the dimensionless coefficients:

M = [αe (1 –δ′ )(α–δ′ )dAs2 +
α2(3 - α)

6 bd2 -

(α - h0/d)2(3 - 2 h0/d - α)
6 (b–bw)d2]

fss
αe(1-α)

[1.127]

A third-order polynomial equation is finally obtained for the
determination of the neutral axis position, characterized by α, for a given
cross-section:
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3

1
6 3 2 1

1 26 3 1

w

w

s w
e

ss

s w
e

ss

a a a a
ba
b
ba
b

A h h bMa
bd d d bbd f

A h h bMa
bd d d bbd f

α α α

δ
α

δ δ
α

+ + + =

⎧ =⎪
⎪
⎪ = −⎪
⎪
⎨ ′⎛ ⎞− ⎛ ⎞⎛ ⎞⎛ ⎞= − + − − −⎪ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠⎪ ⎝ ⎠
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where the dimensionless coefficient δ' = d'/d has been used.

1.11.3.2. Resolution – Pivot A

Cardano’s method can be used for the resolution of this third-order
polynomial equation (see Appendix 1). The canonical parameters are:

2 2 3
0 2 1 0 3 1 0 1 2

2 3
0 0

3 27 2 9and
3 27

a a a a a a a a ap q
a a

− + −
= = [1.129]

Typically, for the physical parameters associated with reinforced concrete
design application, the third-order polynomial equation in α has three roots,
which the one of interest in our study is:
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3 3cos 4
2

2 cos
3 3 3

qArc
p pp b

a

π
α

⎡ ⎤⎛ ⎞
+⎢ ⎥⎜ ⎟−− ⎢ ⎥⎝ ⎠= −⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

[1.130]

Once the neutral axis position α is numerically calculated, the normal
force equilibrium equation gives the area of tensile steel reinforcement as
found in section 1.8.5 for the rectangular cross-section:

As1 =
Nact
fss +

α -δ’
1 - αAs2 +

α2 bd
2αe(1-α)

-
(α - h0/d)2 (b-bw)d

2αe(1-α)
[1.131]

Different specific cases can be deduced from this general equation valid
for T-cross-section. In the case of simple bending Nact= 0, the steel area
equation is reduced to:

As1 =
α -δ’
1 - αAs2 +

α2 bd
2αe(1-α)

-
(α - h0/d)2 (b-bw)d

2αe(1-α)
[1.132]

In the case of simple bending Nact= 0, and with only tensile steel
reinforcement (As2= 0), this equation is simplified into:

As1 =
α2 bd
2αe(1-α)

-
(α - h0/d)2 (b-bw)d

2αe(1-α)
[1.133]

Finally, in the case of simple bending Nact= 0, with only tensile steel
reinforcement (As2 = 0), and for rectangular cross-section (bw = b), we find
again what has been found in sections 1.8 and 1.9:

As1 =
α2 bd
2αe(1-α)

[1.134]

1.11.4. Case of pivot B for a T-cross-section

1.11.4.1. Equations formulation

By setting M = Mser, the bending moment equilibrium consideration leads
to a nonlinear equation of the dimensionless relative depth α, similar to what
has been found for the rectangular cross-section in section 1.9.4 as:



64 Reinforced Concrete Beams, Columns and Frames

M = - αeAs2(d-d')(αd-d')fcs
αd -

α(3 - α)
6 bd2fcs +

(α - h0/d)2(3 -2 h0/d- α)
6α (b–bw)d2fcs [1.135]

or, equivalently, by using the dimensionless coefficients:

M = [αe (1 –δ′ )(α–δ′ )dAs2 +
α2(3 - α)

6 bd2 -

(α - h0/d)2(3 - 2 h0/d - α)
6 (b–bw)d2]

- fcs
α [1.136]

A third-order polynomial equation is finally obtained for the
determination of the neutral axis position, characterized by α, for a given
cross-section:
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[1.137]

whose solution is also given by Cardano’s method (see section 1.11.3).

1.11.4.2. Resolution

Once the neutral axis position α is numerically calculated, the normal
force equilibrium equation gives the area of tensile steel reinforcement as
found in section 1.9.5 for the rectangular cross-section:

As1 =
-αNact

αefcs(1-α)
+

α -δ’
1 - αAs2 +

α2 bd
2 αe(1-α)

-
(α - h0/d)2 (b-bw)d

2 αe(1-α)
[1.138]
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The stresses in the tensile and in the compression steel reinforcements are
obtained from the equivalent stress diagram:

σs1= -
αe(1 - α)

α fcs andσs2 =
αe(α -δ’)

α fcs [1.139]

It is worth mentioning that a third-order polynomial equation is generally
obtained for the determination of the position of the neutral axis at Pivot B,
as in the case of Pivot A (even if the third-order equations in both pivots are
not the same). However, in the specific case of a rectangular cross-section
(bw = b) without compression steel reinforcement (As2 = 0), the last term a3
vanishes in the third-order equation and the third-order equation degenerates
mathematically into a second-order equation:

3 2
3 2

60 3 0
cs

Ma
bd f

α α α= ⇒ − − = [1.140]

We recognize the second-order equation for the determination of the
position of the neutral axis at Pivot B in the case of a rectangular cross-
section without compression steel reinforcement. However, in the case of a
T-cross-sectional, with b ≠ bw, a third-order equation is obtained for the
determination of the position of neutral axis α, even in a case without
compression steel reinforcement, which is a notable difference with the case
of a rectangular cross-section.

Finally, in the case of simple bending Nact = 0, with only tensile steel
reinforcement (As2=0), and for a rectangular cross-section (bw=b), we find
again, as in the case of Pivot A:

As1 =
α2 bd
2αe(1-α)

[1.141]

1.11.5. Example – design of reinforced concrete beams composed of
T-cross-section

1.11.5.1. Data of the design problem

The geometrical characteristics of the T-cross-section are given in
Figure 1.45 and detailed below:
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0
2

2

800mm; 300mm; 200 mm;

920mm; ' 40mm; 0 mm .
w

s

b b h

d d A

= = =

= = = [1.142]

The reinforced concrete section is composed of steel bars with fyk = 300
MPa and C25/30 type of concrete. Hence, we calculate the limit stresses at
the SLS as:

0.8 0.8 300 240 MPa

and 0.6 0.6 25 15 MPa
ss yk

cs ck

f f

f f

= = × =

= − = − × = − [1.143]

The equivalence coefficient is given for this problem as: αe = 15. The
steel Young’s modulus is equal to Es = 200,000 MPa.

The solicitation is a simple bending solicitation characterized at the
center of gravity of the tensile steel reinforcement by Mser = 0.49 MN.m and
Nser = 0 MN. In simple bending, the solicitation would have been the same in
another point of the cross-section.

Figure 1.45. Steel reinforcement design of a reinforced concrete
T-cross-section at SLS; lengths given in meters

It is assumed that there is no compression steel reinforcement
(As2 = 0 m2). The exercise consists of designing the tensile reinforcement of
this T-cross-section at the stress SLS.



Design at Serviceability Limit State (SLS) 67

1.11.5.2. Resolution

As presented in Chapter 5.5, the limit value of the neutral axis position at
the boundary of the two pivots, Pivot A and Pivot B, is given from:

15 0.48387
24015
15

e
AB

ss
e

cs

f
f

αα
α

= = =
+−

[1.144]

The bending moment solicitation at the boundary of Pivot A and Pivot B
can be calculated from:

MAB =
As2(d-d’)(αABd-d’)fss

d(1 - αAB)
+

αAB
2(3 - αAB)

6 αe(1 - αAB)
bd2fss

-
(αAB - h0/d)2(3 -2 h0/d- αAB)

6 αe(1 - αAB)
(b–bw)d2fss = 1.737 78 MN.m

>Mser,act = 0.49 MN.m [1.145]

Hence, the T-cross-section has to be calculated with the Pivot A rule. The
dimensionless neutral axis position is the solution of a third-order equation
given by equation [1.128] and written with the numerical application as:

3 20.375 1.125 0.997976725 0.347138392 0α α α− − + = [1.146]

The three solutions can be computed from Cardano’s method according
to Appendix 1 – see equation [A1.23].

1 2 30.930295125; 0.272002024; 3.658293101α α α= − = = [1.147]

Only α2 = 0.2720 is of interest for physical reasons. Furthermore, we can
check that for this value of the neutral axis, the T-cross-section does not
behave as a rectangular cross-section as:

00.272 0.92 0.25024 m 0.2mα = × = ≥ =d h [1.148]

In other words, it is confirmed that the neutral axis is located in the web
of the T-cross-section, which justifies the calculation with the web part of
the T-cross-section. In Pivot A, the stress in the tensile steel reinforcement



68 Reinforced Concrete Beams, Columns and Frames

σs1 is equal to the serviceability limit stress fss and the steel area As1 can be
calculated from equation [1.132]:

σs1 = fss = 240 MPa and

As1 =
α2 bd
2αe(1-α)

–
(α - h0/d)2 (b-bw)d

2αe(1-α)
= 24.304 10-4 m2 [1.149]

We finally obtain for this cross-section designed at Pivot A,
As1 = 24.30 cm2. We can take 3φ32 (As1 = 24.13cm2) for the tensile steel
reinforcement (see Appendix 2). But 5φ25 (As1 = 24.54cm2) would probably
be safer, even if the first solution based on 3φ32 could also be used, if the
anticipated value of d, the distance from the center of gravity of the tensile
steel reinforcement to the upper fiber of the cross-section, is a little bit larger
than 0.92 m.



Chapter 2

Verification at Serviceability
Limit State (SLS)

2.1. Verification of a given cross-section – control design

2.1.1. Position of the neutral axis

Figure 2.1. Position of the neutral axis at serviceability limit state

In this section, we assume a given reinforced concrete cross-section at its
serviceability limit state (SLS), with a given area of tensile steel
reinforcement As1 and a given area of compression steel reinforcement As2.
To check the correctness of the reinforced concrete design, the stresses in
each part of the cross-section have to be calculated and compared to the
serviceability limit stresses.
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For a given reinforced concrete cross-section, the position of the neutral
axis can be calculated at the SLS (see Figure 2.1). It is found that this
position does not depend on the solicitation level, at least in simple bending
without a normal force. This fundamental property is not true at the ultimate
limit state (ULS), where the position of the neutral axis, in fact, depends on
the solicitation level. The neutral axis is used to define the z-axis along
which the frame axis is defined (see Figure 2.1). The upper part of the cross-
section is assumed in compression, which corresponds to the positive
moment in span. The axis origin is chosen arbitrarily along this neutral axis.
The frame is completed by the x-axis, perpendicular to the plane of the
cross-section, and oriented towards the external part of the considered body
(convention of positive traction). In the plane of the cross-section, the frame
is completed by a vertical y-axis oriented toward the compressed part of
concrete.

2.1.2. Equation of static moments for the determination of the position of
neutral axis

Starting for the conservation law of planeity, the strain relationship in
both the steel and the concrete part is linearly related through:

εc‚sup
αd =

εc(y)
y =

εs2
αd-d' =

εs1
αd-d [2.1]

The equivalent stress equations are deduced from the strain relationship
by introducing the elasticity constitutive law in the steel σs = Es εs and the
concrete part σc = Ec εc of the cross-section, and using the equivalence
coefficient αe = Es/Ec, as:

αeσc‚sup
αd =

αeσc(y)
y =

σs2
αd-d' =

- σs1
d-αd [2.2]

The normal force in the compressed part of concrete Dc, denoted by Nc, is
calculated through an integral operator as:

Nc = ∫∫Dc
σc(y).dy.dz. =

σc‚sup
αd ∫∫Dc

y.dy.dz = σc‚sup
αd Sc [2.3]
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where Sc is the static moment calculated with respect to the neutral axis of
the compressed area of concrete Dc. It is also possible to calculate the normal
forces Ns1 and Ns2 in both the tensile steel reinforcement of area As1 and
compression steel reinforcement of area As2:

Ns1 = σs1 As1 =
σc‚sup
αd αe (αd-d) As1

= σc‚sup
αd Ss1 with Ss1 = αe (αd-d) As1 [2.4]

Ns2 = σs2 As2 =
σc‚sup
αd αe (αd-d’) As2

= σc‚sup
αd Ss2 with Ss2 = αe (αd-d’) As2 [2.5]

where, with respect to the neutral axis Oz, Ss1 is the static moment of “αe”
times the area of the tensile steel reinforcement with an area As1 and Ss2 is the
static moment of “αe” times the area of the compression steel reinforcement
with an area As2. The normal force equilibrium equation at the SLS then
leads to a static moment relationship:

Nact = Nc + Ns1 + Ns ⇔
Nactαd
σc‚sup

= Sc + Ss1 + Ss2 [2.6]

In the case of simple bending without additional normal force Nact= 0,
this equation is reduced to the static moment equation:

1 20 c s sS S S= + + [2.7]

The concept of a homogenised section may be introduced at this stage, by
affectation a unity coefficient on the concrete part and by the equivalent
Young’s modulus coefficient αe, the steel reinforcements both in tension and
compression. It is worth mentioning that this notion of a homogenized
section no longer holds at the ULS where the nonlinear behaviors of the steel
and the concrete parts are not compatible in general with elasticity. After
having introduced this concept of a homogenized section, the meaning of the
static moment equation can now be discussed. This equation expresses
the fact that the sum of the homogenized static moments with respect to
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the neutral axis is vanishing in a reinforced concrete section at the SLS. We
can also say that the neutral axis crosses the center of gravity of the
homogenized cross-section, neglecting of course the tensile part of concrete.
The static moment equation allows the determination of the neutral axis
position, for a given reinforced concrete cross-section. This static moment
equation is a second-order equation for a cross-section with piecewise
constant width, including for instance a rectangular cross-section or T-cross-
sections.

2.1.3. Stress calculation – general case

Once the neutral axis position has been calculated thanks to the static
moment equation, the stresses in each part of the reinforced cross-section can
be calculated. The moment equilibrium equation has to now be used:

1 2c s s actM M M M+ + = [2.8]

where the resultant moment with respect to the compression block of
concrete is Mc, the resultant moment with respect to the tensile steel
reinforcements is Ms1 and the resultant moment with respect to the
compression steel reinforcement is Ms2. The moment resultant in the
compression part of concrete, denoted by Mc, is calculated with respect to
the neutral axis as:

Mc = ∫∫ Dc
- σc(y).y.dy.dz. =

- σc‚sup
αd ∫∫ Dc

y2.dy.dz = - σc‚sup
αd Ic [2.9]

where Ic is the quadratic moment with respect to the neutral axis of the
compression block of concrete Dc. The resultant moment in the tensile and
the compression steel reinforcements, denoted by Ms1 and Ms2, can also be
calculated with respect to the neutral axis as:

Ms1 = - σs1 As1 (αd - d) =
- σc‚sup

αd αe (αd - d)2 As1

= - σc‚sup
αd Is1 with Is1 = αe (αd-d)2 As1 [2.10]
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Ms2 = -σs2 As2 (αd - d’) =
- σc‚sup

αd αe (αd - d’)2 As2 =

- σc‚sup
αd Is2 with Is2 = αe (αd-d’)2As2 [2.11]

where Is1 is the quadratic moment with respect to the neutral axis of the
tensile reinforcement homogenized by the equivalence coefficient αe and Is2
is the quadratic moment with respect to the neutral axis of the compression
reinforcement homogenized by the equivalence coefficient αe. These
quadratic moments are the exact quadratic moments of the homogenized
steel reinforcements, assuming that the principal quadratic moment of each
steel cross-section can be neglected (only the transport term is meaningful in
application of Huygens’s formulae). Going back to the equilibrium moment
equation, the maximum compression stress in the compression block can
now be calculated from:

Mact = Mc + Ms1 + Ms2⇔
Mactαd
- σc‚sup

=

Ic + Is1 + Is2⇔σc,sup =
- Mactαd

Ic + Is1 + Is2 =
- Mactαd

I [2.12]

where I is the quadratic moment of the homogenized section (neglecting the
tensile part of concrete) with respect to the neutral axis. The stresses in the
steel reinforcement and compression block are finally obtained from the
equivalent linear diagram in the homogenized section:

,sup

1

2

( )

( )

act
c

act
s e

act
s e

M d
I

M d d
I

M d d
I

ασ

ασ α

ασ α

⎧ = −⎪
⎪

−⎪ = −⎨
⎪

′−⎪ = −⎪⎩
[2.13]

This equation can easily be compared to the usual equation valid in linear
elasticity for a homogeneous cross-section σ = ±Mv/I. However, in this case,
as a main difference with linear elasticity, the contribution of concrete in
tension has been neglected.
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2.1.4. Rectangular cross-section – verification of a given cross-section

2.1.4.1. Rectangular cross-section – stress equations

Figure 2.2. Position of the neutral axis at serviceability limit state; rectangular
cross-section

The rectangular cross-section has the geometrical characteristics denoted
by b, h, d and d′, and are illustrated in Figure 2.2. The equation y = αd is the
distance from the neutral axis to the upper compression fiber of the cross-
section, whereas y = αd is the unknown of the design problem that can be
determined using the static moment equation:

2
1 2 1 2( ) ( ) 0

2 e s s e s s
b y A A y A d A dα α ′+ + − + = [2.14]

This second-order equation can be easily solved, and it leads to the root
of the physical interest, as:

2 2
1 2 1 2 1 2( ) ( ) 2 ( )e s s e s s e s sA A A A b A d A d

y
b

α α α ′− + + + + +
= [2.15]

The stresses are then calculated from equation [2.13], where the
equivalent moment quadratic for the rectangular cross-section is equal to:

3
2 2

1 2( ) ( ) with =
3 e s e s
byI A y d A y d y dα α α′= + − + − [2.16]
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2.1.4.2. Example – rectangular cross-section

As an example, the rectangular cross-section is reinforced by tensile steel
reinforcement with area As1 = 12.57 cm2 (4φ20) and by compression steel
reinforcement with area As2 = 1.57 cm2 (2φ10). The cross-section has the
following characteristics: b = 25 cm; h = 40 cm; d = 35 cm; d′ = 3.5 cm. The
reinforced concrete section is composed of B500B steel bars and the C25/30
type of concrete. The equivalence coefficient is given for this problem as:
αe = 15. The beam is solicitated in simple bending with Mser= 80 kN⋅m. The
exercise consists of controlling the design of this reinforced rectangular
cross-section at the stress SLS.

The static moment equation [2.14], in this case, gives the second-order
polynomial equation:

2 30.125 0.02121 6.6817 10 0 0.1614my y y−+ − × = ⇒ = [2.17]

The calculation of the quadratic moment of the homogenized section is
given in equation [1.138] and detailed for the specific studied cross-section:

3
2 2

1 2

4 4 4 4 4

( ) ( )
3
3.504 10 3.7626 10 6.7067 10 10.59 10

e s e s
byI A y d A y d

m

α α

− − − −

′= + − + −

= × + × + × = ×

[2.18]

The stresses are finally calculated in each part of the reinforced concrete
section:

( )

( )

,sup

,sup

1 1

2

2

12.19 MPa
12.19 MPa 15 MPa

213.7 MPa 213.7 MPa 400 MPa

143.2 MPa 400 MPa
143.2 MPa

ser
c

c cs

ser
s e s ss

s ss
ser

s e

M y
I f

M y d
f

I
fM y d

I

σ
σ

σ α σ
σ

σ α

⎧ = − = −⎪ ⎧ = ≤ =⎪ ⎪−⎪ ⎪= − = ⇒ = ≤ =⎨ ⎨
⎪ ⎪ = ≤ =′⎪ ⎪− ⎩= − = −⎪
⎩

[2.19]

It can be checked that this reinforced concrete cross-section is correctly
designed with respect to the SLS.
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2.1.5. T-cross-section – verification of a given cross-section

2.1.5.1. T-cross-section or rectangular cross-section?

Figure 2.3. Position of the neutral axis at serviceability limit state; T-cross-section

A T-cross-section is analyzed where both the compression (with area As2)
and tensile (with area As1) steel bars reinforce the composite cross-section.
The geometry of the cross-section is characterized by the different length
parameters b, bw, h, h0, d and d′. b is the width of the concrete slab and h0 is
the depth of the flange (slab) thickness. The width of the web is denoted by
bw. The position of the neutral axis is as usual characterized by y = αd from
the upper fiber of the cross-section.

If the depth of the compression block is within the flanged portion of the
beam, that is the neutral axis depth αd is less than the flange (slab) thickness
h0, and measured from the top of the slab (y = αd < h0), then the section can
be calculated as an “equivalent” rectangular cross-section with the width
equal to b (as tensile concrete contribution is neglected in the analysis).
Then, we find again the configuration previously investigated for the design
of reinforced concrete beams with a rectangular cross-section at the SLS.
However, when the depth of the compression block is larger than the flange
(slab) thickness, the neutral axis is located in the web of the T-cross-section
(y = αd > h0) and the calculation has to be based on the T-cross-section
calculation. The transitory case between these two kinds of behavior is
obtained for y = αd = h0 (see Figure 2.3).

To evaluate the type of configuration (rectangular or T-cross-section
calculation), it is required to assume a rectangular cross-section and see
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when the rectangular assumption y = αd < h0 is fulfilled. The position of the
neutral axis for a rectangular cross-section is already given in equation
[2.14] and the condition of the rectangular assumption for the calculation is
then written as:

2 2
1 2 1 2 1 2

0

( ) ( ) 2 ( )e s s e s s e s sA A A A b A d A d
y h

b
α α α ′− + + + + +

= ≤ [2.20]

which is equivalent to:

2
0 1 2 0 1 2( ) ( ) 0

2 e s s e s s
b h A A h A d A dα α ′+ + − + ≥ [2.21]

The following compression and tensile static moments can be introduced
as:

2
0

2 0 1 0( ) and ( )
2c e s t e s
bh A h d A d hμ α μ α′= + − = −� � [2.22]

Hence, if the condition c tμ μ≥� � is fulfilled, then the depth of the
compression block is within the flanged portion of the beam, that is the
neutral axis depth αd is less than the flange (slab) thickness h0 (y = αd < h0).
The section can be calculated as an “equivalent” rectangular cross-section
with the width equal to b. On the contrary, if the condition tc μμ ~~ ≤ is
fulfilled, then the depth of the compression block is larger than the flange
(slab) thickness, the neutral axis is located in the web of the T-cross-section
(y = αd > h0) and the calculation is based on the T-cross-section calculation,
as detailed below.

Calculation based on a rectangular cross-section
Calculation based on a T cross-section

c t

c t

μ μ
μ μ

≥ →
≤ → −

� �
� �

[2.23]

It is useful to note that these conditions are independent of the solicitation
and depend only on the properties of the cross-section.

2.1.5.2. Calculation of the position of neutral axis – T-cross-section

It is assumed that the neutral axis is located inside the web, that is
0h d hα≤ ≤ . The static moment of the compression block Sc is obtained as
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the sum of the static moment of the compression part of the web bw.y.y/2,
with one of the flanges (b – bw).h0.(y – h0/2):

2 0
02

2 2 2
w w

c
b b b hS y h y− ⎛ ⎞= + × −⎜ ⎟

⎝ ⎠
[2.24]

The static moment equation is then written as:

bw y2
2 +[αe.(As1 + As2) + (b-bw).h0].y – αe. (As1.d + As2.d') –

(b - bw )h02
2 =0 [2.25]

whose positive solution is:

[ ] [ ]
2

2 0
1 2 0 1 2 0 1 2

( )( ) ( ) ( ) ( ) 2 ( )
2
w

e s s w e s s w w e s s

w

b b hA A h b b A A h b b b A d A d
y

b

α α α⎡ ⎤−′− + + − + + + − + + +⎢ ⎥
⎣ ⎦=

[2.26]

Once the position y of the neutral axis is obtained, the quadratic moment
of the homogenized section is calculated as:

I = b.y
3

3 - (b - bw )(y-h0)
3

3 + αe.As1(y-d)2 + αeAs2(y-d')2 [2.27]

The stresses are then calculated for the most compression concrete fiber,
the tensile steel reinforcement and the compression steel reinforcement from
equation [2.13], which still remains valid. Now by using the dimensionless
coefficients:

1 2
1 2, , ande s e s
s s

w w

A Ay d
d b d b d d

α αα ρ ρ δ
′′= = = = [2.28]

the position of the neutral axis expressed in dimensionless format is given
by:

( )

0
1 2

2 2
0 0

1 2 1 2

1

1 2 1

s s
w

s s s s
w w

h b
d b

h hb b
d b d b

α ρ ρ

ρ ρ ρ δ ρ

⎡ ⎤⎛ ⎞
= − + + − +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞′+ + − + + + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

[2.29]
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The case of the rectangular cross-section is simply deduced by putting
:wb b=

2
1 2 1 2 1 2( ) ( ) 2( )w s s S s s sb b α ρ ρ ρ ρ ρ δ ρ′= ⇒ = − + + + + + [2.30]

When the reinforced concrete section is designed without compression
steel reinforcement 2( 0)sρ = , the case of the rectangular cross-section

wb b= leads to:

2 1 1 10 and ( 2)s w S S sb bρ α ρ ρ ρ= = ⇒ = − + + [2.31]

2.1.6. Example – verification of a reinforced T-cross-section

The cross-section characteristics of the T-cross-section are the
characteristics given in Figure 2.1. As an example, the rectangular cross-
section is reinforced by tensile steel reinforcement with area As1 = 24.54 cm2

(5φ25) and by compression steel reinforcement with area As2 = 0 cm2 (no
compression steel reinforcement). The cross-section has the following
characteristics: b = 0.8 m; d = 0.92 m; d′ = 0.04 m; bw= 0.3 m; and
h0= 0.2 m. The reinforced concrete section is composed of B300B steel bars
(fyk= 300 MPa) and C25/30 type of concrete (fck= 25MPa). The equivalence
coefficient is given for this problem as:αe = 15. The beam is solicitated in
simple bending with Mser= 0.49 MN⋅m. The exercise consists of controlling
the design of this reinforced T-cross-section at the stress SLS.

The following compression and tensile static moments can be calculated
from equation [2.22]:

2
2 30

2 0

4 3
1 0

0.8( ) 0.2 0.016m and
2 2

( ) 15 24.54 10 (0.92 0.2) 0.0265 m

c e s

t e s

bh A h d

A d h

μ α

μ α −

′= + − = × =

= − = × × × − =

�

� [2.32]

The two static moments can be compared and we obtain tc μμ ~~ < , which
means that the depth of the compression block is larger than the flange (slab)
thickness: the neutral axis is located in the web of the T-cross-section
(y = αd > h0) and the calculation is based on the T-cross-section calculation.
The static moment equation [2.25] in this case gives the second-order
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polynomial equation with respect to the unknown position of the neutral axis
measures with y = αd:

0.3 × y2
2 + (0.03682 + 0.5 × 0.2 ) × y – 0.03682 × 0.92 –

0.5 × 0.22
2 = 0

or equivalently 0.15 × y2 + 0.13682 × y – 0.0438744 = 0 [2.33]

whose positive root is y = 0.251 m, which is indeed greater than h0= 0.2 m.
The quadratic moment of the homogenized section with respect to the
neutral axis is equal to:

I =
0.8 × y3
3 -

0.5 × (y-0.2)3
3 + 0.03682 × (y – 0.92)2 = 0.0207 m4 [2.34]

The stress values in both the tensile steel reinforcement and the
compression block in concrete are then calculated as:

σc,sup =
- Mact .y

I =
- 0.49 × y
0.020 673… = –5,96 MPa

σs1= αe
- Mact .(y - d)

I = αe
- 0.49 × (y - 0.92)
0.020 673… = 237,7 MPa [2.35]

,sup

1

5.96 15MPa

237.7 240 MPa
c cs

s ss

MPa f

MPa f

σ

σ

⎧ = ≤ =⎪⇒ ⎨
= ≤ =⎪⎩

[2.36]

It can be checked that this reinforced concrete cross-section is correctly
designed with respect to the SLS. This reinforced concrete section has been
clearly designed at Pivot A.

2.1.7. Determination of the maximum resisting moment

It has been shown above how to design a reinforced concrete section by
determining the steel quantity for a given solicitation in simple bending,
according to the SLS. We have also shown how to check that a given
reinforced concrete section verifies the stress SLS. In this section, we present
the methodology to compute the maximum solicitation that a given
reinforced concrete section can support at the SLS.
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For a given reinforced concrete section, the neutral axis position
expressed with the dimensionless parameter α can be determined by using
the moment static equation leading to the solution given by equation [2.29].
The parameter α has to be compared to αAB = αefcs/(αefcs–fss) to determine
the type of pivot that should pilot the reinforced concrete section at the SLS.

If α < αAB (Pivot A), the resistant moment at the SLS is calculated from:

Mres = [αe (1 – δ‘)(α – δ‘)dAs2 +
α2(3 - α)

6 bd2 –

(α - h0/d)2(3 - 2 h0/d - α)
6 (b–bw)d2]

fss
αe(1-α)

[2.37]

If α > αAB (Pivot B), the resitant moment at the SLS is calculated from:

Mres = [αe (1 – δ‘)(α – δ‘)dAs2 +
α2(3 - α)

6 bd2 –

(α - h0/d)2(3 - 2 h0/d - α)
6 (b-bw)d2]

- fcs
α [2.38]

2.2. Cross-section with continuously varying depth

2.2.1. Triangular or trapezoidal cross-section

Even if rectangular or T-cross-sections have a wide area of applications
in civil engineering or building, some specific engineering problems with
continuous varying depth cross-sections can be met, especially in bridge
engineering, with prestressed concrete caissons, for instance (see Figure 2.4).

Figure 2.4. Different kinds of cross-section with rectangular, triangular or trapezoidal cross-
sections
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In these cases, the use of the T-cross-section analogy is not always
possible and an exact calculation with an integration over the prismatic
cross-section is needed. In this section, we will study a reinforced concrete
triangular cross-section (see Figure 2.5), designed at its SLS. In a certain
sense, this case englobes some other trapezoidal variation cross-section, at
least from a methodology point of view.

Figure 2.5. Reinforced concrete triangular cross-section with tensile steel reinforcement

The triangular cross-section is reinforced by some tensile steel
reinforcement (with area As1). The geometry of the cross-section is
characterized by the different length parameters b0, h and d, where b0 is the
width of the upper part triangle base and h is the total depth of the triangle.
The position of the neutral axis is as usual, characterized by y = αd from the
upper fiber of the cross-section.

At the neutral axis level, the width of the cross-section is equal to:

0( ) 1 db b
h

α α⎛ ⎞= −⎜ ⎟
⎝ ⎠

[2.39]

2.2.2. Equilibrium equations – normal force resultant

The equilibrium equations are expressed both for the normal force
component and the moment at the center of gravity of the tensile steel
reinforcement as:
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1 1 ( ) 0 and

[ (1 )] ( ) 0
c

c

act s s cD

act cD

N A y dS

M y d y dS

σ σ

α σ

′= + =

′ ′= − + − =

∫∫
∫∫ [2.40]

In linear elasticity, at SLS, the compression stress in the concrete block
linearly evolves as:

( ) ,supc c
yy
d

σ σ
α

′′ = [2.41]

The width of the cross-section at the fiber parameterized by the ordinate
y′ in the compression block ( 0y′ = at the neutral axis – see Figure 2.5) is
given by:

( ) 0 ( ); [0; ]bb y y h d y d
h

α α′ ′ ′= + − ∈ [2.42]

The normal force in the concrete block can then be calculated as:

( )

( )

( )

,sup

,sup 2
0

2

c c

c
c cD A

b y
dc

b y

N y dy dz y dy dz
d

y dy dz
d

α

σ
σ

α
σ
α

′

′
−

′ ′ ′ ′= = =

′ ′

∫∫ ∫∫

∫ ∫ [2.43]

The double integral can be easily converted into a single integral with the
slice integration technique:

( ) ( ),sup 0 ,sup 2

0 0

d dc c
c

b
N b y dy y h d y dy

d dh
α ασ σ

α
α α

′ ′ ′ ′ ′= = + −∫ ∫ [2.44]

The normal force in the concrete compression block can then be
calculated as:

( )20
,sup 6 2c c

db dN h
h

α ασ
⎡ ⎤

= − +⎢ ⎥
⎢ ⎥⎣ ⎦

[2.45]
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The normal force equilibrium equation is then written as:

( )20
1 1 ,sup 0

6 2act s s c

db dN A h
h

α ασ σ
⎡ ⎤

= + − + =⎢ ⎥
⎢ ⎥⎣ ⎦

[2.46]

It would also be possible to have used a geometrical proof for this normal
force expression. In fact, the calculation of the double integral for the
determination of the normal force in concrete is equivalent to the calculation
of the volume of a pentahedron composed of a regular pentahedron and two
symmetrical tetrahedral (see Figure 2.6). The total volume of the
pentahedron V can be decomposed as the sum of two other volumes

3 42V V V= + , with 3V as the volume of the regular pentahedron and 4V as the
volume of each tetrahedron. The volume 3V of the regular pentahedron with
a width ( )b α and depth dα can be calculated as:

3 ,sup 0
1( ) with ( ) 1
2c

dV b d b b
h

α α σ α α⎛ ⎞= = −⎜ ⎟
⎝ ⎠

[2.47]

The volume 4V of each tetrahedron is equal to the product of the base
area multiplying a third of the depth, which is expressed as:

( )0
4 ,sup2 3c

b b dV
α ασ

−
= [2.48]

It can easily be verified that 3 42cN V V= + (or equivalently 1 22cN V V= −
with the notation of Figure 2.6).

2.2.3. Equilibrium equations – bending resultant moment

The bending moment in the concrete block can then be calculated at the
center of gravity of the tensile steel reinforcement as:

( )( )

( )
,sup 2

0
2

( )

1

c
c cD

b y
dc

b y

M y y dydz

y y d dydz
d

α

σ

σ
α

α

′

′
−

= −

′ ′= − ⎡ + − ⎤⎣ ⎦

∫∫

∫ ∫ [2.49]
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The double integral can be easily converted into a single integral with the
slice integration technique:

0 ,sup 2

0
( ) [ (1 )]

dc
c

b
M y h d y y d dy

h d
ασ

α α
α

′ ′ ′ ′= − + − + −∫ [2.50]

We finally obtain from this integral equation:

3 2

2
0 ,sup

1
12 6 2

act

c

M d h h
b d h d d

α α α
σ

⎡ ⎤⎛ ⎞= − + +⎢ ⎥⎜ ⎟− ⎝ ⎠⎣ ⎦
[2.51]

This result can also be shown from geometrical arguments, as detailed in
Figure 2.6.

Figure 2.6. Linear stress diagram in the concrete compression block of the
triangular cross-section – serviceability limit state
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The calculation of the bending moment can also be based on geometrical
arguments:

3

3 3 4 4

4

2(1 )
32 with
3(1 )
4

c

d d d
M V d V d

d d d

α α

α α

⎧ = − +⎪⎪= + ⎨
⎪ = − +
⎪⎩

[2.52]

where 3d and 4d are the distance from the center of gravity of each volume
to the center of gravity of the tensile steel reinforcement. It can be checked
that equation [2.52] is equivalent to the mathematical expression of equation
[2.51].

2.2.4. Case of pivot A for a triangular cross-section

At Pivot AB (boundary between Pivot A and Pivot B), we have the
characteristic values:

3 2

and

1
12 6 2

e cs
AB

e cs ss

AB AB
AB AB

f
f f

d h h
h d d

αα
α

α αμ α

=
−

⎡ ⎤⎛ ⎞= − + +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

[2.53]

For ABμ μ≤ , the section has to be designed with respect to Pivot A. At
Pivot A, the compression stress in concrete in the most compressed fiber is
related to the tensile stress in the tensile steel reinforcement as:

1 ,sup 1
ss

s ss c
e

ff ασ σ
α α

= ⇒ = −
−

[2.54]

Inserting equation [2.54] in to equation [2.51] leads to the dimensionless
reduced moment μ, which is expressed as:

3 2

2
0

1
1 12 6 2

with

ss

e cs

ser

cs

fd h h
h f d d
M
b d f

α α α αμ
α α

μ

⎛ ⎞⎛ ⎞= − − + +⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

= − [2.55]
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Equation [2.55] is a fourth-order polynomial equation in α and is written
as:

4
3 21 1 0

12 6 2
cs cs

e e
ss ss

f fh h h h
d d d f f d

α α α α μ α α μ
⎛ ⎞ ⎛ ⎞− −⎛ ⎞− + + + − =⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
[2.56]

2.2.5. Case of pivot B for a triangular cross-section

For ABμ μ≥ , the section has to be designed with respect to Pivot B. At
Pivot B, the compression stress in concrete is equal to the limit compressive
stress at SLS csc f=sup,σ , and the dimensionless reduced moment μ is
directly obtained from equation [2.51] as:

3 2

1
12 6 2

d h h
h d d

α αμ α
⎡ ⎤⎛ ⎞= − + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
[2.57]

Equation [2.57] is a third-order polynomial equation in α, and is written as:

3
21 1 0

12 6 2
h h h
d d d

α α α μ⎛ ⎞− + + − =⎜ ⎟
⎝ ⎠

[2.58]

It is shown that in the particular case of a triangular reinforced concrete
section, the order of the neutral axis position polynomial equation is higher
in Pivot A than in Pivot B, as for the rectangular cross-section without
compression steel reinforcement. Furthermore, it is interesting to note that
the order of the polynomial equation is 1ο higher for the triangular section
than it is for the rectangular section.

2.2.6. Static moment equation for a triangular cross-section

For a given reinforced concrete triangular cross-section, the
determination of the position of the neutral axis can be obtained from the
static moment equation, which is simply written as:

1 1 1

0
0

0 with ( ) and
( ) 2( ) 2 and ( ) 1

2 2 2 3

s c s e s

c

S S S y d A
b b yy y y yS b y y b y b

h

α+ = = −
−⎡ ⎤ ⎛ ⎞= + = −⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦

[2.59]
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As a result, a third-order equation is obtained for the determination of the
position of the neutral axis:

3 20 0
1 1 0

6 2 e s e s
b by y A y A d
h

α α− + + − = [2.60]

In this case, again, the order of the polynomial equation issued of the
static moment equation is one degree higher for the triangular section than it
is for the rectangular section.

2.2.7. Design example of a triangular cross-section

The cross-section characteristics of the triangular cross-section are shown
in Figure 1.43. The cross-section has the following characteristics: b0= 0.8 m;
d = 0.9 × h. The reinforced concrete section is composed of B500B steel bars
(fyk= 500 MPa) and the C30/37 type of concrete (fck= 30MPa). The equivalence
coefficient is given for this problem as: αe = 15. The beam is solicitated in
simple bending with Mser= 1 MN⋅m. The exercise consists of controlling the
design of this reinforced triangular cross-section at the stress SLS.

As the triangular cross-section is an equilateral triangle, the depth h is
related to the width b0 as:

0
3 0.6928m and 0.9 0.62354m
2

h b d h= = = = [2.61]

The critical parameters ABα and ABμ are first calculated from equation
[2.53] as:

15 18 27 0.402985 and
15 18 400 67

0.15498

e cs
AB

e cs ss

AB

f
f f
αα

α
μ

×= = = =
− × +

= [2.62]

We then calculate the reduced moment μ , which is compared to the
critical reduced moment :ABμ

6

2 6

1 10 0.17861 0.15498
0.8 0.62354 18 10 ABμ μ×= = > =

× × ×
[2.63]
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As ABμ μ≥ , the section has to be designed with respect to Pivot B. The
determination of the position of neutral axis needs to solve a third-order
equation in α given by equation [2.58], and numerically presented in the
following format:

3 2 0 with
0.08333, 0.35185, 0.55555 and 0.19846

a b c d
a b c d
α α α+ + + =
= = − = = −

[2.64]

We use Cardano’s method to compute the root of this cubic. The
canonical parameters are calculated from:

2

2

2 3

3

3 0.72428 and
3

27 2 9 1.42564
27

ac bp
a
a d b abcq

a

−= =

+ −= = [2.65]

It can be checked that 3 24 27 56.3963 0p q+ = > , and the cubic admits
only one real solution (see Appendix 1):

2 3 2 3
3 3

2 4 27 2 4 27 3

0.493376 0.402985AB

q q p q q p b
a

α

α

= − + + + − − + −

= > = [2.66]

The tensile steel reinforcement area As1 is then deduced from the
consideration of the normal force equilibrium equation:

( )20
1 1 ,sup 0

6 2act s s c

db dN A h
h

α ασ σ
⎡ ⎤

= + − + =⎢ ⎥
⎢ ⎥⎣ ⎦

[2.67]

As the section is designed under Pivot B, the stresses of the extremal
fibers are given by:

1 ,sup
1 ands e cs c csf fασ α σ

α
−= − = [2.68]
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The area of tensile steel reinforcement is then calculated as:

( )20
1

2
2

3 2

1
1 6 2

0.8 0.6235380.623538 0.6928
1 0.6928 15 6 2

6.8066 10

s
e

db dA h
h

m

αα α
α α

α α α
α

−

⎡ ⎤−
= +⎢ ⎥

− ⎢ ⎥⎣ ⎦
⎡ ⎤

= × − × + ×⎢ ⎥− × ⎣ ⎦
= × [2.69]

We finally obtain for this cross-section designed at Pivot B,
As1= 68.07 cm2. We can consider 4φ25 + 4φ40 (As1 = 69.9 cm2) for the
tensile steel reinforcement (see Appendix 2).

2.3. Composed bending with combined axial forces

2.3.1. Steel reinforcement design for a given reinforced concrete section

Equations of sections 1.8, 1.9 and 1.11 (Chapter 1) are valid both in
simple bending and in composed bending with combined axial forces. The
bending moment and normal forces components are given at the center of
gravity of the tensile steel reinforcement (Mact,Nact) (see Figure 2.7 for
rectangular cross-section and Figure 2.8 for T-cross-section).

Figure 2.7. Design of a rectangular reinforced concrete cross-section at serviceability
limit state for composed bending state with combined axial forces



Verification at Serviceability Limit State (SLS) 91

When dealing with the design of the steel reinforcement quantity for a
given solicitation, depending on the pivot nature of the reinforced concrete
section, the equations given for the position of the neutral axis are different
in Pivot A and Pivot B. In Pivot A, for a T-cross-section (the rectangular
cross-section is considered as a particular case of a T-cross-section with
bw= b), the determination of the position of the neutral axis needs to solve
the cubic equation [1.102], and the tensile steel reinforcement can then be
calculated in composed bending from equation [1.105]. In Pivot B, for a
T-cross-section, the determination of the position of the neutral axis also
needs to solve a cubic equation given by equation [1.111], and the tensile
steel reinforcement can then be calculated in composed bending
from equation [1.112]. The limit case between the two pivots is referred to as
pivot AB, and is characterized by the limit value for the relative position of
the neutral axis αAB defined from the upper fiber of the cross-section as
αAB = αefcs/(αefcs – fss).

Figure 2.8. Design of a reinforced concrete T-cross-section at serviceability limit state for
composed bending state with combined axial forces

2.3.2. Determination of the position of the neutral axis – simple bending

As shown in section 2.1, Chapter 2, the calculation of the stresses for a
given reinforced composite cross-section is a different problem, which is
associated with the determination of the position of neutral axis inside the
cross-section with the given steel reinforcement. For simple bending
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solicitation, without normal force (Nser = 0), this problem is solved with the
so-called static moment equation, which leads to a second-order polynomial
equation given by equation [2.25] for a T-cross-section. Again, the
rectangular cross-section can be viewed as a particular case of a T-cross-
section with bw = b. The stresses in each part of the cross-section are then
calculated from the equivalent linear stress diagram given by equation
[2.13]. Note that the determination of the position of neutral axis in this case
does not require the specific notion of Pivot A or Pivot B. For simple
bending solicitation, without normal force (Nser = 0), the position of the
neutral axis is summarized below for a T-cross-section as:

bwdα2 + 2[αe(As1 + As2)+h0(b–bw)]α –

2αe(As1 + δ‘As2) –h02(b–bw)/d = 0 =>

α = - [ρs1 + ρs2 +
h0
d (

b
bw - 1)] +

[ρs1 + ρs2 +
h0
d (

b
bw - 1)]

2 + 2(ρs1 + δ’ρs2) + (
h0
d )

2 (
b
bw - 1) [2.70]

with the steel reinforcement ratio defined from ρs1 =
αeAs1
bwd and ρs2 =

αeAs2
bwd .

In the particular case of a rectangular cross-section, this equation is
simplified as:

2
1 2 1 2 1 2( ) ( ) 2( )s s s s s sα ρ ρ ρ ρ ρ δ ρ′= − + + + + + [2.71]

2.3.3. Determination of the position of the neutral axis – composed
bending with normal force solicitation

2.3.3.1. Rectangular cross-section

The acting solicitation evaluated at the center of gravity of the tensile
steel reinforcement, leading to the equilibrium equation:

2 1 2andact c s act c s sM M M N N N N= + = + + [2.72]
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The static moment equation [2.6] can still be used for the normal force
component, and is detailed below for the case of the rectangular cross-
section:

( ) ( ) ( )2
1 2 1 2

, 2
act

c s s e s e s
c sup

N d bS S S d d d A d d Aα α α α α α
σ

′= + + = + − + − [2.73]

The bending moment equation evaluated at the center of gravity of the
tensile steel reinforcement can be developed as:

2 2

2
2

,sup

( ). . ( )

3( )( ) ( )
6

c
act c s sD

act
e s

c

M y dy dz A d d

M d d dd d d d A b d

σ σ

α αα α α
σ

′= − − − ⇒

−⎛ ⎞′ ′= − − − − ⎜ ⎟
⎝ ⎠

∫∫
[2.74]

For a rectangular cross-section, we finally obtain the ratio between the
bending moment and normal force:

2

2

2

1 2

(3 )( )(1 )
6

( 1) ( )
2

s
act

act
s s

M
d N

α αρ α δ δ

α ρ α ρ α δ

−′ ′− − − −
=

× ′+ − + −
[2.75]

As in the case of a simple bending moment, this equation is independent
on the pivot nature of the cross-section. For a loading with constant
eccentricity eact, we have:

act act

act

e M
d d N

=
×

[2.76]

In this case, the neutral axis position should be the solution of a cubic,
which is independent of the solicitation except through the eccentricity
parameter eact:

( )3 2
2 1 2

2 1 2

3 1 6 (1 )

6 (1 ) 6 ( ) 0

act act
s s s

act
s s s

e e
d d

e
d

α α ρ δ ρ ρ α

ρ δ δ ρ δ ρ

⎛ ⎞ ⎡ ⎤′− + − − + + +⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

′ ′ ′− + + = [2.77]
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This cubic equation can then be solved using Cardano’s method. Such a
cubic equation can be found in some other textbooks such as in [WAL 90]
for rectangular cross-sections or in [ROB 74] for both rectangular and
T-cross-sections [ROB 74]. This equation can be understood as the
generalization of the static moment equation for composed bending with the
combined normal force effect.

This equation is also known as the cubic equation of the French
reinforced concrete design rules, dating from 1906 (Circulaire du 20
Octobre 1906) (and reported in the book of Magny [MAG 14]) or the French
reinforced concrete design rules dating from 1934 (règlements des marchés
de l’état de 1934 – in French), which was recently reported in [THO 09], and
is presented in the following canonical format for rectangular reinforced
concrete cross-sections:

3

2 1 2

3 2 21 2

0 with ; ;
6 63 ( ) ( )

6 6and 2 ( ) ( )

act

e s e s

e s e s

y py q y d c c d e
A Ap c d c d c
b b

A Aq c d c d c
b b

α
α α

α α

+ + = = − = +

′= − + − + −

′= − − − − − [2.78]

It can be easily shown that equations [2.78] and [2.77] are equivalent. We
note that the simple bending case can be deduced asymptotically with an
infinite eccentricity leading to:

( ) ( )2
1 2 1 23 6 6 0act
s s s s

e
d

α ρ ρ α ρ δ ρ′→ ∞ ⇒ − − + + + = [2.79]

whose solution has been already given in equation [2.30]. The cubic
equation [2.77] can be simplified in case of tensile steel reinforcement
without compression steel reinforcement As2= 0 as:

3 2
1 13 1 6 6 0act act act
s s

e e e
d d d

α α ρ α ρ⎛ ⎞− + − + =⎜ ⎟
⎝ ⎠

[2.80]

2.3.3.2. T-cross-section

The static moment equation [2.6] can still be used for the normal force
component, and is detailed below for the case of a T-cross-section:
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Nact αd
σc‚sup ( ) ( )2 2

02 2
wb bb d d hα α−= − − +

( ) ( )1 2e s e sd d A d d Aα α α α ′− + − [2.81]

The bending moment equation evaluated at the center of gravity of the
tensile steel reinforcement can be developed as:

( ) ( )

( )( ) ( )

( ) ( ) ( )

2 2

2
2

,sup

2
0 0 2

. .

3
6

3 2
6

c
act c s sD

act
e s

c

w

M y dy dz A d d

M d d dd d d d A b d

h d d h d
b b d

σ σ

α αα α α
σ

α α

′= − − − ⇒

−⎛ ⎞′ ′= − − − − ⎜ ⎟
⎝ ⎠

− − −
+ −

∫∫

[2.82]

The position of the neutral axis given by the dimensionless parameter α
can be computed from the fractional equation for a loading with constant
eccentricity eact:

eact
d =

-αe(1 - δ‘)(α - δ‘)As2 -
α2(3 - α)

6 bd +
(α - h0/d)2(3 - 2 h0/d - α)

6 (b-bw)d

-αe(1-α)As1 + αe(α - δ’) As2 +
α2

2 bd -
(α - h0/d)2

2 (b-bw)d
[2.83]

We also obtain a cubic equation with respect to the parameter α:

( )

( )

3 2

2
0 0 0

2 1 2

2 2
0 0 0

2 1 2

3 1

16 1 1 1
2

16 1 1 3 2 6 1
2

act

act
s s s

w w

act
s s s

w w

e
d

h h e hb b
b d d d d b

h h e hb b
b d d d d b

α α

ρ δ ρ ρ α

ρ δ δ ρ δ ρ

⎛ ⎞− +⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞′− − + − − + + + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞′ ′ ′+ − + − − + + + −⎢⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎢⎝ ⎠ ⎝ ⎠⎣ ⎦
0=⎥

⎥

[2.84]

which, again, can be solved using Cardano’s method.
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This equation is also known as the cubic equation of the French
reinforced concrete design rules dating from 1906 (Circulaire du 20 Octobre
1906) (see also [MAG 14]) or the French reinforced concrete design rules
dating from 1934 (règlements des marchés de l’état de 1934 – in French),
which was recently reported in [THO 09] for T-cross-sections, and is
presented in the following canonical format:

3

2 2 1 2
0

3 3 2 21 2
0

0 with ; ;

6 6
3 3 1 ( ) ( ) ( ) and

6 6
2 2 1 ( ) ( ) ( )

act

e s e s

w w w w

e s e s

w w w w

y py q y d c c d e

A Ab bp c c h d c d c
b b b b

A Ab bq c c h d c d c
b b b b

α

α α

α α

+ + = = − = +

⎛ ⎞ ′= − + − − + − + −⎜ ⎟
⎝ ⎠
⎛ ⎞ ′= − + − − − − − −⎜ ⎟
⎝ ⎠

[2.85]

It can be easily shown that equations [2.84] and [2.85] are equivalent. It
is worth mentioning that equation [2.85] is presented directly in canonical
format so that Cardano’s method can be directly applied without variable
transformation.

We note that the simple bending case can be deduced asymptotically
from equation [2.84], with an infinite eccentricity leading to:

2 0
1 2

2
0

1 2

3 6 1

16 1 0
2

act
s s

w

s s
w

e h b
d d b

h b
d b

α ρ ρ α

ρ δ ρ

⎡ ⎤⎛ ⎞
→ ∞ ⇒ − − + + −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞⎛ ⎞′+ + + − =⎢ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
[2.86]

whose solution has been already given in equation [2.26].

2.3.4. Exercises for composed bending with normal force solicitation

2.3.4.1. Design of a specific rectangular cross-section

2.3.4.1.1. Data of the problem

A rectangular cross-section of a reinforced concrete beam is solicited in
composed bending with normal forces. The external screw elements are
given at the point G of the rectangular cross-section (see Figure 2.9). The
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point G is located at the center of gravity of the full rectangular cross-section
(see Figure 2.9). The data of the problem are given below:

MG = 0.11 MN⋅m |NG| = 95 kN in compression

b = 0.3 m d = 0.45 m

h = 0.50 m As2 = 0 cm2

fss = 320 MPa fcs = –11.7 MPa

αe = 16.5 [2.87]

Figure 2.9. Design of a reinforced concrete rectangular cross-section at serviceability limit
state for composed bending state with combined axial forces; solicitation defined at the center

of gravity of the cross-section

The exercise consists of designing the tensile steel reinforcement of this
reinforced concrete beam solicitated in composed bending with normal
compression. In the second part of the problem, it is suggested to control the
design of a given reinforced concrete section for a given solicitation in
composed bending with normal compression, or equivalently for a given
loading eccentricity (see Figure 2.10). For an easier resolution of the
problem, the design is decomposed into different steps that can be helpful for
optimizing the design of this reinforced cross-section at SLS.
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Figure 2.10. Interaction diagram in the normal force – bending moment space

1) Determine the screw reduction elements (moment MEd and normal
force NEd) of the external screw forces evaluated at the frame origin.

2) In this question, the characterization of the pivot AB is investigated. It
is recalled that the pivot AB is defined at the boundary of Pivot A and Pivot
B from a stress at the upper fiber equal to fcs and a stress at the center of
gravity of the tensile steel reinforcement (lower fiber) equal to fss. Give the
value αAB of the relative depth of this limit case. By considering that MAB is
the associated moment of this limit case, calculate this bending moment and
conclude on the type of pivot that controls the design of this rectangular
cross-section with this solicitation.

3) Give the analytical expression of the nonlinear equation for this pivot
with respect to the dimensionless position of the neutral axis, and solve this
polynomial equation with the given data of the problem, especially with the
external solicitation given by {MEd, NEd}.

4) Under the action of the external screw {MEd, NEd}, calculate the stress
level in the upper fiber of concrete σc,sup, the stress in the tensile steel
reinforcement σs1 and the steel area As1 of the steel reinforcement needed at
the SLS. This will conclude the design of the reinforced concrete section for
the given solicitation.

5) For the following, we would like to control the design of a given
reinforced concrete section, with the tensile steel reinforcement composed of
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6HA 14 (with As1= 9.236 cm2). Under the action of the external screw
{MEd, NEd}, calculate the stress level in the upper fiber of concrete σc,sup, the
stress in the tensile steel reinforcement σs1 and check the design of this
reinforced concrete section at the SLS.

2.3.4.1.2. Resolution

1) The external screw forces evaluated at the origin point O are calculated
from the screw forces given at the point G from the transport rule:

( )0.11 0.095 0.45 0.25 0.129 MN.m
2

0.095 MN

Ed G G

Ed G

hM M N d

N N

⎧ ⎛ ⎞= − − = + × − =⎪ ⎜ ⎟
⎝ ⎠⎨

⎪ = = −⎩ [2.88]

It can be checked that MEd ≥ MG, which is physically consistent with
respect to the applied load. The equivalent eccentricity of the external screw
forces is also calculated from:

1.35789m
2

Ed G
Ed

Ed G

M M he d
N N

= = − + = − [2.89]

2) The limit case at Pivot AB is characterized by the limit values:

αAB =
αefcs

αefcs - fss
= 0.376279⇒MAB=

αAB
2(3 - αAB)

6 αe(1 - αAB)
bd2fss

= –
αAB(3 -αAB)

6 bd2fcs = 0.11695MN⋅m [2.90]

It is easy to check that MEd ≥ MAB and the section behaves at Pivot B at
the SLS.

3) At Pivot B, the dimensionless position α of the neutral axis is
expressed in dimensionless format with:

α= 1,5(1– 1-
8
3 .

-Mser
bd2fcs) = 0.42248; σc,sup = fcs= –11.7 MPa

andσs1= -
αe(1 - α)

α fcs= 263.89 MPa [2.91]
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4) The tensile steel reinforcement area needed at the SLS is then
calculated from:

As1 =
-αNact

αefcs(1-α)
+

α2bd
2 αe(1-α)

= 9.04356 cm2 [2.92]

5) For the verification of the reinforced concrete cross-section, a cubic
equation has to be solved from:

3 2
1 1

1

3 1 6 6 0

with 3.0175 and 0.11288

Ed Ed Ed
s s

Ed
s

e e e
d d d

e
d

α α ρ α ρ

ρ

⎛ ⎞− + − + =⎜ ⎟
⎝ ⎠

= − = [2.93]

Cardano’s method is used to solve this cubic equation.

3 2 0with
1, 6.0526, 2.0438and

a b c d
a b c d c
α α α+ + + =
= = + = = − [2.94]

We use Cardano’s method to compute the root of this cubic. The
canonical parameters are calculated from:

2

2

2 3

3

3 10.1676 and
3

27 2 9 10.2575
27

ac bp
a
a d b abcq

a

−= = −

+ −= = [2.95]

It can be checked that 3 24 27 1363.73 0,p q+ = − < and the cubic
equation admits three real solutions (see Appendix 1), calculated from the
following term ( )cos 3 2 3 2.5357,Arc q p p− = and leads to:
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1

2

3

3 3cos 2
2

2 cos 5.6246
3 3 3

3 3cos 4
2

2 cos 0.8536
3 3 3

3 3cos
2

2 cos 0.42567
3 3 3

qArc
p pp b

a

qArc
p pp b

a

qArc
p pp b

a

π
α

π
α

α

⎧ ⎡ ⎤⎛ ⎞
+⎪ ⎢ ⎥⎜ ⎟⎜ ⎟−−⎪ ⎢ ⎥⎝ ⎠= − = −⎪ ⎢ ⎥

⎪ ⎢ ⎥
⎪ ⎢ ⎥⎣ ⎦⎪
⎪ ⎡ ⎤⎛ ⎞

+⎪ ⎢ ⎥⎜ ⎟⎜ ⎟−−⎪ ⎢ ⎥⎝ ⎠= − = −⎨ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎢ ⎥⎣ ⎦⎪
⎪ ⎡ ⎤⎛ ⎞⎪ ⎢ ⎥⎜ ⎟⎜ ⎟−⎪ − ⎢ ⎥⎝ ⎠= − =⎪ ⎢ ⎥
⎪ ⎢ ⎥

⎢ ⎥⎣ ⎦⎩
⎪

[2.96]

The third solution is the physical solution of the problem α = 0.42567.
The stress in the most compressed fiber of concrete is calculated from:

( ) ( ) ( )

( ) ( )

,sup
2

1 2

6

2 4

2
0.095 10 0.42567 0.45 11.63 MPa0.3 0.42567 0.45 16.5 0.42567 0.45 0.45 9.326 10

2

ser
c

e s e s

N d
b d d d A d d A

ασ
α α α α α

−

=
′+ − + −

− × × ×= = −
× × + × × − × ×

and
( ) ( ) 6

1 sup
0.45 0.42567 0.45 16.5 11.63 10 258.9 MPa

0.42567 0.45
α

σ α σ
α
− − ×= − = × × × =

×s e c

d d
d

[2.97]

It is easy to check that sss f≤1σ and csc f≤sup,σ . Clearly, the section

is correctly designed at the SLS, and its behavior is close to the one in
Pivot B.

2.3.4.2. Design of a specific T-cross-section

2.3.4.2.1. Data of the problem

A T-cross-section of a reinforced concrete beam is solicited in composed
bending with normal forces. The external screw elements are given at the
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point O chosen at the center of gravity of the tensile steel reinforcement (see
Figure 2.8). The data of the problem are given below:

MO = 0,49MN.m NO = –0.49MN
b = 0.7 m d = 1. m
bw = 0.3 m d’ = 0.05 m
h = 1,10 m h0 = 0.18 m
fss = 240MPa fcs = – 15MPa
αe = 8 As2 = 0.848 cm2 (3φ6) [2.98]

The exercise consists of designing the tensile steel reinforcement of this
reinforced concrete beam solicitated in composed bending with normal
compression. The calculation of the tensile steel area needs to determine
analytically and numerically the function Mres,s(α), where Mres,s is the
resistant moment of the cross-section at SLS, evaluated at the center of
gravity of the tensile steel reinforcement and α is as usual the dimensionless
depth of the neutral axis position.

It can be shown that the function Mres,s(α) is continuous in the domain
[0, h/d] and is exactly known at least in each sub-interval as a piecewise
function. The total domain for the variation of the neutral axis position α is
subdivided into sub-domains connected at some characteristic points
associated with a material or a geometrical discontinuity. These characteristic
values can be classified in a formal suite (α0, α1, α2, …,αn) of [0,h/d] with
α0= 0<α1<α2< …<αn = h/d such that for each i∈ {1, 2,…,n}, there exists an
applicationMbi(α), that is continuous in [αi-1, αi] and verifies:

, 1

, 1

, 0 1 0

,

( ) ( ) [ , ]
( ) ( ) ( ) {0, 1, 2, , 1}
( ) ( )
( ) ( )

res s bi i i

res s i bi i bi i

res s b

res s n bn n

M M
M M M i n
M M
M M

α α α α α
α α α
α α
α α

−

+

= ∀

= = ∀ ∈ −

=

=

…

Each function Mbi(α) can be called a “branch” of Mres,s(α), which differs
from each other from the discontinuous nature of the material or the
geometrical characteristics of the reinforced cross-section. The choice of the
relevant branch with respect to the design of a given reinforced concrete
section can be done from the comparison of the boundary moments with
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respect to the serviceability moment Mact,s, leading to a unique nonlinear
equation to be solved for the determination of the position of neutral axis α.

For an easier resolution of the problem, the design is decomposed into
different steps that can be helpful for optimizing the design of this reinforced
cross-section at SLS.

1) Let us fix εc,sup= 0 (or equivalently α = 0). Determine for this particular
position of the neutral axis, the expression of the resistant moment M0 with
respect to the variables of the problem.

2) We are now interested in calculating the resistant moment Mt at SLS,
which corresponds to the position of the neutral axis located at the distance
h0 from the upper fiber of the cross-section (boundary between the flanged
portion of the beam and the web). After explaining the pivot associated with
this limit case, it is suggested, to find analytically, this bending momentMt.

3) In this question, the characterization of the pivot AB is investigated. It
is recalled that the pivot AB is defined at the boundary of Pivot A and Pivot
B from a stress at the upper fiber equal to fcs and a stress at the center of
gravity of the tensile steel reinforcement (lower fiber) equal to fss. Give the
value αAB of the relative depth of this limit case. By considering that MAB is
the associated moment of this limit case, calculate this bending moment and
specify how the section can be calculated for this limit case (rectangular
cross-section or T-cross-section calculations).

4) After having classified different characteristic cases, analyze the type
of pivot and the type of calculation (rectangular cross-section or T-cross-
section calculations), which is needed for the design of this T-cross-section
at SLS. Give the analytical expression of the nonlinear equation for this
pivot with respect to the dimensionless position of the neutralaxis α.

5) Under the action of the external screw {MO, NO}, calculate the stress
level in the upper fiber of concrete σc,sup, the stress in the tensile steel
reinforcement σs1 and the steel area As1 of the steel reinforcement needed at
the SLS.

2.3.4.2.2. Resolution

1) In this case, the neutral axis is located at the upper fiber of the
reinforced concrete section, α= 0, meaning that the cross-section is fully in
compression or in tension. At Pivot A, the lower steel reinforcements of area
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As1 are in tension with a strain value εs1= fss/Es. By neglecting the tensile part
of the concrete, the bending moment M0 is simply calculated from:

( ) ( ) 4
0 2 2 2 9.6672 10 MN ms s s s ssM A E d d A f d dε δ −′ ′ ′= − − = − − = − × ⋅ [2.99]

This negative sign of the bending moment is linked to the tension
behavior of the upper steel reinforcement of area As2. The reduced moment

( )2
0 0 w csM b d fμ ⎡ ⎤= −⎣ ⎦ is equal to

4
0 2.148 10μ −= − × .

2) The limit case at the boundary between the rectangular cross-section
and the T-cross-section is obtained from αt = h0/d = 0.18 <αAB=αe.fcs/(αe.fcs–
fss) = 0.3333. It means that this case is typically ruled by Pivot A for a
rectangular cross-section:

Mt =
α-δ’
1-α (d-d’)As2.fss +

α2(3 - α)
6 αe(1 - α)bd

2fss⇒Mt= 0.39305MN⋅m [2.100]

We calculate, in this case, the reduced moment
( )2 0.08734t t w csM b d fμ ⎡ ⎤= − =⎣ ⎦ .

3) As αt = h0/d < αAB , the calculation of the resistant moment at Pivot AB
is necessarily associated with the T-cross-section formulae as:

MAB=
αAB-δ’
1- αAB

(d-d’)As2.fss +
αAB

2(3 - αAB)
6 αe(1 - αAB)

bd2fss

-
(αAB - h0/d)2(3 -2 h0/d- αAB)

6 αe(1 - αAB)
(b – bw)d2fss

⇒ MAB = 1.401076 MN⋅m [2.101]

We calculate, for Pivot AB, the reduced moment equal to
( )2 0.31135AB AB w csM b d fμ ⎡ ⎤= − =⎣ ⎦ .

4) For the solicitation (M0 = 0.49 MN⋅m; N0 = 0.49 MN), we have
[ ]0 ;t ABM M M∈ and then the section is controlled by Pivot A with a T-cross-

sectional calculation. The cubic equation for the determination of the
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position of the neutral axis at Pivot A for a T-cross-section is given by
equation [1.102] with the coefficients numerically calculated as:

( )

( )

3 2
0 1 2 3

0

1

2 0 0
2 2

2
2 0 0

3 2

0 with

0.428571

3 1.285714

1
6 3 2 1 0.707124

1 26 3 1 0

w

w

s w
e

ss

s w
e

ss

a a a a
ba
b
ba
b

AM h h ba
bd d d bbd f

AM h h ba
bd d d bbd f

α α α

δ
α

δ δ
α

+ + + =

= =

= − =

⎛ ⎞′− ⎛ ⎞⎛ ⎞⎛ ⎞= − + − − − = −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞′ ′− ⎛ ⎞ ⎛ ⎞⎛ ⎞= + + + − − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
.189154

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

[2.102]

Cardano’s method is used (see Appendix 1), with the canonical
parameters calculated as:

p= –4.649956; q = –3.208597 and finally,

α=2 -
p
3cos⎣

⎢
⎢
⎡

⎦
⎥
⎥
⎤Arc cos ⎝⎜

⎛
⎠⎟
⎞3q

2p -
3
p + 4π

3 -
b
3a

= 0.199768 [2.103]

5) At Pivot A, the stress in the tensile steel reinforcement is equal to the
steel serviceability stress limit σs1 = fss. The steel area is obtained from the
normal force equilibrium equation:

As1 =
Nact
fss +

α1-δ’
1 - α1

As2 +
α1

2 bd
2αe(1-α1)

-
(α1 - h0/d)2 (b-bw)d

2αe(1-α1)

= 1.438 008 cm2 [2.104]

We finally obtain for this T-cross-section designed at Pivot A, As1 =
1.44 cm2. We can design the cross-section with 3φ8 (1.508 cm2).
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In this case, as shown in Figure 2.11, the section behaves in Pivot A
and is quite far from the Pivot AB. Equations of each branch can be
analytically given. For instance, the expression of the reduced moment
branch in Pivot A when the cross-section behaves as rectangular
cross-section is given by:

( )( ) ( )
( )

2
2 1 3

1 6 1
s ss ss

e cs e w cs

f fb
f b f

δ α δ α αρμ
α α α α

′ ′− − −⎛ ⎞ ⎛ ⎞− −
= +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

with
( )2

w cs

M
b d f

μ =
−

,
d
d

δ
′′ = and ρs2 =

αeAs2
bwd [2.105]

The branch in Pivot A but with a complete T-cross-sectional behavior is
given by:

( )( ) ( )
( )

( )

2
2

2
0 0

1 3
1 6 1

3 2
1

6 1

s ss ss

e cs e w cs

ss

e w cs

f fb
f b f

h h
fbd d

b f

δ α δ α αρμ
α α α α

α α

α α

′ ′− − −⎛ ⎞ ⎛ ⎞− −
= + −⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞− − −⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎛ ⎞−⎝ ⎠ ⎝ ⎠ −⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
[2.106]

Finally, the branch in Pivot B but with a complete T-cross-sectional
behavior is given by:

( )( ) ( )
2

0 0

2
3 23

1 1
6 6

s

w w

h h
b bd d
b b

α αα αρμ δ α δ
α α

⎛ ⎞ ⎛ ⎞− − −⎜ ⎟ ⎜ ⎟− ⎛ ⎞⎝ ⎠ ⎝ ⎠′ ′= − − + − −⎜ ⎟
⎝ ⎠

[2.107]

The continuous branches shown in Figure 2.11 are specific of the cross-
section. For the solicitation investigated in the problem, the cross-sectional
behavior is materialized by a point with the coordinates
( ) ( ), 0.1998;0.1088α μ = .
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Figure 2.11. Moment versus the position of neutral axis for each branch; design of a
reinforced concrete T-cross-section

2.4. Deflection at Serviceability Limit State

2.4.1. Effect of crack on the bending curvature relationship

2.4.1.1. Tension stiffening phenomenon

As reported in Eurocode 2, the appearance and utility of the structure may
be impaired when the calculated sag of a beam, slab or cantilever subjected
to quasi-permanent loads exceeds a beam’s span/250. The sag is relative to
the supports. Deflections that can damage adjacent parts of the structure
should be limited. For the deflection after construction, a beam’s span/500 is
normally an appropriate limit for quasi-permanent loads.

The deflection control at SLS is then formulated as:

ff ≤ [2.108]

where 500f L= for structures where adjacent parts should not be affected
by the deflection of the beam (with a span length equal to L) or 250f L= in
the other cases. The deflections are computed from an applied load with a
nonlinear bending-curvature constitutive law that takes into account both the
reduction of stiffness due to the cracking process in the tension part of
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concrete and the time-dependent phenomena such as creep that softens the
apparent stiffness of the reinforced concrete beam. Consider the bending
behavior of a reinforced concrete beam, as shown in Figure 2.12.

Figure 2.12. Moment-curvature relationship at serviceability limit state for the calculation of
deflection including tension stiffening phenomenon

The law to calculate the reduction of stiffness is the following:

( )1
II I

M M
EI EI

κ ζ ζ= + − [2.109]

whereκ is the curvature, M is the bending moment, IEI is the bending
stiffness of the uncracked beam, and IIEI is the bending stiffness of the
cracked beam. For physical reasons linked to the micro-cracking process, the
stiffness of the damaged beam is smaller than the stiffness of the undamaged
beam II IEI EI≤ .

Note that this law can also be formulated as:

( )with
1

I II
e e

I II

EI EIM EI EI
EI EI

κ
ζ ζ

×= =
+ −

[2.110]

The contribution of the cracking part of concrete in the global stiffness of
the reinforced concrete beam is called the tension stiffening effect.
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In Eurocode 2, the distribution coefficient is an empirical coefficient that
is assumed to be dependent on the bending variable as:

2

11 with
2

cr x xM x
M

ζ β
+⎛ ⎞= − =⎜ ⎟

⎝ ⎠
[2.111]

In the above equation, 0ζ = corresponds to the uncracked section and
1ζ = corresponds to the cracked section. 1β is a coefficient that takes into

account the time-dependent effects: 1 1β = for short-term analyses and

1 1 2β = for long-term analyses (typically in case of permanent or quasi-
permanent loading). In fact, ζ could be interpreted as a cross-sectional
bending damage parameter, even if the law is essentially a hardening law.

crM is the cracking moment that is associated with a stress value in the
lower fiber of concrete ,infcσ equal to the uniaxial tensile strength of

concrete ctmf in the uncracked section.

With respect to deflection control, the long-term analysis is the most
unfavorable, and creep effects have to be taken into account with the creep
coefficient ϕ given in equation [1.71] to derive the effective Young’s
modulus of concrete ( ), 01 , .c eff cmE E tφ= + ∞⎡ ⎤⎣ ⎦ Shrinkage effects should also
be added for an exhaustive design.

2.4.1.2. Uncracked section

2.4.1.2.1. Uncracked section – rectangular cross-section

Consider a rectangular cross-section as shown in Figure 1.28. This
section is the uncracked section, meaning that we do take into account the
tension part of concrete. We calculate the parameters of the uncracked
homogenized section as follows. The position of the neutral axis is obtained
from the upper fiber of the cross-section as:

( )
( )

( ) ( ) ( )

2

1 2

1 2

33
2 2

1 2

2 and

3 3

e s s

I I
e s s

II
I e s I s I

bh A d A d
y d

bh A A

b h ybyI A d y A y d

α
α

α

α

′+ +
= =

+ +

− ⎡ ⎤′= + + − + −⎣ ⎦
[2.112]
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The equivalent stiffness of the uncracked section is then , .I c eff IEI E I= ×

The cracking moment can be explicitly calculated from:

,inf
ctm I

c ctm cr
I

f If M
h y

σ ×
= ⇒ =

−
[2.113]

We note that this critical moment does not depend on the solicitation, but
only depends on the material and geometrical parameters of the reinforced
concrete cross-section.

2.4.1.2.2. Uncracked section – T-cross-section

For a T-cross-section, the formula valid for the rectangular cross-section
can be generalized as following, when the neutral axis of the uncracked
section is located in the web:

( ) ( )
( ) ( )

( )( ) ( )

( ) ( )

22
0

1 2

0 1 2
3 33

0

2 2
1 2

2 2 and

3 3 3

ww
e s s

I I
w w e s s

w I w II
I

e s I s I

b b hb h A d A d
y d

b h b b h A A

b b y h b h ybyI

A d y A y d

α
α

α

α

−
′+ + +

= =
+ − + +

− − −
= − + +

⎡ ⎤′− + −⎢ ⎥⎣ ⎦
[2.114]

The equivalent stiffness of the uncracked section is then , .I c eff IEI E I= ×

The cracking moment can be explicitly calculated from:

,inf
ctm I

c ctm cr
I

f I
f M

h y
σ ×

= ⇒ =
−

[2.115]

2.4.1.3. Cracked section

2.4.1.3.1. Cracked section – rectangular cross-section

In the cracked section with rectangular cross-section, we use the equation
of “static moment” to derive the neutral axis position from equations [2.15]
and [2.16] that are rewritten as:
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( ) ( ) ( )22
1 2 1 2 1 22e s s e s s e s s

II II
A A A A b A d A d

y d
b

α α α
α

′− + + + + +
= = [2.116]

The inertia of the homogenized cracked section is calculated from:

( ) ( )
3

2 2
1 23

II
II e s II e s II

byI A y d A y dα α ′= + − + − [2.117]

The equivalent stiffness of the cracked section is then , .II c eff IIEI E I= ×

We also note that the parameters of the cracked section do not depend on the
solicitation, but depend only on the material and geometrical parameters of
the reinforced concrete cross-section.

2.4.1.3.2. Cracked section – T-cross-section

In the cracked section with T-cross-section, we use the equation of “static
moment” to derive the neutral axis position from equations [2.26] and [2.27]
that are rewritten here as:

( ) ( ) ( ) ( ) ( ) ( ) 2
2 0

1 2 0 1 2 0 1 22
2

II II

w
e s s w e s s w w e s s

w

y d

b b h
A A h b b A A h b b b A d A d

b

α

α α α

=

⎡ ⎤−
′⎡ ⎤ ⎡ ⎤− + + − + + + − + + +⎢ ⎥⎣ ⎦ ⎣ ⎦

⎢ ⎥⎣ ⎦=

[2.118]

The inertia of the homogenized cracked section is calculated from:

( )( )

( ) ( )

33
0

2 2
1 2

3 3
w IIII

II

e s II e s II

b b y hbyI

A y d A y dα α

− −
= − +

′− + − [2.119]

The equivalent stiffness of the cracked section is then , .II c eff IIEI E I= ×

2.4.1.4. On the nonlinear bending-curvature constitutive law at SLS

In the post-cracked section, a nonlinear bending curvature constitutive
law appears that can be presented as a damage law.
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1

and

1 1

cr
cr

I I

cr cr
cr cr

I II II I

M M
EI EI

M MM M
EI EI EI EI M

κ κ κ

κ κ κ β

≤ = ⇒ =

⎛ ⎞
≥ = ⇒ = − −⎜ ⎟

⎝ ⎠
[2.120]

The nonlinear post-cracked curvature-bending moment is continuous for
1 1.β =

2.4.2. Simply supported reinforced concrete beam

A simply supported reinforced concrete beam is studied, loaded by some
uniform distributed load at the SLS denoted by pser. The beam has a length L.
The bending moment is parabolic in this statically determinate system, and is
given, for [ ]0;x L∈ , by:

( )
22

2
serp L x xM x

L L
⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
[2.121]

It is assumed that the reinforcement is homogeneous along the beam. For
symmetrical reasons, two symmetrical parts of the beam of length LI can be
highlighted with an uncracked behavior (see Figure 2.13):

[ ] [ ]for 0; and ;I I IM EI x L x L L Lκ= ∈ ∈ − [2.122]

The length IL corresponds to a bending moment that is equal to the
critical moment:

( )
2

2
2 0crI I

I cr
ser

ML LM L M
L L p L

⎛ ⎞ ⎛ ⎞= ⇒ − + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

[2.123]

The smallest solution is of interest, with respect to the notation of
Figure 2.13, which is written as:
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2 2

81 1
for

2 8

cr

ser serI
cr

M
p L p LL M

L

− −
= ≥ [2.124]

Figure 2.13. Simply supported reinforced concrete beam loaded by uniform loads; definition
of cracked and uncracked portion of the beam

For the cracked part of the beam, namely for [ ];I Ix L L L∈ − , a detailed
structural analysis is needed for the integration of the nonlinear constitutive
law along the beam.

2.4.3. Calculation of deflection – safe approach

The safer approach (approach in security) would consist of neglecting the
tension stiffening effect of concrete. In this simplified approach, the cracked
section is assumed along the entire beam:

[ ]for 0;IIM EI x Lκ= ∈ [2.125]

In this case, this simplified approach leads to the deflection of the cracked
beam:

45
384

ser
II

II

p Lf f
EI

= ≤ [2.126]
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This approach is equivalent to neglecting the tension stiffening effect and
to neglecting the uncracked contribution of the beam around the supports. If
this inequality is checked, it is not necessarily to refine the approaches to
control the deflection.

2.4.4. Calculation of deflection – a more refined approach; tension
stiffening neglected

A more refined approach would be based on the following constitutive
law:

[ ] [ ]
[ ]

for 0; and ; , and

for ;
I I I

II I I

M EI x L x L L L

M EI x L L L

κ
κ

= ∈ ∈ −

= ∈ − [2.127]

The uncracked contribution of the beam around the supports is taken into
account, but the tension stiffening effect in the cracked portion of the beam
is neglected, and approximated by the fully cracked section behavior. For
homogeneous reinforcement along the beam, this engineering approach is in
fact equivalent to a piecewise homogeneous beam with two different
stiffnesses IEI and .IIEI In this case, the deflection in the beam can be
calculated from the integration of second-order differential equations given
by:

[ ]
22

22

for 0; , and
2

for ;
2 2

ser
I I

ser
II I

p L x xEI w x L
L L

p L x x LEI w x L
L L

⎡ ⎤− ⎛ ⎞′′ = − ∈⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤− ⎛ ⎞ ⎡ ⎤′′ = − ∈⎢ ⎥⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎢ ⎥⎣ ⎦
[2.128]

For a symmetrical reason, only half of the beam is considered in the
study. The boundary conditions at the connection Ix L= express the
continuity of the deflection ( )w x and the slope angle ( ) :w x′

( )0 0, 0, ( ) ( ) and ( ) ( )
2 I I I I
Lw w w L w L w L w L− + − +⎛ ⎞′ ′ ′= = = =⎜ ⎟

⎝ ⎠
[2.129]

The deflections in each part of the beam are finally calculated as:



Verification at Serviceability Limit State (SLS) 115

( )
2 2 33 4

2 1
2 6 12 2 2 3
ser ser I I I

I I II

p L p EI LL Lx xw x x
EI L L EI EI

⎛ ⎞⎛ ⎞⎡ ⎤−= − + − − +⎜ ⎟⎜ ⎟⎢ ⎥
⎣ ⎦ ⎝ ⎠⎝ ⎠

3

24
ser

II

p L x
EI

for [ ]ILx ;0∈ , and

( )
2 33 4

22 6 12 24
ser ser

II II

p L p L xx xw x
EI L L EI

⎡ ⎤−= − + +⎢ ⎥
⎣ ⎦

3 4

1
2 3 4

ser II I I

II I

p EI L L L
EI EI

⎛ ⎞⎛ ⎞
− −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
for ;

2I
Lx L⎡ ⎤∈ ⎢ ⎥⎣ ⎦

[2.130]

The deflection at mid-span ( )2f w L= is presented in the following
format:

4

3 44

5with and
384

1 11
2 3 4

ser
II II

II

ser II I I

II I

p Lf f f f
EI

p L EI L Lf
EI EI L L

= − Δ =

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ = − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎣ ⎦

[2.131]

As anticipated, the deflection with this model is smaller than the
deflection of the cracked section IIf f≤ . It is also easy to check the
correctness of these formulas for the limit cases:

, 0 and
2II I II I I II I I
LEI EI f f f L f f L f f= ⇒ = = = ⇒ = = ⇒ = [2.132]

It is quite interesting to outline that the deflection f in equation [2.131]
is a nonlinear function of the load serp due to the nonlinear dependence of

IL with respect to serp , as given by equation [2.124]. Clearly, this
calculation is not based on elastic constitutive laws.

With this model, the deflection, Δf, has to be subtracted from the
deflection fII of the cracked beam, which can be finally presented as:
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3 4

2 4 4

384 1 1 with
10 3 4

81 1
5 5

, and
2 384 384

I I

II I

cr

ser ser serI
I II

I II

L Lf
f f L L

M
p L p L p LL f f

L EI EI

⎡ ⎤Δ ⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

− −
= = = [2.133]

2.4.5. Calculation of deflection – a more refined approach; tension
stiffening included

It is possible to take into account the tension stiffening effect with the
nonlinear bending-curvature constitutive law.

A more refined approach would be based on the following constitutive law:

[ ] [ ]

[ ]1

for 0; and ; ,

1 1and for ;

I I I

cr
cr I I

II II I

M EI x L x L L L

MM M x L L L
EI EI EI M

κ

κ β

= ∈ ∈ −

⎛ ⎞
= − − ∈ −⎜ ⎟

⎝ ⎠
[2.134]

In this case, the deflection in the beam can be calculated from the
integration of second-order differential equations given by:

[ ]
22

22

1 2
2

for 0; , and
2

21 1 for ;
2 2

ser
I

I

ser cr
cr I

II II I
ser

p L x xw x L
EI L L

p L Mx x Lw M x L
EI L L EI EI x xp L

L L

β

⎡ ⎤− ⎛ ⎞′′ = − ∈⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤ ⎛ ⎞− ⎛ ⎞ ⎡ ⎤′′ = − + − ∈⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎡ ⎤⎝ ⎠ ⎣ ⎦⎢ ⎥ ⎝ ⎠ ⎛ ⎞⎣ ⎦ −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

[2.135]

Integrating each second-order differential equation, and introducing the
same boundary conditions as in equation [2.129], leads to the deflection
solution:
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The deflection at mid-span ( )2f w L= can be presented in the following
format:
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Finally, when the tension stiffening phenomenon is taken into account,
the deflection correction fΔ has to be subtracted from the deflection IIf of
the cracked beam, which can be finally presented as:
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This result coincides with the deflection calculation presented in the
worked examples of EC2 [EUR 08a].

Of course, in the most general configuration, including, for instance,
variable steel reinforcement along the beam, an analytical integration is not
always feasible, and a numerical integration has to be performed.

2.4.6. Approximated approach

Another engineering approach presented in the literature consists of
expressing the deflection as a combination of the deflection of the cracked
and the uncracked section as:
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Applying this engineering approach to the present simply supported beam
leads to the correction deflection:
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8
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[2.140]

The two approaches (the exact one with and without tension stiffening
effect) and the engineering approach are compared in Figure 2.14. It can be
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seen that the engineering approach gives a safer result than the exact one
including the stiffening effect, as the correction deflection is smaller for the
engineering approach than for the exact one. It is also shown that the tension
stiffening effect is significant with respect to the deflection correction term
neglecting this phenomenon.

Figure 2.14. Effect of the tension stiffening phenomenon on the deflection
behavior of the cracked beam; 1 1β =

2.4.7. Calculation of deflection – a structural example

2.4.7.1. Data of the problem

We consider a reinforced concrete beam with a rectangular cross-section.
As shown in Figure 2.13, the simply supported beam is loaded by some
uniform serviceability load pser.

The data of the problem are the following:

fck = 25MPa L = 10 m
b = 0.5 m d = 0.65 m
h = 0.70 m As1 = 31.67 cm2 (7φ24)
ϕ = 2...... pser = 38. kN/m [2.141]

This reinforced concrete section has no compression steel reinforcement,
As2 = 0.
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Given the creep coefficient ϕ = 2, the equivalent coefficient αe can be
calculated.

( ) 200,0001 3 19.06
31,475.81

s
e

cm

E
E

α φ= + = × = [2.142]

where the mean value of the concrete Young’s modulus has been given for
this C25/30 type concrete in equation [1.72]. The question is to check the
SLS for the deflection control.

2.4.7.2. Characteristics of the uncracked section

From equation [2.112], we calculate the position of the neutral axis of the
uncracked section yI and the associated homogenized inertia I1 as:
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The cracking moment can be explicitly calculated from:
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6 22
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We calculate the load ratio as:
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[2.145]

The length of the uncracked part of the beam, denoted by IL , is
calculated from equation [1.247] as:

1 1 0.33408 0.09198
2

IL
L

− −= = [2.146]
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The stiffness of the uncracked section is obtained from:

6
2 8 231475.81 10 1.8925 10 1.985599 10 N.m

3IEI −×= × × = × [2.147]

2.4.7.3. Characteristics of the cracked section

The characteristics of the cracked section are given by equations [2.116]
and [2.117] and are detailed below:
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The stiffness of the cracked section is obtained from:

6
2 8 231475.81 10 1.1885 10 1.246967 10 N.m

3IIEI −×= × × = × [2.149]

2.4.7.4. Calculation of deflection

We compute the characteristics deflection ,If IIf and f from:
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It can be seen that IIf f> and the deflection control needs to take into
account the tension stiffening effect to check the admissible maximum
deflection.

From equation [2.137], the correction deflection induced by the tension
stiffening phenomenon is calculated for 1=β as:
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We calculate the total deflection including the tension stiffening effect as:

( )41.63 0.169 41.63 24.92 38.80 mm < 40 mmIIf f f f= − Δ = − × − = = [2.152]

We conclude that this beam is correctly designed with respect to the
deflection control at SLS. Note that the approximated engineering formula
(which is safe with respect to the exact one including rigorously the tension
stiffening effect) would lead in this case to:
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In this case, the deflection SLS would have been possibly checked with
this simplified engineering formula.
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Chapter 3

Concepts for the Design at Ultimate
Limit State (ULS)

3.1. Introduction to ultimate limit state

3.1.1. Yield design

The purpose of designing a reinforced concrete structure is to achieve
acceptable probabilities that this structure under a given load will not reach a
limit state, namely the serviceability limit state (SLS) or the ultimate limit
state (ULS). In this chapter, the strength of ULS is presented for general in-
plane bending loading including the normal force coupling. The ULS is
characterized by the requirement that the structure must be able to withstand,
with an adequate factor of safety against collapse, to ensure the safety of
both the building’s occupants and the structure itself. The possibility of
buckling phenomenon or other kinds of structural instabilities has formally
also to be taken into account. However, in this chapter, we only focus on
sectional ULS without considering possible structural instabilities. The ULS
design can be based on the concept of yield design, where the maximum
capacity of a given structure under a given loading system can be evaluated
from the strength of its constituents (for a reinforced concrete structure, the
strength of the steel reinforcement, the strength of the concrete and the
strength of the interface between these constituents).

As greatly analyzed by Timoshenko [TIM 83], Yu and Zhang [YU 96],
Heyman [HEY 99] or Salençon ([SAL 90], [SAL 02] or [SAL 06]),
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Galileo’s dialogs (1638) are often considered as a fundamental pioneering
study of the strength of materials at the beam scale [GAL 02]. As detailed by
Salençon [SAL 06]:

“The main topic treated in the First Day and the Second
Day of Galileo’s Dialogs is the resistance that solids offer to
fracture with special consideration to prisms and cylinders
submitted to axial tensile loading or to “transverse”, i.e.
bending forces. Without any consideration to the deformation of
the considered solid before fracture, Galileo’s reasoning
implicitly introduces the concept of a Continuum within which
coherence forces do act in order to maintain the filaments,
fibres or any constituent particles together: one may say that
Galileo opens the way to the concept of stress, which was
settled explicitly some 200 years later. Having recognised that
coherence forces and gravity forces in a solid are not related in
the same way to its geometric scale, he performs what can be
considered as the first striking example of dimensional analysis
with application to similarity. In its celebrated analysis of the
resistance of a cantilever beam submitted to bending, Galileo
gives a first attempt to deriving the resistance of a whole solid
submitted to some kind of loading from the resistance of its
constituent material determined from another test.”

Galileo’s cantilever beam (shown in Figure 3.1) can be classified as a
structural paradigm as this structural model contains some stress gradient
along the beam, allowing for the so-called localization effect that we will
detail later.

Figure 3.1. The cantilever beam studied by Galileo (1638)
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“This approach must also be associated with Coulomb’s
celebrated essay (1773) as one of milestones of the theory of
yield design, implicitly evidencing the duality between forces
and virtual velocity fields, which is presently implemented in
the virtual rate of work method. The theory of yield design is the
fundamental root of the Ultimate Limit State design now
introduced in international codes for civil engineering”.

3.1.2. Application of yield design to the cantilever beam

3.1.2.1. A cantilever beam with general inelastic bending-curvature
constitutive law

The homogeneous cantilever beam of length L is loaded by a vertical
concentrated load P at its end (Figure 3.2). We recognize Galileo’s
cantilever beam previously solved by Galileo himself (1564–1642) using
equilibrium, strength and dimensional arguments. The cantilever beam
loaded by a concentrated force can be viewed as a typical case of plastic
beam with non-constant bending moment. The beam is assumed to behave
with a complex nonlinear bending-curvature constitutive law, including
possible irreversible phenomena.

The nonlinear bending-curvature constitutive law is considered as in
Figure 3.3. The bending strength criterion is simply given by the following
inequality:

( ) [ ]for 0;pM x M x L≤ ∈ [3.1]

where Mp is the yield moment (strength capacity of the cross-section).

Figure 3.2. The cantilever beam
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The reasoning that we will present here includes all kinds of structural
applications (reinforced concrete design, steel structural design, timber
engineering, etc.). When considering reinforced concrete design, the strength
capacity of the cross-section depends on the strength of the steel
reinforcement and the one of the concrete in compression. The reasoning is
independent of the constitutive law of the material and only depends on the
strength parameter Mp, which is the upper bending moment value. The
reasoning is independent of the history path in the bending-curvature space.

Figure 3.3. Possible nonlinear bending M-curvature κ law for a reinforced concrete member

Figure 3.4 also shows other possible bending-curvature constitutive law
included in the yield design reasoning, which is quite independent of the
path used to reach the strength limitMp.

Figure 3.4. Possible nonlinear bending-curvature law for a reinforced concrete member
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3.1.2.2. Static approach by inside

In the case of the cantilever beam, the structural system is statically
determinate, and the bending moment is then calculated without any
difficulties as a linearly decreasing function associated with a constant shear
force:

( ) ( )M x P L x= − − [3.2]

Introducing the bending moment expression in the strength criterion leads
to the optimization problem:

( ) [ ]Find the largest such as 0;pP P L x M x L− ≤ ∀ ∈ [3.3]

which is also equivalent to the following inequality:

/pP M L P+= ≤ [3.4]

P+ is the yield load or the maximum capacity of the beam with respect to
its local sectional strength constituent dependent on Mp. This approach is
called a static approach, and gives a lower bound of the value .P+ However,
from equation [3.3], as the moment distribution is the exact one of the
problem for this statically determinate problem, an upper bound of the
maximum capacity of the beam can also be obtained:

pM
P

L
+ ≤ [3.5]

This is also called static approach by outside (as detailed by Salençon
[SAL 02]).

3.1.2.3. Kinematic approach by outside

The same result can be obtained from direct application of the principle
of virtual work:

( ) [ ]
0

L

i
i

P w L M dx Mδ δκ δθ= +∑∫ [3.6]
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where [ ]δθ denotes the jump of any quantity δθ at the point of abscissa .is
The fundamental reasoning of the kinematic approach of yield design is
based on the surrounding of the internal work with respect to the strength
capacity of the beam [SAL 02]:

( ) [ ]
0

L

p p i
i

P w L M dx Mδ δκ δθ≤ +∑∫ [3.7]

The simplest virtual displacement field is the rigid mechanism defined by
one conventionally positive kinematic parameter 0:δθ

( ) 0xδθ δθ= [3.8]

The inequality equation [3.6] is then reduced to:

0 0
p

p

M
PL M P

L
δθ δθ +≤ ⇒ ≤ [3.9]

The present reasoning can be generalized to geometrically nonlinear
problems (see, for instance, [CHA 09a]).

3.1.2.4. Discussion on the meaning of the capacity load

In this simple statically determinate case, both static and kinematic
approaches give the same capacity load of the cantilever beam:

with /pP P P M L+ +≤ = [3.10]

Note that no constitutive law arguments have been introduced in the
reasoning. Only the ultimate limit moment denoted by Mp has been used.
The yield design theory gives us information about the maximum strength
capacity of this cantilever beam in bending, without answering the complex
problem of what would happen beyond this strength limit. It means that
designing this cantilever beam with respect to this strength capacity would
be safe, whatever the bending constitutive law considered at the sectional
level. The yield design theory also does not answer, generally speaking,
whether the strength capacity will be reached during the deformation
process. Only in the case of perfect plasticity (no hardening/softening
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processes) with associated flow rule, we can relate the capacity load with the
limit load of the elastic–plastic evolution problem.

3.1.3. Inelastic (plasticity or continuum damage mechanics) bending-
curvature constitutive law

3.1.3.1. Softening plasticity moment-curvature constitutive law

Figure 3.5. Softening plasticity constitutive law with plastic curvature κp

In this section, we will present two commonly used inelastic constitutive
laws, namely the plasticity and the damage constitutive laws. These two
constitutive laws can be viewed as two particular cases of the more general
laws introduced in Figure 3.4. The bending-curvature elastoplastic model
represented in Figure 3.5 is a standard plasticity model with negative
hardening (softening). Softening here means that the strength decreased
during the inelastic process.

Using the decomposition of the total curvature κ into an elastic part and
a plastic part, the moment-elastic curvature relation gives:

( )pM EI κ κ= − [3.11]

M

κ

Mp

O κp

EI
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where the slope of the bending moment-curvature curve is initially equal to
EI and pκ is the plastic curvature (see Figure 3.5). The plasticity yield

function f is given by:

( ) ( )* *, pf M M M M M= − + [3.12]

where *M is an additional moment variable that accounts for the loading
history. The plastic curvature rate pκ� is obtained using the normality rule:

( )sgnp
f M
M

κ λ λ∂= =
∂
� �� [3.13]

The plastic multiplier λ� must satisfy the complementary conditions:

( ) ( )* *0, , 0, , 0f M M f M Mλ λ≥ ≤ =� � [3.14]

Equation [3.14] can be viewed as the so-called optimality
Kuhn–Tucker conditions (see, for instance, [JIR 02] for a discussion on
Kuhn–Tucker conditions for inelastic analysis). For monotonic loading with
positive or negative bending moments, the plastic multiplier λ is simply
related to the absolute value of the plastic curvature .pλ κ=

The hardening/softening being linear, the following relation holds for the
“local” case:

( )*
p pM kκ κ= [3.15]

According to the sign of the plastic modulus ,k we can get a softening for
0k k−= < (as shown in Figure 3.5), or a hardening for 0.k k+= >

Note that the plasticity softening branch is obtained by combining
equation [3.11] with equation [3.12] leading to the linear relationship
between the bending moment and the curvature, which is expressed in the
case of softening plasticity as:
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[3.16]

The slope of the softening part of the bending-curvature relationship is
then equal to:

( ) EI kM
EI k

κ
−

−

×′ =
+

[3.17]

We will show later that such a “local” bending-curvature constitutive law
leads to the so-called Wood’s paradox where the propagation of the
plasticity inelastic zone cannot hold beyond the peak load. To avoid “local”
snapback, the following condition should be verified:

0EI k −+ ≥ [3.18]

3.1.3.2. Softening damage moment-curvature constitutive law

The continuum damage mechanics (CDM) moment-elastic curvature
relation is written as:

( )1M EI D κ= − [3.19]

where the slope of the bending moment-curvature curve is initially equal to
EI and D is the cross-sectional damage parameter that evolves between 0
and 1 (see Figure 3.6). The damage yield function f is given by:

( ) ( )* *, with p
Y Y

M
f

EI
κ κ κ κ κ κ= − + = [3.20]

where *κ is an additional curvature variable that accounts for the loading
history. The damage rate D� is obtained using the normality rule:

fD λ λ
κ

∂= =
∂
� �� [3.21]
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The plastic multiplier λ� must satisfy the complementary conditions:

( ) ( )* *0, , 0, , 0f fλ κ κ λ κ κ≥ ≤ =� � [3.22]

The hardening/softening being linear, the following relation holds for the
“local” case:

( )*

1

pM DD kEI D
EI k

κ =
− −

+

[3.23]

This damage law in the softening part is equivalent to equation [3.16].

Figure 3.6. Softening damage constitutive law with damage variable D

We will also show later that such a “local” bending-curvature constitutive
law leads to the so-called Wood’s paradox where the propagation of the
damage inelastic zone cannot hold beyond the peak load.

As far as no elastic unloading appears during the evolution problem, the
two plasticity and damage mechanics models presented above are
mathematically equivalent. However, in both cases, these kind of softening
models (plasticity or CDM models) cannot be used in such a local format, as
the structural problem to be solved, even for the simple cantilever case, is ill-
posed, as the inelastic localization zone cannot propagate in both cases.
Whatever the softening inelastic model considered, it can be shown that the
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beam cannot collapse with such kinds of models, as detailed in the next
section.

3.2. Postfailure analysis

3.2.1. Historical perspective

This section deals with the propagation of localization in hardening–
softening plasticity beams. The propagation of plasticity along a bending
beam is studied for a piecewise hardening–softening moment-curvature
relationship. Historically, moment-curvature relationships with softening
branch were first introduced for reinforced concrete beams [WOO 68].
Wood [WOO 68] did point out some specific difficulties occurring during
the solution of the evolution problem for plastic softening models. More
precisely, he highlighted the impossibility of the plastic softening beam to
flow, if the plastic curvature is assumed to be a continuous function in space,
a phenomenon sometimes called Wood’s paradox. Hardening–softening
plasticity models may concern a wide class of structural mechanics
problems. Such simplified models can be useful for the fundamental
understanding of bending of structural members at their ultimate state
(reinforced concrete members, timber beams, composite members, etc.). The
plastic buckling of tubes in bending can be also modeled with a hardening–
softening moment-curvature relationship. The bending response of thin-
walled members can also experience a softening phenomenon induced by the
local buckling phenomenon (see also [CHA 10b]).

Wood’s paradox is met for local softening moment-curvature
relationship. A non-local (gradient) moment-curvature constitutive relation
was introduced by Challamel [CHA 03] associated with some scale effects
for controlling the postfailure of softening beams. Non-local models at the
beam scale abandon the classical assumption of locality, and admit that the
bending moment depends not only on the state variables (curvature, plastic
curvature) at that point. Non-local inelastic models (damage or plasticity
models) were successfully used as a localization limiter with a regularization
effect on softening structural response in the 1980s. The non-local character
of the constitutive law, generally introduced through an internal length, is
restricted to the loading function (damage loading function or plasticity
loading function). Pijaudier-Cabot and Bažant [PIJ 87] first elaborated a
non-local damage theory, based on the introduction of the non-locality in the
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damage loading function. This theory has the advantage of leaving the initial
elastic behavior unaffected, and to control the localization process in the
post-peak regime. It is worth mentioning that this idea was already used
before to model shear bands. Gradient plasticity models (also called explicit
gradient plasticity models) and integral plasticity models may be
distinguished. In the case of explicit gradient plasticity models, the plasticity
loading function depends on the plastic strain and its derivative, whereas for
integral plasticity models, the plasticity loading function is expressed from
an integral operator of the plastic strain. Moreover, it can be shown, as in the
case of non-local elastic models ([ERI 83], see also [ELI 12]), that some
relevant integral plasticity models can be cast in a differential form [ENG 03].
These models are called implicit gradient plasticity models, but can be
viewed as particular cases of integral plasticity models with specific weight
functions defined as Green’s function of the differential operator [ENG 03].

More recently, an implicit gradient plasticity model was used at the beam
scale to solve Wood’s paradox in beams with moment gradient and without
hardening range ([CHA 08b] or [CHA 08c]). The localization phenomenon
is controlled by a non-local softening plasticity model, based on a
combination of the local and the non-local plastic variables (as suggested by
Vermeer and Brinkgreve [VER 94], see also [JIR 02]). It has been shown on
simple structural examples that the softening evolution problem was well
posed with this non-local constitutive law. In particular, the uniqueness of
the evolution problem is clearly obtained in the presence of gradient
moment, typically for a cantilever beam solicited by a vertical force. Note
that this uniqueness result of the evolution problem would not be obtained
for homogeneous structures with constant generalized stress (constant
moment) (see [DEB 92] for gradient plasticity models, or more recently for
the non-local beam problem [CHA 08c]). The same kind of results (loss of
uniqueness with uniform state of stress) has also been recently noticed by
Benallal and Marigo [BEN 07] for damage problems. Introduction of some
heterogeneities can restore the uniqueness property for these non-local
damage problems [CHA 09b]. Most of the presented theoretical results deal
with softening media without hardening range. Hence, up to now, very few
results are available for hardening–softening non-local plasticity media, even
if this configuration is of fundamental importance from an engineering point
of view.
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3.2.2. Wood’s paradox

The axial and transversal coordinates are denoted by x and ,y
respectively, and the transverse deflection is denoted by w . The stiffness of
the already cracked beam is denoted by EI (the tension stiffening effect is
neglected with respect to the specific reinforced concrete behavior). At the
end of the beam, the displacement ( )v w L= of concentrated force P is used
to control the loading process. The local moment-curvature relationship

,( )M κ considered is bilinear with a linear elastic part and a linear softening
part (Figure 3.5). The curvature κ is related to the displacement field thanks
to the kinematics wκ ′′= − . This model is first considered in a local form,
that is standard plasticity model with negative hardening. The non-local
extension will be investigated later in the chapter. pM is the limit elastic

moment, and Yκ is the limit elastic curvature, related through / .p YM EIκ =
In practice, the curvature cannot increase indefinitely and is limited by uκ
(the ultimate admissible curvature). However, such limitation is not taken
into account in the present study.

The maximum bending moment occurs at 0x = , where the beam is
clamped. Plastic rotation starts as soon as the bending moment reaches the
plastic bending moment .pM The maximum elastic displacement at the beam
end Yv and the corresponding load YP are given by:

2

and
3
p p

Y Y

M L M
v P P

EI L
+= = = [3.24]

For displacement v smaller than Yv ( )Yv v≤ , the beam remains elastic
and the deflection can be calculated using the elasticity solution. For v
greater than Yv ( Yv v≥ ), the plastic regime starts and the beam can be split
into an elastic and a plastic domain. The size of the plastic domain is denoted
by 0l L≤ (see Figure 3.2). We can introduce the notation of 0l

− for the
softening domain and 0l

+ for the hardening domain. Considering only the
softening problem in this section, the governing equations in the plastic
domain are:
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( ) ( ) ( )

( ) ( )00; :
p

p
p

EI w x x P L x
x l

P L x M
x

k

κ

κ

−

−

−

″⎧ ⎛ ⎞− − = − −⎜ ⎟⎪ ⎝ ⎠⎪⎡ ⎤∈ ⎨⎣ ⎦ − −⎪ =⎪⎩
[3.25]

where w− denotes the deflection in the plastic region. The elastic adjacent
domain is governed by:

( ) ( )0 ; :x l L EIw x P L x− +″⎡ ⎤∈ = −⎣ ⎦ [3.26]

+w is the deflection in the elastic region. The boundary conditions can be
summarized as:

( )

( )

( ) ( )
( ) ( )
0 0

0 0

0 0
and

0 0

w l w lw

w w l w l

− −− +−

− − −− +

⎧ =⎧ =⎪ ⎪
⎨ ⎨′ ′ ′=⎪ ⎪ =⎩ ⎩ [3.27]

The deflection ( )w x and the rotation ( )w x′ must be continuous functions
of x (in particular at the intersection of the elastic and the plastic domains).
Enforcing that pκ is also a continuous function of x 0( ( ) 0)p lκ − = , leads to:

( )0
0 0p

p

P L l M
l

PL M

−
−

⎧ − =⎪ ⇒ =⎨
≤⎪⎩ [3.28]

This additional assumption gives Wood’s paradox. The unloading elastic
solution is the only possible solution of the local softening problem, if
the plastic curvature is assumed to be a continuous function in space
(Figure 3.7). This paradox can also be interpreted as the appearance of
plastic curvature increments localized into one single section, leading to the
physically non-reasonable phenomenon of failure with zero dissipation. This
paradox is well documented in the literature ([WOO 68], [BAZ 76],
[ROY 01], [BAZ 03] and [CHA 05d]). A possible way to overcome Wood’s
paradox is to introduce a non-local plastic softening constitutive law (see
[CHA 08b], [CHA 08c]).
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Figure 3.7. Wood’s paradox – local softening plasticity models

Exactly the same reasoning can hold for the local damage softening beam
problem (with the constitutive law shown in Figure 3.6, for instance), which
is also associated with Wood’s paradox. For this kind of constitutive law, a
non-local damage softening also allows us to solve this apparent paradox.

3.2.3. Non-local hardening/softening constitutive law, a variational
principle

For the implicit gradient plasticity model, the non-local plastic curvature
pκ is defined as the solution of the differential equation:

2
p c p plκ κ κ

″
− = [3.29]

Therefore, a characteristic length cl is introduced in the definition of the
non-local plastic curvature pκ . As shown by Eringen [ERI 83] for non-local
elasticity, this differential equation clearly shows that the non-local plastic
curvature pκ is a spatial weighted average of the variable .pκ This spatial
weighted average is calculated on the plastic domain:

( ) ( ) ( )0

0
,

l

p px G x y y dyκ κ= ∫ [3.30]
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where the weighting function ( ),G x y is Green’s function of the differential
system with appropriate boundary conditions. The non-local
hardening/softening constitutive law of modulus k ( k k += for hardening
evolutions, k k −= for softening evolutions) including the associated
boundary conditions can be obtained from a variational principle, as already
obtained in the rate form for gradient plasticity [MUH 91]. The extension to
non-local plasticity is inspired by the micromorphic approach recently
developed for elastic and inelastic media, in a consistent thermodynamic
framework [FOR 09]. The following energy functional can be chosen:

( ) ( )( )

( ) ( )

22 2

0

2
2

1, 1
2 2 2

1 with
2

L

p p p

c p

k kW w EI w M

k l dx Pw L

χ κ λ λ ζ λ λ

ζ λ λ κ

′′⎡ ⎤ = − − + + + − − +⎣ ⎦

′⎛ ⎞− − =⎜ ⎟
⎝ ⎠

∫

[3.31]

where ζ is a dimensionless parameter that appears in the
hardening/softening evolution law. Following a classical procedure, also
used for explicit gradient plasticity models (see, for instance, [MUH 91]),
the overall domain can be divided into a plastic domain and an elastic
domain. The first variation of this energy functional leads to the extremal
condition:

( ) ( ) ( )

( )( ) ( )

( ) ( )

0

0

0

0 0

2

0

2

0

,

1 1

1 0
2

L l

p p p p p

l

c

l

c

W w EI w w dx EI w M

k dx k l

k l P w L

δ κ κ δ χ δκ δλ

ζλ ζ λ δλ ζ λ λ λ δ λ

ζ λ δ λ δ

′′ ′′ ′′⎡ ⎤ = − − − + − − − + +⎣ ⎦

″⎛ ⎞+ − − − − + +⎜ ⎟
⎝ ⎠

′⎡ ⎤− − =⎢ ⎥⎣ ⎦

∫ ∫

∫

[3.32]

Moreover, following a Green-type identity associated with the self-
adjoint property of the regularized operator for relevant boundary conditions,
and according to the definition of the non-local plastic curvature, the
following identity holds:

0 02 2

0 0
0

l l

c cl dx l dxλ λ λ δ λ λ λ λ δλ
″ ″⎛ ⎞ ⎛ ⎞− + = − + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠∫ ∫ [3.33]
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Therefore, using pM Mδκ δλ= , the first variation of the energy
functional can be also simplified as:

( )

( ) ( )

0

0

*

0 0

2

0

,

1 0
2

L l

p p

l

c

W w M w dx M M M dx

k l P w L

δ κ δ δλ

ζ λ δ λ δ

′′⎡ ⎤ = − − − + +⎣ ⎦

′⎡ ⎤− − =⎢ ⎥⎣ ⎦

∫ ∫

[3.34]

with the associated constitutive law for the elastic, and the non-local
hardening/softening law:

( ) ( )( )*and 1pM EI M kκ κ ζλ ζ λ= − = + − [3.35]

The following integration by part can be considered for the deflection:

[ ] [ ]
( )

0 00 0
with

L LL L

p

M w dx M w M w M w dx

M EI w

δ δ δ δ

κ

′′ ′ ′ ′′= − +

′′= −

∫ ∫
[3.36]

The extremal condition leads to the equilibrium equation and the yield
function:

*0and pM M M M′′ = = + [3.37]

with the natural boundary conditions:

( ) 0,M L = ( ) ,M L P′ = ( ) ( ) ,0 0w w′= ( ) ( ) ( )0 0 00 pl lλ λ κ
′ ′

= = = [3.38]

The high-order boundary conditions of the non-local plasticity model are
included in these equations, and are applied at the boundary of the
elastoplastic domain. Considering the higher order boundary conditions at
the elastoplastic boundary has the advantage to be variationally and
physically motivated. In this case, the non-local plastic variable is calculated
over the plastic domain (see equation [3.30] as for most integral-based non-
local plasticity models – see also Polizzotto et al. [POL 98] for the
thermodynamics background of integral-based non-local plasticity models).
For instance, a uniform plastic variable in the plastic domain would lead to a
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non-local variable that is identical. The introduction of the higher order
boundary conditions at the physical boundary of the solid would lead to
different results, as detailed in [CHA 10b]. Note that the non-local plastic
curvature does not necessarily vanish at the boundary of the elastoplastic
domain, whereas the plastic curvature is a continuous variable of the spatial
coordinate and vanishes at the boundary between the elastic and the plastic
domain.

Note that a different functional was considered in [CHA 08b] leading
to the same constitutive behavior with the same boundary conditions
[CHA 10b]:

22

0

1[ , ] ( )
2 2

( )
2

L

p p c

p

kW w EI w l

kM dx Pw L

κ κ ζ λ λ

λ λ λ

′′′ ′= − − +

+ + −

∫
[3.39]

The non-local plastic constitutive law appearing from the variational
principle is based on a combination of the local plastic curvature and the
non-local plastic curvature.

( )* 2with 1 cM k lλ λ ζλ ζ λ λ ζ λ′′= = + − = −� � [3.40]

Such a combination of local and non-local plastic variables was initially
proposed by Vermeer and Brinkgreve [VER 94] for softening evolutions. In
the present case, this model can also be written in the form of a differential
equation:

2 2* * [ ]c cM l M k lλ ζ λ′′ ′′− = − [3.41]

In the case of the cantilever beam, it is worth mentioning that the
non-local differential format looks like a gradient plasticity model:

2* *0 0 [ ]cM M M k lλ ζ λ′′′′ ′′= ⇒ = ⇒ = − [3.42]

However, the boundary conditions written in equation [3.38] for the
non-local plastic curvatures are different from the boundary conditions of
the usual gradient plasticity models dealing with only the derivative of
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the plastic curvatures. Equation [3.41] is the plasticity generalization of the
mixed elastic constitutive law investigated for a one-dimensional non-local
elastic bar ([CHA 09d]; see also [AIF 03] or more recently [AIF 11] and
[ELI 12]):

2 2
c cl E lσ σ ε ζ ε′′ ′′⎡ ⎤− = −⎣ ⎦ [3.43]

where σ and ε are the uniaxial stress and the uniaxial strain, respectively.
Equation [3.43] gives satisfactory results for a dispersive wave equation of
lattice models.

The sign of ζ controls the well-posedness of the plasticity evolution
problem for both hardening and softening behaviors (as shown in [CHA 08c]).
Typically, ζ can be understood as a regularization parameter. For hardening
evolutions, ζ + has to be positive, leading to the non-local hardening
constitutive law:

2
2* * 2 withc

c

aM l M k a
l

λ λ ζ+ + ⎛ ⎞′′ ′′⎡ ⎤− = − = ⎜ ⎟⎣ ⎦
⎝ ⎠

[3.44]

This model comprises the purely non-local plastic softening model
( )0=a , and the gradient plasticity model for hardening evolution ( )0 .cl =
The differential format equation [3.44] has been already used in the past in
structural engineering for some specific applications:

( )2 22 2
0orc cM l M EI a p l p k y a yκ κ′′ ′′ ′′ ′′⎡ ⎤− = − − = −⎣ ⎦ [3.45]

Interestingly, the moment-curvature ( ),M κ constitutive model equation
[3.45] has been proposed for applications in composite beams with imperfect
connections between the two elements (such as steel-concrete composite
structures, timber-concrete elements and layered wood systems with
interlayer slip) ([GIR 07], [CHA 11a], [CHA 11b]). Note the similarity with
the non-local bending constitutive law recently studied for the elastic
problems ([CHA 08a], [ZHA 10]). As recently shown by di Paola et al.
[DIP 09], models of elastic foundation can also involve some non-locality. In
fact, the soil–structure interaction model of Reissner [REI 58] is also based
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on the differential equation [3.33], where p and y are the foundation reaction
and the deflection, respectively (see also [CHA 10c]).

On the opposite, for softening evolutions, ζ − has to take negative values
[CHA 08c], leading to the non-local softening constitutive law:

2
2* * 2 withc

c

aM l M k a
l

λ λ ζ− − ⎛ ⎞′′ ′′⎡ ⎤− = + = −⎜ ⎟⎣ ⎦
⎝ ⎠

[3.46]

A relevant choice often assumed in the softening constitutive behavior is
to assume that a is equal to cl ( 1)ζ − = − (see also [CHA 08c]). In the
following, a local hardening moment-curvature relationship is incorporated
in the model, leading to a well-posed evolution problem. In fact, it is not
necessary to introduce some non-locality in the hardening range from a
mathematical point of view. However, it is also possible to introduce some
non-locality during hardening, to introduce some scale effects in the
hardening range. For the non-local hardening plasticity model, *M is related
to the combined non-local plastic curvature variable λ� through the linear
model:

* 2withM k aλ λ λ λ+ ′′= = −� � [3.47]

Introducing the combined non-local plastic curvature into the loading
function leads to a differential equation:

( )2 pP L x M
a

k
λ λ +

− −″
− = [3.48]

The general solution of this differential equation is written as:

( ) ( )
00; : cosh sinh pP L x Mx xx l x A B

a a k
λ+

+

− −
⎡ ⎤∈ = + +⎣ ⎦ [3.49]

with the boundary conditions obtained from the variational principle:

( ) ( ) ( )0 00, 0and 0 0l lλ λ λ++ ′ ′= = = , [3.50]
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The nonlinear system of three equations with three unknowns ,A B and
0l

+ is finally obtained:

( )2 2
00 0

0 0

1 cosh 1 sinh 0

sinh cosh 0

0

pc c

c c

P L l Ml l l lA B
a a a a k

l lA B P
a l a l k
B P
a k

++ +

+

+ +

+

+

⎧ − −⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ − + − + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎪
⎪⎪ + − =⎨
⎪
⎪

− =⎪
⎪
⎪⎩

[3.51]

The following dimensionless parameters may be introduced as:

01 0and 0Y

c c

lP L
P l l

β ξ
+⎛ ⎞= − ≥ = ≥⎜ ⎟

⎝ ⎠
[3.52]

leading to the localization relation:

1 cosh 1
sinh

ζ ξβ ξ
ζ ξ
− −= + [3.53]

The plastic zone ξ versus the loading parameter β is shown in Figure 3.8
and is parameterized by the dimensionless parameter .ζ

Figure 3.8. Evolution of the plastic zone ξ versus the loading parameter β – non-local
hardening plasticity model: 0ζ >
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The gradient plasticity model (in the hardening range) is recovered from
this relationship as an asymptotic law ( 0cl → in equation [3.53]):

cosh 1
sinh

ξζ β ξ
ξ
−→ ∞ ⇒ = − [3.54]

The width of the plastic zone associated with the non-local models is
larger than the reference width of the local model, for ζ larger than unity,
whereas this width is smaller than the one of the local model for ζ smaller
than unity. The local hardening plastic zone relation is obtained by setting

1.ζ =

3.2.4. Non-local softening constitutive law: application to the cantilever
beam

For the non-local softening plasticity model, *M is related to the
combined non-local plastic curvature variable λ� through the linear model
(see, for instance, equation [3.46]):

* 2withM k aλ λ λ λ− ′′= = +� � [3.55]

Introducing the combined non-local plastic curvature (with ca l= ) into
the loading function leads to a linear differential equation:

( )2 p
c

P L x M
l

k
λ λ −

− −″
+ = [3.56]

The general solution of this differential equation is written as:

( ) ( )
00; : cos sin p

c c

P L x Mx xx l x A B
l l k

λ−
−

− −
⎡ ⎤∈ = + +⎣ ⎦ [3.57]

with the boundary conditions obtained from the variational principle:

( ) ( ) ( )0 00 0 and 0 0l lλ λ λ−′ ′
= = = [3.58]
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The nonlinear system of three equations with three unknowns A , B and
0l

− is finally obtained:

( )00 0

0 0

2 cos 2 sin 0

sin cos 0

0

p

c c

c c c c

c

P L l Ml lA B
l l k

l lA B P
l l l l k

B P
l k

−− −

−

− −

−

−

⎧ − −
⎪ + + =
⎪
⎪
⎪ − + − =⎨
⎪
⎪

− =⎪
⎪
⎩

[3.59]

The following dimensionless parameters may be introduced as:

01 0 and 0Y

c c

lP L
P l l

β ξ
−⎛ ⎞= − ≤ = ≥⎜ ⎟

⎝ ⎠
[3.60]

and the load-plastic zone relationship is finally written as:

( )1 cos2 for sin 0
sin

ξβ ξ ξ
ξ

−= − ≠ [3.61]

In other words, Wood’s paradox is overcome for the non-local softening
cantilever case and uniqueness prevails for the softening evolution
considered in the chapter. Figure 3.9 shows the evolution of the plastic zone
ξ in terms of the positive dimensionless parameter β .

The parameter β varies between 0 and tends toward an infinite value
when P tends toward zero. Moreover, the size of the plastic zone tends
toward an asymptotic value for large values of β (and sufficiently small
values of ).P 0ξ π= is the limiting value of the maximum width of the
localization zone. The plastic zone evolves from a transitory regime toward a
material (or section) scale that does not depend anymore on the loading
range. The results reveal that the evolution tends toward one unique solution
with a finite energy dissipation that depends only on the characteristic
length. The maximum width of the localization zone 0l

− directly depends on
the characteristic length of the non-local model via the relation 0 cl lπ− = (for
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the cantilever beam). The determination of the characteristic length cl (or
the maximum width of the localization zone 0l

− ) is related to the question of
the finite-length hinge model, a central question of the present non-local
model. Wood [WOO 68], inspired by the works of Barnard and Johnson
[BAR 65], suggested the term of discontinuity length. Many papers have
been published on the experimental or theoretical investigation of such a
length [WOO 68, BAZ 76, BAZ 87, PAU 92, BAZ 03 LEE 09] for
reinforced concrete beams. It is generally acknowledged that the value of cl
(or the maximum localization zone 0l

− ) must be related to the depth of the
cross-section .h The rigid body moment-rotation mechanism detailed in
[DAN 08] or [HAS 09] may be used to calibrate this characteristic length for
reinforced concrete beams. Therefore, it is recommended that the maximum
width of the localization zone 0l

− is chosen in the order of magnitude of the
depth of the cross-section .h This implies for the cantilever beam that the
characteristic length cl is in the order of magnitude of / .h π This theoretical
aspect certainly merits some further investigations. However, the existence
of the finite size fracture process zone leads to the specific structural size
effect.

Figure 3.9. Evolution of the plastic zone ξ versus the loading parameter β – non-local
hardening plasticity model: 0ζ >
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The deflection in the plastic zone 00;x l −⎡ ⎤∈⎣ ⎦ is obtained by integrating
twice the elastic curvature:

( )
2 3

0
3 3

0

2 6

cos 1
2 cos 1 2 sin
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cc c

c c c

c

PL MPL x P P xw x
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⎝ ⎠

[3.62]

The deflection in the elastic zone 0 ;x l L−⎡ ⎤∈⎣ ⎦ is derived from the
continuity condition given by equation [3.27]:

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
2 3

00
0

2 3

0 0
0 0 0

2 6 2

2 3

P lPLlPLx Pxw x w l x
EI EI EI EI
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−−
−+ −
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⎡ ⎤
′⎢ ⎥= − + − +⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤

′⎢ ⎥+ − + −⎢ ⎥
⎢ ⎥⎣ ⎦

[3.63]

Figure 3.10 shows the resolution of Wood’s paradox with the
non-local softening plastic model. After the peak load, the softening
plasticity propagates along the beam, leading to the global softening
phenomenon.

The influence of the characteristic length, which controls the propagation
of the localization zone, is shown in Figure 3.11.
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Figure 3.10. Response of the elastoplastic non-local softening beam; EI 5;
k − = − cl = 0.1

L

Figure 3.11. Influence of the characteristic length on the softening response of the
elastoplastic beam / YP P versus / Yv v ; EI 5

k
= −−
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The global ductility increases as the stiffness ratio /EI k increases, or
the length ratio /cl L increases. Evolution of the plastic zone during the
plastic softening process is shown in Figure 3.12.

Figure 3.12. Evolution of the plastic zone during the softening process; deflection of the
cantilever beam;

− = −EI 5
k

; =cl 0.1
L

3.2.5. Some other structural cases – the simply supported beam

Another simple statically determinate model is the simply supported
beam under central concentrated load (Figure 3.13). We will show that this
case can be analyzed from the cantilever case. More specifically, the plastic
zone parameterized by the length 0l is related to the loading parameter
through a similar law. For symmetrical reasons, the bending moment is
symmetrical with respect to the central axis (bending moment is positive in
this case):

( ) with 0 and ;
4 2 2 2
PL P L LM x x P x ⎡ ⎤= − ≥ ∈ −⎢ ⎥⎣ ⎦

[3.64]
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Figure 3.13. Simply supported beam

Using symmetrical considerations, it is sufficient to analyze half a
structure, leading to the differential equation for the non-local plastic
curvature:

2 04 2 with 0;
2

p

c

PL P x M ll x
k

λ λ −

− −″ ⎡ ⎤+ = ∈⎢ ⎥⎣ ⎦
[3.65]

In this case, and using symmetrical arguments, the boundary conditions
are written as:

( )0 00, 0 and 0 0
2 2
l lλ λ λ

′ ′⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

[3.66]

Let us introduce the change of variable:

0 0
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[3.67]

The new differential system is obtained:
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ˆ ˆ
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P L x M
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y
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We recognize the cantilever problem with the new variables introduced in
equation [3.67]. The load-plastic zone relationship is given by equation
[3.61] corrected with the new variables:

( )ˆ1 cosˆ ˆ ˆ2 for sin 0ˆsin
ξβ ξ ξ

ξ
−= − ≠ [3.69]

Figure 3.9 obtained for the cantilever beam is still valid for the simply
supported beam (with the new notation of equation [3.67]). However, in the
case of a simply supported beam, the boundary conditions dealing with the
displacement function differ from the one of the cantilever case:

( ) ( )ˆ 0 and 0 0w L w′= = [3.70]

This means that the solution of the cantilever case can be used for the
rotation function, but not for the displacement function. The rotation in the
plastic zone is obtained from:

( )
0

22

0

2

0

ˆ
cos 1

ˆ1 1ˆ ˆ 2 sin
ˆ2

sin

ˆ ˆ2 cos 1 if 0;

cp c

c

c

c

c

l
lM Plx xx P Lx x

EI lk k k l
l

Pl x x l
lk

θ −
− − −

−

⎛ ⎞
−⎜ ⎟⎜ ⎟ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎝ ⎠= − + − + − ⎜ ⎟⎜ ⎟⎜ ⎟ ⎛ ⎞⎝ ⎠⎝ ⎠ ⎝ ⎠

⎜ ⎟⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞ ⎡ ⎤+ − ∈⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠⎣ ⎦
[3.71]

The rotation in the elastic zone is derived from the continuity of the
rotation along the elastoplastic boundary:

( ) ( ) ( ) ( )22
0 0 0 0

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆif ;
2

PL Px x l x l l x l L
EI EI

θ θ+ − ⎡ ⎤= − − + − + ∈ ⎣ ⎦ [3.72]
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The deflection in the elastic domain can be written as:

( ) ( ) ( )
22 3 3

0 0
0

ˆ ˆˆ ˆ ˆˆ ˆ ˆˆ ˆ
2 6 3 2

Pl PLlP x x Lw x L x L l
EI EI EI

θ+ −⎛ ⎞⎛ ⎞
= − − − − − − −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

if 0̂
ˆ;x l L⎡ ⎤∈⎣ ⎦ [3.73]

3.2.6. Postfailure of reinforced concrete beams under distributed lateral
load

The failure process of the cantilever beam solicited by its own weight (or
under uniform distributed lateral load) can also be studied (Figure 3.14).

In this case, the bending moment varies no more as a linear function, but
as a parabolic function:

( ) ( ) [ ]2 with 0and 0;
2
qM x L x q x L= − − ≥ ∈ [3.74]

The differential equation for the non-local plastic curvature is now
written as:

( )2
2 2 p

c

q L x M
l

k
λ λ −

− −″
+ = [3.75]

The solution of such a differential equation is obtained from:

[ ] ( ) ( )
2

2
00; : cos sin

2
p c

c c

M qlx x qx l x A B L x
l l k k k

λ − − −∈ = + + − − − [3.76]

with the three constants ( )0, ,A B l identified from the three boundary
conditions given by equation [3.68].
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Figure 3.14. Cantilever beam under distributed load

The following dimensionless parameters may be introduced as:

*0
2

2
1 0, , with pcY

c Y
c c

Ml lq L l q
q l l L L

β ξ⎛ ⎞
= − ≤ = = =⎜ ⎟
⎝ ⎠

[3.77]

and the load-plastic zone relationship is finally written as
(see Figure 3.16):

( ) ( )
*

* *2
1 1 cos

4 2 4 forsin 0
sin

c
c c

l
l l

ξ ξ
β ξ ξ ξ

ξ
+ −

= − − + + ≠ [3.78]

Another simple statically determinate model is the simply supported
beam under uniform distributed lateral load (Figure 3.15). We will show that
this case is not analogous to the cantilever case under distributed load. For
symmetrical reasons, the bending moment is symmetric with respect to the
central axis (bending moment is positive in this case):

( )
2 2

with ;
8 2 2 2
qL qx L LM x x ⎡ ⎤= − ∈ −⎢ ⎥⎣ ⎦

[3.79]
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Figure 3.15. Simply supported beam under distributed load

Using symmetrical considerations, it is sufficient to analyze half a
structure, leading to the differential equation for the non-local plastic
curvature:

( )

2 2

2 0 08 2 with 0, 0and 0 0
2 2

p

c

qL qx M l ll
k

λ λ λ λ λ−

− − ⎛ ⎞ ⎛ ⎞′′ ′ ′+ = = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

[3.80]

The following change of variable can be adopted:

*0 0
0 2

ˆ ˆ2 ˆˆ ˆˆ ˆˆ ˆ, , , , and 1ˆ ˆ2 2
p c Y

Y c
c c

Ml l l qL LL l q l
l q lL L

ξ β ⎛ ⎞
= = = = = = −⎜ ⎟

⎝ ⎠
[3.81]

The new differential system is obtained:

( ) ( ) ( ) ( )
2 2

2
0 0

ˆ
2 ˆ ˆwith 0, 0and 0 0

p

c

q L x M
l l l

k
λ λ λ λ λ−

− −″ ′ ′
+ = = = = [3.82]

This system cannot be cast in the form given by equation [3.78], and
there is no equivalence between the cantilever case and the simply supported
beam in case of uniform loading. The load-plastic zone relationship is finally
written as (see Figure 3.16):

( )* * *2
ˆcosˆ ˆ ˆˆ ˆ ˆ4 4 for sin 0ˆsinc c cl l lξβ ξ ξ ξ

ξ
= + − ≠ [3.83]
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Figure 3.16. Evolution of the plastic zone ξ (or ξ̂ ) versus the loading parameter
β (or β̂ ) – beam under distributed load – * =cl 0.1

To summarize, the numerical description of the postfailure of reinforced
concrete members needs the use of non-local mechanics theory (in this
chapter, non-local plasticity mechanics has been used). However, the same
arguments would be needed for the bending analysis of damage beams,
where non-local damage mechanics models are needed in presence of
softening in order to avoid Wood’s paradox (see, for instance, [CHA 10a]).

The bending damage law can be generalized in a non-local format by
correcting the damage loading function, as suggested by Pijaudier-Cabot and
Bažant [PIJ 87]:

( ) ( ) ( )* *1 and , YM EI D fκ κ κ κ κ κ= − = − + [3.84]

where the non-local variable is the non-local curvature-driven variable .κ
But other kinds of variationally based damage models can also be used, such
as [CHA 10a]:

( ) ( ) ( )* * 211 and , with
2YM EI D f Y Y Y Y Y Y EIκ κ= − = − + = [3.85]
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where Y is the non-local damage energy release rate at the cross-sectional
level. However, in the following, we will be mainly concerned with the yield
characterization of the reinforced concrete cross-section before softening,
and non-locality in this case is not necessary to be introduced.

3.3. Constitutive laws for steel and concrete

3.3.1. Steel behavior

3.3.1.1. Design values for steel at Ultimate Limit State

The design yield strength of reinforcement fyd also denoted by fsu, is
related to the characteristic yield strength of reinforcement fyk through the
partial factor γs for reinforcing steel as:

yk
su yd

s

f
f f

γ
= = [3.86]

γs is equal to 1.15, except for combinations with accidental actions (for
combinations with accidental action, γs is equal to unity). In the following,
we will mainly use the value 1.15sγ = . As usual (see also the SLS), the
Young’s modulus of steel Es is taken equal to 200,000 MPa.

As an example, let us consider a reinforced concrete section composed of
B500B steel bars. In the nomenclature of steel classification B500B, the first
B stands for steel for reinforced concrete. The next three digits represent the
specified characteristic value of upper yield strength fyk= 500 MPa. The last
symbol B stands for ductility class.

3.3.1.2. Perfect elastoplasticity

Two possibilities are offered to model the steel behavior in Eurocode 2.
The first possibility is based on perfect plasticity (hardening neglected – see
Figure 3.17).
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Figure 3.17. Perfect elastoplasticity diagram for the steel reinforcements

Even if the old French rules, such as Béton Armé aux Etats Limites
(BAEL) dated 1983 and modified in 1999 (or some other international rules
such as the ACI design rules) introduced a limitation of the tensile strain
(typically εud = 10‰), the new rules – Eurocode 2 do not limit the strain in
the steel reinforcement. The steel in the reinforcement is modeled with a
perfect plasticity rule without any limitation in strain. It also means that the
pivot A concept does not exist anymore with such a modeling of the steel
reinforcement. For monotonic loading, the stress–strain relationship of the
steel behavior is then given by:

( )

for and

sgn for

su
s s s s su

s

su
s su s s su

s

fE
E

ff
E

σ ε ε ε

σ ε ε ε

= ≤ =

= ≥ =
[3.87]

where fsu, also denoted by fyd, is the design yield strength of reinforcement.
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3.3.1.3. Hardening elastoplasticity

Figure 3.18. Elastoplasticity with linear hardening for the steel reinforcements

It is correct to take into account the steel hardening in Eurocode 2 (see
Figure 3.18). In this case, the characteristic ultimate limit strain is bounded
εuk (typically εuk = 50‰). The design ultimate limit strain is calculated from
the characteristic strain of reinforcement at maximum load through a partial
coefficient:

0.9ud ukε ε= [3.88]

For monotonic loading, the stress–strain law can be written as a
piecewise linear law:

s sm mσ ε ′= + [3.89]

where value of the parameters (m,m’) depends on the branch considered.
These parameters can be expressed by:

m q= and ′ ′=m q for [ ];s su udε ε ε∈

sEm = and 0=′m for [ ]susus εεε ;−∈
qm = and qm ′−=′ for [ ]suuds εεε −−∈ ; [3.90]
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Only the strain inside the interval uds εε ≤ is allowed. The plasticity
hardening parameters are defined below:

( )1 , 1 andsu su
su su

uk su s s

k f fqq q f
E E

ε
ε ε

− ⎛ ⎞′= = − =⎜ ⎟− ⎝ ⎠
[3.91]

The linear branches have been calculated from continuity with the elastic
branches, with the following characteristic points:

( ) ,σ ε =s su suf ( ) ,σ ε =s uk sukf ( )s su sufσ ε− = − and ( )s uk sukfσ ε− = − [3.92]

The coefficient k depends on the steel ductility, and is given in Eurocode
2 as:

k = 1.05 for steel with standard ductility,
k = 1.08 for steel with high ductility. [3.93]

Note that we do not focus on cycling behavior with possible unloading–
reloading, and then, the type of hardening (isotropic, kinematic or mixed
hardening) is not of importance for the design of the reinforced concrete
section, at least in the static range.

With this constitutive law, the Pivot A is defined for the maximum design
ultimate strain in the tensile steel reinforcement as:

ands ud s ud suq q kfε ε σ ε ′= = + < [3.94]

As a result using Eurocode 2, Pivot A is less present than Pivot B, due to
the allowed large ductility of steel, a significant change with respect to the
older European rules, for instance. Typically, 45‰udε = is allowed in
Eurocode 2, whereas 10‰udε = was the limited value in the old French rules
(Béton Armé aux Etats Limites BAEL 83 which was modified in 1999).

It can be interesting also to have some other material characteristics for
the steel reinforcement, such as the density 7,850ρ = kg/m3, or the thermic
dilatation coefficient 510α −= K–1 (the dilatation coefficient for the steel and
the concrete part of the reinforced concrete section are almost identical).
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3.3.1.4. Numerical application

As an example, for steel reinforcement bars made of B500B steel bars,
the steel material parameters at the ULS are:

( )

0
00

500 434.783 MPa; 1.08; 200,000 MPa; 45 ;
1.15

1.08 1 434.783 727.273727.273MPa and 434.783 1
50 434.783 200000
1000 200000

433.202 MPa

yk
su s ud

s

f
f k E

q q

ε
γ

= = = = = =

− × ⎛ ⎞′= = = × −⎜ ⎟
⎝ ⎠−

= [3.95]

3.3.2. Concrete behavior

3.3.2.1. Design values for concrete at Ultimate Limit State

Concrete has complex unsymmetrical material responses in tension and in
compression, both from the strength and the ductility properties (see Figure
3.19).

Figure 3.19. Unsymmetrical response of concrete in uniaxial tension and compression

As for the SLS, the tension strength of concrete will be neglected at ULS.



Concepts for the Design at Ultimate Limit State (ULS) 161

The design compression yield strength of concrete fcd, also denoted by fcu,
is related to the characteristic yield strength of concrete fck through the partial
factor γc for concrete as:

ck
cu cd cc

c

ff f α
γ

= = − [3.96]

γc is equal to 1.5, except for the combination with accidental actions
combinations (for combination with accidental action, γs is equal to 1.2).

ccα is a reducing coefficient for including the time-dependent cracking

process at large stress values. Typically, this coefficient ccα varies between
0.8 and 1, and is available in the national Annexes of Eurocode 2 for each
country.

This coefficient was initially included to take into account the possible
creep failure phenomenon (tertiary creep) for large stress values, typically
for compressive stress values higher than 85% of the instantaneous
compressive strength. This time-dependent phenomenon has been
experimentally studied in details by Rüsch [RUS 60], and recently modeled
with a simple creep damage model [CHA 05a]. It is shown in [CHA 05a] or
[CHA 05c] that the creep failure phenomenon is associated with the
existence of a limit point in the stress–strain diagram at a very slow loading
rate, and then creep failure is interpreted as a loss of equilibrium solution
associated with the constitutive law.

In the French National Annexes (each annex has different rules), this
coefficient is equal to 1ccα = in most design cases (for building design, for
instance) except, for instance, in bridge design, or for prestressed design. For
bridge design, the value 0.85ccα = is recommended. For the next
applications presented in this chapter, we will focus on building applications,
and then 1ccα = . Historically speaking, the old French rules Béton Armé aux
Etats Limites BAEL 83, gave 0.85ccα = (this value 0.85ccα = also appears in
the American rules ACI for reinforced concrete structure design, or in the
CEB-FIP model code for concrete structures – Comité Euro-International du
Béton/Fédération Internationale de la Précontrainte). Accordingly, the
transition rules from BAEL to EC2 have changed significantly the
calculation of design strength for building applications (15%), at least for
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the French National Annexes. One argument would be that the partial factor
γc already included these time-dependent effects.

The strength tension parameters are also given, even if they are not used
for the sectional design at ULS (as the tension contribution of concrete is
neglected).

,0.05ctk
ctu ctd ct

ct

f
f f α

γ
= = [3.97]

where ,0.05ctkf (see also Table 3.1) is the tensile strength (5% lower tensile
strength).

As an example, let us consider a reinforced concrete section, composed of
a C30/37 type concrete, the first C stands for concrete. The next digits are
related to characteristic strengths. The first characteristic compression
strength is the cylinder characteristic strength fck=30 MPa, whereas the
second characteristic compression strength is the cubic characteristic
strength.

We calculate:

301 20 MPa
1.5

α
γ

= − = − × = −ck
cu cc

c

ff [3.98]

It can be interesting to also have some other material characteristics
for the reinforced concrete material, such as the volumetric weight

25γ = kN/m3, or the thermic dilatation coefficient 510α −= K–1 (the
dilatation coefficient for the steel and the concrete part of the reinforced
concrete section are almost identical, as outlined in 3.3.1 in the steel chapter).

The constitutive laws available in Eurocode 2 for modeling concrete
behavior at the ULS are now presented. Only the monotonic behavior is
mentioned.

3.3.2.2. Parabola–rectangle constitutive law

The parabola–rectangle constitutive law is composed of a nonlinear
parabolic part for small compressive strain and a constant stress part for
larger strains (see Figure 3.20).
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Figure 3.20. Parabolic rectangular diagram for concrete; typically,
εc2= –2‰ and εcu2= –3.5‰ for ≤ck 50f MPa

For 50≤ckf MPa, the nonlinear constitutive law is mathematically
described by the following equations:

[ ] [ ]
2

2 2 2
2

1 1 for ;0 and 1for ;c c c
c c c cu c

cu c cuf f
σ ε σε ε ε ε ε

ε
⎛ ⎞

= − − ∈ = ∈⎜ ⎟
⎝ ⎠

[3.99]

The material parameters are defined in Table 3.2. Note that Eurocode 2
allows the use of some other nonlinear constitutive laws for high concrete
strength 55≥ckf MPa, with power strain function different from n = 2, as
considered for the parabola–rectangle law.

3.3.2.3. Rectangular simplified constitutive law

For simplifying design purposes, a much simpler constitutive law called
rectangular simplified constitutive law can be used in Eurocode 2, instead of
the parabola–rectangle law. Both laws were already available in the old
French rules Béton Armé aux Etats Limites BAEL 83.

This law is similar to a rigid plastic constitutive law that acts only on a
reduced part λy of the compression block, namely along a portion λy = λαd
from the upper (compressed) fiber of the cross-section (see Figure 3.21).
(λ = 0.8 for fck ≤ 50 MPa in Eurocode 2). For comparison, the 0.8 factor
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appearing for the size of the compression block is changed to 0.85 for ordinary
concrete in the American ACI design rules (see, for instance, [MAC 97]).

Figure 3.21. Rectangular simplified diagram for concrete; strain and stress evolution
along the cross-section

The fundamental assumptions of the so-called simplified rectangular
constitutive law can also be represented in the stress–strain diagrams for
both Pivot A (maximum strain capacity of the tensile steel reinforcement)
and Pivot B (maximum strain capacity of the compression concrete fiber) –
see Figure 3.22.

Figure 3.22. Rectangular simplified diagram for concrete; stress–strain representation

In the stress–strain diagram, the stress is vanishing up to a strain value
equal to 0.2εc,sup. In pivot B, as the strain capacity of the concrete is fully
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reached, εc,sup is equal to –3.5‰ and then the minimum strain value with zero
stress value is equal to 0.2 × 3.5‰ = 0.7‰. However, in Pivot A, as εc,sup is
larger than –3.5‰, this minimum strain value will depend on the concrete
strain of the upper fiber (see Figure 3.22).

This constitutive law is different in Pivot A or Pivot B, and is
mathematically described by the following single equation:

sup 2 sup0 for 0.2 ;0 and 1 for ;0.2c c
c c cu c

cu cuf f
σ σε ε ε ε ε⎡ ⎤ ⎡ ⎤= ∈ = ∈⎣ ⎦ ⎣ ⎦ [3.100]

where sup 2 3.5‰c cuε ε= = − in Pivot B, and ( )sup / 1c udε αε α= − − in Pivot A.

3.3.2.4. Bilinear constitutive law

The bilinear constitutive law is composed of a linear elastic part for small
compressive strain and a constant stress part for larger strains (see
Figure 3.23). This kind of model can be typically classified as an elastic-
perfectly plastic constitutive law, even if for concrete, this ductile
classification should be used with precaution.

Figure 3.23. Bilinear constitutive law for concrete; typically, εc3= –1.75‰
and εcu3= –3.5‰ for ≤ckf 50 MPa

c

cu

cc3cu3
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This constitutive law is mathematically described by the following
equations:

[ ] [ ]3 3 3
3

for ;0 and 1for ;c c c
c c c cu c

cu c cuf f
σ ε σε ε ε ε ε

ε
= ∈ = ∈ [3.101]

The material parameters are defined in Table 3.2. This law is simpler than
the parabolic law, as it avoids any piecewise nonlinear stress–strain, but only
piecewise linear stress–strain laws. The bilinear law can be considered as a
good compromise between the parabola–rectangle constitutive law and the
rectangular simplified constitutive law.

3.3.2.5. Sargin’s constitutive law

According to Eurocode 2, it is also possible to use a nonlinear stress–
strain constitutive law introduced by Sargin [SAR 68] – see also [SAR 69],
and sometimes called “Sargin’s parabola” in some textbooks (see also
[SAR 71]; also cited in [OTT 05]). Sargin’s law can be used for the
structural analysis with respect to the buckling design. Even if Eurocode 2
does not explicitly mention the reference of Sargin, the mentioned nonlinear
stress–strain law is referred to the CEB 90, which is based on Sargin’s law.

This nonlinear stress–strain constitutive law can be written as (see also
[THO 09]):

( ) [ ]
2

1
1

with and ;0
1 2

c c
c cu

cd c

k
f k
σ εη η η ε ε

η ε
−= = ∈

+ −
[3.102]

with εcu1 = –3.5‰ for concrete class lower than C55. The characteristics
strain variables of Sargin’s law are given in Table 3.1.

fck (MPa) 20 25 30 35 40
εc1 (‰) –2 –2.1 –2.2 –2.25 –2.3

εcu1 (‰) –3.5 –3.5 –3.5 –3.5 –3.5

Table 3.1. Concrete material parameters of Sargin’s law at Eurocode 2 for ≤ckf 50 MPa
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This law is parameterized by one dimensionless coefficient ,k which
controls the ductility of the concrete. It is easy to check that:

( ) ( )1 1 and 1 0c c

cd cdf f
σ ση η

′
= = = = [3.103]

The parameter k can be theoretically identified from the initial slope of
the undamaged Young’s modulus, according to:

( ) 10 0cm c
cm

cd

EE k
f

εσ ′ = ⇒ = ≥ [3.104]

The Eurocode 2 rules suggested a correction of this law in the evaluation
of the second-order effects for stability design, leading to a smaller Young’s
modulus associated with larger strain and deflection values in a safer design:

10.88 0cm c

cd

Ek
f

ε= ≥ [3.105]

Sargin’s law is represented in Figure 3.24 for a concrete, associated with
a k parameter equal to 2.5 (k typically varies between 1.3 and 2.6).

Figure 3.24. Sargin’s law for a C30 concrete with k = 2.5; comparison with the
parabolic-rectangular stress-strain relationship
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The three curves (Sargin’s law, bilinear constitutive law and parabola–
rectangle constitutive laws) are compared in Figure 3.24. It is difficult to
distinguish the parabolic part and Sargin’s law with these parameters, at least
in the hardening part of the nonlinear constitutive law.

More generally, Sargin’s law [SAR 68] can be presented in the following
form:

( )
( )

2

2
1

1
with

1 2
c c

cd c

k
f k

η α ησ εη
η αη ε

+ −
= =

+ − +
[3.106]

The nonlinear equation [3.102] of Eurocode 2 is obviously a particular
case of Sargin’s law [SAR 68] with 0.α =

Some other nonlinear laws are available in the literature such as the law
of Desayi and Krishnan [DES 64] suggested in the old French rules Béton
Armé aux Etats Limites for the structural analyses (see also [ROB 74]), and
obtained from Sargin’s law by setting 1α = and 2:k =

2
1

2 with
1

c c

cd cf
σ εη η

η ε
= =

+
[3.107]

Unfortunately, this last nonlinear law has no degree of adjustment of the
Young’s modulus identification. In fact, with such a law [DES 64], we
necessarily have:

( )
1

20 0cd
cm cm

c

fE Eσ
ε

′ = ⇒ = ≥ [3.108]

which can be quite unrealistic.

Another classical law is the parabolic law often used in reinforced
concrete design, which is simply obtained as a particular case with 0α =
and 2:k =

( )2c

cdf
σ η η= − [3.109]
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We have only presented a few engineering laws that are recommended in
Eurocode 2. Of course, some more refined models have been published in
the literature for concrete modeling. CDM models have been found to be
very powerful with respect to these reinforced concrete structural problems.
The CDM model of Mazars ([MAZ 86], [MAZ 96], see also [MAZ 09], for
instance) can be cited, for instance, for a good representation of the strong
asymmetry of concrete in the tension and in the compression domain. One
loading function is used for the compression behavior and another loading
function is used for the tension behavior. Some other tensorial CDM
models have been developed in the literature (see, for instance, [HAL 96],
[MUR 97], [CHA 05b], [LEM 05] and [MUR 12]); the model of [CHA 05b]
presents the advantage to describe the strong unsymmetrical behavior in
tension and in compression with a single damage loading function.

We also note that the constitutive laws available in Eurocode 2 have no
softening parts, except eventually in Sargin’s law that is mainly used for
stability designs. Hence, for practical bending design, the softening
phenomenon from both local and global state variables does not appear and
non-locality mechanics is not needed, in fact, in the evolution problem for
the strain range of interest in the design process. However, the post-cracking
process of the bending beam needs the use of non-local mechanics as already
presented in this chapter.

3.3.2.6. Synthesis – material parameters for concrete

The material parameters for the concrete at the ULS are summarized in
Table 3.2, based on Eurocode 2 rules.

fcm (MPa) 8cm ckf f= + MPa ; fck in MPa
fctm (MPa) ( )2 30.3ctm ckf f= ; fck in MPa

fctk,0.05 (MPa)
,0.05 0.7ctk ctmf f= ; fctm in MPa

Ecm (GPa) ( )0.322 10cm cmE f= × ; fcm in MPa

εc2 –2‰
εcu2 –3.5‰
εc3 –1.75‰
εcu3 –3.5‰

Table 3.2. General concrete material parameters at Eurocode 2 for ≤ckf 50 MPa
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3.3.3. Dimensionless parameters at ULS

A rectangular reinforced concrete cross-section is considered, with both
tensile and compression steel reinforcement, respectively, in the lower part
and upper part of the cross-section (see Figure 3.25).

Figure 3.25. Rectangular cross-section with compression and tensile steel reinforcement

Figure 3.26. Strain profile at ultimate limit state according to the plane cross-section
assumption (Navier–Bernoulli assumption)
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According to Navier–Bernoulli assumption (plane cross-section assumption),
the strain is linearly varying along the cross-section, as shown by the
geometrical relationship in Figure 3.26.

Using the notations of Figure 3.25, the two equilibrium equations both
for the normal force and the bending moment (only two equations for
symmetrical reasons) are written with respect to the center of gravity of the
tensile steel reinforcement as:

1 1 2 2act s s s s cuN A A bdfσ σ αψ= + + [3.110]

2
2 2 ( ) (1 )act s s g cuM A d d bd fσ αψ αδ′= − − − − [3.111]

where the dimensionless parameters ψ and μ are defined from:

ψ =
Nc
fcu Ac and μ = αψ(1-αδg) =

- Mc
bd2fcu [3.112]

Nc and Mc are, respectively, the normal force component of the compression
block of concrete and the moment component of this compression
block.

The dimensionless parameters ψ and μ can be also introduced in an
integral format as:

( )
( )

( )
( )

1 1
and

d d

c c c cd d
N b y dy M b y y dy

α α
σ σ

− −
= = −∫ ∫ [3.113]

where the stress in concrete σc is generally a nonlinear function of the strain
εc, which is itself a linear decreasing function of the vertical axis, as a result
of the kinematics. The origin of the y-axis is here taken at the center of
gravity of the tensile steel reinforcement. The coefficients of this linear
function depend on the Pivot considered:
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( ) ( )
( )

( ) ( )

1
in Pivot A;

1

1
whereas in Pivot B

c ud

c cui

d y
y

d

d y
y

d

α
ε ε

α
α

ε ε
α

− −
=

−

− −
= −

[3.114]

cuiε is the maximum strain capacity of concrete in compression for each
constitutive law (parabola–rectangle, simplified rectangular, bilinear or
Sargin’s law).

As for the SLS, it is possible to define the pivot rules at the ULS:

– the point “pivot A”, which corresponds to the maximum strain capacity
εud of the most tensioned steel reinforcement bars;

– the point “pivot B”, which corresponds to the maximum strain capacity
εcui in the most compressed fiber in concrete.

Figure 3.27. Working zone of the composite cross-section in Pivot A and Pivot B
at ULS – strain profile

At the cross-sectional ULS, the strain diagram should cross one of the
two pivot points (Pivot A and Pivot B) and should also respect the
limit strain requirement for the extremal point at the other pivot point (see
Figure 3.27).
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The limit case between the two pivots is referred to as pivot AB, and is
characterized by the limit value for the relative position of the neutral axis
αAB defined from the upper fiber of the cross-section as:

cui
AB

ud cui

εα
ε ε

−=
−

[3.115]

Pivot AB sometimes is often referred to as the balance section, because at
the ULS, the concrete and tensioned steel reinforcement reach their ultimate
limit strains at the same time.

cuiε , which takes negative values, is explicitly given in Table 3.2,
according to the Eurocode 2 rules.

A third case is Pivot C, where all parts of the section is in compression,
even the lower part of the cross-section. Pivot C can also be understood as a
particular case of Pivot B, as the section is controlled by the maximum strain
capacity of concrete in compression. The boundary between Pivot B and
Pivot C, also denoted by Pivot BC, is obtained for:

BC
h
d

α = [3.116]

Figure 3.28 shows the nonlinear stress profile along the cross-section, at
Pivot B, to be integrated to calculate the normal force and bending moment
components in concrete at ULS.

Figure 3.28. Stress profile at Ultimate Limit State – Pivot B
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3.3.4. Calculation of the concrete resultant for the rectangular simplified
diagram

According to Figure 3.21, the normal force and bending moment
components induced by the concrete compression block are calculated as:

( )
0.8
0.8 0.4

c cu

c cu

N byf
M byf d y

=⎧⎪
⎨ = − −⎪⎩ [3.117]

We note that these expressions are independent on the Pivot considered
(valid for both Pivot A and Pivot B).

The dimensionless parameters ψ and μ are then easily identified for this
simplified constitutive law:

( )0.8 and 0.8 1 0.4ψ μ α α= = − [3.118]

3.3.5. Calculation of the concrete resultant for the bilinear diagram

3.3.5.1. Introduction, Pivot A1, Pivot A2 and Pivot B

It is useful to distinguish Pivot A, characterized by uds εε = and Pivot B,
characterized by 3cuc εε =sup, , for the bilinear concrete constitutive law.
However, Pivot A itself can be decomposed into Pivot A1 (where the
compression block has only linear elastic behavior) and Pivot A2 (where the
compression block has an elastic and a “perfectly plastic” part). Figure 3.29
represents the stress in the compression block at Pivot AB, for a concrete
modeling by the bilinear constitutive law.

Figure 3.29. Calculation of the normal force and bending moment components in the
compression block of concrete
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3.3.5.2. Pivot A1 – bilinear diagram

Pivot A1 is a part of Pivot A, meaning that the maximum strain capacity
of the tensile steel reinforcement is reached uds εε = , but the concrete part
in compression has only an elastic behavior:

1 2 1 2

3

3

0; with c
A A A A

ud c

εα α α
ε ε

−⎡ ⎤∈ =⎣ ⎦ −
[3.119]

In this case, we only have to integrate the linearly increasing part of the
concrete stress along the cross-section, and the problem is the elastic one.

The bending moment is calculated from equation [3.113] as:

( ),sup
,sup

3

21 with
2 3 1
c ud

c c cu
c

bd
M d d f

α σ εαα α σ
α ε

⎡ ⎤= − − + =⎢ ⎥ −⎣ ⎦
[3.120]

leading to the dimensionless reduced moment coefficient μ:

( )
2

A1
3

= 1
2 1 3

ud

c

εα αμ
α ε

⎛ ⎞⎛ ⎞− ⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠
[3.121]

The shape coefficient ψ is equal to:

( )
2

A1
32 1

ud

c

εααψ
α ε

⎛ ⎞
= ⎜ ⎟− −⎝ ⎠

[3.122]

3.3.5.3. Pivot A2 – bilinear diagram

Pivot A2 is also a part of Pivot A, meaning that the maximum strain
capacity of the tensile steel reinforcement is reached uds εε = , but the
concrete part in compression has now an elastic and a constant stress
component:

1 2

3

3

; with cu
A A AB AB

ud cu

εα α α α
ε ε

−⎡ ⎤∈ =⎣ ⎦ −
[3.123]
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We need to decompose the stress variation into a linearly decreasing one
and a constant one (see Figure 3.29). dcα is the distance from the upper
fiber to the fiber associated with the transition from the elastic part to the
constant part (or plastic part) of the compression block. Applying Thales
geometrical relationship, we obtain for this characteristic parameter:

( ) ( ) ( )3 31
1

c ud c
c

c udd d
ε ε εα α α

α α α ε
⎛ ⎞− −= ⇒ = − − ⎜ ⎟− − ⎝ ⎠

[3.124]

The bending moment is calculated from equation [3.113] as:

( ) ( ) ( )1 2 1
2 2 3
c

c cu c cu c c
d dM bdf d bdf dαα α α α α α⎛ ⎞ ⎡ ⎤= − − − − − + −⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠

[3.125]

leading to the dimensionless reduced moment coefficient μ:

( )

( )

3 3
A2

3 3

1= 1 1
2 2

1 2 1 1
2 3

c c

ud ud

c c

ud ud

ε εα αμ α α
ε ε

ε εα α α
ε ε

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− −−− − × − +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞− −−+ − + −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ [3.126]

The reduced moment can also be simplified as:

( ) ( )
22

23 3
2

1 11 1
2 2 6

c c
A

ud ud

α ε εαμ α α
ε ε

− ⎛ ⎞ ⎛ ⎞− −⎛ ⎞= − − − −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

[3.127]

The shape coefficient ψ is equal to:

( ) 3 3 3
A2

1 11
2 2

c c c

ud ud ud

ε ε εα ααψ α α α
ε ε ε

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −− −= − − + = −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

[3.128]
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3.3.5.4. Pivot B – bilinear diagram

In Pivot B, the maximum strain capacity of the upper fiber of concrete in
compression is reached 3cuc εε =sup, such as:

3

3

with cu
AB AB

ud cu

εα α α
ε ε

−≥ =
−

[3.129]

We also need to decompose the stress variation into a linearly decreasing
one and a constant one (see Figure 3.29). cdα is the distance from the upper
fiber to the fiber associated with the transition from the elastic part to the
constant part (or plastic part) of the compression block. Applying Thales
geometrical relationship, we obtain for this characteristic parameter:

( )
3 3 3

3

1c cu c
c

c cud d
ε ε εα α

α α α ε
⎛ ⎞− −= ⇒ = −⎜ ⎟− ⎝ ⎠

[3.130]

The bending moment expression is the same as in equation [3.125],
leading to the dimensionless reduced moment coefficient μ:

3 3 3 3
B

3 3 3 3

2= 1 1 1 1
2 2 3

c c c c

cu cu cu cu

ε ε ε εα αμ α α α
ε ε ε ε

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− × − − + + −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
[3.131]

The reduced moment can also be simplified as:

( ) 22
3 3

3 3

1
1

2 2 6
c c

B
cu cu

α αε εα αμ α
ε ε

−⎛ ⎞ ⎛ ⎞⎛ ⎞= − − −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

[3.132]

The shape coefficient ψ is equal to:

3 3 3
B

3 3 3

1 1
2 2

c c c

cu cu cu

ε ε εααψ α α
ε ε ε

⎛ ⎞ ⎛ ⎞
= − + = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
[3.133]
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3.3.5.5. Pivot C – bilinear diagram

Pivot C is reached when the overall section is in compression, which is
mathematically equivalent to:

h
d

α ≥ [3.134]

In this case, the lower fiber is in compression and its strain is equal to:

,inf 3 3
,inf 3

3

and 1c cu c
c cu c

cu

d h
d h d d
ε ε εαε ε α α

α α α ε
⎛ ⎞−= ⇒ = = −⎜ ⎟− ⎝ ⎠

[3.135]

where αc also defined the fiber associated with the transition from the elastic
part to the constant part (or plastic part) of the compression block.

The bending moment is calculated from equation [3.113] as:

( ) ( )

( ) ( ) ( )

,inf

,inf

2 2
2

2 3

c c
c cu c c c

c
cu c c

d h dM bdf d b h d h d

h db f h d h d

α αα σ α

ασ α

−⎛ ⎞ ⎡ ⎤= − − − − − −⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦
− ⎡ ⎤− − − − −⎢ ⎥⎣ ⎦

[3.136]

Assuming that the lower fiber is in the elastic range, the reduced moment
is finally calculated as:

3 3

3 3

3 3 3

3 3 3

3 3 3

3 3 3

1 1 1
2

1 1 1
2 2

1 21 1 1 1
2 3 3

c c
C

cu cu

cu c c

c cu cu

cu c c

c cu cu

h
h hd
d d

h
h hd
d d

ε εαμ α
ε ε

α ε ε εαα
α ε ε ε

α ε ε εαα
α ε ε ε

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − − −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

− ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
+ − − − + − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
⎛ ⎞−⎜ ⎟ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞

+ − − − − + − −⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎣ ⎦ ⎣ ⎦⎜ ⎟

⎝ ⎠
[3.137]
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The reduced moment can also be simplified as:

( ) 22
3 3

3 3

2
3

3

1
1 1

2 2 6

1 1
3 2 6

c c
C

cu cu

cu

c

h
d

h h
d d

α αε εα αμ α α
ε ε

ε αα
α ε

−⎛ ⎞ ⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞= − − − − − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎡ ⎤− − +⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦ [3.138]

The shape coefficient ψ is equal to:

3 3 3

3 3 3

3 3

3 3

1 1

1 1 1
2

c cu c
C

cu c cu

cu c

c cu

h
hd
d

h
hd
d

αε ε εαψ α α
ε α ε ε

α ε εα
α ε ε

− ⎡ ⎤⎛ ⎞ ⎛ ⎞
= − + − − +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎛ ⎞−⎜ ⎟ ⎡ ⎤⎛ ⎞

− − −⎜ ⎟ ⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎜ ⎟ ⎣ ⎦⎜ ⎟

⎝ ⎠
[3.139]

The shape coefficient ψ can be also simplified as:

2
3 3

3 3

11
2 2 2

c cu
C

cu c

h h
d d

ε ε ααψ α
ε ε α

⎡ ⎤⎛ ⎞ ⎛ ⎞= − + − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠⎢ ⎥⎝ ⎠ ⎣ ⎦ [3.140]

It is easy to check the continuity of Pivot B and C at the boundary
between the two behaviors.

3.3.6. Calculation of the concrete resultant for the parabola–rectangle
diagram

3.3.6.1. Pivot A1 – parabola–rectangle law

Pivot A1 is a part of Pivot A, meaning that the maximum strain capacity
of the tensile steel reinforcement is reached uds εε = , but the concrete part
in compression has only a parabolic behavior (the strength capacity of
concrete has not been reached):

1 2 1 2

2

2

0; with c
A A A A

ud c

εα α α
ε ε

−⎡ ⎤∈ =⎣ ⎦ −
[3.141]
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The bending moment and the normal forces in the concrete compression
block are obtained by integration of the nonlinear stress–strain relationship
from equation [3.113] presented as:

( )

( )( ) ( )

( ) ( ) ( )

0

0

2

2 2

and

1 with

2

dd

c c

d

c c

c c
c cu

c c

N b z dz

M b z d z dz

z z
z f

α

σ

α σ

ε ε
σ

ε ε

=

= − + −

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= − −⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫

∫

[3.142]

where the stress in concrete σc is now a nonlinear function of the strain εc,
which is itself a linear decreasing function of the vertical axis, as a result of
the kinematics. The origin of the z-axis is here taken at the location of the
neutral axis, in order to make the calculation much easier. The coefficients
of this linear function depend on the Pivot considered:

( ) ( ) ( ) 2in Pivot A ; whereas in Pivot B
1c ud c cu
z zz z

d d
ε ε ε ε

α α
−= =
−

[3.143]

The dimensionless normal force component in the concrete compression
block is calculated from the shape coefficient :ψ

αψA1 =
α2εud[-3εc2 - α(εud - 3εc2)]

3(1 - α)2ε2c2
[3.144]

In pivot A1, the reduced moment is calculated from the integral equation:

μA1 =
α2εud(-12εc2 + 16αεc2 - 4α2εc2 - 4αεud + α2εud)

12(1 - α)2ε2c2
[3.145]

3.3.6.2. Pivot A2 – parabola–rectangle law

Pivot A2 is also a part of Pivot A, meaning that the maximum strain
capacity of the tensile steel reinforcement is reached uds εε = , but the
concrete part in compression has now a parabolic and a constant stress
component:
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1 2

2

2

; with cu
A A AB AB

ud cu

εα α α α
ε ε

−⎡ ⎤∈ =⎣ ⎦ −
[3.146]

We need to decompose the stress variation into a parabolic one and a
constant one (as already suggested for the bilinear constitutive law). dcα is
the distance from the upper fiber to the fiber associated with the transition
from the elastic part to the constant part (or plastic part) of the compression
block. Applying Thales geometrical relationship, we obtain for this
characteristic parameter:

( ) ( ) ( )2 21
1

c ud c
c

c udd d
ε ε εα α α

α α α ε
⎛ ⎞− −= ⇒ = − − ⎜ ⎟− − ⎝ ⎠

[3.147]

The bending moment is calculated from equation [3.113] as:

( )( )( )

( ) ( )

( )

2

0
2 2

2 2 2

21
1 1

11 1
2 2

c d ud ud
c cu

c c

c c
cu

ud ud

z zM bf z d dz
d d

bd f

α α ε εα
α ε α ε

ε α α εα α
ε ε

− ⎡ ⎤⎛ ⎞
⎢ ⎥= + − +⎜ ⎟⎜ ⎟− −⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤ ⎡ ⎤−− + − − −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∫

[3.148]

where the first term is the associated with the parabolic part of the
constitutive law, whereas the second term is related to the maximum
capacity strength fcu. After some lengthy manipulations, we finally obtain for
the dimensionless reduced moment coefficient μ:

μA2 =
εc2 (4εud - εc2) (1 - α)2 + 6αε2ud(2 - α)

12ε2ud
[3.149]

The shape coefficient ψ can be shown to be equal to:

αψA2 =
εc2- αεc2 + 3αεud

3εud
[3.150]

3.3.6.3. Pivot B – parabola–rectangle law

In Pivot B, the maximum strain capacity of the upper fiber of concrete in
compression is reached 3cuc εε =sup, such as:



182 Reinforced Concrete Beams, Columns and Frames

2

2

with cu
AB AB

ud cu

εα α α
ε ε

−≥ =
−

[3.151]

We also need to decompose the stress variation into parabolic stress
variation and rectangular stress variation. dcα is the distance from the
upper fiber to the fiber associated with the transition from the elastic part to
the constant part (or plastic part) of the compression block. Applying Thales
geometrical relationship, we also obtain for this characteristic parameter:

( )
2 2 2

2

1c cu c
c

c cud d
ε ε εα α

α α α ε
⎛ ⎞− −= ⇒ = −⎜ ⎟− ⎝ ⎠

[3.152]

The bending moment is calculated from equation [3.113] as:

( )( )( )
2

2 2
0

2 2

2 2 2

2 2

21

1 1
2 2

c d cu cu
c cu

c c

c c
cu

cu cu

z zM bf z d dz
d d

bd f

α α ε εα
α ε α ε

ε εα αα
ε ε

− ⎡ ⎤⎛ ⎞
⎢ ⎥= + − −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞
− − − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∫

[3.153]

leading to the dimensionless reduced moment coefficient μ:

μB =
- α{αε2c2 + εcu2 [4(1-α)εc2 - 6(2 - α)εcu2]}

12ε2cu2
[3.154]

The shape coefficient ψ can be shown to be equal to:

αψB =
- α(εc2 - 3εcu2)

3εcu2
[3.155]

3.3.6.4. Pivot C – parabola–rectangle law

For Pivot C, the dimensionless reduced moment coefficient μ is
calculated as:
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αψC = ⎝
⎛
⎠
⎞h
d
⎩
⎨
⎧

⎭
⎬
⎫

1 -
⎝
⎛
⎠
⎞h
d

2
ε3c2

3 εcu2 ⎣
⎡

⎦
⎤- α εcu2 + ( - εc2 + εcu2 )⎝

⎛
⎠
⎞h
d

2 [3.156]

The shape coefficient ψ can be shown to be equal to:

μC = ⎝
⎛
⎠
⎞h
d ⎝
⎛

⎠
⎞1 -

h
2d +

⎝
⎛
⎠
⎞h
d

3
ε3c2 ⎣

⎡
⎦
⎤- 4 εcu2 + ( - εc2 + 4 εcu2 )⎝

⎛
⎠
⎞h
d

12 ε2cu2 ⎣
⎡

⎦
⎤- α εcu2 + ( - εc2 + εcu2 )⎝

⎛
⎠
⎞h
d

2 [3.157]

3.3.7. Calculation of the concrete resultant for the law of Desayi and
Krishnan

3.3.7.1. Law of Desayi and Krishnan – introduction

Sargin’s law is defined in one single equation, and there is no need to
separate Pivot A1 and Pivot A2, as introduced for the parabola–rectangle law
or the bilinear law. In this section we use the particular version of Sargin’s
law given by equation [3.107], which is the law of Desayi and Krishnan
[DES 64]. This particular case of Sargin’s law with 1α = and 2k = leads to
an easier analytical determination of the dimensionless concrete resultant
parameters (see also [ROB 74]). The more general integration results valid
for Sargin’s law in the other cases can be obtained from the integration
results presented in [THO 09].

The bending moment and the normal forces in the concrete compression
block are obtained by integration of the nonlinear stress–strain relationship
from equation [3.113] presented as:
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[3.158]
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where the stress in concrete σc is now a nonlinear function of the strain εc,
which is itself a linear decreasing function of the vertical axis, as a result of
the kinematics.

The origin of the z-axis is here taken at the location of the neutral axis, in
order to make the calculation much easier. The coefficients of this linear
function depend on the Pivot considered:

( ) ( ) ( ) 1in Pivot A; whereas in Pivot
1c ud c cu
z zz z B

d d
ε ε ε ε

α α
−= =
−

[3.159]

3.3.7.2. Pivot A – law of Desayi and Krishnan

The dimensionless normal force component in the concrete compression
block is calculated from the shape coefficient :ψ
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∫ [3.160]

which can be easily integrated leading to:
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[3.161]

In pivot A, the reduced moment is calculated from the integral equation:
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which is also equivalent to:
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3.3.7.3. Pivot B – law of Desayi and Krishnan

The dimensionless normal force component in the concrete compression
block is calculated from the shape coefficient :ψ
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which can be easily integrated leading to:
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which is also the value presented by Carreira and Chu [CAR 86] who
presented the case of Pivot B with some additional tension effects for the
cracked concrete in tension.

In pivot B, the reduced moment is calculated from the integral equation:
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which is also equivalent to:
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In Pivot B, these results are also coincident with the results of Carreira
and Chu [CAR 86], who calculated the bending moment with respect to the
neutral axis, whereas the moment of the compression block is presented here
with respect to the center of gravity of the tensile steel reinforcement.

3.3.7.4. Pivot C – law of Desayi and Krishnan

The dimensionless normal force component in the concrete compression
block is calculated from the shape coefficient :ψ
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which can be easily integrated leading to:
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[3.169]

The reduced moment Cμ is given by:
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The integral calculations are given in [THO 09] for Sargin’s law given in
equation [3.102], which is possible to use for nonlinear structural analysis
according to Eurocode 2.

3.3.8. Calculation of the concrete resultant for Sargin’s law of
Eurocode 2

3.3.8.1. Sargin’s law of Eurocode 2 – introduction

Sargin’s law in Eurocode 2 is a particular case of Sargin’s law [SAR 68]
with 0α = . The integration results valid for Sargin’s law are also presented
in [THO 09].

The bending moment and the normal forces in the concrete compression
block are obtained by integration of the nonlinear stress–strain relationship
from equation [3.113] presented as:
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[3.171]

where the stress in concrete σc is now a nonlinear function of the strain εc,
which is itself a linear decreasing function of the vertical axis, as a result of
the kinematics. The origin of the z-axis is here taken at the location of the
neutral axis, in order to make the calculation much easier. The coefficients
of this linear function depend on the Pivot considered, as given by equation
[3.159].

3.3.8.2. Pivot A – Sargin’s law of Eurocode 2

The dimensionless normal force component in the concrete compression
block is calculated from the shape coefficient :ψ
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which can be easily integrated leading to:
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In pivot A, the reduced moment is calculated from the integral equation:
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which is also equivalent to:
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[3.175]

3.3.8.3. Pivot B – Sargin’s law of Eurocode 2

The dimensionless normal force component in the concrete compression
block is calculated from the shape coefficient :ψ
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which can be easily integrated, leading to:
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Typically, for k = 2.5, the shape coefficient is equal to:
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In this last case, for a C30 type concrete, the shape coefficient factor is
equal to:
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The shape coefficient 0.787Bψ = is an intermediate value between
0.75Bψ = obtained for the bilinear diagram and 0.8Bψ = obtained for the

rectangular simplified diagram.

In pivot B, the reduced moment is calculated from the integral equation:
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which can be developed as following:
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Typically, for k = 2.5, the reduced moment is equal to:
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3.3.8.4. Pivot C – Sargin’s law of Eurocode 2

The dimensionless normal force component in the concrete compression
block is calculated from the shape coefficient :ψ
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which can be easily integrated, leading to:

( )

( )

2 2

1 1 1

1 1 1

1 1

1 1

1

1

1 1 11
2 2 2

1 22 1 1 ln
2 2

1 2 1

ε ε ε
ε ε α ε α

α ε εαψ
ε ε

ε
ε α

⎧ ⎫⎛ ⎞ ⎡ ⎤ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎪− + − + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟−⎪ ⎪⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦ ⎝ ⎠
⎪ ⎪⎛ ⎞⎪ ⎪⎡ ⎤⎛ ⎞= ⎨ ⎬⎜ ⎟ + −⎢ ⎥⎜ ⎟− ⎝ ⎠⎪ ⎪⎛ ⎞ ⎝ ⎠⎢ ⎥− +⎜ ⎟⎪ ⎪⎢ ⎥− − ⎛ ⎞⎝ ⎠ ⎛ ⎞⎪ ⎪+ − −⎢ ⎥⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦⎩ ⎭

cu cu cu

c c c

c cuC
cu c

cu

c

h hk
d k d

kk
k

k k hk
d [3.184]

The reduced moment Cμ is given by:
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3.3.9. On the use of the reduced moment parameter

In absence of additional steel compression reinforcement, the neutral axis
position is calculated from the nonlinear equation:

( ) 2with u
act act

cu

M
bd f

μ α μ μ= =
−

[3.186]

which is always a second-order equation for the rectangular simplified
constitutive law, and still remains a second-order equation in Pivot B for the
constitutive law presented in detail (bilinear, parabola–rectangle or Sargin’s
law). Only the law of Desayi and Krishnan is presented in Table 3.3, for the
clarity of presentation, but the parameters of Sargin’s law for EC2 can also
be deduced from the formula presented in section 3.3.2.5 devoted to this law.

The dimensionless parameters of interest are presented for each model in
Table 3.3 (see also [THO 09] for the presentation of these parameters).

For a reinforced cross-section without additional compression steel
reinforcement, the dimensionless steel area in the case of simple bending
(without axial force) can be given in a dimensionless format as:

( ) ( ) 1withsu s
act act

cu

f A
f bd

ρ μ α μ ψ ρ
⎛ ⎞ ′ ′= =⎜ ⎟−⎝ ⎠

[3.187]

The tensile steel reinforcement is assumed in plasticity, with a tensile
stress equal to fsu. It is shown in Figure 3.30, that the four models are in fact
very close. The rectangular simplified law gives the lower steel area (unsafe
design), whereas Sargin’s nonlinear law gives the largest steel area, or the
safer design (both Sargin’s law for EC2, or Desayi and Krishnan law which
is also a particular case of Sargin’s law). Both the bilinear and the parabola–
rectangle constitutive laws lead to very close results.
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Figure 3.30. Comparison of the steel reinforcement area for each model

Rectangular
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Table 3.3. Comparison of the characteristics of the constitutive laws in pivot B
at ultimate limit state for ckf 50≤ MPa

These results obtained from a second-order polynomial equation for the
determination of the position of the neutral axis, for a given acting moment,
are based on Pivot B. However, in Pivot A, the nonlinear equation of the
neutral axis position can be a cubic equation for the bilinear constitutive law,
a fourth-order equation for the parabola–rectangle constitutive law and a
transcendal equation for Sargin’s constitutive law.
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Chapter 4

Bending-Curvature at Ultimate
Limit State (ULS)

4.1. On the bilinear approximation of the moment-curvature
relationship of reinforced concrete beams

4.1.1. Phenomenological approach

The behavior of a reinforced concrete beam in bending up to the ultimate
limit state (ULS) is composed of different complex inelastic stages (cracking
of concrete in tension, plasticity phenomena in steel, cracking of concrete in
compression), as shown in Figure 4.1 (see also [MAC 97]). First, we start
from a phenomenological approach describing qualitatively the main
phenomena involved at the ULS of a reinforced concrete beam. Second,
some bending-curvature’s models are analyzed based on both the local
constituent behaviors and a global simplified bending-curvature constitutive
law.

Figures 4.1 and 4.2 show two typical responses of reinforced concrete
beams with different steel reinforcements. Both curves are linear in the
initial stages. Initially, for the low loading level, the beam can be considered
as uncracked. The strains at this stage are very small, and the stress
distribution is essentially linear. The moment-curvature diagram at this stage
is essentially linear. When the stress of the lower fiber reaches the tensile
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strength of the concrete, cracking occurs at the lower part of the reinforced
concrete beam, for positive bending moment. After cracking, the tensile
force in the concrete is transferred to the steel reinforcement. The result is
that the lower part of a concrete section is involved in resistance to the acting
moment: a decrease in the beam stiffness is observed. However, it is
experimentally observed that the beam stiffness is slightly larger than the
stiffness totally neglecting the concrete in tension. This phenomenon,
already described in Chapter 2, is called the tension stiffening
effect. Although potentially significant for the deflection calculation at
the serviceability limit state (SLS), the tension stiffening effect will be
neglected in the following for the ULS design. When neglecting the concrete
behavior in tension, the stress distribution in the concrete is still linear at this
stage.

Figure 4.1. Typical experimental moment-curvature diagram for a the
bending of a ductile reinforced concrete beam – bilinear

approximation – lightly reinforced sections

The behavior of the section after cracking is dependent mainly on the
steel content (see also [PAR 75]). For lightly reinforced sections, after a
certain loading level, the tensile steel reinforcement reaches the yield point
and enters into the plasticity range. Even during this plasticity stage of the
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steel reinforcement, the concrete in compression can still behave in a linear
range. This step is associated with a drastic change of slope in the bending-
curvature diagram. Once yielding occurs in the tensile steel reinforcement,
the curvature increases rapidly with a small increase in moment (see also
[MAC 97]). Finally, the beam mainly fails due to crushing of the concrete at
the top of the beam, meaning that Pivot B mostly controls the ULS of the
bending behavior of reinforced concrete beams for high-ductility steel (even
if the tension steel reinforcements are in the plasticity stage). However, Pivot
A failure can also be potentially observed with a strain of the tensile steel
reinforcement, which has reached the ultimate strain of steel in tension. Pivot
A-type failure leads to higher ductilities than Pivot B-type failure, as also
mentioned in [PAR 75].

Figure 4.2. Typical experimental moment-curvature diagram for a the bending of a quasi-
brittle reinforced concrete beam – heavily reinforced sections

In heavily reinforced concrete sections, the bending-curvature response is
highly nonlinear, due to the nonlinearity of the stress–strain response
induced by the micro-cracking phenomena. A quasi-brittle response is then
observed unless the concrete is confined by closed stirrups at close centers.
If the concrete is not confined, the concrete crushes at a relatively small
curvature before the steel yields leading to the softening behavior in the
bending-curvature diagram (see Figure 4.2). To ensure ductility behavior, it
can be required to design the reinforced concrete beams with a steel content
less than the balanced design value leading to quasi-brittle responses.

M

κ
O

Mcr

κcr=Mcr/EII

tension
stiffening
effect

bilinear
approximation

κu

κy



196 Reinforced Concrete Beams, Columns and Frames

The nature of failure at ULS depends on the design of the reinforced
concrete section. In the following, the characteristic material parameters
associated with different kind of behaviors at failure will be analyzed.

As outlined in [PAR 75] or [MAC 97], although concrete is not a ductile
material (concrete is typically a quasi-brittle material), reinforced concrete
beams can exhibit large ductilities in bending as shown in Figure 4.1.
Typically, the curvature at ULS can be larger than five to six times the
curvature at SLS, due to the abrupt change of slope of the bending-curvature
constitutive law after the yielding of the tensile reinforcement.

A bilinear approximation of this complex nonlinear bending-curvature
constitutive law can model the different nonlinear stages with sufficient
accuracy (see also the bilinear approximation in Figure 4.1). The tension
stiffening effect is neglected for the bending modeling of reinforced concrete
beams at ULS.

4.1.2. Moment-curvature relationship for concrete – brief overview

The moment-curvature relationships can be obtained from the local
constitutive laws for both the concrete and the steel part, integrating over the
cross-section. Most of the results in the literature are focused on the
numerical investigation of the bending-curvature relationship for different
amount of axial forces. For instance, Pfrang et al. [PFR 64] numerically
derived the moment-curvature relationship of reinforced concrete sections
for different axial load level. The concrete modeling was based on the law of
Hognestad [HOG 51]. Hognestad’s law [HOG 51] is composed of the usual
parabolic law up to the maximum compressive strength and a linearly
decreasing (softening) branch up to the ultimate strain failure. Hognestad’s
law is given by [HOG 51]:
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The assumptions used by Pfrang et al. [PFR 64] are quite usual: the
tension part of concrete was neglected. Strain hardening in plasticity was
also neglected for the steel reinforcement. Some bending-curvature
relationship and normal force-bending moment interaction diagrams were
numerically obtained for symmetrically reinforced concrete beams. The
sections have shown a large amount of ductility at low axial load level (axial
load in compression). As the load level increased, ductility decreased
markedly. Furthermore, the reinforced concrete beam became stiffer with
increasing axial load up to a critical load called the balance load.

Since the paper of Pfrang et al. [PFR 64], many papers have been
published on the theoretical moment-curvature determination in reinforced
concrete design (see, for instance, [CAR 86]; or more recently the papers
coauthored by Professor Chandrasekaran [CHA 09e], [CHA 10d],
[CHA 11d]).

Carreira and Chu [CAR 86] also neglect the strain hardening in the steel
reinforcements. The concrete law in compression was modeled by the
following nonlinear stress–strain law:

1

with
1

c c

cd cf β
σ εβη η

β η ε
= =

− +
[4.2]

Even if the law of Carreira and Chu cannot be cast in the framework of
Sargin’s law in the general case [CAR 86], we recognize the law of Desayi
and Krishnan [DES 64] for β = 2, which is itself a particular case of
Sargin’s law [SAR 71]. Carreira and Chu take into account some
contribution of concrete in tension, with a model expressed by a similar
homothetic nonlinear law normalized by the tension strength and expressed
with respect to the dimensionless tension strain [CAR 86].

Chandrasekaran et al. [CHA 11d] derived the analytical bending-moment
curvature relationship with the effect of normal force. Strain hardening was
neglected for the steel reinforcement, and a limitation of the tensile strain to
10‰ was taken into account. The concrete was modeled with a parabola–
rectangle constitutive law in compression (and as usual the tension part in
concrete is neglected).
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4.1.3. Analytical moment-curvature relationship for concrete

4.1.3.1. General formulation

The bending-curvature relationship is studied in this part assuming an
elastic and perfect-plastic constitutive law for the steel reinforcement
( sus f=1σ at ULS), and a bilinear constitutive law for concrete ( ,supc cufσ = at
ULS). The contribution of concrete in tension is neglected, which is a
reasonable assumption for ULS design. An unsymmetrical reinforced
concrete section is analyzed (see Figure 4.3), with tensile steel reinforcement
of steel area As1, but without compression steel reinforcement As2 = 0. The
presence of the additional compression steel reinforcement does not change
fundamentally the complexity of the mathematical problem.

Figure 4.3. Rectangular cross-section at Ultimate Limit State

The bending-curvature can be obtained in closed-form solution for this
problem, with the bilinear constitutive law for the concrete in compression.
We outline that bending-curvature constitutive laws have also been
analytically investigated by Chandrasekaran et al. [CHA 11d] for parabola–
rectangle constitutive laws, leading to some more complex calculations. The
detailed equations of the nonlinear bending-curvature constitutive law of a
rectangular reinforced concrete section with a parabola–rectangle
constitutive law for concrete can be also available in closed-form solutions
for this problem, even if the solutions are more difficult to manipulate
[CHA 11d].
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As already detailed both at SLS and ULS, the Navier–Bernoulli
kinematics assumptions are written as:

( )
( ),sup 1

1
c cs y
d d y

ε εε κ
α α

= = − =
−

[4.3]

where κ is the curvature and y is the distance of the considered fiber to the
neutral axis (y = 0 defines the position of the neutral axis).

As we are only presenting results for the case of a simple bending
behavior (N = 0), the equilibrium equations are:
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4.1.3.2. Elasticity for both the steel and the concrete parts

For sufficiently small bending moments, the behavior is linear. We first
assume that both the concrete and the steel are in the elasticity range (but
concrete in tension is neglected at ULS as already specified):

1 1andc c c s s sE Eσ ε σ ε= = [4.5]

where cE and sE are, respectively, the Young’s modulus of concrete and
steel. Introducing the concrete constitutive law in the bending equilibrium
equation, and using the kinematic relationship between the strain in
concrete and the curvature leads to the bending-curvature equation in the
linear range:
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The position α of the neutral axis is still an unknown of the problem. The
normal force equilibrium equation leads to the necessary additional equation
for resolution of the problem.

( )2 1 1

2
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d A
b E

α σ
κ

= [4.7]

Note that in the reasoning, up to now, the steel constitutive law has not
been used in the bending-curvature equation presented in equation [4.6], or
in the axial equilibrium equation presented in equation [4.7].

Now introducing the elastic constitutive law of steel with the curvature
dependence of the strain in the tensile reinforcement gives a second-order
equation for the neutral axis, which is nothing more than the “static moment
equation”:
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which can be also written in a more classical equation as:
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In the elastic range, the neutral axis position does not depend on the
solicitation (as already shown in the part devoted to the SLS), and is equal
to:

( )21 1 12e s é s e sα α ρ α ρ α ρ′ ′ ′= − + + [4.10]

The elastic moment-curvature constitutive law, neglecting the tension
stiffening effect (cracked section), is then equal to:

( ) ( )
3

22
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3eq eq c II c s s

d
M EI EI E I E b E A d

α
κ α= = = + − [4.11]

The equivalent stiffness eqEI was also denoted by IIc IE in Chapter 2,
and is the equivalent stiffness of the homogeneous cracked section.
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From this quasi-elastic state (the section is assumed to be fully cracked
and tension behavior is neglected), by increasing the curvature, the section
will reach the elastic domain of the concrete or the steel part of the section.

4.1.3.3. Pivot A1 – linear behavior of concrete

We first assume that the inelastic part of the section is reached for the
tensile steel reinforcement, whereas the concrete part in compression of the
section remains in its elastic range. This can also be referred to as Pivot A1.
This kind of behavior is typical of a low steel reinforcement ratio and is
associated with very high-ductility behavior.

It is possible to define a critical curvature yκ associated with a strain 1sε
in the tensile steel reinforcement, equal to the maximum elastic strain suε ,
such as:
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[4.12]

The dimensionless critical curvature can be easily defined as:
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The reduced moment parameters can be also introduced as:
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In the elastic range (neglecting tension stiffening effect), the bending-
curvature constitutive law can be presented with dimensionless variables as:
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μ κ κ
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Once the tensile steel reinforcements have yielded ( 1s sufσ = ), the position
of the neutral axis is no more constant but depends on the bending moment
solicitation. The normal force equilibrium equation gives in fact:
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The position of the neutral axis given by the dimensionless parameter α
is then proportional to the inverse of the square root of the curvature:
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Replacing the neutral axis variable as a nonlinear function of the
curvature in the bending moment equilibrium equation leads to the nonlinear
bending moment-curvature constitutive law as:
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The bending moment-curvature constitutive law can be also presented in
a dimensionless format as:
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where uκ is the ultimate curvature associated with Pivot A1. The ULS at
Pivot A is defined from the ultimate strain condition:
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The calculation of the ultimate curvature uκ can be achieved from the
resolution of this ultimate strain condition, which is a nonlinear equation
expressed with respect to the curvature:
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This nonlinear equation is in fact a second-order polynomial equation of
the dimensionless curvature:

( )2* 2 * * 22 0u ud y y u udκ ε α κ κ ε− + + = [4.22]

The ultimate curvature is then obtained as the solution of this second-
order polynomial equation:
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Among these two solutions, only one verifies the constraint condition
induced by equation [4.21], and written as:

*
u udκ ε≥ [4.24]

We finally calculate the ultimate curvature for this reinforced concrete
section as the largest solution of the second-order polynomial equation:

( )2* 2
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Figure 4.4. Bending moment-curvature relationship of a reinforced concrete beam – failure
with Pivot A1 – linear behavior of concrete; C30-37 for the concrete; B500B for the steel;

;e 17.5α = 1 ;-4s 5×10ρ′ = ;y 0.124α = 0.01;yμ = /u y 18.67κ κ =

It has been shown that the bending moment-curvature response of the
reinforced concrete beam is nonlinear in the post-yield regime, as shown by
equation [4.19]. It is however possible to linearize this nonlinear function
around the yield point, and the linear approximation is written as:
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As shown in Figure 4.4, this linear approximation solution is not very
accurate for a sufficiently large curvature, as can be the case for this ductile
section in Pivot A (low steel reinforcement ratio). The asymptotic value of
the dimensionless bending moment is quite accurate in fact as highlighted in
Figure 4.4:
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This solution (Pivot A failure with only elastic behavior of concrete,
i.e. Pivot A1) is valid as long as the strain of the upper fiber has not reached
the elastic concrete strain denoted by 3cε , which is mathematically expressed
by the inequality:

*
,sup 3 3c u u c u u cdε κ α ε κ α ε= − ≥ ⇒ ≤ − [4.28]

This inequality is also equivalent to the following inequality:
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This solution is in fact equivalent to consider that the steel reinforcement
ratio has to be lower than a critical ratio given by:
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We calculate for a C30-37 type concrete and for a B500B steel the steel
reinforcement ratio limit as:

4
1

1.75
30 1.15 2 8.61 10
500 1.5 45 1.75sρ −×′ ≤ × = ×

× +
[4.31]

The numerical results presented in Figure 4.4 show the bend-
ing curvature constitutive law for a Pivot A1 failure response with a
reinforcement density equal to 4

1 5 10 ,sρ −′ = × which is lower than the one
computed above 4

1 8.61 10sρ −′ = × and associated with the transition to
Pivot A2.
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4.1.3.4. Pivot A2 – bilinear behavior of concrete

It is however possible to have a Pivot A-type failure governed by the
maximum capacity strain in the tensile steel reinforcement with some
nonlinear behaviors of the concrete. This behavior can be also referred as
Pivot A2. For this kind of cross-section, typically for:
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the section behaves like in Pivot A1 (elastic behavior of the concrete) up to a
critical curvature and then the section will fail in Pivot A2 (nonlinear
behavior of concrete).
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In this case, the equilibrium equations [4.4] are written as:
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As usual, dα is the distance from the upper fiber of the cross-section to
the neutral axis, and cdα is the distance from the upper fiber of the cross-
section to the fiber in concrete associated with the maximum elastic strain
(see Figure 3.29).
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The integral equations can be easily developed as:
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associated with the strain compatibility equation given by:
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The dimensionless neutral axis parameters can be expressed with respect
to the curvature variables from the normal force equilibrium equation as:
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Introducing these neutral axis parameters in the bending moment
equilibrium equation leads to the reduced moment nonlinear function of the
curvature:
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where uκ is the ultimate curvature associated with Pivot A2. The ULS at
Pivot A2 is defined from the ultimate strain condition:
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The calculation of the ultimate curvature uκ can be achieved from the
resolution of this ultimate strain condition, which is a linear equation
expressed with respect to the curvature:
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This solution (Pivot A2 failure) is valid as long as the strain of the upper
fiber has not reached the ultimate concrete strain denoted by 3cuε , which is
mathematically expressed by the inequality:
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This solution is in fact equivalent to consider that the steel reinforcement
ratio has to be lower than a critical ratio given by:
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This upper bound is clearly associated with the Pivot AB boundary. For
higher reinforcement steel density, the beam fails with Pivot B, meaning that
the strain capacity in the section is controlled by the strain capacity in the
compression concrete block.

We calculate for a C30-37 type concrete and for a B500B steel the steel
reinforcement ratio limit as:
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At the critical steel reinforcement ratio:
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The beam fails at Pivot AB, that is the ultimate state is characterized by
both the maximum strain capacity of the tensile steel reinforcement and the
maximum strain capacity of the concrete block in compression. At the ULS
associated with this critical steel reinforcement, we clearly have:
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[4.45]

Figure 4.5. shows the typical response of a reinforced concrete section
that is controlled by Pivot A2 failure, for low steel reinforcement density
ratio. The two stages of Pivot A1 and Pivot A2 are clearly seen with the
initial yielding of the tensile steel reinforcement, and then the contribution of
the micro-cracking effect in the compression block, even if the failure is still
a Pivot A failure controlled by the tensile strain capacity in the steel
reinforcement

Figure 4.5. Bending moment-curvature relationship of a reinforced concrete beam – failure
with Pivot A2 – bilinear behavior of concrete; C30-37 for the concrete; B500B
for the steel; ;eα =17.5 1 ;-3s 2×10ρ′ = 0.232;yα = 0.04;yμ = /u y 16.95κ κ =
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4.1.3.5. Pivot B – elastoplastic behavior of the tensile steel reinforcement

We will now study the case of a Pivot B-type of failure, for the steel
reinforcement ratio larger than the characteristic density:
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For this kind of reinforced concrete cross-section, the section behaves like
in Pivot A1 (elastic behavior of the concrete) up to a critical curvature and then
the section will behave in Pivot B (failure at Pivot B with plasticity in the
tensile steel reinforcement).

Linear behavior of concrete for
2*
3
2* 2 *

c

y y y

εκ
κ α κ

≤ and

bilinear behavior of concrete for
2*
3
2* 2 *

c

y y y

εκ
κ α κ

≥ [4.47]

The Pivot B branch is detailed below. The reduced moment equation is
still valid, if the tensile steel reinforcement is in the elasticity range, and is
given again below:

22 2
3 3

1 1* 22 *

1 1 for ;
24 2

c su su c u
s s

cu cu y yy y

f f
f f

ε ε κκμ ρ ρ
κ κκ α κ

⎡ ⎤⎛ ⎞⎛ ⎞ ⎢ ⎥′ ′= − − − ∈⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦
[4.48]

where uκ is the ultimate curvature associated with Pivot B. The ULS at Pivot
B is defined from the ultimate strain condition:

*3
,sup 3 12

c su
c cu u u u s

cu

fd
f

εε ε κ α κ ρ′= = − = + [4.49]
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The calculation of the ultimate curvature uκ can be achieved from the
resolution of this ultimate strain condition, which is a linear equation
expressed with respect to the curvature:

( )* 3
3

1 2
cu c

u cu
s su

f
f

εκ ε
ρ
− ⎛ ⎞= − +⎜ ⎟′ ⎝ ⎠

[4.50]

Figure 4.6 shows a typical failure at Pivot B, which clearly shows the lower
ductility of the response with a failure at Pivot B (failure in compression), as
compared to the failure at Pivot A (failure in tension in the tensile steel
reinforcement).

Figure 4.6. Bending moment-curvature relationship of a reinforced concrete beam – failure
with pivot B – bilinear behavior of concrete; C30-37 for the concrete; B500B for the steel;

;e 17.5α = 1 ;-2s 1×10ρ′ = ;y 0.442α = ;y 0.185μ = /u y 3.10κ κ =

In this case, with the parameters of interest, the ductility that can be
measured as the ratio between the ultimate curvature and the elastic
curvature is approximately three, which is significantly different from the
ductility observed in Pivot A. Furthermore, it is also observed that the
asymptotic approximation of the reduced moment suggested for pivot A is no
more relevant in this case.
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4.13.6. Pivot B – elastic behavior of the tensile steel reinforcement

For very high steel reinforcement density, the concrete still remains in the
linear range. The equilibrium equations are now written as:
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Introducing the relationship between the neutral axis parameters (see also
Figure 3.29):

3
*
c

c
εα α
κ

− = − [4.52]

the normal force equilibrium equation gives the neutral axis position with
respect to the curvature as:
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[4.53]

The other parameter cα , which defines the limit of the elastic domain in
the compression concrete block along the cross-section, is deduced as:
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The bending moment-curvature is obtained using the bending moment
equilibrium equation that gives a nonlinear function as:

( )

( )

33 2
3 3

1

3
1 3

2

1

2
3

1 3

1

1 1 2
3 2

2

1 2
2

c
cu cu

c c
c

s s cu

cu c
s s c

cu
s s cu

cu c
s s c

s s cu

bdf bf
M E b

A E bf

bfA E d
f bd

A E d bdf

bfA E d

A E d bdf

ε
ε ε κκ
κ κ κ

εκ ε
κ

κ

εκ ε
κ

κ

⎡ ⎤+⎢ ⎥−⎛ ⎞ ⎛ ⎞= + −⎢ ⎥⎜ ⎟ ⎜ ⎟ − +⎝ ⎠ ⎝ ⎠⎢ ⎥
⎣ ⎦
⎡⎛ ⎞+ −⎢⎜ ⎟

−⎢⎜ ⎟
−⎢⎜ ⎟⎜ ⎟⎢⎝ ⎠⎣

⎤⎛ ⎞+ − ⎥⎜ ⎟
⎥⎜ ⎟

− ⎥⎜ ⎟⎜ ⎟ ⎥⎝ ⎠ ⎦

[4.55]

It is possible to define a new critical curvature yκ associated with a strain

,supcε in the upper fiber of the cross-section, equal to the maximum elastic
strain 3cε in the compression block of concrete, such as:
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The dimensionless critical curvature can be easily defined as:
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y

d εκ κ
α

−= = [4.57]

The reduced moment parameters can be also introduced as:
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The reduced moment can be rewritten as:
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where uκ is the ultimate curvature associated with Pivot B. The ULS at
Pivot B is defined from the ultimate strain condition:
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The calculation of the ultimate curvature uκ can be achieved from the
resolution of this ultimate strain condition, which is a nonlinear equation
expressed with respect to the curvature:
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The ultimate curvature is then obtained as the positive solution of this
second-order polynomial equation, which is:
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This solution (Pivot B failure with only elastic behavior of the tensile
steel reinforcement) is valid as long as the strain in the tensile steel
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reinforcement 1sε has not reached the elastic steel strain denoted by ,suε
which is mathematically expressed by the inequality:

( )* *
1 31 su
s u u su u su cu
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f
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ε κ α ε κ ε ε= − ≤ = ⇒ ≤ − [4.63]

This solution is in fact equivalent to consider that the steel reinforcement
ratio has to be larger than a critical ratio given by:
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We calculate for a C30-37 type concrete and for a B500B steel the steel
reinforcement ratio limit as:

2
1

1.753.530 1.15 2 2.13 10
500 1.5 2.17 3.5sρ −

−×′ ≥ × = ×
× +

[4.65]

The numerical results presented in Figure 4.7 show the bending-curvature
constitutive law for a Pivot B failure response with a reinforcement density
equal to 2

1 2.5 10 ,sρ −′ = × which is larger than the one computed above
2

1 2.13 10sρ −′ = × and associated with the transition to Pivot B.

Figure 4.7. Bending moment-curvature relationship of a reinforced concrete beam – failure
with pivot B – bilinear behavior of concrete; C30-37 for the concrete; B500B for the steel;

;e 17.5α = 1 ;-2s 2.5×10ρ′ = ;y 0.595α = ;y 0.239μ = /u y 1.85κ κ =
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4.1.3.7. Synthesis of the bending-curvature constitutive laws

Each kind of reinforced cross-section is associated with a specific
bending-curvature constitutive law. Table 4.1 summarizes the main results
on the ductility formulae depending on the steel content of the reinforced
concrete cross-section.
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Table 4.1. Ductility /u yκ κ with respect to the dimensionless steel reinforcement quantity 1sρ′

The calculation of the dimensionless elastic curvature *
yκ is controlled by

the steel content 1sρ′ in the reinforced concrete section, and the steel and
concrete strain capacities as:
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In a certain sense, this calculation is linked to the determination of Pivot
A or Pivot B at SLS. We note that the determination of the pivot nature at
ULS can be different from the pivot nature at SLS, the elastic SLS can be
controlled, for instance, by the steel strain capacity at SLS associated
accompanied with a Pivot B failure (ULS). These inequalities conditions can
be expressed directly with respect to the steel content as:
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4.1.3.8. Ductility of the reinforced concrete section

Figure 4.8 shows the decrease in ductility with the steel reinforcement
density, and the transition from Pivot A failure to Pivot B failure. The
ductility is very sensitive to the reinforcement design, and it is not
recommended to have heavily reinforced sections, to avoid quasi-brittle or
brittle responses of the reinforced beams. In practice, to avoid the quasi-
brittle responses of the reinforced concrete beams, it is required that the steel
content is bounded by a critical ratio bρ , calculated as:
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Figure 4.8. The ductility /u yκ κ strongly depends on the steel content 1;sρ′
C30-37 for the concrete; B500B for the steel; e 17.5α =
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This condition expressed the need of inelastic strains in the tensile steel
reinforcement to guaranty a minimum amount of ductility.

The strength capacity evolution with respect to the steel content is studied
in Figures 4.9 and 4.10. The curves have been drawn due to the analytical
expressions of the reduced moment presented in this chapter for each kind of
behavior, and piecing together each solution. The inelastic strength reserve
measured by the dimensionless factor /u yμ μ is close to unity in Pivot A and
in Pivot B at ULS up to the critical point where the section behaves in Pivot
AB at SLS, where the inelastic strength reserve significantly increases. Once
the section has reached its behavior characterized by the elastic behavior of
the tensile steel reinforcement, the strength capacity is stable and is no more
sensitive to the steel content. More generally, as the ductility /u yκ κ

decreases with the steel content 1sρ′ , the strength capacity of the reinforced
cross-section measured by the ultimate reduced moment uμ monotonically
increases (see Figure 4.10). However, a singular point is clearly exhibited in
Figure 4.10 for a steel content 1sρ′ equal to the critical ratio bρ associated with
the elasticity behavior of the tensile steel reinforcement at ULS. This point is
classified as the balance failure (see, for instance, [PAR 75]). This point is
located in Pivot B where the section is controlled by the strain capacity in
concrete at ULS, and is associated with a change of behavior of the tensile
steel reinforcement from the plateau range in plasticity to the elasticity
range.

It is shown in Figure 4.10 that the ultimate reduced moment increases
almost linearly up to the point corresponding to the balance failure 1 .s bρ ρ′ ≤

In the compression failure region for 1s bρ ρ′ ≥ , the increase in moment with
steel area is extremely small because both the steel stress and the lever arm
decrease with increase in the steel content for this regime. Hence, there is a
change of slope in the diagram of the reduced moment with respect to
the steel content at this specific point and there is only a
little additional strength to be gained by an increase in the steel area (see
Figure 4.10).
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Figure 4.9. The inelastic strength reserve /u yμ μ strongly depends on the steel content 1;sρ′
C30-37 for the concrete; B500B for the steel; e 17.5α =

Figure 4.10. The strength capacity uμ strongly depends on the steel content 1;sρ′
C30-37 for the concrete; B500B for the steel; e 17.5α =

4.1.3.9. Condition of non-fragility

For ductility reasons, it has been shown that it is required for the steel
content 1sρ′ to be less than a critical steel content bρ corresponding to the
balance failure point. It is also required to stipulate a minimum
reinforcement ratio that should always be exceeded to avoid a brittle
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response of the reinforced concrete beam. This condition is called the
condition of non-fragility. This is because if the reinforcement ratio is too
small, the calculated flexural strength of the reinforced concrete section Mu
becomes lower than the bending moment required to crack the section Mcr
(see Chapter 2), and on cracking, failure becomes sudden and brittle. This
condition is mathematically expressed by:

ctm I
u cr

I

f IM M
h y

≥ =
−

[4.69]

It can also be a requirement that the elastic moment of the cracked
section yM has to be larger than the critical moment of the uncracked
section :crM

ctm I
y cr
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f IM M
h y

≥ =
−

[4.70]

As shown in this chapter, these two last inequalities are very close in
Pivot A, which is the Pivot concerned for low steel density. For the
unsymmetrical reinforced concrete section with only tensile steel
reinforcement, this inequality in Pivot A (or in Pivot B with an SLS in
Pivot A) is equivalent to:
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The nonlinear inequality has then to be solved as:
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Figure 4.11 shows the evolution of the minimum steel reinforcement 1sρ′

with respect to the tension strength ratio ctm suf f , and this curve was obtained
from the non-linear function defined by [4.72].
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Figure 4.11. Condition of non-fragility expressed with the minimum steel
reinforcement 1sρ′ with respect to the tension strength

ratio ;ctm suf f ;e 17.5α = d h 0.9=

An approximated formula can be obtained by assuming that the critical
moment is independent of the steel content and is expressed by:
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Hence, for sufficiently small values of the steel content, the lower bound
is obtained as:
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This lower bound is calculated below for different geometrical hd
ratios as:
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1 10.9 0.21 ; 0.85 0.23ctm ctm
s s

su su

f fd d
h f h f

ρ ρ′ ′= ⇒ ≥ = ⇒ ≥ [4.75]

It is shown in Figure 4.11 that the linear approximation with
the proportionality coefficient 0.21 corresponding to 0.9d h = is relevant
only for small steel content. However, for larger steel content, the
proportionality coefficient 0.23 is more accurate, due to the weak nonlinearity
of the curve. This coefficient 0.23 is, in fact, the coefficient that corresponds to

0.85d h = . The same coefficient 0.23 is used as a correction coefficient for
the condition of non-fragility of the old French rules Béton Armé aux Etats
Limites:
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The condition of non-fragility of the old French rules Béton Armé aux
Etats Limites is normalized with respect to the uniaxial tensile limit
strength :ykf

0.23ctm ctm

yk yk

f f
f f

= [4.77]

4.1.4. A model based on the bilinear moment-curvature approximation

The bending-curvature relationship is strongly dependent on the steel
content and the material constitutive laws. The normalized bending-
curvature relationship of each studied bending-curvature law can be
presented in Figure 4.12.
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Figure 4.12. Normalized bending-curvature constitutive law as a function of the
steel content 1;sρ′ C30-37 for the concrete; B500B for the steel; e 17.5α =

Each curve, numerically obtained with bilinear constitutive laws for both
the steel reinforcement and the compression block, can be reasonably
approximated by a global bilinear constitutive law (at the beam scale), with a
linear elastic stage and a linear hardening bending-curvature constitutive
law. Such kinds of bilinear bending-curvature constitutive laws have also
been obtained in the literature with some other constitutive laws for the
concrete. Park and Paulay [PAR 75] (with a Hognestad constitutive law for
the concrete part), Carreira and Chu [CAR 86] (with the generalization of
Sargin’s law for the concrete part) or Chandrasekaran et al. [CHA 09e] (with
a parabola–rectangle constitutive law for the concrete part) also found that
the bending moment-curvature relationship is close to a bilinear
approximation (with hardening range). Furthermore, Chandrasekaran et al.
gave the exact analytical expressions of the bending-curvature constitutive
law with a rectangle-parabolic constitutive law for the concrete ([CHA 09e],
[CHA 10d] and [CHA 11d]).

This kind of bilinear bending moment-curvature constitutive law is also
used by Challamel [CHA 03] for steel sections, and, in fact, many
engineering applications are concerned by such a mathematical bilinear
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modeling. The bilinear approximation can be modeled by a plasticity model
at the beam scale with a linear hardening law (see Figure 4.13).

p

M
M

m

1

1
y

u

κ
κ

yκ
κ

Figure 4.13. Normalized bending-curvature constitutive law; p yM M= and
/ /u y u ym M M μ μ= =

For a monotonic loading, the bilinear constitutive law is given by:

[ ]

( )

for 0;1 and

1
for 1;

1

y y y
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y y u

uy y y

y

m m

μ κ κ
μ κ κ

κκ
κ κ κμ κ
κμ κ κ
κ

= ∈

− + −
⎡ ⎤

= ∈⎢ ⎥
⎢ ⎥⎣ ⎦−

[4.78]

The parameters of the constitutive law ,yκ ,yμ uκ and uμ are given for
each steel content and for each behavior of the reinforced concrete cross-
section (see, for instance, Table 4.1 for the identification of each parameter
from the local steel and concrete constitutive laws based on bilinear
approximations).

The local moment-curvature relationship ( ),M κ considered is bilinear
with a linear elastic part and a linear softening part (Figure 4.13). This model
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is first considered in a local form, that is standard plasticity model with
negative hardening. The non-local extension will be investigated later in this
chapter. M p is the limit elastic moment, and yκ is the limit elastic curvature,
related through /p y eqM EI EIχ = = , which is the equivalent stiffness of the
homogeneous cracked section

The elastoplastic model represented in Figure 4.13 is a standard plasticity
model with positive plasticity hardening, associated with the yield function
f given by equation [3.12], with the plasticity flow rule given by equation
[3.13]. The hardening being linear, the following relation holds for the
“local” case:

( )* with 0p pM k kκ κ+ += > [4.79]

Using equation [3.16], the hardening branch of the bending moment-
curvature constitutive law can be presented in the following form:

for 1; u

y y y y

EI k
EI k EI k

κμ κ κ
μ κ κ κ

+

+ +

⎡ ⎤
= + ∈ ⎢ ⎥

+ + ⎢ ⎥⎣ ⎦
[4.80]

The hardening modulus can then be calculated from:

1
u

y

k m
EI mκ

κ

+ −=
−

[4.81]

The plasticity hardening modulus k + associated with the macroscopic
bending response of the reinforced concrete beam depends on the material
constituent of the cross-section, and especially on the ductility of the
reinforced cross-section, which is very sensitive to the steel content (see
Figure 4.14). Figure 4.14 shows the dependence of the equivalent hardening
modulus of an unsymmetrical reinforced concrete section, calculated from
the bilinear constitutive law for concrete at the local state, and an elastic-
perfect plasticity law for the tensile steel reinforcement.
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Figure 4.14. Evolution of the equivalent hardening modulus k EI+ with respect
to the steel content 1sρ′ for an unsymmetrical reinforced concrete section

with bilinear response for concrete

4.2. Postfailure of reinforced concrete beams with the initial bilinear
moment-curvature constitutive law

4.2.1. Elastic-hardening constitutive law

In this chapter, the bending response of a reinforced concrete cantilever
beam will be theoretically investigated up to the failure. The cantilever is
shown in Figure 3.2, as already investigated with an elastic-softening
response. Following the theoretical developments for the justification of the
macroscopic bending response from the local steel and concrete constitutive
laws, an elastic-hardening response will be first considered. This reinforced
concrete cantilever problem has also been investigated by Park and Paulay
[PAR 75] with a bilinear bending-curvature constitutive law associated with
positive hardening (see, for instance, Figure 4.13). This problem, with
elastic-hardening bending-curvature constitutive law, has been recently
studied by Challamel et al. [CHA 10b] for the cantilever structural case, and
by Chandrasekaran et al. [CHA 09e] for fixed–fixed beams or simply
supported beams under concentrated and distributed loading.
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The cantilever beam problem is a statically determinate problem with a
bending moment evolution given by equation [3.2]. For monotonic
increasing loading, the beam behaves in the elastic range, for P smaller than
y pP M L= . In the hardening range, the load is increasing such as:

[ ]; with p
Y Y Y

M
P P mP P

L
∈ = [4.82]

For increasing value of the load outside the elastic domain, the plastic
regime starts and the beam can be split into an elastic and a plastic domain
(see also Figure 3.2). The size of the plastic zone is denoted by 0 .l

+ In the
plastic zone, the plastic curvature is linearly increasing:

( ) ( )0
10; : p px l x P L x M
k

κ+
+

⎡ ⎤ ⎡ ⎤∈ = − −⎣ ⎦⎣ ⎦ [4.83]

The continuity of the plastic curvature at the elastic–plastic interface
leads to the plastic zone-load relationship:

( ) 0
0 0 1 Y

p
l Pl
L P

κ
+

+ = ⇒ = − [4.84]

Note that the propagation of the local hardening process zone is
equivalent to the linear relationship between previously used dimensionless
parameters:

0with 1 0 and 0Y

c c

lP L
P l l

β ξ β ξ
+⎛ ⎞= = − ≥ = ≥⎜ ⎟

⎝ ⎠
[4.85]

The displacement field in the plastic zone is obtained using the boundary
conditions (clamped beam):

( )
3 2

00; : 1 1
6 2p

EI x EI EI xx l EIw x P PL M
k k k

+ −
+ + +

⎡ ⎤⎛ ⎞ ⎛ ⎞⎡ ⎤∈ = − + + + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎣ ⎦
[4.86]
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The displacement in the elastic zone is obtained by enforcing the
continuity of the displacement and the rotation at the interface:

( ) ( ) ( )2 3
3 2

0 0
0 ; :

6 2 2 6

l lx x EI EIx l L EIw x P PL P x P
k k

+ +

+ +
+ +

⎡ ⎤∈ = − + + −⎣ ⎦ [4.87]

The load-deflection relationship is finally deduced in the hardening range
from:

2 3

0 0 01 13 with 1
2 6

Y

Y Y Y

l l l Pv P EI P
v P k P L L L P

+ + +

+

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= + − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

[4.88]

Figure 4.15 shows the hardening range for the cantilever beam. It can be
easily checked from equation [4.88] that the load-deflection relationship is
not linear, even for the local hardening constitutive behavior considered in
this paragraph (see also Figure 4.15).

Figure 4.15. Load-deflection relationship for the cantilever reinforced concrete
beam with a bilinear bending-curvature constitutive law; ;m 5 4= EI k 11+ =

A remarkable result is that the plastic curvature distribution depends
on the hardening law but the propagation law (equation [4.84] or
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equation [4.85]) does not depend on the model of the hardening law. In fact,
whatever the hardening model (even in case of nonlinear hardening), the
same equality is valid:

( ) ( ) ( ) ( )*
0 0 0 00 0p pl M l M l P L l Mκ + + + += ⇒ = ⇒ = − = [4.89]

The total curvature along the beam is calculated from:

( )

( )
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0

0; : 1 1 ;

; : 1

y y y

y y

x EI P x EI P EIx l
k P L k P k

x P xx l L
P L

κ
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κ
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+
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+

⎛ ⎞ ⎛ ⎞⎡ ⎤∈ = − + + + −⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠

⎛ ⎞⎡ ⎤∈ = −⎜ ⎟⎣ ⎦ ⎝ ⎠ [4.90]

The curvature increases drastically inside the inelastic plasticity zone that
occurs in an equivalent “plastic hinge” in the vicinity of the critical section
(see Figure 4.16).

Figure 4.16. Evolution of the total curvature along the beam ;m 5 4= EI k 11+ =

Using equation [4.81] with the sectional parameters 5 4m = and
11EI k + = , we calculate 4u yκ κ = , which is the curvature value obtained in
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the clamped section with the associated loading parameter. The maximum
size of the plastic length in the hardening process is obtained from:

0 11 1 y

u

l
L m

μ
μ

+

= − = − [4.91]

The value of m that controls the strength capacity reserve beyond the
elastic moment depends on the design of the reinforced concrete section and
the considered Pivot. In the present reasoning, the phenomenon of increase
in steel forces due to inclined diagonal tension cracks is neglected. This
additional phenomenon can be taken into account by some correction of the
linearly decreasing curvature (see [PAR 75], [PAU 92]). Diagonal tension
cracks in the plasticity zone increase the available plastic rotation by
spreading the zone of yielding along the member (tension shift effect).

4.2.2. Plastic hinge approach

A simplified plastic hinge approach can be used, associated with an
equivalent length of the plastic hinge over which the plastic curvature is
considered to be constant and equal to the mean value of the exact curvature
field ˆ :pκ

( ) ( ) ( )00 1ˆ 0
2 2 2

p p p
p p

l M PL
k

κ κ
κ κ

+

+

+ −
= = = [4.92]

The equivalent plastic rotation pθ can be calculated as:

2

ˆ 1 1 1
2 2

p y p y
p p p

y y

LM P LM PP Pl
k P P k P P

θ κ + +

⎛ ⎞ ⎛ ⎞⎛ ⎞
= = − − = −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

[4.93]

where 0pl l+= is the length of the “equivalent” plastic hinge, which is load-
dependent according to equation [4.84]. It is clearly seen from equations
[4.92] and [4.93] that the length of the “equivalent” plastic hinge, the mean
value of the plastic curvature and the plastic rotation are all dependent on the
loading parameter, which has been also reported by [CHA 09a] or Challamel
et al. [CHA 10b] for the bending of elastoplastic hardening beams. Lee and
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Filippou [LEE 09] also used a similar load-dependent hinge model to
compute the post-failure response of reinforced concrete beam-columns.

The equivalent load-dependent hinge model can be computed from the
elastic differential equations with the following boundary conditions:

( ) ( ) ( )with 0 0 and 0 pEIw P L x w w θ′′ ′= − = = [4.94]

This model is in fact equivalent to a loading-dependent bending-rotation
constitutive law for the concentrated hinge, obtained from equation [4.93]
as:

2

1
p p
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kM M
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L
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θ
+

= +
⎛ ⎞

−⎜ ⎟
⎝ ⎠

[4.95]

The “simplified” nonlinear load-deflection relationship, associated with
the load-dependent hinge model, is obtained as:

( )
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3 3 1
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y y y

PPL v P EI Pv P L
EI v P k P P
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[4.96]

This deflection-load relationship can be also expressed with respect to the
variable hinge length as:
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= + =

−
[4.97]

This relationship is valid in the plasticity branch, and especially at the
ULS:

,,
, , ,

,

ˆ1 ˆ3 with
1

p up uu
p u p u p u

p uy y

lv llv L
L

κ
θ κ

κ
= + =

−
[4.98]



232 Reinforced Concrete Beams, Columns and Frames

A more simplified approach would be based on the hinge bending-rotation
constitutive law with a constant global hardening modulus calculated from
the maximum size of the hardening plasticity zone at ULS as:

,

,

2 1with 1p u
p p

p u

lkM M
l L m

θ
+

= + = − [4.99]

The “simplified” nonlinear load-deflection relationship, associated with a
load-independent hinge model, is obtained as:

3 11 1
2y y y

v P EI P
v P k P m+

⎛ ⎞⎛ ⎞= + − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
[4.100]

At the ULS, equation [4.98] is also valid, and both equivalent hinge
methods coincide.

Although not exact, the approximations based on the equivalent hinge
methods provide good engineering results, especially the one based on the
loading-dependent hinge model analysis (see Figure 4.17). The hinge model
based on a load-independent hardening moment-rotation constitutive law
leads to the linear curve in Figure 4.17, and leads to relevant results
especially in the vicinity of the ULS (for uκ κ= at the section basis).

Figure 4.17. Comparison of the exact bilinear moment curvature model with
the hinge models; ;m 5 4= EI k 11+ =
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There is a large discussion in the literature on the identification of the
finite hinge length (see, for instance, [PAR 75], [BAZ 03], [MEN 01],
[BAE 08], [ZHA 12] and [BAR 12]). As mentioned by Park and Paulay
[PAR 75]: “The difference between the various empirical expressions
emphasizes that the rotation capacity of plastic hinges in reinforced concrete
members can only be approximated at present. Most research is needed to
clear the differences between the various empirical expressions”.

As shown in Figure 4.18 based on the bending-curvature constitutive law
obtained from the bilinear constitutive law, the plastic hinge length strongly
depends on the steel content, and the mode of failure.

Figure 4.18. Evolution of the finite plasticity hinge length pul L with respect to the steel
content 1sρ′ for an unsymmetrical reinforced concrete section with bilinear response for

concrete; ;L d 5= C30-37 for the concrete; B500B for the steel; e 17.5α =

Park and Paulay [PAR 75] presented various empirical expressions for
the correlation of this finite hinge length, based on experimental results (see,
for instance, [BAK 56], [SAW 65] and [MAT 67]). Baker [BAK 56] defined
an empirical rule expressed by:

1
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1 2 3p
zl k k k d
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where z is the distance of the critical section to the point of contraflexure;
z L= for the cantilever beam studied in this chapter. 1 2,k k and 3k are
empirical coefficients that depend on the steel and concrete used in the section.
For 5L d = , we typically obtain 0.83pl d = with this model. Sawyer [SAW
65] used a linear regression law with respect to d and z as:

0.25 0.075pl d z= + [4.102]

For 5L d = , we typically obtain 0.63pl d = with this model. Mattock
[MAT 67] used a slightly different correlation expression:

0.5 0.05pl d z= + [4.103]

For 5L d = , we typically obtain 0.75pl d = with this model. These
three models based on experimental results are compared in Figure 4.18
with the theoretical model based on the strain capacity of the cross-section
defined by Eurocode 2 rules. In the theoretical analysis, the phenomenon of
increase in steel forces due to inclined diagonal tension cracks is neglected,
and the post-failure analysis is not included. It can be observed in Figure
4.18 that the empirical correlation expressions mainly give higher plasticity
length than the theoretical one in Pivot A (or for tension failure), whereas
the correlation length can underesti-mate the theoretical plasticity length in
Pivot B (or for compression failure).

It is also shown in Figure 4.18 that the theoretical plasticity hinge length
is sensitive to the steel content and is globally an increasing function of the
steel content. Priestley and Park [PRI 87], or Paulay and Priestley [PAU 92]
suggested another empirical law for the plastic hinge length, which is
sensitive to the steel content and can be presented as:

,0 1 ,0 1 1
4

p p p s
bdl l lγ φ γ ρ
π

′= + = + [4.104]

where ,0pl and 1γ are two fitting parameters. Priestley and Park [PRI 87], or
Paulay and Priestley [PAU 92] suggested the value ,0 0.08pl L= whereas
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Eurocode 8, for instance, gives the close value ,0 0.10pl L= . According to
Figure 4.18, a new simple proposal could be based on:

1p sl γ ρ′= [4.105]

where the fitting parameter γ is chosen to be equal to 2.37γ = , for a C30-37
type concrete, with a B500B for steel, in order to enforce the square root
approximation function (equation [4.103]) to pass through the balanced

failure point defined by
3

3

1
3

2
c

cu
cu

s
su su cu

f
f

εε
ρ

ε ε

−
′ =

−
. Equation [4.105] is a particular case

of equation [4.104] where the constant parameter ,0pl has been assumed to
vanish. Figure 4.18 shows that the new proposal gives the correct tendency
for the matching of the theoretical results based on the theoretical strain
capacity section.

Finally, as outlined by Park and Paulay [PAU 75], the plastic hinge
within the span of a symmetrically loaded beam will have a total equivalent
length twice the length found for the cantilever (see also [CHA 08a]).

4.2.3. Elastic-hardening constitutive law and local softening collapse:
Wood’s paradox

It has been shown how the reinforced concrete beam can be designed
with respect to the ULS, which is a strain-controlled ULS, compatible with
the allowable behavior of the beam with respect to the specificities.

However, the rules including Eurocode 2 do not question the behavior
beyond this ultimate limit. We will try to understand now what happens
beyond the peak, or during the initiation of collapse. The tri-linear bending-
moment curvature diagram is now considered with a softening branch
associated with the failure behavior (see Figure 4.19).

It is assumed that the softening branch starts at the ultimate curvature uκ
but the reasoning can be generalized by considering a starting branch at a
higher value.



236 Reinforced Concrete Beams, Columns and Frames

The hardening/softening rule is now given in the following form:
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[4.106]

pM is the limit elastic moment, and yκ is the limit elastic curvature, related
through /p yM EIκ = .m is the ratio between the maximum moment reached
during positive hardening and the limit elastic moment (m is necessarily
greater than unity), and cκ is the plastic curvature reached before the
initialization of the softening process. The hardening modulus k + is positive
whereas the softening modulus k − is negative.

We first studied the “local” softening process in the sense that the
softening constitutive law is expressed only with respect to the local plastic
curvature.
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Figure 4.19. Elastic–plastic hardening–softening moment-curvature law
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The plastic softening response may start once the load P reaches the
maximum value .YmP Enforcing that pκ is a continuous function of x

( )( )0p clκ κ− = leads to:

( )0
0 0p

p

P L l mM
l

PL mM

−
−

⎧ − =⎪ ⇒ =⎨
≤⎪⎩

[4.107]

This additional assumption gives the new Wood’s paradox for
hardening–softening local constitutive relationship. The unloading elastic
solution is the only possible solution of the local softening problem
(Figure 4.20).

In this case again, the paradox can be interpreted as the appearing of
plastic curvature increments localized into one single section, leading to
physically no reasonable phenomenon of failure with zero dissipation.

Figure 4.20. Wood’s paradox – local hardening/softening plasticity
models; ;m 5 4= EI k 11+ =
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4.2.4. Elastic-hardening constitutive law and non-local local softening
collapse

Wood’s paradox for the hardening–softening beam can be solved by
using a non-local softening moment-curvature law, as in the case of the
elastic-softening beams. Once the bending moment in the clamped section

( )0M x PL= = reaches the yield strength ,pmM the softening zone can
propagate from the clamped section, whereas unloading is observed in the
hardening plastic zone and in the elastic zone. The local hardening and non-
local softening constitutive relationship are given by:

( ) [ ]
( ) ( ) [ ]
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�
�

[4.108]

The problem of the continuity requirement between hardening and
softening constitutive laws (a local law and a non-local law) will be
implicitly solved by the fact that the length of the softening zone at the yield
strength pmM will vanish as we will see (as for the elastic-softening
problem). Furthermore, the non-local plastic variable is integrated over the
active plastic domain, that is the softening zone, as the hardening zone is in
unloading during this final process.

As introduced in equation [3.55], the non-local softening measure is also
equivalent to:

22 with clλ λ λ λ λ λ
″

= − + − =� [4.109]

By considering the yield function in the softening area, the linear
differential equation is obtained in the softening domain:
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with the boundary conditions associated with the higher order boundary
conditions of the non-local model and the continuity requirement of the
plastic curvature:

( ) ( ) ( )0 0, 0 and 0 0cl lλ κ λ λ−′ ′
= = = [4.111]

The general solution of the differential equation [4.110] is written as:
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The nonlinear system of three equations with three unknowns ,A B and

0l
− is finally obtained:
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The following dimensionless parameters may be introduced as:

01 0 and 0Y
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[4.114]

leading to the localization relation of equation [3.61].

A remarkable result is that the plastic diffusion in the softening range
does not depend on the hardening range. In other words, the hardening
modulus (or the material history in the hardening domain) does not affect
the localization process, from a qualitative point of view. The deflection in
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the plastic zone 00;x l −⎡ ⎤∈ ⎣ ⎦ is obtained by integrating twice the elastic
curvature:
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The deflection in the elastic zone 0 0;x l l− +⎢ ⎥∈ ⎣ ⎦ is derived from the
kinematics continuity condition, along the active softening–passive
hardening zone, whereas the plastic curvature distribution is constant in the
unloading phase:
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The deflection in the elastic zone 0 ;x l L+⎢ ⎥∈ ⎣ ⎦ is derived from the

kinematics continuity condition along the passive hardening–elastic
interface:
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[4.117]

Generally speaking, the plastic zone grows in the hardening range until
the maximum load, then a more localized softening zone arises from the
clamped section and controls the mode of collapse. The global softening is
then observed after the hardening behavior (Figure 4.21) and Wood’s
paradox is solved within the non-local plasticity constitutive law.

Figure 4.21. Response of the elastoplastic hardening – non-local softening beam;
/ ;EI k 5− = − / ;cl L 0.1= ;m 5/4= /EI k 11+ =

0l
+ related to the hardening domain is the length of the hardening plasticity

zone that propagates along the beam without any material limits, whereas the
softening localization zone, denoted by 0l

− , is increasing during the softening
process, until a finite length, which depends on the material-section model.
Of course, these two localization zones are strongly different ( )0 0 .l l+ −≠ For
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the non-local models studied in this chapter, the plastic variable is integrated
on an active plastic domain. In particular, during the softening process, the
non-local plastic variable is integrated on the localization length 0 ,l − even if

the plasticity zone is generally much larger ( )0 0 .l l+ −> In fact, the hardening

and the softening plastic zones are given by:

0 011 and cl l l
L m L L

π
+ −

= − ≤ [4.118]

where the hardening zone has been calculated from the local hardening
model. Therefore, the softening plastic zone is necessarily smaller than the
hardening plastic zone for a sufficiently small characteristic length, that is:

0 0
1 11cl l l

L mπ
− +⎛ ⎞≤ − ⇒ ≤⎜ ⎟

⎝ ⎠
[4.119]

It is not excluded, however, the softening localization zone is influenced
by the overall plasticity phenomena in the precracked reinforced concrete
beam, and the simple non-local model presented in this chapter has its own
limits. The calibration of the characteristic length lc, which includes material
and cross-sectional properties, should certainly merit further investigations.
The research on the global modeling of the collapse of reinforced concrete
beams is still open, and would merit further studies, especially including the
coupling mode of collapse between the shear and the bending modes.

4.3. Bending moment-curvature relationship for buckling and
postbuckling of reinforced concrete columns

4.3.1. A continuum damage mechanics-based moment curvature
relationship

The buckling and postbuckling behaviors of reinforced concrete softening
columns composed of quasi-brittle materials such as concrete and composite
materials are of interest in this section. Such members must be designed
taking into account the second-order effects produced by the axial loads on
the deformed member. The main international rules, including, for instance,
the European code for reinforced concrete design, Eurocode 2 [EUR 04], are
based on this concept, even though they may allow second-order effects to
be neglected when the column slenderness does not exceed certain limits.
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Such limits have been investigated (e.g. [HEL 05a], [HEL 08] and
[MAR 05]) and included in most reinforced concrete codes. Various
empirical or theoretical based methods have been published in the past,
which all introduced some necessary realistic imperfections through additional
load eccentricities ([ROB 75], [BAZ 03]). This is typical and necessary, from
a theoretical stability point of view, for nonlinear structural systems that
belong to the field of imperfection sensitive systems. There have been
numerous textbooks devoted to the elastic or inelastic buckling of columns
(see, for instance, [LHE 76] or [BAZ 03]), but the link between the
imperfection sensitivity of the structural models and the buckling phenomenon
of reinforced concrete columns was not clearly highlighted in the authors’
point of view, at least not from simple physically based models.

In such analyses, it is necessary to include some nonlinearity in the
bending-curvature constitutive law. Such nonlinearities may lead to unstable
post-bifurcation and post-buckling branches in the buckling problem. As a
result, and rather well known, the buckling of softening systems may lead to
the imperfection sensitivity phenomenon. This study will focus on such
problems based on continuum damage mechanics (CDM) models that may
specifically be applied in a qualitative sense to reinforced concrete sections.

The problem handled in this study is not so different from the elastic
problem of a softening column, as already numerically investigated by
[ODE 70], [MON 74], [YU 82], [HAS 85], [KOU 87], [LEW 87],
[WAN 96], [VIR 04], [BRO 07] or [LAC 08]. These authors studied the
post-buckling of columns modeled with a nonlinear bending-curvature
constitutive law, with different potential applications including steel or
composite structures. A major observation by these authors is that the local
stiffness softening of the constitutive law (associated with a decrease in the
secant stiffness) may induce some global softening of the post-buckling
behavior, that is the axial load must decrease with increasing deflection during
the post-buckling range in order to maintain equilibrium. This kind of post-
buckling behavior is, as mentioned, typically responsible for imperfection
sensitivity phenomena.

The continuous clamped-free cantilever column considered is shown in
Figure 4.22. A similar problem has been recently studied by Krauberger
et al. [KRA 11] for reinforced concrete columns without any imperfection.
However, in the presence of softening induced by the micro-cracking in
concrete, the buckling load of the perfect system may overestimate
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significantly the limit load of the imperfect column. An imperfection
analysis is needed, as previously shown for the single-degree-of-freedom
softening structural system. The imperfection is, as before, introduced
through an additional eccentricity of the axial load.

Figure 4.22. Eccentrically loaded, continuous cantilever column, and definition of
parameters and variables used in the buckling and postbuckling study of softening

reinforced concrete columns

Figure 4.23. CDM constitutive law of the inelastic spring
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The bending-curvature relationship is assumed to be inelastic and
behaves with a damage law illustrated in Figure 4.23 and defined by:

( )1M EI D κ= − [4.120]

where M is the bending moment, κ is the curvature of the cross-section,
EI is the initial stiffness of the spring and D is the damage variable that
measures the integrity of the cross-section (see also [CHA 07] for a similar
damage bending constitutive law). D evolves from 0 for a virgin cross-
section to 1 for the totally broken cross-section. As seen in the figure,
plasticity effects are neglected, as there is no remaining rotation at
completed unloading. The damage loading function is postulated as:

( ), 2 and
Y

df D D
ds

κ θθ κ θ
κ

′ ′= − = = [4.121]

where κ is the curvature, θ is the rotation of the cross-section and s is the
curvilinear abscissa (coordinate along the deformed axis). The curvature Yκ
is the only material parameter, and is associated with the maximum moment
capacity of the cross-section. The irreversible damage constitutive law
including the loading–unloading conditions can be written as:

( ) ( )0, , 0, , 0D f D D f Dκ κ≥ ≤ =� � [4.122]

Equation [4.122] can be viewed as the so-called optimality Kuhn–Tucker
conditions where the Lagrange multiplier is equal to the damage rate (see,
for instance, [JIR 02] for a discussion on Kuhn–Tucker conditions for
inelastic analysis). First, monotonic loading behavior will be considered,
without any unloading phenomena. Unloading will be discussed in a
subsequent section of the chapter.

4.3.2. Governing equations of the problem and numerical resolution

Application of the principle of virtual work in the so-called geometrically
exact configuration for the inextensible softening column leads to:

( ) ( ) ( )00
1 sin cos 0

L
EI D P ds Pe L Lθ δθ θδθ θ δθ′ ′− − − =⎡ ⎤⎣ ⎦∫ [4.123]
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where 0e is the eccentricity of the applied axial load at the column top. An
integration by part gives the differential equation:

( )1 sin 0EI D Pθ θ′′⎡ − ⎤ + =⎣ ⎦ [4.124]

and the natural and essential boundary conditions:

( ) ( ) ( )00
1 cos 0

L
EI D Pe L Lθ δθ θ δθ′⎡ − ⎤ − =⎣ ⎦ [4.125]

For the clamped-free column studied in this chapter, these boundary
conditions become:

( ) ( ) ( ) ( )00 0 and 1 cosEI D L L Pe Lθ θ θ′= ⎡ − ⎤ =⎣ ⎦ [4.126]

In case of monotonic loading in the hardening regime, uniqueness
prevails. Hill’s uniqueness criterion [HIL 58] at the beam scale (see also
[CHA 07]) can be applied:

0
0

L M
t t

κ∂ ∂ >
∂ ∂∫ [4.127]

For this loading range, the column behaves as a nonlinear elastic column
with a damage loading function given by ( ),f Dκ from equation [4.121].
In the monotonic loading case, ( ), 0,f Dκ = implying ( )2 ,YD κ κ= the
nonlinear constitutive law is assumed in the same form:

11
2 Y

M EI κκ
κ

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
[4.128]

This is typically a hyperelastic constitutive law whose potential 0π is
given by:

0 3
0 21 1with

2 6 Y

M EI EIπ κπ κ
κ κ

∂= = −
∂

[4.129]
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By substituting the damage parameter into equation [4.124], the nonlinear
differential equation governing the hardening (increasing moment) path of
the nonlinear material and geometrical problem is then given by:

1 sin 0
2 Y

EI Pθ θ θ
κ

′
⎡ ⎤⎛ ′ ⎞ ′− + =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
[4.130]

The general solution of such a nonlinear differential equation is difficult
to achieve analytically.

With the dimensionless parameters:
2

* * * * 0
0; , , andY Y

ePL s xp s x L e
EI L L L

κ κ= = = = = [4.131]

where *
Yκ typically has an order of magnitude of 0.05 or 0.1 for reinforced

concrete columns, the nonlinear boundary value problem for the hardening
path can be expressed by the nonlinear differential equation and boundary
conditions given by:
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2 * **
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d d p
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11 1 1 cos 1
2 Y

d d pe
ds ds

θ θ θ
κ

⎡ ⎤
− =⎢ ⎥

⎣ ⎦
[4.132]

For a curvature d dsθ equal to Yκ (or * *
Yκ κ= ), equation [4.132] shows

that the tangent modulus vanishes, and the differential equation above
becomes singular, leading to the loss of well posedness of the structural
problem. In order to proceed for curvatures beyond ,Yκ it is necessary to
introduce non-local consideration in a region of the column instead of local
sectional considerations alone. This will be dealt with in detail later.

It is theoretically possible to express the above nonlinear differential
equation as a first-order differential equation. Multiplying the nonlinear
differential equation by the curvature and integrating one time leads to the
following nonlinear first-order differential equation:

[ ]
2 3

* * *

1 1 cos 1 0
2 3 Y

d d p
ds ds

θ θ θ
κ

⎛ ⎞ ⎛ ⎞− − − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

[4.133]
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This is a cubic equation with respect to the curvature. It can be theoretically
solved using Cardano’s method, but then the post-buckling behavior
investigated from the first-order nonlinear differential equation still needs
some numerical computations. In the paper of Haslach [HAS 85], based on a
cubic moment-curvature constitutive law, a quartic equation in the curvature
was obtained by integration, leading to an easier analytical solution of the
curvature, even if the final integration process was numerically performed.

For the parabolic constitutive law adopted in this chapter, a different
approach is required. In the hardening range, that is for ,Yκ κ< the
nonlinear boundary value problem (equation [4.132]) can, in order to
facilitate a computational format, be rewritten in an explicit form with
respect to the second derivative:

( )

( ) ( )
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2* * * *
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Y Y Y
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d p e
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= − −
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* Y
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θ κ< and ( )
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*
0 cos 1

2
Ype κθ < [4.134]

The rotation α at the column end with the applied load is taken as the
control parameter.

Simplifications of the above formulations, in the geometrically exact
framework, will often give sufficiently accurate results for cases with small
rotations. For this reason, we will derive some approximate solutions for the
so-called “second-order analysis” of the considered problem. Introducing
( sinθ θ≈ and cos 1θ ≈ ) in the differential equations [4.134], they can be
written as:
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= − − < < [4.135]
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where derivatives are now with respect to the abscissa (longitudinal axis) x
(rather than with respect to the curvilinear s ).

Figure 4.24 shows numerical load-rotation results obtained for the
unstable, softening post-bifurcation branches of the perfect system (with no
load eccentricity). The abscissa α in the figure is the rotation at the top of
the cantilever column. Results based on the geometrically exact and on the
second-order approximated analysis were found to be identical within three
decimals. In the figure, this difference is not visible. Similar correspondence
between the two analyses was found for load-rotation results for imperfect
columns, for a range of load eccentricities [ ]*

0 0;0.01 .e ∈ Such results are
presented in Figure 4.25. Hence, the second-order analysis is sufficient for
most engineering applications, including the analysis and design of
reinforced concrete columns.

Figure 4.24. Bifurcation diagram for the perfect softening buckling system showing
unstable branches with a singular point; *

Y 0.05κ = and *
Y 0.1κ =
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Figure 4.25. Eccentricity effect on the pre- and post-buckling response of the softening
column; *

Y 0.1κ =

In the numerical computation of these figures, *
Yκ was chosen to be equal

to either 0.05 or 0.1 . This range is of an order of magnitude that is typical
for reinforced concrete columns. With these material parameters, the
curvature corresponding to the section moment capacity, ( )0 ,Yκ κ= is
reached for a column end rotation of approximately 0.0228Yα ≈ in the case
of * 0.05,Yκ = and for 0.0455Yα ≈ in the case of * 0.1.Yκ = Thus, in both
cases, Yα is approximately equal to half of the curvature *

Yκ , * 2.Y Yα κ≈
This is an interesting result. It can be checked in a simplified manner based
on an assumed linear moment distribution along the cantilever column. This
gives

( ) ( )
2

0 01
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x xEI x M EI x M x
L L

θ θ ⎛ ⎞⎛ ⎞′ = − ⇒ = −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

[4.136]

where ( )0 0M M= is the moment at the column base. Then, from equation
[4.136]:
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which, as an approximation, confirms the results above from the second-
order analysis.

For the continuous column, the unstable post-bifurcation branches
(Figure 4.24) can be seen to have a singular bifurcation point, a phenomenon
also noticed for the softening single-degree-of-freedom system. Figure 4.25
reflects the strong load sensitivity of the imperfect column with respect to
the load eccentricity at the column end. The limit points of the imperfect
column, as well as the complete softening (descending) post-buckling
branches shown in the figures, are all obtained for section curvatures that are
in the hardening (ascending) range of the moment-curvature law, that is for

Yκ κ≤ . In engineering design contexts, it is often the limit loads that are of
prime interest. Since these are reached prior to or at ,Yκ κ= as shown
above, the presented analyses (limited to Yκ κ≤ ) are sufficient. However, if
the response beyond this value is of interest, which it often is, a non-local
CDM approach can be used, as we will see later, in the postfailure range

.Yκ κ≥

4.3.3. Second-order analysis – some analytical arguments

In an effort to derive imperfection sensitivity results, in an analytical
form, an asymptotic method based on a linearization of an integral
formulation of the boundary value problem is suggested in this section,
which still is limited to .Yκ κ≤ A numerical comparison of the exact and the
linearized solution will be presented in a second step.

Small rotations are assumed in order to simplify the nonlinear differential
equation [4.130] as:

1 0 where
2 Y

wEI w Pw wθ
κ

′
⎡ ⎤⎛ ′′ ⎞ ′′ ′ ′− + = =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
[4.138]

where the prime derivative is now expressed with respect to the spatial
abscissa x (in the length direction). An integration of equation [4.138] leads
to the differential equation:

11
2 Y

wEI w Pw C
κ

⎛ ′′ ⎞ ′′− + =⎜ ⎟
⎝ ⎠

[4.139]
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The constant 1C can be identified from the boundary conditions at the
loaded end of the column:

( ) ( )1M L Pe C P w L e= ⇒ = ⎡ + ⎤⎣ ⎦ [4.140]

equation [4.140] can then be written as:

( ) ( ) ( )2 22 0 with 0 0 0Y
Y

Pw w w L e w w w
EI

κκ′′ ′′ ′− + + − = = =⎡ ⎤⎣ ⎦ [4.141]

which is a quadratic nonlinear differential equation, from which the roots
(curvatures) can readily be extracted. The smallest root is important for the
hardening moment-curvature regime studied in this section. Thus,

( )2 2 Y
Y Y

Pw w L e w
EI

κκ κ′′ = − − ⎡ + − ⎤⎣ ⎦ [4.142]

Note that the expression under the square root is positive in the curvature
hardening range. This can be argued physically, but also mathematically as
shown below.

( ) ( )

( )2

0
2

2 0

Y
Y

Y
Y

M P w L e w M EI

P w L e w
EI

κ

κκ

= ⎡ + − ⎤ ≤ =⎣ ⎦

⇒ − ⎡ + − ⎤ ≥⎣ ⎦ [4.143]

The mathematical problem can be simplified by introducing the variables
A and B as follows:

( )2 2 0
with

2 0

Y
Y

Y
Y

PA w L e
EIw A Bw

PB
EI

κκ
κ

κ

⎧ = − ⎡ + ⎤ >⎣ ⎦⎪⎪′′ = − + ⎨
⎪ = >
⎪⎩ [4.144]

By multiplying each term in this nonlinear differential equation by the
rotation, such that:

Yw w w A Bw wκ′′ ′ ′ ′= − + [4.145]
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and then integrating this equation, the nonlinear first-order differential
equation below is obtained.

( )
2 3

2
1

2
2 3Y
w w A Bw C

B
κ

′
= − + + [4.146]

The constant 1C is easily identified from the introduction of the boundary
conditions at the clamped section:

( ) ( )
3
2

1
20 0 0
3

w w C A
B

′= = ⇒ = [4.147]

We finally obtain the following nonlinear differential equation:

( )
3 3
2 2

42
3Yw w A A Bw
B

κ
⎡ ⎤

′ = + − +⎢ ⎥
⎣ ⎦

[4.148]

that can be presented in an integral format by:
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By incorporating the dimensionless parameters:
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2
* * * * 0
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ePL x wp x w L e
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the integral equation [4.149] can then be expressed in dimensionless format
by:

( )
( )* *1

0 33
* * * * * * 22

*

1
42
3

w

Y
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w A A B w
B

κ
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⎡ ⎤
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∫ [4.151]



254 Reinforced Concrete Beams, Columns and Frames

In an integral format, equation [4.151] gives the exact load-displacement
relationship of the imperfect softening column based on the second-order
analysis.

It is now investigated to see if it is possible to develop a suitable
approximate imperfection sensitive law based on the second-order analysis,
integral-formulation of equation [4.151]. For sufficiently small deflection
values * 1w << , an asymptotic expansion of equation [4.151] yields:

( )
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3 *3
* * * * *2 2
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*1

0 * * *
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2
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Y

BA B w A w
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dw
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⎝ ⎠

=
−

∫
[4.152]

From equation [4.152], the top defection ( )* 1w can be calculated and
expressed by:

( ) ( )
* *

2* * * * * *
0

11 2 1
2 2

Y
Y Y Y

Aw p w eκ κ κ κ− ⎡ ⎤⎡ ⎤= = − − +⎣ ⎦⎢ ⎥⎣ ⎦
[4.153]

from which the dimensionless load p can be solved for and expressed by:

( ) ( )
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+

[4.154]

From this equation, the critical (bifurcation) load of the perfect column
becomes 0p p= (for *

0 0e = ). The analysis above gave 0 2p = , which clearly
only represents an approximation of the correct buckling load of the clamped-
free linearly elastic column, 2 4.Ep π= The difference between 0p and Ep is
due to the expansion approximation. For the perfect problem *

0 0e = , the post-
bifurcation branch is typically an unstable branch. For the imperfect problem,
with *

0 0,e ≠ the deflection at the limit loads can be calculated from:

( ) ( ) ( )2* * * * *
0 0* 0 1 2 1 0

1 Y
p w e w e

w
κ∂ ⎡ ⎤= ⇒ + − =⎣ ⎦∂

[4.155]



Bending-Curvature at Ultimate Limit State (ULS) 255

which for the larger root gives:

( ) 2* * * * *
0 0 01c Yw e e e κ= − + + [4.156]

By substituting this expression into equation [4.154], the imperfection
sensitive rule is obtained as:

2* * * *0
0 0 0 0*

0 0

21 with 2c
Y

Y

p p e e e p
p p

κ
κ

⎡ ⎤
= + − + =⎢ ⎥

⎢ ⎥⎣ ⎦
[4.157]

The inaccuracy implied by 0 2p = will be corrected in a simple manner in
the following, simply by taking 0p equal to the correct value 2 4.Ep π=
Thus, with 2

0 4Ep p π= = , the final imperfection sensitive rule becomes:

2
2* * * *0

0 0 0 0*
0 0
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Y E

Y

p p e e e p p
p p

πκ
κ

⎡ ⎤
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⎢ ⎥⎣ ⎦
[4.158]

Other closely related imperfection sensitivity rules can be derived by
means of the Rayleigh–Ritz approach or the Galerkin method based on only
one-term sinusoidal approximate function. An approximation formula can
also be derived from the application of Rayleigh–Ritz method, starting from
Rayleigh’s quotient:

( )

3
2

0

2

00

2 6

2

L

Y

L

EI EI ww dx
Q

w dx e w L

κ
′′′′ −

=
′ ′+

∫

∫
[4.159]

Note that the energy term 0π defined in equation [4.159] is convex for
curvature κ lesser than ,Yκ which is the case considered for the initial
postbuckling behavior considered here. Introducing the initial buckling mode

( ) 1 cos
2
xw w L
L

π⎡ ⎤= −⎢ ⎥⎣ ⎦
[4.160]
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in Rayleigh’s quotient leads to the upper bound:

( ) ( )

( )

*
*

* 2

* *
0

121 1
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with8 41

Y
E

E

w
w

p p
p w e

π
κ π

π

⎡ ⎤
−⎢ ⎥

⎣ ⎦= =
+

[4.161]

Another upper bound can be obtained from Galerkin’s method based on
the weak form of the differential equations [4.141] written as:

( )2
00

22 0
L Y

Y
Pw w w L e w wdx
EI

κκ⎧ ⎫′′ ′′− + ⎡ + − ⎤ =⎨ ⎬⎣ ⎦⎩ ⎭∫ � [4.162]

Using again the comparison function equation [4.160] in equation [4.162]
leads to a close upper bound:

( ) ( )

( )

*
* 2
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[4.163]

The two bounds, Rayleigh’s bound and Galerkin’s bound, are very close
as:

2

1
2 16 60.6981 0.6825 and
9 2

2
8 22.546 2.6598

2
2

π
π π π

π
ππ

−
= ≈ =

−

−= ≈ =
−

[4.164]

More terms in the use of these approximated variationally based methods
would be probably needed for a more accurate description of the analytical
post-buckling response of the softening column (see, for instance, [LAC 08]
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or [YU 12] for the use of Galerkin’s method with several comparison
functions). It is sufficient at this stage to compare the structure of the post-
buckling equation issued of the variationally based methods with the
previous asymptotic one for a correct understanding of the physical problem.

Figure 4.26. Comparison of the exact numerical imperfection results from the nonlinear
boundary value problem, and the asymptotic analytical rule (equation [4.158])

Figure 4.26 compares numerical results from the exact imperfection
sensitivity rule to those from the corrected asymptotic imperfection
sensitivity rule (equation [4.158]) given by the full lines. The results for both

05.0* =Yκ and 1.0* =Yκ are in very good agreement. For sufficiently small
eccentricities, equation [4.158] can be simplified to the following rule:

*0
0*

0

21 ...c

Y

p p e
p κ

= − + [4.165]

which is identical to Koiter’s ½ power law (see [KOI 45] or [BAZ 03]). It
reflects a rather extreme sensitivity of the limit load on the eccentricities, or
the imperfection, that is generally found in asymmetrical structural systems,
as pointed out by Bažant and Cedolin [BAZ 03]. It is remarkable that this
strong imperfection sensitivity appears in the present damage problem,
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which is initially a symmetrical structural problem, where a sharp angular
bifurcation branch intersection characterizes the post-buckling system.

4.3.4. Postfailure of the non-local continuum damage mechanics column

As far as the calculation of the limit point calculation is concerned, a
local bending curvature constitutive law (applicable at each local section) is
sufficient. However, once the bending moment at the clamped, maximum
moment section has reached the bending moment capacity MY (at the apex of
the moment-curvature relationship), the local law is adequate for calculating
unloading (decreasing P) for decreasing rotations (and curvatures), but not
for the calculation of continued unloading associated with increasing
induced rotations (or deflections). This phenomenon is discussed in some
detail in this section.

This limitation of a local section model may be explained physically.
Consider first the column state at which the clamped, maximum moment
section has just reached the moment MY (capacity) and corresponding
curvature Yκ κ= for an axial load P = PY. For simple reference, this state in
this chapter will be denoted by the “local modeling limit state” (LMLS).
Unloading from PY for an imposed increasing column rotation will require
the curvature to increase at the clamped section and its moment to decrease,
since .Yκ κ> A reduced moment at the base section requires (from
equilibrium) the moments and curvatures at all other sections of the column
to decrease along an unloading (elastic) moment-curvature curve (similar to
that shown in Figure 4.2). Considering that an increased curvature at the
base section, which may be considered as a localized damage zone of
zero (infinitesimal, or “vanishing”) length, will not contribute to an
increased column rotation, while at the same time the curvature (unloading)
reductions at all of the other sections will call for a reduced rotation, it is
clear that unloading for increasing rotations is impossible. Therefore,
local modeling methods are limited to .Yκ κ≤ This problem is also
encountered in material nonlinear finite element analysis ([BAZ 76],
[HEL 81], [BAZ 03]).

This phenomenon is sometimes referred to as Wood’s paradox
[WOO 68], and implies that the softening, damage localization zone
vanishes in local modeling methods, leading to the zero dissipation
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phenomenon ([WOO 68], [BAZ 76], [BAZ 03], [CHA 05d], [CHA 08b],
[CHA 08c]).

Wood’s paradox can be mathematically proven in this post-buckling
problem, by assuming a softening damage zone (or damage localization
zone) over a length adjacent to the clamped section of size 0 ,l where

[ ]00; .x l∈ Inside this zone, the constraint Yκ κ> implies a positive
derivative (curvature gradient), ensuring an increasing curvature. From
equation [4.135], the curvature inside the softening zone can be given by:

* *
* * * *

0** *

*

and 0for 0;
1

Y

Y

d p d x l
dx dx
κ θ κκ κ

κ
κ

⎡ ⎤= − > ⇒ > ∈⎣ ⎦
−

[4.166]

where *
0 0 .l l L= The continuity of the curvature at the softening damage

boundary implies that:

( )
*

* * * * * * * *
0 0*and 0 for 0;Y Y

dx l x l
dx
κκ κ κ κ ⎡ ⎤= = > ⇒ < ∈ ⎣ ⎦ [4.167]

As the curvature κ is increasing inside the softening damage zone, the
curvature κ should be necessarily lower than the characteristic curvature

,Yκ which is in contradiction to the fact that the curvature should be larger
than the characteristic curvature Yκ from the adopted constitutive law for
the softening branch.

As a reference for later, the LMLS, defined by P=PY and the local limit
rotation function ( )*sYθ corresponding to ( ) Yκκ =0 and M(0)=MY, can be
calculated for small rotations, which for this case becomes:

( ) ( )
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* *
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1 2

Y Y Y Y
Y Y
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d p e
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θ θ θθ κθ
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θ κ κ κ

= − = =
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= − − [4.168]
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The damage function D(x) at this state is denoted by ( ).YD x It can be
obtained from equation [4.121] for ( ), 0.f Dθ = This leads to the
proportional equation:

( ) *
*

*2

Y

Y
Y

d
dxD x

θ

κ
= [4.169]

which relates the damage function ( )*YD x and the positive curvature

( )* .Y xκ

It is of interest to study what unloading implies within the local model
framework. As mentioned, at the limit, damage localization vanishes to a
“zone” consisting of a single section in such models. Consequently, unloading
from this state implies elastic unloading along secants stiffnesses defined by

( ) ( )0 1 .YEI x EI D x= ⎡ − ⎤⎣ ⎦ The resulting unloading analysis therefore becomes
equivalent to an analysis of a non-uniform column with varying (non-uniform)
stiffness.

( )( )1 0YEI D x Pθ θ′⎡ ⎤′− + =⎣ ⎦ [4.170]

Typical numerical results are presented in Figure 4.27 for a
perfect column and an imperfect column. The figure shows the hysteresis
loop linked to the loading and unloading phase. The hysteresis is due to
the damage dissipation associated with the damage constitutive law.
In both cases, unloading implies rotation reversals (after the Yκ κ= curvature
state). For the perfect column, unloading from the post-bifurcation
branch follows a horizontal line to θ = 0, and then along the ordinate
to p = 0.
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Figure 4.27. Lod-rotation response including unloading behavior of columns modeled
with local damage law (curvature reversal at the clamped section from * *

Y 0.1κ κ= = );
Wood’s paradox found in the postbuckling range

In order to extend the analysis validity beyond Yκ κ= at the base
(clamped) section, it is necessary to develop a non-local formulation of the
boundary value problem. This is contemplated in this part with the use of
non-local damage mechanics for bending-curvature constitutive law, as
shown, for instance, by Challamel [CHA 10a]. We start from the generalized
version of the principle of virtual work for gradient damage systems defined
by:

( ) ( )0 2

0 0
1 sin

L l

cEI D P ds D l D dsθ δθ θδθ λ κ κ δ κ δ
′⎡ ⎤′ ′ ′⎡ ⎤− − + − + −⎣ ⎦ ⎢ ⎥⎣ ⎦∫ ∫

( ) ( )0 cos 0 withPe L Lθ δθ κ θ ′= = [4.171]

where κ is a non-local curvature, cl is an additional internal length, specific
of the non-local damage model needed for the softening propagation (caused
by micro-cracking), and 0l is the active region of the damage softening
process, here denoted as the damage localization zone (see also [CHA 10a]
in case of non-local hardening–softening plasticity). λ has the dimension of
a moment variable. The presentation of the weak formulation as considered
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in equation [4.171] may rigorously justify the use of higher order boundary
conditions associated with the higher order damage model. For a more
detailed presentation, the reader is referred to various papers for the
generalized principle of virtual work applied to non-local
or gradient damage systems (see, for instance, [FRE 96], [LOR 99],
[FOR 09], [PHA 10a], [PHA 10b], [NGU 11a]). An integration by parts of
equation [4.171] gives the following coupled system of differential
equations:

( ) 21 sin 0 and cEI D P lθ θ κ κ κ′ ′′′⎡ − ⎤ + = − =⎣ ⎦ [4.172]

The second equation above is similar to Eringen’s differential equation
[ERI 83] used for non-local elastic models, and later used by Peerlings et al.
[PEE 96] for non-local damage models. Note that the present model
expressed by equation [4.172] cannot be derived from a single energy
functional in this case, even if alternative variationally consistent non-local
damage models also can be used as shown by Challamel [CHA 10a], for
instance. The non-local curvature ,κ which controls the non-local damage
process, is calculated over the active part l0 of the damage process, as also
suggested by Challamel et al. [CHA 10a] from variational arguments or
Nguyen et al. [NGU 11b] from micromechanics and numerical arguments.

The natural and essential boundary conditions are given by:

( ) ( ) ( )
0

00
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0

1 cos 0 and

0

L

l

c

EI D Pe L L

l D

θ δθ θ δθ

κ δ

′⎡ − ⎤ − =⎣ ⎦
′⎡ ⎤ =⎢ ⎥⎣ ⎦

[4.173]

The non-local damage loading function, valid for 1 2D ≥ , is chosen as:

( ), 2 and
Y

df D D
ds

κ θθ κ θ
κ

′ ′= − = = [4.174]

The damage loading function is expressed with respect to the non-local
curvature-driven parameter. This model typically belongs to the class of
strain-based non-local damage models developed by Pijaudier-Cabot and
Bažant [PIJ 87], where the non-local operator in this work is chosen from
Eringen’s kernel, as adopted, for instance, by Peerlings et al. [PEE 96]. In
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the present analysis, the implication of ( , ) 0f Dκ = in the damage localized
zone is that the non-local curvature κ can be equivalently replaced by the
damage variable D. Inserting the damage variable in the implicit differential
equation [4.172] dealing with the non-local curvature variable leads to the
equivalent damage loading function defined by:

( ) ( )2, 2 c
Y

g D D l D
κ

θ
κ

′ ′′= − − [4.175]

We recognize in this case that this is a typical gradient damage model
where the second derivative of the damage variable appears in the loading
function (see, for instance, [FRE 96]; see more recently [PHA 10b],
[NGU 11a]). Therefore, in the present problem, there is an equivalence
between the non-local integral strain (curvature)-driven damage model
(equation [4.174]) and the gradient damage model (equation [4.175]). Note
that the gradient of the damage variable vanishes at the boundary (x = l0) of
the active damage zone with the present model.

In view of the above, the multipoint (three-point) nonlinear boundary
value problem can now be presented with second-order analysis assumptions
by:

( )1 0EI D Pθ θ′′⎡ − ⎤ + =⎣ ⎦ and 2

2c
Y

D l D θ
κ
′″− = for [ ]00;x l∈ ,

and ( )( )1 0YEI D x Pθ θ′⎡ ⎤′− + =⎣ ⎦ for [ ]0 ;x l L∈ [4.176]

with the boundary conditions:

( )0 0θ − = , ( )0 0D −′ = , ( )0
1
2

D l− = , ( )0 0D l−′ = , ( ) ( )0 0l lθ θ− += ,

( ) ( ) ( ) ( )0 0 0 01 1 andEI D l l EI D l lθ θ− − + +′ ′⎡ ⎤ ⎡ ⎤− = −⎣ ⎦ ⎣ ⎦

( ) ( ) 01 Y
dEI D L L Pe
dx
θ +

⎡ − ⎤ =⎣ ⎦ [4.177]

The rotation and the moment variables are continuous variables along the
column. Note that the equivalence between the non-local integral strain
(curvature)-driven damage model and the gradient damage model both



264 Reinforced Concrete Beams, Columns and Frames

concern the loading function and the higher order boundary conditions at the
softening, damage localization interface as reflected by:

0 02 2

00

0 or 0
l l

c cl D l D Dκ δ δ
′⎡ ⎤ ′⎡ ⎤= =⎢ ⎥ ⎣ ⎦⎣ ⎦

[4.178]

It is found numerically that the gradient of the damage parameter is not
vanishing at the free-end boundary of the column, as we generally have

( ) ( ) 0.YD L D L′ ′= ≠

This (three-point) nonlinear boundary value problem can be numerically
solved with the Matlab® program bvp4c, using a first-order vectorial
differential equation with four components ( ), , , .d dx D dD dxθ θ As before,
solutions are obtained for specified (controlled or imposed) rotations at the
column’s free end (α).

The non-local problem depends on the additional length scale parameter
*
c cl l L= that controls the extension of the localization zone l0 and the post-
failure regime (see also [CHA 03] or later [CHA 10b] for non-local plasticity
beam models, see also [CHA 09b] or [CHA 10a] for non-local damage beam
models). The determination of the characteristic length cl (or the maximum
length of the localization zone 0l ) is related to the question of the finite-
length hinge model, which is a central question of the present non-local
model. Wood [WOO 68] inspired by the works of Barnard and Johnson
[BAR 65] suggested the term discontinuity length. Many works have been
published on the experimental or theoretical investigation of such a length
for reinforced concrete beams [BAZ 03]. It is generally acknowledged that
the value of cl (affecting the maximum localization zone 0l ) must be related to
the depth of the cross-section .h Therefore, it is recommended that the
maximum length of the localization zone 0l should be chosen to be in the
order of the magnitude of the cross-section depth h ([BAZ 87], [BAZ 03]).

In the present numerical calculations, the order of magnitude of *
c cl l L=

is chosen equal to 0.1. The damage localization zone propagates (increases)
with increasing values of the control parameter α. The simulation was
arbitrarily stopped for a value of α giving *

0 0.3.l ≈ Figure 4.28 shows
column softening results obtained with the non-local damage model for κ >
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κY. It is observed that the local and non-local analysis regimes have a
common tangent at the transition between the two regimes.

Figure 4.28. Pre- and post-buckling response according to local damage law for
κ < κY, and continued column softening for increasing rotations (due to increasing

curvatures in the damage localization zone) as predicted by the non-local damage law;
* ;Y 0.1κ = *

0 ;e 0.001= *
cl 0.1=

Some further studies would probably be needed in the future to
investigate the possible coexistence of multiple solutions for this propagating
problem, and more specifically the bifurcation from this fundamental
solution, for large rotations. In this chapter, we have mainly been concerned
about showing the possibility of modeling the post-buckling, softening
column response with a non-local CDM model for curvatures in the
softening moment-curvature range.

The need of introducing non-locality in the problem formulation has been
discussed for the post-buckling response for increasing curvatures in the
softening range. A local bending-curvature constitutive law leads to the
unloading Wood’s paradox, a phenomenon well known for the bending of
local softening beams (see Chapter 3). By including some non-locality in the
moment-curvature constitutive law, the propagation phenomenon of damage
localization has been solved. However, non-locality needs not to be
necessary, as far as the limit load calculations are concerned, as these are
obtained for local curvatures in the hardening regime.
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Appendix 1

Cardano’s Method

A1.1. Introduction

This appendix gives the mathematical method to solve the roots of a
polynomial of degree 3, called a cubic equation. Some results in this section
can be found, for instance, in [ART 04].

As a useful extension, we also give the methodology to determine the
roots of a polynomial of degree 4, called a quartic equation. The roots
of a cubic equation, like those of a quartic equation, can be found
algebraically. It can be shown that this property is no more valid, in general,
for a quintic equation (equation of the fifth order) or equations of higher
degrees. This is known as the Abel–Ruffini theorem, which was first
published in 1824.

Referring to the French dictionary Le Robert, the complete method for
the general resolution of a cubic is probably due to Tartaglia (Niccolo
Fontana, 1500–1557, also called Tartaglia) from his works concluded in
1537, based on the first approach of Gerolamo Cardano (1501–1576). In
1539, Tartaglia revealed his method to Cardano on the condition that
Cardano would never reveal it. Some years later, Cardano learned about
Ferro’s prior work and published Ferro’s method in his book Ars magnasive
de regulis algebraicis, liner unus in 1545. These works, which are produced
by the Italian mathematics school, are also based on:
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– Rafael Bombelli (1526–1572) was the one who finally managed to
address the resolution of polynomial equations with imaginary numbers.

– Lodovico Ferrari (1522–1565), as Cardano’s student, gave the solution
of a quartic equation, which was published in one chapter of Ars magnasive
de regulis algebraicis, liner unus written by Cardano in 1545.

– Scipione del Ferro (1465–1526) first discovered the method to solve the
canonical form of a cubic equation (x3 + px + q = 0), the first step toward
the more general method of a cubic equation.

In the following, we use the mathematical function sgn(x) for the sign
function of a real x, and we also use:

3 x = |x|1/3.sgn(x) with |x|=sgn(x).x [A1.1]

A1.2. Roots of a cubic function – method of resolution

A1.2.1. Canonical form

We consider the cubic equation with real coefficients:

3 2( ) 0 with 0g t at bt ct d a= + + + = ≠ [A1.2]

Each term can be divided by the first coefficient, leading to:

t3 + ba t2 + ca t + da = 0 [A1.3]

This cubic equation can be factorized as:

(t + b
3a )3 +

ac - b2

3a2
(t + b

3a ) +
27a2d + 2b3 - 9abc

27a3
= 0 [A1.4]

which is known as the canonical form:

f(x) = x3 + px + q = 0 by setting

x = t + b
3a ; p = 3ac - b

2

3a2
and q =

27a2d + 2b3 - 9abc
27a3

[A1.5]
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This canonical equation is solved from the introduction of two numbers y
and z such that x= y + z are roots of the cubic equation f(x) = 0, by imposing
some constraint equalities:

⎩
⎨
⎧y3 + z3 = -q

yz = -
p
3

⇔

⎩⎪
⎨
⎪⎧
f(y + z) = 0
y3 + z3 = -q

yz = -
p
3

⇔

⎩
⎨
⎧(y3 + z3) + (p + 3yz)(y + z) + q = 0
y3 + z3 = -q

yz = -
p
3

[A1.6]

The following change of variable can be chosen as:

⎩⎪
⎨
⎪⎧Y = y3

Z = z3
and then

⎩
⎨
⎧Y + Z = - q

(YZ)1/3 = -
p
3

[A1.7]

Knowing the sum and the product of Y and Z, these numbers are

necessarily the roots U1 and U2 of the quadratic equation: U2 + qU - p
3
27 = 0.

If U1 and U2 are known, then y and z are calculated from (e2kip U1)1/3 and
(e2kip U2)1/3, which should be associated by a pair such that the product yz is a
real number. We can distinguish several possible cases using the

discriminant concept, depending on the sign of D = q2 + 4p3
27 or

equivalently, depending on the sign of 4p3 + 27q2.

A1.2.2 Resolution – one real and two complex roots

Case 4p3 + 27q2 > 0 (one real and two complex conjugate roots for
f(x) = 0).

This case includes the case p = 0.

In this case, both U1 and U2 are real numbers:

U1=
- q + q2 + 4p

3
27

2 = -
q
2 +

q2
4 +

p3
27 and

U2= -
q
2 -

q2
4 +

p3
27 [A1.8]
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To have the product yz as a real number, the possible couples (y, z) (or
equivalently (z,y)) are then:

( 3 U1 ;
3 U2 ), (j

3 U1 ;j2
3 U2 ), (j2

3 U1 ;j
3 U2 ) [A1.9]

where j denotes the complex number that is the cubic root of unity. The
solutions in x are then:

x1 =
3

- q2 +
q2
4 +

p3
27 +

3
- q2 -

q2
4 +

p3
27

x2 = j
3

- q2 +
q2
4 +

p3
27 + j2

3
- q2 -

q2
4 +

p3
27

with j=e2iπ/3 [A1.10]

x3 = j2
3

- q2 +
q2
4 +

p3
27 + j

3
- q2 -

q2
4 +

p3
27

In reinforced concrete design, we are only concerned with real solutions,
and then only x1 will be of interest, which finally leads to the root of the
initial cubic equation [A1.2], as:

t =
1
3a

3
-
27a2d+2b3-9abc

2 + ⎝⎜
⎛

⎠⎟
⎞27a2d+2b3-9abc

2
2
+ (3ac-b2)3 +

1
3a

3
-
27a2d+2b3-9abc

2 - ⎝⎜
⎛

⎠⎟
⎞27a2d+2b3-9abc

2
2
+ (3ac-b2)3 -

b
3a

[A1.11]

In the specific case p = 0, this real root is simply reduced to

t = 1
3a
3
- 27a2d-2b3+9abc -

b
3a
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A1.2.3. Resolution – two real roots

Case 4p3 + 27q2 = 0 (one real and one double real roots for f(x) = 0).

In this case, U1 and U2 are real numbers with U1 = U2 = -
q
2 = ⎝

⎛
⎠
⎞3q

2p
3
=

U. The product yz being real, the possible couples (y, z) (or equivalently
(z,y)) are given by:

(3 U ;3 U ), (j 3 U ;j2 3 U ), (j2 3 U ;j 3 U ) [A1.12]

where j denotes the complex number that is the cubic root of unity. Using the
fundamental property 1 + j + j2 = 0, the solutions in x are given by:

simple root: x1 = 2
3

- q2 = 3qp ;

double root: x2 = x3 = -
3q
2p [A1.13]

The real roots of the initial cubic equation g = 0 in “t” (equation [A1.2])
are then:

t1 =
3q
p - b3a = 9a

2d + b3 - 4abc
a(3ac - b2)

and

t2 = t3 = -
3q
2p - b3a = - 9ad + bc

2(3ac - b2)
[A1.14]

A1.2.4. Resolution – three real roots

Case 4p3 + 27q2 < 0 (three real roots for f(x) = 0).

In this case, U1 and U2 are conjugate imaginary numbers. It can be

checked that if y is a cubic root of the complex number U1, then z = -
p
3y is

the imaginary conjugate number of y; and x = y+z is a real number.
Practically, we use the fact that a necessary and sufficient condition for two
polynomial equations to have the same roots is that the coefficients of these
polynomial equations are proportional. We use the equality 4 cos3a - 3 cos
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a - cos 3a = 0 which is always true. The unknown y = cos a is a root of 4 y3 -
3 y - cos 3a = 0. We are looking for the conditions to have both equations
x3 + px + q = 0 and 4 y3 - 3 y - cos 3a = 0 with proportional coefficients. In
this case, if x is a root of the first cubic, kx would be the root of the second
cubic, with k as a proportional coefficient, leading to the equivalence
principle:

1
4 k3

= -
p
3 k = -

q
cos 3a for k ≠ 0 [A1.15]

These two equations are equivalent to the conditions:

⎩
⎨
⎧k2 = - 34p
k3 = -

cos 3a
4q

or equivalently

⎩
⎨
⎧k = -

3
4p

k3 = -
cos 3a
4q

when p < 0 [A1.16]

The elimination of k gives: cos 3a =
3q
2p -

3
p which should be

comprised between –1 and +1, leading to ⎝⎜
⎛

⎠⎟
⎞3q

2p -
3
p
2

≤ 1 ⇔
27q2

- 4p3
≤ 1

with - 4p3 > 0. We recognize the condition that the discriminant is negative,
that is 4p3 + 27q2 ≤ 0. In this case, and from equation [A1.16], we have the
inverse relationship:

k = -
3
4p and a =

1
3 ⎣⎢
⎡

⎦⎥
⎤Arc cos ⎝⎜

⎛
⎠⎟
⎞3q

2p -
3
p + 2kπ [A1.17]

As the roots of the cubic equation 4 y3 - 3 y - cos 3a = 0 are y = cos a, the
roots of the cubic equation x3 + px + q = 0 are 1/k proportional to the
previous ones (with x1 < x2 < x3 ):

x1 = 2 -
p
3 cos ⎣

⎢
⎢
⎡

⎦
⎥
⎥
⎤Arc cos ⎝⎜

⎛
⎠⎟
⎞3q

2p -
3
p + 2π

3

x2 = 2 -
p
3 cos ⎣

⎢
⎢
⎡

⎦
⎥
⎥
⎤Arc cos ⎝⎜

⎛
⎠⎟
⎞3q

2p -
3
p + 4π

3 [A1.18]
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x3 = 2 -
p
3 cos ⎣

⎢
⎢
⎡

⎦
⎥
⎥
⎤Arc cos ⎝⎜

⎛
⎠⎟
⎞3q

2p -
3
p

3

The roots of the initial cubic equation [A1.2] g(t) = 0 are then (with t1
< t2 < t3 ):

t1 =
2
3|a| b2 - 3ac cos ⎩⎪

⎨
⎪⎧

⎭⎪
⎬
⎪⎫Arc cos ⎣⎢

⎡
⎦⎥
⎤sgn(-a) (27a2d+2b3-9abc)(b2-3ac)

- 1.5

2 + 2π

3 -
b
3a

t2 =
2
3|a| b2 - 3ac cos ⎩⎪

⎨
⎪⎧

⎭⎪
⎬
⎪⎫Arc cos ⎣⎢

⎡
⎦⎥
⎤sgn(-a) (27a2d+2b3-9abc)(b2-3ac)

- 1.5

2 + 4π

3 -
b
3a

t3 =
2
3|a| b2 - 3ac cos ⎩⎪

⎨
⎪⎧

⎭⎪
⎬
⎪⎫Arc cos ⎣⎢

⎡
⎦⎥
⎤sgn(-a) (27a2d+2b3-9abc)(b2-3ac)

- 1.5

2
3 -

b
3a [A1.19]

A1.3. Roots of a cubic function – synthesis

A1.3.1. Summary of Cardano’s method

Considering the cubic equation now expressed in terms of the unknown α
that is related to the dimensionless neutral axis position in reinforced
concrete design:

3 2 0a b c dα α α+ + + = [A1.20]

The parameters p and q can be introduced as:
2 2 3

2 3

3 27 2 9and
3 27
ac b a d b abcp q
a a
− + −= = [A1.21]

If 3 24 27 0,p q+ > the unique real solution of the cubic equation is obtained
from:

2 3 2 3
3 3

1 2 4 27 2 4 27 3
q q p q q p b

a
α = − + + + − − + − [A1.22]

If 3 24 27 0p q+ < , the three real solutions are given by:
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1

2

3

3 3cos 2
2

2 cos
3 3 3

3 3cos 4
2

2 cos
3 3 3

3 3cos
2

2 cos
3 3 3

qArc
p pp b

a

qArc
p pp b

a

qArc
p pp b

a

π
α

π
α

α

⎧ ⎡ ⎤⎛ ⎞
+⎪ ⎢ ⎥⎜ ⎟−−⎪ ⎢ ⎥⎝ ⎠= −⎪ ⎢ ⎥

⎪ ⎢ ⎥
⎪ ⎢ ⎥⎣ ⎦⎪
⎪ ⎡ ⎤⎛ ⎞

+⎪ ⎢ ⎥⎜ ⎟−−⎪⎪ ⎢ ⎥⎝ ⎠= −⎨ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎢ ⎥⎣ ⎦⎪
⎪ ⎡ ⎤⎛ ⎞⎪ ⎢ ⎥⎜ ⎟−⎪ − ⎢ ⎥⎝ ⎠= −⎪ ⎢ ⎥
⎪ ⎢ ⎥
⎪ ⎢ ⎥⎪ ⎣ ⎦⎩

[A1.23]

A1.3.2. Resolution of a cubic equation – example

We give here a small example to illustrate our purpose. Let us consider
the following cubic equation:

3 22 2 0α α α− − + = [A1.24]

The coefficients ( ), , ,a b c d are identified from equation [A1.20] as:

1, 2, 1 and 2a b c d= + = − = − = + [A1.25]

We calculate now p and q for determining the nature of the solutions:

2
37 2 20and

3 3 27 3 27
b bcp c q d b= − = − = + − = [A1.26]

We calculate the discriminant as:

3 24 27 36 0p q+ = − ≤ [A1.27]

Hence, we have three real solutions for this cubic equation. It can be
relevant to compute the following number for the root calculation:



Appendix 1 275

3 3 10cos cos 2.141173137...
2 7 7
qArc Arc
p p

⎛ ⎞ ⎛ ⎞− = − ≈⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
[A1.28]

We then compute the three roots of the cubic from equation [A1.23] as:

1

2

3

7 2.141173137... 2 22 cos 1
3 3 3

7 2.141173137... 4 22 cos 1
3 3 3

7 2.141173137... 22 cos 2
3 3 3

πα

πα

α

⎧ +⎡ ⎤= + = −⎪ ⎢ ⎥⎣ ⎦⎪
⎪ +⎪ ⎡ ⎤= + =⎨ ⎢ ⎥⎣ ⎦⎪
⎪ ⎡ ⎤⎪ = + =⎢ ⎥⎪ ⎣ ⎦⎩

[A1.29]

Of course, it is easy to check that 3 22 2α α α− − + = .
( )( )( )1 1 2α α α+ − −

A1.4. Roots of a quartic function – principle of resolution

We now consider the quartic equation with real coefficients:

4 3 2( ) 0 with a 0f x x ax bx cx d= + + + + = ≠ [A1.30]

It can be postulated that the quartic corresponds to the beginning of the
square of a second-order polynomial equation like:

f(x) = ⎝
⎛

⎠
⎞x2+

a
2 x + y

2
+ ⎝⎜
⎛

⎠⎟
⎞

-2y -
a2
4 + b x2+ (-ay+c)x+(d-y2) [A1.31]

where y is a real number. For the following, we will assume that:

- α2 = -2y -
a2
4 + b and - β2 = d-y2 [A1.32]

y is chosen such that the second trinome of f(x), constituted of the three last
terms of f(x), could be considered in a square format. It is then necessary
that:
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(-ay+c)2 - 4 ⎝⎜
⎛

⎠⎟
⎞

-2y -
a2
4 + b (d-y2) = 0 [A1.33]

We recognize a cubic equation expressed with the unknown y:

⎝
⎛

⎠
⎞2y -
b
3

3
+ ⎝⎜
⎛

⎠⎟
⎞

ac -
b2
3 - 4d ⎝

⎛
⎠
⎞2y -
b
3 +

abc
3 -

2b3
27

+
8bd
3 - a2d - c2 = 0 [A1.34]

which can be solved with the previous Cardano’s cubic method. Let y1, y2
and y3 be the three roots of this cubic equation. The parameters α and β will
be chosen as:

α = 2y1 +
a2
4 -b and β = y12 -d if ay1 - c ≥ 0 and

β = - y12 -d if ay1 - c < 0 [A1.35]

Once the cubic root y is calculated y = y1, the quartic function f(x) has the
following form:

f(x) = ⎝
⎛

⎠
⎞x2+

a
2 x + y1

2
- ( )αx+β

2

= ⎣
⎡

⎦
⎤x2+⎝

⎛
⎠
⎞a

2 - α x+y1- β ⎣
⎡

⎦
⎤x2+⎝

⎛
⎠
⎞a

2 + α x+y1+ β = 0 [A1.36]

Then, the determination of the roots of the quartic function is reduced to
the determination of the roots of two quadratic functions.
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Steel Reinforcement Table

Number of bars and steel area (in cm2)
Φ

(mm)
1 2 3 4 5 6 7 8 9 10

5 0.196 0.393 0.589 0.785 0.982 1.178 1.374 1.571 1.767 1.963
6 0.283 0.565 0.848 1.131 1.414 1.696 1.979 2.262 2.545 2.827
8 0.503 1.005 1.508 2.011 2.513 3.016 3.519 4.021 4.524 5.027
10 0.785 1.571 2.356 3.142 3.927 4.712 5.498 6.283 7.069 7.854
12 1.131 2.262 3.393 4.524 5.655 6.786 7.917 9.048 10.179 11.310
14 1.539 3.079 4.618 6.158 7.697 9.236 10.776 12.315 13.854 15.394
16 2.011 4.021 6.032 8.042 10.053 12.064 14.074 16.085 18.096 20.106
20 3.142 6.283 9.425 12.566 15.708 18.850 21.991 25.133 28.274 31.416
25 4.909 9.817 14.726 19.635 24.544 29.452 34.361 39.270 44.179 49.087
32 8.042 16.085 24.127 32.170 40.212 48.255 56.297 64.340 72.382 80.425
40 12.566 25.133 37.699 50.265 62.832 75.398 87.965 100.53 113.10 125.66

Table A2.1. Abacus of the steel area As in cm2 for each bar diameter Φ (mm)
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