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For example, that the certain is worth more than the uncertain, that
illusion is less valuable than ‘truth’, such valuations, in spite of their
regulative importance for us, might notwithstanding be only superficial
valuations, special kinds of maiserie, such as may be necessary for the
maintenance of beings such as ourselves. Supposing, in effect, that man
is not just the ‘measure of things’.

—Friedrich Nietzsche in Beyond Good and Evil.
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Series Editor’s Preface

The field of aerospace is multidisciplinary and wide ranging, covering a large variety of
products, disciplines and domains, not merely in engineering but also in many related
supporting activities. These combine to enable the aerospace industry to produce exciting and
technologically advanced vehicles. The wealth of knowledge and experience that has been
gained by expert practitioners in the various aerospace fields needs to be passed onto others
working in the industry, including those just entering from University.

The Aerospace Series aims to be a practical, topical and relevant series of books intended for
people working in the aerospace industry, including engineering professionals and operators,
allied professions such as commercial and legal executives, and also engineers in academia.
The range of topics is intended to be wide ranging, covering design and development, man-
ufacture, operation and support of aircraft, as well as topics such as infrastructure operations
and developments in research and technology.

Aeroservoelasticity (ASE) concerns the interaction of flexible aeroelastic structures with
active control systems and is a crucial topic for modern and future aircraft, where such systems
can be used to reduce loads due to gusts and manoeuvres and also to extend the flutter stability
boundaries. The presence of nonlinearities and uncertainties in the structure, aerodynamics
and control system makes an already complex problem even more challenging.

This book, Adaptive Aeroservoelastic Control, considers ASE from the control design view-
point, using a range of adaptive control approaches to solve practical ASE design problems
developed by using a consistent theoretical methodology. It fills a significant gap in the current
literature and will be of most interest to practicing engineers and researchers working in the
fields of aeroelasticity and control.






Preface

Aeroservoelasticity (ASE) lies at the interface of aerodynamics, control and structural dynam-
ics, and by its very nature, it is a difficult topic to deal with. However, it is also an important
subject, crucial to the design of modern aircraft, and can be ignored only at the peril of the
designer. Unfortunately, there are not many books available that deal with the control design
aspects of ASE. It is precisely this gap in the literature that the present book aims to fill. The
present work can be regarded as a treatise on adaptive ASE control. While many illustrative
examples are offered to the reader, the focus is on the methods and mathematics of essen-
tially nonlinear feedback strategies, which are necessary for deriving a stable, closed-loop
ASE system in the presence of modelling uncertainties.

The control challenge for the aeroservoelastician is twofold. There are practical limitations
in the plant that prevent a continuous and smooth change of the dynamic variables at all space
points. This could be regarded as the natural uncontrollability (or unreachability) of an infinite
dimensional system, which is attempted to be controlled by only a finite number of imperfectly
modulated control inputs. On the other hand, even if the designer had a large army of control
input variables at his disposal, it would still be difficult to devise a sound principle (control
law) governing each one of them. This is the other inherent limitation, which arises due to an
imperfect knowledge of the plant dynamics, and leads to a deficient mathematical model of the
plant. The ASE control design process is thus a perpetual struggle with the combined problem
of underactuated and uncertain plant dynamics.

The attempts to control an uncertain ASE system are also twofold:

(a) Devising an accurate mathematical model of the plant by faithfully representing every
important physical process, and then designing a controller based upon the plant model.

(b) Using an online identification of the actual plant from its measured input—output record,
in order to adapt the controller parameters with the changing plant behaviour.

While method (a) is an effort at achieving modelling precision through sophisticated
mathematical models that may not be implementable in real time, its alternative is the
adaptive control approach highlighted as method (b). This book underlines the adaptive
control approach to solving practical ASE design problems, whereas a previous monograph
by the author (Aeroservoelasticity — Modeling and Control, Birkhaiiser, Boston, 2015) details
the modelling approach. The modelling details are hence deferred to the earlier book — which
can be regarded as a companion text — and only those aeroelastic principles are highlighted
here that are relevant to adaptive control design.



XX Preface

The unsteady aerodynamic behaviour of an aircraft wing is very often uncertain, in so far
as both magnitudes and signs of the forces and moments arising out of the aeroelastic motion
could be in doubt. This is especially true when simple linear aerodynamic models are applied to
problems wherein flow separation and/or shock waves cause an uncertain nonlinear aeroelastic
response, typically in the transonic regime. The designer then has the option to either improve
the plant model through computational fluid dynamics (CFD) techniques that require iterative
and online solution of partial differential equations, or to use an adaptive control scheme,
which automatically senses the aeroelastic behaviour and applies a corrective action. While
CFD modelling has not arrived at a stage where practical, dynamic aeroelastic computations
of separated and shock-induced flows could be performed in the real time, the alternative of
adaptive control appears to be more promising due to its relative simplicity.

Adaptive control has reached maturity in the last two decades due to active research in
the area of nonlinear control systems design. In the classical sense, adaptive control can be
understood to ensure closed-loop, input—output stability via tuning (or describing) functions
that automatically adjust the controller gains in accordance with a changing plant dynam-
ics. In the modern sense, adaptive, state-space based techniques are applied to a plant with
unknown parameters in order that closed-loop stability exists in the sense of Lyapunov. Such
techniques can be either direct — being based upon comparison with a reference model, or
indirect — requiring a closed-loop estimation of the unknown (or uncertain) plant dynamics
via input—output identification. In either case, closed-loop stability is the primary objective,
and neither the reference nor the estimated plant dynamics need be the ‘true’ representation of
the actual behaviour of the aeroelastic plant. In effect, modelling of the true plant behaviour,
which is necessary in traditional control design, is bypassed by the adaptive control loop.
Herein lie both the strength and the weakness of the adaptive control strategy: while it may
not be necessary to have a highly accurate plant model for a successful implementation, large
perturbations in the plant’s parameters could have unpredictable (usually undesirable) conse-
quences on the closed-loop performance. The control engineer must balance the two opposing
tendencies by aiming at a suitable adaptive mechanism that is robust with respect to parametric
variations. However, it must be examined whether design robustness can be achieved only if
the identified (or reference) plant model is closer to the actual behaviour. In other words, one
asks: is it really important for closed-loop stability to have a model that faithfully represents
the plant characteristics in every way, or whether a simpler (perhaps highly ‘unrepresentative’)
model might do a better job? This question lies at the heart of robust and adaptive control, and
its resolution is an active research area.

A word here is appropriate about the basic difference between the adjectives ‘adaptive’ and
‘robust’. When we consider adaptive control, we have in mind the ultimate adaptation mech-
anism, viz the human mind, which can almost instantly produce a wide ranging behaviour
in response to a drastically changed environment. Such a control system is often said to be
‘intelligent’ (or even ‘smart’) — although I dislike such a terminology applied to an artificial
controller, because the latter can only respond in very limited manner, entirely depending on
the sophistication of the algorithms it has been programmed with. A property of the adaptive
controller is the ability to ‘learn’ (or detect) the changing plant behaviour with operating
conditions, and then respond accordingly in order to maintain a desired performance level.
An example of such an application is a violinist playing a complicated concerto, when the
air-conditioning system of the concert hall breaks down. The player must quickly change the
length and pressure of the bow strokes, as well as the spacing of the notes on the fingerboard,
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in order to adapt to the temperature-induced changes in the strings’ natural frequencies, and
the expansion or contraction of the wooden body by variations in the humidity. Such an
adaptation comes naturally to a good violinist, who has a good ear for the changing notes
and tones. Of course, one cannot expect a similar level of adaptive behaviour in an artificial
control system, because the level of complexity increases manifold with each parametric
variation (temperature, humidity, etc.).

At the other extreme to adaptation (or a fine sensitivity to the changing operating conditions)
lies the property of robustness. In order to have a robust control system, there must be the abil-
ity to absorb small external disturbances around a specified (or nominal) operating condition,
without having a noticeable effect on the performance. In other words, the control system must
be quite insensitive to disturbance inputs. The effectiveness of an artificial robust controller
thus entirely depends upon how well a nominal performance is achieved in the presence of
disturbances, and to design such a controller usually requires meeting a set of conflicting per-
formance objectives. The robust solution is based upon the ‘worst-case scenario’ (i.e. for the
largest expected disturbance measures), and thus can be overly conservative in its performance,
applying much larger control inputs than actually required. Furthermore, many performance
measures are difficult to quantify as robustness measures (e.g. tonal sound quality in the violin
player example). A neglect of important qualitative behaviour in the design process can lead
to a stable, but totally unacceptable performance of an automaton playing the violin to a music
connoisseur. At the control design level, the difference between adaptive and robust control
lies in whether the perturbation variables are considered to be the systemic parameters vary-
ing with operating conditions, or external, random inputs about a nominal operating condition.
In each case, there exists a design framework evolved over many decades, and which will be
explored here in the context of ASE systems.

This book is primarily intended to be a reference for practicing engineers, researchers and
academicians in aerospace engineering, whose primary interest lies in flight mechanics and
control, especially aeroelasticity. The reader is assumed to have taken a basic undergraduate
course in control systems that covers the transfer function and frequency response methods
applied to single-input, single-output systems. It is however suggested that the introductory
material be supplemented by basic examples and exercises from a textbook on linear control
systems, especially if the reader has not had a fundamental course on linear systems theory.

A research monograph on adaptive aeroservoelasticity is an enormous task, as it must access
topics ranging in a spectrum as wide as structural dynamics, unsteady aerodynamics and con-
trol systems. There are two possible approaches that can be adopted in writing such a book:
(i) detailing of the work carried out on the subject by citing and describing various research
articles and (ii) offering a fresh insight from the author’s perspective by presenting a sys-
tematic framework into which the research carried out until now can fit neatly. While the
former method (common to survey articles) can give glimpses into the field from the indi-
vidual viewpoints of the respective researchers, it is only the latter that can add something
to the already existing literature, and is hence adopted here. Emphasis is laid on presenting
a consistent and unbroken theoretical methodology for adaptive ASE. While many important
contributions have been highlighted in the chapter references, they are by no means exhaustive
of the developments in ASE. The reader is referred to survey articles for a thorough review
of the literature. As mentioned earlier, the companion book on this topic (Aeroservoelastic-
ity — Modeling and Control) can assist the reader in understanding the essential modelling
concepts of ASE.
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1

Introduction

1.1 Aeroservoelasticity

Aeroservoelasticity (ASE) is the study of interactions among structural dynamics, unsteady
aerodynamics and flight control systems of aircraft (Fig. 1.1), and an active research topic in
aerospace engineering. The relevance of ASE to modern airplane design has greatly increased
with the advent of flexible, lightweight structures, higher airspeeds and large-bandwidth, auto-
matic flight control systems. The latter trend assumes a greater significance in the modern
age, as many of the flight tasks that were earlier performed by a much slower human inter-
face, must now be carried out by high-speed, closed-loop digital controllers, resulting in an
increased encroachment into the aeroelastic frequency spectrum. Inadvertent ASE couplings
can arise between an automatic flight controller and the aeroelastic modes, resulting in signals
becoming unbounded in the closed-loop system. Hence, every new aircraft prototype must be
carefully flight-tested to evaluate the ever expanding aeroservoelastic interactions domain, and
the higher aeroelastic modes that could be safely neglected in the past must now be fully inves-
tigated. Furthermore, favourable ASE interactions can be designed by suitably modifying the
feedback control laws, such that certain aeroelastic instabilities are avoided in the operating
envelope of the aircraft.

Consider the block representation of the typical ASE system shown in Fig. 1.2. Here, an
automatic flight control system is designed to fulfil the pilot commands by actuating control
inputs applied to the aircraft. It is seldom possible to model all aspects of an aircraft’s dynamics
by well-defined mathematical representations. The unmodelled dynamics of the system can be
treated as unknown external disturbances applied at various points, such as the atmospheric
gust inputs acting on the aircraft and the measurement noise present in the sensors. If such
disturbances were absent, one could design an open-loop controller to fulfil all the required
tasks. However, the presence of random disturbance inputs necessitates a closed-loop system
shown by the feedback loop in Fig. 1.2, where the control inputs are continuously updated
based on measured outputs. Such a closed-loop system must be stable and should perform
well by following the pilot’s commands with alacrity and accuracy. Ensuring the stability and
good performance of the closed-loop system in the presence of unknown disturbances is the
primary task of the control engineer.

Adaptive Aeroservoelastic Control, First Edition. Ashish Tewari.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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Control system

NS

Aerodynamics
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Figure 1.1 Venn diagram showing that aeroservoelasticity (ASE) lies at the intersection of aerodynam-
ics, structural dynamics and flight control systems
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Figure 1.2 Block diagram of a typical flight control system, highlighting the importance of aeroser-
voelastic analysis

The flight control system is usually designed either without regard to the aeroelastic interac-
tions, or with only the primary, in vacuo structural modes taken into account. When applied to
the actual vehicle, such a control system could therefore cause unpredicted consequences due
to unmodelled dynamic interaction between the flexible structure and the aerodynamic loads,
often leading to instability and structural failure. It is usually left to the flight-test engineers
to identify and iron out the problematic ASE coupling of a flying prototype through either a
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redesign of the structural members, or reprogramming the flight control computer. This process
is time consuming, expensive and very often fraught with danger. However, if the ASE anal-
ysis is introduced as a systematic procedure into the basic airframe and flight control design
from the conceptual stage, such difficulties can be avoided at a more advanced stage. The focus
of the present book is to devise such a systematic procedure in the form of an adaptive design
of the flight control system.

The most important ASE topic is the catastrophic phenomenon of flutter, which is an
unstable dynamic coupling between the elastic motion of the wings (or tails) and the unsteady
aerodynamic loading that generally begins at a small amplitude, and grows to large amplitudes
thereby causing structural failure. The classical flutter mechanism consists of an interaction
between two (or more) natural aeroelastic modes at a critical dynamic pressure, and can be
excited by either atmospheric gusts or control surface movement. While traditional method
of avoiding flutter consists of stiffening the structure such that the natural modes causing
flutter occur outside the normal operating envelope of the aircraft, such a method is not
always reliable, and requires many design iterations based on expensive, cumbersome and
dangerous flight-tests of actual prototypes. The main problem lies in accurately predicting
the critical dynamic pressure, because of a drastic change in aerodynamic characteristics due
to Mach number and the equilibrium angle of attack. Such a bifurcation typically occurs
at transonic speeds and requires a nonlinear stability analysis. For example, the flutter
dynamic pressure computed by linearized subsonic aerodynamics is often much higher than
that actually encountered at transonic Mach numbers. Since the non-conservative dip in
the flutter dynamic pressure due to transonic effects can be extremely treacherous, either
accurate computational fluid dynamics (CFD) modelling or precise wind-tunnel experiments
are necessary for predicting transonic flutter modes. However, both CFD modelling and
wind-tunnel testing are complicated by the sensitivity of nonlinear transonic aerodynamics
to transition and turbulence, for which no CFD model or experimental technique, however
advanced, can be entirely relied upon. Even an extremely sophisticated Navier—Stokes
computation with tens of million of grid points is unable to resolve the fine turbulence
scales of an unsteady transonic flowfield on a complete aircraft configuration. Furthermore,
these same aeroelastic phenomena have large-scale effects (Edwards 2008), which make an
extrapolation of wind-tunnel data to the full-scale aircraft highly uncertain. The inadequacies
of aerodynamic modelling can be practically overcome only by an adaptive, closed-loop
identification and control of unsteady aerodynamics, which is the topic of the present book.

Actively suppressing flutter through a feedback control system is an attractive alternative to
passive flutter avoidance by haphazard redesign and flight testing. The concept of active flutter
suppression began to be explored in the 1970s (Abel 1979), wherein an automatic control
system actuated a control surface on the wing, in response to the structural motion sensed by
an accelerometer. This modified the aeroelastic coupling between critical modes, such that the
closed-loop flutter occurred at a higher dynamic pressure. Linear feedback control design for
active flutter suppression requires an accurate knowledge of the aeroelastic modes that cause
flutter. Although the classical flutter of a high aspect-ratio wing of a transport type aircraft is
caused by an interaction between the primary bending and torsion aeroelastic modes, the flutter
mechanism of a low aspect-ratio wing of a fighter-type airplane involves a coupling of several
aeroelastic modes. Despite extensive research (Abel and Noll 1988, Perry et al. 1995), active
flutter suppression has yet to reach operational status. This shortcoming is due to the inability of
designing a feedback control system that can be considered sufficiently robust with respect to
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the parametric uncertainties caused by nonlinear transonic effects which, as mentioned earlier,
are difficult to predict. Routine implementation of active flutter suppression must wait until
suitably accurate transonic ASE design methods are available. Hence, development of practical
adaptive control techniques for transonic flutter suppression will be a revolutionary step in the
design of automatic flight control systems.

The process of adaptive aeroservoelastic design is briefly introduced in this chapter, although
full explanations will follow in the subsequent chapters. ASE applications require designing
an underlying feedback control system (Chapter 2) in order to ensure closed-loop stability in a
range of operating conditions. Such a design is typically based upon a linearized model of the
underlying aeroelastic system, which is discussed in Chapter 3. The aircraft has a continuous
structure, but for computational considerations it is approximated by finite degrees of freedom
using a process such as the finite element method (FEM). In a complete wing—fuselage—tail
combination, this approximation may require several thousand degrees of freedom for an
accurate representation. However, as most aeroelastic phenomena of interest involve only
about a dozen structural modes, the structural displacement vector {z(¢)} I can be represented
as a linear combination of a few structural vibration modes given by the vector of modal
degrees of freedom {¢g(¢)} (also called the generalized coordinates), and result in the following
generalized equations of motion:

(MI{q} +[Cal{q} + [K{q} = {Q}({q}. {q}. {4}), (1.1)

where [M], [C,], [K] are the generalized mass, damping and stiffness matrices representing
the individual masses, viscous damping factors and moments of inertia corresponding to the
various modal degrees of freedom, and {Q(7)} is the generalized aerodynamic force vector,
whose dependence upon the modal degrees of freedom (and their time derivatives) requires
separate modelling.

1.2 Unsteady Aerodynamics

The computation of unsteady aerodynamic forces { O(f)} from structural degrees of freedom is
the main problem in aeroelastic modelling. The fluid dynamics principles upon which such an
aerodynamic model is based require a conservation of mass, momentum and energy of fluid
flowing through a control volume surrounding the aircraft. As in the case of the structural
model, a CFD model necessitates the approximation of the continuous fluid flow by a finite
number of cells (called a grid), within each of which the conservation laws can be applied,
and then summed over the entire flowfield. The grid can either have a well-defined shape
(called structured grid) or could be entirely unstructured in order to give flexibility in accurately
modelling the moving, solid boundary. The spatial summation from individual grid points
to the entire flowfield can be carried out by finite difference, finite volume or finite element
methods, each requiring a definite discretization process. There is also the possibility of using
simplifying assumptions in applying the conservation laws. For example, the airflow about
a wing (x,y) € §,z, < z < z, at a sufficiently large Reynolds number can be regarded to be
largely inviscid, with the viscous effects confined to a thin region close to the wing (boundary
layer) and in its wake. This affords a major simplification, wherein {Q(#)} is computed from

! Vectors and matrices in this chapter are denoted by braces and brackets, respectively. A more compact notation
follows in the next chapter.
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continuity, inviscid momentum and energy conservation (Euler equations) applied outside the
boundary layer and wake, and integrated in space (x, y, z) subject to suitable unsteady boundary
conditions. These latter include the solid boundary condition of no flow across the moving
wing surface, and tangential velocity continuity at its trailing edge (the Kutta condition) due
to the presence of viscosity in the boundary layer and wake.

The unsteady Euler equations can be written in the conservation form as follows:

ofF} olf) oL} alf)
0t+0x+0y+0z_

{0}, (1.2)

where
{F} = {p, pu, pv, pw, pe}, (1.3)

is the independent flow variables vector, with p being the density, e the specific internal energy,
{(V} ={u,v,w}, (1.4)

the velocity vector with (u, v, w) being the velocity components along (x, Yy, z), respectively,
and

{fi} =u{F} +{0,p,0,0,pu}
{£,} =v{F} +{0,0,p,0,pv}
{f}=w{F}+{0,0,0,p.pw}, (1.5

of, 9y 9f,

%, ai;, ai;’ are
required to be modelled differently according to the local direction of the infinitesimal pres-
sure waves. Clearly, even the Euler equations are inherently nonlinear, requiring an iterative
solution procedure, which is further complicated by having to model an entropy condition for
a unique solution, usually by introducing artificial viscosity into the solution procedure. An
artificial viscosity model can lead to spurious frequency spectra in unsteady flow computa-
tions. Alternatively, a solution by flux direction biasing or splitting algorithms in finite-element
(or finite-volume) methods is employed, which can have further problems of non-physical
oscillations when the sonic condition is encountered in the flowfield. Dealing with non-unique
and physical solutions is a major problem associated with Euler equations, often requiring
sophisticated computational procedures that add to the computational time.

An additional approximation is invariably necessary for modelling purposes, namely
that of potential flow with small perturbations. However, even the full-potential (FP) and
small-disturbance solutions for the transonic regime are inherently nonlinear and iterative and
fraught with non-unicity and non-physical nature, such as the prediction of expansion shock
waves. As in the case of Euler solvers, the closure of the inviscid, potential computational
problem necessitates the addition of an entropy condition in the form of either artificial
viscosity or flux biasing/splitting. Consequently, little is gained in terms of computational
complexity by making the potential approximation of unsteady transonic flows. Owing
to their iterative nature and high computational times, the unsteady CFD computations of
nonlinear governing equations are infeasible to carry out in a real time adaptive control
scheme, which may require several evaluations of {Q()} per time step. Only in the subsonic
and supersonic regimes can the small-disturbance potential equation be linearized. In such a

are the flux vectors along x, y and z directions, respectively. The flux gradients,
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case, the unsteady aerodynamic computation involves an integration of pressure distribution
p(x,y,z,t) on the wing surfaces, subject to the flow velocity normal to the wing (normalwash)
{V} - {n} created by the structural vibration modes. If the wing is thin (z, =~ z,,), the vibration
amplitudes are small, and there are no aerodynamic dissipation mechanisms present (such as
viscous flow separation and shock waves), the pressure—normalwash relationship is rendered
linear, and is given by the following integral equation:

w(x,y, 1) = /S K[(x,y : & m),t]Ap(&, n,)dédn, (1.6)

where Ap =p, —p, is the pressure difference between the lower and upper faces of the
essentially flat wing’s mean surface at a given point (&, ), and w(x, y, ) the flow component
normal to the mean surface (z-component) called the upwash (or its opposite in sign, the
downwash). Such a simple relationship is enabled by the process of linear superposition
of elementary, flat plate (or panel) solutions to the governing partial differential equation.
However, while Eq. (1.6) can be applied in subsonic and supersonic flows about thin wings
with small vibrations, it is invalid in the transonic regime, where nearly normal shock waves
are always present and cause viscous separation in the boundary layer and wake. Furthermore,
even in subsonic and supersonic regimes, the linear superposition cannot be applied around
thick wings undergoing large amplitude vibration, as flow separation or strong shock waves
could be present.

A linear aerodynamic model Eq. (1.6) combined with the linear structural dynamics
Eq. (1.1) yields the following linear aeroelastic state equations that can be used as a baseline
plant of the adaptive ASE control system:

{X} = [A{X} + [Bl{u} + [F1{p}, (1.7)

where {X(7)} = [{q(t)}T, {t'I(t)}T]T is the state vector of the aeroelastic system, {u(#)} the vec-
tor of generalized control forces generated by a set of control surfaces and {p} the vector
of random disturbances called the process noise. In order to derive the constant coefficient
matrices [A], [B], [F], an additional step is necessary, even if the generalized aerodynamic
forces {Q(#)} are linearly related as follows to the modal displacements {g(7)} and their time
derivatives by virtue of Eq. (1.6):

{0()} = [G(9H{q(s)}, (1.8)

where s is the Laplace operator and [G(s)] denotes the unsteady aerodynamics transfer matrix.
The essential step is modelling of [G(s)] by a suitable rational-function approximation (RFA),
such as the following:

N

G(s)] = [Ag] + [A,Js + [As]8% + Y [A ] ——. 1.9

[G()] = [Ag] + [A}]s + [Ay]s +J_=Z][ J+2]s+b/ -

where the numerator coefficient matrices, [A], [A|]+[A,],[A;5],j=1,---,N are deter-

mined by curve fitting [G(iw)] to the simple harmonic aerodynamics data (s = iw) at a
discrete set of frequencies w, and for each flight condition (speed and altitude). Additionally,
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the denominator coefficients b;,j = 1,---,N may be selected by a nonlinear optimization
process, whereby the curve fit error in a range of frequencies is minimized. Such an optimized
curve fitting is not a trivial matter, and is by itself an area of major research with the
objective of deriving an accurate RFA, which is also of the minimum possible order. The
order of the state space model (the dimensions of [A]) increases rapidly with the order of
the RFA, and the computational effort in optimizing the denominator coefficients could be
significant especially if a large range of flight conditions is involved. For this reason, several
different RFA techniques have been proposed in the literature. However, in keeping with the
present objective of designing an adaptive control system, RFA optimization must be carried
out offline and its results stored in order to derive the baseline aeroelastic plant model in the
flight conditions of interest. The frequency domain (simple harmonic) data to be used for
RFA derivation is also pre-computed by a suitable linearized small-disturbance, potential
aerodynamic model, such as that based on the integral equation, Eq. (1.6). After the RFA for
the aerodynamic transfer-matrix, Eq. (1.9), is derived, a linear, time-invariant, state-space
model, Eq. (1.7), for the aeroelastic system — perhaps also including the control-surface
actuators model — is obtained.

1.3 Linear Feedback Design

Consider the basic automatic control system shown in Fig. 1.3, where the automatic con-
troller is designed as a generic device to exercise control over the plant, in order that the
entire control system meets a certain set of desired objectives, and follows a desired trajec-
tory, {x,(f)}. For the purposes of this book, the desired trajectory is taken to be a constant
equilibrium state, {x,(¢)} = {0}, wherein the control strategy to be evolved becomes a regula-
tor problem. If the plant can be described precisely by a set of fixed mathematical relationships
between the input, {u(f)}, and output, {y(r)}, variables, then the controller can usually be
designed fairly easily in order to meet the performance requirements in a narrow range of
operating conditions (Tewari 2002). Such a controller would have a fixed structure (often
linear) and constant parameters. However, a physical plant almost never conforms exactly
to any deterministic mathematical description due to either improperly understood physical
laws, or unpredictable external disturbances treated as stochastic signals (the process noise
vector), which is shown in Fig. 1.3 as the externally applied random vector signal, {p(?)}.

Measurement noise Process noise
vector, {m(f)} vector, {p(?)}
Desired trajectory, l Control inputs l Outputs vector,
{xs (O} vector, {u(7)} {y®}

—  » Controller

A4

Plant >

A

Feedback loop

Figure 1.3 Basic automatic control system with a feedback control loop
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Similarly, the controller, when physically implemented, has its own imperfections that defy
precise mathematical description. For the feedback controller, such a departure from a deter-
ministic controller model is shown as the measurement noise vector, {m(f)}, appearing in the
feedback loop. The success of the automatic controller in performing its task of tracking the
reference signals with any accuracy depends upon how sensitive the control system is to the
unmodelled noise signals, {p(?)}, {m(¢)}. If no regard is given to the noise signals while design-
ing the controller, there is a real possibility that the control system will either break down
completely, or have a poor performance when actually implemented. The controller design is
therefore carried out to ensure adequate robustness with respect to the noise signals. A feed-
back loop by itself provides a certain degree of robustness with respect to unmodelled process
and measurement noise. If the feedback control parameters are suitably adjusted (fine-tuned),
the sensitivity to noise inputs can be further reduced. Such a design is called loop shaping
(Chapter 2). For a plant with a linear input—output behaviour and a fair statistical descrip-
tion of the noise inputs that are small in magnitude, the robust control theory (Maciejowski
1989) can be applied to design a linear feedback controller with constant parameters, which
will produce an acceptable performance in many applications. However, constant controller
gains may either fail to stabilize the system if the plant behaviour is highly uncertain or may
have unacceptable performance in the presence of noise inputs. In such cases, the alternative
strategy of sensing the actual plant behaviour and to adapt the controller gains to suit a cer-
tain minimum performance level in a range of operating conditions is the only answer. Such a
strategy where the controller parameters are functions of the sensed plant state vector is called
adaptive control, and is nonlinear by definition. In summary, design of an automatic controller
can be alternatively based on ensuring a high level of robustness with respect to unmodelled
dynamics with constant controller parameters by a design process called robust control or by
making the controller parameters adapt to a changing plant behaviour through an adaptation
mechanism. The two design techniques of robust control and adaptive control may appear to
be contradictory in nature, because in one case the controller is deliberately made impervious
to process and measurement noise, while in the other, the controller is asked to change itself
with a changing plant dynamics. However, if a compromise can be carried out in the two meth-
ods of synthesis, the result can be a synergistic fusion of robust and adaptive control. In such a
case, the high-frequency noise (which is typically of small magnitude) is sought to be rejected
by an inbuilt control robustness, while the much slower but larger amplitude variations in the
plant dynamics are sensed and carefully adapted to. Such an ideal combination of robustness
and adaptation is the goal of most control system designers.

An important step in ASE design is to derive a baseline multivariable feedback controller
for active stabilization by standard linear closed-loop techniques, such as eigenstructure
assignment and linear optimal control (Tewari 2002). For example, if a linear optimal
regulator is sought, one minimizes the following quadratic Hamiltonian function with respect
to the control variables, {u(#)}, subject to linear dynamic constraint of Eq. (1.7):

H= %{X}T[Q]{X} + (X} [SHu) + %{M}T[R]{u} + {AT(ANX) + [Bl{u})),  (1.10)

where [Q], [S], [R] are the constant, symmetric cost coefficient matrices, and {A(¢)} is the
vector of co-state variables. The necessary conditions for optimality with an infinite control
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interval are then given by the following Euler—Lagrange equations:

, oH \' r
{ﬂ}=—<m> = —[QI{X} — [SHu} - [A]" {4}, (L.11)
{A}(e0) = {0}, (1.12)
% = (0} = [SIT{X} + [R]{u} + [B (4], (1.13)

the last of which is solved for the optimal control vector to yield the following:
{u} = —[RI™" (1SI" (X} + [BI"{4}) . (1.14)

Substitution of Eq. (1.14) into Egs. (1.7) and (1.11) results in the following set of linear state
and co-state equations:

{X} = (141 = [BIRI'[S") {X} = [BIRI"'[BI {4}, (1.15)
{4} == ([A1" = SIRIT'(BI") {4} + (IS)RI7'S)" - [Q1) (X}, (1.16)

which have to be solved subject to the following two-point boundary conditions,
(X} = (X} {4}(e0) = {0} (1.17)

The simultaneous forward and backward time-marching required for the solution of Egs. (1.15)
and (1.16) is commonly expressed as the following linear feedback control law with a constant
gain matrix, [K]:

{u} = —-[KI{X}, (1.18)

where
(K1 = (RI™ (1BI"[P1+ [S]"), (1.19)

and the constant matrix [P] is the solution to the following algebraic Riccati equation (ARE):

{0} = [Q1 + ([A] - [BIRI'[SI") " [P] + [P] ([A] - [BI[R]™"[S]")
—[PIBIRI' B [P] - [SIIRI™[S]". (1.20)

The ARE is a nonlinear algebraic equation and necessitates an iterative solution procedure,
which must be carried out for each set of coefficient matrices [A], [B], [Q], [R], [S]. This is, in
a nutshell, the linear, quadratic regulator (LQR) problem with a quadratic cost and an infinite
control horizon. The cost coefficients [Q], [R], [S] must be selected such that the regulator is
an asymptotically stable system, which requires that all the eigenvalues of the closed-loop
dynamics matrix, [A] — [B][K], should lie in the left-half side of the Laplace domain. Alterna-
tively, the eigenvalues and eigenvectors of the dynamics matrix, [A] — [B][K], can be directly
specified in order to determine [K], which is termed an eigenstructure assignment.

The state feedback regulator cannot be directly implemented because the state variables of
the aeroelastic plant, {X}, are unavailable for direct measurement. What one can measure are
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the output variables, {y}, detected by a set of sensors placed strategically on the aircraft. The
state vector, { X'}, which is required by the linear feedback control law, Eq. (1.18), must then be
constructed by an additional system called an observer (or state estimator). The linear output
equation,

{y} = [CHX} + [DH{u} + {m}, (1.21)

where {m(t)} is the vector of random disturbances (the measurement noise), can be used to
design a full-order observer, whose dynamics is governed by the following state equation:

(X} = (1A] - [LI[CD {X) + ([B] - [LIIDD) {u} + [L1{y}, (1.22)

where {5( } is the estimated state vector, and [L], the observer gain matrix. Such an observer
requires that the plant must be observable with the outputs given by Eq. (1.21). The observer
gain matrix, [L], can be selected in a manner similar to (but separately from) the regulator gain,
[K], by either eigenstructure assignment for the observer dynamics matrix, [A] — [L][C], or via
linear, quadratic, optimal control where [A] is replaced by [A]7, and [B] by [C]T. The optimal
observer is also known as the Kalman filter and is guaranteed to minimize the covariance
matrix, [R,], of the estimation error, {e} = {X} — {X},in the presence of zero-mean, Gaussian
process and measurement noise signals, {p}, {m}. In the infinite horizon case, the Kalman filter
gain is determined by the following ARE similar to Eq. (1.20), and hence the Kalman filter is
regarded as the dual of the state feedback regulator.

{0} = [AGIIR,] + [RIIAG]" — [RIICI[S,, 17 [CIIR,]
+[F1([S,1 = [S,,1LS,,17"S,,1") [F1", (1.23)

where [S,,1,[S,],[S,,,] are the matrices of power spectral density of the measurement noise,
{m}, that of the process noise, {p}, and the cross-spectral density of {p}, {m}, respectively,
and

[AG] = [A] = [FI[S,,,11S,,]"'[C]. (1.24)
The Kalman filter gain matrix is then given by
[L] = ([RILCI" + [FILS,,,]) [S,,]7". (1.25)

Clearly, the matrices [S,,], [Sp], [Spm] act as the cost coefficients of a quadratic objective func-
tion for determining [L] in a manner similar to [Q], [R], [S] for the LQR regulator. These should
be suitably selected in the observer design process.

The observer’s dynamics must be designed to be stable and much faster than the regulator. It
is crucial for practical considerations that the derived control laws must be robust with respect
to modelling uncertainties (process noise) and sensor (measurement) noise at a selected range
of operating conditions. The procedure by which an LQR and a Kalman filter (also called lin-
ear, quadratic estimator (LQE)) are designed separately for a linear, time-invariant plant, and
then put together to form a compensator is referred to as the linear, quadratic, Gaussian (LQG)
method. Here, the Kalman filter supplies the estimated state for feedback to the LQR regulator.
The design of the LQG compensator — specified by the gain matrices, [K], [L] — depends upon
the chosen cost parameters, [Q], [R], [S], [S,,]. [S p], [Spm]. Suitable performance and robustness
requirements of the overall ASE system restrict the choice of the cost parameters to a specific
range. Being based upon optimal control, an LQG compensator has excellent performance
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features for a given set of cost parameters, but its robustness depends upon how much the
performance is degraded by state estimation through the Kalman filter. If the observer gains,
[L], are too small, the estimation error, {e}, does not tend to zero fast enough for the feedback
to be accurate. On the other hand, if the observer has very large gains, there is an amplifica-
tion of process and measurement noise by feedback, thereby reducing the overall robustness
of the control system. Clearly, a balance must be struck in selecting the Kalman filter design
parameters, such that a good robustness is obtained without unduly sacrificing performance.
Several linear feedback strategies are in use for striking a compromise between robustness
with respect to plant uncertainty, and noise rejection properties. These include LQG compen-
sation with loop-transfer recovery (LTR) (Maciejowski 1989), H,/H_, control (Glover and
Doyle 1988) and structured singular value (SSV) (or u-) synthesis (Packard and Doyle 1992).
Chapter 2 is a brief compilation of the basic linear feedback design methods for achieving a
robust control system with constant parameters.

1.4 Parametric Uncertainty and Variation

Any aeroelastic model employed in ASE design is likely to have modelling uncertainties in
its parameters, [A], [B], [C], [D]. These can be either due to errors in the linear aeroelastic
plant or due to a part of the dynamics which is entirely unmodelled. The parametric errors in
the linear plant are due to inadequacies of the structural dynamics model, as well as those in
evaluating the frequency domain aerodynamics and its transfer matrix (RFA) representation.
The unmodelled dynamics include nonlinear structural and aerodynamic effects, which are
difficult to account for. While linear parametric uncertainties are easier to handle in a control
system design, it is the presence of unmodelled dynamics that causes a greater anxiety. Of
these, the nonlinear aerodynamic phenomena are the most critical as they can cause unforeseen
aeroelastic instabilities, and whose model requires iterative and complex CFD computations
which (as noted above) are infeasible to carry out in real time. Aerodynamic nonlinearities
encountered in aeroservoelastic systems are divided into two classes: (i) unsteady behaviour
involving normal shock waves and (ii) largely separated or vortex-dominated flows. While
type (i) is only present at the transonic speeds, nonlinearities of type (ii) occur at high
angle-of-attack flight. A fighter-type aircraft manoeuvring at transonic speeds will encounter
both the effects. The unsteady flow separation (type (ii)) causes a buffeting of the airframe
at low frequencies, and can result in rigid dynamic instabilities, such as wing-rock, nose-slice
and coning motions, but rarely cause an aeroelastic coupling. This is due to the fact that
the structural dynamics of the airframe simply acts as a stable, linear filter of the nonlinear
buffeting forces and moments, allowing the peaks of the spectrum to occur only at the in
vacuo structural frequencies. Consequently, notch-filters can be designed to suppress the
buffet at well-identified frequencies. Such a nonlinear dynamic characteristic can be analysed
by the Popov stability criterion (Chapter 7). However, the shock-wave effects (type (i)) are
more interesting; they cause dynamic aeroelastic instabilities, leading to a sharp reduction
in the flutter dynamic pressure and a sustained limit-cycle oscillation (LCO), often ending
in a catastrophic structural failure. An accurate transonic aerodynamic model is necessary to
account for unsteady shock wave effects and an absence of such a model renders the unsteady
aerodynamic forces and moments highly uncertain.

In addition to modelling uncertainties, there are significant variations in the aeroelastic char-
acteristics due to changing operating conditions (flight speed and altitude). For example, as the
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flight Mach number is increased from subsonic to supersonic, the variation of the lift, pitching
moment and control-surface hinge moment with angle-of-attack and control deflections vary
drastically. Some steady-state aerodynamic derivatives can even change in sign as the tran-
sonic regime is crossed. The transonic flight regime is especially critical as it is characterized
by different, simultaneously occurring flow regions (subsonic/sonic/supersonic). However,
the unsteady transonic variations are more crucial, as they often lead to markedly different
aeroelastic behaviour depending upon the flow geometry (airfoil shape, angle-of-attack,
control-surface deflections). The unsteady mixing of the different flow regions creates
complex, time-dependent flow patterns, and causes interesting aeroelastic interactions. These
include a significant dip in the flutter dynamic pressure, transonic buffet, LCO and control
surface oscillation (buzz) caused by unsteady shock wave and boundary-layer interaction.
Any of these phenomena can cause a catastrophic structural failure, if not properly addressed
in airframe (open-loop) and active flight control (closed-loop) designs. In fact, these very
transonic aeroelastic instabilities were historically dreaded as the ‘sound barrier’ which
prevented safe supersonic flight in the first half of the 20th century. In the present age,
nearly all airline transport aircraft fly in the high subsonic/transonic regime. Furthermore,
fighter-type aircraft must not only cross the sonic speed but also perform high-g manoeuvres
at transonic speeds in their mission. Hence, transonic ASE is even more important now than
at any other time in the history of aviation.

Since transonic ASE applications involve unsteady shock motions, as well as periodic
boundary-layer separation and reattachment induced by shock waves, advanced CFD
modelling techniques are required for such inherently nonlinear effects (Silva et al. 2006).
The inviscid, unsteady transonic equations required to capture shock waves are inherently
nonlinear, even in their small-disturbance potential form. Furthermore, the presence of normal
shock waves in the transonic flow exacerbates the transient (unsteady) flow behaviour by
introducing nonlinear shock-induced flow oscillations, which can interact with the viscous
boundary layer, thereby causing unsteady flow separation. The ASE plant for such a case
is further complicated by the separated wake, or the leading-edge vortex from the wing
interacting with the tail, resulting in irregular and often catastrophic deformation of the
tail — either on its own or driven by a rapid and large deflections of the elevator. Such a
wing—tail-elevator coupling of a post-stall buffet or a shock—vortex interaction requires a
fully viscous flow modelling that is only possible by a Navier—Stokes method (Obayashi
1993). Another example of transonic ASE is the control of unsteady control-surface buzz
and shock-induced buffet encountered by an aircraft manoeuvring in the transonic regime
(Huttsell et al. 2001), leading to nonlinear flutter or LCO (Bendiksen 2004). An appropriate
CFD model in such a case would require a FP, Euler or Navier—Stokes method, depending
upon the geometry, structural stiffness, Mach number and Reynolds number. Sometimes,
semi-empirical models are devised from wind-tunnel data for separated and shock-induced
flows (Edwards 2008), because they do not require unsteady CFD computations to be per-
formed in loop with structural dynamic and control-law calculations. However, the veracity
of such a correlation must be checked carefully before being deployed in ASE design and
analysis. An alternative method is to employ flight-test data for deriving an ASE model, such
as the neural-network identification by Boély and Botez (2010).

Any flow model that fully accounts for the unsteady transonic effects over an oscillating
wing must necessarily be very complex, hence difficult to solve in real time. Owing to the
inherent uncertainty of an unsteady aerodynamic model, a closed-loop controller for ASE
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application must be quite robust to modelling errors. Furthermore, such a controller must also
adapt to changing flight conditions, which renders it mathematically nonlinear even for a lin-
ear aeroelastic plant. This implies that as an accurate unsteady aerodynamics plant model is
infeasible for aeroservoelastic design, adaptive plant identification in closed loop is the only
practical alternative.

1.5 Adaptive Control Design

Following the above discussion, it is logical that the final step in aeroservoelastic system design
should be the derivation of adaptive control laws that can fully account and compensate for the
parametric uncertainties and variations in the characteristics of the aeroelastic system. Such
control laws allow variation of the controller parameters in order to adapt to uncertain and
changing plant characteristics. For this, an adaptation mechanism based upon the sensed (iden-
tified) input—output behaviour of the plant must be devised. Various adaptation mechanisms
that can be applied to adaptive ASE design are now explored.

Design of a control system generally requires a plant model. The ability of a control system
in achieving its desired performance depends upon how accurately the plant modelling is
carried out. For example, the resolution of a digital camera depends upon how precisely the
dynamics of the sensor, aperture and diaphragm are modelled. Similarly, the tolerance of a
robotic positioning device largely depends upon the number of structural vibration modes
considered in modelling the robotic arm. Most mechanical and electrical systems can be mod-
elled to a very high accuracy because their dynamics are well understood, and hence controller
design for the systems can be carried out by traditional methods. The same, however, cannot
be said of an ASE system, wherein achieving high accuracy may result in the aeroelastic
model becoming too unwieldy and complex to be of any benefit in control system design.
For example, accurate modelling of a viscous, unsteady flow over a deforming wing surface
would require unsteady, turbulent, Navier—Stokes solutions involving several thousands of grid
points and hundreds of hours of computation time. The past several decades have seen signif-
icant advancement in CFD, but only at the cost of increasing complexity of modelling, which
cannot be practical for closed-loop design and analysis. Rather than pursuing the course of
increasingly accurate plant models, which seems to have reached a dead end, it is more prof-
itable to look for simpler models that can capture the fundamental physical aspects of the
aeroelastic plant. Therefore, accuracy is sacrificed in the interest of simplicity for a practical
ASE design. Simplifying assumptions are usually made by neglecting some aspects of the
plant characteristics, such as high-frequency dynamics, and structural and aerodynamic non-
linearities, thereby producing a mathematical model which is more amenable to control system
design with either constant, or well-defined controller gains.

Consider an aircraft wing experiencing multimodal vibration in the presence of unsteady
airloads. While in vacuo structural modelling of the wing can be accurately performed by a
high-order finite-element method, the unsteady air loads acting on the wing are quite another
matter. Depending upon the airspeed and altitude, the aerodynamic characteristics can range
from low-subsonic, through transonic, to supersonic, each of which is dramatically and
fundamentally different from the other. Furthermore, even in a given speed regime, a part
of the flow on the wing could be laminar and another part turbulent, attached or separated,
subsonic or supersonic, thereby creating almost infinite variation in the magnitude and phase
of the dynamic loading. Since the structural deformations (elasticity) and air loads (flowfield)
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are strongly coupled, each can cause a large change in the other at any given time, and this
picture keeps on changing with time in an unpredictable manner. It can be said that an accurate
aeroelastic model of the wing must take into account a large number of mutually coupled,
randomly varying, local phenomena, an exact accounting of which is impossible. Even the
most sophisticated aerodynamic model (Navier—Stokes equations with a statistical turbulence
model) falls well short of faithfully capturing the complex flowfield around a flexing wing.
Furthermore, such models are cumbersome in terms of computational efficiency, hence cannot
be used in control system design. Therefore, the best available aeroelastic plant model is often
an inaccurate and uncertain one.

How does one go about designing a good aeroservoelastic system if the plant is not
well modelled? This question takes us to adaptive control design. A practical ASE system
must operate at different design conditions representative of an aircraft flying at various
speeds, altitudes and loadings. In many cases, the aerodynamic behaviour of the aircraft
changes drastically when going from one flight regime to another, such as from subsonic to
supersonic speeds. If not properly compensated for, the resulting aerodynamic changes (such
as appearance of shock waves) can cause a large reduction in aeroelastic stability margin,
perhaps leading to a catastrophic condition such as flutter. In order to maintain stability in
the presence of varying flight conditions, one has two options: (i) meticulously redesign
the control system at a large number of expected conditions and store the design points for
a smooth interpolation of controller parameters in a given flight regime. This approach is
called gain scheduling and is one of the first adaptive flight control strategies implemented in
aircraft. (ii) Render the control system self-adaptive with respect to changing flight parameters
through an extra feedback loop, which automatically compensates for loss of stability margin.
While the former approach relies upon accurate plant modelling, the latter requires updating a
‘workable’ plant model by actual flight data in real time. Since it is only option (ii) that can be
called adaptive in a true sense, it will be the main thrust of the present chapter. While most of
the literature on ASE is concerned with accurate plant modelling by sophisticated structural
and aerodynamic techniques that are necessary for the gain scheduling approach, we depart
from this traditional approach and instead concentrate on developing good adaptive control
algorithms that can achieve the closed-loop performance even in the face of a mathematically
uncertain plant model. It can be appreciated by an aerodynamicist that even the best possible
flow model may fail to capture many essential features of a flowfield, such as turbulent,
separated and shock-dominated flows. Unfortunately, it is precisely such flow phenomena
that are the most troublesome to an aeroservoelastician. Thus uncertainty in the plant model
is unavoidable, and even becomes amplified as one approaches the transonic regime where
the majority of modern aircraft operate. Furthermore, even if a high degree of modelling
accuracy can been achieved at a particular design condition, the off-design operation usually
becomes very sensitive to initial conditions and flow parameters, such as in the nonlinear
buffet and limit cycle behaviour caused by separated flows. Owing to its inability to provide
a reliable plant model across the flight regimes, the gain scheduling approach has proved to
be inadequate for ASE purposes, and has not achieved flight certification status even more
than 50 years after it was first devised. Clearly, the answer to a practical implementation of
an ASE system lies in the alternative approach, namely self-adaptive control.

The ultimate example of self-adaptive control is the natural flight of birds, where a mul-
titude of muscles move a group of feathers to produce a graceful flight. This is also a fine
example of the juggling act involved in multivariable control, such as the symphony generated
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by the concerted sounds of an orchestra. Such examples of nature provide a motivation and a
challenge for the control engineer. Of course, it may be argued that the luxury provided by a
plethora of natural control input variables — individually capable of modulation — is unavail-
able in the average engineering problem. This largely explains why the graceful, quiet and
highly manoeuvrable trajectories of birds and insects are only in the realm of dreams of an air-
craft designer. The control engineer has to work with a small number of control inputs, each of
which is limited in magnitude and rate, often resulting in an underactuated plant. Thus the suc-
cess in achieving a control objective relies solely upon the sophistication of the control laws
employed for the purpose. The ASE designer is acutely aware of this limitation, and has to
devote his energy in mathematically deriving a clever control strategy that could compensate
for the deficiencies of his plant, which are both physical and mathematical.

1.5.1 Adaptive Control Laws

Adaptive control becomes necessary whenever the plant has either an unknown structure,
unknown parameters or changing operating conditions, which imply an absence of any fixed
description of input—output relationships. In such a case, an adaptive mechanism becomes
necessary for the controller. For simplicity, we focus the discussion to state-feedback reg-
ulators, whose parameters are defined by the changing regulator gain matrix, [K(#)]. If an
output-feedback scheme is used, the observer gains, [L(?)], are also a part of the controller
parameters. The adaptive controller is a self-adjusting system that can modify its parame-
ters, [K(#)], based upon the actual inputs, {u(?)}, applied to the plant, and the measurement of
the actual outputs, {y(#)}, produced by the plant. In essence, an adaptive controller compen-
sates for the lack of knowledge (or a change) of the plant’s mathematical model by employing
the measured plant characteristics. Owing to the dependence of the controller parameters on
the plant’s inputs and outputs, the adaptive controller is a nonlinear system, as depicted by the
block diagram of Fig. 1.4. On comparison with the basic, fixed gain control system of Fig. 1.3,
the presence of the additional adaptation mechanism is evident as the outer feedback loop,
which allows for a change in controller parameters, [K(f)], by a set of adaptation laws. Such
a mapping of the plant’s input and output vectors, {u(f)}, {y(¢)}, onto the controller parameter
vector space, [K(#)], is the hallmark of an adaptive control system.

Adaptation loop

= ]
g 0 Adaptation
3 o
[CR=¢ laws
-
L p@)
V:/ l
u(r)
x,(t) —»{  Controller > Plant > (1)

w(t)

Figure 1.4 Generic adaptive control system with an adaptation mechanism for controller parameters
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Adaptive control (Astrom and Wittenmark 1995) arose as a discipline especially for
designing the flight control systems of high-speed aircraft, which encounter large parametric
variations in their operating envelope. Active research in the last several decades has produced
many useful adaptive control techniques that can be applied to a wide range of problems.
Unfortunately, these are specific to the application, rather than general, and can often be ad
hoc procedures. The selection of an adaptive ASE control law is thus a challenging task,
because an accurate aeroelastic model is unavailable in most cases. Hence, ASE has remained
a formidable technological problem.

A part of the plant’s output vector, {y(¢)}, specifies the operating conditions. For example, a
flight vehicle’s operating (flight) conditions are the airspeed, altitude and Mach number. Often
a good mathematical model of the plant can be derived for different sets of flight conditions
(flight points), each having a set of linear controller parameters (gains) specially designed for
it. In such a case, the adaptation mechanism is simply a table look-up of stored data points and
the controller gains can be scheduled with the flight point. The resulting adaptive controller
is called a gain scheduler. A schematic diagram of the gain schedule adaptation is shown in
Fig. 1.5, where the inner feedback loop is the underlying linear control law for achieving stabil-
ity for a given set of plant parameters, while the outer feedback loop determines the variation
of the underlying controller parameters based upon a pre-set interpolation schedule. The gain
scheduling approach was the earliest example of adaptive controllers designed for high-speed
aircraft, rockets and spacecraft in the 1950s. As the name implies, most flight applications
of gain scheduling involve an adjustment of linear feedback gains, but a more general appli-
cation can also be envisaged where the controller parameters, [K(7)], appear in a nonlinear
relationship with the desired states, {x,(f)}, and the outputs, {y(#)}, as shown in Fig. 1.5. Gain
scheduling is thus regarded as a functional mapping method to vary the controller parameters
[K], [L] according to the identified operating conditions. This requires solving for and storing
the different sets of [K], [L] at various flight conditions. It can be expected that having to design
controllers for a wide range of operating conditions requires a massive effort. Furthermore, as
there is no possibility of taking into account either modelling errors or unmodelled (nonlinear)
plant behaviour, gain scheduling is not regarded as an adaptive controller in the true sense.

A detailed and accurate model of the plant for various operating points is necessary before
a gain scheduler can be designed for it, which is not always possible, especially for ASE
plants in which we are presently interested. In a typical ASE application, the change in the
plant’s behaviour can be dramatic and not entirely predictable, such as in the case of transonic
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T 1
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Multiplexer
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Figure 1.5 Schematic block diagram of a gain scheduling system
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flutter and high angle-of-attack (stall) flutter. While an extensive research database exists on the
transonic and high angle-of-attack flight, there are no efficient and reliable techniques available
at present for modelling the essentially nonlinear characteristics of the aeroelastic plant under
such conditions. In such a case, the gain-scheduling approach is not viable and recourse must
be made to what is called a ‘self-adaptive’ control system.

Traditional self-adaptive systems for the regulation of an uncertain plant dynamics can be
broadly classified into (i) self-tuning regulators (STRs) and (ii) model-reference adaptation
systems (MRASs). An STR is an adaptive controller based on online parameter estimation
of the unknown plant dynamics. A MRAS uses a predefined plant model (often linear and
time-invariant) as its reference, in order to compare the actual behaviour, and to adapt the con-
troller parameters accordingly. Since the desired behaviour is known a priori, such an adaptive
mechanism is said to be direct. In contrast, an STR must first estimate the plant behaviour by
sensing its input—output relationship in a closed loop and then apply an adaptation (or update)
law for the controller parameters. Owing to the online identification of the plant’s unknown
behaviour, the self-tuning approach is called an indirect adaptation method. The two strategies
can be further classified depending upon the types of adaptation laws and parameter identifi-
cation algorithms they employ. We will consider STR for ASE systems in Chapter 5, while
MRAS techniques will be the topic of Chapter 8.

A true adaptive controller must detect the actual plant behaviour, and apply a suitable
correction to the underlying controller parameters in order to produce a stable closed-loop
system. The most formal interpretation of this task is the STR whose schematic diagram is
depicted in Fig. 1.6. Note the outer feedback loop for an online identification of the plant
parameters, [A], [B], [C], [D], based upon a measurement of the plant’s output vector, y, and a
knowledge of the applied inputs, u. The slanted arrows in Fig. 1.6 indicate adaptation of the
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Figure 1.6 Schematic block diagram of a self-tuning regulator (STR)
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parameters of the observer and the regulator. Consider a system with the following output
equation:

Y@} = [®]{6}, (1.26)

where {0} are the unknown plant parameters arranged in a column vector and [®(7)] is a
regressor matrix of functions of the known inputs and outputs. A parameter estimation scheme
derives an estimate {0} by minimizing a positive cost function of the estimation error, {¢} =
{v} - [D(1)]{0)} at a given time ¢.

The parameter identification must be carried out with a finite record of the inputs and
outputs. As the updated plant parameters become available, they are used to determine the
new regulator and observer gains by solving the underlying linear control problem (such as the
nonlinear ARESs). The identification process is generally based on the solution to a set of linear
algebraic equations, and hence the online controller updation is a much less complex task than
that of accurately modelling the plant behaviour through a set of nonlinear partial differential
equations. The success of the self-tuning approach depends upon active stabilization, rather
than on how accurately the plant behaviour can be identified at any given instant. Therefore,
guaranteeing closed-loop stability of the adaptation scheme is the primary objective. In some
cases, it is even likely that a set of constant controller parameters are found to be stabilizing,
albeit the plant parameters may be varying in time. The identified plant parameters are directly
used in the underlying controller design, regardless of whether they are the ‘true’ parameters.
Hence, the STR design approach is based upon the certainty equivalence principle, which
disregards the uncertainty (or error) in plant identification.

The computation of the controller parameters from the underlying control design process
of the STR can be transformed into a mapping from the plant’s input—output record to the
controller parameters space. The plant’s parameter identification is then implicit in the adapta-
tion mechanism, and it would appear that the controller parameters are being directly updated
from the plant’s input—output behaviour. An implicit dependence of the controller parameters
on those of the identified plant is sometimes termed direct adaptation, whereas the explicit
modules of identification and controller design in Fig. 1.6 is called indirect adaptation.

A variation of the direct STR is the MRAS, where the identification and controller design
blocks are replaced by a reference model and an adaptation mechanism for the controller
parameters, such that the error between the output of the reference model and that of the actual
plant is minimized. Such a scheme is illustrated by the block diagram of Fig. 1.7. Note that
when the reference input vector, {r(¢)}, is removed from the MRAS, the result is very similar
to the STR of the direct type. However, the methods of designing and implementing the MRAS
and STR are quite different.

Consider a linear, time-invariant plant with a state-space model given by the following
state-space equations with constant (but unknown) coefficient matrices [A], [B], [C], [D], and
unknown process noise, {p(t)}, and measurement noise, {m(?)}:

{x} = [Al{x} + [B{u} + {p}, (1.27)
{y} = [Cl{x} + [DN{u} + {m}. (1.28)

If the plant’s state vector, {x(¢)}, can be directly measured, the following state-feedback law
can be applied to stabilize the system:

{u} = —[K]l{x} - [K, ]{r}, (1.29)
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Figure 1.7 A model-reference adaptation system (MRAS)

such that the plant’s state tracks a reference input vector, {r}(7). Here [K,] is a feedforward gain
matrix, and [K] the regulator gain matrix. A reference model is defined by the following linear,
time-invariant state-space representation with known coefficient matrices [A,], [B,], [C,], [D,],
and the reference input vector, {r(7)}:

(%} =1A1{x} + [B]{r}, (1.30)
v} =[CHx ) +[D,]{r}. (1.31)

The estimated state, X, required by the regulator is supplied by an observer (such as that given
by Eq. (1.22)) whose gain matrix, [L], must be designed on the basis of the plant’s parame-
ters, [A], [B], [C], [D]. Since the plant’s parameters are uncertain, an exact set of stabilizing
controller parameters, [K], [K,], [L], is unknown. Thus beginning from an initial guess of sta-
bilizing controller gains, [K(0)], [K,(0)],[L(0)], the controller parameters must be evolved
in time such that the error between the plant output and that of a reference model, {e¢} =
{y(} — {y,(®)}, is minimized in the limit # — oo. This is the broad philosophy behind MRAS
schemes.

When the plant is inherently nonlinear, and cannot be linearized about an operating condi-
tion, a nonlinear feedback control-with an adaptation mechanism for its parameters — becomes
necessary. A possible design strategy for such a controller is the geometric nonlinear feedback
approach (Slotine 1995), such as adaptive feedback linearization, wherein the adaptive
feedback renders the control system linear by cancelling its nonlinearities. However, a major
shortcoming of feedback linearization is its inability to handle parametric uncertainties that
are not matched by the control inputs (i.e., the uncertainties occurring in those state equations
that do not contain the control inputs). Therefore, while the rigid body motion can be stabilized
by adaptive feedback linearization, the same cannot be said for flexible structures or dynamic
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aeroelastic systems. Furthermore, the cancellation of stable nonlinearities is undesirable,
because it degrades the closed-loop response. Another popular geometric nonlinear method
is the sliding mode (variable structure) control (Slotine 1995), which apart from the inability
to stabilize unmatched uncertainties, is also unsuitable for aeroelastic applications because of
the inherent problem of ‘chattering’ on the sliding surface. Consequently, adaptive feedback
linearization, sliding mode control and other such geometric nonlinear feedback methods
cannot be considered in an adaptive ASE design. There is very little mathematical treatment of
nonlinear ASE effects in the literature. Traditional nonlinear ASE applications have employed
frequency response aeroelastic models via describing functions. While such methods model
structural nonlinearities (Dowell and I’'lgamov 1988) by describing functions, they are not
easily found for the nonlinear behaviour caused by separated and shock-dominated flows in
the transonic regime. In addition, nonlinear adaptation ASE applications are absent in the
literature. However, the describing function approach offers the promise of being used in
conjunction with a recursive nonlinear identifier discussed below.

Alternatives to the nonlinear geometric feedback methods are the Lyapunov stabilization
techniques of passivity-based methods (Haddad and Chellaboina 2008) and recursive
back-stepping integration (Krstic et al. 1995). The advantage of the Lyapunov-based methods
is that they can be easily applied to yield adaptation control laws required for MRASs and
STRs. Unlike geometric control methods, the Lyapunov-based controllers do not depend very
much on the plant characteristics, which offer a great flexibility in their design. This book
mainly utilizes the Lyapunov-based methods for adaptive controller derivation. However, it is
necessary to highlight the important theoretical concepts before applying them in the design
process.

1.6 Organization

The treatment of all possible adaptive control techniques that could be applied to the design
and analysis of ASE systems is a formidable task. This book attempts to do so by focussing on
the important features and concepts. Chapter 2 details the feedback design methods applied to
design the underlying controller, whose parameters are to be adjusted by a separate adaptation
mechanism. Chapter 3 covers the basic principles and techniques used to derive an aeroelas-
tic plant model that is suitable for use in controller design. Chapter 4 introduces the active
suppression of the primary ASE instability, namely flutter, and presents examples of both
typical-section (two-dimensional) and lifting-surface (three-dimensional) flutter. Chapter 5
introduces STRs for adaptive ASE systems based upon online plant identification. Chapter 6
details the essential concepts used in analysing the stability, and designing stabilizing con-
trollers for nonlinear systems, of which adaptive ASE systems are the target. Chapter 7 presents
the methodology of describing functions analysis, and Nyquist-like techniques based upon
Circle and Popov criteria, which can be applied to model LCOs associated with nonlinear
aeroelastic behaviour caused by shock-induced and separated flows. Chapter 8 focuses on
MRAS techniques, with applications to ASE systems. Chapter 9 presents the essentials of the
powerful adaptive control method via backstepping integration as an alternative to the tradi-
tional methods (MRAS and STR). Chapter 10 considers robust design of adaptive systems in
the presence of nonlinearities and noise inputs. Finally, Chapter 11 covers the ultimate end of
adaptive ASE design, namely the possible handling of transonic flutter and LCOs by adaptive
control methods.
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2

Linear Control Systems

This chapter introduces the basic notations and concepts of linear control theory that are
necessary in the design and analysis of aeroservoelastic (ASE) systems. The discussion can be
supplemented by textbooks on linear control systems design (Kailath 1980, Kwakernaak and
Sivan 1972, Maciejowski 1989, Tewari 2002).

2.1 Notation

Conforming to the advanced treatment presented in the book, the notation is simplified from
that found in explanatory textbooks on control systems. There is no attempt made to indicate
vectors and matrices by bold symbols, but lower case letters and symbols (a, @) are employed
for scalar and vector quantities and capital letters and symbols for matrices. Sometimes, in
order to highlight certain modelling features, braces may be used to distinguish vectors from
scalars and brackets for matrices. The orders of vector and matrix variables are not indicated
separately, but understood to conform to the linear algebraic multiplication rules. The overdot
on a letter or symbol represents the time derivative operator of the individual elements (scalar,
vector or matrix). The nomenclature for scalar, vector and matrix algebra is given in Table 2.1.
Any departure from this labelling scheme, if necessary, is noted. Standard aerospace symbols
define relevant flight parameters and variables, as and when used.

2.2 Basic Control Concepts

A system is a self-contained set of physical processes, which can be represented by a set of
time-dependent variables (called signals). The externally applied signals are the inputs and
the system’s variables arising internally are the outputs, which can be measured. Control is the
general task of achieving a desired result from a target system, called the plant, by an appropri-
ate manipulation of its inputs. For an ASE system, the plant to be controlled is the aeroelastic
system, while the system that exercises the control is the controller. In modelling a system,
one must account for the inherent relationships prevailing between the input and output sig-
nals. If the system is governed by known physical laws, such a relationship generally takes
the form of a set of mathematical (differential, integro-differential and algebraic) equations,
and the system is said to be deterministic. In contrast, a system with unknown (or partially

Adaptive Aeroservoelastic Control, First Edition. Ashish Tewari.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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Table 2.1 Basic linear algebraic norms

Notation Mathematical expression Nomenclature

a+ib a—ib Complex conjugate

|al aa Magnitude of a complex scalar, a

a a’ Hermitian of a complex vector, a

|a| v/ 2w lal? = \/E Euclidean (or Z,) norm of a vector, a

| al, {Z?:l | ail”}l/p Holder (or p) norm of a vector, a
(I<p<)

[ Al { Y 2y 1 AP } v Holder (or p) norm of a matrix, A
(1<p< o)

det (A) Determinant of a square matrix, A

Al AT Hermitian of a matrix, A

tr (A) >4 Trace of a square matrix, A

|A] - \/m Frobenius norm of a matrix, A

A; (A) Eigenvalues of a square matrix, A

p(A) max; | 4, (A) | Spectral radius of a square matrix, A

o, (A) \/m Singular values (principal gains) of a matrix, A

o (A) ymax;{c; (A)} = sup_, "t—“l‘

Al 5 (A)

o (4) y/min;{o; (A)] = inf_, "=
71, VL af @' f (0 dx

£l Vo 1 FO [ dx

£l sup, 5 {F (x)}

Largest singular value of a matrix, A

Hilbert (or spectral) norm of a matrix, A

Smallest singular value of a matrix, A
H, norm of a vector function, f (x)

H, norm of a matrix function, F (x)

H_, norm of a matrix function, F (x)

known) physical laws is called non-deterministic. Most non-deterministic systems are such
that certain fixed statistical laws can be applied to them. Such systems are said to be stochas-
tic. If no statistical analysis can be conducted to study a system, it is said to be a completely
random system. A stochastic system can be modelled as a set of external input signals — called
disturbances — acting upon a deterministic system. Disturbances are generally of two types: (i)
process noise that can arise either externally because of unknown inputs or internally because
of uncertainty in modelling the system; (ii) a measurement noise that results from the uncer-
tainty in measuring the output signals. The presence of such external and internal modelling
errors renders all physical systems stochastic.

A system comprising the plant, the controller and disturbance inputs is called a control
system. The controller manipulates the plant through a control input vector, which is an input
vector to the plant, but an output of the controller. In a flight control system, the control
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Figure 2.1 Servo-motor-based control surface actuator for a flexible wing equipped with a trailing-edge
control surface

inputs are the forces and torques applied to the aircraft by moving certain control surfaces.
In actuality, the controller only generates electrical or mechanical signals through wires or
cables/hydraulic-lines; these signals must be converted into physical inputs for the plant
by separate subsystems of the plant, called the actuators. A feedback controller requires
the measurement of the output variables of the plant through separate subsystems of the
plant called sensors. For example, the plunge displacement, 4 (¢), and pitch rotation, 6 (7),
of an aircraft wing are controlled by deflecting a trailing-edge control surface by an angle,
p (), through an actuating torque, H (), on the control surface’s hinge-line, as shown in
Fig. 2.1. Here, the actuator is a servo-motor, which is itself a self-contained control system
that takes the electrical command (voltage input), u (), from the flight control computer and
produces a driving voltage, v (¢), for the DC motor, based upon the measurement of the shaft
rotation angle, f (¢), via an angle encoder (Fig. 2.1). The driving voltage is generated by a
servo-controller based upon the error signal, e = u — v, between the commanded and actual
positions of the shaft.

Although the plant is a stochastic system, the design of a control system is based upon a
mathematical model. Such a mathematical model is called a representation of the system.
There are two basic kinds of representations: (i) the input—output model and (ii) the state-space
model. While an input—output representation describes the relationships between the input
and output signals, the state-space representation involves a mathematical model of the
system in the time domain based upon other internal signals that are not necessarily the inputs
and outputs.
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2.3 Input-Output Representation

A control system must possess certain basic features, such as stability, performance and robust-
ness, in order to be of practical utility. Stability is a fundamental requirement of any con-
trol system and it can be defined in various ways. The simplest definition of stability is the
property whereby norm-bounded input signals applied to a system (initially at rest) produce
norm-bounded outputs. This concept is called the input—output stability and is the most sought
after characteristic of electrical and electronic systems where sinusoidal inputs are commonly
applied at a constant frequency and amplitude. Since electrical systems design was the initial
motivation for control systems theory, frequency domain analysis became the primary means
of studying input—output stability. Consequently, the use of operational methods (Heaviside
operator, Fourier and Laplace transforms) historically took the centre stage in classical systems
analysis. While the operational approach was originally developed for deterministic linear sys-
tems with oscillatory signals, it can be extended to more general (stochastic, nonlinear) systems
and signals. The primary requirement for such an analysis is to assume zero initial conditions
or to allow sufficient time to pass for the initial transients to decay to zero (provided the sys-
tem is stable). The resulting long-term (or steady-state) response is then used to analyse the
characteristics of the stable system.

For an illustration of the operational method, consider a system with input vector, u (¢) :
R — R™, and output vector, y (f) : R — RP”. The transfer operator, G(.) : R™ — R?, of the
system represents a mapping from the input space to the output space for all times, —oo < t <
00, and is expressed as follows:

y=G. 2.1

If the output vector at a time 7, y (), depends only upon the prior input record, u (t), —co < t <
7, then the system is said to be causal. Most systems of practical interest are causal. The symbol
H used in the vector and matrix norms H, and H_, (see Table 2.1) of input and output signals
of a causal system refers to the Hardy space. If the mapping given by Eq. (2.1) is independent
of time, then the system is said to be time invariant (or autonomous).

2.3.1 Gain and Stability

Definition 2.3.1 The system described by Eq. (2.1) is said to have a gain defined in terms of
the H, norms of the input and output vectors by the following expression:

Iyl
Gl = sup,o7—=,
“FO lull,

where

11l =

/ FO'f @) dt

is the Hy norm! of a vector function, f (t), defined over all times, —co < t < co. The supremum
(or maximum) is to be taken over all inputs with a finite H, norm. However, the outputs need not
have a finite H, norm. Thus a system can have an infinite gain. Furthermore, for this definition
to be valid, the system must be causal, that is, y (t) = 0 if u (t) = 0, for all times —c0 < t.

! A vector function f () whose H, norm exists is said to be a square integrable function.
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Figure 2.2 Two systems in a series connection

An alternative definition of the gain can be given with respect to the H_ (rather than the H,)
norm. In this book, the gain of a multivariable system is defined with respect to the H, norm
of its signals.

Two subsystems, G,, G,, connected in cascade (series) as shown in Fig. 2.2, have an overall
gain less than or equal to the products of their individual gains:

16, (G1) I < UG, - 16 1. 22)
This can be seen by applying the definition of gain to the subsystems,
z=G; ()
y=6,(2), (2.3)

ory=g, ( G (u)), as well as the inequality,

sup,ollzll, > llzll,- 24

The gain of a system is an indicator of its input—output stability. A system with a finite gain
will produce bounded outputs in response to non-zero and bounded inputs. On the other hand,
a system with infinite gain will have at least one of the outputs tending to infinity in response
to a bounded input, thereby indicating instability.

Definition 2.3.2 [f a causal system has a finite gain, then the system is input—output stable.

For a feedback control system, the concept of gain as an indicator of input—output stability
can be derived from the Small Gain theorem.

2.3.2  Small Gain Theorem

Theorem 2.3.3 Consider two causal subsystems G,,G,, connected in a feedback loop as
shown in Fig. 2.3. The overall closed-loop system is stable if the product of the gains of the
two subsystems is less than unity, that is,

NG - G Il < 1.

Proof. The input—output stability of the closed-loop system requires that the gain of all
signals appearing within the loop with respect to each of the two inputs, |, r,, must be finite.
Consider the input to the first subsystem, given by the block diagram of Fig. 2.3 as

w=r+y=n+6 () =r+G (n+6 (u)).
Using Definition 2.3.1 and the triangle inequality, it can be informally shown that?
laglly < el + 0G0 (rally + 06 - Ny )

2 A more formal proof can be found in Haddad and Chellaboina (2008).
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Figure 2.3 Two systems in a feedback connection

or
lrillz + NG - sl

L=GI-IG ]I~
which implies that if [|G, || - ||G, || < 1, then

ey ll; <

iy 1
PO

and
iy I
P

are both finite. Similarly, loop gains of the other signals (yl, U, y2) with respect to ry, r, can
also be shown to be finite. Thus, by Definition 2.3.2, the closed-loop system is stable.

2.4 Input-QOutput Linear Systems

If the input—output behaviour of a system, Eq. (2.1), is such that
ay; +by, =G (aul + buz) , (2.5)

where y,, y, are the output vectors corresponding to input vectors u,, u,, respectively, and a, b
are scalar constants, then the system is said to be linear, and can be represented by an impulse
response matrix, G (t, Iy ), relating the output y (¢), t > 1, to the input vector, u (f), which begins
acting at a time, £, and is zero at all previous times, ¢ < f,. The response of a causal, linear
system, initially at rest, when the inputs are unit impulse (Dirac delta) functions, 6 (t - to),
applied at ¢ = t,, is called the impulse response vector, and is given by

t t
g (t, to) = / G(t,1)é (T — to) dr = / G (r,to) o(r)dr, t=>1t,, (2.6)
—00 —00
where the impulse response matrix, G (t, to), now assumes an implicit mathematical expres-
sion. The element (i, j) of the impulse response matrix is seen to be the value of the ith output
variable at time ¢ when the jth input variable is a unit impulse function applied at time ¢,
before which the system was at rest. For an arbitrary, piecewise continuous input vector, u (t),
beginning to act at a time, f,, and zero at all previous times, ¢ < #;, the response of a linear,
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causal system initially at rest can thus be given by the following convolution integral:

y(;)=/ G (t.1) u(r)de, 1>1,. @7

oo

The impulse response of a linear system is a useful mathematical construct, as it helps in
deriving the system’s response to an arbitrary input signal by linear superposition. For under-
standing the concept of impulse response, consider a piecewise-continuous, arbitrary input,
u (1), represented by series of impulse inputs, 6 (f — 7), applied to a linear, time-invariant (LTT)
single-input, single-output (SISO) system at various times, —oco < 7 < t, and scaled by the
current input magnitude, u (). The unit impulse function, é (f), can be visualized as a rectan-
gular pulse of width, €, and height, 1/¢, centred at r = 0, by taking the limit, ¢ — 0, which
implies that

/ooé(t)dtz 1. (2.8)

(5]

By the mean-value theorem of integral calculus Kreyszig (1998), Eq. (2.8) yields the follow-
ing expression for input magnitude at time ¢, called the sampling property of the Dirac delta
function: o
u(t) = / u(r)é(t—r)dr. 2.9)

From the definition of the unit impulse function, it is clear that the limits of integration in Eq.
(2.9) need not be infinite, but should only bracket the time instant, z, at which the impulse is
applied.

If the system is initially at rest (i.e. the output and all its time derivatives are zero at r = 0_),
then the system’s response at a subsequent time, ¢, is simply given by the summation of the
individual impulse responses, scaled by the current input magnitude, u (7):

y(n = /oou(f)g(t—f)df, (2.10)

(o)

which for a multi-input, multi-output (MIMO) system becomes Eq. (2.7). The integral on the
right-hand side of Eq. (2.10) is the convolution integral, which is denoted by the operation
(u * g) (7). It is symmetric in u (.) and g (.), SO we can write

[Se]

Y(f)=(u*g)(t)=/ u(t—1)g(r)dr. (2.11)

—o0

The input, u (¢), begins acting at = 0, and as g (t — 7) = 0 for < 7, we have

t '
y(t):(u*g)(t):/o u(r)g(t—‘r)dr:/0 u(t—7)g(r)dr. (2.12)

Numerical evaluation of Eq. (2.12) is carried out by quadrature Kreyszig (1998) for an arbi-
trary, piecewise continuous input, u (f). The concept of convolution can be extended beyond
impulse response.

Working with the impulse response vector and convolution integrals is a cuambersome pro-
cedure where integrals are to be evaluated in the time domain. Instead, the input—output rela-
tionships of linear systems are expressed in terms of Fourier or Laplace transforms, leading to
linear algebraic equations.
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2.4.1 Laplace Transform and Transfer Function

Consider a causal, LTI, SISO system, with input, u (), and output, y (). Initially, the system is
at rest and without any input, thatis, u (r) = 0,y (f) = 0, (# < 0). All the time derivatives of the
input and output are also zeros for ¢ < 0.

Definition 2.4.1 The transfer function, G (s), of a causal, LTI, SISO system is defined as the
ratio of the Laplace transform of the output, Y (s), to that of the input, U (s), subject to the zero

initial condition,
_Y(s)

Us)

G (s)

The zero initial condition is denoted by u (0_) =0,y (0_) = 0, where ¢ = O_ refers to the
time immediately before the application of the input. By the definition of Laplace transform,
and noting the causality of the system, we write

U@G)=L{u@®) = /°° eum)dr, Y(s)=L{y@®} = /°° ey (1) dt. (2.13)
0 0

The existence of the Laplace transforms requires that the integrals in Eq. (2.13) should
converge to finite values for a given complex variable, s = o + iw. If U (s) and Y (s) exist, then
they are unique. It can be shown Kreyszig (1998) that a Laplace integral, L{f (¢)}, is finite if
and only if the function, f (¢), is piecewise continuous (i.e. any time interval, however large,
can be broken up into a finite number of sub-intervals over each of which f (¢) is continuous,
and at the either end of each sub-interval, f (¢) is finite) and bounded by an exponential (i.e.
there exists a positive, real constant, a, such that | e™f (¢) | is finite at all times). Laplace
transforms of some commonly encountered functions are listed in Table 2.2, along with some
important properties. Practically all inputs that can be applied to a physical system are Laplace
transformable, and the definition of the transfer function by Definition 2.4.1 requires that the
output of a causal LTI system to such an input is also Laplace transformable.

A transfer function is often a ratio of polynomials, called a rational function, in the Laplace
variable, s. Let an LTI, SISO system have the governing differential equation,

d*y drly dy
I a, g + +aza +ay
d"u - d" du
=bm+1W mw-’r"'ﬁ'bza +b1M, (214)

then the transfer function is the following:

D1 S" + bys™ N+ bys+b; N(s)
s+ a,stl e+ ays +a T D)

G(s)= (2.15)
Here, n is the order of the system. If the degree of the numerator polynomial, N (s), is either
less than, or equal to that of the denominator polynomial, D (s), (m < n), then the LTI system
is said to be proper. If m < n, then there is no direct connection between input and output,
and the system is called strictly proper. The roots of the denominator polynomial, D (s) =
s"+a,s""' +---+ays+a, =0, are called the poles of the transfer function and they play
a crucial role in the system’s characteristics, such as stability, response to desired inputs and
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Table 2.2 Basic Laplace transforms

Function Laplace Transform
£ F(s)=L{f (D}
_Joo (=0
60 = {0 (t #0) !
_J1 >0 1
u (1) = {0 (t < 0) 5
tug (f) lz
Sn!
u (1), (n=1,2,--) gl
e“u (1) 5 i P
sin (o) u (t) sZ-I-La)Z
cos (wt) ug (t) sz-l-;(uz

e h(t)
ht—a)u, (t—a)

H(s—a); H(s)=L{h(®)}
e"H(s); H(s)=L{h (D)}

ik (1) L0 i =ciho)

@ JSH@)dp: H(s) = L{h(0)
o sH(s)=h(0.): H()=L{hD)
() dr B9 e =cino

robustness. The roots of the numerator polynomial of the transfer function, N (s) = b, ;s™ +
b,,s" ' + -+ bys + b, = 0, are called the zeros of the system and they have an influence on
the system’s response to applied inputs.

The impulse response of an LTI, SISO system, g (7), is the inverse Laplace transform of the
transfer function with zero initial condition,

gt)y=L"HG ()} >0). (2.16)

Any two signals, u (), g (¢) that satisfy the convolution property given by Eq. (2.11) are said
to convolve with one another and the Laplace transform of the convolution integral, y (7) =
(u * g) (1), is a product of the Laplace transforms of the two functions, Y (s) = G (s) U (s).
The following partial-fraction expansion of the transfer function is used to give the impulse
response of an LTI, SISO system through Table 2.2:

I > "'n
G(s)= + 4+ 4+
S=p1 S—P2 S =Dy

T'm1 + T'm2 R rm(k—l) Tk

+ 9
S = Pm (S _pm)z (S _pm)k_1 (S _pm)k

where p,p,, ..., p, are n distinct poles and p,, is a pole of multiplicity k, of G (s). Here, the
numerator coefficients of the series, ry,r,, ..., r,, and r,,, ..., ;. are called the residues of

(2.17)
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G (s) and are determined as follows:

r=(s=p1) GOy,

ry=(5=p2) G®)lsmp,

ry=(5=p0) G®liep,
Pk = (5= D) GO)liep,

d(s—p,) G

Fok—1) = ds
S=Pm
dk-2 (s — pm)kG (s)
Tm2 = dsk—2
S=Pm
dk-1 (s -p )kG(s)
Tt = i (2.18)
S=Pm

In case of complex poles (which always occur in conjugate pairs), the residues are also complex
conjugates; hence, the partial fraction expansion involving a complex conjugate pair of poles
can be combined to produce a quadratic (or second-order) subsystem.

The response to the unit step and unit ramp functions is related to the transfer function. From
the integral property of Laplace transform (Table 2.2), it follows that the unit step function, u,
is the time integral of the unit impulse function, 6 (¢),

us(t)=£_1{%}=/ 5(r)dr (1> 0). (2.19)
0

Similarly, the indicial (or step) response, y; (¢), of an LTI system, G (s), defined as the output
when the input is a unit step function applied at + = O with a zero initial condition, is the time
integral of the impulse response:

ys(t)zz-l{@}z/ g(t)dr (+>0). (2.20)
0

The indicial response is valuable in studying a stable LTI system’s performance when a sud-
den change is desired in the output, and can be derived in a closed-form by partial fraction
expansion. The time integral of the indicial response is the ramp response, which is useful in
such applications as tracking an object moving with a constant velocity.

For MIMO systems, the concept of transfer function is extended to the transfer matrix.

Definition 2.4.2 If the Laplace transform of the output vector of an LTI system exists and is
denoted by Y (s), and that of the input vector is U (s), then the transfer matrix, G (s), of the
system is given by the relationship

Y(s)=G@s)U(s).

Clearly, the transfer matrix is the Laplace transform of the impulse response matrix, with zero
initial conditions.
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2.5 Loop Shaping of Linear Control Systems

Consider a LTI control system shown in the block-diagram of Fig. 2.4, with the plant transfer
matrix, G (s). The reference signal vector, r (s), acts as the input to the control system, which
automatically generates the plant input vector, u (s), in response to the plant output vector,
v (s). The connection between the output back to the plant input (control input) is the feed-
back path (or feedback loop). A pre-filter of transfer matrix F (s) is placed before the feedback
loop, while a controller of transfer matrix H (s) is part of the feedback loop. Sometimes, the
controller is placed in the path between the output and the summing junction. Owing to the
linearity of the control system, this (and other similar) variation in the block-diagram is easily
handled by suitably modifying the linear relationships between the various signals, leading
to equivalent transfer matrices of the overall system. Such linear operations are called block
transformations. The control system is subject to unknown disturbance signals, p (s) and m (s),
as shown in Fig. 2.4. The process noise vector, p (s), occurs due to unknown parametric varia-
tions, or modelling errors of the plant dynamics, while the measurement noise, m (s), refers to
the vector of unknown errors in measuring the output signals. If these unknown disturbances
were absent, there would be no need to have a feedback loop. However, as the disturbances
are always present in a real system, a feedback loop is necessary for continuously updating the
control input signals on the basis of the sensed outputs. The determination of the transfer matri-
ces F (s), H (s) in order to meet desirable properties of stability, performance and robustness
of the overall control system in the presence of disturbance inputs is called loop shaping.
From the block diagram of Fig. 2.4, it is evident that

YE =G HG)[F(s)r(s)—y(s) —m(s)]+p(s), (2.21)
or
y&)=J () rs) =T (s)m(s)+S(s)p(s), (2.22)
where
S =[U+GE)HGS]™! =R, (s) (2.23)

is called the sensitivity matrix,
R, () =[1+G(s)H (s)] (2.24)

is the output return-difference matrix,

T(s)=1[I+ G(S)H(s)]_lG(s)H(s) (2.25)
p(s)
) —»  F(s) :() o) > H(s) us) > G(s) :é » ()
A
v
()4 m(s)

Figure 2.4 A linear control system with plant, G (s), controller, H (s), and pre-filter, F (s)
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is the closed-loop transfer matrix (or the transmission matrix), and
J() =+ G()H )]G (s)H (5)F(s) = T (s)F(s) (2.26)

is the overall transfer matrix of the control system. The control input vector can be expressed
as follows:
u(s) =R (s) H () [F () r (s) —m(s) = p ()], (2.27)

where
R, (s) =+ H(s)G(s)] (2.28)

is called the input return-difference matrix. Since the effect of the disturbance inputs,
p(s),m(s), on the control input is proportional to the size of Rl.‘1 (s), the latter is sometimes
called the input sensitivity matrix. For SISO systems, there is no difference between R; (s)
and R, ().

The ability of the system’s outputs to quickly and accurately track the reference signals is
determined by the overall transfer matrix J (s), which is the product of T (s) and F (s). The sen-
sitivity of the system to process noise is determined by the matrix S (s), while T (s) influences
the transmission of the measurement noise to the system’s outputs (hence its performance).
For robustness with respect to process noise and the rejection of measurement noise, the gains
of S(s) and T (s) must both be small. This is difficult to achieve, because of the following
relationship:

S&+T(s)=1, (2.29)

which implies a reduction of sensitivity gain would automatically lead to a larger transmis-
sion gain, and vice versa. Because of this complementarity condition, 7 (s) is referred to as
the complementary sensitivity matrix. Achieving a trade-off between sensitivity and transmis-
sion is one of the major loop-shaping problems. Since both S (s) and 7 (s) depend upon the
subsystems G (s), H (s), which are connected by the feedback loop, and are independent of
the pre-filter, F (s), the tasks of designing H (s) and F (s) can be carried out separately. The
selection of the pre-filter F' (s) is based upon the speed with which a reference signal, r (?),
can be tracked with a small error in the presence of the disturbance signals, p (), m (f). How-
ever, as all ASE systems are of the regulator type (i.e. having r (f) = 0), only the feedback
design is considered here, and the main interest is in studying the stability margin (or stability
robustness) of such a system with respect to the unmodelled perturbations, p (s) and m (s).

2.5.1 Nyquist Theorem

For a nominal SISO linear system with a feedback loop as shown in Fig. 2.5, the stability
robustness depends upon the sensitivity matrix, R (s) = I + G (s) H (s), which is the same at
the input and the output of the plant. If R (s) vanishes for some value of s, then the disturbance
propagation given by the transmissivity, 7 (s) = G (s) H (s) / [1 + G (s) H (s)] is infinite, indi-
cating that the system cannot tolerate the slightest perturbation (either p (s) or m (s)) before
becoming unstable. Since most experiments and analytical studies are performed for simple
harmonic inputs, the stability robustness analysis of SISO systems is carried out by analysing
the locus of the open-loop transfer function, G (s) H (s), for s = +iw with the frequency, @, and
determining how shy the locus is from becoming G (iw) H (iw) = —1 at any frequency. Such
a plot of the open-loop frequency response function G (iw) H (iw) is called the Nyquist locus
and is the mapping of the imaginary axis of the s-plane (Laplace domain) on to the G (s) H (s)
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Figure 2.5 A linear, SISO control system with plant G (s) and controller H (s)
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Figure 2.6 Nyquist locii of a linear SISO control system in a feedback configuration of Fig 2.5, with
no poles of the open-loop transfer function, G (s) H (s), in the right-half s-plane

plane. The region enclosed by the Nyquist locus is the mapping of the entire right-half s-plane
(Fig. 2.6), which can be regarded as the entire region covered by the curve s = iw as w is varied
from —oo to oo. This is the region falling to the right of the entire imaginary axis, and exclud-
ing the origin by a small circle, s = ¢ + jo, where o is a vanishingly small positive number. A
practical open-loop transfer function, G (s) H (s), is proper, hence its Nyquist locus is symmet-
rical about the real axis, and one has to consider only half of the locus (i.e. w increasing from
0 to c0), with the direction of increasing frequency marked by an arrow (Fig. 2.6). If there are
no cancellations of the poles and zeros in the open-loop transfer function, then closed-loop
stability is determined by the characteristic equation,

1+G(s)H(s) = 0. (2.30)

If any of the roots of the characteristic equation lie in the right-half s-plane, then the closed-loop
system is unstable. Therefore, the point G (s) H (s) = —1 assumes a special significance in the
closed-loop stability analysis. For determining the range of stability (stability robustness) of
the closed-loop system as the open-loop transfer is varied, one can apply the following Nyquist
stability theorem.

Theorem 2.5.1 The closed-loop system of Fig. 2.5 has Z unstable poles, if and only if the locus
of G (iw) H (iw) for —oco < w < w encircles the point (—1,0) in the clockwise direction exactly
N = Z — P times, where P is the number of poles of the open-loop transfer function G (s) H (s)
in the right-half s-plane, provided no pole-zero cancellations have occurred in G (s) H (s).
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Proof. The proof can be derived from Cauchy’s theorem of complex analysis (D’Azzo and
Houpis 1966).

For many practical systems, the open-loop transfer function, G (s) H (), does not have any
poles in the right-half s-plane (i.e. P = 0), which implies that any clockwise encirclement of
the point G (s) H (s) = —1 by the Nyquist locus means an unstable closed-loop system. This
fact is illustrated by Fig. 2.6.

Corollary 2.5.2 The closed-loop system shown in Fig. 2.5 is stable, if and only if the locus
of G (iw) H (iw) for —oco < w < w encircles the point (—1,0) in the anticlockwise direction as
many times as the open-loop transfer function G (s) H (s) has poles in the right-half s-plane,
provided no pole-zero cancellations have occurred in G (s) H (s).

Proof. An input—output stable closed-loop system has no poles in the right-half s-plane, that
is, Z = 0. Therefore, by the Nyquist theorem, if G (s) H (s) has P right-half plane poles, then
the Nyquist locus of a stable system will have exactly N = —P clockwise (i.e. P anticlockwise)
encirclements of G (s) H (s) = —1.

Example 2.5.3 Consider a SISO aeroelastic system with the following transfer function:

1
s2401s=1"
which is input—output unstable (a pole in the right-half s-plane). In order to stabilize the sys-

tem, a controller H (s) = 2 is added in the configration of Fig. 2.5, resulting in the open-loop
transfer function

G(s) =

__ 2
$24+01s—1
Now, while G (s)H (s) has a pole in the right-half s-plane (s = 0.9512), its Nyquist plot
(Fig. 2.7) has exactly one anticlockwise encirclement (N = —1) of the point (—1,0). Therefore,

by the Nyquist theorem, the closed-loop system is stable (Z =P+ N =1 —1=0) This can
be verified from the roots of the characteristic equation,

G(s)H (s) =

1+G(s)H(s)=s>+0.1s+ 1,

which are s, , = —0.0500 + j0.9987.

2.5.2 Gain and Phase Margins

The Nyquist locus of a LTI, SISO feedback control system is determined by the following
open-loop frequency response function:

G (iw) H (i) =| G (io) H (iw) | . 2.31)

The main utility of the Nyquist stability theorem is for finding out how much the loop can
gain, | G (iw) H (iw) |, and the loop phase, ¢, be varied before the closed-loop system becomes
unstable. These stability margins are referred to as the gain and phase margins, respectively,
and their sizes give a measure of the stability robustness of the control system. Referring to
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Figure 2.7 The Nyquist locus of G (s)H (s) =2/ (s2 +0.1s — 1), showing one anticlockwise encir-
clement of the point G (s) H (s) = —1

the stable system of Fig. 2.6 (dashed line), it is evident that the gain margin is the factor, y,
by which | G (iw) H (iw) | can be increased at the point of crossing the negative real axis (i.e.
¢ = —180°) before it hits the point (—1,0). Similarly, the phase margin, ¢,,, is the angle by
which the phase, ¢, can be increased before reaching ¢p = —180° (negative real axis). As shown
in Fig. 2.6, ¢,, is obtained by subtracting —180° from the phase at the crossover frequency
when the Nyquist locus crosses the unit circle (dotted line), | G (iw) H (imw) |= 1 centred at the
origin. The gain and phase margins are easily identified on a Bode plot (Fig. 2.8) of the loop
frequency response function G (iw) H (iw). Recall that owing to the linearity of the closed-loop
system, the controller can be placed at any point inside the feedback loop (before or after the
summing junction in Fig. 2.5), and the Nyquist stability analysis would still be valid.

For a given plant G (s), the controller transfer function, H (s), must be adjusted until it leads
to acceptable gain and phase margins for the control system. A practical approach to the prob-
lem of loop shaping of SISO systems is to take the following controller transfer function, called

a compensator (Tewari 2002):
1
H(s) = KM, (2.32)
1+ azs

where the real positive constants, K, , 7, are the design parameters to be determined from the
desired robustness properties. For example, by choosing a < 1, the compensator speeds up
the closed-loop dynamics, thereby increasing the phase margin, while for « > 1, the phase is
lagged by slowing down the closed-loop dynamics, thereby increasing the gain margin. The
change of phase occurs between the corner frequencies, w = 1/7 and w = 1/ (a7), with the

maximum phase change occurring at w = 1/ <1 \/E ) (which appears at the middle of the two
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Figure 2.8 Bode plot of the loop transfer function G (s) H (s) showing gain margin, y, and phase margin,
¢,,, of a closed-loop system

corner frequencies in a logarithmic Bode plot). The phase lead and lag effects are mutually
exclusive due to a single possible choice of @. However, the phase margin in the lag compen-
sator (a > 1) can be increased by suitably increasing the controller gain, K, thereby offering
some compromise between low-frequency and high-frequency behaviour. This is depicted by
the dashed curve in Fig. 2.9.

2.5.3 Loop Shaping for Single Variable Systems
The sensitivity and complementary sensitivity of a SISO system are respectively the following:

1 _ GW®H®)

SO= T ewae (O Tr6oHG)

(2.33)
which implies S (s) + 7 (s) = 1. By having phase-lead compensation, the sensitivity to process
noise, | S(s) |, is reduced, while the transmission of measurement noise frequencies, | 7' (s) |,
is increased. The converse is true for a phase-lag compensator. By choosing a combination of
phase-lead and phase-lag compensators, it is possible to reduce both sensitivity, | S (s) |, and
complementary sensitivity, | 7' (s) |, in different frequency ranges, as required (Tewari 2002).
In all practical systems, the process noise has its spectrum concentrated at low frequencies,
while the measurement noise occurs in a much wider frequency spectrum. Therefore, it is
possible to reduce noise sensitivity by choosing | S (iw) | to be small in a certain frequency
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Figure 2.9 Bode plot of the loop transfer function G (s) H (s) with (and without) lag compensation and
gain adjustment

range, 0 < w < wy, while having | T (i) | small at higher frequencies, @ > w,,. Usually, w,, is
the system’s bandwidth defined by

TO|

V2

For making | S (iw) | small at low frequencies, it is required that | G (iw) H (i) | is large; this
can be ensured by making | H (iw) | large at low frequencies. However, as all physical plants
have the property of declining gain at large frequencies, | G (iw) |- 0 as @ — oo, the require-
ment of keeping | T (iw) | small at high frequencies is easily satisfied by having | H (i) |
declining at a given rate (or rolling off) with the frequency. Such a design is illustrated by the
gain plot of Fig. 2.10.

The minimization of the complementary sensitivity in a large frequency range gives the
additional advantage of minimization of the net control effort. By Parseval’s theorem, the net
control effort (or energy) of a stable feedback control system in response to an initial distur-
bance (either p (f) or m (¢) in Fig. 2.4) is proportional to the following integral:

| T (i) |=

(2.34)

/ u? (1) dr = € / | U (io) |*dw, (2.35)
0 2z —0
where U (s) is the Laplace transform of u (¢). Since | U (iw) | is proportional to

H (iw) _ | T(iw) |

(2.36)

1+ G(iw)H (io)| | G(iw) |’
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Figure 2.10 Sensitivity and complementary sensitivity of a stable feedback control system

the net control energy is minimized by keeping | 7' (iw) | small at all frequencies, with the pos-
sible exception of those frequencies where | G (iw) | is reasonably large (such as the system’s
bandwidth, 0 < @ < wp,).

The choice of the loop gain, | G (iw) H (iw) |, for satisfying the conflicting sensitivity, com-
plementary sensitivity and stability robustness requirements can be summarized as follows:

(@) | S(iw) |< €, (e < 1), implies | G (iw) H (iw) |> 1/¢, for 0 < o < w,.
(b) | T (iw) |< €, (e < 1), implies | G (iw) H (iw) |< €, for o > w,.
(c) Certain minimum gain and phase margins must be achieved by the graph of G (iw) H (iw).

The frequencies w, @, for requirements (a) and (b) are chosen such that the gap between
them is the smallest (the ideal gap would be zero, but this is practically impossible to achieve).
The result is a compromise between (a) and (b) where the two frequencies are close to, and on
either side of the crossover frequency, w,., implying that if | S (i) | cannot be made small, it
should be at least close to unity so that | 7' (iw) | can be made sufficiently small. An alternative
to (c) is the requirement that the Nyquist locus G (iw) H (iw) must remain outside a certain
neighbourhood of the point —1 + i0, which is specified by an M circle of a certain radius
centred at —1 + i0. An M circle is the locus of points in the complex z plane such that

Z

z+ 1|

2.5.4  Singular Values

For multi-variable systems, the direct application of frequency domain methods (such as
the Nyquist stability theorem) is possible only for square systems (those with equal number
of inputs and outputs) (Maciejowski 1989). Clearly, such an approach cannot be applied
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to general ASE systems. However, the concepts of loop-shaping are readily extended to
non-square MIMO systems through the concept of principal gains (singular values).

Definition 2.5.4 Singular values (or principal gains) of the frequency response matrix, G (iw),
of a LTI system, y = Gu, at a given frequency, @, are the positive square roots of the eigenvalues
of the following square matrix:

G (—iw) G (iw).

The computation of singular values is carried out by singular value decomposition (SVD)
as follows:
G (io) = U (iw) ZVT (—iw), (2.37)

where U, V are unitary complex matrices satisfying
U (iw) UT (—iw) = I V(iw) VT (~iw) =1 (2.38)

and the diagonal matrix X contains the singular values of G (iw), as its diagonal elements,
denoted by
o {G (iw)}; k=1,2,...,n.

The largest among all the singular values is denoted by &, while the smallest is indicated by o.

Definition 2.5.5 The spectral (or Hilbert) gain of a LTI system, y = Gu, is the largest singular
value of the transfer matrix, given by the Hilbert norm
_ | Gu |
| Glg = 6 (G) = max;\/ 4, (GF'G) = supuqﬁom.
Definition 2.5.6 The smallest singular value of the transfer matrix, G, where y = Gu, is
given by
. . | Gu |
0 (G) = min;\/ 4; (GHG) = 1nfu#0ﬁ.
u
The spectral gain, |A|g = & (A), indicates the largest possible ‘size’ (not the dimensions) of a
square matrix signal, A, while the smallest singular value, o (A), indicates how close the square

matrix, A, is to being singular (o (A) = 0 implies a singular matrix A). The ratio cond (A) =
6 (A) /o (A), which is always greater than unity, indicates the condition number of the square
matrix, A. The larger the condition number, the closer is the matrix A to being singular.

A frequency spectrum of the singular values indicates the variation of the ‘magnitude’ of
the frequency response matrix, which is supposed to lie between ¢ (@) and 6 (®). Similarly to

SISO systems, the range of frequencies (0 <w< a)b) over which & (w) stays above 0.7075 (0)
is called the system’s bandwidth and is denoted by the frequency, w,,. The bandwidth indicates
the highest frequency signal to which the system has an appreciable response. For higher fre-
quencies (w > wb), the singular values of a strictly proper system generally decline rapidly
with increasing frequency (roll off). A system with a steep roll off of the spectral gain, &, has
a reduced sensitivity to high-frequency noise, which is a desirable property. The choice of
the loop principal gains, 6{G (iw) H (iw)} and 6 {G (iw) H (iw)}, for satisfying the conflicting
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Figure 2.11 Block uncertainty representation of a feedback control system

sensitivity, complementary sensitivity and control energy requirements, can be summarized in
terms of the singular values as follows:

(a) 6{S(iw)} <€, (e < 1), implies 0 {G (iw) H (iw)} > 1/¢, for 0 < w < w,.

(b) 6{T (iw)} < e, (¢ < 1), implies 5{G (iw) H (iw)} < €, for w > w,.

(c) For minimum control energy, 6{H (iw)} must be as small as possible in the controller
bandwidth.

The highest magnitude achieved by the largest singular value (spectral gain) over the system
bandwidth is the H_ norm of the transfer matrix, given by

Gl = sup,,[6{G (iw)}], (2.39)

where sup,, (.) is the supremum (the maximum value) with respect to the frequency. We note
that the different norms (| Gls, ||G||, [[G]|,) give alternative scalar measures of the transfer
matrix, each of which could be applied to determine a system’s stability margins.

2.5.5 Multi-variable Robustness Analysis: Input—Qutput Model

While the stability robustness of SISO systems is indicated by their gain and phase margins, a
multi-variable MIMO system requires a more sophisticated treatment due to the matrix oper-
ations inherent in its input—output behaviour. The unknown variations (or uncertainty) in the
plant transfer matrix, G (s), and controller transfer matrix, H (s), give rise to uncertainty in the
overall transfer matrix, 7 (s), of the control system, which can be schematically represented
as shown in Fig. 2.11. Here, a block uncertainty matrix, A (s), appears in closed-loop with the
control system through certain output variables, z (s), and reference inputs vector, w (s). It is
as if all parametric uncertainties of the control system have been pulled out of it, and collected
into a feedback transfer matrix, A (s). The loop transfer matrix is thus given by A (s) T (s)
and the return difference matrix at control system’s input is / + A (s) T (s). Similarly to the
Nyquist analysis of SISO systems, the stability of the uncertain system depends upon the
return difference matrix.
Further discussion of multi-variable robust design is taken up later in the chapter.

2.6 State-Space Representation

Often the input—output relationships do not give a complete description of a system’s
behaviour, which is actually based upon the internal structure of the system. An example of
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incomplete description by input—output representation is when there is cancellation of a pole
with a zero in the transfer function, which gives misleading information about the system’s
characteristics. The condition, or internal status, of a system at a given time is specified by
a set of real signals, called state variables, which are collected into the state vector. The
vector space spanned by the state vector is called a state-space. The state of a system is thus
defined as a collection of the smallest number of variables necessary to completely specify the
system’s evolution in time, in the absence of external inputs. The number of state variables
necessary to represent a system is called order of the system, because it is equal to the net
order of differential equations governing the system. While the size of the state-space (i.e.
order of a system) is unique, any given system can be described by infinitely many, alternative
state-space representations. A general model of a system can be expressed in terms of a set of
first-order, ordinary differential equations called the state equations, such as the following:

x=f(x,up,t), (2.40)

where x (1) : R — R” is the state vector, u (1) : R — R is the control input vector, and p (¢) :
R — R’ is the process noise vector. The vector function, f (.) : R” X R" X R xR - R”,
is assumed to possess partial derivatives with respect to x, p and u in the neighbourhood of
a nominal trajectory, x, (1),#; <1 <1y, which is a special solution of the state equation. A
practical choice of the nominal trajectory is the one which satisfies Eq. (2.40) for the unforced
case, that is, foru (r) = 0,p (r) = O:

%, =f(x,0,0,1) 1, <t<1y, (2.41)

where t; <t < I is called the control interval with initial time, #;, and final time, .

The output variables of a plant, y () : R — R/, result from either direct or indirect mea-
surements related to the state variables and control inputs through sensors. Certain errors can
arise in the measurement process due to sensor imperfections (the measurement noise), which
are denoted by m (¢) : R — RY. Therefore, the output vector is related to the state vector, the
control input vector and the measurement noise vector by the following output equation:

y=h(xumi), (2.42)

where 2 (1) : R" X R™ x R? x R — R” is a functional possessing continuous derivatives with
respect to x, m and u in the neighbourhood of the nominal trajectory, x,, (1), #; < 7 < t;. Most
practical systems have g = r. The disturbances, p (¢) , m (¢), are often treated as outputs of sep-
arate systems having a stochastic behaviour, which cannot be modelled by state equations.
When the disturbance inputs are absent, the system’s state, x (¢), and output variables, y (7),
are uniquely determined from the initial conditions, x ( t,-) = X, and a prescribed control input
history, u (¢) ,#; < t < 1. Such a system is said to be deterministic in nature. When f (.) and £ (.)
do not explicitly depend upon the time, the system is said to be time-invariant (or autonomous)
and without loss of generality, the control interval can be taken as 0 < ¢ < co0. The ASE systems
are generally time-invariant, hence our discussion will be focussed on time-invariant systems.

2.6.1 State-Space Theory of Linear Systems

The theory of linear systems refers to the mathematical framework of a discretized (finite
dimensional) system linearized about a particular solution (Kailath 1980).
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Definition 2.6.1 A deterministic, time-invariant system with state vector, x (t), and input vec-
tor, u (t), governed by state equations,

x=f(x,u), (2.43)
initial conditions,
x(0) = x,, (2.44)
and output equation,
y=hxu), (2.45)

is said to be linear if its output vector resulting from the applied input vector,
u(t) =cyuy (t) + couy (1), (2.46)

is given by
y(O) =cy () 4y, (1), (2.47)

where y, (t) and y, (t) are the output vectors of the system to the inputs u, (t) and u, (t), respec-
tively, and ¢y, c, are arbitrary scalar constants.

By inspecting the governing equations of a system, Eqs.(2.43) and (2.45), it is possible to
determine whether it is linear. If the functions, f (.), A (.), are continuous, and do not contain
nonlinear functions of the state and input variables, then the system is linear.

Let a nominal state vector, x,, (¢), and a corresponding reference input vector, u,, (t), satisfy
the system’s governing vector state equation, Eq. (2.43),

Xy =1 (a1, (2.48)

subject to the initial condition,
x, (0) = x,. (2.49)

Let Ax(f) and Au (¢) be deviations in state and control input vectors, respectively, from the
reference solution, (xn, un), such that the perturbed solution is given by

x(H)=x, )+ Ax (1)
u(t) =u, (1) + Au(1), (2.50)
subject to initial conditions, Eqs. (2.44) and (2.49). If the vector function, f (.), possesses con-

tinuous derivatives with respect to state and control variables up to an infinite order at the

reference solution, (xn, un), then the state equation can be expanded about the reference solu-

tion by neglecting the quadratic and higher order terms as follows:

X=X, =Ax=f (xn + Ax,u, + Au) -f (x”,un) , (2.51)
where
f (xn + Ax,u, + Au) ~f (xn,un) + %f (xn,un) Ax + S—Z (xn,un) Au.

Substitution of Eq. (2.52) into Eq. (2.51) yields the following linearized state equation about
the reference solution:
Ax = AAx + BAu, (2.52)
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where A and B are the following constant Jacobian matrices:

of
A== (x,
(¥ 4,)
of
B = i (xn,un) . (2.53)
The solution to the LTI state equation,
X = Ax + Bu, (2.54)
subject to initial condition,
x(0) = x, (2.55)

is expressed as the sum of homogeneous and particular solutions. The homogeneous solution
is derived by writing for the case u () = 0,

i) = Ax (D), (2.56)

and
x (1) = D) xg, t>0, (2.57)

where @ (7) is the state transition matrix for the evolution of the state from ¢ = 0 to the time ¢,
with the following properties:

Inversion:
O ()= (-1). (2.58)
Association:
D) =D (1—15) D (1) - (2.59)
Differentiation:
dq;t(t ) A o). (2.60)

The general solution to the non-homogeneous state equation, Eq. (2.54), subject to initial
condition, x, = x (0), is expressed as follows:

1
x(t)=<I>(t)x0+/ & (t— 7)Bu(r)dr, t>0, (2.61)
0
which can be verified by substituting into Eq. (2.54), along with the properties of @ (7).

Definition 2.6.2 The output (or response) of an LTI system is given by
y (1) =Cx () + Du(n), (2.62)

where C is called the output coefficient matrix and D the direct transmission matrix. If D = 0,
the system is said to be strictly proper.

Substitution of Eq. (2.61) into Eq. (2.62) yields the following expression for the system’s
response:

t
y(1) = CP (1) x, + / [CO(t—1)B+D5(t—1)u(r)dr, >0, (2.63)
0
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where 6 (t — 7) is the Dirac delta function representing a unit impulse applied at r = 7. The
first term on the right-hand side of Eq. (2.63) is called the initial response, while the integral
term is the convolution integral, which was encountered earlier while discussing input—output
models of a linear system. The convolution integral gives the system’s response when the initial
condition is zero (x; = 0), and is denoted by

y() = / G(t—71)u(r)dr, t>0, (2.64)
0

where G (f — 7) is the impulse response matrix, which can now be represented as follows:
Gt-1)=Cd(t,7)B+D6(t—7), t=>r. (2.65)

The indicial (step) response matrix is defined as the integral of G (¢ — 7) and given by
t
S@)= / G(t—7)de, t>0. (2.66)
0

The element (i, ) of the step response matrix, S (), is the value of the ith output variable at
time ¢ when the jth input variable is a unit step applied at time ¢ = 0, subject to zero initial
condition, xo = 0.

The derivation of the state transition, impulse response and step response matrices for a
time-varying system is usually impossible in a closed-form, except for some special cases.
Generally, a linear, time-varying system’s state equations are integrated by a numerical proce-
dure in a manner similar to that employed for nonlinear systems. Thus, much of the utility of
linear systems analysis is lost if the state-space coefficient matrices are time-varying.

The state transition matrix of an LTI system is often denoted by the matrix exponential as
follows:

O (1) = &Y, (2.67)

where the matrix exponential, M of a square matrix, M, is defined by an infinite series in a
manner similar to the scalar exponential:

eM£]+M+%M2+"'+l'Mn+"' (2.68)
n:

Computation of ¢4’ by the infinite series is impossible. Instead, either a numerical approxi-
mation, or an analytical derivation is required. The numerical approximation is carried out by
breaking up the time duration, ¢, into many smaller intervals over each of which a finite series
approximation is performed by neglecting terms of higher power. The final state transition
matrix is then obtained by multiplication, using the associative property (Tewari 2002). Alter-
natively, for a system of small order, the Laplace transform provides a means of analytical
evaluation of ¢A’. Upon taking the Laplace transform of Eq. (2.54) for an LTI system, subject
to the initial condition, x, = x (0), we have

sX (s) —xg =AX(s) + BU (s), (2.69)

where X (s) and U (s) are the Laplace transforms of x(f) and u(f), respectively. The
state-transition matrix is then derived for the homogeneous system by taking the inverse
Laplace transform as follows:

x (1) = L7 = A) ' x, (2.70)
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or
A=l —A) (2.71)

The general solution of an LTI system to an arbitrary, Laplace transformable input u (¢), which
begins to act at time ¢ = 0 when the system’s state is x (0) = x; is thus given by

x(t) = My + / AOB (T u(r)dr. (2.72)
0

The first term on the right-hand side (initial response) decays to zero for an asymptotically
stable system (defined below) in the limit # — co. However, in the same limit, the integral
term either converges to a finite value (called the steady state) or assumes the same functional
form as that of the input (called forced response).

The transfer matrix, G (s), of an LTI system is the linear relationship between the output’s
Laplace transform, Y (s), and that of the input vector, U (s), subject to zero initial conditions,
y0)=y0)=y0)="---=0: Y(s) = G(s) U(s). Clearly, the transfer matrix is the Laplace
transform of the impulse response matrix subject to zero initial conditions. The roots of the
lowest common denominator polynomial of the transfer matrix (the poles) are the same as
the eigenvalues of the system’s state dynamics matrix, A. By taking the Laplace transform of
the state and output equations, the transfer matrix of an LTI system can be expressed in terms
of its state-space coefficients as follows:

G(s)= C(sI —A)'B+D. (2.73)

For s = iw, the transfer matrix becomes the frequency response matrix, G (iw), whose elements
denote the steady-state response of an output variable to a simple harmonic input variable,
subject to zero initial conditions, all other inputs being zero.

Equation (2.69) for U (s) = 0 represents an eigenvalue problem, whose solution yields the
eigenvalues, s, and eigenvectors, X (s). The eigenvalues of the linear system are obtained by
solving the following characteristic equation:

det (sT — A) = 0. (2.74)

The n generally complex roots of the characteristic equation (eigenvalues of A) signify an
important system property, called stability. Considering that an eigenvalue is generally com-
plex, its imaginary part denotes the frequency of oscillation of the characteristic vector about
the equilibrium point, and the real part signifies the growth (or decay) of its amplitude with
time. The criteria for the stability of an LTI system are defined as follows:

Definition 2.6.3

(a) If all eigenvalues have negative real parts, the system is asymptotically stable and regains
its equilibrium in the steady state.

(b) A system having complex eigenvalues with zero real parts (and all other eigenvalues with
negative real parts) displays oscillatory behaviour of a constant amplitude and is said to
be stable (but not asymptotically stable).

(c) If at least one eigenvalue has a positive real part, its contribution to the system’s state is
an exponentially growing amplitude, and the system is said to be unstable.

(d) If a multiple eigenvalue of multiplicity p is at the origin (i.e. has both real and imagi-
nary parts zero), its contribution to the system’s state has terms containing the factors
t,i=0---(p—1), which signify an unbounded behaviour with time. Hence, the system is
unstable.
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Definition 2.6.4 Controllability is defined as the property of a system where it is possible to
move it from any initial state, x (0), to any final state, x (t), solely by the application of the input
vector, u (1), in a finite time, t.

The words ‘any’ and ‘finite’ are highlighted in the definition of controllability, because it may
be possible to move an uncontrollable system only between some specific states by applying
the control input, or to require an infinite time for moving an uncontrallable system between
arbitrary states. For a system to be controllable, all its state variables must be influenced, either
directly or indirectly, by control inputs. If there is a subsystem that is unaffected by the control
inputs, then the entire system is uncontrollable.

Theorem 2.6.5 A LTI system (A, B) is controllable if and only if the following test matrix is
of the rank n, the order of the system:

P = (B,AB,A’B, ... ,A""'B).

Proof. See (Kailath 1980).

If a system is unstable but controllable, it can be stabilized by a feedback control system. It is
often possible to decompose an uncontrollable LTI system into controllable and uncontrollable
subsystems. A system that is both unstable and uncontrollable could also be stabilized, pro-
vided its uncontrollable subsystem is stable. In such a case, the system is said to be stabilizable.

Definition 2.6.6 Observability is the property of an unforced (homogeneous) system where it
is possible to estimate any initial state, x (0), of the system solely by a finite record, t > 0, of
the output vector, y (t).3

For a system to be observable, all of its state variables must contribute, either directly or
indirectly, to the output vector. If there is a subsystem that leaves the output vector unaffected,
then the entire system is unobservable.

Theorem 2.6.7 An unforced LTI system, x = Ax, whose output is related to the state vector by
y = Cx,
is observable if and only if the following test matrix has rank n, the order of the system:

N=(cTATcT (aT)’CT, . (aT)" " CT).

Proof. See (Kailath 1980).

It is often possible to decompose an unobservable LTI system into observable and unob-
servable subsystems. A system whose unobservability is caused by a stable subsystem is said
to be detectable.

3 The definition of observability is extended to a forced linear system by requiring in addition that the applied input
vector, u (), is known in the period of observation, ¢ > 0.
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2.6.2 State Feedback by Eigenstructure Assignment

Consider the plant dynamics expressed in an LTI state-space form as follows:
X = Ax + Bu, (2.75)

where x (7) is the state vector, u (¢) the control input vector, and A, B are the constant coefficient
matrices. Design of a linear, state feedback regulator for the LTI plant of Eq. (2.75) with the
control law,

u=—Kx, (2.76)

is possible by assigning a structure for the eigenvalues and eigenvectors of the closed-loop
dynamics matrix, A — BK. In case of single-input plants, this merely involves selecting the
locations for the closed-loop poles (pole placement) by the following Ackermann’s formula
that yields the desired closed-loop characteristics (Tewari 2002):

1

K = (a;—a)(PP')", (2.77)
where a is the row vector formed by the coefficients, a;, of the plant’s characteristic polynomial
in descending order [a = (an, Ap_is .-, 0y, al)]:

det(sI —A) = s" +a,s" ' +a,_;s" 2+ +ays +ay, (2.78)

a, is the row vector formed by the characteristic coefficients of the closed-loop system in
descending order [ad = (adn, Agn—1ys -+ » Q2> Ay )]

det(sI —A+ BK) =s" + adns"_l + ad(n_l)s"_z +- - taps+ay, (2.79)

P is the controllability test matrix of the plant and P’ is the following upper triangular matrix:

1 a, a_, - a3 a
0 1 a, - a4 a

L R | (2.80)
0 0 0 1 a,
0O O o --- 0 1

Of course, this requires that the plant must be controllable, |P| # 0. A popular choice of the
closed-loop poles is the Butterworth pattern (Tewari 2002) wherein all the poles are equidistant
from the origin, s = 0. Such a pattern generally requires the least control effort for a given
bandwidth and is thus considered to be optimal placement of the poles. The pole-placement
method is inapplicable to multi-input plants, which have many more controller gains to be
found than the number of equations available from the pole locations. In such a case, we need
additional equations that can be derived from the shape of the eigenvectors using the method
of eigenstructure assignment. A popular method in this regard is the robust pole assignment
method of (Kautsky et al. 1985) wherein the eigenvectors, v;,i = 1,2, ..., n, corresponding to
the eigenvalues, A;, respectively, and satisfying the eigenvalue problem,

(A—BK)v; = A (2.81)
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are chosen such that the modal matrix,
V= (vl,vz,...,vn); (2.82)

is as well-conditioned as possible. An alternative method of state-feedback regulator design is
the linear, quadratic regulator (LQR), which is discussed later.

2.6.3 Linear Observers and Output Feedback Compensators

Control systems with output (rather than state) feedback require observers that can reconstruct
the missing information about the system’s states from the input applied to the plant and the
output fed back from the plant. An observer mimics the plant by generating an estimated state
vector, %, instead of the actual plant state vector, x, and supplies it to the regulator. A control
system that contains both an observer and a regulator is called a compensator. Owing to a
decoupling of the observer and plant states in the control system, it is possible to design the
regulator and observer separately from each other by what is known as the separation principle.
The separation principle states that the regulator design can be carried out exactly in the same
manner as if the estimated state were the true plant state. As we shall see later, the separation
principle can also be applied to the design of adaptive controllers based upon the estimation of
plant parameters (rather than plant states), which in turn are used to determine the controller
parameters (rather than the control inputs). In such an application, the separation principle is
termed ‘certainty equivalence’.
The output equation,
y = Cx + Du, (2.83)

is used in the design of a full-order observer with the following state equation:
$=@A-LC)%+ (B—LD)u+ Ly, (2.84)

where X (7) is the estimated state vector and L the observer gain matrix, provided the plant (A, C)
is observable. The observer gain matrix, L, is selected in a manner similar to the regulator gain,
K, by either eigenstructure assignment for the observer dynamics matrix, A — LC, or linear,
quadratic, optimal control where A is replaced by AT, and B by CT.

The closed-loop control system dynamics with a desired state, X (), and linear feedfor-
ward/feedback control with output feedback,

u=Kx+KGx-3), (2.85)

is given by the state equation

{i} - (LAC A —;IB<K— LC) {i} + (g Eiig) X, (2.86)

where K, L are separately designed and the feedforward gain matrix, K, is selected to ensure
that the closed-loop error dynamics is independent of the desired state, X (f), with a given state
equation

=7, (2.87)

such that
(A+ BKx) —f (¥ = 0. (2.88)
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X(1) -
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Figure 2.12 Schematic block-diagram of an observer-based, output feedback compensator

Thus, one can design a tracking system for a plant that is both controllable and observable with
the available inputs and outputs, respectively, as well as satisfying Eq. (2.88) with its desired
state vector. An observer-based output feedback compensator is depicted in a schematic form
in Fig. 2.12.

When a part of the plant’s state vector can be directly obtained from the output vector, it is
unnecessary to estimate the entire state vector by a full-order observer. Consider a plant whose
state vector is partitioned as follows:

x= (a0, (2.89)
such that
)‘Cz =A21x1 +A22X2 + le/l. (290)

The measurable part of the state vector, x;, can be directly obtained by inversion of the output
equation with a square coefficient matrix, C:

v =Cx,. 2.91)

The unmeasurable part, x,, needs estimation by a reduced-order observer and can be expressed
as follows:
X =Ly+z, (2.92)

where z is the state vector of the reduced-order observer with the following state equation:
z=Fz+ Hu+ Gy, (2.93)

whose coefficient matrices are determined from the requirement that the estimation error, ¢ =
X, — X,, should go to zero in the steady-state, irrespective of the control input and the output
(Tewari 2002):

G=FL+ (A, — LCA,))C"!

H=B,—-LCB,, (2.94)
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with the observer gain L selected by either eigenstructure assignment or the Kalman filter
approach (to be discussed later), such that all the eigenvalues of the oberver dynamics matrix,
F, are in the left-half s-plane.

2.7 Stochastic Systems

A control system cannot be analysed by a deterministic model in either the time or the fre-
quency domain when it is disturbed by the process and measurement noise signals. A crucial
task of this book is the handling of random disturbances so that the ASE system remains stable
in their presence. In a more general tracking system, it is also required that the tracking error
should remain small in the presence of disturbances. However, it is not one of the objectives in
ASE design. If the random signals were the outputs of deterministic systems, a pre-filter can be
designed to completely block out such signals to prevent them from affecting the closed-loop
system’s stability. Since noise signals are not governed by deterministic processes, a feedback
control loop is especially necessary to suppress the system’s sensitivity to noise inputs. Such
a design is then said to be robust. Before a robust controller can be designed, a statistical esti-
mate of the expected disturbances is necessary via the theory of probability, wherein future
outcomes of an event are predicted based upon its past observation. In this section, we review
the essential probability concepts applied to stochastic signals and systems.

The probability of occurrence of a specific outcome of an event, x, is represented as the
discrete probability, p (x), such that 0 < p (x) < 1, defined as the ratio of the number of events
n in which the outcome is x to the total number N of observed events:

p(x) = zlv (2.95)

The accuracy of predicting an outcome is increased by increasing the number of observa-
tions, N (called the sample size). For an event with M possible multiple outcomes, the sum of
probabilities of all possible individual outcomes must be unity:

M 1 M
()=~ Ym=1 (2.96)
i=1 i=1

If x is a continuous scalar variable assuming a random value between x; and x,, a probability
density function, p (x) can be defined, which must satisfy

/ 2P(X)dx =1 (2.97)
X

Equation (2.97) is made more general by having the integration performed from —co to oo,
and noting that p (x) = 0 whenever x lies outside its feasible range, x; < x < x,:

/oop(x)dx =1. (2.98)

The expected value of a continuous, random variable, x, with a probability density function,
p (%), is given by
Ex) = / xp (x)dx =X, (2.99)

[Se]
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and is also known as, X, called the mean value of x. From the definition of expected value it
follows that
E(x-Xx)=0. (2.100)

The variance of a continuous random variable from its mean value is defined by

o’ =E|x-%%] = /w (x = %)°p (x) dx. (2.101)

The square-root of variance, o, is called the standard deviation of x from its mean value.

When groups of random variables, such as a pair (x, y), are concerned, a joint probability of
both x and y occurring simultaneously is expressed as p (x, ¥). If x and y are unrelated outcomes
of separate, random events, then we have

pxy)=p@pQO), (2.102)

which can exceed neither p (x) nor p (y). If x and y are continuous random variables (which
may or may not be related), then we have

//p(x,y)dxdy=1. (2.103)

A conditional probability of x given y is defined by

Py
PO
from which it follows that both conditional and unconditional probabilities of x given y are the

same, if x and y are unrelated variables. The relationship between the conditional probabilities
of x given y, and y given x, is provided by following Bayes’s rule:

pxly) = (2.104)

pOIx) = IM. (2.105)
p(x)

An arithmetic sum of scalar random variables, x and y,
z=x+4Yy, (2.106)

has the following probability descriptions:

pEx)=p-x)=pQ©), (2.107)
and 0 <)
p(z)=/ p(zlx)p(x)dx=/ p(z—x)px)d. (2.108)
The mean and variance of the sum are given by
E@Q=Z=Ex+y)=EX)+EQ))=X+y (2.109)
and
o2=E|z-2| =E[x - +E|y -] =0l +02, (2.110)

respectively. The definitions given above can be extended to a sum of any number of ran-
dom variables, or even to their linearly weighted sums. The central limit theorem states that a
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sum of a large number of random variables (having various unconditional probability density
functions) approaches a specific probability density function, called the normal (or Gaussian)

distribution, given by
_ -2
e 2’ . (2.111)

p() =
2no
Here X and o denote the mean and standard deviation of the Gaussian distribution, respec-
tively. From the central limit theorem, it follows that a Gaussian signal can be regarded as a
purely random signal, because it is the sum of a large number of stochastic signals, each with
a different probability distribution. Since Eq. (2.111) gives a simple probability function, the
effect of random noise inputs on control system stability can be easily analysed by assuming
a Gaussian model.
For a Gaussian process, the probability that x lies in an error band of +& about the mean is
given by the following integral expression:

T 1 ¢ 2 JL\/E 2 &
/ px)dx = / e 22dnp = — / e " du=erf , (2.112)
x—¢ 2ro J—¢ \/; 0 6\/5

which is called the error function of x.

The discussion up to this point is confined to statistical measures of variables that can assume
random values at any given instant. This is like taking a snapshot of a time-varying process
and results in the measures called the ensemble properties of the process. However, most
processes require studying how the statistical properties change over time. There are special
random processes called stationary processes, whose ensemble properties are constants with
time. There are some random processes — called ergodic processes — whose properties sampled
over time give rise to exactly the same probability density functions as those obtained by tak-
ing the ensemble average. Stationarity and ergodicity are very useful assumptions in deriving
an unknown system’s statistical measures.

The correlation function of two signals, x (f) and y (¢), is defined as the expected value of
the product of the two signals evaluated at different times,

v, L) =Ex@y@)]: 1#7. (2.113)

IfE [x ®y (1)] = 0 for all arbitrary times, (z, 7), then x (¢) and y (¢) are said to be uncorrelated.
The degree of correlation of a signal with itself at different time instants is defined by the
autocorrelation function,

v, tt)=E[x®)x(1)]; t# 1. (2.114)

A random signal, x (), which is totally uncorrelated with itself at different values of time
(w,, (t,7) = 0,1 # 7) is called a white noise, and has an important place in control theory. For
a white noise signal, the conditional probability at the present time, given its value at some
other time, is no different from the unconditional probability of the signal at the present time

plx]=plx@ |x(2)]; t#7 (2.115)
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Therefore, knowing the value of the signal at some time does not help in predicting its value
at any other time. In order to find the joint probability of a white noise process evolving from
t =t with a given probability, p [x (to)] , to the present time, , one must know the following
unconditional probabilities at all intermediate times:

p @ x(t=T),x(t=27),....x(t5+ T).x(t)]
=plx@plx@=Diplx=2D1---p[x(to+T)|p[x(00)]. (2116

where T is a sampling interval. Since evaluating the probability function at an infinite num-
ber of time instants is not a possible task, a white noise process is said to be completely
unpredictable.

A signal that is correlated with itself at different values of time (. (¢, 7) # 0,¢ # 7)is called
coloured noise. An example of coloured noise is the Markov process, x (¢), beginning at = f,
with probability, p [x (to)] , and defined by

p x@.x=T),x@=2T),....x(tg+T),x(ty)]
=plx Ix@=Dlplx=T)|lx@=2T)]--px(to+T) Ix ()] p [x (10)] £2.117)

The joint probability of a Markov process evolving from ¢ = ¢, with a given probability,
p [x (to)], to the present time, ¢, thus depends only upon the product of conditional probabil-
ities, p[x(7) |x(z = T)],t,+ T < 7 < t, of evolving over one sampling interval (called the
transitional probability). The value of a Markov signal at a given time, x (¢), can be predicted
from the transitional probabilities at previous times, p[x () |x(z = T)], 40+ T < v < ¢, and
the initial probability, p [x (to)] . The simplest Markov process is obtained by passing a white
noise through a linear, time-varying system (called a linear filter). The state equation of a
scalar, Markov process can thus be written as follows:

O =a®)xO+b@Hw@), (2.118)

where w (¢) is a white noise process and a (), b (t) are the time-varying filter coefficients.
A Markov process that has a Gaussian probability distribution is termed a Gauss—Markov
process, which can be generated by passing a Gaussian white noise through a linear filter
[Eq. (2.118)] with a Gaussian initial state, x (to).

By subtracting the (ensemble) mean values of the signals in the correlation and autocorre-
lation functions, the cross-covariance and auto-covariance functions are defined as follows:

byt =E[{x(0) =Xy (@) -Y@)}]; 1#7 (2.119)

and

b (t.7) = E[{x() =X} {x(7) =X (7)}]; t#1, (2.120)
respectively. Hence, the variance of a signal is obtained by substituting ¢ = 7:

b (.0 =E[{x() —X(0}*] =07 (2.121)
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The covariance of two signals can be similarly defined by substituting =7 in the
cross-covariance function:

by (.0 =E [{x() -XOHy () - 0)}] = 0. (2.122)

If a process is stationary, the actual time, #, is immaterial. Then the results depend only upon
the time shift, «, where 7 =t + a:
W (@) =E [x(0)y (1 + )]
Vi (@) =E[x () x (1 + a)]
by (@ =E[{x(@) —XOHy(t+a) =+ a)}]
P (@=E[{x(@)—XOHxC+a)—X(+a)}]. (2.123)
The concepts of probability can be extended to vectors of random variables. However, there
is a qualitative difference between a scalar random variable and a vector random variable in
that the joint probability, p (x), of a vector, x () : R — R”, taking up a specific value, x = x, is
very much smaller than the unconditional probability of any of its elements, x; (¢), individually
assuming a given value, x;,, irrespective of the values taken up by the remaining elements.

. . T . . ..
A vector of continuous, random variables, x = (xl,xz, ,xn) , is thus said to have a joint
probability density function, p (x), which satisfies the identity

/m.../m/mp(x)dxldxz...dxnzl (2.124)

and has a mean value given by

E(X)=3_C=/ / / xp (x) dx;dx, - - - dx,,. (2.125)

The state vector of any physical, stochastic process, x (¢), can be regarded as a random vector
whose elements continuously vary with time. Its mean at a given time is given by

X =E[x®], (2.126)

while the statistical correlation among the elements of a stochastic vector signal, x (¢), is mea-
sured by the correlation matrix defined by

R.(t,7) =E[x()x" (v)]. (2.127)

A diagonal correlation matrix indicates that the state variables of a stochastic process are uncor-
related with one another, although they may be autocorrelated with themselves at different
times. Substituting ¢ = 7 in the correlation matrix produces the following covariance matrix:

R.(t.n)=E [x(t)x" (1], (2.128)

which, by definition, is symmetric. The trace of the covariance matrix is therefore the square
of the H, norm of the signal:
(R, (1,0} =[x @ II3. (2.129)
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2.7.1 Ergodic Processes

If a stationary process is assumed to be also ergodic, the mean and autocorrelation matrix are
derived by taking the time averages (rather than ensemble averages) as follows:

T
= lim %/zx(t)dt (2.130)

[STEEE ST}

x () xT (1 4 a) dt, (2.131)

><>:J
®
1l
=
g3
N
T
[STE]

where « is the time shift. If a power spectral density matrix is defined by taking the Fourier
transform (Kreyszig 1998) of the correlation matrix, the time domain, stationary signal is trans-
formed to the frequency domain, as follows:

S, (©) = / R (a)e " da. (2.132)

[Se]

The power spectral density (PSD) matrix, S, (w), represents the energy content of the ergodic,
vector random signal, x (), distributed over the frequency, w. The presence of peaks in the
spectral norm of the PSD matrix, | S, (w) |5, at some frequencies indicates that the system can
be excited to a large response by applying harmonic inputs at those particular frequencies. The
Fourier transform of the signal is given by

X (iw) = / x (1) e” @ ds. (2.133)

[58)

From the Eqgs. (2.131)—(2.133), the following relationship between S, (w) and X (iw) is derived:
S (@) = X (iw) X" (~iw). (2.134)
An inverse Fourier transform produces the correlation matrix from the PSD matrix as follows:

R, (a) = % / S, () € dov, (2.135)

whereas the covariance matrix is simply obtained by substituting a = 0:
R (0) = €1 / S (w)edw. (2.136)
27 J_o
The cross-correlation matrix of two ergodic vector signals, x (¢), y (¢), is defined by
T
2
Ry (@) = Tlim % / x(@)y! (t+ a)dt, (2.137)

r
2

and the cross-spectral density by

Sy (@) = / " R, (a) e *da. (2.138)

[Se]
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The Fourier transforms of the two signals are given by

X (iw) = / oox(r) e"@lds, Y (iw) = / " y () e"dt, (2.139)

(o] [se]

hence the following relationship exists between S,, (w) and S, (@):
Sy (@) =X (i) Y (—iw) = [Y (i) X" (iw)| - ST (o) = Si (). (2.140)

If the two signals are totally uncorrelated, then R, () = 0, and hence S, (») = S|, (iw) = 0.

2.7.1.1 Zero-Mean Gaussian White Noise

It was earlier commented that the central limit theorem predicts that a linear superimposition
of alarge number of random signals produces a stationary, Gaussian signal. If it is further spec-
ified that all the superimposed signals are uncorrelated with one another and by themselves in
time, and also have zero mean values, then the resulting signal is called a zero-mean, Gaussian
white noise (ZMGWN). While it may not be possible to find a ZMGWN signal in practice,
its assumption greatly simplifies control system design. Let w (f) be a continuous time, vector
ZMGWN signal, whose mean is given by

T
1 [z B
w—TILrEo?/_I w(f)dt =0 (2.141)
2
and ,
R, (@)= lim %/; w(@Ow! (t+a)dr =0; a#0. (2.142)
2
Furthermore, because we have
W (i) = / w(f) e"'dr = ¢ = const. (2.143)
we have
S, (@) = W (iw) WT (=iw) = cc” = const. (2.144)

Therefore, the PSD matrix of a ZMGWN is a constant matrix. However, if one takes the inverse
Fourier transform of the constant [SW], the result is a covariance matrix that has all elements
tending to infinity:

R, (0) = Lot / ¢”dw - (2.145)
2r o
This difficulty is resolved by writing
R, (a) =cc'6(a), (2.146)

where 6 (@) is the following Dirac delta function:

_Joo (a=0)
5(0:)—{0 (@ £ 0) (2.147)
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with the property, ©
/ 6(0)do = 1. (2.148)

o0

2.7.2 Filtering of Random Noise

When a signal is passed through a linear filter, its statistical measures are modified. A white
noise signal (i.e. a purely random signal) when passed through a linear, time-varying filter
becomes coloured (e.g. Markov process). Consider a linear, stable system with control input
vector, u (), output vector y (¢), and an ergodic noise vector, w (f), described by the transfer
matrices, G (s) and F (s), as follows:

Y =G u(s)+F(s)w(s). (2.149)

The power spectral densities of the control inputs and the noise are S, (w) and S, (@),
respectively. Let the noise be totally uncorrelated with control inputs, that is, S,,, (w) = 0.
The cross-spectral density of the output with the control input is the following:

Sy (@) = G (i0) S, (w) . (2.150)
If the noise were absent, the power spectral density of the output would be given by
Sy (@) = G (iw) S, (®) G (iw), (2.151)
In the presence of the noise, the spectral density is modified to

S, (@) = G (i) S, (@) G (iw) + F (i0) S,, (@) F! (iw). (2.152)

In the special case of the control being absent, and w (f) being a white noise signal (S,, = cc =

const.), the output is a coloured signal (i.e. it has a frequency-dependent spectrum). The most
general description of random noise is the zero mean, Gaussian white noise (ZMGWN), which
by definition, is generated by an infinite bandwidth process. An objective of robust control
design is to select a feedback law, u = —H (s) y, such that the overall dependence of the output
on the noise signal is minimized. Since a linear control system has a finite bandwidth in which
it can effectively respond to applied inputs, it is possible to select a compensator, H (s), such
that the sensitivity to noise is reduced in a given range of frequencies. Of course, the entire
noise spectrum cannot be blocked by a linear stabilizing compensator, because of the latter’s
finite bandwidth. However, traditional methods of low-pass filtering have been successfully
employed in most practical cases, because the actual noise has predominantly high-frequency
content. The output spectrum of a low-pass filter contains peaks at only the lower frequencies,
implying a smoothening of the raw noise signal. Often a band-pass filter is used to suppress
both high- and low-frequency contents of a noisy signal. The magnitude of a filtered signal
above (or below) a given frequency can be made to decay rapidly with frequency by suitably
selecting the feedback gain, ||H (s) ||. Such a decay of signal magnitudes with frequency is
called attenuation, or roll off.

When a feedback control law, u (s) = —H (s) y (s), is applied, the resulting closed-loop sys-
tem is represented as follows:

y(s)=[+ G HE] ' Fs)w(s). (2.153)



60 Adaptive Aeroservoelastic Control

The sensitivity of the system to noise depends directly on the power spectral density,
Sy (w) =[1+ G (iw) H (io)] "' F (iw) S,, (0) F? (iw) {[I + G (iw) H (io)]"'}#, (2.154)

which must be reduced in size by minimizing the spectral norm of the noise transmission
matrix, N (s) = [/ + G (s) H (s)] "' F (), for a white noise disturbance, S, = ccT. As discussed
earlier, such a minimization is not possible across a large frequency range. The general problem
of finding a stabilizing controller, H (s), for a desired noise transmission spectrum and white
noise intensity is called spectral factorization.

In trying to find a stabilizing solution for an open-loop unstable plant in the presence of
disturbances, a crucial intermediate task of the controller is to estimate the state variables
from the output vector. Thus every practical solution to the stabilization problem includes an
observer for state estimation. The observer must perform its task by minimizing the sensitivity
of the estimation error to noise and is therefore inherently a filter. Estimation theory begins
with the important result of the Wiener filter.

2.7.3  Wiener Filter

Consider a linear system with transfer matrix, G (s). If G (s) does not have any poles on the
imaginary axis, s = iw, then G (s) can be expressed as follows:

G(s)=G(s)+G(s), (2.155)

where G, called the stable part, has all poles in the left-half s-plane, and G is the anti-stable
part having all its poles in the right-half s-plane.

Let a stochastic signal, x (¢), be estimated from the measurement of another signal, y (), for
some time 7 < 7, and let the cross-spectral density of the two signals be S, (w). The Wiener
filter is a stable, linear, strictly proper filter that gives the state estimate, X, as follows:

() =W(s)y(s), (2.156)
with the filter’s transfer matrix given by
W) =L©Z" (), 2.157)
where
S,y (@) = Z (i) Z" (i), (2.158)

with Z and Z~! being stable and proper, and L (s) being the stable part of the following matrix:
L(iw) = S, (w) [2" (iw)] - (2.159)

expressed as a sum of stable, I:, and anti-stable, L, parts:
L(s)=L(s)+L(s). (2.160)

The Wiener filter minimizes the error covariance matrix, R, (0) = E [e @) e’ (t)] , of the state
estimation error, e (f) = x (f) — X (f), and is therefore an optimal filter. This can be seen by
writing the error spectral density as follows:

S, (@) = S, (@) = W (iw) St (@) = S, (@) W (iw) + W (i0) Z (i0) Z" (i) W (i),
(2.161)



Linear Control Systems 61

or
H)~! -1\ H] "l 1ol
Se(a)):(WZ—SXy[Z] ><WZ—SX),[Z] ) +8, -8, 2] z7'sE, (2.162)

substituting Eqs. (2.158)—(2.160), and carrying out the complex integrals for inverse Fourier
transform over a path that includes the imaginary axis and a large semicircle of radius » enclos-
ing the right-half s-plane. The only non-zero contribution of the terms on the right-hand side
of Eq. (2.162) in the limit » — oo results in the following:

1

R,(0) = P / (Wz-1)(wz- i)”dw + Terms independent of W (s) (2.163)

(o)

This implies that every error covariance matrix (being by definition positive semi-definite), for
which the first term on the right-hand side of Eq. (2.163) is non-zero, is non-minimal. Hence,
W = LZ" is the optimal solution.

‘We note that the Wiener filter bases its state estimate, X (¢), from a record of the output signal,
v (), at all prior times. While the Wiener filter ensures the existence of an optimal solution to
the state estimation problem, it requires an infinite record of the output for the state estimate,
which is not practical. State estimation from a finite record of the output requires a further
assumption. If we assume the linear system to be a Markov process, then a knowledge of its
state at any given time, x (?), is sufficient to predict the state at all future times. This is a major
assumption, which requires that all the disturbance signals driving the linear system must be
Gaussian white noises. State estimation for a Markov process requires only a finite record of
the output vector.

2.7.4 Kalman Filter

Consider a LTI plant with the state vector, x (f), output vector, y (¢), process noise, p (¢), mea-
surement noise, m (¢), and the coefficient matrices, A, B, F, C, D, of appropriate dimensions,
resulting in the following state-space representation:

X=Ax+Bu+Fp
y=Cx+ Du+ m. (2.164)

By assuming p (¢) and m (f) to be ZMGWN, we can greatly simplify the model of the stochastic
plant. The correlation matrices of the white noises, p (¢) and m (¢), are expressed as follows:

R,()=5,5(1)
R, (t)=S5,,5 (1) (2.165)
Ry (=15,,8(), (2.166)

where S, S, and S, are the constant power spectral density matrices of the signals p (r) and
m (1), with the corresponding infinite covariance matrices, R, (0), R,, (0) and R,,,, (0), respec-
tively. For convenience, we shall represent all covariance matrices without the (0) notation, that
is, as Rp, R,,, and so on. A state-feedback control system cannot be designed for a stochastic
plant, because its state vector, x (¢), is unknown at any given time. Instead, the feedback from an

estimated state vector, X (¢), is employed, which in turn is derived from the measurement of the
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output vector, y (7), over a previous, finite time interval, f, < 7 < . Hence an observer must be
present as a part of the feedback controller. However, unlike a deterministic observer discussed
previously, an observer that estimates the state-vector on the basis of the statistical description
of the vector output and plant state is required. The Kalman filter is one such observer. Before
considering the design of the Kalman filter, an important result from estimation theory must
be covered.

Consider an LTI system in the absence of control inputs, (# = 0), driven by a ZMGWN
noise, w (¢), of covariance matrix, R,,, and represented by the following state equation:

=A%+ Fw. (2.167)

Let the state dynamics matrix A be Hurwitz (i.e. with all eigenvalues in the left-half plane).
The state solution is then expressed as follows:

()= (sI—A) " Fw(s), (2.168)
with the power spectral density given by
S; (@) = (ico]—A)_lFRWFT[(—iwI—A)_I]T, (2.169)
and the covariance matrix by
R; L[ S; (w) do. (2.170)

Y2

Theorem 2.7.1 The observer represented by Eqs. (2.167)—(2.170), having a Hurwitz dynamics
matrix, A, has its covariance matrix, R;, given by the unique solution to the following Lyapunov
equation:

AR, + RAT + FR FT = 0. (2.171)

Proof. The proof is derived by substituting Eq. (2.169) into Eq. (2.170), taking the inverse
Fourier transform, and integrating the result by parts. Since A has all eigenvalues in the left-half
-1
plane, the resolvent, (sI - A) is of full rank, hence the solution R; is unique.

The Kalman filter is a special observer designed to minimize the covariance matrix of the
state estimation error,
em=x-x@, (2.172)

where X is the estimated state vector. For the time-varying Kalman filter, the covariance of
estimation error, being a non-stationary signal, is the conditional covariance matrix based on
a finite record of the output and can be written as follows:

R,t,y=E[ee" 1) |y(@),1p <7 <1
=E[(x(0) =30} x" (0 =3 O}y (@)1 <7 < 1], (2.173)
which is simplified (Tewari 2011) to the following:
R,(t.0=E[x(0)x" O] -0 (1) -2" Ox () +2®O 1" (1)
=E [x@Ox" O] —=xOX" ) + Ax () AT (1), (2.174)
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where Ax = X — X is the deviation of the estimated state from the conditional mean, X (¢). There-
fore, the best estimate of the state-vector, that is, Ax (f) = 0, would result in a minimization of
the conditional covariance matrix, R, (¢,¢), and the process leading to the minimization is an
‘optimal’ observer (Kalman filter). The same argument applies to the LTI Kalman filter, with
the difference that now the signals driven by white noise processes are stationary, and hence
lead to a unique, constant covariance matrix of the estimation error, R,.

The state equation of the LTI Kalman filter as a full-order observer is given by

% =A%+ Bu+ Ly, (2.175)

where L is the Kalman filter gain matrix and f\, B the constant coefficient matrices. The state
equation for the estimation error dynamics is thus obtained to be the following:

¢=Ae+(A-LC-A)x+ (B—LD—B)u+Fp—Lm. (2.176)

In order that the estimation error dynamics be independent of the state and control variables,
it must be true that

~

=A-LC
B=B-LD, (2.177)

which yields '
é=A-LC)e+ Fp—Lm. (2.178)

Since p (t) and m (f) are ZMGWN processes, their linear combination,
w=Fp—Lm, (2.179)

is also a ZMGWN signal. Therefore, we are ready to apply the result of Theorem 2.7.1 by
expressing the estimation error dynamics of the Kalman filter as follows:

e=Ae+w, (2.180)

where A = A — LC must be Hurwitz by a suitable choice of the Kalman filter gain matrix, L.
This is carried out by either eigenstructure assignment (covered previously), or linear, optimal
control (to be discussed in the following section). While it is tempting to quickly drive an
initial estimation error, e (0), to zero by selecting large Kalman filter gains, L, which places
all the eigenvalues of A deep in the left-half plane, this is not an ideal solution, because the
feedback from the measurement noise, m (¢), increases with L. Therefore, the Kalman filter
design is a balance between the conflicting requirements of a low filter gain, L, for robustness
with respect to the measurement noise, and a high filter gain for moving the eigenvalues of
A = A — LC sufficiently deep into the left-half plane so that the estimation error is quickly
driven to small values.

By substituting Egs. (2.177) and (2.179) into the result of Theorem 2.7.1, we have the fol-
lowing equation for the minimum error covariance, R;:

AR, + RAT +R, =0 (2.181)
with R, being the following covariance matrix of the combined white noise, w = Fp — Lm:

R,=FRF"+LR,L"-FR,L"—LR! F". (2.182)
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Equations (2.181) and (2.182) yield the following algebraic Riccati equation (ARE):

AR, + R, AT + FR F" + LR, L" — FR,, L" = LR} F" =0, (2.183)

which can also be expressed as follows,
AR, + R,A" + FRF" — LR, L" =0, (2.184)

where
L=(R,C" +FR,,)R;. (2.185)

Hence, a unique, positive semi-definite solution, R;, to the ARE yields a stabilizing solution
for the Kalman filter gain. The following lemma establishes the sufficient condition for the
existence of such a solution.

Lemma2.7.2 The algebraic Riccati equation, Eq. (2.183), has a unique, positive semi-definite
solution, R,, if the matrix R,, is symmetric and positive definite, the pair (A, C) is detectable,
and the pair (A —FR_R'C, FRPFT — FR R‘lR;mFT) is stabilizable.

pm*tm pm*tm

Proof. See (Glad and Ljung 2002).

By specifying the noise covariances matrices, R,,, R,,,, R,,,,, as the cost parameters of the min-
imization problem (see the next section), a stabilizing solution for (A — LC) with eigenvalues
at desired locations can be obtained. However, as the ARE is a nonlinear equation, an iterative
numerical solution must be sought.

A Kalman filter estimate, X (f) = x () — e (¢), has the following property:
Elx®x0'] =E[x03" 0] +E[eme” ()], (2.186)

which implies that the two processes, %(f) and eé(¢), are totally uncorrelated. Thus
e(+7),7r >0 is uncorrelated with all past estimates, X (f), hence the Kalman filter is
not only an optimal observer that minimizes the error covariance but it is also the only such
causal observer. Therefore, the Kalman filter estimate can be derived from a finite record of
the outputs, y(¢),0 < f < 7.

A major simplification in the Kalman filter occurs if the process and measurement noise are
uncorrelated with each other, that is, Rpm = 0, which is a commmon situation. In such a case,
the filter gain simplifies to the following expression:

L=R,C'R;, (2.187)
where R, is the unique, positive semi-definite solution to the following ARE:
AR, + R,AT = R,C"R,'CR, + FS,F" =0. (2.188)

for a time-varying Kalman filter, see (Tewari 2011). The Kalman filter updates its estimation
error by the linear state equation. However, in cases where the error dynamics are essentially
nonlinear, a much more accurate state estimate can be obtained using the nonlinear plant state
equation solved for the nominal case, rather than its linearized version. However, the ARE is
still based upon the linear Kalman filter. Such an implementation of the Kalman filter is called
an extended Kalman filter (EKF).
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2.8 Optimal Control

Consider a dynamic system given by the following state equation with a known initial
condition:
r=fu1), x(ty) =x, (2.189)

where u (7) is the control input vector bounded by constraints in a given interval, 7, <7 <1,
(called admissible control input), and f (.) is a continuous functional and has a continuous
partial derivative with respect to state, df /0x, in the given interval. The random disturbance
inputs, p (¢) ,m (t), are excluded from the optimal control problem, but are taken into account
in estimating the state vector from measurements. Let the transient performance objectives be
specified in terms of a scalar function of control and state variables, L [x (¢), u () , ¢], called the
Lagrangian. For an acceptable performance, the system’s response, x (¢), to the applied control
input, u (), should be such that the Lagrangian is minimized with respect to the control input in
a control interval, 7, <t < . Furthermore, the performance at the final time, i, is prescribed
by another scalar function, ¢ [x (tf) s tf] , called the terminal cost that must also be minimized.
Hence, both transient and terminal performance objectives are combined into the following
scalar objective function to be minimized with respect to the control input, u (¢):

f
J=(p[x(tf),tf]+/ Lix(®),u(t),1dt. (2.190)

1o
The optimization is subject to the equality constraint of Eq. (2.189), which must be satisfied by
x (1) ,u(¢) at all times. This is ensured by adjoining the constraint equation to the Lagrangian
in an augmented objective function, 7, as follows:

T =T+ A" Of x@),u@),1]
y
=w[x(rf),rf]+/ {LIx@),u@, 0+ A" @O F [x@),u@),1]-30)}d, (2.191)
lo

where A () is a vector of Lagrange multipliers (or co-state vector) of the same size as the order
of system. The co-state vector must be determined from the optimization process and is related
to the partial derivative of L with respect to f, when u is held constant:

oL
M=—1=). 2.192

< of >u @5
In addition to the dynamic state equation, there could be other equality and inequality con-
straints on the state vector, x (¢), and the control vector, u (), which must be satisfied during

minimization of the objective function, J. For simplicity of formulation, such constraints are
being excluded here.

2.8.1 FEuler-Lagrange Equations

The necessary conditions for the existence of a unique solution to the optimal control problem
are called Euler-Lagrange equations, which can be stated for a fixed control interval as the
following theorem.

Theorem 2.8.1 [Ifa finite, piecewise-continuous, admissible control vector, u (t), of the system,

x=f(xut)),
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minimizes the Hamiltonian,
Hx@®,u@),t]=L{x@®),u@), 0+ A" @) f [x@),u),1,

where f (.) is a continuous functional, and has a continuous partial derivative with respect to
state, df / 0x, then there exists an absolutely continuous, co-state vector, A (t), non-zero in the
Jfixed control interval, t, < t < 1y, such that the following conditions are satisfied:

9H _
ou
L oH
oA’
oH\T
(),
ox

Proof. See (Bryson and Ho 1975).

Since they are valid on a specific extremal trajectory, x (7), the Euler-Lagrange equations
guarantee minimization of the Hamiltonian with respect to only small variations in u (t). Hence,
there could exist other extremal trajectories that also satisfy the Euler—Lagrange equations.
Since they are the necessary conditions for optimal control, the Euler—Lagrange equations
can be solved to produce a specific extremal trajectory and the corresponding optimal con-
trol history, depending upon the conditions imposed upon the state and co-state variables. A
major simplification occurs for time-invariant systems, that is, systems whose dynamic state
equations as well as the Lagrangian do not explicitly depend upon time, . For a time-invariant
system, we can write

x=fu, x(1)=x, (2.193)

and

Hx(@),u®]=Lx@),u®]+ AT @)f [x(@),u@)]. (2.194)

Differentiating Eq. (2.194) with time, we have
. e, o)
H= aL+/1f+/1T<f+—fu)

0 ox ou
a .
Lg% ew (L ar %y iy (2.195)
ax ox 0 Ju
or _ o
H=Hi+Hi+if. (2.196)

All the derivatives are evaluated at the optimal point, for which the Euler—Lagrange
equations dictate
H,=0

—H =i



Linear Control Systems 67

Therefore, we have ,
H=41(f-x)=0 (2.197)

or H = const. Thus, the Hamiltonian remains constant along the optimal trajectory for a
time-invariant problem. The most commonly used terminal cost and the Lagrangian functions
for a time-invariant problem are of the following quadratic forms:

@ [x (7)) = [x (1) =" Qs [x (1) = 4] (2.198)
and

u

Lix(@®),u®]=&",u") <§T ;) <x> . (2.199)

Here, Qf, 0, S and R are constant matrices known as cost coefficients that specify the relative
penalties (weightages) in minimizing the deviations in terminal-state, state and control vari-
ables. Since a quadratic objective function results from a second-order Taylor series expansion
about the optimal trajectory and penalizes large deviations more than the small ones, it is a
logical choice in any practical optimal control problem.

2.8.2 Linear, Quadratic Optimal Control

The basis of robust control systems design is the optimal control theory applied to linear sys-
tems. Here, we shall confine the treatment to the regulator problem, which is of interest in ASE
systems. Consider an aeroelastic plant with state vector, & (7), and control input vector, 7 (),
governed by the following state equation:

E=f&n1). (2.200)

Let an extremal trajectory, &, (¢), and the corresponding extremal control history, 7, (), be
available from the necessary conditions for the solution of the optimal control problem mini-
mizing an objective function,

I
JEm=w[E(t) 1] + / LIE@®),n @), 14z, (2.201)

)

subject to certain specific constraints. The extremal control and trajectory are the nominal
functions satisfying Eq. (2.200),

Eg =1 (Epnant) s (2.202)
about which small control and state deviations,
u() =n)—n,@; th<t<t (2.203)
and
x(O) =& =&, ) th<t<t, (2.204)

are to be minimized. Employing a first-order Taylor series expansion about the nominal tra-
jectory, we have the following linear, state equation governing small, off-nominal deviations:

O =AOxO+BOu®;  x(15) = x, (2.205)
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where

> | . B(t) = A (2.206)

A= ;
0¢ Eaa on Eaa

are the Jacobian matrices of the expansion. In a similar manner, the objective function can be
expanded about the extremal solution, (.fd, nd), up to the second-order terms

J(&g+xmg+u) =T (Euny) + A% (xu). (2.207)
The first variation of J about the extremal trajectory is identically zero,
AJ (x,u) = 9/ x+ o u=0. (2.208)
0¢ Sald on Sdd

The second variation of J about the extremal trajectory is given by

827 () = 347 (1) Oy (1)

L[ o [00 S0 [x0
+§/t0 {x* (®),u" (1)} [ST(Z‘) R(t)] {u(t)}’ (2.209)

which is a quadratic form with the following cost coefficient matrices:

0% 0L
0= a_‘f L0 =3 (2.210)
¢ €alty) & lesn
and 5 5
s=2E s Rp=2E . @211)
agaon Salla on Eala

Hence, the second variation of the objective function, A%J, about the extremal trajectory is a
quadratic cost function, which must be minimized, subject to a linearized dynamic equation
for a neighbouring extremal trajectory. This forms the basis of the linear, quadratic, optimal
control problem for neighbouring extremal trajectories.

The Hamiltonian corresponding to the quadratic cost function, A%J, subject to linear
dynamic constraint of Eq. (2.205) is the following:

H= %xT OODx@)+x" (SO u@®)+ %uT OR® u @)
+ AT OAGOXx@O)+B@Ou®)]. (2.212)

The necessary conditions for optimality with a fixed terminal time, #;, are then given by
Euler-Lagrange equations (Theorem 2.8.1):

T
h= _(§> =-0WxO-SOut)y—AT ) A @), (2.213)
ox
[0} r
Aty) = <a)t = 0yx (1) . (2.214)
=l
OH _o=s" Ox(@) +R@ut)+ BT (1) A(7). (2.215)

ou
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Equation (2.215) is solved for the optimal control as follows:
u@®)=-R'®[ST ) x@) +B" @) A)]. (2.216)

Substitution of Eq. (2.216) into Egs. (2.205) and (2.213) results in the following set of linear
state and co-state equations:

x=[A®)-BOR " @OSTOx@®) -B@OR )BT (1) A1), (2.217)
A=—[AT()-SORT OB 0120 +[SOR 1) ST (1) - 00 (0), (2.218)

which must be solved subject to the boundary conditions,
x(to) =x0s  A(y) =Qpx (1) (2.219)

The linear, two-point boundary value problem (TPBVP) given by Egs. (2.217)—(2.219) must
be integrated in time, such that the boundary conditions are satisfied. However, as the state
and co-state vectors are related by Eq. (2.214) at the final time, a solution is sought to Egs.
(2.217)—(2.219), which satisfies a state transition matrix ensuring the linear independence of
solutions, x (f) and 4 (¢). To this end, the state and co-state equations are expressed as follows:

X A—BR™ST —BR'BT x
{,'1} B <SR“ST -Q —AT4+SR'BT)\ A" (2.220)
These must satisfy the boundary conditions of Eq. (2.219). The solution is obtained by inte-
grating backward in time from 7 = #, for which we have

x| _(X@® 0 x (1)
{Mo}‘( 0 A(;)) {,1(9)}, (2.221)

where x () and A (f) are the transition matrices corresponding to the backward evolution in
time of x () and 4 (¥), respectively. Clearly, the following must be satisfied:

AW =A@ A (1) = AN Qpx (1) , (2.222)
x()=X0x (1), (2.223)

and
x () =X (tp) x (0. (2.224)

Inversion of Eq. (2.223) and substitution into Eq. (2.222) yields
A =A@ QfX_l ®x(@. (2.225)
Since both the transition matrices must satisfy
X(y)=L  A(y) =1, (2.226)

Eq. (2.225) represents the adjoint relationship between the solutions, x (f) and A (¢), written as
follows:
A =P(@0)x(1), (2.227)
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where P (t) = A () Qf)c‘1 (1). Substituting Eq. (2.227) into Egs. (2.216), we have the following
linear, optimal feedback control law:

u(@®)=—=R"@0 [B"OP®+S" 0] x@. (2.228)

Taking the time derivative of Eq. (2.227) and substituting into Egs. (2.217), (2.218) and
(2.228), we have the following matrix Riccati equation (MRE) to be satisfied by the
matrix, P (¢):

~P=Q+(A-BR'S")'P+P(A-BR'ST)
— PBR™'BTP — SR™'ST, (2.229)

which must be solved subject to the boundary condition,
P (1) = Qy. (2.230)

A sufficient condition for optimality is the existence of a positive definite solution to MRE,
P (2), for all times in the control interval, 7, < ¢ < #,. Equations (2.228)—(2.230) give the solu-
tion to the optimal LQR problem based on state feedback for tracking a nominal, optimal tra-
jectory, &, (¢), and is guaranteed to result in a neighbouring optimal trajectory, &, (¢) + x (f), and
is derived here from the necessary conditions of optimality (the Euler—Lagrange equations).
An alternative derivation of the MRE is possible from the sufficient condition of optimality
(the Hamilton—Jacobi—Bellman equation) (Athans and Falb 2007). Therefore, the MRE reflects
both necessary and sufficient conditions for the existence of an optimal control law for linear
systems with a quadratic performance index.

The MRE requires iterative numerical solution methods. Although simple iterative schemes
based on repeated linear, algebraic solutions are usually applied when the coefficient matri-
ces are either slowly or periodically varying, the convergence to a positive definite (or even
positive semi-definite) solution is not always guaranteed. Given the complexity of an MRE
solution, it is often much easier to directly solve the linear state and co-state equations, Eqs.
(2.217)—(2.219), by either the shooting or collocation methods (Tewari 2011). Linearity of the
adjoint system of equations, Eq. (2.220), assures the existence of a transition matrix, ® (t, to),

such that
) YO (1.1) x (fo) (2.231)
A [T VY A () S '

x(to) =x05  A(ty) = Opx (1) (2.232)

with the boundary conditions

The transition matrix has the properties
D (to.tg) =1, @ (to,1) =@ (1,1) (2.233)
and

. A —BRIST —BR'BT
D (1,1)) = <SR—‘ST 0 AT 4 SRABT D (1,1)) (2.234)
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as well as the special property of being a symplectic matrix, that is,

" (1,1y) <_01 é) @ (1,1)) = <_OI (I)> : (2.235)

Partitioning @ (1, 1,) as follows:

B S ) L 1 )

the symplectic nature of the transition matrix implies that

o' (t,1y) = ( @7, (1.10) —o], (1. tO))’ (2237)
—o7 (1,1y) o7 (1,1y)

which is very useful in carrying out the matrix operations required for the solution of the
boundary-value problem.

2.9 Robust Control Design by LQG/LTR Synthesis

Most tracking control problems require dissipation of all errors to zero when the time becomes
large compared with the time-scale of plant dynamics. Since the control interval is quite large,
it is unimportant to account for the relatively much faster variation of plant parameters, which
can — in many cases — be averaged out over a long period, and essentially approximated by LTI
systems where the plant coefficient matrices, A, B, C, D, are constants. Such a problem with the
objective of a zero, steady-state (i.e. as t — oo) error is referred to as infinite-horizon control,
because the control interval, I, is taken to be infinite. In such cases, both LQR and Kalman
filter designs are greatly simplified by having an infinite control interval, for which the cor-
responding solutions, P (¢) , R, (¢, t), approach steady-state values given by, P (o), R, (00, ),
expressed simply as the constants, P, R,. The governing equation for a time-invariant LQR
problem is derived simply by substituting P = 0 in MRE, Eq. (2.229), resulting in the follow-
ing ARE:

0=(A-BR'S"YTP+ P(A - BR™'ST)
—PBR'B"P+Q - SR7'ST. (2.238)
The optimal feedback control law is obtained from the algebraic Riccati solution,
u@®)=-R'BP+SDHx(@), (2.239)

where the cost coefficient matrices, Q, R, S, are constants. For asymptotic stability of the reg-
ulated system, all the eigenvalues of the closed-loop dynamics matrix,

A—BRYBTP+ ST,

must be in the left-half s-plane, which requires that the ARE solution, P must be a symmetric,
positive semi-definite matrix (Tewari 2002), that is, a matrix with all eigenvalues being either
greater than, or equal to zero. There may not always be a positive semi-definite solution; on
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the other hand, there could be several such solutions of which it cannot be determined which
one is to be regarded as the best one. However, it can be proved (Glad and Ljung 2002) that
if the following sufficient conditions are satisfied, there exists a unique, symmetric, positive
semi-definite solution to the ARE:

e The control cost coefficient matrix, R, is symmetric and positive definite, the matrix (Q —
SR~'ST) is symmetric and positive semi-definite and the pair (A — BR™'ST, Q — SR™'ST) is
detectable (if not observable).

e The pair (A, B) is either controllable or, at least, stabilizable.

It is interesting to note the equivalence between the Kalman filter and the LQR, in that both
the LQR gain and the Kalman filter gain are based on the solution to the same ARE. This
duality is shown in Table 2.3.

The time-invariant LQR regulator has extremely nice robustness properties. Consider the
LTI plant with an LQR regulator of constant gain matrix, K. The transfer matrix representation
of the regulated system is depicted in Fig. 2.13. The system is described by

X =Ax+ Bu, (2.240)
with optimal control-law,
ut)=-R'B'P+S")x = —Kx. (2.241)
The loop gain at plant input (point marked by ‘(1)’ in Fig. 2.13) is given by
H (s)G (s) = K(sI — A)™'B, (2.242)

Table 2.3 Duality between the LQR
regulator and the Kalman filter

Kalman Filter = LQR
AT = A
Ccr = B
S, = R
FS,FT = 0
kS, = S
p(s)
M) N | % ©
> (sI-A)~ > > x(s
Y O W
v
< D
« Y

m(s)

Figure 2.13 Transfer matrix representation of the linear, quadratic regulator (LQR)
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while the return difference matrix at the same point is
R (s)=1+H(s)G(s)=1+K(sl —A)"'B. (2.243)

Since the sensitivity of the plant input u (f) with respect to the noise inputs, p (¢),m (), is
proportional to the magnitude of Rl._1 (s), large singular values of R; (s) would imply high
robustness with respect to both process and measurement noise. By substituting Egs. (2.243)
and Eq. (2.241) into the ARE Eq. (2.238) and simplifying, it can be shown that for a positive
semi-definite matrix Q and a positive definite matrix R, the following must be satisfied:

R ()RR, (s) > R, (2.244)
from which it follows that if R = pI, the following must be true:
RI(R;(s) > 1, (2.245)

or
o{R;(s)} > 1. (2.246)

Hence, the smallest singular value of the input return difference matrix never drops below
unity. For a SISO system, this implies that the Nyquist locus never enters the unit circle cen-
tred at (—1, 0), which implies a phase margin of at least 60 deg, with gain margin ranging from
—6 dB to infinity. Such high levels of robustness are greatly valued in practical implementa-
tion, which is the main reason why LQR controllers are a common choice in a wide range of
applications. However, the high level of robustness comes at the cost of high regulator gains,
which has associated control magnitude (energy) and saturation issues. With increased con-
troller bandwidth, there is also the possibility of high-frequency noise amplification due to
increased complementary sensitivity. Thus the theoretically high robustness levels are almost
never achieved in practice with high feedback gains. Instead, other means of increasing robust-
ness must be sought, which do not rely upon high controller bandwidth.

In the stochastic sense, a constant error covariance matrix, R,, implies a stationary white
noise process. If the estimation error of a linear system is stationary, the system must be driven
by stationary processes. Therefore, an LTI Kalman filter essentially involves the assumption
of stationary, zero-mean, Gaussian white (ZMGWN) models for both process noise, p (), and
measurement noise, m (f). Hence, the error covariance matrix must now satisfy the following
ARE:

0=AgR, +RAL—R,C'S,'CR, + F(S,—S,,S,' SLOF". (2.247)

pm= m Ppm

where S, S, S, are constant spectral density matrices and
Ag=A-FS,.S,'C. (2.248)
The constant Kalman filter gain matrix is the following:
L=(R,C" +FS,,)S,". (2.249)

Clearly, the ARE for the Kalman filter must also have a symmetric, positive semi-definite
solution, R,, for an asymptotically stable Kalman filter dynamics. Furthermore, by satisfying
sufficient conditions that are dual to those stated above for the LQR problem, a unique,
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positive semi-definite solution to the ARE can be found. The ARE is thus at the heart of
both LQR and Kalman filter design for LTI systems. Being a nonlinear algebraic equation,
it must be solved numerically, such as by iteration of the following Lyapunov equation for a
symmetric matrix, P:

AP+PAT + Q0 =0. (2.250)

There are several efficient algorithms for iteratively solving the ARE, which are programmed
into commercially available software, such as MATLAB®,

The procedure by which an LQR and a Kalman filter are designed separately for an LTI
plant, and then put together to form a feedback compensator is referred to as the linear,
quadratic, Gaussian (LQG) method. The resulting feedback compensator is called an LQG
compensator. Figure 2.14 depicts a general case where the output vector, y (¢), is to match
a desired output (also called a reference or commanded output), y4 (¢), in the steady state.
Such a reference output is usually commanded by the terminal controller (not shown in
the figure). Clearly, the measured signal given to Kalman filter is [y ) —Yya (t)], based on
which (as well as the known input vector, u (7)) it supplies the estimated state for feedback
to the LQR regulator. Since the design of the LQG compensator — specified by the gain
matrices, (K, L) — depends upon the chosen LQR cost parameters, Q, R, S, and the selected
Gaussian white-noise spectral densities, Sm,Sp,Spm, it is possible to design infinitely many
compensators for a given plant. Usually, there are certain performance and robustness
requirements specified for the closed-loop system that indirectly restrict the choice of the
cost parameters to a given range. Being based on optimal control, an LQG compensator has
excellent performance features for a given set of cost parameters, but its robustness is subject
to the extent the performance is degraded by state estimation through the Kalman filter. If
the filter gains are too small, the estimation error does not tend to zero fast enough for the
feedback to be accurate. On the other hand, if the Kalman filter has very large gains, there is
an amplification of process and measurement noise by feedback, thereby reducing the overall
robustness of the control system. Clearly, a balance must be struck in selecting the Kalman
filter design parameters, S,,,, Sp, Spm, such that a good robustness is obtained without unduly
sacrificing performance.

p@)
LQG compensator l

Linearized plant

> X=Ax+Bu+ Fp
y=Cx+ Du

u(t) =-R" (BTP + 5T x(r)

Linear quadratic regulator

0 P mo

?
Ya(®)

Figure 2.14 Linear, quadratic, Gaussian (LQG) compensator for linearized plant dynamics

I=(A-LO)i+(B-LDu+L(y-y,)
L=(R,.C"+FS,,) Sil

()

A

Kalman filter
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To study the robustness of an LQG compensated system, refer to the block diagram of the
control system transformed to the Laplace domain in a negative feedback configuration, as
shown in Fig. 2.15. For simplicity, consider a strictly proper plant (i.e D = 0) of order n rep-
resented by the transfer matrix,

G(s)=C(sI —A)'B

of dimension £ X m, where £ is the number of outputs, and m the number of inputs. An LQG
compensator of dimension m X ¢ has the transfer matrix,

H(s)=K(sI —A+BK +LC)"'L.

The process noise is represented by a ZMGWN disturbance, p (s), appearing at the plant’s
output, while the ZMGWN measurement noise, m (s), affects the feedback loop as shown.
The overall system’s transfer matrix, 7 (s), from the desired output to the actual output, is
the transmission matrix (which was discussed previously). On the other hand, the effect of
the process noise on the output is given by the transfer matrix, S (s), which is the sensitivity
matrix. Both 7 (s) and S (s) are derived (with reference to Fig. 2.15) as follows:

y=p+Gu=p+G[H@y,;—y—-m)], (2.251)
or
(I + GH)y = p+ GH(y, — m), (2.252)
thereby implying
y=+GH) 'p+ I+ GH)'GH(y, — m), (2.253)
or
y()=SE)ps)+T () [y, (s) —m(s)], (2.254)
where
S)=[+G(s)H (5)]™ (2.255)

T(s)=[+G(s)H ()] 'G(s)H (s).

Because it is true that 7' (s) = I — S (), the transmission matrix is also called the complemen-
tary sensitivity matrix.

Compensator Plant
us) @ $
Hi Gl > >
() (s) b ¥(s)

Va (8) —» > >
TN ®

Figure 2.15 Transfer matrix representation of an LQG compensated system
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Since the introduction of Kalman filter into the system degrades the overall complementary
sensitivity, it is necessary to select the Kalman filter and regulator gains such that a measure
of robustness is retained. We have already discussed in the earlier part of this chapter how a
good overall robustness can be achieved by loop-shaping, such that the singular values of the
sensitivity matrix and the transmission matrix are kept within pre-selected bounds. Since the
two requirements are conflicting, a design compromise is obtained by choosing different ranges
of frequencies for the minimization of & (S) and & (7). This is practically achieved by assigning
suitable weightages to the cost parameters of the LQG design, and the resulting compensator
is said to have recovered the loop-transfer function, G (s) H (s), which would have been present
if the state variables were directly fed to the regulator. The systematic design procedure for
loop-transfer recovery (LTR), which attempts to regain the robustness of the LQR regulator by
an iterative selection of either the regulator or the Kalman filter gains is termed the LQG/LTR
method (Maciejowski 1989).

To further indicate the LQG/LTR procedure, refer to Fig. 2.15, and note that the transfer
matrix, H (s) G (s), denotes the transfer of the input, u (s), back to itself if the loop is broken
at the point marked ‘(1)’. Hence, H (s) G (s) is the return ratio at the plant’s input. If all the
states are available for measurement, there would be no need for a Kalman filter, hence the
ideal return ratio at input is given by

H(s)G(s) = K(sI —A)"'B.

On the other hand, if the feedback loop is broken at the point marked ‘(2)’ of Fig. 2.15, then
the transfer matrix, G (s) H (s), represents the return ratio at output. If there is no regulator in
the system, then the ideal return-ratio at output is given by

G(s)H (s) = C(sI —A)~'L.

If the ideal return ratio is recovered at either the plant’s input, or the output, by suitably design-
ing the LQG compensator, the best possible combination of the LQR regulator and the Kalman
filter is achieved. If (for simplicity) the process and measurement noise are uncorrelated, that
is, S, = 0, then it can be shown (Maciejowski 1989) that by selecting

> Opm
F =B; Sp =pS,,
and making the positive scalar parameter p arbitrarily large, the LQG return-ratio at input,
H(s)G(s) = K(sl —A+BK + LC)"'LC(sI — A)™'B

can be made to approach the ideal return ratio at input. The following procedure for LTR at
the input can therefore be applied:

(a) Select an LQR regulator by a suitable choice of the weighting matrices Q, R, S such that a
desired robustness is obtained.

(b) Select F' = B, S, = pS,, and increase p until the desired state feedback robustness is recov-
ered in the closed-loop system.

An alternative approach can be applied for LTR at the plant’s output, beginning with the
design of a Kalman filter, and then iterating for the LQR gain until the ideal return ratio at
output is recovered. Further details of LQG/LTR methods can be found in Maciejowski (1989)
and Glad and Ljung (2002).
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2.10 H,/H_ Design

The state-space design by the separation principle using a regulator and a Kalman filter, and
followed by loop shaping is a commonly used design method for achieving a desired level of
stability robustness in multivariable systems. An example of such an approach was given in
the previous section via the LQG/LTR synthesis. However, we recall that the stability robust-
ness properties were enforced on the sensitivity and complementary sensitivity matrices of
the system in a manner quite similar to the SISO design by Nyquist type techniques in the
frequency domain. Therefore, it is logical to ask why is it at all necessary to start with the
state-space design, if the robustness properties are to be ensured in the frequency domain.
Hence an alternative design procedure can be evolved based on the frequency domain design
methodology commonly used for single-variable (SISO) systems. The state feedback regula-
tor and the Kalman filter then follow naturally where the singular value spectra replace the
Bode gain plot, and parameters analogous to the gain and phase margins of a SISO system
are extended to stability robustness measures of multivariable systems. In deriving the transfer
matrix, H (s), of a stabilizing controller, one minimizes a combined, frequency-weighted scalar
measure of sensitivity, complementary sensitivity and transfer matrix from disturbance to plant
output, over a range of frequencies. This is the basis of the H, and H_, synthesis procedure.

Consider a strictly proper plant transfer matrix realization, G (s), with control inputs, u (s),
and measured outputs, y (s). All exogenous inputs to the feedback control system, namely, the
process noise, p (s), appearing at plant’s input and the measurement noise, m (s), appearing at
the plant’s output, are clubbed together in a single vector, w (s), called external disturbances,
as shown in Fig. 2.16. The plant’s transfer matrix description is thus the following:

Y& =G(s)u(s)+w(s). (2.256)

The design problem is to find a stabilizing output feedback controller, H (s), with the feedback
control law
u(s) =—-H(s)y(s), (2.257)

such that the control system has adequate stability robustness with respect to the random distur-
bance inputs, w (s), which are not modelled in any way. In terms of loop-shaping terminology,
this translates into simultaneously minimizing the norms of the following transfer matrices:

SE=U+G)H$]™,
Ts)=1-S(¢)=[I+ G(s)H(s)]_lG(s)H(s) =GWH(@) [+ G(s)H(s)]_]

G, () ==H(s)S(s) (2.258)
w(s)
AN LONR WA
KAJ G(s) \V
i PR
Hs) ¢

Figure 2.16 Basic stabilization system for H,/H_ design
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u(s)
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Figure 2.17 Augmented plant and closed-loop system for H, /H_ design

over a given frequency range. However, this is impossible to carry out because the minimiza-
tion of both sensitivity, S(s), and complementary sensitivity, 7 (s), are conflicting require-
ments. Furthermore, the transfer matrix, G, (s), from the disturbance to the input variables
is maximized when T (s) is minimized. The only possibility of achieving small magnitudes
of these matrices is to minimize them at different frequencies, which is implemented through
pre-multiplying each matrix by a different frequency-weighting matrix, and minimizing the
norm of the following array over a specified frequency range:

Wi (s)S(s)
Wo ()T (s) |. (2.259)
W5 (s) G, (s)

Here, the weighting matrix W, (s) is strictly proper and square, while W, (s) , W5 (s) are square
matrices. Introduction of frequency weights is tantamount to augmenting the original system
by additional output variables, z; (s), 2, () ,z3 (s), called error signals. The transfer matrix
description of the augmented system is given by

21 (9) W5 (s) 0
L@ _ WG 0 u(s)
=@ [T W, )G W (s) {W (S)} (2.260)
y(s) G I
or, in an abbreviated form,
z(o) | _ u(s)
{)’(s)} =G () {W(S)} (2.261)

where 77 = (z1,2],23) and G, (s) is the augmented system’s transfer matrix given in Eq.

(2.260). A block-diagram of the augmented system is shown in Fig. 2.17.
When the control loop is closed using # = —Hy, the closed-loop system has the following
description:
2(8) =G, (Hw(s), (2.262)
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where
_W3 (S) Guw (S)
G.(s)=| =W, T(s) |. (2.263)
Wi (s)S(s)

Thus H,/H_, design problem is to find a stabilizing controller H (s) that minimizes either the
H, norm or the H_, norm of the closed-loop transfer matrix, G. (iw); that is, either

G|l = \/ zi / ootr[GC (iw) GT (—iw)]dw (2.264)
7 —Qo0
or
G |l = sup,[6{G, (iw)}], (2.265)

must be minimized with respect to H (s) such that all the poles of G, (s) are in the left-half
plane. The success of the design process depends entirely upon the ability to find a suitable set
of weighting matrices, W, (s), W, (s) , W5 (s), for which a feasible solution to the constrained
minimization problem exists.

2.10.1 H, Design Procedure
The H, norm of G, (s) can be expressed as follows:
G llz = [IWiSlly + WL T [ly + W35Gy, - (2.266)

Hence, the minimization of |G, ||, ensures a simultaneous minimization of the A, norm of the
weighted sensitivity, complementary sensitivity and G, (s). The power spectral density of the
error vector, z (t), for a white noise disturbance, w (¢), of unit intensity is the following:

S. (@) = Z (i) Z" (—iw) = G, (i0) G! (-iw). (2.267)

Therefore, the minimization of ||G,|| results in a minimization of the error power spectral
density, which is an objective quite similar to that of the LQG compensator. Hence the H,
controller design is quite similar to that in the LQG case.

The augmented plant, Eq. (2.260), can be represented in an LTI state-space form as follows:

x=Ax+ Bu+ Fw,
y=Cx+w,
z=Mx + Nu. (2.268)

The controller design, being based on output feedback, requires the following inherent
observer dynamics as a part of the augmented plant:

2=(A—FC)%+ Bu + Fy. (2.269)

Since the coefficients A, F, C depend upon the chosen frequency weights, a stable observer
requires a judicious selection of the frequency weights. The optimal H, synthesis then consists
of deriving an LQR regulator with Q = M"M, R = I and gain, K = BT P such that

H(s)=—K(sI —A+BB'P+ FC)™'F, (2.270)
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where P is a symmetric, positive semi-definite solution to the following Riccati equation:
0=A"P+PA-PBB'"P+M"M. (2.271)
For simplicity, it is assumed that
N'M=0;, N'N=1I (2.272)

A possible method of ensuring a Hurwitz observer matrix, (A — FC) is by replacing F with a
Kalman filter gain, L, which requires a particular structure for the frequency weights. The reg-
ulator and observer gains can be further modified by loop shaping, as is done in the LQG/LTR
process, until a satisfactory singular-value spectrum is obtained for the sensitivity and com-
plementary sensitivity matrices.

2.10.2 H, Design Procedure

While the H, design could be carried out in a manner similar to the LQG design, the H norm
minimization is based on an iterative solution. However, there being no direct relationship
between H_ norm of the closed-loop transfer matrix and the objective function of an LQG
design now, it is difficult to know in advance what the minimum value of ||G,||,, would be
for an acceptable design. A practical method (Glover and Doyle 1988) is to choose a positive
real number, y, and then derive a stabilizing compensator by trial and error for achieving the
following objective:

IG Nl = sup,[5{G, (i0)}] < 7. (2.273)

By decreasing y until the compensator fails to stabilize the system, one can find the limit on
the minimum value of |G, || .- It is to be noted that if y is increased to a large value, the design
approaches that of the optimal H, (or LQG) compensator. Thus, one can begin iterating for y
from a value corresponding to a baseline H, (or LQG) design.

The controller derived by satisfying Eq. (2.273) is indeed an optimal solution (Glad and
Ljung 2002). This is illustrated by defining the following function for the plant of Eq. (2.268)
subject to condition, Eq. (2.272):

F@O=x0"Px®)+ / [2(0)z (1) = y*w(@) W (1)] dr, (2.274)
0

where P is a symmetric, positive semi-definite matrix and y > 0. For the zero initial condition,
x(0) = 0, we have f (0) = 0. The time derivative of f (¢) is given by
f =i Px+x"Pi+7"z—y*wiw
=xTATPx + u" B"Px + w' F" Px + x" PAx + x" PBu + x" PFw
+ XM Mx + u"u - yszw

=xT ATP+PA+MTM+P<%FFT—BBT> P] x
Y

T
+ (u + BTPx)T (u + BTPx) —y? <w - LZFTPx> (w — LZFTPx> . (2.275)
Y Y
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If P is a symmetric, positive semi-definite solution of the following ARE:

1

0=ATP+PA+P(—
yz

FFT — BBT> P+M™M, (2.276)

and a feedback control law is selected such that
u(®)=—-B"Px(1), (2.277)

then we have f (t) £0, which implies that f () < 0 for all ¢. Since the first term on the
right-hand side of Eq. (2.274) is always non-negative, the integral term is always less than or
equal to zero, which implies

2Oz (1) < yPw® w (1), (2.278)

for all 7, and for any disturbance signal, w (f). Note that a minimization of y implies a min-
imization of the H, norm of the error vector for any given disturbance signal. Hence, the
optimality of a compensator satisfying Eq. (2.273) is guaranteed, provided there exists a pos-
itive semi-definite solution of the Riccati equation, Eq. (2.276).

A problem in the H, approach is that it does not automatically produce a stabilizing con-
troller, H (s). Hence, stability of the H_, design must be separately ensured by requiring that
the dynamics matrix, (A - BBTP), must have all the eigenvalues in the left-half s-plane. An
optimization procedure which enforces this constraint in every iteration is listed below (Glover
and Doyle 1988):

(a) Select a set of frequency weights, W, (s), W, (s), W5 (s), and ensure that these yield a
Hurwitz observer dynamics matrix, (A — FC).

(b) Select a value for y (usually 1).

(c) Solve the ARE, Eq. (2.276), for a symmetric, positive semi-definite matrix, P. If no such
solution exists, go back to (b) and increase y. If a symmetric, positive semi-definite P exists
which yields a Hurwitz matrix, (A - BBTP) , try to find a better solution by going back to
(b) and decreasing y.

(d) Repeat steps (a)—(c) until the smallest y value is obtained.

2.11 u-Synthesis

Structured singular value (SSV or u-) synthesis is an alternative method of analysing the
robustness of linear feedback systems. The H,/H_ method of the previous section is an
application of the small gain theorem to obtain stability margins of uncertain linear feedback
systems without assuming any particular structure of the uncertainty. This usually results in
an overly conservative design, because the actual perturbations are present in only some of the
plant parameters, and not necessarily all of them. By assigning a structure to the uncertainty
model, it is possible to have a more realistic and less conservative design. This is the objective
of the SSV design method, whose methodology is presented in a tutorial paper (Packard and
Doyle 1992).

Consider a square system with transfer matrix, M (s) € C"™ ™, between inputs, u € R™ and
outputs, v € R™, with a multiplicative uncertainty, A (s) € C"™™, as shown in Fig. 2.18. This
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M(s)

A 4

v(s) u(s)

A(s)

Figure 2.18 A square plant with a multiplicative uncertainty

representation implies the following loop equations:

v(s)=A(s)u(s)
u(s)=M(@s)v(s), (2.279)

which requires A (s) to have a block-diagonal structure given by

AcA= {diag [5,.1,1, e8Pl Ay ,A,,+q] :
§,€C, A, €C 1<i<pl<j< q} , (2.280)
where
14 q
Z T+ n; =m.
i=1 =

Jj=1

If the matrix I — M A is nonsingular, then Eq. (2.279) has only the trivial solution, u = v = 0.
For a non-trivial solution, the matrix / — M A must be singular and hence there are infinitely
many possible solutions to Eq. (2.279), including the ones in which the signals u (s), v (s) are
unbounded at some frequency s = iw. Thus for stability, we require the singularity of the matrix
I — MA, and define a structured singular value, y (M), as the measure of the smallest structured
uncertainty, A, which causes the instability of the feedback loop depicted in Fig. 2.18.

Definition 2.11.1 For a matrix, M € C"™ ™, the structured singular value is defined by

1

H = G (A) - AcAded —MA) =0

(2.281)
unless there exists no A € A that makes det (I — MA) = 0, for which case u (M) = 0.
Definition 2.11.2 A norm bounded subset of all block-diagonal matrices is defined to be the

following:
B,={A€A:G6(A) L1} (2.282)

An important property of the structured singular value is the following:

H (M) = maxpep, p(MA), (2.283)
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where p (.) denotes the spectral radius of a square matrix. Furthermore, we have the following
bounds:
pM)<uM)<aeM), (2.284)

which can be used to possibly bracket u (M) in a computation. If A € C"™™ (i.e. it has a
full-block structure), then we have u (M) = 6 (M). However, the upper and lower bounds on
1 (M) provided by Eq. (2.284) can be arbitrarily far apart. A better fixing of the bounds on
u (M) is provided by the following theorem.

Theorem 2.11.3 Forall U € U and D € D, where

U={UeA:UU=1

D= {diag <D1, SO S VY A ,d,,+q1,,q> :
D, € T, D; = DI > 0,d,,; € Ry, > 01, (2.285)

the structured singular value has the following property:

U (MU) = p(UM) = u(M) = pu (D'*MD™'/?). (2.286)

Proof. The proof is derived by expanding the determinant of (I —MA) as det
(I-MD='2AD'/?).

Theorem 2.11.3 lets us tighten the bounds on y (M) to the following:
maxyeyp (UM) < maxycg, p(AUM) = (M) < infpeps (D'/?MD™'/?) . (2.287)

In computing the infimum, one of the diagonal elements in D is assumed to be unity, such
as d,,, = 1. More information about the bounds and properties of u (M) can be found in the
tutorial paper (Packard and Doyle 1992). The main difficulty in the y-synthesis procedure is to
evaluate the maximum in Eq. (2.287), which requires some form of optimization. For a transfer
matrix, the maximum must be found over a frequency range, which could be a cumbersome
process. The prevalent approaches for carrying out the optimization with a frequency sweep
include the gradient-based methods (Doyle 1982, Fan and Tits 1986), or a non-gradient search
scheme (Tewari and Balakrishnan 1991). As the number of uncertainty blocks increase in the
block-diagonal structure, so does the computation time for the SSV, which points towards

finding efficient computational algorithms, which possibly do not require a frequency sweep.

2.11.1 Linear Fractional Transformation

The main utility of the structured singular value (SSV) method is in modelling the uncer-
tainty of a linear system described by a transfer-matrix representation, G (s) € CP*™ relating
the inputs, ¥ € R™, and the outputs, y € R”. The uncertain part of G (s) is represented by a
multiplicative structured uncertainty, A, € A, C C"™", between the exogenous (disturbance)
inputs, w € R”, and exogenous outputs, z € R”, as shown in Fig. 2.19. Such a representation
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u(s) y(s)
G(s)

v

w(s) 2(s)

Ax(s)

Figure 2.19 Linear fractional transformation (LFT) representation of an uncertain system

of an uncertain linear system is called a linear fractional transformation (LFT), denoted by
y=~L (G, Az) u, and has the following loop equations:

YO =G (Du(s)+Gp(s)w(s),
2(8) =Gy (u(s) + Gy (5)w(s), (2.288)
w(s)=A,(s5)z(s). (2.289)

The transfer matrix (LFT) of the uncertain system is thus given by
-1
L(G,Ay) =Gy + Gy (1= Gyphy) Gy (2.290)

If A, € A; c C™" is an alternative block uncertainty on G,;, then an analogous LFT of the
system is given by
-1
[:(AI’G) = G22+G21A1 (I_GIIAI) GIZ' (2291)

If one applies the small gain theorem to the uncertain part of the system (i.e. the loop involving
z and w), the following stability requirement can be obtained without taking into account any
structure of the uncertainty A,:

Gyl < 1, (2.292)

where the gain ||.|| can be taken using either the H,, or the H_, norm. This is the robust stability
(or stability robustness) requirement underlying the H,/H, design method (see the previous
subsection), and could be unnecessarily restrictive (conservative) in selecting a feedback con-
troller to stabilize the system between u and y. However, when we assume a norm-bounded,
block-diagonal structure for A, € B,, the structured singular value of G,, defined by

1

G,,) = . 2.293
#(Gn) min{5 (A,) : A € By, det (I — Gy,A,) =0} (2:299)

forms the basis of a less restrictive (or more efficient) design. Since Gy, (s) and A, (s) for s = iw
vary with the frequency, w, u(G,,) indicates the measure of the smallest block-diagonal pertur-
bation, A, (iw), which can move a pole of G, (s) (i.e. the zero of I — G,,A,) to the imaginary
axis, s = iw. The maximum allowable perturbation before instability (or stability robustness)
is therefore given by the supremum of u(G,,) over a given frequency range, defined by the
following y norm:

G ll, = sup,, {4 [Gy, (iw)] } . (2.294)
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The less-restrictive design requirement based on y is thus given by
IGxll, < 1. (2.295)

The most common form of structured uncertainty is in the elements of the state-space coef-
ficient matrices, (A, B, C, D), of a linear system, G (s) = C(sI — A)_IB + D. Thus we have the
following constant real matrix, M, whose uncertainty is represented by the structured singular
value, ¢ (M), by a norm-bounded, block-diagonal perturbation A; € B,:

A B
M= <C D) . (2.296)
The LFT of such a representation is therefore the following:
c (11,M> =D+ C(sT—A)'B, (2.297)
s
uy(s) V1(8) uy(s) Ya(9)
»  G(s) > Gy(s)
Ays) [* By(s) ¢
y3(8) u3(s)
<« -
Gi(s) |«
Ay(s) [*

Figure 2.20 Linear fractional transformation (LFT) representation of a system comprising three uncer-
tain subsystems connected by a feedback loop

uy () V1 (9)
u(s) = uy (5) () =1y2(8)
u3 (s) y3(5)
> P >

Ajs) 0 0
A =| 0 Ay 0
0 0 As(s)

Figure 2.21 Overall linear fractional transformation representation of the feedback system shown in
Fig. 2.20
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where the block perturbation is taken to be A; = I/s on M,, = D. Such an uncertainty model
is very useful for robust ASE analysis, as we shall see in Chapter 7.

The LFT of two (or more) systems connected in a feedback loop can be derived from the
individual LFTs. For example, the system shown in the block diagram of Fig. 2.20 consists
of three subsystems of individual LFTs £ (G] , Al) L (Gz, Az) and L (G3, A3). The overall
system’s LFT is derived in the block diagram of Fig. 2.21, where the overall transfer matrix, P,
depends only on Gy, G,, Gs, and the overall perturbation A consists of A, A,, Az as its diag-
onal blocks. We shall return to such a representation while discussing uncertain ASE systems
in Chapter 7.
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3

Aeroelastic Modelling

The emphasis in this book is on developing an adaptive control strategy for carrying out effec-
tive control of aeroelastic systems. Towards this end, a working basic model of the plant is
necessary that can be revised and updated by online, feedback estimation techniques. The
model should be such that it captures the essential dynamical features of the system without
sacrificing the simplicity, and without detracting from our main thrust, namely adaptive con-
trol. In order to build such an aeroservoelastic (ASE) model, we rely upon the fundamental
ideas in structures and aerodynamics as applied to lifting surfaces. The simplifying assump-
tions of causality, linearity and small perturbations are highly valued in building a basic ASE
model, and are applied wherever it is possible to do so. Such a baseline model is inapplica-
ble to situations where nonlinear effects become significant, such as at high flow incidence,
transonic and hypersonic speed regimes, and inelastic structural deformations. One must go to
great lengths in accurately modelling nonlinear aerodynamic and structural behaviour, often
requiring sophisticated computational models that are not amenable to repeated online calcu-
lations in a closed-loop ASE design process. However, as it is the task of the adaptive control
design methodology to compensate for the nonlinear effects, which are treated as uncertain but
measurable parts of the plant dynamics, a linearized baseline model is adequate as a building
block of the overall ASE system and serves as a benchmark for the synthesis of an adaptive
control law.

A companion monograph has been prepared by the author (Tewari 2015) as an introduc-
tion to the basic modelling techniques employed in ASE design and analysis. Therefore, the
discussion of this chapter only briefly covers the essential methods to be employed in deriv-
ing a suitable aeroelastic plant model. The reader will also benefit from a review of classical
textbooks on aeroelasticity, such as (Bisplinghoff and Halfman 1955, Fung 1955, Scanlan and
Rosenbaum 1951).

ASE analysis and design begins with a plant model that is simple and yet captures the
essential dynamical features. Linearity is an important requirement for a working plant model,
because it allows a quick closed-loop solution for control-law design. This is even more impor-
tant in case of adaptive control where iterative, closed-loop simulations are necessary. An ASE
plant model is based on linear structural dynamics and unsteady aerodynamics, both of which
can be described either by linear operational forms or integral equations. The baseline struc-
tural model is derived either by the Newtonian or the Lagrangian method and has aerodynamic

Adaptive Aeroservoelastic Control, First Edition. Ashish Tewari.
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forces and moments as the unknown driving functions of the generalized coordinates. Thus,
it is important to express unsteady aerodynamics either in a closed form, or by inversion of
simple integral equations. While an accurate aerodynamic modelling may require the solution
of nonlinear, partial differential equations (Navier—Stokes (N-S), Euler, full-potential or tran-
sonic small-perturbation equations), a working baseline model employs simplification of both
the governing equations and the boundary conditions. The compressible subsonic and super-
sonic modelling for the unsteady case requires the inversion of a pressure-upwash integral
equation. A simplified solution of the subsonic harmonic problem begins with the incompress-
ible limit, where the analytical solution is available in a closed form. The results of harmonic
motion can be extended to arbitrary motion by analytic continuation, and practically carried
out by Duhamel’s integral of indicial results or by transform methods.

3.1 Structural Model

Modern aerospace structures are of semi-monocoque type where the outer covering (skin)
shares a significant load with the internal members (spars, ribs, longerons, frames and bulk-
heads). Such a construction is not only necessary but also leads to an optimal combination of
light weight and high stiffness. Owing to the high stiffness of the skin panels, it is possible
to assume that the bending and torsion loads on the lifting surface do not cause an inelastic
stress—strain behaviour at any point. In fact, if the elastic limit is deemed to be crossed at any
location, the entire structure is assumed to have failed. However, an aircraft structure has a
much more stringent failure criterion than even the elastic limit. This is due to the fact that an
elastic buckling of the skin would cause an unacceptable deformation of the external shape,
leading to an extensive and off-design modification of the aerodynamic loads, and therefore
must not be allowed. Under static conditions, the lifting structure has a tensile load on the
bottom surface and a compressive load on the top surface, which situation, of course, alter-
nates under a dynamic loading. The structural failure is then typically analysed by testing for
the critical stress for elastic buckling of the skin panels under limit loads. This conservative
elastic buckling criterion not only leads to a safer structure but also simplifies the task of the
aeroservoelastician by assuming a linear load—displacement behaviour that also preserves the
cross-sectional shape. The post-buckling behaviour and dynamic aeroelastic analysis of indi-
vidual skin panels (panel flutter) require nonlinear structural modelling and are thus excluded
from our present scope.

3.1.1 Statics

Consider an aircraft wing modelled as a thin, elastic structure, with an unloaded and unde-
formed, mean surface described by S(x,y) = 0. Here (x, y) are coordinates running along the
mean surface. If the wing’s mean surface is approximated to be flat, these become the Carte-
sian coordinates. Suppose a concentrated, static load, P, is now applied at a point, (£, 7), on the
structure. Because P could be either a normal force, P!, a chordwise tangential force, P,
or any of the two moments, P, P®_ as shown in Fig. 3.1, it is called the generalized load
(or force). The static load will cause a structural deformation (subject to any geometric con-
straints) such that equilibrium is achieved. The resulting structural displacement at any given
point from the original (undeformed) shape can be represented by a linear combination of the
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Original shape
Deformed shape

Figure 3.1 Generalized loads and coordinates for structural modelling

normal deflection, ¢!, the chordwise deflection, ¢, the twist angle, ¢, and the warp angle,
g™, as depicted in Fig. 3.1. These displacement coordinates are called the generalized coor-
dinates (or displacements). Let ¢ be such a generalized coordinate at an arbitrary point, (x, y),
on the structure. Since the structure is assumed to be linearly elastic, the generalized load and
displacement are linearly related by

q(x,y) = R(x,y : &, mP(S. 1), (3.1

where R(x,y : &,n) is the flexibility influence-coefficient function (also called Green’s func-
tion). By applying linear superposition, Eq. (3.1) can be extended for the case of a continuous,
generalized load per unit area (either pressure or distributed moment), p(&, 1), as follows:

qx,y) = / R(x,y 1 & np(&, n)dédy. (3.2)
N

For ease of computation, the surface integral in Eq. (3.2) is discretized by considering only a
finite number of generalized loads and generalized coordinates. This is tantamount to approx-
imating a continuous (or infinite dimensional) structure by an equivalent finite dimensional
form. For example, the mean surface can be thought of consisting of n flat elemental panels
of individual dimensions, (A&;, An;),i = 1, ..., n. The load distribution on the jth panel is then
approximated by an average generalized load P; = p(&, m)A&;An;, acting at a given load point
(such as the panel centroid) in each panel. Slmllarly, the generalized displacement, g(x, y),
averaged over the ith panel is taken as g; at a given collocation point, (x;,y;),i = 1, ...,n. The
discretized load—displacement relationship is then given for the ith panel as follows:

ZRU i i=1,...N, (33)

where the upper limit of the indices (i, ) is N = 4n, indicating that there are four generalized
loads (and coordinates) at any given point (see Fig. 3.1). Then all the generalized displace-
ments at all the collocation points are collected and described by the following vector-matrix
equation:

{q} = [RI{P}, (34
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where SN
q1
{gy=1%1¢ 3.5)
qn
is the generalized coordinates vector,
P,
(py=1"21 (3.6)
Py
the generalized loads vector, and
Ry, Ry ... Ry
(R] = R:21 R:22 R?N 3.7)
Ryi Ryy oo Ryy

the generalized influence-coefficients matrix with N = 4n. A way of understanding the discrete
influence coefficient, Ry, is by visualizing the ith generalized virtual coordinate, é¢;;, caused
by an isolated generalized load at a given point, P;,

A virtual coordinate can be regarded as an arbitrary, infinitesimal variation in any of the four
possible directions (Fig. 3.1) at a given point due to an isolated generalized load, and must be
compatible with any geometric constraints on the structure. The actual generalized coordinate,
g;» 1s a sum of all the virtual coordinates, 6¢;;, corresponding to the generalized load, P;, and
is given by the ith row of Eq. (3.4),

N N
;=Y. 6q;= ) R;P;. (3.9)
j=1 j=1

Hence, the discrete influence coefficient, R,-j, is the ith virtual generalized coordinate due to
the jth unit generalized load. The reciprocal principle states that the ith virtual coordinate due
to the jth unit load is the same as the jth virtual coordinate caused by the ith generalized load,
that is,

R, =Rj, (3.10)

) Jt

which implies that the matrix [R] is symmetric.

Equation (3.4) predicts the generalized displacements caused by a general static loading.
However, it should also be possible to determine the generalized loads from the generalized
displacements they actually produce. This requires an inversion of Eq. (3.4) as follows:

{P} =[Kl{q}. (3.11)

where [K] = [R]~! must exist and is called the generalized stiffness matrix of the structure.

Thus, both [R] and [K] are nonsingular, symmetric matrices. An element, k;;, of [K] is called
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the stiffness coefficient and can be considered the ith generalized virtual load due to the jth
unit generalized displacement. The work done by a generalized virtual load,

in producing a generalized displacement, g;, at a point is given by

1, 1

When summed over all points on the structure, the net work done by all the static forces is the
total strain energy stored in the structure, derived as follows:

U=, Uy= 3PV (g} = 3a)"TKI{g). (3.14)

i=1 j=1

The potential (strain) energy is responsible for restoring the structure to its original shape once
the loading is removed, and its quadratic form is an important consequence of the linearly
elastic behaviour. Since the external forces must be balanced by equal and opposite internal
forces for a static equilibrium, one can regard U as the net work done by the internal, restoring
(or conservative) forces.

By making simplifying assumptions for a typical aircraft, the number of generalized coor-
dinates (hence the dimension, N, of the matrix [K]) can be significantly reduced. For example,
most aircraft structures can be assumed to have chordwise rigidity, which results in chord-
wise cross sections remaining plane. Thus, the warp angle, ¢, can be neglected at all points.
Furthermore, for a lifting structure, the chordwise deformation, q(z), can be neglected in com-
parison with the normal deflection, q(l), because of the following reasons: (i) the chordwise
component of the aerodynamic force (drag) is an order of magnitude smaller than the normal
force (lift) and (ii) the chordwise bending stiffness of the wing is an order of magnitude larger
than that in the normal direction. The overall consequence of the above assumptions is an infi-
nite stiffness in the chordwise direction, which enables discarding the rows and columns in [K]
corresponding to the coordinates ¢® and ¢¥. When a control surface is present, its deflection
is modelled simply by a rotation angle about a rigid hinge axis.

Structural modelling is further simplified for a typical aircraft wing of high aspect ratio and
a small thickness ratio, wherein shear deformation is neglected and the vertical displacement,
w(x, y), can be represented at any point by the normal deflection, ¢, and the twist angle, ¢,
both of which are functions of only the spanwise location, y:

w(x,y) = ¢V ) = x¢P ). (3.15)

3.1.2  Dynamics

For a dynamic loading on the structure, it is necessary to consider not only the potential (inter-
nal) energy, U, but also the net kinetic energy, T, as well as the work done by non-conservative
forces, W,,. The motion is completely described by the generalized coordinates vector, {g(?)},
measured in an inertial frame, and its time derivative, {g(¢)}, for which we can write

T'=T{q}. {q}). (3.16)
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The generalized coordinates now represent the degrees of freedom (d.o.f.s) of the dynamic
motion. Before proceeding further, it is necessary to split the generalized force vector into
conservative and non-conservative parts, {Q.(¢)} and {Q,, (1)}, respectively:

{0} =1{0.1({qD) +{Q,}({q}. {g]). (3.17)

By definition, the conservative force is a function only of the generalized coordinates, while
the non-conservative force can also depend upon the time derivatives of the generalized coor-
dinates. Since the elastic stiffness creates a restoring internal force given by Eq. (3.11), itis a
conservative force. For a linear structure, the generalized forces created by viscous (Rayleigh)
damping effects are proportional to {g}, and are therefore non-conservative forces. Finally,
the generalized, unsteady aerodynamic forces given by the vector {Q,} are non-conservative
in nature. Thus we write

{0.} =-[Kl{q}
{0,) =-[Cl{q} +{Q,} (3.18)

where the negative sign indicates an internal (opposing) force, [C], is the generalized damping
matrix comprising the viscous damping coefficients, and {Q,} can have a nonlinear relation-
ship with the generalized coordinates and their time derivatives. By Newton’s second law of
motion applied to the discretized structure, we have

(M{g} = {Q} = —[KI{q} — [CH{g} +{Q,}, (3.19)

or
(MI{q} +[CHq} +[Kl{q} = {Q.} (3.20)

where [M] is the generalized mass matrix representing the individual masses and moments of
inertia corresponding to the various d.o.f.s.

One can alternatively adopt an energy approach to derive Eq. (3.20). For achieving an
arbitrary, infinitesimal generalized displacement, 6¢;(¢), Hamilton’s principle requires that of
all possible trajectories, the correct one is that which minimizes the net mechanical energy,
(T = U+ W,). This statement is given in the variational form by the necessary condition,

g/U:U+me=/5a—wm+/$mm=Q (3.21)
where 6(.) represents the variational operator,
< OT . L oT
oT = —0q; + —0q;, (3.22)
; og; ' oq;
< oU
U= a—é{_éqi (3.23)

and

N
5W, = )" 0,,64;. (3.24)
i=1



Aeroelastic Modelling 93

Since the initial virtual displacement must be 0, 6¢g,(0) = 0, integrating the first term of kinetic
energy variation, Eq. (3.22), by parts yields the following expression:

oT .. d [ oT
—6g.dt = — — | — ) 6g.dr, 3.25
/ 23,7 / dt<04i> L -2

which substituted into Eq. (3.21) produces the well-known Lagrange’s equations:

d (dT oT  oU
dr

Z)V-E4+Z= =0 . (=1,...,N). (3.26)
a‘]i a%’ aqi "

For a linearly elastic structure, the potential and kinetic energies are expressed as follows:

U= %{q}T[K]{q}

7= @) Mg, (3.27)

thereby yielding

d oT '\ _ .
E <m> =[M]{g}

oT
a{q} )
oU
) [K1{q}. (3.28)
Thus, substituting Eq. (3.28) along with the second of Eq. (3.18) into Eq. (3.26) yields the
equation of motion, Eq. (3.20).

Much of the effort in structural modelling involves the derivation of the generalized mass,
stiffness and viscous damping matrices by an appropriate discretization scheme and the sepa-
ration of the generalized coordinates into spatial and time-dependent parts. The various tech-
niques commonly applied for this purpose are the finite-element method (FEM) (or Galerkin
method), the assumed-modes method (also known as either the Ritz or Rayleigh—Ritz method)
and the boundary-element method. Of these, FEM is the most popular because of its ease of
implementation; it is also quite efficient in terms of model size for a given accuracy. Further
details about the FEM can be found in Tewari (2015).

Often, a much simpler structural model can be applied for aeroelastic purposes, that is, the
lumped-parameter approach based on a typical section. This is the topic of the next section.

3.1.3  Typical Wing Section

An aircraft wing is a thin structure cantilevered at the root, with the span generally much larger
than the average chord (Fig. 3.2). Since our interest is in exercising ASE control, we are mainly
concerned with wings of large aspect ratio (span/chord), which can be regarded as more prone
to ASE instabilities rather than those of smaller aspectratio. A large aspect-ratio wing has
a clearly defined elastic axis (e.a.) as the line joining the shear centres of all cross sections
(Fig. 3.2). The line joining the centres of mass (c.m.) at each chordwise section is called the
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Figure 3.2 Schematic diagram of wing semi-span and the typical chordwise section

inertia line and affects the natural frequencies of the structural modes. The net aerodynamic
loads at each chordwise section essentially act at a point different from the shear centre. This
point is called the aerodynamic centre (a.c.) and is defined as the location about which the
pitching moment is invariant with the angle of attack. Thus, the net effect of aerodynamic
loading per unit span of the wing is a concentrated pitching moment, a lift force and a drag
force, all applied at the a.c. The drag is much smaller than the lift, and therefore has a negli-
gible aeroelastic contribution as explained above. Owing to the offset of the line joining the
a.c.s from the e.a. (see Fig. 3.2), there is a net spanwise bending moment, a vertical shear load
and a torsional (or twisting) moment at each spanwise location. The bending and twisting pro-
duced at each spanwise location cause a vertical translation (plunge), a rotation (pitch) and a
negligible shear deformation. If a control surface is also present, the control-surface rotation is
the third d.o.f at a given section. It has been shown (Theodorsen 1942) that for a wing without
a large sweep angle or concentrated masses, one can reasonably approximate the aeroelas-
tic motion as consisting of pitch, plunge and control-surface rotation at a reference spanwise
location, y. This results in the typical-section approximation of a wing, which is quite popular
in classical aeroelasticity (Bisplinghoff and Halfman 1955, Fung 1955) because it allows the
calculation of three-dimensional, dynamical properties by considering only two-dimensional
aerodynamics.

Since airplanes are constructed to have chordwise rigid wing sections, deformation at any
point along the span can be described by a linear combination of spanwise bending of and
torsional deflections about the e.a. At a particular spanwise location, the wing deformation is
therefore represented by a vertical downward deflection, &, (plunge) of the e.a., and twist, 0,
(pitch) about the e.a., defined positive in the nose-up sense. A thin wing of high aspect ratio
cantilevered at the root (Fig. 3.2) has the following partial differential equations governing
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its deformation:

0*h 0%0 0*h

— +S,0)— +EI(y)— =P(y,t
my) =3 + 50073 (6)) o . 7)
502 110020 _ G2l — 3.29
5z L0 55 — 6O P Y0 1), (3.29)

where P is the plunge force applied at the e.a., M, the twisting moment about the e.a., m, S, I,
denote the inertial properties per unit span, EI is the bending stiffness and GJ the torsional
stiffness at the given station. These equations can be alternatively expressed in terms of a
coordinate running along the swept e.a., y’ = ysecI', where I is the sweep angle of the e.a.
(Fig. 3.2). In such a case, the typical section is to be taken normal to the e.a. and all the quan-
tities in the chordwise direction are similarly transformed.

The structural mounting of a control surface on a hinge results in high chordwise, as well
as spanwise rigidity. Hence, its deflection is idealized by a single rotation angle, f#, about
the hinge line, defined positive for the downward rotation of the trailing edge. The external
forces and moments driving the d.o.f.s are the plunge force, P,, applied downward at the e.a.,
the nose-up pitching (twisting) moment, M, acting about the e.a., and the hinge moment,
H,, causing a downward rotation of the control surface about its hinge line. The d.o.f.s at
a given spanwise location can be considered independent of those at another location in the
typical-section model for a high-aspect-ratio wing. This implies applying a lumped-parameter
approach to Eq. (3.29). Such a model is generally valid, except for very thin structures of
small aspect ratio, which have a significant chordwise bending, and for thick wings having a
significant shear deformation in bending. The bending stiffness at the given spanwise location
is modelled by linear spring stiffness, k;,, while the stiffness in torsion and control-surface
d.o.f.s are described by the rotational spring constants, k, and k;,, respectively, as shown in
Fig. 3.3. These stiffness constants are assumed to be sufficiently large such that the vertical
displacement, A, is small relative to the sectional chord, 2b and the angular displacements, 0,
are also small.

In order to be a typical section, the reference spanwise location must be carefully selected
such that the in vacuo natural frequencies of the wing’s predominant structural modes (primary
bending, primary torsion and primary control deflection) match with the corresponding modes
of the typical section (plunge, pitch and control rotation, respectively). Usually, either the 70%
semi-span location from the wing root or the mid-span location of control surface is taken to
be the typical section for a straight wing without concentrated masses. Consider the typical
section detailed in Fig. 3.4. The three d.o.f.s are considered to be the generalized coordinates
h (plunge), 6 (pitch), and f (control-surface deflection angle). The wing is originally in a static
equilibrium, moving in the horizontal direction' with a constant speed U, and then encounters
small perturbations (%, 8, ). Thus & is the vertically downward displacement of the e.a. from its
equilibrium position, 6 gives the rotation of the chord line about the e.a. (considered positive
nose-up as shown in Fig. 3.4), whereas f is the angle between the chord lines of the wing

VIf the flight direction is normal to the span, y, and the typical section is normal to the e.a., y’, then the effective
freestream speed seen by the section is U cosI'.
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Figure 3.3 Lumped-parameter model of a wing with structural degrees of freedom at a typical spanwise
section taken normal to the elastic axis
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Figure 3.4 Schematic diagram of the typical wing section

and the control surface (positive with the trailing edge down). The mid-chord point of the
wing is used as the datum for measuring the chordwise distances, positive towards the trailing
edge. The chordwise coordinate x runs along the direction in which the typical section is taken
(i.e. normal to either y- or y'-axis) The location of wing leading edge is x = —b, and that of
the trailing edge, x = b, where b = ¢/2, the wing semi-chord. The chordwise locations of the
e.a., the a.c., the c.m. and the control-surface hinge-line are x = x;,, x = x,,, x = x,, and x = x,,,
respectively.

The structural damping is generally considered negligible in comparison with aerodynamic
damping. The generalized forces corresponding to the d.o.f.s must be calculated from the
aerodynamic loads shown in Fig. 3.4. These are £ (lift), M, (zero-lift pitching moment)
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concentrated at the a.c. and H{ (hinge moment) acting at the hinge-line. The equations of
motion are derived by the Lagrange’s equations as follows, using the generalized coordinates
{q} = (h,0, p)T. The net potential (strain) energy and kinetic energy are given by

U= % (kyh* + ko0 + kyp*)

rd [l an= g [ o) P} [ o) 0 (o) o
> . 5/ " > - h c

b X
= 5 [+ 1067 + 137 + 25460+ 25,6+ 2 (3.~ 3,) 5,00 (330)
where ,
Iy = / (x = x,) dm (3.31)
—b

is the moment of inertia of the wing about the e.a.,

b
Iy = / (x—x.)’dm (3.32)

c

is the moment of inertia of the control surface about its hinge line,

nglb (x—xh)dmzm(xm—xh)

b
Sp= [}: (x—xc) dm =m, (xmc —xc> (3.33)

with m, being the mass of the control surface and x,, its c.m. By substituting Eq. (3.30) into
Eq. (3.159), we have

d [ oT . So 5 %’-
a<m>=[M]{q}= S, I, (xe = x4) S5 |4 €
Sy (xe—xy) S, I B
oT
m=[0]
. k, 0 0)]|n
m:[l{]{q}: 0 k, 0fq6¢. (3.34)
0 0 ky)|P

Thus the mass and stiffness matrices are symmetric, and the structural dynamical system is
linear. The generalized loads vector on the structure is due to unsteady aerodynamics and can
be expressed as follows:

—L(0)
{Q,(0} = s Mo() + (x;, —x,) L(O) ¢ - (3.35)
H(t)
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Since structural damping has been neglected, { O, } is the only non-conservative force acting on
the structure. The aerodynamic loading, (£, M, H), is a function of the flow speed and den-
sity, as well as the control-surface deflection, f. In addition, the lift, £, and hinge moment, H,
also depend upon the flow incidence (called the geometric angle of attack), which is defined as
the angle made by the chord with the air flow far upstream of the wing (called the freestream).
The geometric angle of attack at a given point is related to the freestream flow component
seen normal to the wing, w (called the upwash), which, in turn, is a function of the generalized
coordinates £, 0, . For example the local angle of attack at the a.c. is given by?
W h+ (x, —x,) 0

~ — =0+ ——F, 3.36
a U (3.36)

o0

where U, is the speed of the uniform, relative air flow far upstream of the wing (freestream
speed) (Fig. 3.4). Furthermore, the location of the a.c. can be a function of freestream flow
properties. For a thin airfoil, the wing’s a.c. in subsonic freestream is near the quarter-chord
location (x, = —b/2) and moves to the mid-chord point (x, = 0) for a supersonic freestream.
It may thus be appreciated that there is a complicated relationship between the generalized
coordinates and the generalized loads on the structure. The rest of the chapter is concerned
with how such a relationship can be modelled by the use of aerodynamic concepts.

3.2 Aerodynamic Modelling Concepts

The modelling of generalized unsteady aerodynamic forces, {Q,(#)}, resulting from an arbi-
trary motion, {q(#)}, is a complex undertaking, generally requiring computational fluid dynam-
ics (CFD) solutions. However, in many cases, it is possible to approximate the dependence of
unsteady airloads on the motion variables by a linear operational relationship,

{04} =[FIdgD, (3.37)

where [F](.) is the aerodynamic operator matrix. Whenever such a relationship exists, the
design and analysis of an ASE system can be carried out in a systematic manner. Furthermore,
problems of a more complex geometry can be analysed by linear superposition of elemen-
tary solutions. In this section, we focus on such flow situations where unsteady aerodynamic
modelling is possible by Eq. (3.37), which can be regarded as the baseline aerodynamic model.

As discussed later, the linear relationship of Eq. (3.37) is typically derived for a wing from
the following integral equation by applying linear superposition of elementary (flat-plate) solu-
tions to a governing partial differential equation of unsteady aerodynamics:

WG, 1) = / K[y : &m).1] Ap (& n, 1) dédn, (3.38)
S

where Ap is the pressure difference distribution between the upper and lower surfaces
of the wing and w denotes the normal (z-component) flow (the upwash) experienced at
the wing’s mean surface, S(x,y) = 0 (Fig. 3.1). The kernel function (or Green’s function),
K[(x,y : & n),t], represents the influence coefficient of downwash induced at collocation

2 In a steady flow, we have a ~ 6, which is why most textbooks on aeroelasticity use the two angles interchangeably.
However, we distinguish the angles a and 6 here, because we are mainly concerned with unsteady flow.
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point (x,y) due to a unit discrete pressure load acting at the load point (£, 7). The similarity
between the linear load—deflection relationship of Eq. (3.2) and the pressure-upwash integral
equation, Eq. (3.38) is to be carefully noted. This integral equation has to be solved for
the unsteady pressure distribution (hence {Q,(#)}) on the wing due to a prescribed upwash
distribution resulting from the structural motion, {g(#)}, which is applied as an unsteady
boundary condition. The main advantage of linear modelling is that the solution can be
superimposed on the steady-state solution of a wing with thickness and camber. Thus the
linear coupling between structural dynamics and unsteady aerodynamics [Eq. (3.37)] is clear.

Since our focus is on developing adaptive ASE techniques, we confine the discussion of the
aerodynamic model to two-dimensional (2-D) flow over a typical wing section (see Fig. 3.4) in
the interest of simplicity. Such an approach of neglecting spanwise (y-component) flow varia-
tions at a given cross section is called the strip-theory, and is quite valid for high-aspect-ratio
wings, which are the most prone to aeroelastic instabilities. The extension of the approach to
three-dimensional (3-D) aerodynamics only adds a spatial variable to the governing equations
without essentially changing their character.

3.2.1 Governing Equations for Unsteady Flow

The basic governing equations of unsteady fluid dynamics are the N-S equations (Tewari
2015), which are derived using the principles of conservation of mass, momentum and energy.
N-S equations must be solved if one needs to accurately model viscous flow effects, such as
flow separation, turbulence and shock-wave/boundary-layer interaction. However, N-S solu-
tions generally require highly sophisticated, memory intensive, iterative numerical techniques,
even for steady flows over simple geometries. Their application to aeroservoelasticity involv-
ing a rapidly changing flowfield due to a dynamically deforming boundary is practically ruled
out. Therefore, one always looks for reasonable approximations by which the unsteady N-S
equations can be simplified. Since the viscous effects are of secondary importance in aeroe-
lastic deformation of wings (unless large areas of separated flow originally exist in the unde-
formed case), one can often drop viscosity and thermal conductivity from the N-S equations,
leading to the following inviscid Euler equations:

p) ém ow

0 | pu d Jpu-+p d puw

— + — + — ={0 3.39

ot |pw( " ox ] puw az o +p (= 0 (539)
e u(e +p) w(e +p)

Here e = h — p/p is the specific internal energy. For the normal aircraft flight, air is assumed
to be a perfect gas, which enables the following relationships among the thermodynamic
variables:

p = pRT (State) (3.40)
h=ec,T, (3.41)

where R is the specific gas constant and ¢, the constant-pressure specific heat. Equations (3.40)
and (3.41) yield the following thermodynamic relationship:

o 1y s
p= 1)[e 2(u +w)], (3.42)
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where
y=—=- (3.43)

is the specific heat ratio.

In principle, Euler equations are much simpler in form than the N-S equations, but they
retain the nonlinear character of the latter. They can capture the most essential unsteady aero-
dynamic phenomena that are necessary for practical ASE models. These include pressure
distributions due to moving boundaries and shock waves. The isentropic shock wave rela-
tions are solutions of Euler equations. Thus it is not necessary to model shock waves sepa-
rately as they arise naturally out of Euler solutions. However, Euler solvers do require certain
degree of care and complexity. The typical unsteady Euler solver is based on a time-marching,
finite-difference (or finite-element/finite-volume) procedure, such as explicit (MacCormack,
Lax—Wendroff) or implicit (ADI) methods (Tannehill ez al. 1997). The primitive flow variables,
u, w, p, e, must be solved in an iterative manner over a computational domain discretized into a
large number of grid points for a realistic problem. Furthermore, the convergence and stability
of an Euler solution algorithm are problematic because of the non-dissipative nature of the
inviscid momentum flux terms, particularly so if strong shock waves are present in the flow-
field. This typically requires the introduction of artificial viscosity (or entropy condition) into a
solution procedure. Even more importantly, Euler equations have non-unique solutions, which
must be resolved by a proper application of the tangential boundary condition on the solid sur-
face. This is termed closure and typically takes the form of Kutta—Joukowski condition at the
trailing edge which determines-circulation around an airfoil. Another problem is the genera-
tion of body conforming grids for the Euler solver when the solid boundaries and shock waves
are moving, as in an unsteady application. Therefore, much of the advantage of simplified gov-
erning equations is lost in having to devise a sophisticated numerical scheme. The unsteady
Euler equations are thus of limited utility in ASE modelling and must be simplified further.

3.2.2  Full-Potential Equation

Further simplification of the governing Euler equations is possible by defining the specific
entropy, S, as an additional thermodynamic variable through the following Gibbs’ relation:

TdS = dh — Ldp. (3.44)
p

Entropy is a measure of disorder in the flowfield, which, by Gibbs’ relation, is seen to increase
with heat transfer (enthalpy gradient, d&) and the presence of strong shock waves (large pres-
sure gradient, dp). When substituted into the Euler momentum equations, the Gibbs’ relation
along with the continuity equation, yield the following important result, called the unsteady

Crocco’s equation:

T{V}S+{V}X{Q}={V}h0+%, (3.45)

where {V} = (u,w)7 is the velocity vector,

{Q} =—{V} x{V} (3.40)
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is the vorticity vector (a measure of rotation in the flowfield),
a(.)/ox
{(ViO)= / (3.47)
0(.)/0z

is the gradient operator and
h0=h+%(u2+w2)=h+%{V}-{V} (3.48)

is the stagnation enthalpy. If the flow is steady, adiabatic (/, = const.) and irrotational ({Q} =
{0}) at all points, then Crocco’s equation implies a constant entropy flowfield (isentropic flow).
The condition of irrotational flow requires that the velocity vector must be the gradient of a
scalar function, @, called the velocity potential:

3 _Jodfox| [,
{V}_{V}q)_{dtb/dz}_{CI)Z}' (3.49)

However, even if the flow is unsteady, it can still be isentropic as long as it is irrotational and
the following condition is satisfied by the velocity potential:

0P

=—— =-0,. 3.50
0 o / (3.50)
This can be verified by substituting Egs. (3.48)—(3.50) into Eq. (3.45). For an isentropic flow
of a perfect gas, Eqgs. (3.42)—(3.44) imply that

% — const. (3.51)

Isentropic flow is a special case of barotropic flow in which the pressure is a function of the
density only. The momentum equation of such a potential flow can be directly integrated in
order to yield the following unsteady Bernoulli equation:

V2 dp

O, + — +

0. 3.52
> 5 (3.52)

The speed at which infinitesimal pressure disturbances move in an otherwise undisturbed
medium is called the speed of sound, which for a perfect gas is given by the following isentropic

relation:
= \/yRT. (3.53)

isentropic

_9p

a =
dp

The non-dimensional flow parameter governing the compressible flow is the Mach number,
M, defined as the ratio of flow speed, U, and the speed of sound,

uw24+w?2 Uy
a a’

(3.54)

Aeroelastic problems are concerned with an essentially steady flow far upstream of a dynam-
ically flexing wing. Let the subscript co denote the steady-flow conditions far upstream that are
unaffected by the unsteady flow in the wing’s vicinity. Then the freestream Mach number is
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given by M, = U /a,,, and the isentropic flow conditions produce the following interesting
relationship for density variation:

) )
L=<l> - [(y_l) (—2cI>t—U2)]

2
2ag,

2 1/(r=1)
={1+(r;1)M§° lp%-(#)]} . (3.55)

Of course, Eq. (3.55) requires that the flow far upstream should be steady, that is, (®,),, = 0.
By substituting Eq. (3.49) into Eq. (3.55), we have the following form of unsteady Bernoulli
equation:

1/(r=1)
p =1, 1 2 2
E_{l+ 5 M, 1—U—go(q>,+c1>x+c1>z) . (3.56)

Substitution of Eq. (3.49) into the continuity equation, the first equation of the set Eq. (3.39),
yields
ptp @, +pO  +p, @, + pP, =0. (3.57)

Then by substituting Eq. (3.56) into Eq. (3.57) and carrying out the partial differentiations of
p, the following full-potential equation (FPE) governing the inviscid, isentropic flow can be
derived:

(> @)D + (> - D)@ =D, +2 (DD, +D.D,) +20,D.D (3.58)

X = xt zza X Tz 7Tz

where a is the local speed of sound. It is interesting to note that the FPE, Eq. (3.58), can be
alternatively expressed as follows (Garrick 1957):

1 D’®
V2o = TR (3.59)
where . 5 2
VO ={V}-{V}O) = ﬁ(-)+ 0_12(') (3.60)
is the Laplacian operator and
20=20+ (V)V} (3.61)

is the Eulerian (or material) derivative representing the time derivative seen by a fluid particle
convecting with the flow at the local velocity {V}. Equation (3.59) is the governing wave
equation of acoustics, with the rate of wave propagation a. Hence, merely by transforming
the spatial coordinates’ from a body-fixed frame to a frame convecting with the flow, we have

31t can be verified that Eq. (3.59) is alternatively expressed as follows:
1
Pez + P = P>

where the fluid-fixed coordinates (&, {) are obtained from the body-fixed coordinates (x, z) by the following Galilean

transformation:
El_Jxl
{ep-{h-m
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established an equivalence between potential unsteady aerodynamics and acoustics. This is an
important result, which is quite useful in analysing and solving the FPE.
Another interesting aspect of potential flow is the acceleration potential, ¥, which is related

to the velocity potential as follows:

D® o0d

Dr = or {V}i-{V} (3.62)
which, by the integrated form of the Euler momentum equation (unsteady Bernoulli equation)
can also be expressed as
dp
=

Y= (3.63)
Clearly, the acceleration potential is directly related to the pressure difference and provides an
alternative description of the potential flowfield. We shall return to acceleration potential later
in the chapter.

The full-potential formulation is a practical alternative to Euler equations because, in order
to completely determine the flowfield, one has to solve only for the velocity potential, @(x, z, 1),
rather than each of the primitive variables, u, w, p, e, of Euler equations. However, while Euler
equations can be applied to non-isentropic flow caused by strong shock waves, the FPE is
valid only for isentropic flow. The nonlinear nature of the FPE makes it almost as formidable
to solve as Euler equations, although the number of dependent variables is reduced to one.
The absence of viscous dissipation calls for artificial viscosity and tangential flow conditions
for closure, as in the case of Euler formulation. The main utility of the FPE formulation is for
nearly isentropic, transonic flows where weak, normal shock waves are present, and for which
Euler equations are unnecessary. As discussed below, a major simplification of the FPE is
possible for transonic small-disturbance (TSD) problems, where the boundary conditions can
be applied on a mean surface rather than the actual moving boundary. Furthermore, in subsonic
and supersonic regimes, the FPE can be effectively linearized for thin wings undergoing small
amplitude motions.

In order to check the applicability of the FPE to transonic speeds, consider the following
normal shock relation for entropy gradient at upstream Mach number close to unity, M =~ 1:

on 3y +120 5.6

In the limit M, — 1, the entropy variation becomes negligible across the shock wave, and an
isentropic condition prevails, thereby enabling the application of the FPE. But the momentum
is not exactly conserved in the presence of a normal shock wave, however weak it may be.
Thus the validity of the FPE for transonic flows with weak shock waves is only approximate,
but can give a reasonable model for ASE purposes.

Solution procedures for the FPE are essentially based on an iterative finite-difference
approach, although Green’s function integral solution of the boundary-value problem is
also possible (Tewari 2015). In the unsteady case, the FPE is hyperbolic in nature for all
speed regimes, hence a time-marching scheme can be adopted (as in a typical unsteady
Euler solver). However, for the steady-state problem, the FPE and Euler equations change
their character from being elliptic in the local subsonic region to hyperbolic in the super-
sonic region. Therefore, in a transonic steady-state application, a special treatment of the
mixed elliptic/hyperbolic behaviour is required when locally supersonic regions (normal
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shock waves) are present in the flowfield. This is either carried out by a switching (or
type-dependent) procedure when the coefficient of the @, term changes sign (Murman 1973)
or by spatial upwinding techniques (Hafez et al. 1979, Holst and Ballhaus 1979) for density
computation in a conservative form. As in the case of Euler computations, there is also the
need for the introduction of artificial viscosity/entropy for avoiding physically unrealistic
solutions (Osher et al. 1985). Furthermore, special treatment of circulation at the trailing edge
and the wake is also necessary (Steger and Caradonna 1980) for closure, as in the case of
Euler equations. Fortunately, a typical ASE application involves small amplitude motion of
thin lifting surfaces, which quite significantly simplifies the full-potential model.

3.2.3  Transonic Small-Disturbance Equation

Aircraft geometries are streamlined for dag minimization such that the cross-flow (lateral) vari-
ations in the flow variables caused by the body thickness are small compared to those along the
freestream (longitudinal) direction. The velocity potential is thus only slightly changed from
its freestream value. This fact offers a major simplification in the governing equations called
the small-disturbance (or small-perturbation) approximation. Consider a two-dimensional air-
foil with the x-axis along the relative freestream of speed U, and the z-axis normal to it. The
net velocity potential is then regarded as a linear superposition of the perturbation velocity
potential, ¢, over that of the freestream:

®=U,x+¢, (3.65)

which results in the velocity components

oD L0
" ox ot W 0z
When Eq. (3.65) is substituted into the FPE, Eq. (3.58), with the small-perturbation
assumptions,

¢ (3.66)

o, < Uy ¢, < Uy (3.67)

and
o <a; ¢, <Ka, (3.68)

one can safely neglect second- (and higher) order terms involving ¢, and ¢,, and third-order
terms involving ¢,. However, the second-order term involving ¢, must be retained for accu-
racy in the transonic limit, U + ¢, ~ a, at which weak normal shock waves may be present
(Landahl 1961). With these approximations, the FPE is approximated by the following TSD
equation:

,  (r+ DML 2MZ% M%)
1 -Mg - U—d)x d)xx + d)zz = U—d)xt + U—z(i)n. (3.69)

The main utility of the TSD equation is its applicability in the unsteady, transonic limit,
M, ~ 1, for which its essentially nonlinear character cannot be neglected. However, it is much
simpler to solve than the FPE, because the unsteady boundary conditions can be applied on
the mean surface (rather than the actual boundary) of the thin wing.
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A practical simplification of the TSD equation is called the low-frequency limit (Landahl
1961), for which the term involving ¢,, can be neglected, leading to the following:

,  (+ DM _2M,
1M = T bt b= 2 (3.70)

The applicability of the low-frequency transonic small-disturbance (LFTSD) approximation,
Eq. (3.70), requires that the largest characteristic frequency, @, governing the unsteady motion
must be sufficiently small such that

0 <K & (3.71)

b

where b is a characteristic length. Typically, b is taken to be the mean semi-chord of the
wing and @ the largest elastic modal frequency (bending, torsion or control-surface rota-
tion) that can influence the flowfield. In terms of these parameters, Eq. (3.70) can be rendered
non-dimensional as follows:

[1 =M% — (v + DML B bee + e = 2kME s, (3.72)
where the non-dimensional variables are given by

¢ wb
— k= —. 3.73
U,b U ( )

oo

ég:x/b, C=Z/b, T = tw, d_)=

The reduced frequency, k, is a similarity parameter of the unsteady flow in addition to the Mach
number, M. In the low-frequency limit, we have k < 1. Solution of the LFTSD equation is
usually carried out by finite-difference techniques which are quite similar to (but much simpler
than) those required for the FPE. Being based on an iterative solution of the linearized equation

(1= M2,) es + b = 2kMZ ... (3.74)

by an approximate factorization approach (Ballhaus and Steger 1975), the LFTSD equation
is the simplest nonlinear unsteady aerodynamic model. Its solution can be derived iteratively
through a linear governing equation, which is essentially the aim of an adaptive ASE design.
Therefore, it is envisaged that the low-frequency TSD equation will be the crux of future devel-
opments in transonic ASE modelling and control.

When all the nonlinear terms are dropped from the TSD equation, the result is the linearized
compressible flow equation governing the potential subsonic and supersonic flows. The various
governing equations of unsteady aerodynamics in the increasing order of approximation are
summarized below for a two-dimensional, inviscid flow:

1. Euler:
d{F} N ol fi} N o[}

ot ox 0z

= {0}
with
{F} = {p, pu, pw, pe}
{fe} =u{F} +{0,p,0, pu}
{2} =w{F}+{0,0,p,pw}

__P 1 o 2
e——y_l+2p(u +w?).
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2. Full Potential:

[a2 - (Uoo + (I)x)z]q)xx + (a2 - (I)g)q)zz - 2(Uoo + (I)x)(q)zq)xz + (I)xz) - Z(qu)zt - (I)” =0
with 1
L= —(-1) [Umd>x+§ (02 + @2) +q>,].

3. Transonic Small Disturbance (TSD):

[+ Uoo X XX &4 Uoo Xt U2 1t .

4. Low-Frequency Transonic Small Disturbance (LFTSD):
2

+1 M2,
1 (1450, )| w20 =0

5. Linearized Subsonic/Supersonic:

5 M, M
(1 - Mm) bux t &2~ 2U_¢xt - U_2¢tt =0.

3.3 Baseline Aerodynamic Model

As discussed above, we require a linear unsteady aerodynamic model to serve as a baseline for
designing adaptive ASE control laws. In effect, we are interested in linear operator relationship
of the kind given by Eq. (3.162). The governing equation of such a model in terms of the
disturbance velocity potential is derived from the TSD equation by neglecting the nonlinear
term in Eq. (3.69), resulting in the following linearized equation:

2 2Moo 1
(1 - Moo) ¢xx + ¢zz = a_(bﬂ + aTd’m (3.75)

(o]

which can be expressed as the following wave equation:

D2
V2 = a% D_t‘f , (3.76)
where
D| . _ 0 Uy 9 0
Ds c>o(-) = E('H_ { 0 } AV3iO) = at(~)+ Us aX(-) (3.77)

is the Eulerian derivative representing the time derivative seen by an observer moving with the
freestream velocity (U,,,0)”. Note that the wave propagation speed in Eq. (3.76) is a,,, the
freestream speed of sound, rather than a, the local speed of sound in Eq. (3.59). Evidently,
the effect of linearization on the FPE is to make small disturbances due to the body spread
out at a constant speed in all directions relative to the freestream. Of course, this does not
allow the presence of any shock waves in the flowfield. The same linear governing equation



Aeroelastic Modelling 107

is satisfied by the disturbance acceleration potential, y, which is related to the disturbance
velocity potential by virtue of Eq. (3.62) as follows:
D¢ J¢ 99
=5, oo(.) = + U, po (3.78)

Equation (3.75) is accurate at subsonic and supersonic speeds, but cannot be applied to the
transonic regime where the nonlinear TSD equation must be solved. Being a linear equation,
Eq. (3.75) possesses the important property that its solution to arbitrary boundary conditions
is a linear superposition of elementary solutions corresponding to much simpler boundary
conditions. Such elementary solutions can be source doublets distributed over a solid boundary
on which the flow tangency and Kutta condition at the trailing edge are to be satisfied (Garrick
1957).

The boundary conditions in terms of the disturbance velocity potential can be posed as
follows (Garrick 1957):

1. The flow is uniform (undisturbed) far upstream of the body,
¢$(—00,7,1) =0, (3.79)

and perturbations remain bounded at infinity.

2. Pressure is continuous across the wake. The small perturbation causes a planar wake that
always lies in the mean wing plane. The vorticity of the wake, along with the bound circu-
lation around the wing, satisfies the conservation of vorticity in the potential flowfield.

3. Viscous effects, although unmodelled, are assumed to be just large enough to cause a
smooth flow tangential to the mean wing surface at the trailing edge. This assumption
is called the Kutta condition, and allows inviscid flow modelling without the attendant
problem of non-unique solutions. Its physical validity, however, is questionable when the
reduced frequency, bw/U_, becomes large. In a typical aeroelastic application with small
amplitude, low-frequency oscillations, the Kutta condition is widely held to be valid.

4. The flow is tangential to the impervious, solid boundary. This implies that a flow particle in
contact with the body must follow the instantaneous surface contour of the dynamic body,
which can be defined for the two-dimensional case by the functional

F(X’Z’ t) =2Z— Zb(X, t) =0.

Hence, the solid boundary condition is given by

DF _ oF

Dr = 9 +{V}-{V}F=0. (3.80)
For a thin wing, this boundary condition is effectively linearized by assuming that the local
normal on the body surface is along the z-axis and the product waz,,/0x is negligible. Fur-
thermore, the thickness of the body can be considered to be either negligible or its effect
included in the steady flowfield. Thus the unsteady effect of the body can be represented
by the mean surface (i.e. the median plane between upper and lower surfaces), z = 0, as
follows:

ad) _ 6zb aZb

0n=221 =Zbyyp 2P 3.81
w00 =5 T ox (381)
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Since the upwash, w, cannot be physically discontinuous across the mean surface, it must
be the same at the upper and lower surfaces, denoted by z = +0 and z = —0, respectively.
However, ¢ must change sign across the wing, that is, be an antisymmetric (odd) function
of z, because its z-derivative, w, is a symmetric (even) function. Conventionally, ¢ is taken
to be positive on the upper surface and negative on the lower surface. Implementation of the
tangential flow condition is useful in determining the unknown strength of a distribution of
elementary solution (source, vortex, doublet, etc.) on the solid boundary.

Generally, a solid boundary has a different pressure distribution on the upper surface, p,,,
from that on the lower surface, p,. However, the approximation of the body by a mean surface
of zero thickness, z = 0, only allows the pressure distribution to change sign, but not the mag-
nitude, across the surface. The linearization of the unsteady Bernoulli equation, Eq. (3.52),

written as
0 J
P20 = Poy = —Poo <—¢+U 4)),

— 3.82
ot © ox (3.82)

results in the following relationship between the pressure difference across the wing,
Ap = p, — py, and the disturbance velocity potential, ¢:

9% a¢> (3.83)

Ap(x) = p(x,4+0,1) — p(x,=0,1) = 2p(x,0,1) = -2p, | — + U —
ot ox

z=0

Equation (3.83) can be inverted in order to yield the following integral relationship between
the pressure and velocity potential on the wing:

1 * x—¢&
pooUoo /—oop <§’ 0= U_oo> ¢ G589

The condition of uniform flow far upstream, Eq. (3.79), is implicit in Eq. (3.84). Typically, the
integral equation Eq. (3.84) must be solved for pressure difference across the wing, while
taking into account how the velocity potential evolves in the wake region. An alternative
description to the velocity potential is possible in terms of the disturbance acceleration poten-
tial, y, defined by

d)(-x’ 09 t) =

P~ Px _ 09 99

; U (3.85)

for which the wake region need not be modelled as y vanishes identically across the wake.

3.3.1 Integral Equation Formulation

The solution to the baseline governing equation, Eq. (3.75), subject to appropriate unsteady
boundary conditions, must be sought in a simple, non-iterative manner, in order to be utilized
in control-law derivations. Towards this end, an integral equation governing the unsteady,
two-dimensional flow can be derived from Eq. (3.84) by taking the z-derivative of both the
sides and substituting the expression for upwash,

w=9% (3.86)
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1 Yo x—=£
9O9t = - 5 > 31_
Mo =l /_oo o <5 ", )

Since pressure disturbance is related to acceleration potential by Eq. (3.85), the integral
equation Eq. (3.87) is referred to as the acceleration potential formulation. This integral
equation must be solved for the pressure difference across the mean surface, given a prescribed
upwash distribution, Eq. (3.81). The upper-limit of integration, x, is handled differently for
subsonic and supersonic freestreams. In the supersonic case, the pressure disturbance cannot
travel upstream of the Mach cone, whereas no such restriction exists for the subsonic
case. Typically, Eq. (3.87) is amenable to either analytical or numerical solution for the
harmonically oscillating wing,

resulting in

de. (3.87)
z=0

wix, 0,1) = we', (3.88)

which results in the following integral equation for the complex amplitude (magnitude and
phase) in the frequency domain:

= 1 —iowx/U, /x 0 _ x=¢
== & = ) at_ T
w(x) 5 Uooe . PR &z U

(5] [Se]

de, (3.89)
z=0

where '
p(x,2,0) — po = P(x, 2)e', (3.90)

is the harmonic pressure difference with a complex amplitude, p.

It is interesting to note the equivalence of the integral equation Eq. (3.89) with the Green’s
identity resulting from the superposition of harmonically pulsating, acceleration potential dou-
blets (Garrick 1957). This equivalence can be exploited in order to obtain an analytical solu-
tion in the harmonic limit. Such a formulation for the three-dimensional case is the subsonic
doublet-lattice method (Albano and Rodden 1969) and the subsonic/supersonic doublet-point
method (Tewari 1994, Ueda and Dowell 1982). For the simplicity of discussion, we will con-
fine ourselves here to the two-dimensional case.

3.3.2  Subsonic Unsteady Aerodynamics

A line acceleration potential doublet convecting with the freestream at subsonic velocity,
U, < a, corresponds to the following elementary solution of the governing wave equation
(Garrick 1957), Eq. (3.76):

p(ﬁ-’x’ Z) — ﬁazze—iﬂ(/\'_f)eiwt[{(()z) (KR), (391)
where
p=1/1-M2, (3.92)
kM
= = (3.93)
u=xM,, (3.94)
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wb
k=—, 3.95
U, (3.95)
is the reduced frequency of harmonic motion,
R=VEx -9+ -2 (3.96)
and
HP() = J,() = i¥,() (3.97)

represents the Hankel function of the second kind and nth order, expressed as a complex combi-
nation of Bessel functions of the first (/,)) and second kind (Y,,) and of the same order. Here, the
length dimension is rendered non-dimensional by dividing by the wing semi-chord, b = ¢/2.
By substituting Eq. (3.91) into Eq. (3.89) and integrating by parts (Garrick 1957), we have the
following integral equation for the subsonic harmonic case:

1
w(x) =/ K (x— &k M) 7(&)dE, (3.98)
-1

where 7(&) is the complex amplitude of bound vorticity on the wing at a non-dimensional
chordwise location & from the leading edge, related to the local pressure jump across the
surface by

Ap(&) = —p U7 (€)™ (3.99)

The limits of integration are from the leading edge, x = —1, to the trailing edge, x = 1. A form
of the integral equation relating the upwash amplitude to that of the pressure difference across
the mean surface is due to Possio (1938):

1

P = —— / K (x - &k M) AP(E)E, (3.100)
PoVeo J-1

or as follows in terms of the non-dimensional /ift amplitude per unit span, L, and the

angle-of-attack amplitude, @ = w/U,:

1
ax) = / K (x— &k M) L(&)de. (3.101)

1

Thus the kernel function of the integral equation represents the important aerodynamic influ-
ence coefficient between non-dimensional lift and angle of attack. The kernel function is
expressed as follows in terms of the non-dimensional variables (Garrick 1957):

(x=9)
lx—¢|

K(x—¢&kM,)= —%ew—f) {H(?) (k| x=¢&|)—iM, H? (x |x=¢1)

_ iﬁZe—ik(x—C)/ﬂ2 <i In ﬂ
zf M

58

kx=¢)/p* 5
+ / e*HM, | 4] dA (3.102)
0
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The integral equation must be solved for the complex bound vorticity amplitude, 7(&), given
a prescribed upwash amplitude, w(x), on the wing. The Kutta condition at the trailing edge
requires that ¥(1) = 0, which is generally satisfied by selecting the bound vorticity distribution
as the following infinite series:

_ 0 < sinnd
y(x):Um<2aocot§+4Zan - ) (3.103)

where x = —cos #. A numerical scheme called the collocation method (cf. Possio 1938) is
adopted for determining the unknown, complex coefficients, a;, in Eq. (3.103) (hence the
solution to Eq. (3.102)) by enforcing the upwash boundary condition at several collocation
(or control) points. Alternative techniques work with the kernel function, such as the iterative
kernel evaluation method (Dietze 1947, Turner and Rabinowitz 1950), and kernel function
expansion method (Fettis 1952, Schade 1944). A more direct solution procedure — that does
not employ the integral equation —is the approximate boundary-value solution of the governing
wave equation, Eq. (3.76), transformed into elliptical coordinates, and the result expanded as a
series of Mathieu functions (Kiissner 1954, Reissner 1951, Timman and Van de Vooren 1949).
However, there are difficulties associated with the numerical evaluation of integrals involving
infinite series expansion in Mathieu functions. Other approaches for Possio’s integral solution
are based on series expansions in compressible reduced frequency, k/(1 — MZ%), such as the
work of Runyan (1952) and Timman ez al. (1951). However, these expansions are often incom-
plete and give erroneous results, both at low frequencies, and higher subsonic Mach numbers.
More recently, Lin and Iliff (2000) have presented an approximate closed-form solution of
Possio’s wave equation, which offers the promise of implementation in an ASE control-law
derivation. Appendix B outlines the iterative solution procedure of Dietze and the analytical
expansion by Fettis, which are valuable because they utilize an analytical development for
the incompressible limit (M, — 0), thereby offering an additional insight into the physical
characteristics of subsonic unsteady aerodynamics. Furthermore, Appendix B also presents
the alternative closed-form development by Lin and Iliff as the likely baseline scheme for an
active flutter suppression system (which is the topic of the next chapter).

3.3.2.1 Analytical Solution in Incompressible Limit

The incompressible flow past an oscillating airfoil was the first analytical development in
unsteady aerodynamics (Birnbaum 1924, Theodorsen 1935, Wagner 1925). The problem was
posed as a Laplace equation (derived from Eq. (3.75) by putting M, = 0) and developed by
using conformal mapping of the complex velocity potential of a source distribution on the
wing’s chord plane (flat plate) taken to be the mean surface. Thus the effects of thickness
and camber are neglected and a simple model relating the velocity potential to the unsteady
pressure difference, Ap, is derived. This approach is briefly outlined in Appendix A. We espe-
cially refer to the method by Theodorsen (1935), which separately integrates the circulatory
(or wake-dependent) and non-circulatory (wake-independent) harmonic potentials, in order to
give the following analytical expression for pressure difference across the airfoil:

Ap(x)

1 2
Epoo ©

=F@). (3.104)
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Here F(.) is the aerodynamic operator, which operates on the local angle-of-attack amplitude,
a(&) = w(&)/ Uy, and is given by

FQ) =F()+Fic ), (3.105)

where the non-circulatory part is the following (Bisplinghoff and Halfman 1955):

Foe() = i/l l—m — Eog (1 Xt mm)] (.)dé
TS li-e 2 1-xt—VT-gVi-2

with r = x — £. The circulatory part is represented as follows:

4 [1=x [' [1+¢
F.() = ;[1 - C(k)] 1+x/_1 1Té(.)dé, (3.107)

(3.106)
1

where © x i
Wt P
= =5 —5 (3.108)
/i \/ﬁe—‘k"dx Hl (k)+lH0 (k)

is Theodorsen’s function, which physically represents the deficiency in lift due to the unsteady
wake. In the steady flow limit (k = 0), the wake is fully developed and thus C(k) approaches
unity, whereby the circulatory part vanishes. This is tantamount to a wake vortex that has
convected downstream to infinity, and corresponds to the maximum lift magnitude. The
chief achievement of Theodorsen (1935) is in the evaluation of the two improper integrals
of Eq. (3.108) by Hankel functions of the reduced frequency. The integration considers k
to be complex, with a small real part (resulting in slightly damped oscillation) and applies
analytic continuation by making the real part vanish in the harmonic limit (real k). Such
a technique would appear to be a purely mathematical device without a sound physical
argument, but others (Kiissner and Schwarz 1940, S6hngen 1940) obtained the same result by
Cauchy principal value and Fourier series, thereby lending credence to Theodorsen’s method.
Alternatively, if one employs an integral equation formulation using velocity potential
doublets, then Eq. (3.104) is derived as a solution by separation of variables (Garrick 1957).
Tabulated values of Theodorsen’s function give unsteady aerodynamic loads for a prescribed
harmonic motion (Smilg and Wasserman 1942).

Another practical application of the incompressible solution is in transient aerodynam-
ics, which involves non-harmonic (indicial, impulsive or oscillating with variable amplitude)
motion. Clearly, a general aerodynamic theory must model the transient response to suddenly
applied inputs, and is also necessary for ASE applications where an arbitrary, time-dependent
input can be applied by the control system. The first step in this direction was taken by Wagner
(1925) who proposed a simple function for the lift of an airfoil suddenly put into motion at a
given geometric angle of attack. The indicial aerodynamics represented by Wagner’s function
is related to Theodorsen’s harmonic aerodynamics by Fourier transform (Garrick 1938). This
is now a basic result of linear systems theory, but in the 1930s and 1940s it was a novel idea
explored by Garrick. Consider the pressure gradient amplitude due to circulation obtained
from Eq. (3.104) by taking the derivative with x:

dAp 2p,U, 1—x [1+E&_ ;
U = =2 Rk 2 Lot 3.10
ol - ( )\/1+x 1_§W(f§)e , (3.109)
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which is integrated chordwise to yield the circulatory lift per unit span:
L, =2brp, U, Ck)we™. (3.110)

This is the lift at large times, that is, when all the stable transients have decayed to zero, and the
airfoil is oscillating harmonically at a constant frequency o with a time-independent amplitude
and phase w. Now consider a situation when there is a unit-step change in the upwash at# = 0,
which is expressed as follows:

where
_J0 (<0
uy(r) = {1 (t>0) (3.112)

is the unit-step function. Wagner’s function, ®(7), gives the circulatory (indicial) lift in this
case by
L =2brxp U, wy®Q), (3.113)

where 7 = U_t/b is the non-dimensional time, or wt = k7. From a comparison of Egs. (3.110)
and (3.113), it is clear that the following transform relationship holds between ®(7) and C(k):

-1 _ / [D@F) — 1]~ d, (3.114)
ik 0
which is Fourier transform in k (or Laplace transform with Laplace variable ik). Being an
indicial function, Wagner’s function is O for negative values of time, and has the property
D(c0) = 1.

Let us examine the pitching moment contribution of the circulatory lift,

1
M, = b/ (Ap) (x — xp)dx = 27mp U D (xh + g) C(k)w3c/4, (3.115)
-1

where b
w3c/4=0+h+<§—xh>9 (3.116)

is the geometric (or resultant) upwash at the 3 /4-chord point (x = b/2) from the leading edge
(see Eq. (3.36) for the definition of geometric angle of attack and upwash). Therefore, while
the pitching moment due to wake vanishes at the 1/4-chord position (x = —b/2) — thereby
yielding the a.c. — it is directly proportional to the geometric upwash at the 3 /4-chord point.
This information is extremely useful while trying to satisfy the tangential flow condition at
the trailing edge (the Kutta condition) by a distribution of discrete elementary solutions of the
Laplace equation, that is, velocity potential doublets and vortices. One selects the strengths of
discrete vortices (or doublets) such that flow becomes tangential to the surface at the 3 /4-chord
location, which is tantamount to having an induced upwash cancel the geometric upwash given
by Eq. (3.116). The Kutta condition is thus satisfied by having the correct bound and wake
vorticity which induces an upwash equal in magnitude, but opposite in sign, to that of the
geometric upwash at the 3 /4-chord point. Hence, the 3 /4-chord location is called the control
(or upwash collocation) point of a discrete element, panel method.
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For a general transient motion, Wagner’s function can give the unsteady lift by the following
Duhamel’s integral by linear superposition of the prescribed geometric upwash:

L(#) =2brp Uy [dD(?)w(cf, 0) + / (7 — T)%w(i, 7)dr| . 3.117)
0

Such a technique is adopted by Leishman (1994) in order to generate unsteady lift and moment
for an airfoil with an arbitrary flap motion, and is seen to have a reasonable comparison with
experimental results for compressible subsonic case. While exploring indicial concepts, we
shall develop in a later chapter an alternative approach for arbitrary motion through approx-
imate rational functions in the Laplace domain, fitted to the harmonic data by replacing the
Laplace variable with ik by analytic continuation. This method is termed rational function
approximation (RFA) and can be applied to both subsonic and supersonic regimes (Eversman
and Tewari 1991).

3.3.3  Supersonic Unsteady Aerodynamics

While our interest in ASE modelling practically lies in the compressible subsonic and tran-
sonic regimes (because that is where the most challenging ASE problems appear), we consider
the linearized supersonic flow for the sake of completeness. Another reason for studying super-
sonic flow is to analyse the flutter of missile/rocket fins, which typically occurs at supersonic
speeds. For a thin airfoil oscillating in supersonic flow, it is quite possible to use a modified
form of the acceleration potential integral equation [Eq. (3.100)] that was employed by Pos-
sio for subsonic flow. The modification involves limiting the integration to the area inside the
Mach cone emanating from the given load point (flow perturbations cannot travel upstream of
the Mach cone), (£, ), and changing f to f# = /M2 — 1 in the kernel function. However, it is
much simpler to employ the distribution of pulsating velocity potential sources first proposed
by Possio (1937) and developed into a numerical procedure by Garrick and Rubinow (1946).

Consider a thin airfoil with mid-plane ¢ = 0, approximated by a distribution of infinitesimal
strength, line source pulses spread out in &-direction, with the leading edge at & = 0. The net
effect of the airfoil at a location (x, z) is given by the velocity potential at that point as follows
(Garrick 1957):

( ) 51/
ox,z, 1) = —=
\/

where &, = x — fz is the point of intersection of the Mach line passing through (x, z) and the
£-axis, and 7|, 7, are the roots of the quadratic expression inside the square-root (denominator).
There is no change in the flow tangency condition from the subsonic case applied on the mean
surface,

w(é, 1 — 1)
az, > —(x—&E—U1)? — 72

drdeé, (3.118)

9z, d
Wi, 1) = az +U°o% (3.119)

On the mean surface, the potential is given by

$(x,0,1) = — / / WE o (3.120)
‘[ T_T T _T
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where
’ 1 x_é:
T, = —
U Mo +1 ay
’ 1 x—£
= — . 3.121
o M -1 ag ( )

A major distinction between supersonic and subsonic integral formulations is that the former is
valid for arbitrary motions. Stewartson (1950) shows that the harmonic solution for the velocity
potential can be derived by taking the Laplace transform of the governing differential (wave)
equation. The reader is referred to Bisplinghoff and Halfman (1955) for a detailed derivation
of the supersonic kernel function and its computation in a tabular form. Here we present the
final result as the following linear operator relationship:

% = F@), (3.122)
Epoo Uoo
where A .
a . —i 2}’ 2
FO=-3 (a + lk) /_1 ML o (kM2 /B ()dE (3.123)

with r = x — & and J(.) being the Bessel function of the first kind and zero order.

It is to be noted that the linearized supersonic aerodynamics is valid only for thin airfoils
undergoing infinitesimal oscillations. For a thick airfoil (or finite amplitude oscillation) the
Mach waves are replaced by oblique shock waves whose analysis is essentially nonlinear. How-
ever, at large reduced frequencies, a linear approximation called the piston theory becomes
valid at reasonably large Mach numbers even for thick airfoils (Hayes and Probstein 1959).

3.4 Preliminary Aeroelastic Modelling Concepts

Before attempting to devise ASE systems, it is necessary to understand how structural and
aerodynamic subsystems interact with each other. Towards this end, the typical-section model
will be employed. Structural motion causes aerodynamic forces and moments which depend
upon the flow parameters (speed, density, Mach number, Reynolds number), as well as on the
time rate of structural deformation. The aerodynamic force acting normal to the freestream
direction is the lift, L, acting at the a.c., the aerodynamic pitching moment about the pitch axis
is denoted, M., while the aerodynamic hinge moment of the control surface is H. The aerody-
namic drag acting along the freestream direction is unimportant in causing aeroelastic effects,
and is thus neglected. Since the aerodynamic forces and moments arise owing to structural
motion, and in turn affect the structural response, they are considered to be internal reactions of
the aeroelastic system. The functional dependence of aecrodynamic forces on structural motion
must be analysed at every possible flow condition that can cause an instability. When the struc-
tural motion takes place slowly (at very low natural frequencies), the aerodynamic forces and
moments can sometimes be approximated to functions of the instantaneous angle of attack (and
its time derivatives) taken as if it were constant, and their time history (or transient behaviour)
can be entirely neglected. Such an assumption, called the quasi-steady approximation, leads
to an intuitive and straightforward aeroelastic analysis. Quasi-steady aerodynamic forces and
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Figure 3.5 Aecroelastic system for a typical section

moments result in a natural damping in each d.o.f. The plunging motion, A(f), at a constant
rate, results in aerodynamic damping (a positive plunge causes an increase in the instantaneous
angle of attack and therefore increases the quasi-steady lift in proportion to the constant plunge
rate, di/dr). Furthermore, a pure pitching rotation about any axis is naturally damped owing to
a negative pitching moment caused by the steady pitch rate, d/dr, (a constant nose-up pitch
rate results in a nose-down pitching moment). Similarly, control-surface rotation, f(7), is an
aerodynamically damped motion (a constant nose-up rotation rate df/d¢ causes a nose-down
hinge moment). Before 1935, quasi-steady approximation of the aerodynamic forces saw wide
usage for carrying out an intuitive analysis and is also employed in aeroelasticity textbooks for
illustrative purposes. But such an approximation is inaccurate for even moderate frequencies,
where an interaction of the flow over the wing takes place with the wake in a time-dependent
manner.

Unsteady aerodynamic behaviour of a wing is markedly different from the quasi-steady
case, because the forces and moments can have significant differences in phase from that
of the structural d.o.f.s, mainly due to the effects of a vortical (circulatory) wake. Under an
unsteady aerodynamic coupling, the structural deformations, h(¢), (), f(t), assume an oscil-
latory behaviour in time with phase differences. If the amplitudes of the oscillations are suffi-
ciently small, flow separation can be neglected, and the resulting motion can be considered to
be independent of viscous effects. Furthermore, if the flow speeds do not approach the speed
of sound, shock waves are assumed to be absent. Flutter phenomenon in the absence of vis-
cous separation and shock waves is called classical flutter, and is easier to analyse because it is
driven by linear aerodynamic characteristics. In contrast, flutter under viscous and shock wave
effects — called stall flutter, and transonic flutter, respectively — require a nonlinear analysis of
the flutter mechanism. In this chapter, we consider the basic linear analysis of the classical flut-
ter mechanism. Since the aerodynamics of classical flutter is linearized, the methods of linear
analysis can be applied to it. Frequency fidelity is a basic property of linear systems, wherein a
forcing function at a particular excitation frequency, @, excites all the system variables only at
that frequency. In a classical flutter mechanism, a harmonic excitation results in all the d.o.f.s
oscillating at a common frequency. Since the aerodynamic and structural systems are coupled
in a feedback loop as shown in Fig. 3.5, all the signals sustain themselves at the excitation
frequency, but can have differences in magnitude and phase.
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The simplest unsteady aerodynamic model is for the inviscid (infinite Reynolds number)*
and incompressible (zero Mach number) flow. Such a flow is termed the ideal flow, because it
can yield closed-form solutions. In the ideal flow case, the aerodynamic forces and moments
can be divided into non-circulatory and circulatory parts. For example, the lift can be expressed
as L =L, + L., where L, (¢) is the non-circulatory part, and L.(¢) the circulatory part. The
non-circulatory lift, L ., is due to the vertical acceleration of a cylindrical mass of fluid with
diameter equalling the chord, and is thus termed the apparent inertia effect. Similarly, there are
the non-circulatory pitching and hinge moment contributions. The non-circulatory effects are
independent of the flow speed and merely add to the structural mass and moments of inertia.
The circulatory aerodynamic effects are caused by the vortical flow pattern (or circulation)
around the airfoil, which is necessary for enforcing the flow tangency condition at the trailing
edge. For example, the lift’s operational dependence upon a small angle of attack, «, is regarded
to be linear and can be described by the following convolution integral:

L.(t) = /oo a(r)g(t — r)dr, (3.124)
0
where
-1 -1 { Lc(s) }
gy =L G, ()} =L — (3.125)
a(s)

is the lift response for a unit impulsive change in the angle of attack, a = 6(¢), and the linear
dependence of the circulatory lift on the angle of attack (subject to zero initial condition) is
described by the following aerodynamic transfer function:

G,(s) = 2 (3.126)
L(8) = o) .
In terms of the lift indicial admittance (step response function), A(¢), where
t
A(r) = / g(r)dr, (3.127)
0
we write the circulatory lift response as the following Duhamel’s integral:
! dA(t — ! d
L.(t) = a(O)A®) + / any By, / A -n3Dg,. (3.128)
0 dt 0 dT

Here a(0) is the step change in the angle of attack at # = 0, derived by approaching the limit
t = 0 from the positive side. Both g(¢) and A(¢) are subject to the initial condition,

n—

a(0-) = &(0-) =

d"la
dr—1 ©0-)=0

4 The fluid flow everywhere is regarded as inviscid, except in the case of the fluid layer in contact with the airfoil
surface, which is assumed to have just enough viscosity to create a circulation around the airfoil, whose strength
should be sufficient to satisfy the flow tangency (Kutta—Joukowski) condition at the trailing edge.
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for an nth-order aerodynamic system, implying g(#) = A(¢) = 0 for # < 0. The relationship
between lift indicial admittance and the aerodynamic transfer function is the following:
G,(s
L{A@®)} = o ). (3.129)

N

Other aerodynamic transfer functions (and indicial admittances) describing the changes in the
lift, pitching moment and hinge moment with respect to angle of attack, «, and control-surface
rotation, f, respectively, can be derived in a similar manner.

In the ideal flow case, the aeroelastic system characteristics depend only upon the density,
p, flight (or freestream) speed, U, and oscillation frequency, w. Flutter analysis requires an
investigation of the characteristic poles of the aeroelastic system at each possible flow con-
dition described by the combination (p, U, ®). Alternatively, a frequency response analysis
(s = iw) via Bode magnitude and phase plots of the aeroelastic transfer functions can reveal
the excitation frequency at which a resonance type, self-sustained oscillation can take place for
a given flow condition when the source of external excitation is removed (P, = M, = H, = 0).
Such an analysis requires that suitable aerodynamic transfer functions such as G,(s), (or the
respective frequency response functions, such as G,(iw)) be available at various combinations
of (p,U). A dimensional analysis reveals that the independent parameters (p, U, w) can be
combined to yield a non-dimensional reduced frequency,

k=wb/U

and the non-dimensional time,
i = Ut/b,

where b is the airfoil’s semi-chord. Other non-dimensional parameters are the ratio of fluid
and structural densities, p/c, and the non-dimensional stiffness ratios,
k, ko ks
cU2b2’  cU2b3  oU2b3
If a flutter condition exists, it is described by the critical frequency, wy, and speed, Uf, and the
corresponding reduced frequency,

w:b
kf = L.
b

Appendix A presents the analytical solution of the unsteady aerodynamic transfer function
in the ideal flow case. The results are expressed in terms of Wagner’s indicial admittance func-
tion, ®(7), and its close relation, Theodorsen’s circulation function, C(k). Wagner’s function
describes the lift of an airfoil suddenly started from rest, such that it sees a unit step change in
the angle of attack at r = 0, a(f) = u(¢). In non-dimensional time, Wagner’s function describes
the aerodynamic indicial admittance as follows:

A®}) = 2xbpU*®(3) (3.130)

Substitution of Eq. (3.130) into Eq. (3.128) yields

7
L.(}) = 27bpU? lq>(i)a(0)+ / @ — T)d(:l(r)dl"| . (3.131)
0 T
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Equations (3.130) and (3.129) relate Wagner’s function to the aerodynamic transfer function
as follows:
2xbpUL{D()} = G,(p)/p- (3.132)

where p = sb/U is the non-dimensional Laplace variable. In the steady-state harmonic limit,
p = ik, where k = wb /U is the reduced frequency of oscillation, the aerodynamic frequency
response function, called Theodorsen’s function, C(k), is defined as follows (Appendix A):
. . C(k)
L{DD)} = C(-ip)/p = % (3.133)
Clearly, Theodorsen’s function is related to the aerodynamic transfer function for circulatory
lift by
G (ik) = 2zbpU*C(k), (3.134)

and hence C(k) is also called the circulation function. Wagner’s function represents the defi-
ciency in the indicial circulatory lift response from its steady-state value,

L., = lim L.(?), (3.135)
=0
with the property that ®(c0) = 1, that is, lift deficiency vanishes in the steady state. By the
application of the final-value theorem of Laplace transform, we have

lim ®(7) = lim pL{D(7)} = lim(ik)&k) =C0)=1. (3.136)
iso0 p—0 k—0 ik

Theodorsen’s function describes the phase difference, ¢, between the harmonic (complex)
amplitude of the circulatory lift, L, and its static value,

Ly=lim L (1), (3.137)

caused by the vertical velocity component (downwash) induced by the oscillating wake on the
airfoil. The unsteady lift is expressed as follows:

L.(}) = L(k)e™ = LyeKHo®] = [ o19®) okt (3.138)

or _ )
L(k) = Lye'?®. (3.139)

Note that ¢(0) = 0 (which follows from the property C(0) = 1). The phase difference, ¢, in
the lift due to circulation is crucial in understanding the flutter mechanism. For this purpose,
consider the following expression for Theodorsen’s function, C(k) (Appendix A):

© _x —ikxdx

VaZ-1 ¢

o x+l ’
W et
where the improper integrals, assumed to be convergent for a general oscillation (see
Appendix A), are evaluated by Hankel functions of the second kind and order , H,(lz)(k):

Ck) = (3.140)

HP (k)

Ch)= ——1—vn—
HP (k) + iH (k)

= F(k) + iG(k). (3.141)
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Substitution of Eq. (3.141) into Eq. (3.134) results in the following expression for the phase
difference in the lift due to angle of attack:

_ Im[@C(K)]

¢ = tan ReGCET” (3.142)

where @ is the complex amplitude for a harmonic oscillation in the angle of attack.

3.5 Ideal Flow Model for Typical Section

As mentioned previously, the typical-section model based on incompressible, inviscid, irrota-
tional (ideal) flow with small perturbations over a freestream is the simplest one that can be
used as the basis of flutter suppression. Two equivalent frequency-domain formulations in the
ideal flow case for an airfoil oscillating in pitch, plunge and control-surface modes are provided
by Theodorsen (1935) and Kiissner and Schwarz (1940), using alternatively the conformal
mapping of complex upwash due to harmonically pulsating sources and sinks (Appendix A)
and the Fourier series representation of the induced upwash, respectively. The formulation by
Theodorsen (1935) is universally recognized as the conventional one, and hence is employed
here. Consider a thin airfoil of semi-chord, b, idealized as a flat plate, placed in uniform, incom-
pressible flow of speed, U, and density, p, oscillating with reduced frequency, k = wb/U, in
plunge, A, and pitch, 0, both of and about an axis located at a distance ab behind the mid-chord
point. In addition, there is an unbalanced trailing-edge control surface, whose deflection, f,
has an oscillation at the same frequency, w, about the hinge line located at a distance bc aft of
the mid-chord point (Fig. 3.6).

Since the plunge displacement, 4, is the vertical deflection of the pitch axis from the static
equilibrium position due to pure bending, the net angle of attack at a given point x aft of the
mid-chord point is the following?:

a=0+%+(x—ab)%. (3.143)

The two-dimensional lift, L, pitching moment, My, and control-surface hinge moment, H, in the
case of simple harmonic oscillation in all the d.o.f.s are given as follows (Theodorsen 1935):

L= zph? (h + U6 —abi— Y- ém’s’) +27pUbO (3.144)
T T
R . 1 . S/l o\ 5
M, = —pb [—ﬂabh+7rUb(§—a)0+ﬂb <§+a )8+ (T, + T U
+Ub{Tl—T8—(c—a)T4+%T“}B—bz{T7+(c—a)Tl}ﬁ]

1
2 —
+27pUb <a + 2) 0 (3.145)

5 There is a difference in our notation for pitch angle compared to Theodorsen’s (1935). The rotation about the e.a. is
termed here as the pitch angle, 6, whereas Theodorsen defines the same angle as . In our notation, « is the net change
in the angle of attack caused by the plunging and pitching motions.
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Static equilibrium position

Figure 3.6 Typical section for Theodorsen’s model
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b4

6

2r

The coefficients 7;,i = 1, ..., 14, employed in Eqgs. (3.144)—(3.147) are listed in Table 3.1. In
the aerodynamic load expressions, Q is a common term arising out of circulatory lag due to

the wake, and can be regarded as the frequency response of the upwash w induced by the wake
at the 3/4-chord location (x = ab/2) as follows:

UBT, Ty, f — %szﬁ] +27pUb? (a + %) — pUBT)0. (3.146)

Ok) = C(kyw(k)
=C(k){h+U9+b<%—a>é+%T10ﬂ+ ;T“B}. (3.147)

7
The non-circulatory lift is the term in parentheses on the right-hand side of Eq. (3.144) and
does not involve Q. By comparison with Eq. (3.143), the first three terms of the non-circulatory
lift are seen to be proportional to the angle of attack at the mid-chord point (x = 0), while the
remaining two terms are due to the control-surface rotation.

The total mass of the wing per unit span is m, mass of the control surface per unit span
is m,, the distance of the c.m. of the wing behind the pitch axis is bx,, while the distance
of the control-surface c.m. behind its own hinge line is bx; (Fig. 3.6). The structural stiffness
constants in plunge, pitch and control-surface rotation are kj,, ky, k5, respectively, which denote
the bending, torsion and control stiffness, respectively.

However, before proceeding further, we would like to simplify our notation by dropping the
braces and brackets signifying the vectors and matrices, respectively, and instead adopt the
following notation introduced in Chapter 2 for control systems analysis:

Mg+Cug+Kg=0,+0,, (3.148)

Hence, ¢(t) = (1,0, )" : R — R is to be understood to represent the generalized coordinates
vector corresponding to the 3 d.o.f.s,and M € R¥3, C, € R¥3 and K € R¥ are the constant
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Table 3.1 Coefficients for Theodorsen’s formulation

Coefficient  Expression

T, —§(2+c2) 1—c2+ccos™'c

T, e =c) =1 +AV1 - c2eos™le + c(cos“c)2
T, - (é +c2> (cos‘lc)2 +5(7+2) V1= c2cosle - é (1=c?)(5¢*+4)
T, cm—cos"c

T, -(1=-3) - (cos“c)2 +2c1/1 = c2cos¢

T, T,

T, —<%+c2>cos‘1c+§(7+262)m

T, L@ + DV + ccos'c

T, 1 [%(1 — 2y +aT4]

Ty m+cos‘]c

T, Q=-V1=¢+(1 -2)cos'¢

T, Q+)V1 - —Q2c+ lcos~le

T, —slc—a)T, +T)]

T 11_o+ %ac

N

generalized mass, damping and stiffness matrices, respectively, of the structure. For further
development, C; = 0 will be assumed for a conservative flutter analysis (also because struc-
tural damping is very difficult to model for an actual structure). The generalized aerodynamic
force vector, Q,(1) = (=L, M, H )7 : R — R?is assumed to be linearly related to ¢(1), ¢(¢) and
q(1), as well as to certain additional state variables collected into the aerodynamic state vector,
x,(t) 1 R = R”, which is necessary for modelling the aerodynamic lag caused by a circulatory
wake by an RFA (to be discussed in the next section). Since the only applied control input is the
control torque, u(t), acting about the control-surface hinge line, the generalized control force
vector is given by 0.(f) = (0,0,u)” : R — R3. The generalized mass and stiffness, matrices
of the structural system with the generalized coordinates g are given as follows:

m Se Sﬂ
Sg blc—a)S, Iy

k, 0 0
k=0 & o], (3.149)
0 0 k
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where the inertial coupling parameters are the following:
Se = mbe; Sﬂ = mcbXﬁ. (3150)

The generalized loads vector Q, contains both circulatory and non-circulatory terms. It is to
be noted here that the non-circulatory terms in Eqs. (3.144)—(3.147) (i.e. those that do not
involve Q) are simply clubbed together with the mass, stiffness and damping coefficients of
the structure, resulting in the generalized mass, damping and stiffness matrices of the modified
structural system, and are expressed in a non-dimensional form as follows:

My My, My
M =My My My
M3 Mz, Mg

where
My =x+1
M12=.x€—al('
= K
M13=Xﬁ—T1;
M21=X€_al(
M22=r;+l({é+a2}
= K
M23=r,§+(c—a)x,,—;{T7+T1(c—a)}
= K
M31=xﬂ_T1;
= K
M32=r§+(c—a)xﬂ—;{T7+T1(c—a)}
My=r-LT
B= 2
and
K
0 K —;T4
- 1 1
Cc=10 K<§—a) §{4T9—<a+5>T4}
1
0 —;{T1+2T9 <a E)T4} ~ ST
wi 0 0
I_{ =10 wgr; £ {T4 + TIO} R
0 0 awgry+ 5 {Ts=T,Ty}
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where
wpb?

m

is the non-dimensional mass parameter representing the ratio of mass of a cylinder of
air per unit span with diameter equalling the chord to the wing mass per unit span. The
non-dimensional radii of gyration in pitch and control rotation are given by

ry = _19 ry = —Iﬂ
o mb2 P mb?’

respectively, while the non-dimensional structural frequencies of plunge, pitch and
control-surface modes are respectively the following:

b [k, b (ke b |k
wh = — —_, a)e = — -, a)ﬂ = — —_—.
UV m vy, U\ I

The symmetry of the modified structural mass matrix M and its independence from the airspeed
U is to be noted.
The aeroelastic equations of motion in a non-dimensional form are thus the following:

My +Cy +Kq=0,+(0,0,1)7a, (3.151)

where the prime represents differentiation with respect to the non-dimensional time, 7 = U /b,
g = (h/b,06, )T is the non-dimensional generalized coordinates vector, i the non-dimensional
torque input acting on the control surface and Qu is the non-dimensional, circulatory part of
the generalized force vector, which can be expressed as follows:

-1
0,=2C(k)3 3+a ¢, (3.152)

with the non-dimensional upwash induced by the wake given by

K 1 1 1
W:Z+0+<§—a>9,+;T10ﬂ+ET11ﬁ,- (3.153)

Equation (3.152) provides the following linear relationship between the circulatory general-
ized forces and generalized coordinates:

A

0, = G(ik)g, (3.154)

where G(ik) € R¥ is the following aerodynamic frequency response matrix that operates on
the generalized coordinates:

-1
G(ik) = 2cC(k){ 1 +a {ik, 1+ik(%—a>, i<T10+%T”>}. (3.155)

1
=511
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3.6 Transient Aerodynamics of Typical Section

Before proceeding further, it is necessary to consider a more general dynamics than simple
harmonic oscillations. Since the frequency response matrix G(ik) arises owing to Theodorsen’s
function representing the frequency response of a circulatory wake-induced upwash, it can be
generalized as a linear aerodynamic operator for general motions, provided that one can do
the same for the Theodorsen’s function. Such an extension from the simple harmonic limit to
a general transient motion — termed analytic continuation — is justified because a step change
of the upwash results in a stable (decaying) pressure magnitude response, which is related to
the inverse Fourier transform of Theodorsen’s function as follows:

O(r)=1+ 2 / %eﬂ”dk, (3.156)
T Jo ik

where v =Ut/b>0 is the non-dimensional time and ®(r) is Wagner’s function

(Wagner 1925). The process of analytic continuation is brought into effect by adopting

a stable transfer function representation of C(k) wherein ik is replaced by the non-dimensional

Laplace variable s = ¢ + ik, and results in the following RFA:

_ N

C(s) = D)’

(3.157)

For a proper transfer function C(s), the degree of N(s) must be no greater than that of D(s). A
useful representation of C(s) is by a series of first-order, stable poles given by

¢
a,s
C(s) =ay + Ly 3.158
() = aq ; Ty (3.158)
where b, > 0,n =1, ...,¢ are the aerodynamic poles. The real coefficients a, a,, b, can be

determined by fitting C(k) = C(—is) at a discrete set of reduced frequencies k. The curve-fitting
is practically carried out by using a least-squares fit error minimization (Tewari 2015). It has
been shown (Eversman and Tewari 1991) that in a selected range of reduced frequencies, the
optimum fit accuracy with the harmonic Theodorsen function can be remarkably improved by
using a multiple-pole approximation:

r my an Ky
C(s) = ay + — (3.159)
n; IZ; (s + b,

where

which has the advantage of reducing the total number of poles ¢ required for a given curve-fit
accuracy. The substitution of either Eq. (3.158) or Eq. (3.159) into Eq. (3.155) produces the
following unsteady aerodynamic transfer matrix for general transient motions:

-1

G(s) = 2kC(s)4 3 +a {s, 1+(%—a>s, %<T10+%T11s>}. (3.160)
1
__T12
2
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Equation (3.160) is quite useful in deriving the ASE plant, such as that given by the state-space
representation of Eqgs. (3.135)—(3.137).

3.7 State-Space Model of the Typical Section

Once the aerodynamic transfer function is obtained by RFA, the equations of motion of the
aeroelastic plant, Eq. (3.151), can be expressed in the Laplace domain as follows, assuming
zero initial conditions:

(M + sC + K)g(s) = G(s)g(s) + (0,0, DT u(s). (3.161)

Clearly, the order of the plant is 6 4+ £, where ¢ is the total number of aerodynamic states (the
number of poles of C(—is)). A possible choice of the augmented state vector x(r) : R — R0+
is the following:

ESIEENY]

. (3.162)

Re

where the aerodynamic states x,(¢) are derived from the transfer function relationship derived
from non-dimensionalized, analytic continuation of Eq. (3.147):

00 = Cwm=C {s. 1+(5-a)s. L(Tio+3Tus)}3

and either Eq. (3.158) or Eq. (3.159). The aerodynamic state equations can thus be expressed

as follows:
i, =Fpx, +T, {‘Z}, (3.163)
g

where F, € R™/, T', € R™® are the aerodynamic coefficient matrices. The structural
equations of motion in non-dimensional time are then written as follows:

Mg+ Cq+Kg=C,g+K,g+N,x,+ (0,0, ) u. (3.164)

Here, the aerodynamic states arising from the aerodynamic transfer matrix G(s) contribute to
the structural state equations through an aerodynamic coefficient matrix N, € R3*, as well
as the circulatory damping and stiffness matrices, C, € R¥3 and K, € R¥3, respectively.
Since the matrices C,, K, have been thus far excluded from the structural damping and stiff-
ness matrices, they must now be added to the structural equations of motion. For example, if
the simple pole series approximation of Eq. (3.158) is adopted for C(s), we have

-1

Na = -2k % +a {albl a2b2 cen afbf} 5 (3.165)
1
=5-Ta
-1
K, =2 (ag+a, +...+a,)] 3+a {0 1 iTlo}, (3.166)
l V1
__T12

2z
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-1
1 1 1

Co=2x (@ +ay+..+a,)] 5 +a {1 (E—a) 5T11}. (3.167)
—5-Tpp

Finally, the state equations of the aeroelastic system represented by Eqs. (3.163) and (3.164)
can be expressed as follows:

X, =Ax, +B,u, (3.168)
where
0 I 0
Ac=|-M"'k -M'C -M'N, (3.169)
I, F,
and .
B, = (015, 1,01 ) (3.170)

where C = C — C,, K = K — K,. The controllability of the plant with the control-surface
torque input u(#) can be easily verified by the rank of the following controllability test matrix
(Chapter 2):

P= (B, AB, A.B, A}B, AiB,,AB,,A%B,) . (3.171)

e“e teTer eTer e e e e

Since B, is a column vector, P is square. The determinant | P | is always non-zero, which
signifies an unconditionally controllable plant.

Example 3.7.1 Let us derive a state-space representation of Theodorsen’s aeroelastic model
by taking only a single pole in the RFA of Theodorsen’s function. Hence, £ = 1, the plant is
of seventh order, and Theodorsen’s function is approximated in the non-dimensional Laplace

domain by as
1

+b,

C(s) =ay+
(S)aos

Selecting the single aerodynamic state as follows:
w(s)
s+b,’

x,(s) =

the aerodynamic state equation is obtained as

Xa=—b1xa+ra{.},

1 1 1
and F, = —=b, for Eq. (3.169). The aerodynamic coefficient matrices for the structural state
equations are the following:

ESIEEN|

where

-1
N, = -2ka\b,{ 5+a ¢,

1
—5-Tn
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1
K=K-2a +a){ ++a {01 ln@
1 T
—5-T1p
and
1
> = 1 1
C=C k@ +apy 5 +a {1(5—@ ;TU}
—5-Tpp

The aeroelastic state-space coefficient matrices are thus the following:

0 1 0
A, =|-M"'k -M"'C -,
L, _bl

and
B, = (0,45, 1,0)".

3.8 Generalized Aeroelastic Plant

The typical-section model with incompressible, flat-plate aerodynamics of the previous section
is a special case of the general aeroelastic model with a three-dimensional structural dynam-
ics system, and a compressible (but linearized) aerodynamic representation, resulting in a
finite-state plant. The concept of RFA can be extended to three-dimensional wing and tails by
applying frequency-domain aerodynamic models of lifting surfaces. As in the typical airfoil
section, the thickness and camber effects are neglected and the lifting surface is represented by
its average chord plane taken to be the mean flat surface, on which the flow boundary conditions
are applied. For details of lifting-surface aerodynamic models used in aeroelastic applications
in various speed regimes, the reader may refer to Tewari (2015, Chapter 3). Here, we will
assume that the frequency-domain (harmonic) aerodynamic data is available for curve-fitting
in deriving an appropriate RFA model for the lifting surface. The structural model in such a
case utilizes a finite-element approximation (Tewari 2015) for obtaining a finite-order model
of the structure. Consider a linear aeroelastic system with the following governing equations
of motion:

Mg+ Kq =0, (3.172)

where the structural damping is neglected for convenience, ¢(#) € R” are the generalized coor-
dinates based on a finite number, n, of structural d.o.f.s, M € R"™" is the generalized mass
matrix, C € R™" is the generalized damping matrix, K € R™" is the generalized stiffness
matrix, and Q(¢) € R" is the vector of generalized aerodynamic forces. The unsteady aerody-
namic forces depend upon structural motion coordinates through a linear relationship given by

D(Q) = F(q). (3.173)

where D(.) : R" — R" is a linear differential operator, and F(.) : R” - R”" a functional
operator. A solution for the motion coordinates, ¢(f), requires a simultaneous solution to
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the structural dynamics equations, Eq. (3.172), and unsteady aerodynamic field equations,
Eq. (3.173), which could be linear partial differential equations. The coupled integration of
such fluid-structure equations requires an iterative solution in the time domain, which is not
very amenable to aeroelastic computations.

In order to simplify the aerodynamic operational relationship, a transfer matrix representa-
tion given by the following relationship is employed

Q(s) = G(s)q(s), (3.174)

where Q(s) is the Laplace transform of the unsteady aerodynamic generalized force vector,
G(s) is the unsteady aerodynamic transfer matrix and ¢g(s) is the Laplace transform of
the generalized coordinates vector. The use of transfer matrix relationship allows one to
employ linear systems theory for aeroelastic analysis. For the in vacuo structural response
(Q(t) = 0), the structural modes (4;,g;),i =1, ...,n, are identified from the solution of the
following eigenvalue problem:

K+ 4M)g, =0 (i=1,..,n) (3.175)
and result in the following structural modal matrix:

®=(ql’62"--’qn)' (3176)

An RFA for the elements of G(s) results in a linear, time-invariant (LTI) aeroelastic plant.
There are various RFA methods available in the literature (Tewari 2015), which can be
employed for a suitable unsteady aerodynamic model. The emphasis is on those models
which give the smallest aeroelastic plant dimensions, for a given fit accuracy with the
frequency-domain aerodynamic data. Some form of nonlinear optimization is invariably
required for the aerodynamic poles in a practical RFA method. The technique devised by
Sevart (1975), Roger et al. (1975) and Abel et al. (1978), which was pole-optimized by Tiffany
and Adams (1987) and Eversman and Tewari (1991), is referred to as the least-squares RFA,
and is the most straightforward method among the various RFA approaches. The least-squares
RFA is of the following type:

N
GGs)=Ag+A;s+A° + Y A )——, 3.177
(s) 0 15 28 le 25 bj ( )
where bj > 0,j=1,...,N, are the aerodynamic poles. The numerator coefficient matrices,

AO’AI’AZ’ ’AN+2’

are determined by fitting G(ik) to the data, D(ik), at a discrete set of reduced frequencies, k,
derived from a frequency-domain aerodynamic theory, such as the doublet-lattice method for
a subsonic flow. The curve-fitting is carried out by a least-squares process, where the squared,
normalized fit error, €, averaged over m selected reduced frequencies is given by

e =Y 3 Y [gyik,) — dy(ik,)] [g;(k,) — dy(ik,)1, (3.178)

i=1 j=1 r=1

where g;; is the (i, /) element of G, and d;; is the (i, /) element of D. The order of the aerodynamic
transfer function, n, must be same as the number of structural d.o.f.s.
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For deriving the frequency-domain aerodynamics data matrix, D, the following procedure
is adopted in the lifting-surface theory, such as doublet-lattice, doublet-point or Mach box
schemes (Tewari 2015). After discretizing the wing geometry into wing panels (or boxes)
given by discrete corner points, the coordinates and sweep angles required for calculating the
aerodynamic influence coefficients (AICs) by an appropriate theory are computed and stored.
Then the AIC computation begins by enforcing the upwash boundary condition at the selected
chordwise location, x; (3/4-chord in doublet-lattice/subsonic doublet-point, and mid-chord in
Mach box and supersonic doublet-point (Tewari 2015)), on the ith box, based on its vertical
deflection, z;, and slope, (dz/dx);, which in turn, are determined by the normalized, in vacuo
structural mode shapes (including the control surfaces), g;,i = 1, ..., n:

w, =z, + U(dz/dx),. (3.179)

The resulting AICs matrix, A;, is inverted and pre- and post-multiplied by the structural modal

matrix, ¥ € R™", to yield the generalized (and normalized) aerodynamic matrix:
D = ‘PTA;‘I‘. (3.180)

If the non-dimensional form of the AIC matrix is available, it must be converted to the dimen-
sional form by multiplication by the factor 1/2pU.

For the curve-fitting process, the frequency-domain aerodynamic data, D, is collected in the
following matrix, F:

0 ik iky ik
L ik (k) ikj+by  iki+by T iky+by
. . ik ik ik
1 ik (k)? —2- —2— ... 2
F= iky+by iky+by iky+by . (3.181)
Uik (kP L fw T
ik, +by ik, +by ik, +by

Define

T
A= (ATATAL AT )

as the [(N + 3) X n X n] array of the unknown numerator coefficients to be determined from
the fitting process. The squared fit error matrix is then given by

E = (DT - ATFT> (D - FA), (3.182)

where D is the (m X n X n) array of the generalized aerodynamics data evaluated at the selected
frequency points,
D= [D" (ik;), D (iky) ..., D" (ik,)]".

For minimizing the squared fit error with respect to the numerator coefficients, we must have

2 _ _ T
% = _F" (D—FA)—FT<DT—ATFT> =0, (3.183)
which yields

A=FF+FE)yYF D+ F'D). (3.184)
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The order of the aeroelastic plant produced by the least-squares RFA is n(2 + N), where N
is the number of lag parameters (poles) in the aerodynamic transfer matrix. As discussed later,
additional aerodynamic states are introduced if ¢(f) does not include control-surface d.o.f.s.
If a suitable optimization can be performed to reduce the total number of aerodynamic (lag)
states, then the overall size of the aeroelastic plant can be significantly reduced. This is the
objective of the nonlinear optimization methods (Edwards 1979, Karpel 1981, Tiffany and
Adams 1987). The tendency of some of the RFA poles to coalesce together indicates the
need of a multiple-pole RFA (Eversman and Tewari 1991), which is consistent with the opti-
mization process. Otherwise, using simple poles that have nearly identical values results in
the ill-conditioned (nearly singular) state-space representation. For further discussion on RFA
methods, the reader is referred to Tewari (2015).

Substituting the RFA into the Laplace transform of structural dynamics equations with zero
initial conditions,

(Ms* + K)q(s) = G(s)q(s) + Q.(s), (3.185)

yields the following state equations of the aeroelastic plant:

(it =Coe —ame) i+ (o)

+ < M_? Ng) X, <M911> 0., (3.186)

and
X, =Ax, +T, {g}, (3.187)
xg:Agngrrg{g}. (3.188)

Here, the generalized control-surface forces, Q. (t), are separated from the generalized aero-
dynamic forces, Q(¢), purely driven by the structural motion, g(¢). This is done because Q.(¢)
depend upon the control laws driving the control-surface actuators of the overall ASE system.
The generalized matrices, M, K, C are derived by clubbing the relevant terms of the RFA trans-
fer matrix with the corresponding structural matrices, M, K, C, respectively. The number n,, of
the additional aerodynamic state variables, x,, and the dimensions of their state-space coef-
ficient matrices, A,, N,,I",, depend upon the type of the RFA employed. The gust influence
on the unsteady aerodynamic forces is modelled by a total number n, of gust states, x,, with
corresponding gust coefficient matrices, Ag, Ng, Fg.

When the least-squares RFA of Eq. (3.177) is introduced (without considering any gust
states and control-surface states for the moment), we have the following expression for the
generalized aerodynamic forces in the time domain:

Q) =Apg+A g+ A,g+ N,x,, (3.189)

where
N, = (A3, Ay, As, ..., Ayyn) € RN, (3.190)
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is the numerator coefficients matrix and x, € R™" is the aecrodynamic state vector satisfying
the following state equation:

Xy = A +Tug, (3.191)
with
-by1, 0o 0 .. 0
a=| 0 T T 0 (3.192)
0 0 0 .. by,
In
r,= 1_” , (3.193)
;
where I, denotes the identity matrix of size n, b; > 0,j =1, ..., N, are the lag parameters (or

aerodynamic poles), A, € R"™>"N and I, € R"*", This results in the following state-space
coefficients without gusts and control-surface states:

On In OanN
A=|-m"'k -m"'C m'N,|, (3.194)
Oann Fa Au
0n><m
B=|m1|. (3.195)
Oanm

where M = M — A,,C = —A,,K = K — A, and the single subscript 2 indicates a square matrix.

Additional state variables result from the control-surface d.o.f.s, generating the generalized
aerodynamic control force vector, Q.(¢). The most accurate model of a control surface would
include the bending deformation of the hinge line, a rigid rotation of the surface about the
hinge-line, as well as spanwise bending and twisting of the surface. However, owing to its
generally small size in comparison to the wing, the bending and twisting deformations can be
neglected, resulting in the approximation of a rigid rotation angle, 6, about the hinge line. This
allows a significant reduction in the d.o.f.s of the overall structural system, as well as an ease
of control-law development. The control input for each surface can either be regarded as the
hinge moment applied by the actuator or the control-surface deflection, which are treated as
separate generalized coordinates. The latter approach of treating control-surface deflections as
control inputs amounts to a quasi-steady approximation, in which the unsteady aerodynamic
inertia and lag effect of the wake are neglected. Here, full account is given of the aerodynamic
non-circulatory and circulatory effects of control surfaces by using an RFA for each control
surface. Thus a control surface can be regarded as a separate lifting surface with its own d.o.f.s
and aerodynamics.
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As in the typical-section model, we consider a control surface with the following actuator
dynamics: . )
Is6+c56 +kso6 =u+H, (3.196)

where 6(¢) is the control-surface deflection about the hinge line, /5, ¢, ks are the moment of
inertia, damping constant and rotational stiffness, respectively, H(?) is the unsteady aerody-
namic hinge moment acting on the control surface and u() is the hinge moment control input
applied by the actuator. The aerodynamic hinge moment and the generalized aerodynamic
force vector created on the wing by the control-surface deflection, Q.(), are assumed to be
linearly related to 6(7)(7), 6(t)(t) and 5'('t)(t), as well as to certain additional state variables col-
lected into the control-surface aerodynamic lag state vector, x.(¢). This relationship can be
represented by the following the least-squares RFA:

Q.(t) = Bys + By6 + B,6 + N.&,, (3.197)

where
N, = (Bs, By, Bs, ..., By,,) € R, (3.198)

is the numerators coefficient matrix and &, € R’ is the control aerodynamic state vector sat-
isfying the following state equation:

£, =NE +T.6, (3.199)
with
b, 0 0 ... 0
A= ? _?2 (:) ? : (3.200)
0 0 0 .. -b
1
T, = 1 , (3.201)
1

Similarly, the aerodynamic hinge moment can be expressed by

H(1) = ay6 + a,6 + a,5 + N[ &, (3.202)

where
N; = (as, a4, s, ..., Apip). (3.203)
The coefficients (B, By, B,,Bs, ...,B,) and (agy,ay,a,5,as, ... ,a,) are the numerator coeffi-

cients of the RFAs for the unsteady aerodynamic generalized forces and the hinge moment,
respectively, with £ lag parameters determined by a least-squares curve fit with the harmonic
aerodynamic data.
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Defining the control-surface state vector by
x, = (8,6,&")" (3.204)

enables the following state-space representation for the control-surface dynamics:

k. =Ax, + B, (3.205)
Q,=C.x.+D.u, (3.206)
where
0 1 Oxr
_ | ao—ks aj—cs 1 T
Ac=|7 Tma Toa | (3.207)
0 T A,
0
1
B.==| (3.208)
Ofxl
a,—k a, —c
C, = (Bo+ MBZ, B, + (@ 5)32, ! N) (3.209)
(I = a2) (ls—a) = (Is—a)
d
" p -2 (3.210)
¢ (15 - az). ’

An example of the aeroelastic model for the modified DAST-ARWI1 wing with a
trailing-edge control surface is given in Appendix C. If a wing has several control surfaces,
then the overall control-surface state vector, x,, is augmented by the state variables of the
additional surfaces, and each surface adds a corresponding row and column to the coefficient
matrices, A, B,., C,,D,.

The state equations of the overall aeroelastic plant, including the control-surface and gust
states, can be expressed as follows:

% = Ax + Bu, (3.211)
where
. T
x=(q".q" . x}.xf.xl)",
0 1 0 0 0
-w'k -m'c wm'N, m'n, m'c
A= r, A, 0 0o | (3.212)
r, 0 A, 0
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and

B= |, (3.213)
B,

When sensors are added to pick up aeroelastic motion, output variables, y € R”, become
available for use in observer-based output-feedback and adaptive-feedback designs. An output
equation is thus necessary for the aeroelastic plant before any control can be applied to it, and
is given by

y = Cx + Du. (3.214)

The output variables, y(#), can consist of a set of normal accelerations measured by accelerom-
eters at selected locations and laser-optically sensed vertical deflections. The sensor locations
must be selected such that the resulting plant is observable (see Chapter 2) with the given
coefficient matrices, (A, C). The most common outputs for an aeroelastic wing are the nor-
mal accelerations, y; = ¢;,i = 1,...,n,, measured at selected points by accelerometers. Let
the coordinates of the sensor locations correspond to the grid points, i, € I"s, of the discretized
wing geometry. The output vector picked up by the sensors is then given by

y=—(i"'k) _a=(i'c) 4

Iy g
+(N) + (IIN) A0 =, (3.215)
Lgd g
where Ai_Y 7 Jj=1,...,n, represents the submatrix constructed out of i; rows of the original

matrix A. Hence, the output coefficient matrices are given by

€= [_ (M_lK)i J _<M_1C>i J (M_IN“>1‘ J (M_lNg>i ,,]

-1 .
D=M. j,jzl,...,n. (3.216)

Ls»
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Active Flutter Suppression

Flutter is the catastrophic dynamic instability encountered at a particular flight condition (p, U)
when a pair (or more) of the complex eigenvalues of the aeroelastic dynamics matrix A crosses
the imaginary axis into the right-half Laplace domain. This results in an exponentially growing
structural motion, ultimately leading to wing (or tail) failure. The classical flutter mechanism
is a dynamic interaction between the pitch (primary torsion) and plunge (primary bending)
modes, and is a characteristic of high-aspect-ratio wings of transport type, subsonic aircraft.
In contrast, the small-aspect-ratio wings of fighter-type aircraft have a much higher torsional
stiffness, and thus do not encounter the classical bending-torsion flutter in their operating enve-
lope. However, interaction with a control-surface mode can excite flutter in combination with
bending and/or torsion modes. Wing-mounted external stores (bombs, missiles and drop tanks)
can cause a reduction in the flutter speed of fighter/bomber-type aircraft, when compared with
that of a clean wing. This is due to a dynamic interaction between a bending mode and the
primary torsion mode in the changed mass distribution of the wing. Sometimes, merely drop-
ping a particular external store can cause flutter. Similarly, partially empty, internal wing fuel
tanks have the potential for causing flutter, especially in larger transport-type aircraft. Conse-
quently, every new design has to be carefully tested and analysed for flutter in every possible
flight condition and configuration.

Modern high-performance aircraft have automatic flight control systems for stabilizing and
actively damping the rigid-body modes, which require a rapid actuation of control surfaces.
Such a control system opens up the possibility of interaction among all the three types of struc-
tural modes (bending, torsion and control-surface rotation), leading to flutter-type instability.
Unstable aeroservoelastic (ASE) interactions can arise well below the open-loop flutter speed
of the aircraft, hence a careful ASE analysis is required throughout the flight envelope.

Preventing and suppressing flutter has been a primary interest of aircraft designers. The
most common technique is passive stabilization by structural modifications, wherein the mass
and stiffness distributions are changed such that aeroelastic interaction is avoided at any point
inside the flight envelope. Historically, most low-speed aircraft have successfully avoided flut-
ter simply by having ballast weights placed at appropriate structural locations, and in extreme
cases, by redesigning the wing and tail spars in order to increase torsional stiffness. How-
ever, passive flutter prevention can be a quite cumbersome process for a high-performance
aircraft with a large range of operating speeds, altitudes and loading configurations, wherein
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many operating conditions can have conflicting flutter mechanisms. Avoiding flutter at one
condition may lead to increased flutter susceptibility at another. In order to avoid the costs
overruns and delays in a new design due to an extended flutter clearance programme, many
aircraft manufacturers began studying active flutter suppression in the late 1960s and early
1970s. Several new fighter and airliner prototypes required flutter tests in that era and active
flutter suppression appeared to be a practical alternative. Thus papers and technical reports on
mathematical modelling, design and practical implementation of flutter suppression systems
began appearing in the 1970s. There were enthusiastic developments in ASE in the 1970s and
1980s in all aeronautical establishments and laboratories, culminating in wind-tunnel tests of
aeroelastically scaled models and flight testing of drones especially constructed for studying
active flutter suppression systems. It was quickly recognized that robustness of the controller
is a special requirement for active flutter suppression, due to the uncertainties in the aeroe-
lastic models. The robust control techniques of LQG/LTR, H,/H_, and p-synthesis, which
were newly minted in the 1980s, were readily applied to flutter suppression systems result-
ing in a plethora of research literature on the topic. These are sampled in the review paper of
Mukhopadhyay (2003). Subsequent ASE research has built upon the landmark developments
of that era, and has resulted in many novel ideas (such as the active flexible wing, morphing
wing and flapping wing flight) that are currently being explored for the design of unmanned
aerial vehicles.

Despite active research spanning several decades, there is as yet no aircraft in production
that takes advantage of active flutter suppression. The reason for this discrepancy can be sum-
marized as follows. Most of the modern aircraft cruise and manoeuvre at high-subsonic and
transonic speeds; this is due to the fact that both the best cruising range and the largest turn-
ing rate of jet-powered aircraft nearly always occur at such speeds. Since their airframes are
designed for efficient high-subsonic flight, such aircraft are expected to have their open-loop
flutter speeds in the transonic regime. Even the fighter-type aircraft designed for brief super-
sonic flight encounter flutter in the transonic regime due to the transonic flutter-dip phenomena,
which will be discussed in Chapter 11. Thus transonic aerodynamic modelling becomes an
integral part of a practical flutter suppression system. However, the uncertainties of transonic
unsteady aerodynamics — especially those due to rapid control-surface deflections — are notori-
ous because of the presence of shock waves. Transonic unsteady flows are still not understood
sufficiently well to be modelled accurately and simply for a practical control-system design.
Hence, a flutter suppression system that can be certified to be safe for normal operation must
wait until either the transonic aerodynamic models improve in their accuracy or the control
systems can be made robust to uncertainties in transonic aeroelastic modelling. For rendering
a flutter suppression system robust to even the large modelling uncertainties of the transonic
regime, adaptive control laws must be explored. This is the thrust of the current research in
ASE and also the topic of this chapter.

Trying to design feedback controllers for poorly understood plants is fraught with danger,
because control signals could be easily driven to very large values, thereby destabilizing the
system (see Chapter 2). A practical way of avoiding high loop gains is the use of structural
damping to decouple the frequencies of the natural modes responsible for causing flutter. This
approach has been successfully applied to semi-actively suppress the flutter caused by the
wing-mounted external stores in fighter/attack-type aircraft. An active spring-dashpot-type
plunge mechanism, combined with pitching of the external store pylon about a pivot, can
make the open-loop torsional frequency sufficiently large so that it does not interact with the
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wing’s bending mode. Semi-active structural stabilization of flutter modes can be regarded
as an alternative to the typical flutter suppression concept, namely the use of aerodynamic
coupling provided by the control surfaces to suppress flutter. It also offers a promise for the
transonic regime, because the control-law design does not require an accurate unsteady aero-
dynamic model. However, the structural decoupling concept is very much like an active shock
absorber for an automobile, and must have dampers and actuators that are sufficiently power-
ful to absorb and dissipate the energy of flutter. Clearly, this concept requires a new structural
design philosophy before a general application is possible.

4.1 Single Degree-of-Freedom Flutter

Since quasi-steady aerodynamics of motion in each degree of freedom (d.o.f.) provides vis-
cous damping, it is not expected that any one of the three d.o.f.s taken alone will produce a
self-sustained oscillation forced by quasi-steady flow effects. However, when unsteady aerody-
namics of wake-coupled motion is accounted for, there is a possibility of single d.o.f. flutter. In
order to investigate such a possibility, consider first a wind-tunnel model of an airfoil of mass
m mounted on a linear spring of stiffness Kj,, and constrained to plunge along a slide with
viscous damping constant c¢;,. This is representative of pure bending motion with an infinitely
stiff (rigid) torsional spring. The airfoil is driven by an actuating mechanism that generates
a plunge force, P,(¢). If the actuation is simple harmonic with amplitude, P,, and excitation
frequency, w, we write

P, = Py @.1)

with the understanding that only the real part of the term on the right-hand side is to be taken.
The resulting plunge displacement, A(t), is given by

h = he'®, 4.2)

where 7 is the complex plunge amplitude. The instantaneous upward force experienced by the
airfoil is the driving force, P,(f), subtracted from the aerodynamic lift, L(), created by the
plunging motion. Note that an aecrodynamic pitching moment, M, is also produced because of
the plunging motion, but is opposed by the restraining apparatus (considered to be rigid) such
that a pitch displacement (rotation) does not take place.

For an airfoil of chord 26 and flow density p, undergoing a pure plunging motion, the
non-circulatory lift per unit span is given by (see Chapter 3):

L,.(t) = zb’ph, (4.3)

and acts at the airfoil’s mid-chord point. The structural motion in a pure plunge is described
by the following equation:
mh + c,h+ Kyh =P, — L. (4.4)

The non-circulatory term is clubbed with the airfoil mass in the revised structural equation of
motion, leaving only the circulatory lift as the aerodynamic forcing term:

(m+ zb*p)h+ c,h+ K,h=P, - L, 4.5)
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Assuming zero initial condition, 2(0—) = h(0—) = 0, the structural transfer function, G(s), is

the following:
h(s) 1
G.(s) = = — . 4.6
(5) L.(s) (m+ nb2p)s® +cs +k (46

The aerodynamic system is in a feedback loop with the structural system (see Fig. 3.4), hence
the overall aeroelastic system can be represented by the following closed-loop transfer func-
tion, G..(s):
G, (s
G.(s) = () = —S( ) 4.7
P(s) 14+ 5G(5)G,(5).
For the pure plunging motion, the change in the angle of attack is the same at all points on
the chord, and is given by

o =tan_l£,
U

which in the linear case (small | & |) is approximated by

h
a~—.
U
Thus we have o
L.(t) = L / h(t)g(t — t)dr (4.8)
U Jo
or ,
L.(t)= % [a(t)h(O) + / h(t)a(t — T)dr] . (4.9)
0
This becomes the following in terms of Wagner’s function:
1
L.(1) = 2zpU? | ®DH (0) + / W' ()@@ - 7)dr | . (4.10)
0
Here / denotes taking the derivative with respect to non-dimensional time, 7, thereby implying
vei(?)
U
/b \2
W=h(7) 411
i (4.11)

The circulatory lift induced by the plunging oscillation can also be expressed as follows:
L.=Le™ = L™, (4.12)

where L = Lye'® is the complex lift amplitude. The complex amplitude ratios, 1/P,, L/h,
give rise to phase differences between the various signals, and depend upon the forcing
frequency, . The linear aerodynamic dependence of the circulatory lift on the plunge rate,
dh/dt, is described by the following transfer function:

_ L.(s)
Gal$) = sh(s)’
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wherein the magnitude ratio and phase angle, ¢, between circulatory lift and plunge are
given by
L Im[G,(iw
L loie | G (iw) |, ¢(w)= tan_lw.
h(w) Re[G,(iw)]

(4.13)

After a steady harmonic motion is established, the phase between the external excitation,
P,(t), and the plunge displacement is unimportant. Thus we can regard the aeroelastic plunge
response taking place with real amplitude, £, as follows:

h = hye™".

When integrated over a complete plunge cycle, the non-circulatory lift does not perform any
net work:

2n/w
W, =-— /0 h(t)L,,.(1)dt

= %ﬂbzphng[cos@ﬂ) —-1]1=0. (4.14)
Therefore, the only net work done on the airfoil per cycle due to aerodynamic lift is by its
circulatory part, calculated as follows:

/o
W,.=- / h(t)L.(1)dt
0
27 /w
=—pUwhyL, / sin(wt) cos(wt + ¢p)dt
0

2z /w
=—pUwhyL / sin(wt) sin(wt + ¢)dt
0
=—npUhyL, cos ¢. (4.15)

The phase angle ¢ can be calculated by Eq. (4.13) by putting & = ikh,, /b for the amplitude of
the non-dimensional angle of attack:

¢ = tan™! IRACON _ ot PO (4.16)
Re[ikC(k)] —G(k)

which is always in the range —z /2 < ¢p < x /2, as shown in Fig. 4.1. Hence net aerodynamic
work done per cycle, W, is always negative in the case of pure plunging oscillation. Therefore,
energy is always extracted by the airflow from the system, and flutter in pure plunge (bend-
ing) is ruled out. While this analysis is for the ideal (inviscid, incompressible) flow, the rate of
energy extraction from the system increases (becomes even more negative) if the effects of vis-
cosity and compressibility are included. This is due to viscous flow dissipation and the energy
lost in compressing the airflow. Thus it can be said that pure bending (plunging) oscillation

can never lead to a self-sustained oscillation like flutter.
Next, the possibility of flutter by pure pitching oscillation is investigated. The wind-tunnel
model of the airfoil is now mounted on a torsional spring of stiffness K, and restrained from
plunging by a rigid support in the vertical direction. The moment of inertia of the airfoil about
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k

Figure 4.1 Phase lead angle, ¢, of the circulatory lift with respect to the plunge displacement in a pure
plunging oscillation

the pitch axis is /, and the viscous damping constant in pitch is c,. The airfoil is driven by
an actuating mechanism that applies a torque about the pitch axis, such that a steady pitching
oscillation is established:

0 = 0™ = 5™ V/". (4.17)

Since plunge displacement is absent, the angle of attack is equal to the pitch displacement
(@ = 0). From Chapter 3, the following expressions are derived for the aerodynamic lift, L,
per unit span,

L=—npb3ab + npb>Ub + 2z pbU [Ua +b (% - a) 9’] Clk) (4.18)

and the pitching moment per unit span, M,, about the pitch (elastic) axis located at x = ab
behind the mid-chord point:

_ 5 l) 45 3 <l_ )
M, = (a +8 wpb0 — pb’U 3 a)é

+27rpb2U<% +a> [U0+b(% —a) é] Ck). (4.19)

The aerodynamic lift is opposed by the rigid vertical support, hence no plunge displacement
takes place (z(¢) = 0). However, the aerodynamic pitching moment contributes to the pitch-
ing oscillation. After establishing the constant amplitude oscillation, the actuating torque is
removed (Mye = 0), leading to a free aeroelastic motion. The non-circulatory inertia term is
added to the pitch moment of inertia, and the non-circulatory damping term contributes to the
structural viscous dissipation, while the circulatory moment due to the wake acts as the forcing
term on the right-hand side of the following aeroelastic equation of motion:

[Ie + <a2 + %)ﬂpbﬂ 0+ [Ce +7zpb3U<% —a)] 9+K90

=27 pb2U (% + a) [U0 +b (% - a) 9’] Ck).  (4.20)
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It is clear in Eq. (4.20) that the non-circulatory moments have no possibility of exciting a
self-sustained oscillation like flutter, because they merely add to the structural inertia and
damping terms. Furthermore, if the pitch axis x = ab is moved to the 3/4-chord location
(a =1/2), the circulatory damping term vanishes, and only the circulatory stiffness term
remains. This implies that even the slightest structural damping is sufficient to drive the
oscillation to zero in the steady state for pitching about the 3/4-chord point. For a pitch
axis located between the mid-chord and the 3 /4-chord points (0 < a < 1/2), the circulatory
damping term is positive, which effectively damps out the pitching oscillation. Hence, for the
possibility of flutter, we must look for the cases where the pitch axis is located forward of the
mid-chord point a < 0, for which the circulatory damping term becomes sufficiently negative
to overcome structural damping in order to produce self-sustained pitching oscillation. The
classical study conducted by Greidanus (as reported in Fung (1955)) indicated a single
d.o.f. flutter condition in pitch for a < —1/2 (but not too far forward of the leading edge,
a=—1) and k < 0.0435. Bisplinghoff and Ashley (1962) gave a physical explanation of
the low-frequency single d.o.f. flutter. They required that the aerodynamic pitching-moment
derivative with respect to pitch rate must change in sign from negative to positive at the flutter
condition. This implies that the imaginary part of the moment derivative with respect to pitch
amplitude should change in sign from the positive to the negative at the flutter frequency. The
exact flutter condition is therefore obtained at the reduced frequency at which the imaginary
part of the circulatory moment derivative with respect to pitch amplitude, given by

TS —an () ek (-a)] e @21
2

changes from positive to negative values, thereby producing negative aerodynamic damping.
At reduced frequencies below the flutter point, the oscillation is unstable, while for those
above the flutter point, we have stable pitching oscillation. A plot of the imaginary part of
the non-dimensional circulatory moment derivative with respect to pitching amplitude versus
the reduced frequency is shown in Fig. 4.2 for various values of the pitch axis location forward
of the 1/4-chord point (¢ < —1/2). It is seen that as the pitch axis moves forward, the critical
reduced frequency decreases, thereby diminishing the range of frequencies for which flutter
instability can occur. For a = —0.55, the critical reduced frequency is found to be k = 0.076,
while that for a = —1.75 is k = 0.03 (Fig. 4.2). The analytical result of Greidanus (Fung 1955)
is obtained for a = —1.29, at which the reduced frequency range for single d.o.f. flutter is
0 <k <0.0435.

A similar analysis reveals that the single d.o.f. flutter in control-surface rotation can also
occur in a specific range of reduced frequencies, for specific locations of the hinge line for-
ward of the 1/4-chord point of the control surface. An aerodynamically balanced flap can
also lead to single d.o.f. flutter (Runyan 1952). However, such a phenomenon can only be
driven by an unsteady wake. If a quasi-steady aerodynamic assumption is used in the analysis,
completely mistaken results can be produced, as shown by Bisplinghoff and Ashley (1962).
Fortunately, quasi-steady analysis can be applied to explain the multi-degree-of-freedom flutter
mechanism, as given below.

Runyan (1952) applied subsonic and supersonic compressibility corrections in his single
d.o.f. flutter calculations using series expansion for the unsteady aerodynamic moment in
terms of the compressible reduced frequency, k/(M2, — 1). It was shown that the compress-
ibility effect can have a pronounced reduction in flutter stability margin. For single d.o.f.
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Figure 4.2 Circulatory pitching-moment derivative with respect to pitch amplitude versus reduced
frequency in a pure pitching oscillation for various pitch axis locations, showing the low-frequency flutter
condition

control-surface flutter, Runyan’s approximate, linear analysis indicated a critical speed in
the transonic or low-supersonic regimes. However, these are the very regimes where the
effects of unsteady shock waves are equally (or perhaps more) important than those of an
unsteady wake. When the nonlinear aerodynamic effects of shock-induced flow separation
(SITES) are involved (to be considered in Chapter 11), single d.o.f. flutter in either pitch,
or control-surface rotation becomes more likely. The SITES phenomenon usually lead to a
self-sustained, constant-amplitude limit-cycle oscillation (LCO) in pitch, where the energy
extracted from the freestream by the single d.o.f. flutter mechanism is dissipated in viscous
flow separation caused by nearly normal shock waves.

Subsonic single d.o.f. flutter involving attached flows — due to its second-order dynamics —
can be prevented either by the passive means of increasing the torsional stiffness of the wing
and/or the control surface, or by placing high-gain, linear filters in a feedback control loop
(to be discussed later in this chapter). Suppression of SITES LCO may require a nonlinear
feedback strategy, to be covered in Chapter 11. Owing to the inherent uncertainty in the aerody-
namic parameters, an adaptive control loop must be added to suppress both linear and nonlinear
s.d.o.f. flutter.

4.2 Bending-Torsion Flutter

When two (or more) d.o.f.s are excited simultaneously, they can interact in such a way as to
cause flutter, even though the structural stiffness in each may be large enough to preclude single
d.o.f. flutter. When only two d.o.f.s are involved, the classical flutter mechanism is termed
binary flutter, whereas that involving all the three d.o.f.s is called ternary flutter. Such a flutter
mechanism is much more difficult to prevent and suppress owing to the complex aeroelastic
interaction taking place among the various d.o.f.s.

The most common binary flutter is that involving the plunging and pitching motions
(called bending-torsion flutter). Since the physical mechanism behind bending-torsion flutter
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involves a coupling of the pitch and plunge d.o.f.s, its explanation is not very intuitive, but
requires analytical methods. Here two such explanations are presented. The first is based on
the approximate quasi-steady approximation of Pines (Bisplinghoff and Ashley 1962), which
offers a surprisingly accurate insight into the actual phenomenon. The second analysis is
by the energy approach applied to the unsteady aerodynamic effects caused by the coupled
pitch-plunge oscillation.

Quasi-steady aerodynamics of typical section can be expressed by the following coupled
equations of motion:

mh + Kyh + Sp0 = —qSC;_ <0 + %)

1,0 + Ky6 + Sgh = qSeCy, (9 + %) , (4.22)

where C; _is the sectional lift-curve slope, and e is the distance of the pitch (elastic) axis behind
the aerodynamic centre. For subsonic flow, we have e = (a + 1/2)b, whereas for supersonic
flow, e = ab.

This can be explained by considering a pitch oscillation that has a phase difference, ¢, with
the plunging motion. The two responses are expressed as follows:

h= hoeiwt
0 =Gy 2. (4.23)

Such a motion can arise through a harmonic plunge force, P,(f) = Pye', and then removing
the excitation when the constant harmonic amplitudes (%, 6) are reached. Assuming simple
harmonic motion, the aerodynamic lift and pitching moment are expressed as follows in terms
of the Theodorsen function (Appendix A):

L = 2pb*[h + U6 — abd) + 27pbU [h +UO+b (% - a) é] c), (4.24)

— 2 7 1 A 2( 2 1\ &
M, = npb [abh—bU(E—a>9—b (a +§)9]

+27pbPU (% +a> [h+ U0 +b (% - a) 0| cw. (4.25)

From the above discussion, it becomes clear that the pitch (torsion) mode has the ability to
cause flutter, either by itself or in combination with a plunge (bending) mode. The same can
be said of the control-surface mode, which can cause flutter by itself, or in combination with
the pitch and/or plunge modes. Conversely, the control-surface mode, if properly controlled,
can be employed to suppress flutter caused by the other two d.o.f.s. This is the basis of active
flutter suppression systems, which will be the focus of the remaining chapter.

4.3 Active Suppression of Single Degree-of-Freedom Flutter

A linear aeroelastic system with pitching motion, 6(¢), coupled with control-surface motion,
p(1), is described by the following vector differential equation:

Mg+ Kqg=Q+ (0, u, (4.26)
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where ¢ = (0, f)T is the generalized coordinates vector, Q = (My,H)T is the generalized air
loads vector, and M, K are the following generalized mass and stiffness matrices, respectively,
of the structure:

m=( T M 4.27)
meX Xg I

k, 0
K < o k,,) _ (4.28)

The structural damping is neglected for a conservative flutter suppression design. However, if
the damping is estimated by an experiment, it can be added to the simulation model of the ASE
system. The generalized aecrodynamic loads vector consists of the pitching moment, M,(r), and
the control-surface hinge moment, H(¢). For simplicity, it is assumed that the aerodynamic
moments can be modelled primarily as first-order lag (or circulatory) effects of the unsteady
wake shed by the airfoil, as well as the non-circulatory contributions of the aerodynamics to
inertia, damping and stiffness. Such an RFA model of the unsteady aerodynamics with a single
lag parameter is given in the Laplace domain by

1 azs A
os) = E'DU (al +a,s + s+bl> {A;}w(s), (4.29)

where w(s) is the following upwash at a specific location on the airfoil:

w(s) = (Cy, Cy, C3,Cy) {Sqq((ss))} , (4.30)

and A}, A,,ay,---,a3,b,Cy,- -+, Cy are constant aerodynamic parameters (in addition to p
and U). Equations (4.29) and (4.30) result in the following relationship for the generalized

unsteady aerodynamic loads:
- q(s)
0(s) = G(s) {Sq(s)} , (4.31)

where the aerodynamic transfer matrix is given by

Go) = LoU (a, +ars + =2V 14 Ve, e 0 (4.32)
S) = 2p ap as s+b1 Az 1> ©2,C3,0L), .
This leads to the following state-space representation
x=Ax+ Bu (4.33)
y=60 = Ex+ Du, (4.34)
where x = (¢7, 4", x,)" is the state vector,

0 1 0
1 1= 1 ——1fA
A=|-M K M C —EpUb1a3M A , (4.35)
2
(€, G (G5,Cy) -b,
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0
B=|i"0,1)"|, (4.36)
0
E=(1,0,0,0,0); D=0, (4.37)
= 1 A
M=M - EpUa2 {A;} (C3, C4) s (438)
~ 1 . (A4,
C= EpU {Az} [a2 (CI’CZ) + (al +a3) (C3, C4)] N (439)
E:K—lpU(a +az) 4 (C.Cy) (4.40)
2 1 3 A2 1>%~2) - .

The matrices K, C, M are the generalized stiffness, damping and mass matrices of the aeroe-
lastic system, which reduce to K, 0, M, respectively, for the in vacuo case (p = 0). Note that the
order of the aeroelastic system is increased by one due to the aerodynamic state, x,(¢), arising
out of the single lag term, ass/(s + b;), which augments the dynamics matrix A. The given
aeroelastic plant is controllable with the motor torque input, which can be verified from the
rank of the controllability test matrix for the pair (A, B). The aeroelastic stability is determined
from the eigenvalues of A:
det(s/ —A) =0

at a given flight condition, (p, U). Considering the flow to be incompressible, a Theodorsen
type (Chapter 3) model can be used to derive w(s), hence G(s).

Example 4.3.1 Consider an airfoil of semi-chord b =1 m equipped with a trailing-edge
control surface mounted on a frictionless torsional spring of stiffness k, =40 Nm/rad.
The control-surface hinge is also frictionless, and has a rotational spring of stiffness kz =
9 Nm/rad. The hinge line of the control surface is located at a distance of ¢ = 0.3 m behind
the pitch axis. The mass of the control surface is m, = 0.1 kg, and the distance of the control
surface’s centre of mass behind its own hinge line is x5 = 0.1 m. The moment of inertia of the
setup about the pitch axis is I, = 10 kg m?, while that of the control surface about its hinge
isly=1kg m?. The setup is placed in a uniform, incompressible flow of speed U and density
p = 1.225 kg/m?. The control surface is equipped with a DC motor that can apply a torque,
u(t), about the control-surface hinge line, relative to the airfoil. The relevant aerodynamic
parameters calculated by Theodorsen’s model (Chapter 3) are the following:

T
A1=l; Ay =——2
2 2rm)
T T
Ci=1; =1, ¢,=L. ¢ =22
T 2 2r)

where the coefficients T;,i = 10, 11, 12 are the following (Chapter 3):

Tyo = V1—c2+coslc
T, =2-0VI1- c2+(1- 2c)cos‘lc
Ty, = 2+c)V1—c2—(Q2c+ eos™le
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A simple-pole RFA of the least-squares type is applied to approximate the Theodorsen function,
C(k), with one lag parameter, b, given by

ass
+ b,

’

C(s) =a; +aps +
s
and has the following coefficients:
a =1.0, a2=0, a3=—2.0, b] = 0.05.

It can be shown that the aeroelastic plant is unstable at any speed, U > 0, due to the circu-
latory aerodynamic characteristics associated with the wake. This is the single d.o.f. (pitch)
flutter, which needs to be suppressed by controlling the deflection of the control surface via a
feedback loop.

In order to stabilize the plant, the following linear, state-feedback control law is explored:

u=—(0,,0,,05,0,,05)

=N ™™

=

a

which is abbreviated as u = —0OTx, with x = (0, §, 9, ﬁ,xa)T being the state vector, and
®=(60,,0,,05, 94)T the controller parameter vector. When substituted into the state equation,
Eq. (4.33), the control law produces the following regulated ASE system:

i=(A—-BO )

The characteristic polynomial of the regulated system, det(sI — A + BOT), is chosen to have
all the roots in the left-half plane at the following locations:

51,2 =—1 + i’ 33,4 =-2 + 2l, S5 = —0.05.

This results in a particular value of the controller parameter vector, ©, at each flight condition
(p, U), for making the regulated ASE system asymptotically stable.

Unfortunately, a practical implementation of the state-feedback law is impossible in the
present case, because it requires the direct measurement of all the state variables. While the
angles, 0, f, and rates, 0, ﬂ, can be picked up by angle encoders and rate sensors mounted
on the airfoil’s pitch axis and the control-surface hinge line, there is no way of measuring
the aerodynamic lag state, x,, which is not even a physical quantity. A design possibility is to
use only some of the state variables as outputs, y(t), and then estimate the entire state vector
through an observer, which is an electrical subsystem of the controller. The derivation of the
control law in that case will first require the design of an observer for estimating the state
variables from a finite record of the input, u(t), and the output vector, y(t). The estimated states,
X(1), are then electrical signals to be fed into a multi-channel amplifier (regulator) for driving
the control-surface motor. Alternatively, a single output, y(t), can be selected, which is already
a physical combination of all the state variables. Such an output is the normal acceleration
measured by an accelerometer placed at a point on the control surface. The controller is then a
single-channel amplifier producing the control input, u(t), by a transfer-function relationship
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of the output, u(s) = F(s)y(s), and can be designed by classical frequency-domain methods.
Of course, the state-space and transfer-function representations are mathematically equivalent
(an observer can be represented by its own transfer matrix), but the discussion here is about
practical implementation.

Let us consider the first (observer-based) approach, by selecting the output vector to be
y = (8, p)T, which implies the following output coefficient matrices:

1 00 00O 0
E‘(o 100 o>’ D‘(o)‘
The observer is represented by the following state equation:
2=(A-LE)}+ (B—LD)u+ Ly,

where the observer gain matrix, L, is to be selected for placing the observer poles (i.e. eigen-
values of A — LE) at desired locations. The observer poles are chosen as follows to be deeper
into the left-half plane than the regulator for a faster state estimation dynamics:

S12==3£3i, s3,=—-4+x4i, s55=-02.

If one selects a suitable reference flight condition for the controller (regulator and observer)
design, it may not be necessary to change the controller gains, ®, L, with a changing flight
condition in order to have a stable closed-loop system. Suppose the operating speed range for
this aircraft is 10 < U < 50 m/s at standard sea level. If the design is based on U = 50 m/s
and standard sea level, there would be no possibility of flutter occurring in the flight envelope.
A similar argument applies at higher altitudes, where the flight speeds could be larger (but
within the incompressible range), but the limiting dynamic pressure, 1/2pU? < q,,,, is essen-
tially the same as that at sea level. A plot of the closed-loop poles varying with the flight speed
at standard sea level (p = 1.225 kg/m?) is shown in Fig. 4.3 for the following fixed chosen
values of ©, L derived for sea-level, U = 50 m/s, condition:

07 = (27.1407,-0.5769, 19.0384, 6.4921, —0.6453)

8.2562 1.7684
—-1.0813  6.3802
L=]27.4451  5.6388
—-1.1005  11.2779
23.2311 —4.1531

The closed-loop system is therefore stable in the range of flight speeds 10 < U < 60 m/s, which
is adequate. However, if a process noise input is present, the stability can be eroded. The
stability margin of the system is analysed by the largest singular value of its sensitivity matrix
shown in Fig. 4.4 for the extreme condition of U = 60 m/s, and sea level. The gain margin
is seen to be 5.44 dB with a crossover frequency of 0.23 rad/s, and high-frequency roll-off is
—40 dB per decade. The simulated response in the same flight condition to an initial pitch
perturbation in the presence of a normally distributed random process noise, p(t), of standard
deviation 0.05 units (which is quite large) in the input channel is plotted in Fig. 4.5, showing a
stable system. Hence the designed stabilization system for flutter suppression is quite robust,
even at a speed higher than the design range.
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Figure 4.3 Variation of the closed-loop poles with flight speed at standard sea level
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Figure 4.5 Closed-loop response for an initial pitch perturbation at U = 60 m/s, standard sea-level con-
dition, in the presence of normally distributed random process noise, p(?), of standard deviation 0.05 units

4.4 Active Flutter Suppression of Typical Section

Consider a typical wing section model derived above with an augmented state vector,

q
X=4qGy¢, (4.41)
xa
and the following state equation:
X = Ax + Bu, (4.42)
where
0 1 0
A=|-ir"'k -m"'C -m"'N, (4.43)
Fa Fa
and
0
B=|I]. (4.44)
0

Here M =M —M,,C = C - C,, K = K — K,, are the generalized mass, damping and stiffness
matrices, respectively, of the aeroelastic system.
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4.4.1 Open-Loop Flutter Analysis

While flutter analysis can be carried out directly in the frequency domain (as flutter is the
simple harmonic motion at the boundary of stable and unstable conditions), the state-space
method is applied here in order to illustrate the flutter condition arising naturally from the
general transient motion.

Flutter analysis involves computing the roots of the open-loop characteristic equation, which
are also the eigenvalues of A, and are closely related to the roots of the flutter determinant
employed in classical texts (Bisplinghoff and Ashley 1962, Fung 1955),

det(s] — A) =0, (4.45)

for a varying dynamic pressure 1/2pU?. This is practically carried out by fixing the flight
altitude (p) and increasing the airspeed until instability is encountered. In the non-dimensional,
open-loop aeroelastic plant described by Eq. (4.42), only the stiffness matrix, K, depends upon
the airspeed through the natural frequencies of the aeroelastic modes. Thus, the eigenvalues
of the matrix A are functions of the airspeed U at a given altitude.

Example 4.4.1 A wing withb =1m, a=-0.2, ¢ =0.35, x, = 0.2, x; = 0.04, rg = 0.25 and
r2 = 0.02, has non-dimensional mass x = 0.1, and natural frequencies w, = 0.5, wy = 1.5
and wy =2 when flying straight and level at an airspeed of 30m/s at standard sea level
(p = 1.225 kg/m?). It is required to carry out the open-loop flutter analysis of the wing.

Consider the following rational function approximation (RFA) of the Theodorsen function
(Eversman and Tewari 1991 ):

0.1667s  0.3119s
s+0.0553  5+0.2861°

This nonlinear-optimized approximation (the second entry on the right-hand side of Table 1 of
(Eversman and Tewari 1991)) results in a net curve-fit error of only 0.000561 over a range of
reduced frequencies 0 < k < 1. Figure 4.6 compares the exact C(ik) with the selected rational
approximation for s = ik, 0 < k < 1. Clearly, in the given range of frequencies (where flutter
is expected to occur), the approximation of the Theodorsen function is quite good.

From the given data, the in vacuo, dimensional natural frequencies are computed to be the

C(s) = 0.9962 —

following:
ky, U
\/ — =w,— = 15rad/s,
- @, , rad/s
k,
20 = a)ag =45 rad/s,

K
‘/i = w7 = 60 rad/s.

Since these frequencies are far apart, there is little possibility of modal interaction in vacuum.
However, unsteady aerodynamic interaction among the modes is possible, leading to the flutter
condition.
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Figure 4.6 Two-pole rational function approximation of the Theodorsen function

Figure 4.7 is a plot of the natural frequencies and damping ratios versus airspeed cor-
responding to the plunge (h/b), pitch (0), and control-surface () modes. All the natural
frequencies decrease slightly with increasing U. While the natural frequencies of the plunge
and pitch are only changed slightly from their in vacuo values, the change in the natural fre-
quency of the control-surface mode due to aeroelasticity is much greater (an increase of about
33%). The damping ratios of the pitch and plunge modes are seen to decrease in slope with
increase in airspeed (Fig. 4.7), while the control-surface mode — with the largest natural fre-
quency — has the opposite trend. The pitch and plunge modes are predominant because of
their relative proximity to the imaginary axis, when compared with the control-surface mode.
The pitch mode is seen to become unstable at U = 63.35 m/s with a corresponding flutter
Jfrequency of 41.18 rad/s. Such an interaction between the plunge and pitch modes is primar-
ily responsible for the classical bending-torsion flutter condition, which is a characteristic of
high-aspect-ratio wings.

In order to complete the flutter analysis, the effect of atmospheric density on the aeroelas-
tic modes is examined. It is expected that the flutter speed would increase with altitude due
to a decreasing value of the non-dimensional mass k. Consider the wing flying at a constant
airspeed of 70 m/s at various altitudes in the density range of 0.255 < p < 1.225 kg/m?. This
is a supercritical speed at standard sea level, hence the flutter boundary would occur at a
larger altitude. Figure 4.8 shows the variation of natural frequencies and damping ratios of
the aeroelastic modes with density. As the atmospheric density is decreased from 0.255 kg /m?,
the flutter condition is first reached at the altitude where the density is 0.7947 kg /m?>. This cor-
responds to a standard altitude of 4283.3 m. Below this critical altitude, the aeroelastic modes
are unstable for U =70 m/s, while at higher altitudes they are stable. As investigated above,
the instability is due to the pitch mode and corresponds to a critical frequency of 47.535 rad/s
for the given airspeed and altitude.
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4.5 Linear Feedback Stabilization

The ideal aerodynamics plant derived in the previous section is linear, time-invariant and
unconditionally controllable. Hence, a linear feedback controller can be designed in the ideal
case using the traditional methods for a given flight condition p, U. For the LTI plant given by

X = Ax + Bu, (4.46)
a linear controller is based on a state feedback regulator with the following control law:
u=—Kx, 4.47)

where K is the regulator gain matrix considered to be constant in the nominal case. The task
of the regulator is to stabilize the closed-loop system by feeding back the state vector of the
plant. Two alternative design methods can be applied for linear, state-feedback control: pole
placement and linear optimal control.

4.5.1 Pole-Placement Regulator Design

Design of a linear, state feedback regulator for the LTI plant of Eq. (4.46) with the control law
Eq. (4.47) can be carried out by assigning a structure for the eigenvalues and eigenvectors of the
closed-loop dynamics matrix, A — BK. In case of single-input plants, this process reduces to
selecting locations for the closed-loop poles (called the pole-placement method) by following
Ackermann’s formula, which yields the desired closed-loop characteristics (Chapter 2):

K = (a; —a)(PP)™", (4.48)
where a is the row vector formed by the coefficients, a;, of the plant’s characteristic polynomial
in descending order [a = (a,,a,_,," -, ay,a,)]:

det(sI —A)=5"+a,s" ' +a, ;"> +---+ays+a, and (4.49)

a, 1s the row vector formed by the characteristic coefficients of the closed-loop system in
descending order [a; = (@, Ayp—1ys " * > Ag2s A1)

det(s[ —A+ BK) =" + adns”_l + ad(n_l)sn_z +---+ aps + ag. (450)

Here it may be recalled from Chapter 2 that P is the controllability test matrix of the plant, and
P’ is the following upper triangular matrix:

1 a, dn az a
0 1 a, a, ag
L S B @3
0 0 o - 1 a,
0 0 o .- 0 1

The matrix inversion involved in Ackermann’s formula requires that the plant must be con-
trollable, det(P) # O.
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Example 4.5.1 For the typical wing section considered in Example 4.4.1, consider
a pole-placement regulator for keeping the closed-loop ASE poles at constant stable
locations of

S]’z = —01 =+ Oll, S3’4 = —02 =+ 021, S5’6 = _03 + 031,

while having the two aerodynamic poles unchanged at s; = —0.0553,53 = —0.2861. The
resulting plots of the closed-loop natural frequencies are shown in Fig. 4.9, where all
frequencies are seen to increase nearly linearly with the flight speed. The required feedback
gains, K = (K, - -, Ky), are plotted in Fig. 4.10 against the flight speed for the supercritical
range (above the open-loop flutter velocity). While K, K¢, Kg remain small throughout the
speed range considered here, the other gains vary significantly, but remain bounded in
magnitude. The variation of the natural frequencies and regulator gains with the atmospheric
density is evident in Figs. 4.11 and 4.12. Such behaviour of the regulator gains indicates that
it is possible to apply a gain-scheduling system for adjusting the controller parameters with
the flight speed and atmospheric density, while maintaining a constant stability margin.

45 . - - - ' ' '
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40 | = Control—surface - )
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15+ B

5 1
60 65 70 75 80 85 90 95 100
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Figure 4.9 Variation of the closed-loop natural frequencies with airspeed at standard sea level for the
supercritical (above open-loop flutter velocity) condition
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70 m/s

4.5.2 Observer Design

The state-feedback control is unavailable for the aeroelastic plant, because there is no possi-
bility of measuring the aerodynamic states, x,. Instead, an observer-based, output feedback
controller is designed, which employs the normal acceleration at a selected location b¢ aft of
the mid-chord point as the only output variable, given in a non-dimensional form by

y= —% -0 - (& -a)d, (4.52)

or in a non-dimensional state-space form as follows:
y = Ex+ Du, (4.53)

where the state vector x satisfies the state equation Eq. (4.46), and E € R+ D € R are
the following output coefficients:

E=AA+E,
D =AB, (4.54)

where
A= (013, =1, (@ = &),0,50)" (4.55)
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and

B = (014 —1.0150)". (4.56)

The observability of the plant in the open-loop case can be verified by the rank of the following
observability test matrix (Chapter 2):

N=(E", ATE", ATET, ATYET, ATY'ET, @ATYE", (AT)°E). 457)
Since E is a row vector, N is a square matrix. The determinant | N | is non-zero provided
& # a. Thus, the plant is observable with the normal acceleration output measured at a point
not collocated with the pitch axis. The output equation Eq. (4.53) is used in the design of a
full-order observer with the following state equation:

i=(A-LE)X+ (B—LD)u + Ly, (4.58)

where %(7) is the estimated state and L the observer gain matrix, provided the plant, (A, E), is
observable. The observer gain matrix, L, is selected by pole placement in a manner similar to
the regulator gain, K, for the observer dynamics matrix, A — LE, where A is replaced by AT,
and B by ET.

Example 4.5.2 For the typical wing section considered in Example 4.5.1, let us design a
full-order observer for placing the poles of the observer dynamics matrix, A — LE, at the fol-
lowing Hurwitz locations:

512 ==0.5+0.5i, 55, =—-08+08i, s50=—10+10i, 5;=-0.1, 55 =—03,
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Figure 4.13 Variation of the observer gains with airspeed at standard sea level for the supercritical
(above open-loop flutter velocity) condition
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These poles are selected to be deeper in the left-half plane than those of the state-feedback reg-
ulator, as the estimated state must settle much faster than the plant state. However, too deep a
location must be avoided owing to noise feedback considerations (discussed in Chapter 2).
The measured output, y = Ex + Du, is the normal acceleration sensed at a location 1.0%
semi-chord forward of the elastic axis, with

E=(@©, 0, 0, 0.1750, -0.0098, 0, 0, 0), D=0.

Thus the aeroelastic plant is strictly proper. The observer gain matrix, L, is easily derived by
comparing the characteristic polynomials, det(s] — A) and det[s] — (A — LE)], and is plotted
in Figs. 4.13 and 4.14 against flight speed, U, and atmospheric density, p, respectively, for the
supercritical range. Since the variation of the gains is smooth, a gain-scheduling system can
be devised for the observer as well.
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Figure 4.14 Variation of the observer gains with atmospheric density at the supercritical airspeed of
70m/s

4.5.3 Robustness of Compensated System

The final step in the design of an active flutter suppression system is to verify the robustness
of the compensated ASE system with respect to random disturbance inputs (process and mea-
surement noise). The state-space representation of the overall ASE system is the following:

i A ~BK x
{x} N <LE A—BK—LE) {x} (459
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y = Ex — DK% = (E, -DK) {i}

(4.60)

The Bode plot of the closed-loop ASE system for U = 70 m/s and standard sea level is shown
in Fig. 4.15, indicating an infinite phase margin and a gain margin of 9.9 dB with a crossover

Bode diagram
Gm = 9.9 dB (at 0.281 rad/s), Pm = Inf
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Figure 4.15 Bode plot of the closed-loop ASE system for U = 70 m/s and standard sea level with

observer Design No.1
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Figure 4.16 Bode plot of the closed-loop ASE system for U = 70 m/s and standard sea level with
observer Design No.2 showing an increased stability robustness with respect to disturbance inputs
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f (rad)

Figure 4.17 Initial response of the closed-loop ASE designs for an initial pitch angle perturbation at
U =70 m/s and standard sea level in the presence of normally distributed random process noise of stan-
dard deviation 1072 units (Design No.1: solid line; Design No.2: dashed line)

frequency of 0.281 rad/s. The roll-off at high frequencies is —40 dB per decade, which indicates
a good noise rejection property. Hence, it appears to be a sufficiently robust design, although
the gain margin can be increased by moving the observer poles deeper into the left-half plane.
This is demonstrated by selecting a new observer pole placement as follows:

st =-1.0 + 101, 53’4 =-1.5 + 151, SS,G =-2.0 + 201, §7 = _05, Sg = —08,

The changed observer (called Design No.2) is seen in Fig. 4.16 to produce double the gain
margin (19.9 dB) of the ASE system when compared to that possible with the original observer
(Design No.1). The high-frequency roll-off is unchanged (—40 dB per decade).

The simulated initial response of the two ASE designs for an initial pitch angle perturbation
in the presence of a normally distributed process noise, p(f), of standard deviation 1072 units,
representing a severe turbulent gust input, is plotted in Fig. 4.17. Here the response of Design
No.1 is shown by a solid line, while that of Design No.2 is marked by a dashed line. Note
that the response of the non-dimensional normal acceleration, y(f), and the control-surface
deflection, f(t), for Design No.2 is an order of magnitude smaller than that for Design No.1,
thereby demonstrating the better stability robustness of the former.

4.6 Active Flutter Suppression of Three-Dimensional Wings

Three-dimensional wings can experience multi-mode flutter due to the aeroelastic coupling
between several structural modes and unsteady aerodynamic loads. The modelling of such
structures is based on the finite-element approach and the unsteady aerodynamic behaviour is
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estimated by linearized, frequency-domain lifting surface theories extended to transient motion
by RFAs. Chapter 3 briefly highlights these steps, and for greater details about them, the reader
is referred to the companion book on aeroservoelasticity (Tewari 2015).

Assume that a finite-element (or assumed modes)-based structural analysis has been carried
out, and the generalized mass, stiffness and damping matrices of the structure are available
with respect to the generalized coordinates, g(¢). Furthermore, let us also assume that an RFA
of the unsteady aerodynamic transfer matrix is also available, whose non-circulatory terms
are clubbed with the corresponding structural coefficients, resulting in the overall generalized
mass, M, stiffness, K, and damping, C, matrices. Then the aeroelastic system is represented
by the following state equations (Chapter 3):

X =Ax+BQ,, 4.61)

where
T .T T _T\T
x=(q",q ,x4,Xg)

is the state vector, x,(¢) is the aerodynamic state vector representing wake-induced circulatory
dynamics, x,(7) the gust state vector and

0 1 0
'k - N - 0
A= a ¢, B=|m1]. (4.62)
r, A, 0 0
T 0 A,

with 0 and 7 being the null and identity matrices, respectively, and the other coefficient matrices
having their usual definitions given in Chapter 3. The output equation is expressed as follows:

y=Ex+DQ.,. (4.63)

Here y is the output vector (usually the normal accelerations picked up by sensors at
selected locations). Since the generalized coordinates, ¢(f), do not include the control-surface
deflections, these latter must be handled separately. The state equations of m control-surface

actuators with the deflections vector, 6§ = (6, 65, - - -,6m)T, and control-torques input vector,
= (uy, Uy, u,), are added as follows:

X, =Ax.+B.u, (4.64)
where

x, = (5,6,&0)"

is the actuator state vector with &(f) being the aerodynamic state vector of the actuator
subsystem and
Q.=Cx,+D.u

is the generalized unsteady aerodynamics force vector produced by control-surface motion.
Thus the actuators system and the unforced aeroelastic system are two subsystems of the
open-loop ASE plant, with the overall state vector given by

X = (xT,xZ)T
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and the overall open-loop ASE state equation is the following:

X = AX + Bu, (4.65)
with the output equation, _ ~
y = EX + Du, (4.66)
and
A= <g ic> B= (BBDCC>, (4.67)
E=(E DC.),D=DD,. (4.68)

The active flutter suppression problem is to derive a linear feedback control law,
u=-KX s (4.69)

such that the closed-loop ASE system is asymptotically stable. Here K denotes the regulator
gain matrix to be selected such that the matrix A — BK has its eigenvalues at the desired loca-
tions, and X is the estimated state vector generated by a linear observer with the following state
equation: )

X=@-LE)X + (B —-LD)u+ Ly, (4.70)

based on the measured output vector, y. Alternatively, a reduced-order observer can be
designed for a reduction in the overall order of the ASE system. The regulator and the
observer are designed separately by the separation principle (Chapter 2) and then combined
to yield the closed-loop ASE system. However, different control laws for the servo-actuator
and the aeroelastic subsystems are not being considered here. Instead, the regulator and
observer gains of the actuator and aeroelastic subsystems can be extracted from the respective
gain matrices for a practical implementation. Since the flutter suppression problem is a
regulator problem, the desired states (hence the outputs) are taken to be zeros. Hence, the
state equations of the regulated ASE system are the following:

X A ~BK X
{X} = <LE A—BK—LE) {x} “71)

Example 4.6.1 Consider a modification of the DAST-ARWI wing, which was especially
designed by NASA-Langley for conducting aeroelastic flight tests in a drone aircraft. Detailed
aeroelastic characteristics and the open-loop flutter analysis of the modified DAST-ARW1
wing are based on experimental data and can be found in the companion reference (Tewari
2015). The relevant characteristics of the modified DAST-ARWI wing are briefly listed in
Appendix C of the present book. An open-loop flutter condition for this wing is seen at a speed
of 284.7 m/s, corresponding to the Mach number 0.9192 at standard altitude 7.6 km. The wing
is equipped with a trailing-edge control surface driven by a fourth-order actuator with scalar
torque input, u. An outboard accelerometer provides the single output y, contributed by up
to six aeroelastic modes. The resulting aeroelastic subsystem (based on two aerodynamic lag
parameters) is of order 24, hence the overall ASE plant is of order 28.

A regulator and observer designed by the LOQG/LTR procedure are added to this plant, in
order to yield the best combination of maximum control-torque magnitude and robustness.
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The selected design parameters (see Chapter 2) in terms of Gaussian white, process and mea-
surement noise, p(t) and m(t), with a zero mean (ZMGWN), are as follows:

125l
Sm=0,8,=10""?BB", S, =1, F=1

These imply an equal process noise perturbation in all the channels of the plant state, and no
correlation between the process and measurement noise. The LOR parameters are taken to be

the following:

S=0, 0 =5000C"C, R=1.

The resulting gain matrices of the Kalman filter and the regulator are listed as follows:

K= 106(3.9766, —70.627, —16.821, —82.738,
—126.08, -90.589, —4240.5, —4121,
—2864.1, —6318, 2117.6, 1204.6,
—0.00985, —0.05264, —0.09416, —0.1139,
—0.1487, —0.3899, 791,250, 4,071,400,
7,801,200, 11,572,000, 17,344,000, 30,728,000,
17,930, —6.1962, —3148.3, 494.87)

LT = 10‘5( —9.6977, 44932,  =57.742,  =33.756,
3.2843, —80.993,  0.0272, —0.0298,

—0.2454, 0.1233, -0.03616, —0.102,

-0.0123, 0.006, —0.246, 0.0774,
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Figure 4.18 Bode plot of the closed-loop flutter suppression system at the supercritical condition of
Mach number 0.95 and altitude 7.6 km
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A Bode plot of the closed-loop ASE system is shown in Fig. 4.18, indicating a gain margin
of 37dB and an infinite phase margin. Therefore, the design is quite robust with respect to
the process noise in the ASE plant. Good robustness to high-frequency measurement noise is
also evident in the gain roll-off of 20 dB per decade. The closed-loop response to an initial tip
displacement in the presence of normally distributed process noise, p(t), of standard deviation
0.01 in the input channel is shown in Fig. 4.19 for a supercritical condition of Mach number
0.95 at altitude 7.6 km. The noise is a realistic representation of atmospheric turbulence of
high-to-severe intensity. Note that the non-dimensional acceleration response settles in less
than 1 s at the given supercritical condition, while the control-surface deflection is limited
to £0.002 rad., but its oscillation persists for a longer time (about 3 s), indicating increased
control activity due to the noise. The system’s robustness is therefore demonstrated. We shall
return to this example in a later chapter when carrying out adaptive control design.

0.05 T T T T T T T T T

-0.05 1 1 1 1 1 1 1 1 1

0 0.5 1 1.5 2 2.5 3 35 4 4.5 5

Figure 4.19 Closed-loop response of the flutter suppression system for an initial unit tip displacement
at supercritical condition of Mach number 0.95 and altitude 7.6 km, in the presence of normally dis-
tributed random process noise, p(¢), of standard deviation 0.01 units
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Self-Tuning Regulation

5.1 Introduction

Self-tuning regulators (STRs) offer an attractive adaptive control option for uncertain
aeroservoelastic (ASE) systems, because they are based upon online identification of the
actual plant characteristics that can change in a theoretically unpredictable manner with flight
conditions (speed, altitude and loading). An STR estimates the plant’s uncertain parameters
from a record of its input—output relationship, which is continuously updated in time. On
the basis of the identified plant parameters, the underlying control design problem is solved
at every time instant, resulting in an adaptation (or continuous update) of the controller
parameters. Owing to the separate online identification and controller design modules, the
self-tuning approach is considered an indirect (or modular) adaptation scheme. While our
focus in this book is on the continuous-time (rather than discrete-time) adaptive control
systems (because its nonlinear behaviour is best analysed in continuous time), a recursive
identification algorithm is actually implemented in discrete time. By taking a sufficiently small
sampling interval, the digital controller implementation can be approximated to be time con-
tinuous. For linear systems, an equivalence exists between continuous-time and discrete-time
systems, and hence a direct conversion is possible from the one to the other. Since most
system identification techniques are linear (an example of which is the least-squares rational
function approximation of Chapter 3), they can be alternatively expressed in either discrete-
or continuous-time format.

For the controller design module, both pole-placement (eigenstructure assignment) and
robust optimal control (LQG/LTR, H,, u-synthesis) methods are possible options. The lat-
ter have the advantage of resulting in a robust control system in the presence of process and
measurement noise. When the plant parameters are known with some confidence, these distur-
bance inputs are of small magnitude and a linear controller can be designed to guarantee system
stability in their presence. However, for larger perturbations caused by modelling errors, the
stability margin offered by linear feedback control is exceeded. Then the controller parameters
(observer and regulator gains) must be revised at every time instant by iteratively solving the
algebraic Riccati equations with the identified parameters. Such an iterative scheme — although
quite systematic — can have problems of convergence. It may also require inordinately large
computational resources for an online implementation, due to the large size of the ASE plant.

Adaptive Aeroservoelastic Control, First Edition. Ashish Tewari.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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Hence, simpler (possibly non-iterative) algorithms can prove beneficial in a STR design for an
ASE system.

The STR has an additional (and often more serious) difficulty of converging to spurious (or
unrealistic) conditions. Since the STR method works without an external reference signal, there
is no way for the system to ‘know’ a priori if a stable set-point is also a physical equilibrium
of the process. In some situations with large parametric perturbations, it is possible to have
the STR driving the plant to unrealistic equilibria. This could be considered a failure of the
scheme, and in ASE applications, such an unforeseen failure is often disastrous.

5.2 Online Plant Identification

Consider a linear plant with p unknown plant parameters vectors, 8 € R”, which are assumed
to be linearly related to the plant’s output vector, y(f) : R — R” by the following dynamic
equation:

Y1) = ©(1)0, (5.1

where @(7) : R — R™? is the matrix representing the plant dynamics with known applied
inputs. The problem of identification is to determine an estimate of the p unknown parame-
ters, 6, from a measurement of y(7) at various times. Since n # p, a unique estimate cannot
be obtained at any given time. Thus an online identification algorithm must be devised for
continuously updating the estimate 0, as new values of y(f) become available for a given ®(r).
Equation (5.1) is called a regression model and the matrix ®(¢) is termed the regressor matrix
of the model. Since there is rarely a system that can be exactly modelled by Eq. (5.1), there
will always be an estimation error (called the residual), given by

e(r) = y(1) — (00, (5.2)

which must be reduced to small values in a successful identification process.

5.2.1 Least-Squares Parameter Estimation

The earliest and the most popular systematic parameter estimation procedure is the
least-squares method of Gauss, who successfully applied it for the orbital determination of
the asteroid Ceres in 1801. The method is based on minimizing the sum of the squares of
the residuals, e(?), evaluated at different time instants. In a continuous-time formulation, the
least-squares method consists of minimizing the following cost function with respect to 6,
expressed as the time-integral of the square (quadratic form) of the residual:

t
V(0,t)=% / el (v)e(r)dr
0
t
= % / [y(r) — @(0)0]" [y(r) — ®(z)0]dx. (5.3)
0

The estimate 8 is the value of § that minimizes the quadratic cost function at a given time 7.
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Theorem 5.2.1 The parameter estimate 0 satisfying Eq. (5.1) minimizes the cost function of
Eq. (5.3) with respect to 0 at a given time t, only if the following identity is satisfied:

[ / @T(T)qxf)dr]é: / &7 (r)y(r)dz. (5.4)
0 0

Proof. The proof is obtained from the following necessary condition of V(,f) having a
minimum value V(0, 1):

%

— =0. 5.5

00 0=0 ( )

Equation (5.4) can be utilized for deriving a recursive estimate 0 as follows. If we define an
estimator gain (or the estimation covariance) matrix, P(f), such that

t
Pl = / o7 (0)®(7)dr, (5.6)
0
then the following differential equation is satisfied:
£ri = (00, (5.7)
which is substituted in the following identity:
d op 1 _ ppol d
—ppP~ ' = PP+ P—P!, 5.8
dr dr >8)
to obtain _
P =—-PoToP. (5.9)

The relationship between # and P is derived to be the following by differentiating Eq. (5.4)
with time: .
b = Py (ne(), (5.10)

where
o(f) = y(t) — (1) (5.11)

is the minimal estimation error. Thus, the parameter estimate 0 is derived from a recursive
solution of Egs. (5.9)—(5.11), beginning from an initial condition, 9(0), P(0), and utilizing the
current output, y(¢). The convergence property of such a recursive estimate is well established
(Slotine 1995), provided the initial covariance matrix, P(0), is chosen to be sufficiently large.
The equivalence between the least-squares method and the Kalman filter state estimation for
the process

x=ux(1), y@) =00)x()+ e?)

is to be noted.
An equivalent discrete-time representation of the least-squares method is expressed by the
following recursive scheme:

0(k) =0k — 1) + P()®" (k) [y(k) — (k)0 (k — 1)]
P(k)®T (k) = P(k — DT (k)[I + P(k)P(k — DT (k)]~!
P(k) = [I — P(k)®T (k)@ (k)|P(k — 1), (5.12)
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where k is the discrete time index, and (k — 1) denotes the estimate based on (k — 1) mea-
surements. The covariance inverse in discrete time given by

k
PN (k) = Z OT(HD>G) = Wh)WK)T, (5.13)
i=1
where
Wk = [®T(1),dT2),..., T k)], (5.14)

is a square matrix. The requirement for the recursive scheme to work successfully is that
W (k)W (k)T must be non-singular for any given instant k.

5.2.2  Least-Squares Method with Exponential Forgetting

When the plant parameters are time-varying, it is more efficient to replace the standard
least-squares method by one that discounts the past data exponentially with time. In this
manner, recent estimation error is given much more importance than those of the past in the
minimization process. The cost function of Eq. (5.3) is changed as follows by applying an
exponential-time weighting factor:

13
V(0,1) = % / e—/i_tA(r)dr[y(‘r)—(b(r)G]T[y(T)—CD(r)é’]d‘r’ (515)
0

where A(f) > 0 is the time-forgetting factor.
An equivalent discrete-time representation of the least-squares method with exponential
forgetting is the following:

O(k) = 0(k — 1) + P(k)DT (k)[y(k) — ®(k)(k — 1)]
P()®T (k) = P(k — DD (k)[ A, ] + P(k)P(k — NPT (k)] ™!

[I — P(k)®T (k)D(k)]P(k — 1)
A,k ’

P(k) = (5.16)

where 0 < 1, < 1.

5.2.3  Projection Algorithm

A least-squares type estimation method requires two sets of parameters, 0, P, to be stored
at every time instant, which can be quite cumbersome for large-order plants (such as ASE
systems). A simplification in the recursive method is possible by treating the measurement y(k)
to be a projection of the true parameter vector 6 on the regressor vector, ®(k), space. Every new
estimate 9(/() is therefore forced to satisfy the constraint y(k) = d)(k)é(k), while minimizing
the error, | (k) — O(k — 1) |. This is carried out in practice by introducing the constraint via a
Lagrange multiplier, 4, in the minimization of the quadratic loss function as follows (Astrém
and Wittenmark 1995):

V0, k) = % [0k) — Ok — 1)]T [0(k) — Ok — D] + 4 [y(k) — @(k)O (k)] . (5.17)
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The minimization of the loss function with respect to & and A leads to the following projection
algorithm, which is implemented directly to obtain an update, 6(k):

@7 (k)

W[)’(k) — ®(k)o(k)]. (5.18)

0(ky=0(k — 1)+
The following modification of Eq. (5.18) is actually more robust in terms of convergence, and
also avoids the singularity at ®(k)®7 (k) = 0:

r @’ (k)

Ok)y=0(k—-1)+ m

[y(k) — @(k)O(K)], (5.19)

where @ > 0 and 0 < y < 2 are adaptation constants.

5.2.4 Autoregressive Identification

While the methods discussed previously can be applied to either static or dynamic processes,
a modification of the recursive least-squares method is especially suited to identification of
dynamic systems (such as ASE plants). In a dynamic system, the response depends not only
on the values of the inputs at previous time instants but also on its own past record. If a trans-
fer function of such a system were to be identified, it would require an estimation of both the
numerator and denominator polynomial coefficients, which in turn requires a regression model
including the output’s time history. Hence, it is reasonable to introduce the following modifi-
cation into the least-squares method, illustrated here for a single-input, single-output system:

y(k) = @k — 1)0, (5.20)
whose parameter estimate is given by
0" = (ay,ay,...,a,,by,b,,...,b,), (5.21)
with the following time-delayed regressor vector including the outputs:
Ok—-—D=[-yk—-1),—yk—=2),....,—yk—n),ulk+m+n-—1),
cutk =], (5.22)

with a, ..., a, being the denominator coefficients and b, ..., b,, the numerator coefficients
of the transfer function. The least-squares recursive scheme for the autoregressive model is
the following:

O(k) =0k — 1) + P(k)®" (k — D[y(k) — ®(k — DK — 1)]
P(k)®T(k — 1) = Pk — D®T (k — D[ + ®k — Pk — DD (k — 1)]™!
P(k) =[I — P(k)®T (k — )Pk — 1)]P(k — 1). (5.23)

In an autoregressive model applied to nonlinear systems, or to systems driven by random
noise inputs, a stochastic regression model of the following type must be used:

y(k) = ®k — )0 + e(k), (5.24)
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where e(k) is an unknown disturbance. A recursive method based on such a model is the
extended least-squares (ELSs) method, which has a direct equivalence with the extended
Kalman filter (EKF) of the process, x(k + 1) = x(k), y(k) = ®(k)x(k) + e(k).

5.3 Design Methods for Stochastic Self-Tuning Regulators

When some statistical information is available about the noise inputs (such as their mean and
variance), it is possible to use a more accurate plant identification procedure than the one given
above, which in turn leads to a better performing STR. Here we briefly discuss the ideas behind
such designs. For details, the reader is referred to a textbook on identification-based adaptive
control (Astréom and Wittenmark 1995).

Since regulation is our objective, we shall only focus on the control design methods
that guarantee asymptotic stability in the presence of noise inputs, which are modelled as
zero-mean Gaussian white noise (ZMGWN) (Chapter 2). An appropriate objective function
to be minimized is the expected value of the quadratic control and state cost, expressed by

J=E { / oo(xTQx + uTRu)dt} (5.25)
0

where Q,R are the selected cost coefficient matrices. This is the standard linear quadratic
Gaussian (LQG) problem solved by taking u = —KX, where x(¢) is the estimated state of a
Kalman filter. The solution to the LQG problem involves a pair of algebraic Riccati equations
(Chapter 2). If R = 0, the controller derivation problem is termed the minimum-variance prob-
lem, and its solution can be obtained much more easily, because control inputs need not be
minimized. When the autoregressive least-squares method is applied to the minimum-variance
problem, the result is a control law whose output is a moving-average signal, and the con-
troller is termed an autoregressive moving average (ARMA) controller. For a single-input,
single-output system, it is easy to understand how a moving-average process can arise out of a
finite impulse response (FIR) model driven by a convolution of random signals. Since such a
controller has pole-zero cancellations of the plant, the degree of the denominator polynomial
is less than that of the plant. The ARMA design process is therefore simply a pole-placement
method applied to noise-driven plants.

As opposed to an ARMA controller, an LQG design is much more robust as it takes into
account the minimization of the feedback signals, while the ARMA controller does not. When
combined with an observer (Kalman filter) whose gains are adjusted for a better recovery of
the return-ratio at the plant’s input (see Chapter 2), the resulting LQG/LTR controller offers a
suitably high stability margin for practical implementation in a noisy situation. This is our rec-
ommendation for an STR design for ASE applications, which are notorious for their uncertain
and unmodelled dynamics acting as process noise disturbances.

5.4 Aeroservoelastic Applications

A STR requires that the controller parameters be modified on the basis of an online estima-
tion of the aeroelastic plant’s parameters, A, B. While the structural properties are well known
from ground-based experiments and do not vary in flight, it is only the unsteady aerodynam-
ics parameters that are capable of changing with flight conditions (Mach number, Reynolds
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number, etc.). In the subsonic and supersonic regimes (Chapter 3), the linearity of the unsteady
aerodynamics may enable one to use gain scheduling with Mach number and dynamic pres-
sure (or altitude) to adapt the regulator gains for flutter suppression, if the flutter point falls
in either the subsonic or the supersonic regime. However, gain scheduling is an unsystematic
procedure and requires an extensive database to be first constructed from either flight tests or
wind-tunnel experiments. It may also fail crucially in the transonic regime where the aero-
dynamic behaviour is highly uncertain. Therefore, feedback adaptation is the only practical
alternative for flutter suppression.

The greatest source of parametric uncertainty in an aeroelastic model is the unsteady aero-
dynamic loading, which must be identified accurately in an STR. Consider an aeroelastic plant
represented by the following equations of motion:

ME + K& = gF + Tu, (5.26)

where £(f) : R — R” is the generalized coordinates vector corresponding to the n degrees
of structural freedom (including the m control-surface degrees of freedom), u(¢) : R — R™ is
the vector of control torque inputs applied by m servo-actuators, and M € R™" K € R™" and
T € R™™ are the generalized mass, stiffness and control transmission matrices, respectively,
assumed to be known. Here the generalized aerodynamic force vector has been expressed as
O(t) = qF (1), where ¢ is the dynamic pressure and F(f) : R — R is an unknown vector, which
must be identified from a finite record of the plant’s input—output behaviour. Before this can be
carried out, it is necessary to have a structure for the functional dependence of Q(#) on the struc-
tural motion coordinates, &(f). For open-loop flutter analysis, it is customary to assume a simple
harmonic motion in the critical flutter condition, resulting in the following flutter determinant
to be solved for flutter frequency, y, and flutter dynamic pressure, g, (see Chapter 4):

det[~wiM + K — gF(iwp)] = 0, (5.27)

where F(iw) is the generalized air force (GAF) data derived from a frequency-domain aero-
dynamic theory (Chapter 3). For the general transient motion, the GAF data is used to derive
a rational function approximation (RFA) in the Laplace domain by analytic continuation:

F(s) = G(5)&(s), (5.28)
where G(s) is the unsteady aerodynamic transfer matrix approximated by
G(s) = Ay +A;s + Ays® + Ts(sI — R)'E, (5.29)

with Ay, A, A,,I', E, R being the constant coefficient matrices to be determined by a curve-fit
with the harmonic GAF data, F(iw).

As in the case of the RFA used to determine an unsteady transfer matrix from the
frequency-domain data, it is logical to assume that F(¢) is linearly dependent upon &(¢) and
its time derivatives. It is therefore appropriate to use an ARMA model for the identification
of F(t) from &(7), expressed in discrete time as follows:

F(k)=—C,F(k—1) = CyF(k = 2) — - - = C,F(k — r) + Do&(k) + D, E(k — 1)
+D,8(k—=2) + -+ -+ D,&(k — p), (5.30)
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where C;,i=1,...,r and Cj j=0,...,p are the coefficient matrices to be estimated by an
identification method. Since Eq. (5.30) is in a regressive form, it can be expressed as the fol-
lowing estimation problem:

F(k) = 0T d(k), (5.31)

where F is the predicted GAF vector,
o’ =(C,Cy,...,C.Dy, Dy, ..., D)) (5.32)
is the parameters matrix to be estimated and
Ok)=[-F"(k—1),—F'(k=2),...,=F"(k = r),E"(k),&"(k - 1),
o E k=T (5.33)

is the regressor matrix to be supplied by measurements (or an online CFD method). The size
of the regression model is specified by r, p, which determine the number of time steps at which
the GAFs and structural coordinates must be stored, respectively. The parameter estimate, 6,
can be then derived by the least-squares method as the set that minimizes the square of the
prediction error, F=F-F=F- @Td)(k), over a sample length, N:

N
J(N) = % Y F(F (k)
k=1

N
1 AT T AT
v ]; [F — 0Tk [F — 0T d(k)], (5.34)
that is, we must have 3
LN) =0 (5.35)
00

or
0" = (@0 'FToT. (5.36)

Once an estimate, (:), is available, the following discrete-time aeroelastic model also
becomes available:
x;(n+1) = Ayx,;(n) + Bpuy(n), (5.37)

which is used to find the equivalent continuous-time model:
x = Ax + Bu, (5.38)
where

~ A T ~ A
A=, B, = / T Bdr, (5.39)
0

T being the sampling interval. Now any linear, time-invariant (LTI) control strategy (such
as eigenstructure assignment, LQG/LTR, H_) can be applied to determine the regulator
and observer gains based on the identified plant, A,E. Control surface actuators are easily
added to the aeroelastic model by augmenting the generalized coordinates, £(7), with control
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Figure 5.1 Schematic block-diagram representation of a self-tuning regulator (STR) for an ASE system
based on an autoregressive identification of the plant parameters

surface deflections, 6(f). The overall STR method for a typical ASE system is depicted by the
block-diagram of Fig. 5.1.

An advantage of the STR method is that there is no need to employ a large number of state
variables (including the fictitious ones required for the lag states of RFAs) for an accurate
estimation of the ASE plant. For example, reduced-order aeroelastic models have been derived
(Raveh 2004) from CFD computations by the ARMA identification of aerodynamic forces,
and used for flutter calculations. This approach offers great promise for the determination of
controller parameters in the adaptive ASE loop, especially if the latter is based on iterative
solutions to algebraic Riccati equations (see Chapter 2).

In the typical section model of the linear plant, it is easy to identify the aerodynamic param-
eters that can vary with Mach number and Reynolds number of real flows (although they are
constants in Theodorsen’s model). These are

(a) the non-circulatory lift, pitching-moment and hinge-moment coefficient parameters;

(b) the circulatory transfer function, G(s), approximated by the numerator coefficients,
ay,ap,...,dp,, and lag parameters, by,...,b,, for an RFA. Note G(ik) = C(k) for
Theodorsen’s model, but could vary with Mach number and Reynolds number in a real
system;

(c) additional nonlinear forcing functions, which are not present in the original model of the
plant.

The last of the effects enumerated here, namely, the unmodelled nonlinear forcing
behaviour, have the greatest possibility of destabilizing the ASE system. Examples of
nonlinear excitation include the unsteady flow separation near the trailing-edge due to large
angle-of-attack or the separation caused by the shock waves in the transonic regime (see
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Chapter 11). Both these effects can greatly modify the control-surface response, which
is crucial in ASE design and analysis. An attempt can be made to model such effects by
introducing nonlinear stiffness and damping terms by regressor models into the original plant.
However, their functional forms, magnitudes and even the signs could be uncertain. The best
way to deal with such nonlinear uncertainties is to derive a describing function approximation
(Chapter 7) for them, whose coefficients can then be estimated by the identification methods
presented in this chapter.
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6

Nonlinear Systems Analysis
and Design

6.1 Introduction

Control systems can generally be designed to perform well in a given set of conditions. If the
domain of operating conditions is quite small, then many simplifying assumptions can be made
about the system’s behaviour, often resulting in linearized dynamics with well-known coef-
ficients for which a plethora of control design tools are readily available. However, in many
cases, such an approach would fail if the plant’s behaviour is either essentially nonlinear or
highly uncertain over the given range of operating conditions. In such cases, the controller must
necessarily adapt itself to changing operating conditions, as well as to uncertain plant param-
eters, which generally implies that the control system must be governed by nonlinear ordinary
differential equations in the time domain. It is the aim of this chapter to introduce nonlinear
dynamical systems, the existence and uniqueness of their solutions to specified initial con-
ditions and their stability analysis. Established techniques of nonlinear stability analysis can
be classified into input—output transfer operators and state-space-based Lyapunov theorems.
Our focus is on aeroservoelastic (ASE) design by adaptive techniques, therefore rather than
detailing the nonlinear analysis techniques, we only consider concepts that are relevant to
our purpose.

Even if the aeroelastic plant is linear, the use of an adaptive feedback control loop ren-
ders the overall ASE system nonlinear. Signals of nonlinear systems do not enjoy the basic
properties of additivity, invariance under scalar multiplication and frequency fidelity. These
are the very properties that enable systematic and straightforward analysis and design of lin-
ear systems. Because of these deficiencies, analysing and designing nonlinear control systems
require special and mathematically much more rigorous techniques than those employed for
linear systems. In the present chapter, we consider the basic concepts of nonlinear stability
analysis and Lyapunov-based control design. However, as ASE systems are autonomous (i.e.
they have time-independent characteristics), the treatment is limited to autonomous systems.
Furthermore, only those concepts are covered that are necessary in adaptive control design.
For other details, the reader is referred to specialized textbooks on nonlinear systems, such as
Haddad and Chellaboina (2008), Khalil (2002) and Slotine and Li (1995).

Adaptive Aeroservoelastic Control, First Edition. Ashish Tewari.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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6.2 Preliminaries

A finite-dimensional dynamical system of order n is completely described by a set of
time-dependent internal state variables, £(t) : R — R”, and a set of external input variables,
n(t) : R - R™. The system’s behaviour is governed by a set of n scalar, first-order, ordinary
differential equations in time, collectively referred to as the state equation, expressed
as follows:

E=FEn.1), 6.1)

where F' : R" X R™ x R — R” represents the state functional mapping. If the time ¢ does not
appear explicitly in F(.), then the system is said to be time-invariant (or autonomous); other-
wise, it is called a time-varying (non-autonomous) system. In addition to the state and input
variables, the system might produce certain other variables as its outputs, described by the set
r(t) : R — R? and governed by the following set of algebraic equations, collectively called
the output equation:

r=H(, n,t), (6.2)

where H : R" X R™ X R — R? is the output mapping functional. While the state vector, &, is
wholly internal to the system, the output vector, r, is accessible to external measurements, and
can be used to determine the system’s characteristics. On the other hand, the input vector, #, is
generated by processes external to the system and can be used to influence the state and the out-
put vectors. For this reason, # is also called the control input vector. The complete input—output
description of a system is provided by the state and output equations, thus Egs. (6.1) and (6.2)
are said to comprise a state-space representation of the system. Of course, the choice of the
state vector is not unique and one can select an appropriate set of state variables, &, for a
convenient state-space representation.

A special class of systems with a linear control contribution is often of interest in practical
applications, such as in ASE. Such a system is called a control affine system and has the
following state-space representation:

&=alé, 0+ b nn, (6.3)
r=c(n+g& nn, (6.4)

where a : R" X XR - R", b : R" X XR — R"™™ ¢ : R"XXR - R” and g : R" X XR —
RPX™M are functional maps. Owing to the linear contribution of the input, the design of
control systems for a control affine plant is much simpler than that for a fully nonlinear
plant. Of course, a linear system is a member of the class of control-affine systems and is
represented by

& =AME + B, (6.5)
r=C@®é&+ D(t)n, (6.6)
where A(7) : R —» R™" B() : R —» R™ C(¢) : R - R and D(t) : R — RP*" are the
coefficient matrices of the state-space representation. The simplest class of systems to analyse

is that of linear, time-invariant (LTI) systems, which is defined by constant coefficient matrices,
A, B, C, D, and is considered in Chapter 2.
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6.2.1 Existence and Uniqueness of Solution

Consider a system described by the state equation Eq. (6.1). In order to understand the basic
characteristics of such a system, one must have a solution to the state equation for a given
control history and a set of initial conditions. A solution to the state equation, Eq. (6.1), for a
prescribed input history, 7(¢), and beginning from a given initial state, £(¢y) = &, is called a
trajectory. The existence and uniqueness of such a solution may not always be guaranteed and
crucially depends upon the characteristics of the system described by Eq. (6.1), as well as on
the nature of the applied inputs. However, the system’s characteristics (such as stability) are
independent of the applied inputs and thus can be understood from the solution in the unforced
case, that is, n(f) = 0, resulting in the homogeneous state equation,

&= F(&,0), (6.7)

where F' : R" X R — R". To determine a solution to the unforced system, subject to initial
condition, &(ty) = &, is called the initial value problem (IVP), and is crucial in nonlinear sys-
tems analysis. The following theorem establishes a sufficient condition for the existence of a
unique solution to the IVP.

6.2.1.1 Lipschitz Condition

Theorem 6.2.1 Let F(&,t) be piecewise continuous in t and satisfy the Lipschitz condition
| FE D) —-Fo,nl|[<L[E—x]

forty <t < T, forall (§,x) € R" XR", where L > 0 and || . || denotes a vector norm. Then
the state equation Eq. (6.7), with {(ty) = &y, has a unique solution in the interval ty <t < T.

Proof. The proof is obtained by integrating Eq. (6.1) to write
t
) =2¢& + / F(&(r), v)dr
]
and applying the contraction mapping theorem in a Banach space (Khalil 2002).

If the Lipschitz condition is not satisfied for all real (&, x), but only for those in a finite
neighbourhood of the initial state &y, that is, within a ball of radius R,

P={EeR" || =& ISR}

then the global sufficiency condition of Theorem 6.2.1 reduces to that of local existence and
uniqueness. This implies that there exists a 6 > 0 such that Eq. (6.7), with &(¢)) = &, has a
unique solution only in the interval 7, < ¢ < 75 + 6.

It can be shown (Khalil 2002) that the Lipschitz condition will be satisfied in a domain
D c R" for a < t < b, if and only if both F(&,1) and 0F /0&(&, t) are continuous in & € D for
a <t < b. Furthermore, if 0F /0&(€, t) is uniformly bounded for all ¢ € R" and a < ¢ < b, then
it satisfies the global Lipschitz condition and thus has a globally unique solution.
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6.2.2 Expanded Solution

Let a reference state trajectory, &,(¢), and a corresponding reference input history, #,(¢), satisfy
Eq. (6.1), .
¢ =FE.n.0), (6.8)

subject to the initial condition,

¢(0) = &0 (6.9)

It is further assumed that the functional maps, F(.), H(.), possesses continuous derivatives of
any given order with respect to state and control variables at the reference solution, (&,,7,.).
Let x(7) and u(¢) be the state and control deviations, respectively, from the reference solution,
such that the perturbed solution is given by

c()=&,(0) +x(1)
n(t) = n,(t) + u(?), (6.10)

subject to initial conditions given by Eq. (6.9) and x(0) = x. Let y(f) measure the deviation of
the plant’s output vector from the reference output. Then Egs. (6.1) and (6.2) can be expanded
in Taylor series about the reference solution as follows:

§=FE +xn, +u,0) = FE.n,.0 6.11)
and
y=HE +x,n,+ut)—H(,n,,1), (6.12)
where
oF
F(ér + X, nr + M, t) = F(gr’ nr’ t) + £(§r’ nr’ t)x
+ 3—};(6,, N, Hu+ f(x, u, 1), (6.13)
oH
H(ér + X, n, + u, t) = H(ér’ s t) + %(éw Mys t)-x
+ Z—;j(af,, n,, Hu + h(x, u,t). (6.14)

Here f(.), h(.) are nonlinear functionals involving second- and higher-order terms of the state
and input variables. Substitution of Eq. (6.13) into Egs. (6.11) and (6.12) yields the following:

x=At)x+ B(t)u +f(x,u,t), (6.15)
y=C(t)x + D(t)u + h(x,u,t), (6.16)

where A(t), B(t), C(t), D(¢) are the following Jacobian matrices:

oF _OF
%(gr’ nr’ t)’ B(t) - 011 (é:r’ nr’ t)

_oH _oH
C(= o2 &m0, D@ = on & 1,5 D). (6.17)

A(t) =
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Most ASE applications involve time-invariant (autonomous) systems, which must be main-
tained in equilibrium near a constant operating condition. This control application is referred
to as set-point regulation. In such a case, explicit time dependence is dropped from the state
and output equations, resulting in the following description of the plant:

E=F(&,n)
r=H(,n). (6.18)

Let the system be at rest at a point, &,, when not forced by inputs (# = 0):
£=F(,.0)=0. (6.19)

Then the solution &, is called an equilibrium point of the system. A system can have many equi-
librium points (e.g. a simple pendulum system has two) or it may have none. An equilibrium
point of the autonomous system is thus a solution of F(&,,0) = 0. The state and input devia-
tions from the equilibrium point are denoted by x(¢) = &(r) — &, and u(f) = (&), respectively.
Without any loss of generality, we can assume that an autonomous system has an equilibrium
point at x = 0, u = 0. The state-space description in the expanded form about the equilibrium
point can be expressed as follows:

X =f(x,u) = Ax + Bu + g(x, u)
y = Cx + Du + h(x, u), (6.20)

where A, B, C, D are the time-invariant coefficient matrices evaluated at (&, 0) and g(.), h(.) are
nonlinear functional maps.

If the operating condition changes with time, the error dynamics of an autonomous nonlinear
system is governed by a non-autonomous (time-varying) system, and thus requires a different
approach for stabilization from the one presented here. Trying to follow a time-dependent
nominal solution is referred to as the tracking problem. This is the problem associated with
minimizing the deviation of the plant’s state from the reference state in a model-reference adap-
tation system (MRAS), the topic of Chapter 8. Stability of error dynamics in an MRAS there-
fore requires the treatment of the system as if it were non-autonomous. In this chapter, only
the stability concepts of autonomous systems are presented, which are extended in Chapter 8
to cover non-autonomous systems.

6.3 Stability in the Sense of Lyapunov

Stability of an autonomous system is broadly defined as a tendency to remain close to a given
equilibrium point in an unforced state, despite small initial disturbances. Consider an unforced,
autonomous system with state vector, x(¢), governed by the state equation,

x = f), (6.21)
with an equilibrium point at the origin. If an arbitrarily small initial condition exists,

x(0) = xp, (6.22)
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then the perturbed solution, x(7),# > 0, may (or may not) remain arbitrarily close to the
equilibrium point. Thus stability is concerned with the boundedness of the initial response,
| x(?) |;¢ > 0, if | x5 |< 6, where 6 is an arbitrarily small positive number. If there are several
equilibrium points of a system, the system may have a different stability in the neighbourhood
of each of them.

In order to analyse stability, it is assumed that the functional, f(x), is Lipschitz, continuous
and possesses continuous derivatives with respect to the state variables. The widely accepted
mathematical definition of stability applied to mechanical systems is the stability in the sense of
Lyapunov, which addresses the Euclidean norm of the state deviation from the zero equilibrium
point, | x(¢) |.

Definition 6.3.1 A system described by Eq. (6.21) is said to be stable about the equilibrium
point, x, = 0 in the sense of Lyapunov if for each real and positive number, €, however small,
there exists another real and positive number, 6(¢), such that

| x(0) |< & (6.23)

implies that
| x(®) |<e, t2>0. (6.24)

Stability in the sense of Lyapunov thus requires that a solution starting in a neighbourhood of
the equilibrium point at the origin should always remain in a prescribed small neighbourhood
of the origin. In this book, we will regard a stable equilibrium point to be the one that satisfies
the stability criterion in the sense of Lyapunov. It is quite possible to have an unbounded
solution to a large (but bounded) initial perturbation, but the same system may remain in
the neighbourhood of the origin for small perturbations, and hence be stable in the sense of
Lyapunov. Furthermore, it is possible for a system to have a departure from the equilibrium for
even small perturbations from the origin (instability in the sense of Lyapunov), but the solution
could still be norm bounded, | x(#) |< a. However, a is not arbitrarily small. Thus boundedness
of an unforced system’s response to small initial perturbation (called stability in the sense of
Lagrange) is insufficient to guarantee stability in the sense of Lyapunov. Many nonlinear sys-
tems display a bounded oscillatory response to a small initial perturbation — called a limit-cycle
oscillation (LCO) — which is considered to be unstable. An example of such a system is the
van der Pol oscillator described by the following state equations:

. . 2
X =x3, X =-—x;+(1—x)x,.

There are special theorems that analytically predict the existence of LCOs of second-order
systems about the equilibrium, thereby precluding stability in the sense of Lyapunov. These
require the construction of phase portraits, which are the plots of one state variable, x,(7),
against the other, x, (¢), for # > 0. For phase plane analysis and the basic theorems for the exis-
tence of limit cycles (Poincare, Bendixson and Poincare—Bendixson theorems), the reader is
referred to nonlinear systems textbooks (Slotine 1995). Here it suffices to say that the exis-
tence of a limit cycle in a system with energy dissipation (damping) indicates the presence of
a positive energy source, hence instability. For example a transonic LCO occurs because of
the energy fed by unsteady shock waves cancelling the energy lost because of viscous flow
separation, resulting in a constant amplitude oscillation.
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Definition 6.3.2 A system described by Eq. (6.21) is said to be asymptotically stable about the
origin, x, = 0, if it is stable in the sense of Lyapunov, and if for each real and positive number,
€, however small, there exist real and positive numbers, 6 and t, such that

| x(0) |< 6 (6.25)

implies that
| x(0) |[<e, t>7. (6.26)

Asymptotic stability is thus possessed by a special class of Lyapunov stable systems, whose
slightly perturbed solutions approach the origin asymptotically for large times (i.e. in the limit
t = o0). Thus, equilibrium is eventually restored. However, it is possible that an asymptotically
stable system may need infinite time in regaining equilibrium.

Definition 6.3.3 A system described by Eq. (6.21) is said to be exponentially stable about the
origin, x, = 0, if there exist two positive numbers, € and A, such that for all t > 0,

| x(0) |< 6 (6.27)

implies that
| x(1) |< e | x(0) | e (6.28)

Exponential stability thus implies that the state of the system converges to equilibrium at a
rate faster than an exponentially decaying function. Exponential stability implies asymptotic
stability, but not vice versa.

Definition 6.3.4 A system described by Eq. (6.21) is said to be globally asymptotically stable
about the origin, x, = 0, if it is stable in the sense of Lyapunov, and if for each real and positive
pair, (6, €), there exists a real and positive number, t, such that

| x(0) |< 6 (6.29)

implies that
| x(®) |<e, t>1. (6.30)

Global asymptotic stability thus refers to asymptotic stability with respect to all possible
initial conditions, | x(0) |< &, and not only a few, specific ones. Global asymptotic stability
is alternatively referred to as the asymptotic stability in the large. A similar definition can be
given for global exponential stability.

6.3.1 Local Linearization about Equilibrium Point

Stability of an equilibrium point can be investigated by locally linearizing the unforced system
in its neighbourhood. For an unforced, time-invariant system with the state equation given
by Eq. (6.21), the linearization is carried by the following Taylor series expansion about the
equilibrium point at the origin:

X =Ax + Af(x), (6.31)
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where A is the following Jacobian matrix:

A=<%> : (6.32)
0x x=0

and Af(x) represents higher-order terms of the series, which are neglected. The stability of the
system about the given equilibrium point is then examined from the eigenvalues of the Jaco-
bian matrix, A, in a manner similar to that of the linear system, x = Ax, covered in Chapter 2.
However, if f(x) is not differentiable at the equilibrium point, the local linearization cannot
be carried out by the Taylor series expansion. The Lyapunov stability criteria in terms of the
eigenvalues of A are stated as follows:

(a) If all the eigenvalues of the Jacobian, A, are in the left-half plane, then A is said to be
a Hurwitz matrix, and the system given by Eq. (6.21) is asymptotically stable about the
equilibrium point, x, = 0.

(b) If at least one eigenvalue of the Jacobian, A, is in the right-half plane, then the system
given by Eq. (6.21) is unstable about the equilibrium point, x, = 0.

(c) If none of the eigenvalues of the Jacobian, A, is in the right-half plane, but at least one
eigenvalue is on the imaginary axis, then nothing can be determined regarding the stability
of the system given by Eq. (6.21) about the equilibrium point, x, = 0.

6.3.1.1 Centre Manifold Theorem

As seen above, local linearization about an equilibrium point may not provide any information
about stability in the sense of Lyapunoyv, if the Jacobian evaluated at the equilibrium point does
not have any eigenvalues in the right-half plane, but some of its eigenvalues have zero real parts
(i.e. they lie on the imaginary axis). An alternative approach is thus required to study stability
when local linearization fails. Systems with multiple eigenvalues on the imaginary axis are typ-
ical in undamped structural dynamics (hence aeroservoelasticity), consequently their stability
analysis is enabled by the following centre manifold theorem (Haddad and Chellaboina 2008).
If an unforced autonomous system,

X =f(x), (6.33)

where f(.) : D — R”" is a twice continuously differentiable map with f(0) =0 and D C R"
containing the origin, has k eigenvalues of the Jacobian

a=20). (6.34)
ox

on the imaginary axis, and the remaining m = n — k eigenvalues in the left-half plane, then it
can be linearly transformed into the following form:

y=A1y+g 0.2
2=Ay+ 80,2, (6.35)

where
G):Tx yeRF, zeR” (6.36)



Nonlinear Systems Analysis and Design 189

with

TAT! = G)l £2> (6.37)

then the functional maps g, g, are also twice continuously differentiable with the property
8i(0,0) =0,0g;/0y(0,0) =0, dg;/0z(0,0) =0 fori = 1,2.

Definition 6.3.5 A k-dimensional manifold in R" for 1 < k < n is given by the solution of
g(x) = 0, where g(\) : R" — R" % is sufficiently many times continuously differentiable.

Definition 6.3.6 A manifold g(x) = 0 of the system given by Eq. (6.33) is said to be an invariant
manifold, if g(x(0)) = 0 implies that g(x(t)) = 0 for all t € [0, 7) C R is a time interval over
which the solution is defined.

Definition 6.3.7 For the system given by Eq. (6.35), if z = h(y) an invariant manifold, h is
smooth, and h(0) = 0, 0h/dy(0) = 0, then it is called a centre manifold of the system.

Theorem 6.3.8 For a system described by Eq. (6.35), if the functional maps g, g, are twice
continuously differentiable with the property g;(0,0) = 0, dg;/dy(0,0) = 0,9g;/0z(0,0) =0
Sfori=1,2, all eigenvalues of matrix A, have zero real parts, and all eigenvalues of matrix
A, have negative real parts, then there exists a real positive number 6 and a continuously
differentiable function h(y) defined for all | y |< 6, such that z = h(y) is a centre manifold for
Eq. (6.35).

If the conditions of Theorem 6.3.8 are satisfied then the system can be reduced to the fol-
lowing kth-order equation:

y=Ay+g 0, h(»). (6.38)

Theorem 6.3.9 For a system described by Eq. (6.35) and satisfying the conditions of
Theorem 6.3.8, if the origin'y = 0 of the reduced system given by Eq. (6.36) is asymptotically
stable, then the origin of the original system, x = 0, is also asymptotically stable.

Theorem 6.3.10 For a system described by Eq. (6.35) and satisfying the conditions of
Theorem 6.3.8, if the origin 'y = 0 of the reduced system given by Eq. (6.36) is unstable, then
the origin of the original system, x = 0, is also unstable.

6.3.2 Lyapunov Stability Theorem
Definition 6.3.11 If a scalar function, V(x) : R" — R, satisfies the following conditions:
V0)=0, Vx) >0,xeU, forallx#0 (6.39)

where U C R" containing the origin x = 0, then V(x) is said to be a positive-definite function
of x in the region U.

If the condition in the definition is replaced by V(x) > 0, then V(x) is said to be a positive
semi-definite function of x in the region U. If the region U covers the entire space R”, then
V(x) is said to be a positive-definite (or semi-definite) function of x.
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Theorem 6.3.12 Let V(x) : R" — R be a continuously differentiable, positive-definite, scalar
function of the state variables of a system described by Eq. (6.21), whose equilibrium point is
x, =0.

(a) Ifthe following conditions are satisfied:
V(0)=0, V() >0, (il_‘t/(x) =-W(kx) <0; for all x # 0, (6.40)

then the equilibrium point, x, = 0, is asymptotically stable.
(b) If in addition to the conditions given in (a), the following condition is also satisfied:

| x |- oo implies V(x) - oo, (6.41)

then the equilibrium point, x, = 0, is globally asymptotically stable.

Proof of the Lyapunov stability theorem (Slotine 1995) is obtained from the unbounded,
positive-definite nature of V(x) and negative definite nature of V(x), implying that for any initial
perturbation from the origin, x(0) # 0, the resulting solution satisfies V[x(#)] < V[x(0)],¢ > 0
(i.e. remains in a bounded neighbourhood of the origin). Furthermore, the same also implies
that V[x(t,)] < V[x(t,)],t, > t;, which means a convergence of every solution to the origin.
The existence of a positive-definite scalar function, W(x) : R” — R, in Eq. (6.40) confirms the
negative definite nature of V(x). The property of a scalar function, V(x), given by Eq. (6.41),
is termed radial unboundedness and is used to prove global asymptotic stability. A continu-
ously differentiable, positive-definite, scalar function of the state variables, V(x), satisfying the
conditions of Lyapunov theorem is called a Lyapunov function.

The Lyapunov theorem gives a test of asymptotic stability without the necessity of solving
the system’s state equations, and is thus a powerful tool in nonlinear control design. It merely
requires finding a suitable Lyapunov function of the state variables, V(x). However, the Lya-
punov theorem gives the sufficient (but not necessary) condition for stability. It is thus possible
to have an asymptotically stable system for which none of the conditions given in the theorem
are satisfied. A misunderstanding of this point has sometimes led to an unnecessary confusion
in the applied control literature.

Example 6.3.13 Consider an autonomous system described by

.5(1 = _xl —X2
Xy =x; —x. (6.42)

Clearly, the system, x = f(x), with x = (x, ,xz)T, has an equilibrium point at the origin, x = 0.
Let us select the following Lyapunov function:

V(x) =x] +x3. (6.43)

The function V(x) is radially unbounded, as it satisfies Eq. (6.41):

| x |= x% +x§ — oo implies V(x) = x? + x% — 0. (6.44)
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Furthermore, we have

V(x)>0, forallx#0 (6.45)
and
L =V =25
=2 (xl,xz) (—xl — X5, X —x%)T
=2 +)
<0, forallx#0. (6.46)

Therefore, all the sufficient conditions of the Lyapunov theorem are satisfied by V(x) and thus
the origin is a globally asymptotically stable equilibrium point of the system.

Definition 6.3.14 If all the eigenvalues of a square matrix P € R™" are real, positive
numbers, then P is said to be a positive-definite matrix. A positive-definite matrix P can be
expressed in the following positive-definite quadratic form:

x'Px >0, forallxe R"#0. (6.47)

If some of the eigenvalues of P are zeros, while the rest are real and positive, then P is said
to be a positive semi-definite matrix. In that case, it has the following property:

x'Px >0, forallxe R" #0. (6.48)

A direct method of constructing a valid Lyapunov function for autonomous systems is
offered by the following theorem (Slotine 1995).

6.3.2.1 Krasovski Theorem
Theorem 6.3.15 Let A(x) be the Jacobian matrix,

9
o (6.49)
0x
of an autonomous system described by
X = f(x),

whose equilibrium point is x, = 0. If there exist two symmetric and positive-definite matrices,
(P, Q), such that for all x # 0, the matrix

ATP+PA+Q (6.50)
is globally negative semi-definite, and that the Lyapunov function of the system,
V(x) =fTPf, (6.51)
is radially unbounded,
| x |- oo implies V(x) — oo, (6.52)

then the origin is globally asymptotically stable.
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6.3.3 LaSalle Invariance Theorem

Lyapunov stability requires the convergence of the state solution to an arbitrarily small region
in the neighbourhood of the equilibrium point. Such a region is termed an invariant set.

Definition 6.3.16 A set M is called an invariant set of the autonomous system,
x=f(x),

if any solution x(ty) € M implies that x(t) € M for all t # t,.

A positively invariant set M is the set for which invariance holds only for all future times,
1> 1.

A powerful method of applying the Lyapunov stability theorem is by testing whether the
solution to Eq. (6.21) converges to a desired invariant set. This is carried out by the following
theorem, called the LaSalle local invariance theorem.

Theorem 6.3.17 Let Q be a positively invariant set of a system described by Eq. (6.21) with
f(x) a continuous function of x. Let V(x) : Q — R be a positive semi-definite, continuously
differentiable function such that

((11_‘;(x) <0, forallxeQ. (6.53)

Let E={x € Q|V(x) = 0} and let M be the largest invariant set contained in E. Then every
bounded solution x(t) starting in Q at some time t,, x(ty) € L, converges to M in the limit
r— o0.

If the domain € covers the entire state space, R", and the Lyapunov function V(x) is radially
unbounded, then all solutions globally and asymptotically converge to M in the limit ¢ — oo,
where M is the largest invariant set in R”. This is the LaSalle global invariance theorem.

The Lyapunov stability theorem is easily applied to linear systems. For LTI systems,
Lyapunov stability requirements lead to the well-known stability criteria in terms of the
eigenvalues (characteristic roots) of the state dynamics matrix (Chapter 2). Similarly, control
of LTI systems is carried out by selecting quadratic state and controls cost functions as
Lyapunov functions, which is the basis of linear, optimal control theory (Tewari 2011).

6.4 Input-Output Stability

Alternative to the concept of stability of an equilibrium point in the sense of Lyapunov is the
concept of input—output stability, also referred to as bounded input, bounded output (BIBO)
stability. Input—output stability was introduced in Chapter 2 as the property of a causal system
possessing a finite gain, which was defined as the supremum function of the ratio of H, norm
of the output to that of the input. A system comprising two causal subsystems connected in a
feedback loop is input—output stable by the small gain theorem, if the product of their gains
is less than unity. The existence of the 7/, norms of the input and output vectors require them
to be well-behaved (square-integrable) signals, whereas a finite gain requires the response to
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finite inputs to be finite. One such property of a square-integrable vector signal, y(¢), defined
for t > 0 is given by Parseval’s theorem:

/ yT(t)y(z)dzzi / Y (iw)Y (iw)dw, (6.54)
0 277.'

—0o0

where Y(iw) is the Fourier transform of y(f). Square-integrable signals are thus finite energy
signals, and if a system produces such a signal as its output vector when driven by a finite
input energy, then the system has input—output stability. However, input—output stability does
not generally require the stability of an equilibrium point of the system, and can therefore be
termed a more basic stability requirement than Lyapunov stability.

Input—output stability of an LTI system is simply investigated from the gain of its transfer
matrix.

Theorem 6.4.1 For the LTI system with following state-space representation

X=Ax+ Bu
y = Cx + Du, (6.55)
with A a Hurwitz matrix, and G(s) = C(sI — A)~'B + D a transfer matrix realization, the gain

is given by the induced H, norm (also the largest singular value) of the frequency-response
matrix evaluated over all frequencies, w:

sup,er || Giw) ||, = 6(G(iw)). (6.56)

6.4.1 Hamilton—Jacobi Inequality

While input—output stability can be investigated for any nonlinear system, the focus in this
book is on control-affine, proper systems described by

x=fx)+Gxu, x0)=x,
y = h(x), (6.57)

where f(.) : R" — R"is locally Lipschitz with property f(0) = 0, and G(.) : R" - R(n X m),
h(.) : R" - R? are continuous over R" with the property 2(0) = 0.

Theorem 6.4.2 Let there exist a positive real number; y, and a positive semi-definite function,
V(x), satisfying the following Hamilton—Jacobi inequality for the control-affine, autonomous
system represented by Eq. (6.57):

T
H(V.£,Ghp) = S50 + =5 260G @ (S2) + 30 @ <0, (658)
0x 2y2% ox 0x 2
for all x € R". Then for every initial state, x, € R", the system represented by Eq. (6.57) is
input—output stable, and its gain does not exceed y.
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Proof. The proof is obtained by completing the squares of H, norms of the input and
output vectors and showing them to be lower-bounded by the use of the triangle inequality
(Khalil 2002).

The Hamilton—Jacobi inequality given by Eq. (6.58) gives a search condition for the sta-
bilizing Lyapunov function, V(x), which is to be found by solving the partial differential
equation (Hamilton—Jacobi equation) derived by replacing the inequality by equality. This
is a formidable problem requiring a numerical iterative solution, and is closely related to the
condition derived by the optimal control formulation (Tewari 2011). The relationship between
Lyapunov stability and input—output stability is explored by the following lemmas.

Lemma 6.4.3 Suppose a system given by Eq. (6.57) satisfies the conditions of Theorem 6.4.2
on a domain Dyopfn containing the origin, x = 0, withf(.) : D — R” being a continuously dif-
ferentiablemap such that f(0) = 0 and the origin, x = 0, an asymptotically stable equilibrium
point of x = f(x).

Lemma 6.4.4 Suppose a system given by Eq. (6.57) satisfies the conditions of Theorem 6.4.2
on a domain D C R" containing the origin, x = 0, with f(.) : D — R" being a continuously
differentiable map such that no solution of x = f(x), except the trivial solution, x(t) = 0, can
stay identically in the subdomain' S : {x € D|h(x) = 0}. Then the system, x = f(x), is asymp-
totically stable and there exists a real and positive number k,, such that for each | x, |< ky,
the system is input—output stable, with its gain not exceeding y.

6.4.2 Input-State Stability

A useful stability requirement related to input—output stability is input-state stability, which
requires that the state response due to a non-zero initial condition and a bounded input must
be bounded by a scalar function of the supremum norm of the input taken over all times, and
a contribution from the norm of the initial condition exponentially decaying with time.

Definition 6.4.5 The autonomous system represented by
X =f(x,u) (6.59)
and possessing the equilibrium point x = 0,u = 0, is said to be input-state stable (ISS) if for

any given initial state, x(0), and for any continuous and bounded input, u(t), for 0 <t < oo,
the state solution, x(t), exists for all t > 0 and satisfies the following condition:

| x(2) [< B (| x(0) |.6) + 7 (suppe,<, | u(7) |), (6.60)

where p(a,t) and y(a) are strictly increasing functions of « (a positive real number), with the
property f(0,1) = y(0) = 0, and f is decrescent with time, with the property lim,_, _ f(a,t) = 0.
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6.5 Passivity

Passivity of a nonlinear system is a physical property where external energy must be continu-
ously supplied to drive the system’s response. In other words, a passive system does not have
an active energy source that can sustain the system’s output when the external energy sources
are removed. In aeroelastic applications, passivity comes into the picture when we examine
whether self-sustained oscillations such as flutter and transonic limit cycles are possible. If the
system can extract energy from the airstream to sustain its oscillations, then it is not passive
(i.e. it is active) and thus unstable in the Lyapunov sense. While passivity theory is generally
used for dealing with non-autonomous systems, it can be applied to the design of stabilizing
controllers for autonomous systems. A stronger stabilizing property than passivity is dissipa-
tivity (or strict passivity), which requires a decrease of a system’s stored energy with time. The
concept of dissipativity can be used to design nonlinear feedback control systems with appro-
priate Lyapunov functions, which are now considered to be positive-definite, energy storage
functions. Thus dissipativity is a useful tool not only in stability analysis but also in deriving
Lyapunov-based nonlinear regulators for ASE systems.
Consider an autonomous system described as follows:

x=f(x,u)
vy = h(x, u), (6.61)

where f(.) : R" X R™ — R”" is locally Lipschitz, with property f(0,0) =0 and A(.) : R" X
R™ — R? is continuous and has the property 4(0,0) = 0.

Definition 6.5.1 The autonomous system represented by Eq. (6.61) is said to be passive with
respect to a supply rate function, r(u,y) : R™ X R? — R, with the property r(0,0) = 0, if there
exists a continuously differentiable storage function, V(x), such that

r(u,y) > V= aa—vf(x, u), forall (x,u) € R" x R™, (6.62)
by

If the inequality in Eq. (6.62) is replaced by an equality, then the system is said to be
loss-less. If the inequality is changed to the following with R(u) a scalar function:

r(u,y) > V+Rwu), Ru)>0 forallu#0eR", (6.63)

then the system is said to be input strictly passive. If the following inequality is satisfied for
Q(y) a scalar function:

ru,y) = V+0y), 0y >0 forally#0eR?, (6.64)

then the system is said to be output strictly passive. Finally, if the inequality satisfied by r(u, y)
V(x), and a positive-definite scalar function, y(x), is the following:

ru,y) >V + w(x), (6.65)

then the system is said to be strictly passive (or dissipative).
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The supply rate, r(u, y) is the rate of energy (power) supplied to the system, while the time
derivative of V(x) represents the rate of change of energy stored in the system. The following
is an alternative expression of Eq. (6.62):

V = r(u,y) — g(0), (6.66)

where g(f) : R — R is the power dissipation function. A passive system must have g(r) > 0,
provided V(x) > 0 (i.e. there is a positive energy stored initially). Furthermore, if the net power
input is non-zero, that is

/ rlu(®), y(H)]dt # 0, (6.67)
0

and the net power dissipation is positive,

/ g(ndr > 0, (6.68)
0

then the passive system is dissipative.

For a square system (m = p), the scalar product r(u,y) = u”y is an example of the sup-
ply rate function, and much of passivity literature is devoted to such systems. The aeroelastic
plant derived by Lagrange’s equations (Chapter 3) with u being the generalized forces vec-
tor and y the generalized coordinates vector is an example of such a system. It can be shown
that a structural dynamics system with a non-zero viscous damping matrix is a dissipative
system. However, when the feedback loop between structural dynamics and unsteady aero-
dynamics subsystems is closed, the resulting aeroelastic system could become active (thus
unstable) leading to a phenomenon like flutter (see Chapter 4). It can be shown (Slotine 1995)
that a system formed by two subsystems, (V,, g,) and (V,, g,), in either a negative feedback
configuration or in a parallel connection, is passive, provided that the sum of the respective dis-
sipation functions is positive, g () + g,(¢) > 0, and the sum of their storage functions is lower
bounded, V| + V, > 0. This includes the possibility of one of the subsystems being active,
that is, g; < 0, hence a formal procedure can be applied to design a nonlinear feedback (or
feedforward) controller with a dissipative function, g,(#) > 0, in order to stabilize the over-
all system. This approach can be extended to several subsystems in either a feedback or a
parallel connection.

6.5.1 Positive Real Transfer Matrix

Definition 6.5.2 The transfer matrix, G(s) : C - R™" of a square, strictly proper, LTI sys-
tem is called positive real if the following conditions are satisfied:

(a) The poles of all its elements have non-negative real parts.
(b) For all frequencies w € R for which s = iw is not a pole of G(s), the matrix G(iw) +
GT(~iw) is positive semi-definite.
(c) Any pole on the imaginary axis, s = iw, is simple and the following residue matrix is pos-
itive semi-definite Hermitian:
lim (s — iw)G(s).

S—10
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If G(s — €) is positive real for some € > 0, then G(s) is said to be strictly positive real (SPR).
A transfer matrix must satisfy the following necessary conditions for being SPR:

(a) The poles of all its elements have positive real parts.
(b) For all frequencies w € R, Re[G(iw)] > 0.

These conditions imply that the Nyquist plot of G(iw) must lie entirely in the right-half
plane, hence the phase shift of the system’s response to sinusoidal inputs is always less than
90°. This property can be used to demonstrate the impossibility of flutter in a simple plunging
oscillation (Chapter 4).

6.5.1.1 Positive Real Lemma

Lemma 6.5.3 A transfer matrix realization, G(s) = C(sI —A)"'B+D : C - R™" of a
square, strictly proper, LTI system, with (A, B) controllable and (A, C) observable, is posi-
tive real if and only if there exists a symmetric, positive-definite matrix P, and matrices L and
W, such that

ATP+PA=-L"L
PB=Cl - L"w
wiw=D+D". (6.69)

Proof. The proof is obtained (Khalil 2002) by substituting the state-transition matrix of the
LTI system into the conditions of Definition 6.5.2 of a positive real transfer matrix.

6.5.1.2 Kalman-Yakubovich-Popov Lemma

Lemma 6.5.4 A transfer matrix realization, G(s) = C(sI —A)"'B+D : C - R™"™ of a
square, strictly proper, LTI system, with (A, B) controllable and (A, C) observable, is strictly
positive real if and only if there exists a symmetric, positive-definite matrix P, matrices L and
W, and a positive real number e, such that

ATP+PA=-L"L—eP
PB=CT —L™w
W'w =D + D", (6.70)

Proof. The proofis obtained by showing that the transfer matrix, G(s — €/2), is positive real.

For the single-input, single-output case, the following variant of Lemma 6.5.4 is available,
called the Meyer—Kalman—Yakubovich lemma.

Lemma 6.5.5 Given a real number y > 0, a constant Hurwitz matrix, A, constant vectors,
b, c, and a constant, symmetric positive-definite matrix, L, if the transfer function realization,

G(s) = g + c(sI — A)"'b,
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is strictly positive real, then there exists a positive real number; €, a vector q and a symmetric,
positive-definite matrix P, such that

ATP+ PA=—qq" — L
Pb=c" +q,\/r. (6.71)

This lemma requires the system to be only stabilizable, and has the following output equation:
y=cx+ gu (6.72)

We now see how an SPR transfer matrix implies a strictly passive LTI system by the fol-
lowing lemma.

Lemma 6.5.6 The LTI system with a minimal realization given by state-space coefficients
(A, B, C, D) is strictly passive if the transfer matrix,

G(s) = C(sI —A)~'B+D,

is strictly positive real.

In Lemma 6.5.6, if G(s) is only positive real (not SPR), then the system is passive (and not
strictly passive).

6.5.2 Stability of Passive Systems

The main utility of passivity is in the stability analysis of nonlinear, passive systems given by
Eq. (6.61). In this book, we are concerned only with Hamiltonian systems (such as the aeroe-
lastic plant) whose equations can be derived by Lagrange’s formulation to be the following:

d|oL
dr

T T T
2 q)] - [%q, q)] + [@@] =0, (6.73)
q 9q 9
where ¢(7) € R" are the generalized coordinates, Q(f) € R” the generalized aerodynamics and
control forces, L£(gq,q) : R* X R" — R is the Lagrangian, and D(g) : R" — R is a viscous
dissipation (Rayleigh damping) function. If the external inputs are treated to be the generalized
aerodynamics and control forces vector, u = Q, while the outputs are generalized coordinates,
y = g, then such a system is square and its supply rate can be given by r = u’y. If D(.) = 0,
the system is passive, but not strictly passive (dissipative). The following lemmas analyse the
stability of such systems.

Lemma 6.5.7 If the system given by Eq. (6.61) is output strictly passive with uly > V + §yTy
for some real, positive number, 6, then the system is input—output stable, and its gain is less
than or equal to 1/6.

Proof. The proof is produced by completing the squares of V, integrating and applying the
triangle inequality (Khalil 2002).
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Lemma 6.5.8 If the system given by Eq. (6.61) is passive with a positive-definite storage
function, V(x), then the origin of the unforced system, x = f(x,0), is stable in the sense of
Lyapunov.

Proof. The proof is obtained by taking V(x) to be the candidate Lyapunov function for the
unforced system (u = 0) and showing that V < u”y = 0.

Definition 6.5.9 The system given by Eq. (6.61) is said to be zero-state observable if no
solution of the unforced system, x = f(x,0), can identically stay in the region S = {x €
R™|h(x,0) = 0}, other than the trivial solution, x(t) = 0.

Lemma 6.5.10 [fthe system given by Eq. (6.61) is either strictly passive, or it is output strictly
passive and zero-state observable, then the origin of the unforced system, x = f(x,0), is asymp-
totically stable in the sense of Lyapunov. If, in addition, the storage function, V(x), is radially
unbounded, then the system is globally asymptotically stable.

Proof. The proof is obtained by taking V(x) to be the candidate Lyapunov function for
the unforced system (u = 0), integrating the inequality involving the supply rate for u =0
and showing that either V < —y(x) or V < 0, depending upon whether the system is strictly
passive, or output strictly passive and zero-state observable. Radial unboundedness of V(x)
guarantees global asymptotic stability by Theorem 6.2.1.

Definition 6.5.11 The system given by Eq. (6.61) is said to be completely reachable if for
all xy € R", there exists a finite time, T < t), and a square-integrable input, u(t), defined
in the interval © <t <ty such that the state x(t),t >t can be driven from x(r) =0 to
x(to) = Xp-

6.5.2.1 Extended Kalman-Yakubovich-Popov Lemma

The Kalman—Yakubovich—-Popov lemma, which was presented originally for LTI sys-
tems, can be extended to nonlinear, control-affine systems as follows (Haddad and
Chellaboina 2008).

Lemma 6.5.12 Let Q € R? and R € R™ be constant, symmetric matrices, S € RP*™ be
a constant matrix, and the following system be zero-state observable and completely
reachable:

x=fx)+Gxu, x0)=x,
y=hx) +J(xu, (6.74)

where f(.) : R" - R" is locally Lipschitz and continuously differentiable with property
f(0)=0, and G() : R" > R(nxm), h(.) : R" > R” and J(.) : R" - RP*" are contin-
uously differentiable over R" with the property h(0) = 0. Then the system is passive with
respect to a quadratic supply rate, r(u,y) = y' Qy + 2y" Su + u” Ru, if and only if there exists
a continuously differentiable, positive-definite scalar function, V(x), with property V(0) = 0,



200 Adaptive Aeroservoelastic Control

a vector function, £(x) : R" - RY, and a matrix function, W(x) : R" — RY*™, such that for
all x € R”,

V ()f (x) = BT (0)Qh(x) + £7 (x)¢ (x) = 0
%V’(x)G(x) — W OQJx) + ST+ T ()W) =0 (6.75)
R+STI0) +JT(0)S + JT(x0)0J(x) = W (x)W(x) = 0.

Alternatively, if we have N(x) = R+ STJ(x) + JT(x)S + JT(x)QJ(x) > O for all x € R", then
the system is passive with respect to a quadratic supply rate, r(u,y) = y' Qy + 2y" Su + u’ Ru,
if and only if there exists a continuously differentiable, positive-definite scalar function, V(x),
with property V(0) = O, such that for all x € R",

0> V'(@x)f(x) — KT (x)Qh(x) + £7 (x)¢ (x)

+ [% V' (0)G(x) — hT (){QJ (x) + S}] (6.76)

T
X N_l(x)[%V’(x)G(x) — T {QJ(x) + S}] . (6.77)

Proof. See Haddad and Chellaboina (Haddad and Chellaboina 2008), pp. 347-348.

If the system satisfies the necessary and sufficient conditions for passivity given by
Lemma 6.5.12, then the origin, x = 0, u = 0, is stable in the sense of Lyapunov.

6.5.3 Feedback Design for Passive Systems

Consider the following autonomous, square system described as follows:

x=f(x,u)
y = h(x), (6.78)

where f(.) : R” X R™ — R" is locally Lipschitz and continuous, with property f(0,0) = 0,
such that x = 0,u = 0 is an equilibrium point, and A(.) : R" — R™ is continuous, with the
property (0) = 0. Such a system is passive with respect to the supply function u”'y (Def. 6.5.1),
if there exists a continuously differentiable storage function, V(x), such that

uly>V= Z—Vf(x, u), forall (x,u) € R" x R™.
X

Furthermore, if the system is zero-state observable, it can be rendered asymptotically stable
by selecting a suitable output feedback law, provided a positive-definite, radially unbounded
storage function, V(x), can be found. These facts are summarized in the following theorem.

Theorem 6.5.13 [f the system given by Eq. (6.78) is passive with a positive-definite, radially
unbounded storage function, and is also zero-state observable, then the origin, x = 0,u = 0,
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can be globally asymptotically stabilized by an output feedback law, u = —g(y), where g(.) is
any locally Lipschitz function, such that g(0) = 0 and y" g(y) > 0 for all y # 0.

Proof. The proof can be obtained by selecting the storage function, V(x), as the Lyapunov
function for the closed-loop system, and showing the negative-definite nature of V.

The physical principle behind Theorem 6.5.13 is evident when the storage function is treated
as the energy stored in the system. A passive system can remain in the arbitrarily small neigh-
bourhood of the equilibrium point at the origin by itself. However, if damping is added by
closing the loop by u = —g(y), the system becomes asymptotically stable (dissipative), and
thus tends to the origin in the steady state. The choice of the function g(y) hinges upon the phys-
ical constraints on the magnitude (and possibly the rate) of the inputs, u(¢). If a control-affine
system with state equation

x=fx)+ Gx)u.

is not passive (active) with some outputs, it can be rendered passive merely by selecting dif-
ferent outputs, such that

v T
ox
Then a feedback law, u = —g(y), is selected to render the system globally asymptotically stable.
Such a design approach is very useful in dealing with ASE systems, wherein passivity can be
achieved by merely changing the location of the sensors such that a suitable output equation
is derived.

y=hx)=G"(
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7

Nonlinear Oscillatory Systems and
Describing Functions

7.1 Introduction

Unstable nonlinear systems often display an oscillatory behaviour that can be analysed in
an approximate manner using some of the frequency-domain techniques employed in linear
systems analysis. Deriving a describing function model for a nonlinear aeroelastic plant is one
such method. This approach involves an approximation of all the signals in the unforced control
system by only the first (fundamental) harmonic component of a Fourier series expansion. Such
an approximation is seen to be valid when the control system can be represented by a linear
subsystem in a feedback loop with a time-independent (static) nonlinearity. In such a case,
the linear subsystem acts as a low-pass filter, and all higher harmonic components except the
fundamental one are attenuated. The nonlinear part of the system usually provides an energy
dissipation mechanism, such that the response of the unstable linear subsystem does not tend
to infinite magnitudes, but instead remains in a bounded, constant amplitude oscillation called
alimit cycle. The describing function analysis therefore consists of a solution for the frequency
and amplitude of the limit-cycle oscillation (LCO).

A typical aeroservoelastic (ASE) system can exhibit nonlinear oscillatory behaviour, either
due to inertial properties and restoring mechanisms inherently present in the aeroelastic plant
or due to deliberately designed feedback controller elements for achieving desired closed-loop
stability objectives. In the former case, the plant’s nonlinear behaviour is seldom dynamic
(time-dependent) in nature, and hence can be represented by the following functional relation-
ship between input, e(¢), and output, z(¢):

z=f(e), (7.1)

where f(.) is a nonlinear operator. Such a nonlinearity is called a static (also memoryless or
time-invariant) nonlinearity, because it is independent of the history of the input operated by
it. In a feedback loop depicted in Fig. 7.1, a static nonlinearity is seen to act upon the signal
generated by a linear subsystem, which can be modelled by a transfer function, G(s), and
understood to be the product of the transfer functions of linear subsystems of the plant and

Adaptive Aeroservoelastic Control, First Edition. Ashish Tewari.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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Figure 7.1 Basic control system with a static nonlinearity

the controller.! The presence of the nonlinearity can cause a change in the overall control
system’s characteristics, such as stability and response, to known inputs and initial conditions.
For example, for a given set of initial conditions and bounded inputs, a nonlinear control system
can produce a bounded response, an unbounded response or an LCO. Apart from modifying
the stability characteristics, the nonlinearity in a typical aeroelastic system can change the
oscillatory behaviour displayed by the output waveform (frequency, amplitude and phase).
This is illustrated by the system shown in Fig. 7.2, where the aeroelastic plant is assumed to
be an undamped, single degree-of-freedom, second-order, linear system of transfer function,

Yo _ 9
Z(s) s2+9°

in series with an aerodynamic nonlinearity due to either unsteady flow separation or oscil-
lating shock waves, represented by a relay with hysteresis. For 0 < e(f) < 1.01, the relay
output, z(7), is not uniquely defined. If the error signal supplied to the nonlinear relay block,
e(t) = r(t) — u(t), is greater than 1.01, then the relay output remains constant at z = 1. When
e(t) drops below 0, the output is constant at z = 0.3. The negative feedback loop is closed by
a proportional-derivative (PD) controller of the transfer function

U(s)

—— =0.2+0.1s.
Y(s)
u(t) . .
A Linear aeroelasticity
. Q) 9
r(0) (P €0 40, >
4V > 0.3 > ES > y(n
_ 0—|—) E(l)
1.01
Nonlinear
aerodynamics
u(t
® 0.2 +0.1s <

PD controller

Figure 7.2 A simple nonlinear ASE system with hysteresis model for unsteady aerodynamics

! rrespective of the type of the closed-loop connection, the linear subsystems of the plant, H(s), and controller, K(s),
can be combined into a resultant linear block, G(s) = H(s)K(s), through successive block operations.
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Figure 7.3 Step response of the nonlinear ASE system (solid line) of Fig. 7.2 compared with that
(dashed line) without the nonlinearity

The closed-loop response to a unit-step reference input, R(s) = 1/s, with zero initial condition
is compared in Fig. 7.3 with what it would have been in the absence of the hysteresis nonlin-
earity. The drastic change in the system’s stability as well as in the waveform of the output
signal is clearly illustrated. While the linear closed-loop system is stable and is seen to reach
a constant steady state, the nonlinear system has a LCO with a frequency smaller than the
natural frequency of the linear system (3 rad/s), and with a phase difference.

If the hysteresis block in Fig. 7.2 is replaced by the nonlinearity f(«) = u?, then the result is
a stable step response with a faster convergence to the steady state than that of the basic linear
system, as shown by Fig. 7.4. However, with f (1) = ¢™“, the step response becomes unbounded

(Fig. 7.4).

7.2 Absolute Stability

The concept of absolute stability of passive feedback systems with a static nonlinearity is very
useful in the design of stabilizing controllers. It is based on the application of Nyquist-like
stability criteria to nonlinear feedback systems. Consider a single-input, single-output (SISO)
nonlinear ASE system represented by a closed-loop connection of a linear subsystem of a
strictly proper transfer function, G(s) = c(sl — A)~'b, and a static nonlinearity, f(.) (Fig. 7.1).
For the active stabilization problem, we are only concerned with the regulation of the system at
a given set point (an equilibrium point) for which r(¢) = 0. Thus r(¢) is taken to be O in further
analysis. The state equations of the system can be expressed as follows:

x=Ax—bf(y)
y = cx. (7.2)
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Figure 7.4 Step responses of the nonlinear ASE system with the nonlinear block in Fig. 7.2 replaced
by the nonlinearity f(u) = u* (solid line) and f(u) = e~ (dashed line) showing, respectively, the stable

and unbounded behaviour

If the nonlinearity were replaced by a linear feedback controller, f(y) = ky, with a constant gain
k > 0, then the closed-loop stability would depend upon the eigenvalues of the matrix, A — bkc.
This concept is extended to a general nonlinear function, f(y), by the following Aizerman

conjecture.

Definition 7.2.1 Iff(y) can be represented by

k, < o ky, forallys#0, (7.3)
y

then the nonlinearity f(y) is said to belong to sector [k, k,].

The Aizerman conjecture postulates that if f(y) belongs to the sector [k, k,], then the sta-
bility of the closed-loop system given by Eq. (7.2) can be analysed from the eigenvalues of the
matrix, A — bkc, where k; < k < k.

If the Aizerman conjecture were true, then the stability of a nonlinear system could be easily
analysed by treating it as if it was a linear system. Unfortunately, this is a false conjecture,
because there are several examples to show its invalidity. However, if additional conditions to
be satisfied by f(y) and G(s) were imposed, it might be possible to extend the linear systems
analysis to nonlinear systems. The Popov stability criterion provides such a condition to be

satisfied by G(s).
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7.2.1 Popov Stability Criteria
Theorem 7.2.2 [fthe closed-loop system given by Eq. (7.2) satisfies the following conditions:

(1) The linear dynamics matrix, A, is Hurwitz and the pair (A, b) is controllable.
(2) The nonlinearity, f(y), belongs to the sector, [0, k].
(3) There exist two positive real numbers a and e, such that

Re{(1 + iaw)G(iw)} > € — %, for all w > 0, (7.4)
then the equilibrium point at origin, x = 0, is globally asymptotically stable.

The proof of the Popov criterion can be established by the Kalman—Yakubovich lemma
(Chapter 6) through a suitable candidate Lyapunov function. Since this stability criterion
promises stability for all possible nonlinearities f(y) belonging to a given sector, it is also
termed as the criterion for absolute stability. However, as in the case of Lyapunov stability
theorems, Popov criterion only gives a sufficient condition for stability. Popov’s inequality
(Eq. (7.4)) can be graphically represented by a condition where the polar plot of the modified
frequency response function

H(iw) = Re[G(iw)] + ioIm[G(iw)] = X +iY,

(called the Popov plot) always lies below the straight line X — aY + 1/k = 0. Thus the Popov
criterion is quite similar to the Nyquist stability criterion for linear SISO systems (Chapter 2),
where the stability is examined by analysing the distance of the frequency response, G(iw),
from the point (-1, 0).

7.2.2 Circle Criterion

Nyquist-like analysis for nonlinear oscillatory systems is enabled by the following theorem,
called the circle criterion (Slotine 1995).

Theorem 7.2.3 If the closed-loop system given by Eq. (7.2) satisfies the following conditions:

(1) The linear dynamics matrix, A, has no eigenvalues on the imaginary axis and has N eigen-
values in the right-half plane.
(2) The nonlinearity, f(y), belongs to the sector, [k, k,].
(3) Any one of the following is true:
(a) 0 < k; < k,, and the Nyquist plot of G(iw) circles the disk, D(k,, k,) (Fig. 7.5) exactly
N times in a counterclockwise direction, without entering it.
(b) 0=k, <k,, and the Nyquist plot of G(iw) stays strictly in the half plane defined by
Re(s) > —1/k,.
(c) k; <0 < ky, and the Nyquist plot of G(iw) stays in the interior of the disk, D(k,, k)
(Fig. 7.5).
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(d) ky <k, <0, and the Nyquist plot of —G(iw) circles the disk, D(—k,—k,) (Fig. 7.5)
exactly N times in a counterclockwise direction, without entering it.

then the equilibrium point at origin, x = 0, is globally asymptotically stable.

The circle criterion replaces the point —1/k in the Nyquist stability criterion by a circle of
Fig.7.5. For k, — kj, the circle shrinks to the point —1/k,. It is also an absolute stability crite-
rion, because it is not limited to a particular nonlinearity, f(y), but to all possible nonlinearities
belonging to a given sector, [k, k;].

In order to understand the derivation of the circle criterion, let us consider the block diagram
of Fig. 7.6 showing the closed-loop connection between linear transfer function, G(s), and
a static nonlinearity, f(.), driven by reference inputs r;, and r,. The system is in the form
(Fig. 2.3) used for the application of the small gain theorem in Chapter 2 to derive input—output
stability of closed-loop, causal systems. Since the small gain theorem is applied to the gain of
signals, it can be applied even if a subsystem is nonlinear. If the nonlinearity f(y) belongs to
sector [k, k, ], then the small gain theorem would require the following condition to be satisfied

G(iw)

! Dlky, k) w=0
i‘\ " 1 \ v

ki S~eoe?l ky

Il

8
~
o

Figure 7.5 Nyquist plot of G(iw) for applying the circle criterion

LN ZANTEN Y1
"D > G ()
7“
y e /"\ T
- fO | 2 \J‘ 2

Figure 7.6 Block-diagram representation of a system with a static nonlinearity for the application of
small gain theorem
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Figure 7.7 Transformation of the system of Fig. 7.6 by adding negative-feedback connections with a
constant gain k = (k, + k,)/2

by G(s) for input—output stability:
kysup,, | G(iw) |< 1, (7.5)

which is overly restrictive, because a large loop gain may be necessary at some frequencies in
order to reduce the effects of disturbances (robustness). Instead, we define an average controller
gain by
ky+k
k=%
2

and transform the original system by adding negative feedback connections to G(s), f(.), and
between the reference signals, r|, r,, as shown in Fig. 7.7. The small gain theorem is now
applied to the effective closed-loop subsystems represented by the linear transfer function,

=~ G
) = TG

(7.6)

(7.7)

and the nonlinearity,

FO) =fO) — ky, (7.8)

driven by the reference inputs 7, = r, — kr, and r,. Since the nonlinearity, f(y), is seen to
satisfy the following inequality:

A o, forally#0, (7.9)
y

where o = (k, — k;)/2, the small gain theorem results in the following criterion for stability:

o | Gliw) |< 1, (7.10)

in addition to the requirement that G(s) must not have any of its poles in the right-half
s-plane. Combination of the stability requirements given by Eqs (7.5) and (7.10) yields the
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following requirement:

%+ I> 6. (7.11)

1
G(iw)
For the condition given by Eq. (7.11) to hold for all possible values of @ > 0, the locus of
1/G(iw) must lie outside the circle of radius o centred at the point —1/k. In terms of the
Nyquist plot of G(iw), this requirement translates into the circle criterion by applying the recip-
rocal mapping z — 1/z. Stability of the equilibrium point of the closed-loop system given by
Eq. (7.2) then follows by putting r; = r, = 0.

The circle criterion can be extended by the following theorem (Khalil 2002) for absolute
stability of square, multi-input, multi-output systems with a state-space representation:

x=Ax+ Bu
y=Cx+Du
u=—F(), (7.12)

where x e R", ue R"”, yeR", F():R"e€R™ (A,B) is controllable and (A, C) is
observable.

Definition 7.2.4 A square mapping function, F(.) : R™ € R™, is said to belong to the sector
[K|, ], where K| is a symmetric, positive-definite matrix, if

Y'[F() — Ky > 0. (7.13)

F(y) is said to belong to the sector, [K|,K,], where K = K, — K, is a symmetric, positive-
definite matrix, if
[F() = Kyl IF() = Koyl < 0. (7.14)

Theorem 7.2.5 The system given by Eq. (7.12) is absolutely stable, if any of the following
conditions are satisfied:

(1) The nonlinearity F(y) belongs to the sector [K,, oo] and G(s)[I + KlG(s)]_1 is strictly
positive real.

(2) The nonlinearity F(y) belongs to the sector [K,,K,] and [I + K,G(s)][] + K, G(s)] ! is
strictly positive real.

7.3 Describing Function Approximation

Suppose we are interested in stabilizing a SISO nonlinear ASE system represented by the block
diagram of Fig. 7.1, without any external reference input (r(¢) = 0). The basic assumptions
involved in the describing function analysis are that the nonlinear part of the system, f(e),
is time-invariant (static) and an odd function of the input e(#). Furthermore, it is assumed that
when driven by a simple harmonic input signal, e(f) = A sin wt, all the harmonics of the signals
z(t) and y(¢) except the fundamental mode are neglected, because of the linear subsystem acting
as a low-pass filter. This implies that the second- and higher-order harmonics are very much
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more attenuated by G(s) compared to the fundamental harmonic,
| G(iw) |>>| G(inw) |, n=2,3,..., (7.15)

By expanding z(¢) in Fourier series, we have

(e

2(t) = 2 a, cos(nwt) + b, sin(nwr), (7.16)

n=1

where the coefficients a,,, b, are given by

a, =1 / i 2(Ha, cos(nwt)d(wr) (7.17)

T J-x

and .
b, = 1 / z2(t)a,, sin(nwt)d(wt). (7.18)

T J_z

When only the fundamental mode of the signal z(¢) is taken, we have the approximation
2(1) =~ a; cos(wt) + by sin(wt) = M sin(wt + ¢), (7.19)

or in the complex representation,
2(f) =~ Me®'*?, (7.20)

The describing function, N(A), for the static nonlinearity, f(.), is defined as the ratio of the
fundamental output signal with the driving input signal, given by

Meaft+¢ _ M(A) i)
Aelot A

Note that while a linear system has the frequency dependence of the forced harmonic output
only, for a nonlinear system, this changes to include amplitude dependence as well. Since the
nonlinearity, f(.), is static, the describing function is independent of the frequency of excitation
and depends only upon the excitation amplitude, A.

By equating the driving error signal, e(r), with the feedback-return signal, we have the
following condition to be satisfied by the system:

N@A) =

(7.21)

NA, 0)G(iw) = —1. (7.22)

If a real pair, A, w, exists satisfying Egs. (7.21) and (7.22), then a self-sustained LCO exists. If
the Nyquist plot of G(iw) and the plot of —1/N(A) versus A, both plotted on the same figure,
have a point of intersection, then the LCO condition exists. In order to analyse the stability of
the LCO, consider a small perturbation on the amplitude, A. If the new amplitude is less than
A (for which the LCO exists), then the oscillation is unstable by Nyquist stability criterion.
Conversely, if the perturbed amplitude is greater than A, the oscillation is stable.

Describing functions for some common static nonlinearities are listed in Table 7.1. Other
nonlinearities, such as hysteresis, backlash and so on, can be found in classical nonlinear con-
trol textbooks (Gibson 1963).
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Table 7.1 Describing functions for some basic nonlinearities

fe) N(A) Nomenclature
3 3,2 -

e ZA Cubic gain
1, e> e 4 e .
0, Jel<e 2a/1- (—) L (A>e) Relay with

An A
-1, e < —e, dead zone
v
a( ¢ 1) e>e
e ) 0 e e e, \2
“ 4 1—2 sin"1<—0>+—O l—<—0> ,A>e,
10, lel<e, 1€ T A A A Free play
a<1—£>, e < —e, 0, A<e
€
1, > 1 2
¢ 2 sin—l(l>+l 1—(l> . A>1 ,
qe, el i A A A Saturation
-1, e<-lI 1, A<

7.4 Applications to Aeroservoelastic Systems

The circle criterion and describing functions can be applied to design-adaptive controllers
for nonlinear ASE systems where the nonlinear subsystem is uncertain. This is true for most
aeroelastic plants with structural and aerodynamic nonlinearities, which can be represented
by standard models such as dead-zone, free play, backlash, nonlinear damping, hysteresis and
saturation. Before one attempts to derive a controller for such systems, it is advisable to know
the extent of the nonlinearity in terms of its sector. Sometimes, the bounds on the nonlin-
ear operator, f(y), are known a priori, and can be used to determine the controller gains by
using the small gain theorem. For example, the limits on a nonlinearly hardening spring (either
structural or aerodynamic in source) can be determined by an analytical model or experimen-
tal tests. Similarly, complicated phenomena such as shock-induced and separated-flow buffet
usually have well-defined frequency spectra, for which an appropriate describing function can
be derived and used to adjust the stabilizing controller gains according to the sensed oscilla-
tory response. In this manner, an adaptive control loop is easily established without recourse
to more sophisticated adaptation mechanisms.

Most of the nonlinear aeroelastic/ASE strategies found in the literature fall into the describ-
ing functions category. Such an approach takes advantage of the fact that the presence of a
linear aeroelastic subsystem, G(s), acts as a low-pass filter for the higher Fourier series harmon-
ics arising out of the nonlinearity, f(.), thereby enabling a describing function approximation
for the latter. While derived for structural nonlinearities (Gordon et al. 2008), these methods
can be easily extended to include nonlinear aerodynamic behaviour, because of the feedback
interconnection between structural and aerodynamic subsystems (see Chapter 3). Ueda and
Dowell (1984) presented one of the few articles on the application of describing functions
to specifically represent the aerodynamic nonlinearity associated with transonic flutter. The
simplest computational model for unsteady transonic aerodynamics is possible through the
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low-frequency, transonic small-disturbance equation (see Chapter 3), which can be used to
computationally determine the describing functions for transonic flutter analysis. However,
while a simple describing function gives a reasonable flutter prediction, its utility is limited to
small amplitude motions (Ueda and Dowell 1984). Dowell and Tang (2002) and Dowell ef al.
(2003) provide a survey of nonlinear aeroelastic applications, where the describing function
models are seen as practical tools for ASE design and analysis with nonlinear effects. In con-
trast, while many CFD-based aeroelastic models have appeared in the literature, they are still
too time-consuming for use as ASE design tools and are likely to remain so in the foreseeable
future. Describing functions can be derived either from analytical and computational results,
or wind-tunnel test data. However, the online determination of describing functions by autore-
gressive schemes (Raveh 2004) and their incorporation via an adaptation loop into self-tuning
regulators (Chapter 8) offers the greatest promise in nonlinear adaptive ASE applications.

Describing functions of static nonlinearities can be directly used to build robust controllers
for the suppression of flutter and LCOs suppression through the frequency-domain, multi-
variable design methods employing structured singular-value (u) synthesis (Maciejowski
1989). The describing function approach fits naturally with the frequency-domain design
offered by the p-synthesis. However, an ASE state-space representation must be derived
via linear fractional transformations (LFT) for a plant containing both linear and nonlinear
subsystems, which is followed by the derivation of a stabilizing feedback controller. Promi-
nent methods based on p-synthesis for a robust ASE analysis are those by Lind and Brenner
(1999), Borglund (2003), and Baldelli ef al. (2005). The last of these employs a describing
function for structural free-play nonlinearity in the LFT model of the aeroelastic system and
analyses its effect on the flutter point. Such a systematic framework can be extended to the
presence of aerodynamic describing functions, if available. The nonlinear operators can be
updated by an identification loop, which allows an adaptive control implementation of the
system. However, before controllers can be designed, a suitable aeroelastic plant to be used
in stability analysis is necessary. It has been indicated earlier (see Chapter 4) that the simple
incompressible flow models of the Theodorsen type do not lead to accurate flutter-point
estimates in the high-subsonic regime. If an aerodynamic describing function for transonic
shock-induced behaviour (see Chapter 11) is introduced in a Theodorsen-type model, there is
little possibility of it giving a reasonable ASE design. The minimum level of sophistication
required in a nonlinear transonic flutter/LCO-describing function model has to be based
on the linear aeroelastic subsystem rational function approximation (RFA) in compressible,
time-linearized aerodynamics. The latter could be either a doublet-lattice-type model (Tewari
2015) for the three-dimensional wing or a Possio-type compressible integral equation
model for the typical section (Appendix B). The low-frequency transonic small-disturbance
(LFTSD) model could be the best choice of time-linearized aerodynamics underlying the
superimposed shock-induced nonlinear behaviour. However, such a model requires iterative
computations at present. If analytical results can be derived for the LFTSD equation in the
future, it will be a big leap in the adaptive transonic ASE design process.

7.4.1 Nonlinear and Uncertain Aeroelastic Plant

Consider an aeroelastic system represented by the following equations of motion:

ME+ CE+KE+ () =0 + Tu, (7.23)



214 Adaptive Aeroservoelastic Control

where £(r) : R — R” is the generalized coordinates vector corresponding to the n degrees
of structural freedom (including the m control-surface degrees of freedom), u(¢) : R - R”
is the vector of control torque inputs applied by m servo-actuators, and M € R™" C € R™",
K € R™" and T € R™"™ are the generalized mass, damping, stiffness and control transmission
matrices, respectively. The generalized aerodynamic force vector, Q(f) : R — R”" is assumed
to be linearly related to &(7), E(r) and E(7), as well as to certain additional state variables
collected into the aerodynamic lag state vector, x,,(f) : R — R?, which is necessary for mod-
elling the aerodynamic lag caused by a circulatory wake by a RFA. All structural and aerody-
namic nonlinearities are clubbed into the static nonlinear operator, (&) : R” — R"”. When
a least-squares-type RFA is used (see Chapter 3), the generalized aerodynamic forces are
related to the generalized coordinates by a generalized aerodynamics transfer matrix, G,(s),
as follows:

O(5) = 4o Gy ($)6(5), (7.24)
where g, is the freestream dynamic pressure, s is the non-dimensional Laplace variable, and
G, () =Ayg+As+Ays® +Ts(sI —R)'E (7.25)

with Ay,A;,A,,I',E,R being the constant coefficient matrices to be determined by a
curve-fit with the harmonic generalized air force (GAF) data, G,(iw). In terms of the lag
parameters, b;,i = 1,2,...,N, and the corresponding least-squares lag coefficient matrices,
A3, Ay, ..., Ay, the matrices T € R™ E€ R and R € R?*’, where ¢ =nN, are
given by

Az
Ay
F=(I9I7""I)9 E= : k) (7.26)
Anio
and
bl 0 0 0
0 b O 0
R=-]10 0 b3l --- 0. (7.27)
0 0 0 byl

The unsteady aerodynamic force vector in the time domain is the following:
O) =gy (A6 +AE+ AL +ETx,), (7.28)

where the aerodynamic lag states, x,,(¢), are related to the generalized coordinates, £(¢), by the
following state equation: _
%, = Rx, +TT¢. (7.29)

The ASE plant is therefore represented by the following state-space model:

i =Ax+F(y) + Bu, (7.30)
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T r . ) ) .
where x = <§T, 13 ,xZ) € R?"* is the aeroelastic state vector, y = & is the aeroelastic sys-
tem’s response,

0 1 0
A=|-"'k -m'C g M 'ET (7.31)
0 r’ R

with M = M — g Ay, K = K — g Ay, C = C — g A,

0
FO)=|-M"'f@ |- (7.32)
0
and
0
B=\ir'rl. (7.33)
0

The plant’s coefficients A, B, and the nonlinear operator, f(.), are uncertain. If they were
precisely known, and the pair (A, B) were stabilizable, regulation could be achieved by dynamic
inversion and feedback linearization, such as the one given by the control law

u=—kx —f&). (7.34)

However, as the nonlinear operator and the linear coefficients are uncertain, such a simple
method is not guaranteed to work, and a structured uncertainty model is necessary.

The uncertain linear parameters as well as the nonlinear operator driving the aeroelastic
system can be handled by using a structured uncertainty model through LFT (see Chapter 3).
Consider both structural and aerodynamic subsystems to be represented by block-diagonal,
multiplicative uncertainty models depicted in Fig. 7.8. Here G4(s) and Gg(s) are the aero-
dynamic and structural dynamic transfer matrices, respectively, and N, and Ng denote the
describing functions for aerodynamic and structural nonlinearities, respectively. The multi-
plicative uncertainty blocks of aerodynamic and structural subsystems are A,(s) and Aq(s),
respectively. The system is excited by external reference inputs, r(s), which are the pilot’s
command signals. In addition, the process, p(s), and measurement, m(s), noise signals are
denoted as random inputs driving the system. The main source of p(s) is atmospheric turbu-
lence that affects the aerodynamic subsystem, while the measurement noise is picked up by
the controller, H(s), through feedback of the measured signals, z(s). The task of ASE design
is to derive a controller transfer matrix, H(s), such that the closed-loop system is stable in the
presence of random noise inputs, system nonlinearities and structured uncertainties. A sta-
bility analysis of the overall ASE system is possible by the extended Nyquist method given
by Eq. (7.22), with N representing the aeroelastic nonlinear subsystem in a block-diagonal
feedback loop with the linear ASE plant, G(s). The system can be used as the baseline plant
for deriving adaptive control systems. However, the inclusion of block-diagonal uncertainties
in an iterative adaptation loop can be cumbersome for the reasons mentioned at the end of
Chapter 2. Hence, an adaptive control system almost never includes the uncertainty model in
the design loop, but instead uses fixed controller gains that are derived from a robust design
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8,0) | As(s) |
p(s) ————» Gu(s) » Gis) ——» y(s)
Nu(s) | Ng(s) |«
m(s)
L r(s)
u(s) Hs) :— z(s)

Figure 7.8 Linear fractional transformation of an ASE system with structured uncertainties, nonlinear-
ities, reference signals and noise inputs

carried out by an uncertainty model (e.g., p-synthesis). These gains are treated as the initial
controller parameters to be evolved in time by a self-tuning identification loop (Chapter 5) or
model-reference adaptation (Chapter 8).
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3

Model Reference Adaptation
of Aeroservoelastic Systems

The model reference adaptation system (MRAS) approach offers the greatest promise of appli-
cations to aeroservoelastic (ASE) systems for the following reasons:

(a) It adapts controller parameters in the presence of modelling uncertainties and prescribed
nonlinearities, without requiring an online estimation of uncertain plant parameters.

(b) On the basis of Lyapunov’s direct method, it guarantees the uniform boundedness of the
state error from the reference model by ensuring that the system’s trajectories always
remain inside a compact set.

Both these features are quite useful when applied to ASE systems, because the alternative
method of the self-tuning regulator (STR), which requires an online parameter estimation, is
not guaranteed to be stable in the presence of large, random perturbations, which are especially
encountered in the transonic regime. Furthermore, the other classical method of dealing with
prescribed nonlinearities, namely the describing functions method, can work only when the
oscillatory response can be approximated by the first harmonic. Again, this assumption can
be violated in the presence of large modelling uncertainties of an ASE design. Therefore,
the MRAS appears to be well suited for an adaptive ASE design. However, being based on
minimization of state error from a reference model, the success of MRAS hinges on selecting
an appropriate reference model. Furthermore, as it has an essentially non-autonomous error
dynamics, the MRAS requires projection-based adaptation laws for guaranteeing robustness
in the presence of random signals.
The design process for model reference adaptation consists of the following steps:

(a) Derivation of a reference model
(b) Design of the basic feedback controller
(c) Design of the adaptation mechanism for the controller parameters.

The analysis in this chapter is limited to full-state-feedback control, which is later extended
to output feedback systems in Chapter 10.

Adaptive Aeroservoelastic Control, First Edition. Ashish Tewari.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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8.1 Lyapunov-Like Stability of Non-autonomous Systems

Consider an unforced, autonomous system with state vector, x(f) € R”, governed by the state
equation,

x=f(x1), 8.1)
with an equilibrium point at the origin, f(0, ) = 0. If an arbitrarily small initial condition exists,
x(to) = .XO, (82)

then the perturbed solution, x(),t > #;, > 0, may or may not remain arbitrarily close to the
equilibrium point. Thus stability is concerned with the boundedness of the trajectory, | x(¢) |;
t >ty >,if | xy |< 6, where ¢ is an arbitrarily small positive number.

Definition 8.1.1 A system described by Eq. (8.1) is said to be stable about the equilibrium
point, x = 0, in the sense of Lyapunov if for each real and positive number, €, however small,
and initial time, ty > 0, there exists another real and positive number; 6(€, ty), such that for all
initial conditions,

| x(ty) | < 6 (8.3)

implies that
[x(t) | <e, t>1,>0. (8.4)

1. The equilibrium is said to be globally stable, if it is stable and lim,_, ,6(€, t;) = c0.

2. The equilibrium is said to be uniformly stable, if it is stable and 6 does not depend upon
the initial time, t.

3. The equilibrium is said to be asymptotically stable, if it is stable and there exists a positive,
real constant, c(ty), such that lim,_, x(t) = 0 for every | x(t;) |< c.

4. The equilibrium is said to be uniformly asymptotically stable, if it is uniformly stable and
there exists a positive, real constant, c, independent of t,, such that lim,_, . x(t) = 0 for every
| x(ty) |< c. Then the trajectory x(t) is said to converge uniformly in t to zero.

5. The equilibrium is said to be globally, uniformly asymptotically stable (GUAS), if it is uni-
formly asymptotically stable and lim 6(€) = oo.

€—>00

A geometric interpretation of stability is given by the ability to find an n-dimensional sphere
of radius 6 < e such that every trajectory starting in the smaller sphere at ¢ = ¢, remains inside
the larger sphere of radius e at all times. If this happens irrespective of the value of 7, then the
equilibrium point is uniformly stable. Achieving uniform asymptotic stability in the presence
of uncertain dynamics is the objective of model reference adaptation.

Further discussion assumes f(x, f) to be piecewise continuous in ¢ and locally Lipschitz in
x, such that existence and uniqueness of solutions, x(¢), in a local neighbourhood of x(,) are
guaranteed. It can be shown that the Lipschitz condition will be satisfied in a domain containing
the origin, D C R”, for a < t < b, if and only if both f(x, f) and df /dx are continuous in x € D
for a <t < b. In order to extend the concept of Lyapunov stability to the system of Eq. (8.1),
assume that a positive-definite scalar function, V(x) : D — R, exists whose time derivative
along the system’s trajectory is locally non-positive definite, given by

V =VV@)f(x,1) <0, forallxeD, forallz>0. (8.5)
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Theorem 8.1.2 If on a domain containing the origin, D C R", there exists a continuously
differentiable, locally positive-definite scalar function, V(x), such that the condition given by
Eq. (8.5) is satisfied for the system given by Eq. (8.1), then the origin x = 0 is uniformly stable
in the sense of Lyapunov. If the condition, Eq. (8.5), is satisfied by a strict inequality (i.e., Vis
locally negative definite) then the origin is locally uniformly asymptotically stable.

Proof of Theorem 8.1.2 (called Lyapunov’s direct method) can be found in textbooks on non-
linear systems, (cf. (Haddad and Chellaboina 2008)). Thus we have a method of establishing
uniform asymptotic stability by finding a suitable Lyapunov function. Geometric interpreta-
tion of Lyapunov’s direct method is enabled by considering that the requirement of Eq. (8.5)
dictates that at all times, the outward normal to a closed contour V(x) = ¢ given by the gradient
vector, VV(x(¢)), makes an angle greater than z /2 with the system’s dynamics vector, f(x, £).
This implies that a trajectory x(f) cannot cross outside the boundary, V(x) = ¢, of a closed
and bounded (compact) set containing the origin x = 0. The Lyapunov function V(x) thus has
energy like behaviour for the dynamical system of Eq. (8.1) and Lyapunov stability refers to
energy dissipation along the system’s trajectory.

Theorem 8.1.3 If the Lyapunov function, V(x) : R" — R, satisfying the conditions of
Theorem 8.1.2 is also radially unbounded, then the origin x =0 is a globally uniformly,
asymptotically stable (GUAS) equilibrium of the system given by Eq. (8.1).

8.1.1 Uniform Ultimate Boundedness

Since a system is always under some uncertain perturbation, w(r) € R”, its real dynamics is
represented as follows:
x=fx,0+w(), x(t) = xp, (8.6)

and an equilibrium point is therefore undefined. Instead of stability of the equilibrium, it is
more meaningful to consider the response of the system to a bounded disturbance, | w(t) |< w,,,.
However, Lyapunov’s direct method can still be applied by finding a Lyapunov-like function
to show that the system’s trajectories remain bounded for all time.

Definition 8.1.4 The solutions x(t) to Eq. (8.6) are said to be uniformly ultimately bounded
(UUB) with an ultimate bound b, if there exist positive, real numbers, b and c, independent of
initial time ty > 0, and a time interval, T = T(a, b) for every 0 < a < ¢, also independent of
to, such that

| x(t0) | < a, 8.7)

implies that
| x(t) | < b, (8.8)

forall timest >ty +T.
If the conditions given by Eqgs. (8.7) and (8.8) hold for an arbitrarily large number a, then
the solutions to Eq. (8.6) are said to be globally UUB.

Uniform ultimate boundedness is a weaker form of stability than stability in the sense of
Lyapunov, because it does not ensure maintenance of the response in a small neighbourhood
of equilibrium.
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8.1.2 Barbalat’s Lemma

Since it is difficult to find Lyapunov functions with a negative-definite time derivative for
non-autonomous systems, the stability analysis is instead based on seeing whether a set of
solutions, E, for which V = 0 can be considered the set to which all solutions converge as
t — oo. If E is a null set, then the origin is asymptotically stable, because all trajectories have
V <0.In fact, the continuity of the time derivative of a function of time can be used to show
whether a trajectory starting outside E (i.e. having V < 0) will converge to E as t — oco. This
is the extension of the Lyapunov stability analysis for non-autonomous systems.

Definition 8.1.5 A scalar function f(¢) is said to be uniformly continuous, if for every € > 0,
there exists a 6 = 6(e) > 0, such that | t, —t; |< 6 implies that | f(t,) — f(#;) |< €.

Lemma 8.1.6 If a scalar function f(¢) is uniformly continuous for 0 < t < oo, and the limit,

t
lim / f(o)dr
=0 0
exists and is finite, then lim,_,  f(t) = 0.

An equivalent form of Barbalat’s lemma can be stated for a continuously differentiable scalar
function, (), with a finite limit as  — oo. If f(¢) is uniformly continuous, then it converges to
zero in the limit as r — oo.

8.1.3 LaSalle-Yoshizawa Theorem

Where non-autonomous systems are concerned, invariant sets cannot be defined. In such a
case, Barbalat’s lemma is applied to establish Lyapunov-like stability of an equilibrium point.
The concept of invariant set is then extended to that of a bounded set to show uniform bound-
edness of non-autonomous trajectories by the LaSalle—Yoshizawa theorem.

Theorem 8.1.7 If there exists a continuously differentiable, positive-definite, and radially
unbounded scalar function, V(x) : R" — R, such that the following condition is satisfied for
the system given by Eq. (8.1):

V= VV@)f(x, 1) < =W(x) <0, forallx € R", forallt>0, (8.9)

where W(x) : R" - R is a continuous and non-negative function, then all solutions of
Eq. (8.1) are UUB and satisfy
tlim W(x(t)) = 0. (8.10)

Furthermore, if W(x) is positive definite, then the equilibrium point, x = 0, is GUAS.
The LaSalle—Yoshizawa theorem allows the construction of a Lyapunov function to establish

convergence of non-autonomous trajectories to a set £ where W(x) = 0. This is very useful in
designing MRAS by Lyapunov-like methods.
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Example 8.1.8 In order to understand the basic aspects of Lyapunov-based control, consider
a single degree of freedom mass—spring—damper system with displacement, x(t), from the static
equilibrium position. The system is linear with a constant mass m, but has unknown and ran-
domly varying stiffness, k(t), and damping coefficient, c(t), with the equation of motion given by

mx + cx + kx = u, (8.11)

where u(t) is the force applied as the control input. The task of an automatic controller is
simply to stabilize the system, such that any initial displacement or rate is quickly brought to
zero without too many oscillations. If the bounds on the unknown parameters are known,

lkI<k, |cl<zE, (8.12)
then the following linear feedback control law
u = —2(kx + ¢¥), (8.13)

will stabilize the system, which can be proved by a Lyapunov stability analysis. Consider the
following candidate Lyapunov function:

V = ax® + bi* + 2abxx, (8.14)

which is positive definite and radially unbounded with the state vector (x,%), ifa > 0,b > 0. It
is evident that the time derivative of the Lyapunov function along the system’s trajectories is
bounded by a non-positive function of the state variables:

V = 2(axi + bxx + abxx + abix?)

Daxi + 2abi> + 2b(ax + ¥) <—£x kg 1)
m m m

2axk + 2abx* — %(ax +3) [(c +20) & + (k + 2k)x]

< 2axk + 2abx® — %(ax +X) [ck + kx|
m

_2b [a%xz + (€ — am)i® + (E +ac — gm)xjc]
m b
ak 1 (l_<+aE— gm) X
2w, 2 b . (8.15)
m 2 a4 G .
> (k+ac bm) c—am X

There are many possible choices of the positive constants a,b for the candidate Lyapunov
function. For example, by selecting

c mc
a=— b= ———,
m mk + &2
it can be readily shown that the coefficient matrix in Eq. (8.15) is positive semi-definite. Thus
the sufficient conditions for the LaSalle—Yoshizawa theorem are satisfied and globally uniform
boundedness of all solutions starting from the equilibrium point at the origin is guaranteed.

The asymptotic stability consistent with this choice of Lyapunov function is illustrated by the
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Figure 8.1 Simulation of a spring—mass—damper system with known bounds on randomly varying stiff-
ness and damping (m = 1,k =2,¢ = 1)

Runge—Kutta simulation plotted in Fig. 8.1 for m = 1,k = 2,¢ = 1 and initial displacement

x(0) = 1 (all in appropriate units), with the stiffness varying as a normal random distribution

and the damping as a uniform random distribution with each time step. Another possibility

of constants a, b that yields a positive-definite coefficient matrix in Eq. (8.15) (thus global

asymptotic stability of the origin), is the following:
c 1

= — —_ _2—]‘( b=
“ 2m  2m ¢ "

)

ol 3

which is simulated with a much smaller stiffness bound, m = 1, k=0.1,¢ =1, and is seen to
have asymptotic stability in Fig. 8.2.

While Example 8.1.8 devised a linear feedback controller with constant gains to stabilize

a linear plant with known parameter bounds, such an approach would fail whenever such

bounds are unknown. In such cases, adaptation is necessary, as explored next. In a stabilization

problem (which is the focus in ASE design), the reference inputs are zeros, thus we have the
following reference model:

Xy =A% (8.16)

where A,, € R™" is a known dynamics coefficient matrix and x,,(r) € R” is the state vector of
the reference model. Since the reference parameters, A,,, are different from those of the actual
plant, there is always an error between the states of the two systems, which must be driven to
small values by a model-reference adaptive scheme.
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Figure 8.2 Simulation of a spring—mass—damper system with known bounds on randomly varying stiff-
ness and damping (m = 1,k =0.1,¢ = 1)

8.2 Gradient-Based Adaptation

A common MRAS adaptation mechanism is based on the minimization of a loss function
of the error between the actual state and the state of the reference model. Consider a linear,
time-invariant aeroelastic plant with state equation

% = Ax + Bu, (8.17)

where A € R™" B € R™™ are uncertain (but constant) plant parameters matrices. The pair
(A, B) is controllable. The stabilization reference model is described by Eq. (8.16), with A,
being a Hurwitz matrix (has all eigenvalues in the left-half plane). The state error is given by

e=X—Xx,, (8.18)
which is to be driven to zero in the steady state using a state-feedback law,
u=—K()x. (8.19)

The state-feedback regulator gain matrix, K € R™*", depends upon the controller parameters
vector, 8 € R?, (p < mn), which must be adjusted such that a scalar, positive semi-definite loss
function of the error vector,

V() = f(e), (3.20)
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is minimized with respect to 6. This is achieved in practice by driving the controller parameters
along a gradient of the loss function,

de av\T deNT ., r
d _y<a9) _7((%)) ey 821)
where y is a scalar adaptation gain. Equation (8.21) is called the gradient adaptation law.
In order to give different weightage to error minimization with respect to different parame-
ters, the scalar gain y can be alternatively replaced by a square, positive-definite adaptation
gain matrix, I' € RP*P having the same row dimension as the number of the unknown param-
eters, 6. In that case, the adaptation law becomes the following:

do _

dr
Hence, I'" = yI for the scalar adaptation gain, where all controller parameters are given equal
weightage. The error-gradient matrix, S = de/06 € R™? (also called the sensitivity matrix),

is derived by subtracting Eq. (8.16) from Eq. (8.17), after substituting the linear feedback law,
Eq. (8.19):

F(S—;)T(f’(e))T. (8.22)

¢=[A—BK(0)lx—A,x, =[A—BK(@®)le+[A - BK(®)—A,lx,,. (8.23)

For achieving a zero steady-state error (e(c0) — 0) irrespective of x,,, the following matching
condition must be satisfied:
A—-BK(@®)=A,,. (8.24)

However, in practice, the matching condition can be satisfied only at a specific time, say t = 0,
for which 6(0) = 6, are known. If there exists such a parameters vector, 6, then we have

A—BK(0)) =A,, (8.25)

and a residual error always remains, which should be driven to small values by an appropriate
adaptation law. The deviation of the controller parameters from the initially known values,
given by

A =0 -0, (8.26)

should be taken into account while deriving such an adaptation law. Suppose the error state
equation can be expressed as follows in the presence of the parameter error, Af:

e=A,e+PAD, (8.27)

where ¥ € R™? is a known constant matrix. Then the following gradient law is shown to be
stabilizing by Lyapunov’s stability theory (to be seen later):

6 =—yPTPpe, (8.28)

where y > 0 is an adaptation gain and P € R™" is a symmetric, positive-definite real matrix.
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8.2.1 Least-Squared Error Adaptation

A simple choice of the loss function is the squared-error function,

V(0) = %eTe, (8.29)
which leads to the adaptation law,
) T
0= F(Z—Z) e=TSe. (8.30)

Substituting the exact matching condition Eq. (8.24) into Eq. (8.23) leads to the following
identity:
e = g—;é =[A—-BK(0)]le =A,e, (8.31)

which, on substitution of Egs. (8.30) and (8.24), results in the following:
SrsT =A,,. (8.32)

Equation (8.32) must be solved for the sensitivity matrix, S, before the gradient adaptation law
of Eq. (8.30) can be implemented. In such a solution procedure, 6 is considered to be free,
and subject to the initial condition, 8(0) = 6,,. The initial error, e(0), must also be specified to
complete the statement of the problem. It can be shown (see Chapter 6) that as A,, is Hurwitz,
the adaptation law given by Eqgs. (8.30) and (8.32) drive the loss function, V(0), to a mini-
mum. However, as Eq. (8.32) gives n equations to be solved for np elements of S, it does not
have a unique solution unless p = 1 (single free parameter). Hence, n(p — 1) parameters of S
must be selected from arbitrary conditions. Furthermore, nonlinear algebraic equations such
as Eq. (8.32) require an iterative solution (except in some special cases). Thus, even when the
exact matching condition is satisfied at all times, the solution for a sensitivity matrix for use
in the adaptation law is problematic. The problem becomes more acute when the matching
condition is satisfied only initially, that is, Eq. (8.24) is replaced by Eq. (8.25). Then there
is no guarantee that a simple least-squares adaptation would lead to a stable system. As seen
next, Lyapunov’s direct method can be applied to yield sufficient conditions of stability with
a proper choice of the Lyapunov function.

8.3 Lyapunov-Based Adaptation

In the previous section, it was found that choosing a gradient-based adaptation law with free
controller parameters leads to a nonlinear algebraic equation to be solved for the sensitivity
matrix. However, a simplification in the adaptation law occurs by assuming a controller struc-
ture. Such a structure can be based on any of the basic linear control strategies, such as pole
placement (eigenstructure assignment) and linear optimal control. If the plant model (A, B)
were known with certainty, a linear feedback control law based on the known plant,

u=—Kx, (8.33)
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could be designed with constant controller gains, K, such that the closed-loop system closely
follows the reference model. Therefore, the matching condition,

A-BK=A,, (8.34)

would be satisfied. However, when the plant parameters are uncertain, the controller gain can-
not precisely achieve the matching condition. In such a case, we have

u = —Kx, (8.35)
K =K + 6K, (8.36)

where 6K () is the variation (or error) in the controller gain matrix due to the plant’s modelling
uncertainty. Substitution of Egs. (8.34)—(8.36) into the plant’s state equation, Eq. (8.17), and
subtracting the reference state equation, Eq. (8.16), leads to the following closed-loop error
dynamics:

¢=A,e—BK(e+x,)=A,e— B5Kx. (8.37)

The term BoKx is the residual error term due to modelling uncertainty.

The controller design assumes that errors due to modelling uncertainty can be reduced by
applying feedback as if the plant parameters were known with certainty. In other words, the
feedback employs the estimated values of uncertain controller parameters as if they were cer-
tain. This is the certainty equivalence principle on which most adaptive control laws are based.
Of course, this approach requires being able to compute the controller gains from either a
knowledge or an estimate of the plant parameters, (A, B).

Before proceeding further, an uncertainty model for the controls coefficient matrix, B, is
necessary. Assume that the uncertainty in B has a multiplicative structure given by

B = ByA, (8.38)
where B, € R™™ is a known matrix and A € R™ is an unknown, constant, diagonal matrix
with positive elements, 4;; > 0,i = 1, ... ,m. The system’s state equation is thus the following:

% = Ax + ByAu = (A — ByAK)x. (8.39)

Define the following candidate Lyapunov function:
V = e Pe + tr(SKT'6KT ), (8.40)

with P and I" being symmetric and positive-definite cost matrices. The function V is radially
unbounded in (e, 6K), and has the following time derivative:

V =éeTPe+ e Pé+ 2tr <5Kr—1f<TA) , (8.41)
or, by Eq. (8.37),
V=T (ATP + PA, )e — 2¢T PByASKx + 2tr (5Kr—11*(TA) . (8.42)
Since A,, is Hurwitz, the matrix P satisfies the following Lyapunov identity (Chapter 6):

Al'P+PA, = -0, (8.43)
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where Q is a positive-definite matrix. Furthermore, the following identity exists for the trace
of a square matrix, ba”, where a, b are two vectors of the same dimension:

a'b = tr(ba’), (8.44)
which can be applied as follows:
e" PByASKx = tr(6Kxe” PByA). (8.45)
By virtue of Egs. (8.43) and (8.45), we have
V=—elQe+2tr {51< (r—ll*{T - xeTPBO) A} . (8.46)

In order to make the non-quadratic term in Eq. (8.46) vanish, the following adaptation law is
selected: .
KT =Txe' PB,, (8.47)

or .

K =Bl Pex'T. (8.48)
Hence, by substitution of Egs. (8.43) and (8.47) into Eq. (8.42), we have the following result:
V=—=elQe<0, (8.49)

which satisfies Lyapunov stability theorem for global asymptotic stability (Chapter 6). An
implementation of the adaptation law of Eq. (8.47) is possible, because the matrix B is known.
By taking the second time derivative of the Lyapunov function, we obtain the result,

V ==2¢"Qe, (8.50)

which is bounded, because ¢ is bounded, hence V is uniformly continuous. Additionally, by
virtue of Eq. (8.49) and V(e, 6K) being lower bounded by V(0, 0), 14 converges uniformly to
zero in the limit  — oo due to Barbalat’s lemma. Thus the error e(¢) uniformly converges to
zero in the limit # — oo, hence GUAS stability is guaranteed without the knowledge of the
uncertain plant parameters (A, A).

The basic approach highlighted here is extended in Chapter 10 to handle the matched uncer-
tainty in a plant’s input variables due to uncertain nonlinearities and for a robust design in the
output-feedback form.

Example 8.3.1 Example 8.1.8 used a linear feedback controller with constant gains to sta-
bilize a linear plant with known parameter bounds. This approach is inapplicable whenever
such bounds are unknown. Furthermore, in many cases, only a bounded response — rather than
asymptotic stability — can be achieved, thus the controller cannot be truly called stabilizing. In
order to have model reference adaptation in such a case, let us define the following reference
model:

My X, + %, + k,x, =1, (8.51)

where m,,, c,,, k,, are known constants and x,,(t), r(t) are the displacement and reference input
for the model. It is required to track the response of the reference model by minimizing the
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tracking error, 6x = x — x,,, and its time derivatives for a specified reference input, r(t). For a
regulation task, the error is to be minimized for r(t) = 0. In order to achieve this objective, the
following feedback control law is proposed:

U= —(k;8x + kr65), (8.52)

where k|, k, are regulator constants. If m, ¢, k were known with certainty, ky, k, could be chosen
from the desired closed-loop characteristic polynomial, s* + a,s + a, = 0, where a,,a, are
specified constants. However, as m,c,k are unknown, we can only use the estimates of the
regulator gains, ky, (k),, in the control law:

u = —(k 6x + ky6%), (8.53)
with
ky =k, + 6k,
ky = ky + ks, (8.54)

and determine the variation of the estimated controller parameter vector, /Ac(t) = (lAc] (0, l%z(t))T,
such that both the tracking error vector, e(t) = (6x(t), 6x(t))T, and the parameter estimation
error vector, 5k = (6ky, k)T, tend to zero in the steady-state limit, t — co. The following
adaptation law is known to be stabilizing (Eq. (8.48)):

k=Bl PexT. (8.55)
where By = (0, )T and P,T" are symmetric, positive-definite constant matrices weighting the
following Lyapunov function:

V = el Pe + tr(6kI~' 6kT A), (8.56)

whose time derivative along the system’s trajectories is given by Eq. (8.49) to be negative
semi-definite, thereby guaranteeing GUAS stability. A simulated response of the adaptive
closed-loop system is plotted in Figs. 8.3-8.5 for k,,/m,, = 2, c,,/m,, = 1, initial displacement
x(0) = 1,x(0) = 0 (all in appropriate units), with the actual system’s constants, k/m,c/m,
varying as normal random distributions of mean 1.5 and 0.5, respectively, and a unit variance
(which information is considered unknown, hence not utilized in the MRAS controller design).
The largest error from reference plant parameters is thus 1.5 units in both k/m and c /m, which
constitutes a variation of 75% and 150%, respectively. The weighting matrices in Eq. (8.55)
are taken as P = 101,T" = I. Both the plant state (Fig. 8.3) and controller parameter (Fig. 8.4)
vectors are seen to have a stable response, reaching converged, steady values in about t = 10
units. The simulated control input is plotted in Fig. 8.5, showing a zero steady-state value and
a bounded magnitude, | u | < 0.4 units.

8.3.1 Nonlinear Gain Evolution

A novel alternative adaptation law can be derived by using the following quadratic form of the
Lyapunov function:
vV =xTsKTTsK x, (8.57)
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Figure 8.5 Simulation of a spring—mass—damper MRAS system’s control input with unknown bounds
on randomly varying plant parameters

where I' € R"™ is an unknown diagonal matrix with positive elements, 4; > 0,i =1, ... ,m,
representing the multiplicative uncertainty in B according to Eq. (8.38). The Lyapunov func-
tion, V, is radially unbounded in both x and 5K, and because x,, is bounded in time (due to 4,,
being Hurwitz); V is also radially unbounded in e = x — x,,,. Furthermore, V = 0 for x = 0 and
6K = 0. The time derivative of the candidate Lyapunov function is given by

V = 76K TKx + xX"KTTKx + x" 5K TKx. (8.58)

The closed-loop state equation is expressed as follows, after applying the matching condition
given by Eq. (8.34):
x=A,x— ByI'6Kx. (8.59)

Substitution of Eq. (8.59) into Eq. (8.58) yields the following:
V =xT(AT6KTT6K + 6KTT6KA,,)x
+ 27 (~6KTTBT K™ + KT\['6Kx
+ 2 TSKTT(K - SKB,'6K)x. (8.60)
Select the following adaptation law:
K = 6KBy5K. (8.61)
V =x"(AT6KTT6K + 6KTT6KA,,)x
+x"(—=6K"TB{6K" + 6K" Bl 6K )T'6Kx
+ xT6KTT(6KB,6K — 6KB,I'6K)x. (8.62)
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or
V =xT(AT6KTT6K + 6KTT6KA,,)x
+x"8K"(-I"+ DB} 6K'T'5Kx
+ xT6K"T6KBy(I — T)8Kx. (8.63)

We note that if there is no uncertainty in B, we have I' = I, hence V = —x7Qx is easily
established with ALP + PA,, = —-0Q,and P = 6K 6K, a symmetric, positive-definite matrix,
thereby satisfying the conditions of the Kalman—Yakubovich lemma (Chapter 5). However,
for the uncertain matrix, B, I" # I, and we write

V=x"(ATP+PA, + R+ R")x, (8.64)
where
P =6K'T6K, (8.65)
and
R = 6K'T6KBy(I — 6K = PBy(I —)5K. (8.66)
Thus we have
AP+ PA, +R+R" =[A,, + By(I —T)6K]"P + P[A,, + By(I — T)5K]. (8.67)

By selecting the poles of A,, sufficiently deep inside the left-half plane, one can ensure that
the matrix
A, + By -T)éK

is always Hurwitz, therefore, a symmetric, positive-definite matrix Q can be found such that
the following Lyapunov identity is satisfied:

A'P+PA,+R+R" = -0, (8.68)

thereby implying that _
V=-x0x<0, (8.69)

and the adaptive system is globally, asymptotically stable by the Kalman—Yakubovich lemma.
This implies that in the limit # — oo, x (and hence e = x — x,,,) converges to 0. The nonlinear
gain evolution law, Eq. (8.61), does not require the feedback of x and e, and can therefore be
regarded as an open-loop adaptation mechanism. However, it requires an initial condition for
the controller gain error, 6K (0).

8.3.2  MRAS for Single-Input Systems

Model reference adaptation is readily applied to single-input plants, and forms the basis of
many practical control systems. For example, an ASE system with a trailing-edge control
surface driven by the actuating torque is a single-input system. Most of the theoretical devel-
opments in MRAS (Astrom and Wittenmark, 1995, Lavretsky and Wise, 2013) are presented
for such plants, although the scheme can be extended to multi-input systems. Consider an
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nth-order aeroelastic system with the following state equations expressible in the controller
companion form (Tewari 2002):

)‘Cl = x2
.5C2 = x3
Xn—1 = Xp
. (u—ax; —ayx, —---—a,x,)
X, = LUy (8.70)
A1

where a;,i =1, ... ,n+ 1 are unknown coefficients, but the sign of a,,, is assumed to be
known. The plant’s parameter vector is given by a’ = (d,.1,d,, --. »d5,a;).

The general control objective is to track the following asymptotically stable reference model,
driven by a bounded reference signal, r(¢):

51 =&
éz =&
i1 =&,
én: (r—a —“252—"’_%@)’ (8.71)
Fpt1
where @; > 0,i =1, ... ,n+ 1 are known coefficients. However, for the regulation problem,

we are only interested in achieving asymptotic stability at equilibrium, hence r(¢) = 0. For
closed-loop stability, we define the following signal:

Aty=—pe—poe—---—P,e"V+E, (8.72)
where, e =x; — &, and f; > 0,i=1, ... ,n are the coefficients of the following Hurwitz
closed-loop polynomial:

B+ Pos+-+ps" 45" (8.73)

Selecting the following state-feedback control law:

U=y 2+ apx, + -+ ax; =04, (8.74)
where
V= (2 X,, .. X0, xp)], (8.75)
and
a =y, 0y v »0p,0))7, (8.76)

the following closed-loop error dynamics is obtained:
(] (e(”) + ﬁne(n_l) +o+ ﬁle) =vla, (8.77)

where
a=a-a (8.78)
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is the parametric error vector. The closed-loop system is thus expressed in the following com-
panion form:

x=Ax+ LVTEI
an+l
e =cx, (8.79)
where
0 1 0 0 0
0 1 0 0 0
A=| : : : : : Pl b=4: (8.80)
0 0 0o ... 0 1 0
b =B B ... —Boi P, 1
andc = (1,0, ... ,0,0). The following quadratic candidate Lyapunov function is now selected:
V=x"Px+a'T'a, (8.81)

where P and I' are symmetric and positive-definite matrices, with P satisfying the Lyapunov
identity:
ATP+PA = -0, (8.82)

where Q is a symmetric, positive-definite cost matrix. The time derivative of V is given by
V =—xT0x +2a"vb"Px +2a"T "4 (8.83)

In order to ensure a globally, asymptotically stable closed-loop system, the following adapta-
tion law is chosen: _
a = —TI'vb! Px, (8.84)

resulting in )
V= —xTQx. (8.85)

The convergence of x(f) to zero in the limit # — oo is proved by Lyapunov stability theorem
(Chapter 5), as carried out previously. Thus the error e(f) and its time derivatives of order up
to (n — 1) are proved to vanish in the steady state.

8.4 Aeroservoelastic Applications

The ASE plant parameters are contained in the state-space coefficients A, B, C, D, and it could
be tempting to treat all of them as being random and uncertain. However, a more practical
approach is to assign uncertainty bounds to the plant parameters wherever it is possible to do
so. For example, the structural coefficients are known with a much higher accuracy as com-
pared to the aerodynamic parameters. In addition, as opposed to aerodynamic parameters, the
structural coefficients normally do not depend on flight conditions! and hence can be regarded

!'In very high-speed aircraft (such as the Lockheed SR-71, MiG-25/31 and futuristic hypersonic aeroplanes), structural
stiffnesses can appreciably vary with the airspeed owing to thermal effects. Accounting for such a variation must be
coupled with aerodynamics and falls into a special area called aerothermoelasticity.
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as constants. It is rare to have an entirely unknown coefficient in the plant matrix and thus
one can assign a range of expected values (or bounds) to each parameter, even to those that
vary with flight conditions in an uncertain manner. A primary task of an adaptive controller
of the self-tuner type (Chapter 7) is to identify the uncertain plant parameters by an adapta-
tion loop based on a fixed framework of the plant equations. If a detailed knowledge of the
various uncertainty bounds is available, the adaptation loop becomes unnecessary, and a sim-
ple linear feedback based on the known bounds can produce stability (see Example 8.1.8).
However, when such bounds are unknown, a model reference approach is an attractive alter-
native to the STR, as it does not require online parameter estimation. A reference model based
on linearized unsteady aerodynamics with a time-invariant representation is a reasonable one,
because it captures most of the essential features of the aeroelastic plant, and can be employed
as a basis of an adaptive control system for a more general, nonlinear and uncertain dynamics.

8.4.1 Reference Aeroelastic Model

Model reference adaptation requires a basic aeroelastic model with a well-known structure,
having the same number of states and governing parameters as the actual, unknown plant.
Such a model can be simply derived from the linear structural dynamics and inviscid, incom-
pressible flow. The effects of compressibility and viscosity can then be regarded as parametric
perturbations (uncertainties), to be taken care of by the adaptation mechanism. Let the refer-
ence model be governed by the linear ordinary differential equations derived in Chapter 3 and
written in the following matrix form:

Mg+Cug+Kg=0,+0,, (8.86)

where g(t) : R — R”" is the generalized coordinates vector corresponding to the n degrees of
structural freedom, and M € R™", C;, € R™" and K € R™" are the generalized mass, damp-
ing and stiffness matrices, respectively, of the structure. The generalized control force vector
produced by control-surface deflections is given by Q.(f) : R — R”". The generalized aero-
dynamic force vector, Q,(¢) : R — R” is assumed to be linearly related to g(¢), g(t) and g(z),
as well as to certain additional state variables collected into the aerodynamic lag-state vector,
x,(t) 1 R = R”, which is necessary for modelling the aerodynamic lag caused by a circulatory
wake by a rational-function approximation (see Chapter 3). Thus, we write

Q, =M+ Cog+ K,q+ Nyx,, (8.87)

where M, € R™", C, € R™" and K, € R™" are the generalized aerodynamic inertia, aero-
dynamic damping and aerodynamic stiffness matrices, respectively, and N, € R™ is the
aerodynamic lag-coefficient matrix associated with the time lag due to a circulatory wake.
Substitution of Eq. (8.87) into Eq. (8.86) yields

(M =M+ (Cy—Ci+K—K)g=Nx,+0.. (8.88)

The aerodynamic lag states are assumed to be governed by the following linear state equations
(Chapter 2):

i, =Fx,+7, {Z} , (8.89)
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where F, € R? and Z, € R“**" are the aerodynamic coefficient matrices corresponding
to circulatory lag effects. By collecting the structural and aerodynamic state vectors into an
augmented state vector, x,(t) : R — R2+7

r

q
x.=44%, (8.90)
xa

and expressing the generalized control forces vector as the control input, Q.(f) : R — R™, we
have the following augmented state equations of the linear, reference plant:

X, =Ax.+B.0,, (8.91)
where
0 1 0
A =|-M"'k -m~'C -m"'N, (8.92)
Z(l Fa
and
0
B.=|1], (8.93)
0

where M = M — M, C= c,-¢C, K=K- K, are the generalized mass, damping and stiff-
ness matrices, respectively, of the aeroelastic system, and 0 and 7 represent the null and identity
matrices, respectively, of appropriate dimensions.

The reference model is assumed to be governed by a finite-order, linear, unsteady aerody-
namic behaviour in the Laplace domain, which is expressed as follows:

0,(5) = G,(5)q(s), (8.94)

where G ,(s) € R™" is the unsteady aerodynamic transfer matrix, Q,(s) € R" is the gener-
alized aerodynamics force vector in the Laplace domain and g(s) € R" is the vector of gen-
eralized motion coordinates based on a finite number, 7, of structural degrees of freedom in
the Laplace domain. The model state-space representation given by A, € RZ+)x@m+) and
B, € R@™OXm requires the approximation of the aerodynamic transfer matrix, G,(s), as a
rational matrix function relating Q,(f) to the generalized coordinates vector g(¢) and the aero-
dynamic lag-state vector, x,(¢) in the Laplace domain. This is carried out differently in various
speed regimes (incompressible, subsonic or supersonic) and dimensions (typical-section or
three-dimensional model), and the aerodynamic coefficients are functions of the flight Mach
number. Considering the simple-pole, least-squares approximation (Chapter 3), we have the
following rational function approximation:

N

Gu(s) =Ag+A s+ A+ Y Ay —
j=1

_ 8.95
s+ bj ( )

where the numerator coefficient matrices,

AO’AI’A2’ ’AN+2’
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each of size (n X n), are determined by fitting G,(ik) to the frequency-domain aerodynamics
data, H(k), at a discrete set of reduced frequencies k. The lag parameters (or aerodynamic
poles) bj >0,j=1, ... ,N, are evaluated by a nonlinear optimization process in order to min-
imize the total curve-fit error at the selected frequencies (Chapter 3). The state-space model
of control-surface actuators is given by

X, =Ax.+B.u
0.=Cx.+D.u,, (8.96)

where u,,(t) : R — R™ is the vector of reference control torque inputs applied to m control
surfaces.
The overall reference model is thus represented by

X, =A,x, +B,u,, (8.97)
where x,, = (x,,x,.) and
A, B.C, _ (B.D,
A, = <O A >,Bm = < B, > . (8.98)
Note thatA,,, B,, are known matrices, with A,, chosen to be Hurwitz at the reference flight con-

dition. If the original model is not Hurwitz, it can be made so by an LQR-type state-feedback
gain. If an output equation is added on the basis of the available sensors (accelerometers or
optical sensors),

Y =C,x,, +D,u,, (8.99)

then the matrices C,,, D,, are also known. The model is stabilizable with the pair (4,,, B,,), and

detectable with (4,,, C,,). A transfer-matrix realization of the reference model can be given by
G,(s)=C,(sI—A,)"'B, +D,, (8.100)

which is positive real, hence the reference model is input—output stable (see Chapter 6).

8.4.2 Adaptive Flutter Suppression of Typical Section

The MRAS scheme is directly applicable to the typical-section model with a trailing-edge
control surface. The simplest reference model is for Theodorsen type incompressible flow
aerodynamics (Chapter 3) and a simple-pole type, least-squares RFA, for which we have

X, =A,x, +B,r. (8.101)

where ) o
X, = (h/b,0, B,x,,h/b,0,,5)"

is the state vector, with x, € R? being the aerodynamic state vector,

_On1 _]nl (—)an
A,=|-M"K -M C -M 'N,| (8.102)
Fa Fa

Bm = (lesv lvole)Tv (8103)



Model Reference Adaptation of Aeroservoelastic Systems 237

where C = C — C,, K=K- K,, with M,C,K given in Chapter 3.

-1
N, = -2k %+a {aiby aby, ... ayb,}, (8.104)
1
=511
-1
K, = 2@y +ay+ - +a)d Lra >{o 1 %Tlo}, (8.105)
1
(=35 112
[ -1
C,=2k(ay+a,+---+az)q %+a >{1 (%—a) iTU}’ (8.106)
1
(=5 T12)
1 1 1
I, = {Ot’xl Lo ;T101f><1 Lo (5‘“) Lo ZTlllt’xl}’ (8.107)

with 0,4, and 1,,, being the arrays of zeros and ones, respectively, and

b, 0 0 .. 0
0 —b, 0 .. 0

F,=l0 0 —b, ... 0| (8.108)
0 0 0 .. -b,

For the actual plant, we have a similar model given by
X =Ax+ Byu, (8.109)

where A, A are uncertain parameters, A being a positive scalar, and B, = B,, is assumed to
be known. The objective is to stabilize the plant in the presence of uncertainties and with
r = 0. The source of uncertainties in A can be the errors in the structural model modified by
non-circulatory effects, M, C, K, or in the aerodynamic circulatory model, F,,T",,N,,C,, K,
or both. The modelling error in the torque produced by the control surface actuation mecha-
nism is represented by the uncertain parameter, A, which can have a random value in the range
-1 <A< 1.IfA,, is chosen to be Hurwitz, then the modelling errors in A can be assumed to
be random variations in the elements of A,, which are neither zero nor unity. The MRAS stabi-
lization can be achieved by the following adaptation law (Eq. (8.48)) using the state-feedback
approach: )

K = BT PexR, (8.110)

where P, R are symmetric, positive-definite weighting matrices and e = x — x,,, is the tracking
error from the reference model.

Example 8.4.1 The design for an active flutter-suppression system for a typical section was
carried out in Chapter 4. Here, the same example is made adaptive by treating the matrices
A, B to be uncertain and by applying the MRAS adaptation law for state-feedback. In order to
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derive the reference model, let us consider the following pole locations for a Hurwitz matrix,
A,

S1’2 =-0.1 + 0.1i, S3,4 =-02 + 021, S5,6 =-03 + O.3i, §7 = —0.0553,S8 = —0.2861.

These pole locations were also selected for the state-feedback active flutter suppression sys-
tem designed for this model in Chapter 4. By mimicking the response of the asymptotically
stable reference model, the MRAS system will remain stable at a higher than normal (super-
critical) speed. Recall from Chapter 4 that the open-loop flutter speed for the original model is
U = 63.35 m/s, with a corresponding flutter frequency of 41.18 rad/s. An alternative method of
deriving a stable, flutter-suppression reference model is to increase all the structural stiffness
parameters, ky, ko, kg, of the original plant, such that the open-loop flutter occurs at a higher
than normal dynamic pressure. However, such a method would yield unrealistic adaptation
gains. The computed state dynamics coefficient matrix, A,, = A * —BmlAc(O), for the reference
model, with A % being the open-loop matrix at the subcritical (below the flutter dynamic
pressure) speed of 30m/s and standard sea level, evaluated with two lag parameters, is the
Jfollowing:

0 0 0 1.0 0 0 0 0
0 0 0 0 1.0 0 0 0
0 0 0 0 0 1.0 0 0

-0.2742  0.2989 0.0019 —-0.1358 —-0.1407 —0.0369 0.0024 0.0234
0.1932 —3.3639 0.9810 0.3111 —0.0024 —0.0208 —0.0055 —0.0536 |
0.7656 —11.3171 3.3051 0.9493 3.7732 —-1.0618 —0.0199 —0.2008
0 1.0 0.6844 1.0 0.7 0.3039 -0.0553 0
0 1.0 0.6844 1.0 0.7 0.3039 0 —-0.2861

m —

The initial value of the feedback gain matrix of MRAS is derived at the subcritical speed of
U = 30m/s at sea level by pole placement to be the following:

k(0) = (=0.5749, 17.7842, —9.3744, —1.4245, —4.1330, 0.7578, 0.0283, 0.2827).

The measured output, y = Cx + Du, is the normal acceleration sensed at a location 1.0%
semi-chord forward of the elastic axis. The state variables as well as the input and output
are rendered non-dimensional as in Theodorsen’s model (Chapter 3).

The adaptation law is applied with P = R = I and simulated using a normally distributed
random perturbation per time step of up to +£150% variation in A, as well as in all the elements
of the actual plant matrix, A, except those which are either O or 1. Such a simulation allows
for a large, time-dependent variation in the plant parameters due to such effects as struc-
tural modelling uncertainties, flow viscosity (including both leading-edge and trailing-edge
flow separation of small magnitudes) and changes in the wake-induced circulatory forces and
moments, all of which allow a linear, but random, time-varying dynamic description. How-
ever, as Lyapunov stability analysis assumes constant uncertain parameters, A, A, it would be
interesting to see whether a time-dependent random perturbation (considered process noise
and covered in Chapter 10) can also be handled by the MRAS scheme. This would be a
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Figure 8.6 Simulated initial response of plunge displacement, //b, pitch angle, 6, and control-surface
deflection, g, of an adaptive flutter suppression system for randomly varying typical-section parameters
at a subcritical speed and standard sea level

test of the method’s robustness with respect to process noise in all the parameters of the
plant. The simulated results for an initial pitch perturbation and a zero initial adaptation
gain matrix (k(0) = 0) at U = 30 m/s are plotted in Figs. 8.6-8.9, showing a stable subcritical
behaviour of the plunge displacement, h/b, pitch angle, 0, control-surface deflection, B, input
torque, u, and normal acceleration output, y, as well as the state-feedback adaptation gains,
k= (IAcl s IA<2, e, ]A‘s)- While the system’s response settles down in about t = 100, the adaptation
gains are seen to remain bounded with small random variations due to the randomly varying
A, A. The MRAS for the subcritical case is therefore quite robust for the process noise, which
is achieved without taking into account any knowledge of its bounds. Chapter 10 is devoted to
the design of a robust MRAS, and we shall return to this example in that chapter.

Now the speed is increased to a supercritical value of U = 65m/s at standard sea level.
While the actual plant’s parameters have now changed from what they were at the subcritical
condition, the reference model remains the same as that given above, with A,, = A % —B, k(0)
having the aforementioned closed-loop pole locations. However, when the same constant gains
are applied to the uncertain plant, A, B, A, there is no guarantee that the resulting closed-loop
system will be stable. Therefore, the adaptation law of Eq. (8.110) is applied with P =R =1
and the following new values for the initial regulator gains intended to stabilize the reference
model at the given supercritical condition:

k(0) = (=0.0142,0.3088, —1.4759, —0.5726, —3.6371,0.7578,0.0096, 0.1514).

We first simulate (as before) a normally distributed, random, time-dependent perturbation
of up to £150% variation in the actual plant parameters, A, A, which is applied at each
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Figure 8.7 Simulated initial response of input torque, u, and normal acceleration output, y, of an adap-
tive flutter suppression system for randomly varying typical-section parameters at a subcritical speed and
standard sea level
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Figure 8.8 Simulated variation of state-feedback adaptation gains, 121 - IA<4, of an adaptive flutter sup-
pression system for randomly varying typical-section parameters at a subcritical speed and standard sea

level
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Figure 8.9 Simulated variation of state-feedback adaptation gains, IAcS - 128, of an adaptive flutter sup-
pression system for randomly varying typical-section parameters at a subcritical speed and standard sea
level

time step in order to test robustness with respect to process noise. The response, plotted in
Figs. 8.10-8.13, remains bounded, but does not converge to a steady state. In fact, the adapta-
tion gains are seen to increase abruptly near t = 90, causing the input torque to momentarily
shoot up at that instant. Such a phenomenon is a peculiarity of the MRAS schemes called
parameter drift, which happens when the controller parameters are allowed to slowly change
even though the tracking error, e, has converged to a small magnitude. Parameter drift can
ultimately destabilize the system, if allowed to persist for a sufficiently long time. Therefore, if
a time-dependent process noise of unknown bounds is applied to the MRAS, the flutter suppres-
sion might not be successful. This points towards the need for a robust MRAS design, which
can take into account the bounds on the process noise. Such a design is covered in Chapter 10.

We end the example with a more realistic, constant, uniformly distributed random pertur-
bation of up to £50% variation in A, A, for which the responses at the supercritical condition,
U = 65 m/s and standard sea level, are plotted in Figs. 8.14-8.17. As expected by the Lyapunov
stability analysis, the state variables and the controller parameters are seen to be bounded and
convergent with the UUB property. The flutter suppression is thus guaranteed with the MRAS,
if the linear plant uncertainties are constant, even within a large random range (£50%).

8.4.3 Adaptive Stabilization of Flexible Fighter Aircraft

Fighter-type aircraft can encounter ASE instabilities while manoeuvring at high-subsonic/
transonic speeds. Usually, such aircraft are intentionally designed to be statically unstable for
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Figure 8.10 Simulated initial response of plunge displacement, /b, pitch angle, 6, and control-surface
deflection, f, of an adaptive flutter suppression system for randomly varying typical-section parameters
at a supercritical speed and standard sea level
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Figure 8.11 Simulated initial response of input torque, u, and normal acceleration output, y, of an
adaptive flutter suppression system for randomly varying typical-section parameters at a supercritical
speed and standard sea level
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Figure 8.12 Simulated variation of state-feedback adaptation gains, IAcl - 134, of an adaptive flutter sup-
pression system for randomly varying typical-section parameters at a supercritical speed and standard
sea level
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Figure 8.13 Simulated variation of state-feedback adaptation gains, IA<5 - lAcg, of an adaptive flutter sup-
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sea level
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Figure 8.14 Simulated initial response of plunge displacement, /b, pitch angle, 6, and control-surface
deflection, g, of an adaptive flutter suppression system for constant random perturbation in typical-section
parameters at a supercritical speed and standard sea level
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Figure 8.15 Simulated initial response of input torque, #, and normal acceleration output, y, of an
adaptive flutter suppression system for constant random perturbation in typical-section parameters at a
supercritical speed and standard sea level
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Figure 8.16 Simulated variation of state-feedback adaptation gains, IAc] - IA<4, of an adaptive flutter sup-
pression system for constant random perturbation in typical-section parameters at a supercritical speed
and standard sea level
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a better manoeuvrability, which requires an active stabilization system to maintain the vehicle
either at a given equilibrium condition, or turning at a given rate. Owing to the low-aspect ratio
wings of relatively high stiffness employed by fighter aircraft, there is a greater possibility of
the high-bandwidth flight control system to have an unintended interaction with the aeroe-
lastic modes, which can often lead to an unstable ASE system. Since the aeroelastic model
is often uncertain due to the high angle-of-attack separated flows, or shock-induced oscilla-
tory behaviour, an adaptive controller is the only way of ensuring the ASE system’s stability.
Here we will consider such an example for the illustration of model reference adaptive control
applied to manoeuvring, high-speed aircraft.

Example 8.4.2 Consider a tail-less, delta-winged fighter aircraft (Fig. 8.18) equipped with
a pair of trailing-edge control surfaces called elevons (one on either side), a pitch rate gyro
and an accelerometer to sense the rigid-body and aeroelastic modes, respectively. The aircraft
is designed to be statically unstable in the manoeuvre flight condition of Mach 0.9 and stan-
dard sea level. The rigid longitudinal flight dynamics consists of small perturbations about an
equilibrium, straight-line flight condition of constant pitch angle, 0,, and is described by the
following short-period mode (Tewari, 2011):

X, =Ax, +B,35,, (8.111)

where x, = (a,0,q)" is the rigid state vector consisting of angle-of-attack, a, pitch angle, 0,
and pitch rate, q; o, is the commanded elevon angle and A,, B, are the following coefficient
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Figure 8.18 A tail-less delta-winged fighter aircraft equipped with a pair of elevons, a rate gyro and an
accelerometer for and an automatic flight control system with programmable control laws



Model Reference Adaptation of Aeroservoelastic Systems 247

matrices:
Zy __mgsin, mU+Z,
mU=Z;, mU=Z;, mU=Z;,
A = 0 0 1 , (8.112)
M, M7, My(mgsin0p) My | My(mU+Z,)
Ty T (mU=Z) Ty mU=Zz) Ty, J,(nU=Zy)
Zs
mU —Z&
B, = 0 . (8.113)
Mg M &25
Ty Jyy(mU=2)

Here, m denotes the aircraft’s mass, g the acceleration due to gravity, J,, the pitch moment of
inertia, U the flight speed; Z,,,Z,,, Zq, Zs,M,,M,, Mq, M are the aerodynamic stability deriva-
tives, assumed to be constants at a given flight condition (either steady, or steadily turning).
Static longitudinal stability requires the derivative, M, to be negative.

The actual elevon deflection, 6, which controls the aerodynamics, is governed by a
second-order actuator called the elevon servo with the following transfer function:

2
S Y% (8.114)

b S2H+20,0,5 + w2

where w,, and {, are the natural frequency and damping ratio, respectively. The accelerometer
is located on the fuselage at a distance ¢ aft of the centre of mass (Fig. 8.18), and senses the
normal acceleration, 7 = U(a — q) + £q, while the rate gyro separately measures the pitch
rate, q. Hence, the rigid-body longitudinal dynamics has three vehicle states, x,, two actuator
states (resulting in a fifth-order system), a single input, 6, and two outputs, 7, q.

The flexible structure of the aircraft is modelled by the structural dynamic state vector, x;,
governed by the following state equations:

%, = A, +B,6,. (8.115)

These are combined with the rigid-body equations to yield the following state equations of the
aeroelastic plant:

X =Ax+ BS,, (8.116)

where the augmented state-space model is given by

xr

x= ); , (8.117)
5
A 0 B 0
0 A, B, 0

e P L (8.118)
0 0 -0 -2
0
0

B=|,| (8.119)
o7
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The common equilibrium condition is of straight and level flight (0, = 0), for which the pitch
angle, 0, is no longer regarded as a state variable, which simplifies the model considerably.
The short-period dynamics of the tail-less fighter aircraft at Mach no. 0.9 (U = 306 m/s) and
standard sea level about a straight and level flight condition is the following:

~03078 1.0 ~0.0114
A= < 1.3 —3.17> B = ( ~8.25 >
0 10 0
= <—71.587 —6.34> D= <2o> ' (8.120)

The rigid aircraft is thus unstable with eigenvalues s = 1.9146, —-5.3924.

The aircraft has 20 in vacuo structural dynamic modes below 50 Hz natural frequency
(Tewari, 2015). Two wing-bending modes, two combined wing-torsion/ fuselage-bending
modes, and the actuator mode of w, =9 Hz, { = 0.41, fall within the expected flight control
system bandwidth of 10 Hz. When aerodynamic effects are added, the resulting aeroelastic
model has much larger acceleration magnitudes (about 40dB higher at the first bending
mode), and a phase lag when compared to the rigid-body dynamics. The aeroelastic effect
on the pitch-rate magnitude is about 10 dB more than the rigid response at the first bending
mode. Hence, the aeroelastic modes contribute greatly to the overall outputs of the system,
which are fed to the controller. For this reason, an attempt to stabilize the aircraft’s rigid-body
dynamics without taking into account the aeroelastic modes would be a disastrous failure, as
demonstrated in the analysis in the companion text (Tewari, 2015). The reason for the failure
is the destabilization of the aeroelastic modes by a high-gain feedback loop, resulting in an
unstable ASE system.

The problem of unstable aeroelastic modes is addressed by reprogramming the flight control
computer with the LOR and Kalman filter gains based on the overall rigid + aeroelastic (rather
than only the rigid) plant. The Kalman filter is designed with the following parameters:

— — 108 — —
Spm =0, 8,=10""L, §, =1, F =1,
while the LOR parameters are taken to be
§=0,0=102CTC, R=1.

The dimensions of the aeroelastic plant are (38 X 38). The regulator (linear, quadratic reg-
ulator (LQR)) and observer (Kalman filter) poles are in the left-half s-plane, which is seen by
the pole-zero map of the ASE system in Fig. 8.19. This implies that the right-half plane pole
and zeros of the open-loop plant, which indicated the unstable, non-minimum phase (Tewari,
2002) ‘tail-wag-the-dog’ behaviour, have been moved to the left-half s-plane in the closed
loop. The stability robustness of the LOG design is demonstrated by the Nyquist diagram of
the closed-loop transfer function s*z(s)/8,(s) shown in Fig. 8.20. The Nyquist locus does not
circle the point (—1, 0), showing an infinite stability margin. This is confirmed by the Bode plot
of the same transfer function plotted in Fig. 8.21 showing an infinite gain margin and a 90°
phase margin. This means that the originally negative gain margin of the open-loop system
is increased to high positive values by raising the DC gain. The closed-loop response to an
initial random perturbation in all the state variables, is plotted in Figs. 8.22 and 8.23. Note
that while the open-loop response inz, a, q is unbounded, the closed-loop response of the same
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Figure 8.19 Pole-zero map of the aeroservoelastic system for the fighter aircraft for the transfer func-
tion s2z(s)/ 6.(s) at U = 306 m/s and standard sea level (X: pole; o: zero)
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Figure 8.20 Nyquist plot of the aeroservoelastic system for the fighter aircraft for the transfer function
a_(s)/5,(s) at U = 306 m/s and standard sea level
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Figure 8.21 Bode plot of the aeroservoelastic system for the fighter aircraft for the transfer function
a(s)/6,(s) at U = 306 m/s and standard sea level
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Figure 8.22 Closed-loop response for an initial random perturbation of the fighter aircraft with ASE
stabilization at U = 306 m/s and standard sea level
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eters of the fighter aircraft with a model reference adaptive system at U = 306 m/s and standard sea

level
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Figure 8.25 Closed-loop initial response of the first four aeroelastic modes for a random static pertur-
m/s and standard sea level
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Figure 8.26 Closed-loop initial response of the elevon deflection, 6, and normal acceleration, Z, for a
system at U = 306 m/s and standard sea level

random static perturbation in the plant parameters of the fighter aircraft with a model reference adaptive
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Figure 8.27 Variation of selected controller parameter errors, 6K, for a random static perturbation in
the plant parameters of the fighter aircraft with a model reference adaptive system at U = 306 m/s and
standard sea level

variables converges to zero in about 5 s (Fig. 8.22). The elevon servo is also seen to behave
well with only a slight difference between commanded and actual elevon deflections. Similarly,
the first four aeroelastic modes are seen to decay to zero with some overshoots, in a similar
duration.

To design a MRAS for this aircraft, we assume the reference model to be the closed-loop

ASE system designed above with the given regulator and observer gains. The elevon servo
gains are a part of the set of controller parameters, K, and change in the adaptation process.
It is possible to do so in this aircraft owing to its ‘fly-by-wire’ control system, where servos are
driven by electrical signals. Most of the modern aircraft of the high-speed variety have such
control systems. The normally distributed random static variations of up to 1% variation in
the elements of A, A are handled by the following MRAS law:
K = Bl Pex'R, (8.121)
with P =10"°I,R = I, and the observer gains, L, are fixed at their reference values. The
closed-loop simulation results are plotted in Figs. 8.24-8.27, showing an asymptotically stable
adaptive control system in all the variables. With only the regulator gains varied, the overall
adaptive ASE system is of the order 114. The present simulation required a memory of 1.5 GB.
Owing to the large order of the system (even with the observer gains fixed), it is not possible to
simulate the response for large random perturbations, which can exceed the memory resources
of a personal computer.
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9

Adaptive Backstepping Control

9.1 Introduction

Backstepping is a powerful adaptive control method when applied to uncertain nonlinear sys-
tems. It provides an alternative to the traditional model-reference adaptation system (MRAS)
and self-tuning regulation (STR) methods covered in the previous chapters, which are based
on the certainty equivalence principle. To recall, the certainty equivalence principle states that
a controller can be designed to stabilize a plant by treating the uncertain plant parameters as if
they are known with certainty. Parametric uncertainty is handled by supplying the parameter
estimates to the controller design process and expecting the closed-loop system thus designed
would be stable. The main advantage of the backstepping approach is the use of a recursive
design procedure, which does not require that the parametric uncertainty should be matched
by control inputs. The method is based on treating some state variables as virtual control
and designing intermediate control laws for them, which in turn are substituted to determine
those state variables that are integrals of the first virtual set. In this way, adaptive control is
carried out recursively by applying control to the parametric uncertainty appearing one inte-
grator previously. By not requiring a matching of the control with the uncertainty in the same
state equation, the backstepping integrator allows a greater flexibility in handling parametric
uncertainties. In fact, because of its departure from the certainty equivalence design, the back-
stepping integrator is said to cross the extended matching barrier that plagued the traditional
Lyapunov-based adaptive schemes (MRAS and STR). Therefore, the resulting adaptive con-
troller is considered to be more ‘intelligent’ than those designed by the certainty equivalence
principle (Krstic et al. 1995). Another feature of the adaptive backstepping method is that it
allows modular design, where any identifier can be combined with any stabilizing controller.
Thus, the main disadvantage of the backstepping approach, that it requires many more con-
troller parameters than necessary (over-parameterization), can be alleviated by using a modular
approach. The treatment given here is based on the pioneering work by Krstic et al. (1995). As
in the previous chapters, our focus will be on set-point regulation of aeroelastic systems with
a single control surface, hence the analysis need not cover multi-input systems and tracking
systems. For advanced concepts of the adaptive backstepping method, the reader is referred to
the works by Krstic ef al. (1995).

Adaptive Aeroservoelastic Control, First Edition. Ashish Tewari.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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9.2 Integrator Backstepping

For an illustration of the backstepping method, consider a control affine system with state
vector, x € R”, and a scalar control input, # € R, represented by

X =f(x)+g®u, f(0)=0. 9.1)
Assume that there exists a feedback control law,
u=k(x), k(0)=0, (9.2)

where k(x) : R" — R. If there exists a continuously differentiable, radially unbounded Lya-
punov function, V(x) : R” - R > 0, such that

av. oV

= —x=—[f(0) + gWk(x)] < -W(x) <0, 9.3)
ox ox

for all x € R", where W(x) : R" — R > 0, then by LaSalle’s invariance theorem (Chapter 6),

the state-feedback regulated system is globally stable and

14

lim W(x(1) = 0.

However, if W(x) > 0, the state-feedback regulation achieves global asymptotic stability, and
x(7) converges to the origin.

Lemma 9.2.1 Consider a control affine system augmented by a backstepping integrator as
follows:

x=f(x) + 8¢ ©.4)
E=u, 9.5)

with the state equation, Eq. (9.4), satisfying Eqs. (9.2) and (9.3) with & as the control input.
(a) If W(x) > 0in Eq. (9.3), then there exists a control Lyapunov function given by

1
V.8 = V) + S1E = kT, 9.6)
and consequently, there exists a control law
u=k,(x©&), 9.7

such that x = 0,& = 0 is a globally asymptotically stable equilibrium point of the system
described by Egs. (9.4) and (9.5). A possible control law is the following:

u = cfk(x) = &1+ K QIf (0) + g(0)é] - %g(X), 9-8)

where c is a positive constant. Such a control law has an equivalence with the optimal
control formulation, with V, = (0V,/0x)x being the Lagrangian function.
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(b) If W(x) > 0, then there exists a feedback law making Va < -W,(x,¢) L0, such that W,
(x,&) > 0 when either W(x) > 0 or & # k(x). Therefore, the trajectory [x(1); £(t)] € R"+!
converges to the largest invariant set contained in E defined by the conditions
W(x) = 0,& = k(x), hence the system’s trajectories originating in the neighbourhood of
the equilibrium point, x = 0,& = 0, are globally bounded.

Proof. The proof can be found by differentiating the error variable, e = & — k(x), with time
along the system’s trajectories and selecting a control law that satisfies LaSalle—Yoshizawa
theorem (Chapter 8).

The lemma can be extended to a chain of backstepping integrators by the following corollary.

Corollary 9.2.2 [f the conditions given by Egs. (9.1)—(9.3) are satisfied by a system, then the
system augmented by the following chain of integrators:

x=f(x) +g()E,

5.1 = 52
Ei =&
& =u, 9.9)

with the following control Lyapunov function,

k
1
V. (x, &) = V() + 3 Z [& — ki(x, &, ..., éi_l)z, (9.10)
i=1
where &\, ..., &, are virtual control inputs, has the same criteria of boundedness and global

asymptotic stability as given by Lemma 9.2.1, with & replaced by the vector, (&, ..., &).

Proof. The proof is easily obtained by applying Lemma 9.2.1 repeatedly along the chain of
integrators.

9.2.1 A Motivating Example

For illustration of the adaptive backstepping method, consider the following second-order,
affine system with a time-invariant, unknown parameter vector, 6:

i =1+ ()0
X =u+¢" (X0, ©.11)

where X = (x;,x,)7 is the state vector and w7 (x,), ¢’ (X) are known continuous functions.
The design task is to find a globally asymptotically stabilizing (GAS) control law to regulate
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the system without the knowledge of parameters, 8, such that the response, X(f), from an
initial condition, x,(0),x,(0), is brought to equilibrium, (0, 0), in the steady state. Select a
virtual feedback from the displacement, x;, to the virtual control, x,, as a candidate control
law, x, = a(x|, é), based on the parameter estimate, é, and define the following adaptation
variables:

=5
2 =%, — alx;, 0). 9.12)
This easily gives the first scalar adaptation law as follows:
2 =2+ alx;, 0) +yT(x))6. (9.13)

However, the virtual control law, «a, is yet to be designed. For this purpose, select the following
positive-definite and radially unbounded candidate Lyapunov function:

1 1 Ar et
Vv, = EZ% + EoTr 19, 9.14)

where § = 6 — 0 is the parameter estimation error vector and I' is a symmetric, positive-
definite, invertible matrix. The time derivative of V, along the system’s trajectories is given by

Vl = lel + éTF_lé
= 21[z + ax;, 0) + " (x)01 — 6T [0 — Ty (x))z, 1. 9.15)

A control law of the form,
a(x;,0) = —c;z; —wl(x))0, (9.16)

with ¢; > O results in the following:
Vi=—c2+22 - 07070 — wix)z]. 9.17)
A substitution of Eq. (9.16) into Eq. (9.13) yields the following:
7y =—cizp + 25+l (x))0. (9.18)

A second feedback law, u = p(X, é), is selected to cancel the second term on the right-hand
side of Eq. (9.17), as well as to render the overall adaptation system, (z;, 2,), GAS. Substituting
the new feedback law into Eqgs. (9.11) and (9.12) and taking the time derivative along the
closed-loop system’s trajectories, we have

da

2 = fX,0) + pT(X)0 — T 9.19)
or 0 oa
5 =P, 0) + W (X,000 - Zx, - 24, (9.20)
0x, 00

where the new regressor vector is defined by

WX, 0) = 400 - 2Ly, ©21)
1
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In order to derive an expression for f, define a second candidate Lyapunov function as follows:

Vy=V, + %zg, (9.22)

take its time derivative as follows along the closed-loop system’s trajectories:
Vy=—c,2 + 212 — OT[0710 — w(x)z ] + 255, (9.23)

and substitute Eq. (9.20), which results in the following:

. A oA oa

Vy = —c12° + +p+wh— —x,— =0

2 5111 2y [Z] ﬂ w 0)(] Xy aé ]
+067 [u/zl +wz, — F_lé] . (9.24)

The following control law follows by inspection of Eq. (9.24), which makes V2 = —clz% -
czzg < 0,z; # 0,2z, # 0, thereby guaranteeing global asymptotic stability:

~ A Oda oa »
X,0)=—-z, — —wld+ —=x, + =0, 9.25
p( ) I —Cp — W ox, X 50 ( )

where ¢, > 0. A natural choice of the parameter update law follows from Eq. (9.24) as

0= IMyz; +wzol, (9.26)

which results in the following control law,

" A Oa oo
X,0)=—-z, — —wlo+ —x, — =TIyz +wzl, 9.27
p(X,0) 2 —CrZp — W 6x1x2 Y [yz, +wzl (9.27)

and the following backstepping integrator adaptation laws:

Z1=—Cz1+2 + l[/Tg
2 = =2y — 32y + W (X)6. (9.28)

However, in order to retain another degree of control in the choice of adaptation variables,
21,2y, Krstic et al. (1995) propose the following tuning function:

(X, 0) = wz; + wz,, (9.29)

instead of using the parameter update law given by Eq. (9.26). This results in a negative definite
V2 with a non-zero parameter error term, I'z — @, and the following modified adaptation laws:

==z +n+y’l

Zy ==z — 2o + P (X)O + %(rr - 0). (9.30)

We will now consider a simple design example to illustrate the adaptive backstepping inte-
grator method.
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Example 9.2.3 Let us revisit the single degree of freedom mass—spring—damper system of
Chapter 8 with the equation of motion given by

mx + cx + kx = u, 9.31)

where the constant parameters m, c, k are unknown. We begin by writing Eq. (9.1) in the follow-
ing state-space form of Eq. (9.31), with X = (x, )T = (x,,x,)T, as the state vector. It is clear
that w(x;) =0, wl =¢T(X) = (=x;,—x,) = -XT, 07 = (ﬁ, i) and a = —c;z) = —c ;.

Then it follows that
Ja

o= ‘;_Z =0, 9.32)
thus we have,
PX,0) = —z; — ey — ¢ (X)0 = ¢ 1x, (9.33)
and
==+
L=z — 0z + ¢ (X0, (9.34)
which results in the following GAS system:
X =x,
¥y = —C1Xy — 21 — €25 + PT (X). (9.35)

The closed-loop system thus requires a feedback of the variables, x,x,, 0, the last of which

requires a parameter update law, 6= I'$(X)z,, because the tuning function, t, is inapplicable
for the constant ¢y, c, case.

We simulate the response of the adaptive integrator feedback system for randomly time-
varying parameters, k/m,c/m, with normal distributions of mean 1.5 and 0.5, respectively,
and a unit variance. The adaptation gain matrix is taken to be I' = 0.0011, while the two con-
troller constants are c; = 0.1,¢c, = 1.0. The initial condition is given by x(0) = 1,x(0) = 0,
71(0) = 0.1,2,(0) = 0.01,0 = (0,0)7, and the simulated response is plotted in Figs. 9.1-9.4,
confirming asymptotic stability for x, x, 2, z,. However, the adaptation errors do not converge
to a zero steady state due to the persistent random excitation (process noise). Hence, while the
adaptive controller was designed assuming constant plant parameters, it is seen to be glob-
ally asymptotically stable even in the presence of a large random excitation (process noise).
Therefore, the design is quite robust with respect to unmodelled disturbances. The backstep-
ping integrator approach is seen to be equivalent to the MRAS scheme with state feedback
(see Chapter 8) in terms of the total number of adaptation variables required. The regulator
gains, K, of the MRAS are the same in number as the adaptation variables, z, in the back-
stepping method, and the errors from the reference model, e, of the former are equivalent to
the parameter estimation errors, 0, of the latter. Hence, whenever an implementation for an
ASE plant is possible by the MRAS approach, the same can be converted into a backstep-
ping scheme.
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Figure 9.1 Simulation of the states of an integrator backstepping adaptive control scheme for a
spring—mass—damper system with unknown, randomly time-varying parameters
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Figure 9.2 Simulation of the adaptation variables of an integrator backstepping adaptive control
scheme for a spring-mass—damper system with unknown, randomly time-varying parameters
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Figure 9.3 Simulation of the parameter estimation errors of an integrator backstepping adaptive control
scheme for a spring—-mass—damper system with unknown, randomly time-varying parameters
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Figure 9.4 Simulation of the control input of an integrator backstepping adaptive control scheme for a
spring—mass—damper system with unknown, randomly time-varying parameters
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9.3 Aeroservoelastic Application

The integrator backstepping adaptation appears to be directly applicable to ASE plants, which
are necessarily in a controllable, cascade structure. One can express the nominal ASE plant
without an actuator in the following cascade form:

).Cl =X3
.)‘(:2 = X3 - Fa.xZ
by =—-M"Kx; =M 'Cxy + M~'N x, + M~'Q,, (9.36)

where x; is the vector of generalized coordinates with x5 being the vector of its time derivatives
and x, is the aerodynamic state vector arising out a rational-function approximation (RFA) (see
Chapter 3). Here M, K, C are the generalized structural matrices, N, the numerator coefficient
matrices of the RFA, T", the diagonal matrix containing the aerodynamic poles (lag parame-
ters) and Q.. the vector of generalized aerodynamic forces resulting from the motion of control
surfaces. Each of the subsystems is controllable by Q.., which only appears in the last subsys-
tem. This is a classic configuration for the application of the backstepping approach, where x5
acts as the virtual control for the first two subsystems. The scheme is likely to be successful
in the presence of modelling uncertainties and nonlinearities, because they are matched by the
control vector Q. in the last subsystem.
Let us parameterize the ASE plant as follows:

E =& +0Ty(E)
& =u+0TPE, &), (9.37)

where &, = (xlT,xg)T, &H=x3,u= M‘IQC and 7 = (M‘IK,M‘INa,M‘IC, Fa). This yields

the following regressor matrices, each having a row dimension equal to the structural degrees
of freedom:

w! =(0,0,0,—x,)
¢" = (—x|, —x,, —x3,0). (9.38)

By extension of the motivating example given above, we specify the following feedback con-
trol and adaptation laws:

A D —r — o _@Tvy .y 9%, _ O
u=pX,0)=-z21—Czp -0 w+ oz, & a(:)l"[t//zl + w2, (9.39)
where
a(&.0) = —Cz; — Oy (&), (9.40)
WX, 0) = o) — 2% ye)), (9.41)
0¢,

Z] = —Clzl + 22 + éTI[/(él)
2 =—2; — Cyzo + 0T w(X). (9.42)
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Here, C,C,,T" are constant, symmetric positive-definite, square matrices of appropriate
dimensions giving weightage to each parametric error. Owing the large size of a typical ASE
plant, treating all the parameters as being uncertain would lead to a cumbersome design.
Hence, selection of the weighting matrices by experience is an important task of an adaptive
ASE designer.

Reference

Krstic M, Ioannis K, and Kokotovic P 1995 Nonlinear and Adaptive Control Design. John Wiley & Sons, Inc.,
New York.
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Adaptive Control of Uncertain
Nonlinear Systems

10.1 Introduction

A large class of engineering systems are control affine, control linear, autonomous, but have
an uncertain nonlinear behaviour forced by complex dynamical processes that are difficult to
model. Such nonlinearities include large and unknown changes in the process dynamics or
external disturbances. An example is the aircraft plant for transonic flight, where the unsteady
aerodynamic effects of shock-induced flow separation are nonlinear as well as notoriously
difficult to predict (Lee 1990). The uncertain nonlinear motion in these cases is forced by ran-
domly changing loads. If the forcing conditions are bounded, a stable linear system can display
a limit-cycle oscillation. An aircraft wing subject to turbulent gusts has a similar behaviour
at certain flight speeds. Other examples include mechanical and electrical systems with an
unknown hysteresis-type nonlinearity superimposed over a basic linear, time-invariant, stable
subsystem. In Chapter 7, the design and analysis of oscillatory nonlinear systems by approxi-
mate methods was presented. However, such an approach is unlikely to work for a more general
case where the response is neither purely oscillatory nor limited in its amplitude. This chapter
is mainly concerned with how a general nonlinear system can be controlled adaptively.

A vast literature exists on the adaptive control of uncertain nonlinear systems, with
references listed in textbooks (Astrom and Wittenmark 1995, Isidori 1989, Kokotovic 1991,
Krstic et al. 1995, Slotine 1995) and survey articles (Kokotovic and Arcak 2001). Practical
adaptive control techniques include autoregressive modelling (Astrom and Wittenmark 1995),
model-reference adaptation (Slotine 1995), adaptive feedback linearization (Kanellakopoulos
et al. 1991), sliding-mode control (Isidori 1989) and integral backstepping and modular
control (Krstic et al. 1995). Such methods have been successfully applied to a class of
nonlinear systems, wherein the nonlinearities have a known structure (Chang 2001, Kojic
and Annaswamy 2002). The nonlinear adaptive strategies are either Lyapunov based, or
derived by parameter identification algorithms, and utilize nonlinear update laws Astrom
and Wittenmark (1995) or tuning functions (Krstic et al. 1995), whose stability with respect
to changing operating conditions and unknown disturbances is often difficult to analyse.
While robust adaptation for linear plants is well documented (Ioannou and Sun 1996), similar

Adaptive Aeroservoelastic Control, First Edition. Ashish Tewari.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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effort for nonlinear systems is an area of active research, but currently limited to either scalar
systems (Xu and Ioannou 2002) or to simple structural nonlinearities (Wang et al. 2004). The
neural-network-based intelligent (learning) adaptation has been explored as an alternative
technique applied to nonlinear uncertain systems (Chen and Liu 1994, Xu and Ioannou 2002,
Yu and Annaswamy 1997).

The adaptive control problem is traditionally classified as being either direct or indirect,
depending upon whether the controller parameters are directly manipulated or indirectly
determined from the estimates of the process dynamics. The common assumption in the
indirect adaptive control methods applied to linear plants with uncertain parameters is the
certainty equivalence principle, wherein parameter estimates are treated as known values at
each time instant when closing the primary feedback loop. While certainty equivalence is a
workable approximation in designing self-tuning regulators (STRs) for most linear plants,
it cannot be relied upon for a general nonlinear system. The stability and performance in
adaptation of a nonlinear system can degrade significantly if the parameter estimates are
highly inaccurate. In order to achieve acceptable performance, it is thus necessary to have
a probing method for deriving uncertainty measures of the estimated parameters based on
plant inputs and outputs, which can then be taken into account in updating the controller
parameters. A rigorous method of carrying out such nonlinear-uncertainty-based corrections
is via stochastic optimal control, wherein a dynamic objective function of the estimated plant
states and the probability estimates of uncertain parameters is minimized with respect to the
control variables. This results in the formidable Hamilton—Jacobi equation to be numerically
solved for a large number of variables. While such solutions exist for isolated cases, they
involve formidable online computations of partial differential equations, which are infeasible
in a general application. Modular designs based on recursive, backstepping adaptation have
been evolved (Krstic e al. 1995) as a practical alternative to the stochastic Hamilton—Jacobi
solutions for a certain class of uncertain nonlinear systems.

Model reference adaptation systems (MRASs), STRs and backstepping integrators covered
in the previous chapters are all inherently nonlinear control systems. Their robustness in the
presence of process noise inputs is necessary for practical implementations. A part of this
chapter considers the various robust adaptive methods, especially in possible application in
aeroservoelastic design.

10.2 Integral Adaptation

While integral control lies at the heart of any adaptation method (e.g. model-reference con-
trol, integral backstepping control, autoregressive identification), the time integration involves
a nonlinear function of both unknown parameters and input, output or state variables. The
effectiveness of a simple linear integral control applied to nonlinear uncertain plants has not
been explored in the literature. The present section explores how such a method can be sim-
ply but effectively applied to an uncertain systems with an unknown structural nonlinearity
superimposed over a basic linearized system.
Consider an autonomous, causal nonlinear system represented by the following state
equations:
X =Ax +f(x) + Bu, (10.1)

where x() : R — R” is the state vector and u(f) : R — R™ is the control input vector,
with m < n. The linear time-invariant part represented by the constant coefficients A, B is
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stabilizable, and f(x) : R” — R™ is an unknown, Lipschitz continuous mapping, assumed
to have a continuous derivative, f’(x), with the property f(0) = 0. Therefore, x =0 is an
equilibrium point. Many practical systems are expressible in this form. Our control task is to
regulate the plant about x = 0 in the absence of knowledge of f(x), but without employing
nonlinear feedback.

Consider the following linear feedback control law

u=—-Kx-z, (10.2)

where K is the regulator gain matrix and z(r) : R — R” is an adaptation vector required for
estimating the unknown function f(x).

Theorem 10.2.1 The control system comprising the state equation, Eq. (10.1), and control-
law, Eq. (10.2), is globally, uniformly and asymptotically stable about the equilibrium x = 0
with the following adaptation law:

Bz =x. (10.3)

Proof. Consider the following control Lyapunov function:

V(x,2) = %xTx + %[Bz —f1 [Bz — f()], (10.4)
which is radially unbounded for x # 0, z # 0. Taking the time derivative, we have
V = x"x + [Bz — f(0)]"[Bz — f' (x)i] (10.5)
or
V = x"[(A — BK)x + f(x) — Bz] + [Bz — f' ()% [Bz — f(x)]. (10.6)

Substituting the adaptation law of Eq. (10.3) into Eq. (10.6) results in the following:
V =x"(A = BK)x +x"[f(0) = Bzl + [x = f ()i] " [Bz = f()] (10.7)

or
V =x"(A—BK)x - [f'(0x]" [Bz — f()] . (10.8)

The first term on the right-hand side of Eq. (10.8) is negative definite for a Hurwitz matrix
(A — BK), which is achieved either by a linear, quadratic regulator solution or eigenstructure
assignment of k. A sufficient condition for global, uniform, asymptotic stability (GUAS) is
for the adaptation error, e = Bz — f(x), to vanish in the steady state irrespective of f(x), which
requires a Hurwitz error dynamics matrix, Q, such that

e = Qe. (10.9)
Therefore, the sufficient condition of GUAS translates into the following:
— [F@i]" [Bz=f)] = é"e — e (10.10)

or

V=-Wkxe <0, (10.11)
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where
(A — BK) —%1 X
— W, e) = (", eh) ) (10.12)
_%[ 0 )|e

Therefore, the premise of the LaSalle—Yoshizawa theorem (see Chapter 8) specifying the suf-
ficient conditions for GUAS are met by the control Lyapunov function. Hence, GUAS is
established without the apriori knowledge of f(x).

Equation (10.3) must be solved for the adaptation variable z(7) before the feedback control,
Eq. (10.2), can be implemented. Since the unknown adaptation variables, z, are no larger in
number than the state variables, x, one can determine them uniquely by using a part of the
state vector. For square plants with an invertible B matrix, there is no difficulty. Sometimes
the plant Eq. (10.1) can be represented by N coupled subsystems, x = (x,x], ..., x;)", such
that the controls coefficient matrix is accordingly partitioned into invertible square matrices,
B = (By,B,,...,By). Then Eq. (10.3) results in the following

Z=B'x;, (i=1,..,N). (10.13)

However, in other cases the solution is not straightforward. For non-square plants, a
‘squaring-up’ scheme (Misra 1998) could be adopted, which adds fictitious inputs to the
system such that m = n. A pseudo control coefficient matrix, B’, thus becomes available to be
used as follows:

z=B)"'x (10.14)

While GUAS is guaranteed for the system, the appropriate feedback gain matrix, K, required
to achieve it must be determined numerically, because f(x) (hence E) is unknown. It is also
noted that as the second subsystem is square and B is nonsingular, the adaptation variable z is
the integral of B~!x.

10.2.1 Extension to Observer-Based Feedback

The state-feedback control law of Eq. (10.2) is seldom employed in practice. Instead, the fol-
lowing observer-based feedback is applied:

u=—-Ki—z, (10.15)

with the estimated state X supplied by an observer. The observer is designed by either eigen-
structure assignment or the Kalman filter method, based on an output vectory = Cx + Du € R”
to provide the estimated state X. The state equations of the adaptive system are the following:

X =Ax+f(x) - BKX — Bz (10.16)
=B (10.17)

2N

=
Il

A% + Bu + Ly. (10.18)
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By constructing a modified Lyapunov function by augmenting the state vector as ¥ = (x’, "),
and replacing the matrix (A — BK) with its compensator counterpart,

A ~BK
Ac = <LC A—BK—LC>’ (10.19)

which is made Hurwitz by a proper selection of the regulator and observer gain matrices, K,
and L, respectively, the extension of Theorem 10.2.1 is easily established.

10.2.2 Modified Integral Adaptation with Observer

Instead of Eq. (10.16), which is difficult to implement for a non-square plant, a practical choice
of the integral adaptation method is the following:

u=—-z'%, (10.20)
where z € R™" is evolved by the following adaptation law:
7 =Td(%), (10.21)

with I" being a symmetric and positive-definite weighting matrix and ®(X) being a non-negative
regressor matrix formed out of the elements of X. The initial value of the adaptation matrix, z,
can be taken as the transpose of the regulator gain matrix, K, which is known to be stabiliz-
ing with f(x) = 0. The modified adaptation law brings us closer to model reference adaptation
for nonlinear systems, which is the topic of the next section. ultimate uniform boundedness
(UUB) stability of the closed-loop system with the adaptation law of Eq. (10.21) can be estab-
lished by the LaSalle—Yoshizawa theorem for an unknown (but bounded) nonlinearity, f(x).
The following example illustrates an important application of this approach for stabilizing an
ASE plant with saturated control inputs and constrained state variables.

Example 10.2.2 Consider the single d.o.f flutter-suppression system designed in Chapter 4.
Suppose the torque produced by the control-surface actuator has a saturation limit described
by the following relationship:

uz{—m, | u|<u, or|f|
u,sgn(u), |ul|>u, or|pf|
Furthermore, suppose that the control-surface deflection, f, is physically limited by
another saturation limit, f(t) < p,,sen{p(t)}. This is a state constraint on the system. Here
u, >0,p,>0 are unknown parameters. If the flutter-suppression system designed in
Chapter 4 were to be applied to the actual system, it would not be successful if saturation is
reached at any point along the trajectory, x(t). The simulation in Fig. 10.1, carried out for
U=50m/ss,p=1225 kg/m3,um = 1,8, = 28.65°, demonstrates this fact.

Let us design an integral adaptation law without the knowledge of the saturation limits,
Uy, P, by choosing

B
i (10.22)

vV A

r=10l, ®®) = @G, (10.23)

where (3%) > 0 is the vector of the squares of the elements of . When this law is implemented
with the previously determined values of the gains K, L, with z(0) = K7, and treating the
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Figure 10.1 Closed-loop response for an initial pitch perturbation at U = 60 m/s, standard sea-level
condition, with a saturated control-surface actuator of unmodelled characteristics, u,, = 1, ,, = 28.65°
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Figure 10.2 Closed-loop response of an integral adaptive control system for an initial pitch perturbation
at U = 60 m/s, standard sea-level condition, with a saturated control-surface actuator of unmodelled
characteristics, u,, = 1, #,, = 28.65°
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Figure 10.3 Variation of adaptation variables of an integral adaptive control system, for an initial pitch
perturbation at U = 60 m/s, standard sea-level condition, with a saturated control-surface actuator of
unmodelled characteristics, u,, = 1, §, = 28.65°

observer gains, L, to be fixed, the simulated response is plotted in Figs. 10.2 and 10.3, with the
same initial condition as considered in Fig. 10.1. The closed-loop response in all the variables,
including the adaptation variables, z = (z, - - -, ZS)T, is seen to be convergent to zero. However,
as the nonlinearity in this example does not have a continuous derivative vector with respect to
the state variables, global stability is not guaranteed. This is found to be true, as an increase in
the initial pitch angle causes the response to be unstable. The system is asymptotically stable
for all initial perturbations in either pitch angle or the control-surface angle, less than or equal
to 5.73°. This range of stability can be increased by redesigning the regulator and observer.

Let us consider an additional nonlinearity in an aeroservoelastic model, namely a hardening
spring. This may arise because of either structural reasons when the torsional stiffness of the
wing varies nonlinearly with twist angle, or aerodynamic effects such as strong normal shock
waves (see Chapter 11), which increase the pitch stiffness by creating an opposing pitching
moment in proportion to the square of the twist angle. If the aerodynamic coupling to structural
motion were static, such an effect can lead to greater static stability. However, the dynamic
aeroelastic coupling can have a destabilizing effect, which must be adaptively suppressed, as
shown in the next example.

Example 10.2.3 Reconsider the single d.o.f flutter-suppression system designed in Chapter 4.
Suppose that in addition to the torque saturation of the control-surface actuator described
in Example 10.2.2, the torque produced by the torsional spring about the pitch axis has a
nonlinear hardening effect described by the following relationship:

[ k0, 0<0
1= {k(,e +ab?, 6>0 (10.24)
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Figure 10.4 Closed-loop response of the integral adaptive controller with I' = 101/, for an initial pitch
perturbation at U = 50 m/s, standard sea-level condition, with a nonlinearly hardening pitch spring and
a saturated control-surface actuator of unmodelled characteristics, u,, = 1, 8, = 28.65°,a = 515,80 =

0.573°
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Figure 10.5 Closed-loop response of the reprogrammed integral adaptive controller with I' = 5/, for an
initial pitch perturbation at U = 50 m/s, standard sea-level condition, with a nonlinearly hardening pitch
spring and a saturated control-surface actuator of unmodelled characteristics, u,, = 1, , = 28.65°%,a =

515,60 = 0.573°
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Figure 10.6 Variation of adaptation variables of the reprogrammed integral adaptive controller with
I' =51, for an initial pitch perturbation at U = 50 m/s, standard sea-level condition, with a nonlin-
early hardening pitch spring and a saturated control-surface actuator of unmodelled characteristics,
u,=1,p,=2865,a=>5150=0573°

where a,0 are unknown parameters. If the adaptive integral controller designed in
Example 10.2.2 were to be applied to this actual system, it would be unstable, as demon-
strated by the simulation plotted in Fig. 10.4 for U = 50 m/ss, p = 1.225 kg/m3,a = 515,0 =
0.573°. The integral adaptive controller designed in Example 10.2.2 is now reprogrammed
by changing the adaptation gain matrix to I' = 5I. The resulting closed-loop system is now
asymptotically stable for the given initial condition, as seen by the plots of Figs. 10.5 and 10.6.

10.3 Model Reference Adaptation of Nonlinear Plant

When an uncertain, nonlinear perturbation, f(x) : R* — R™, is present in the input channels
of an otherwise linear (but uncertain) ASE plant of order n with m inputs, its state-space rep-
resentation can be represented as follows (Lavretsky and Wise 2013):

X =Ax + ByA(u + f(x)), (10.25)

where A € R™" is uncertain (but constant), B, € R™" is constant and known and A € R""
is an unknown, constant, diagonal matrix with positive elements, 4;; > 0,i =1,---,m. Such a
representation implies that the uncertainties are matched with the applied inputs. To begin the
adaptation design process, it is assumed that f(x) can be expressed as a linear combination of
r locally Lipschitz, continuous and known functions, ®(x) : R” — R’, given by

fx) =0T d(), (10.26)

where ® € R™™ is a constant, but unknown coefficient matrix. The task of model reference
adaptation is to globally, uniformly and asymptotically track the state of a reference model,



274 Adaptive Aeroservoelastic Control

given by
X, =A,X (10.27)

m’>m?

where A,, € R™" is Hurwitz. The feedback control in presence of the nonlinear regressor
vector, @(x), is modified to be the following:

u=—Kx—-0"ox); (10.28)

where K € R™" and ©® € R™™ are the estimates of the controller parameters, K and ©, respec-
tively. If the plant were known with certainty, it could be stabilized with the exactly determined
values of K and ®. However, the same feedback law is applied to the estimates, K and C:), treat-
ing them in the same manner as if they were known. This is the certainty equivalence principle,
which works as long as the disturbances are matched. The matching condition is given by

A-ByAK =A,,. (10.29)

Assuming that Eq. (10.29) holds for some K, which itself may however remain unknown, and
with an ideal but unknown parameter matrix, ®, a GUAS tracking of x,,(f) can be achieved.
This is demonstrated by selecting the following candidate Lyapunov function:

V =e'Pe+1tr (5KR;'6K" A+ 50"Rg'6OA) (10.30)
with e(t) = x(t) — x,,(t), P, R, and Rg being symmetric and positive-definite cost matrices, and
K=K+6K

©=0+40. (10.31)

The function V is radially unbounded in (e, 6K, 6®) and has the following time derivative:

14

&"Pe + ¢ Pé + 2ir <5KR;11*(TA +507Ry! éA)
= ¢’ (AP +PA,) e+2e"PByA [6K — 50" D(x)]
+2ur <5KR;11*<TA + 5®TR(51(5)A> . (10.32)
Since A,, is Hurwitz, the matrix P satisfies the following Lyapunov identity (Chapter 6):

AlP+PA, =-0, (10.33)

where Q is a positive-definite matrix. Substitution of Eq. (10.33) into Eq. (10.32), and by the
following use of the trace property,

e’ PByASKx = tr(6Kxe” PByA)
e’ PByASOT ®(x) = tr(607 d(x)e! PByA), (10.34)
results in the following
. 2T
V = —e"Qe + 2tr{6K(R;'K - xe” PBy)A)}

T
+2t{607(RG'O — d(x)e" PBy)A}. (10.35)
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In order to make V negative definite for all x(r), the following adaptation laws are selected:

A

K =Rxe"PB,
&' = Ro®(x)e" PB,. (10.36)
This choice results in the following:
V==¢"0e<0 (10.37)
and
vV ==2¢"0Qe, (10.38)

which by Barbalat’s lemma guarantees that the error, e(f), uniformly converges to O in the limit,
t — oo. Thus, global uniform asymptotic stability is guaranteed, without the knowledge of the
uncertain plant parameters, (A, A, ©).

10.4 Robust Model Reference Adaptation

The MRAS adaptive control procedure can be applied to robust control in the presence of
bounded random disturbance inputs. In such a case, the uncertainty in the dynamics matrix, A,
is replaced by the process noise signal, p(), leading to the following state-space representation
of the plant:

Xx=A,x+ ByAu+f(x))+ p(t)
y=C,x, (10.39)

where A,,, C,, (being the reference model’s coefficients) and B, € R™™ are constants and
known, f(x) is a matched nonlinear perturbation of the structure given by Eq. (10.26), and A €
R™ ™ is an unknown, constant, diagonal matrix with positive elements, 4; > 0,i = 1,---,m.
The unforced reference model is represented as follows:

X =A%,

Ym = G- (10.40)
The process noise vector is assumed to be bounded by an known upper bound, p,,, as follows:

| p() |< pyy- (10.41)

It is further assumed that A,, is Hurwitz and the pair (4,,, ByA) is controllable. The objective
is to find a stabilizing feedback controller given by

u=—-0"dx), (10.42)

where © € R™" is the estimate of the perfect parameter gain matrix, ®, which would stabilize
the plant if p(r) = 0 and A was known with certainty. The closed-loop system is then given by

i =A,x — ByAs®T®(x) + p(1)
y= me, (10.43)
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where 60 = © — O, or as follows in terms of the tracking error, e(t) = x(t) — x,,(1):
é=A,e—ByAs®T d(x) + p(t). (10.44)

In order to derive an adaptation law, the following radially unbounded, candidate Lyapunov
function is defined:
V = e Pe + tr(60"R™'6ON), (10.45)

where P, R are constant, symmetric, positive-definite weighting matrices, with R being invert-
ible. Taking the time derivative of Lyapunov function along a trajectory, we have

V = e (ATP + PA,))e — 2¢" PByASOT ®(x) + 2¢” Pp(t) + 2tr(507 R~ é)A). (10.46)

By substituting the Lyapunov identity, Eq. (10.33), into Eq. (10.46), along with the trace prop-
erty, a’b = tr(ba’), we have

V = —e" Qe + 26" Pp(t) + 2tr {5@T (R—‘é - cDeTPB) A} . (10.47)

If the standard MRAS adaptation law, @T = R®(x)e’ PB, is applied here, the error, e(t), might
remain bounded by Barbalat’s lemma, but §0(f) may become unbounded because of the noise,
p(1), because 60(r) grows steadily in proportion to the time integral of e(f), even for small
values of | e | for which V = 0. This is known as parameter divergence (or drift) and must be
avoided by introducing a dead zone in the adaptation law as follows:

T {R@(x)eTPB, (Iel>e, (10.48)

S
07 (l e |S em)

The error bound used for the dead zone can be expressed as the following function
(Khalil 1996) of the known process noise bound, p,,:

. 2p,,p(P)
" p(Q)

where p(.) denotes the spectral radius (see Chapter 2). Since both P, Q are positive definite,
their spectral radii are the same as their maximum eigenvalues.

An adaptation law based on the dead zone, Eq. (10.49), is likely to lead to chattering in the
closed-loop response. A way to avoid the problem of chattering is to modify the adaptation
law as follows (Lavretsky and Wise 2013):

& = RO PBu( ¢ ). (10.50)

. | e | =be,,
ﬂ(|e|)=max{0,m1n<l,(]_76)e>} (1051)

is a continuous modulation function with 0 < 6 < 1 a constant. Thus a boundary layer is added
to the dead zone in order to have a smooth behaviour of the closed-loop response near the
dead zone. (Tewari 2013) arrived at a similar boundary-layer-type, dead-zone modification for
a robust adaptive control for spacecraft de-orbiting problem using a gradient-type adaptation.

(10.49)

where
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Ioannou and Kokotovic (Ioannou 1983) proposed a robust adaptive MRAS scheme for
the case when the upper bound on the process noise, p,,, is unknown. Such a method,
called the o-modification, is more practical for an ASE problem than the one given above,
because the unsteady aerodynamics model can have perturbations of unknown bound when
flow-separation and shock-wave effects are involved. The o-modification adaptation law is
the following:

T ~
O =R|®d)e’PB - a@T] , (10.52)

where ¢ > 0 is a constant gain. By applying Lyapunov’s direct method, the UUB (Chapter 8)
of all signals of the closed-loop system can be shown for this method (Ioannou 1983). Thus
robustness is guaranteed without knowing the bound on p(?).

An improvement to o-modification has been also proposed. The new scheme, called
e-modification (Narendra and Annaswamy 1987), addresses a particular drawback of
the o-modification algorithm when | e | is particularly small. In that case, Eq. (10.52)
approximately becomes the following:

AT A
O ~ —RcOT, (10.53)

which drives © to small values, thereby reducing their effectiveness. This can be termed as
‘unlearning’ of the parameter gain matrix. In such an event, were the disturbance p() to be
removed, and the reference model be excited by an external reference input, the parameter error
matrix, 60, may not converge. Therefore, e-modification multiplies o by a term proportional
to the tracking error as follows:

2T ~
& =R [op(x)eTPB —6|eTPB|OT]. (10.54)

This makes both the terms on the right-hand side contribute to the adaptation law, even when
| e | is small.

Example 10.4.1 Let us reconsider the MRAS typical-section flutter-suppression design of
Chapter 8 in the presence of a normally distributed process noise, p(t), in all the state vari-
ables, with a standard deviation of 107>. This could be considered a case of time-dependent
variation in model properties due to effects such as atmospheric gusts, structural nonlinearity
and aerodynamic flow separation/reattachment. A direct simulation of an MRAS designed with
P=10"I,R=1and using linear state feedback ®(x) = x, O = k without robustness consider-
ations, is shown in Figs. 10.7-10.10 for an initial pitch angle perturbation at the supercritical
condition of U = 65 m/s and standard sea level. The plant parameters A, \ are assumed to be
known in this simulation. The state variables, h(t)/b, 0(t), p(t), the normal acceleration out-
put, y(t), and the input, u(t), are all seen to respond relatively smoothly in the presence of the
process noise. While the system’s response converges to a steady state for larger values of time,
the response in the controller parameter estimates is especially prone to noise (Figs. 10.9 and
10.10), and some of them are seen to grow unboundedly ( K 1s k7 ), which indicates an overall
unstable adaptation system. The use of high adaptation gain thus results in spurious oscilla-
tions in the integration scheme (Runge—Kutta, fourth-order) due to the random process noise.
Although the system’s tracking error is maintained at small values, the controller parameters
are adapted by an unstable process. In such a case, rate-limited and saturated input torque will
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Figure 10.7 Simulated initial response of plunge displacement, /b, pitch angle, 6, and control-surface
deflection, f, of an MRAS (P = 1071, R = I) flutter-suppression system for a typical section in the pres-
ence of random process noise at a supercritical speed and standard sea level
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Figure 10.8 Simulated initial response of input torque, u#, and normal acceleration output, y, of an
MRAS (P = 101, R = I) flutter-suppression system for a typical section in the presence of random pro-
cess noise at a supercritical speed and standard sea level
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Figure 10.9 Simulated variation of state-feedback adaptation gains, k, — k,, of an MRAS (P = 1071,

R =) flutter-suppression system for a typical section in the presence of random process noise at a super-
critical speed and standard sea level
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Figure 10.10 Simulated variation of state-feedback adaptation gains, IAcS - 128, of an MRAS (P = 1071,
R = I) flutter-suppression system for a typical section in the presence of random process noise at a super-
critical speed and standard sea level
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lead to an instability of the adaptive ASE system. Adaptive flutter suppression by this method
would therefore be deemed to have failed in the presence of process noise.

A possible way of avoiding noisy adaptation is by decreasing the weightage of the estimation
error, P, in the adaptation law. This is tried by using P = P = 10*1, R = I, and the simulation
is carried out for t = 200. The resulting plots of the response (Figs. 10.11-10.14) show that
while the noisy adaptation is now avoided, the weightage, P, is insufficiently large in magni-
tude, which causes a slow drift of the control parameters, and ultimately leads to the system’s
instability at large times. The objective of the robust adaptation is therefore to strike a balance
between the conflicting requirements of noiseless adaptation and the closed-loop stability of
the controller parameters.

The simplest way to suppress the rapid control actuation demand due to noise feedback is by
putting a low-pass filter in the control loop, usually just before the actuator (Tewari 2011). This
is effectively carried out by replacing the control input u by a variable z in the state equations,
and relating the two by the following first-order transfer function:

_as+1
bs + 1

u(s) 2(s), (10.55)

where a > 0,b > 0 are constants. This introduces the following additional state equation into
the closed-loop system:

é:—§+(l_b)? (10.56)
a a /a
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Figure 10.11 Simulated initial response of plunge displacement, h/b, pitch angle, 6, and
control-surface deflection, g, of an MRAS (P = 10*/,R = I) flutter-suppression system for a typical
section in the presence of random process noise at a supercritical speed and standard sea level
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Figure 10.12 Simulated initial response of input torque, u#, and normal acceleration output, y, of an
MRAS (P = 10*1, R = I) flutter-suppression system for a typical section in the presence of random pro-
cess noise at a supercritical speed and standard sea level
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Figure 10.13 Simulated variation of state-feedback adaptation gains, IAcl - IA<4, of an MRAS (P =
10*1, R = I) flutter-suppression system for a typical section in the presence of random process noise
at a supercritical speed and standard sea level
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Figure 10.14 Simulated variation of state-feedback adaptation gains, lAc5 —1%8, of an MRAS (P =
10*1, R = I) flutter-suppression system for a typical section in the presence of random process noise
at a supercritical speed and standard sea level

where & = 7 — bu/a is the actuator state. This type of filter is called a lag compensator (Tewari
2002), and moves a pole of the linear time-invariant system from s = —1/a to s = —1/b. If
a < b, the response to high-frequency excitation is reduced, without affecting the DC gain (i.e.
the zero-frequency behaviour). However, the attendant slowing down of the response increases
the settling time of an asymptotically stable linear system. A digital implementation of the ana-
logue system automatically introduces the cut-off frequency of the Nyquist sampling rate, and
is therefore also a type of ‘low-pass’ filter. Since we are not dealing with linear systems here,
it is important to see how a simple low-pass filter can provide robustness to random process
noise in a nonlinear system. As we have seen in Chapter 7, a stable linear filter in feedback with
a static nonlinearity has the effect of limiting the amplitude of the oscillatory response. This is
called the limit-cycle behaviour. While reducing noise feedback at high frequencies, the filter
can thus cause a low-frequency, limit-cycle oscillation (LCO), which is certainly undesirable
in a flutter-suppression problem. The best way of avoiding LCO is to make the control actuation
less sensitive to noise inputs. While various methods are available to do so (as discussed above
in this chapter), the simplest one is to add a dead zone in the actuator. However, instead of for-
mally building the dead zone around a minimum-tracking-error magnitude, e,,, which is com-
monly done in the MRAS field, we would like to deaden the actuation when the input demand
exceeds a certain maximum magnitude, z,,. This is implemented here by the following logic:

_J@=8&a/b, (z1<2,)
' {07 (z 1>z, (10.57)
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Figure 10.15 Simulated initial response of plunge displacement, h/b, pitch angle, 6, and
control-surface deflection, f, of a robust MRAS flutter-suppression system with a filtered actuation dead
zone, for a typical section in the presence of random process noise at a supercritical speed and standard
sea level
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Figure 10.16 Simulated initial response of input torque, u, and normal acceleration output, y, of a
robust MRAS flutter-suppression system with a filtered actuation dead zone, for a typical section in the
presence of random process noise at a supercritical speed and standard sea level
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Figure 10.17 Simulated variation of state-feedback adaptation gains, IAcl — IA<4, of a robust MRAS
flutter-suppression system with a filtered actuation dead zone, for a typical section in the presence of
random process noise at a supercritical speed and standard sea level
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Figure 10.18 Simulated variation of state-feedback adaptation gains, IA<5 — IAcg, of a robust MRAS
flutter-suppression system with a filtered actuation dead zone, for a typical section in the presence of
random process noise at a supercritical speed and standard sea level
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The effectiveness of this simple method is seen by the simulation of the MRAS with a low-pass,
actuation dead zone using a = 0.01,b =0.1,z,, = 0.2 for the supercritical condition given
above, and for a normally distributed process noise of intensity 107, Owing to the filtered
dead zone, now there is no need of excessively weighting the state error with a large magnitude
of P, in order to have a stable response. Hence, P = 0.11, R = I are used in the adaptation law.
The results plotted in Figs. 10.15-10.18 show a stable response, free from either chatter or a
large transient overshoot, and converging to a steady state in all state variables and controller
parameters. There is however a slight non-zero steady-state error in the state variables due
to the dead zone. Such a scheme therefore offers the best promise of a practical application
for adaptive and robust flutter suppression, because of its simplicity. The design parameters,
a,b,z,,, P,R can be fine-tuned to the best possible closed-loop response in the presence of
process noise of a maximum expected intensity.

10.4.1 Output-Feedback Design

When only the measurement signals, y(f) € RP, are available for feedback, an observer-based
output-feedback MRAS method is required. Consider the following transfer-matrix realization
of the plant:

G(s) = C(sI — A)"'B+ D € CPm, (10.58)

with an output-feedback law given by
u(t) = —0@)y(t) € R™, (10.59)

where ® € R"™ is a matrix of time-varying controller parameters consisting of the regulator
and observer gains. The controller parameters, ®, can be arranged in a single column vector,
0 € R . The closed-loop system has the following transfer matrix representation:

y(s) = G(s,0)r(s), (10.60)

where r(s) is a reference input. An update law is required for the controller parameters such
that the output error,

e(t) = y(1) =y, (), (10.61)
is driven to zero in the steady state. The error is expressed as follows in the Laplace domain:
e(s) = [G.(s,0) — G, (s)]r(s), (10.62)

where G,,(s) is the transfer matrix of the reference aeroelastic plant. A gradient adaptation law
for this problem is given by
T
o _ r(ae) e (10.63)

dr —\oo

where I' € R™P™" is a constant adaptation gain matrix. The selection of a suitable sensitivity
matrix, de/00 € R™P*P_ is the crux of the gradient-based adaptation, and must be carried out
as discussed above for the state-feedback problem. However, it requires a structure for the
dependence of the closed-loop transfer matrix, G.(s, §), on the controller parameters, 6.
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For a Lyapunov-based adaptation, consider the following candidate Lyapunov function:
V=ecle+(-0)"©6 -0, (10.64)

with P € RP* being symmetric and positive definite and 0, satisfying the following matching
condition:

G (5,6 = G,,(5). (10.65)
The function V is radially unbounded in e and (6 — 6,)) and has the following time-derivative:
V=2e"e+26-06,)"6. (10.66)

Since G,,(s) is strictly positive real, and the parametric uncertainty (6 — 6,)) appears in a feed-
back loop with the matched system, Eq. (10.65), any adaptation law minimizing (6 — 6,) is
dissipative in terms of the error, e, by the passivity approach (Chapter 6). However, a design
of such an adaptation law requires assuming a structure for the closed-loop system, G,.(s, 9),
by either an observer-based or a direct feedback control law. The latter is of the form, u = Fy,
where F is a controller parameters matrix.

Direct output-feedback designs must be based on the passivity formalism for achieving
input—output stability. Unfortunately, a passivity-based design requires a square plant (see
Chapter 6), while a practical ASE plant may not be square. Although the number of inputs, m,
is limited to the number of available control surfaces, any number of sensors (accelerometers,
optical sensors) can be mounted on the wing in order to yield a redundant data for aeroelas-
tic mode-shape determination. Such redundancy is necessary if a parameter estimation-based
controller (such as the STR of Chapter 7) is to be designed for the ASE system. Thus, the num-
ber of outputs, p, is always greater than the number of inputs. It would then seem impossible
to apply the passivity-based theorems of Chapter 5 for ASE plants. However, recent develop-
ments in control theory (Misra 1998) allow the ‘squaring-up’ of a non-square plant by adding
fictitious inputs. Application of such an approach to MRAS design by a projection-based
output-feedback method is presented in Chapter 14 of (Lavretsky and Wise 2013). Here we
are concerned with an observer-based structure of the MRAS system. Both the methods can
be considered equivalent, as the parameter adaptation in both is superimposed on a baseline
linear quadratic regulator. The difference lies in the derivation of the adaptation mechanism.

An output feedback method can be applied to a non-square plant by rendering it virtually
square through the addition of fictitious inputs. Consider a proper (D = 0) plant represented by

X=Ax+ ByAu
y==Cx
z=Cyx, (10.67)

where x € R” is the state, u € R™ the input, y € R? the output, and z € R? the regulated
output vectors. Here it is assumed that A € R™", B, € R™", C € R”™" and C, € R“*" are
a known matrices, while A € R™" is an unknown, constant, diagonal matrix with positive
elements, A; > 0,i = 1,---,m. Thus the uncertainty comes in with the applied inputs, while
the unforced part is known with certainty. The following assumptions are applied to carry out
the direct output-feedback design for a non-square plant:
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(a) The plant is minimum phase (i.e. does not have any zeros in the right-half plane).
(b) The pair (A, By) is controllable and the pair (4, C) is observable.

(c) The rank of the matrix B, is equal to m, the number of inputs.

(d) The rank of the matrix C is equal to p, the number of outputs.

(e) The rank of the matrix CB,, is equal to m, the number of inputs.

(f) The number of outputs is greater than the number of inputs (p > m).

For a further discussion of the direct (non-observer-based) output-feedback method, the reader
is referred to Lavretsky and Wise.

For an observer-based design, consider a general (non-square) plant with the following
state-space representation:

X =Ax + ByAu, (10.68)
y = Cx+ Du. (10.69)

to be stabilized by the control law,
u=—Kx, (10.70)

where the estimated state, %, is generated by the following observer:
2=(A—-LC)%+ (B—-LD)u+ Ly, (10.71)

based on the measured output vector, y. Here we use the abbreviation, B = ByA, with the
understanding that B, is known, while the diagonal perturbation, A is unknown. The regulated
system is thus represented by

X A —BK X
{x} - <LC A—BK—LC> {x} (10.72)

An MRAS approach cannot be applied to simultaneously adapt both K, the estimate of regula-
tor gains, and L, the estimate of observer gains, by a single adaptation law. This is because the
compensator is designed by the separation principle, where the regulator and observer are
designed independently of each other. Thus we must look for separate adaptation laws of
the regulator and observer gains, which also fit in with the certainty equivalence approach
where a part of the control system is designed assuming that the other part is known with cer-
tainty. Any variation of L during adaptation for K can be regarded as process noise, which is
handled in the manner given above for robust MRAS. Similarly, any variation of K in adapting
L is treated as a bounded process noise.
For the derivation of an adaptation law of regulator gains, K, we express Eq. (10.72) as
follows:
:=Fiz—- G AO®(2), (10.73)

where

A 0 B
Fr= <LC A —LC>’ G, = <BZ>’ @(2) =0, Dz, (10.74)

(E)IT =Kandz= (xT,%7) T The uncertainties in the plant matrices A, B cause uncertainties in
the matrices F'; and A. Note that as Eq. (10.73) is in the form of Egs. (10.25) and (10.26), the
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following adaptation law will render the control system GUAS stable, provided the observer
gains, L, are known with certainty:

K =GTPed (0T, (10.75)

where e = z — x,,, x,, being the reference state, and P, I"| are symmetric, positive-definite gain
matrices, with I"; also being non-singular.
Similarly, for the adaptation of the observer gains, L, we write

2=Fyz+ G,0,9,(2), (10.76)
where B . .
2= <o A —BK) > G2= <1> @) =(C, -0, (10.77)

and ®, = L. The uncertainties in A, B are treated as that in the matrix F,, whereas G,, ®,(z) are
known. The GUAS-stabilizing adaptation law for the observer gains is therefore the following:

L = -Id,2)e" P,G,, (10.78)

with P,, ', being symmetric, positive-definite gain matrices, and I', also being non-singular.

10.4.2 Adaptive Flutter Suppression of a Three-Dimensional Wing

Application of model-reference adaptation to a 3-D wing is much more cumbersome than
that for a typical section, primarily due to the large number of degrees of freedom involved.
Even when a few structural modes are retained by a balanced realization of the mass and
stiffness matrices, the necessity of rational-function approximations (RFAs) for both wing
and the control surfaces increases the size of the aeroelastic plant by an order of magnitude,
when compared to a typical section. Furthermore, as an observer is invariably required in a 3-D
application, there is a further increase (nearly doubling) of the order of the system. Both the
regulator and observer parameters must be updated by the adaptation laws, which implies twice
as many controller parameters (unless a reduced-order observer is used) as the state-feedback
case considered above.
Consider the ASE system with the following state-space representation:

X = AX + Bu, (10.79)
y = EX + Du, (10.80)
with state vector,
X = (xT,xZ)T,
and the following coefficient matrices:

- (A BC)\ - (BD,
A_<0 A>,B_<B>, (10.81)

c c

E=(E DC,),D=DD (10.82)

c*
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with A, B, E, D being the coefficients of the aeroelastic plant, and A, B,., C,, D, those of the
control-surface actuators. The regulator control law,

u=—KX, (10.83)
employs the estimated state, X, generated by the following linear observer:
X=@—-LEX + (B - LDyu + Ly, (10.84)

based on the measured output vector, y. Alternatively, a reduced-order observer can be
designed. The regulated ASE system is thus represented by

X A ~BK b'§
{X} = <LE A—BK—LE) {x} (1085)

which can be expressed in the following form amenable to the adaptation of regulator gains,
k:

Z=F\Z+G0[02). (10.86)
where 3 0 .
Fi = <LE A —LE)’ G = (79)7 ®©,(2)= (0, =Dz, (10.87)

O =KandZ= (XX T)T. This gives the following adaptation law:

K =G"Ped (2)R,, (10.88)

where e =Z —x,,, x,, being the state of a reference model, and P;,R, are symmetric,
positive-definite gain matrices, with R; also being non-singular.

For the adaptation of the observer gains, L, we have
Z =F,Z + G,0,D,(2), (10.89)

where

A -BK 0 - _
F2=<0 A-Zm)’ G2=<,>’ @,(2)=(E, -E)Z, (10.90)

and ©, = L. This leads to the following adaptation law:
L = R,®,(2)e" P,G,, (10.91)

with P,, R, being symmetric, positive-definite gain matrices, and R, also being non-singular.

The reference model characteristics can be chosen to be the ASE model at a reference
flight condition, with the regulator and observer gains pre-selected to yield a constant, Hurwitz
dynamics matrix, A,,. The observer and regulator gains are then adapted by an MRAS scheme
such that random static variations in the plant parameters, A and B, do not cause instability in
the overall system. This is illustrated in the following example.

Example 10.4.2 The modified DAST-ARW1 wing (Appendix C) used for deriving a 3-D active
Sflutter-suppression system in Chapter 4 for a reference, supercritical flight condition (standard
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Figure 10.19 Simulated initial response of normal acceleration, y, tip displacement, z, and control
torque input, u, of a model reference adaptive flutter-suppression system for the modified DAST-ARW1
wing in the presence of constant random perturbations in the lag parameters at a supercritical flight
condition

altitude, 7.6 km, and flight Mach number, 0.95) with selected regulator and observer gains is
now to be rendered adaptive with respect to random static variations in the two lag param-
eters, by, by, as well as a diagonal perturbation, A, in the matrix B= ByA, with By = B,),.
This is achieved by choosing Py = 107°I,R, = I, P, = I, R, = I for the overall ASE system
of order 112, comprising 28 aeroelastic states, x(t), 28 observer states, X, and a controller
parameters vector, ® = (K, LT)T of order 56. When the random perturbation in the lag param-
eters is assumed to be uniformly distributed with a standard deviation of 107> and an initial
tip-displacement (the sixth state variable) z(0) = 0.01 m is applied, the system’s response is
plotted in Figs. 10.19 and 10.20. The dimensionless normal acceleration, y(t), and the tip dis-
placement, z(t), show a settled closed-loop response, and the required control torque, u(t), is
within reasonable limits (Fig. 10.19). Owing to their large magnitudes, the regulator gains,
K, are hardly changed by the adaptation law (e.g. Fig. 10.20). However, the observer gains,
L, show a slight variation (Fig. 10.21) that converges to a steady state. The scheme can han-
dle larger variations in the lag parameters, but would take a longer computational time to
simulate and is not being considered here.
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Figure 10.20 Simulated variation in the selected regulator gains, K, of a model reference adaptive
flutter-suppression system for the modified DAST-ARW1 wing in the presence of constant random per-
turbations in the lag parameters at a supercritical flight condition
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Figure 10.21 Simulated variation in the selected observer gains, L, of a model reference adaptive
flutter-suppression system for the modified DAST-ARW1 wing in the presence of constant random per-
turbations in the lag parameters at a supercritical flight condition



292 Adaptive Aeroservoelastic Control

Example 10.4.3 We end this chapter with the robust MRAS approach applied to the tail-less
fighter aircraft, whose aeroservoelastic model and a preliminary MRAS design to handle
constant parametric perturbations was considered in Chapter 8. The order of the complete
closed-loop ASE system with 2 rigid-body longitudinal states, 2 actuator states and 34 aeroe-
lastic states is 38. However, the order is doubled to 76 when the observer states, X, are added. If
both controller gains, K, and observer gains, L, are allowed to change by adaptation schemes,
the net order of the MRAS system would be again doubled to 152. This becomes unmanage-
able to simulate on a small personal computer with a limited memory. Hence, for practical
purposes, we will regard only the regulator gains, K, as the estimated controller parameters,
and will assume that the observer remains adequately stable under the perturbations. The
basis of this assumption is the separation (certainty equivalence) principle.

05 0.2
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03 ~
3 01
= 02 3
ol 0.05
0 0
0 05 1 15 2 0 05 1 15 2
1 1
0
05 —~
12] 2]
= g -1
2
05 -3
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Figure 10.22 Simulated initial response of normal acceleration, Z, angle of attack, a, pitch rate, ¢, and
control torque input, u, of a o-modified MRAS system for the tail-less delta fighter at U = 306 m/s and
standard sea level in the presence of normally distributed random process noise of zero mean and standard
deviation 0.05

Consider a random process noise of standard deviation 0.05 appearing in the input channel,
which is updated at every time step of the simulation. This is a large random perturbation,
which can arise because of such effects as severe turbulent gusts, periodically separated flows,
and unsteady normal shock waves. The reference model is chosen to be the same as in Chapter
8 with fixed values of K and L. With ®" = K and L taken to be a constant vector at its model
reference value. When the ordinary model reference scheme of Chapter 8,

O = Rxe"PB, (10.92)

is used, the adaptation system is seen to be unstable under the noise of such an intensity.
However; the following o-modification adaptation law proves to be successful in stabilizing
the system, without knowing the intensity of the disturbance:

O=R [xeTPB - aé] , (10.93)
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Figure 10.23 Simulated initial response of the vertical deflection, z, produced by the first four aeroe-
lastic modes of a 6-modified MRAS system for the tail-less delta fighter at U = 306 m/s and standard sea
level in the presence of normally distributed random process noise of zero mean and standard deviation
0.05
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Figure 10.24 Simulated variation in the selected regulator gains, K, of a -modified MRAS system for
the tail-less delta fighter at U = 306 m/s and standard sea level in the presence of normally distributed
random process noise of zero mean and standard deviation 0.05
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where P = 1071, 0 = 1 is used in the present design. The simulated response is plotted in
Figs. 10.22-10.24, showing not only a UUB, but an asymptotically stable behaviour. The
aeroelastic system, plotted in Fig. 10.23, is also stable, with the third and fourth modes being
more affected by the process noise than the first two modes. This is because the noise has a
high-frequency spectrum, which is effectively filtered out by the stable rigid modes and the
lower-frequency aeroelastic modes.
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11

Adaptive Transonic
Aeroservoelasticity

The transonic flight regime can be a hazardous flight condition. Many of the catastrophic aeroe-
lastic instabilities occur at transonic speeds. These include a dip in the flutter dynamic pressure,
control surface buzz, buffet and limit-cycle oscillations (LCOs), all caused by the presence of
normal shock waves on the wing and the tails. High-speed aircraft spend a majority of their
design life flying near the transonic regime. They cruise at speeds just below the sonic speed,
either for an ideal combination of speed and fuel economy or for better manoeuvrability in
the high-subsonic regime where the rate of turn is maximized. These airplanes are designed
to fly just below the critical speed at which the flow first becomes sonic at any point on the
aircraft. However, this design condition is often crossed inadvertently, and the shock waves
are generally the result. An observant passenger with a window seat over the wing can some-
times see shock waves dancing on the upper surface in the cruise condition, either when flying
through clouds or when excessive moisture is present in air. Why is a shock wave such an
important factor in aircraft design? The answer to this question has two parts: (i) shock waves
are pressure discontinuities that cause a large and sudden increase in drag (called wave drag),
which can decrease the fuel economy by as much as a factor of 2. (ii) Shock waves are also
indicators of a sudden onset of nonlinear and unsteady aerodynamic conditions prevailing in
the transonic regime, which are capable of exciting large pressure fluctuations and creating an
unstable aeroelastic coupling. For an ASE engineer, the latter factor is more important, because
it represents a potential source of instability.

Controlling transonic aeroelasticity is a formidable task, not only because of the difficulty
in modelling the nonlinear aerodynamic behaviour but also due to an inherent loss of control-
lability caused by the mixed subsonic—supersonic flow prevailing on the lifting surfaces. A
normal shock wave is the boundary line between such characteristically different flows, which
in the steady state is also the mathematical border between elliptic and hyperbolic types of par-
tial differential equations (see Chapter 3). Since pressure disturbances cannot travel upstream
of a normal shock wave, there is no possibility of a trailing-edge control surface affecting
the supersonic flow ahead of the shock barrier. Hence, controllability of the flow is limited to
the subsonic region extending from the control surface to the shock wave. This region van-
ishes completely when the shock wave moves downstream and sits astride the control-surface

Adaptive Aeroservoelastic Control, First Edition. Ashish Tewari.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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hinge line. Consequently, the only hope of controlling the transonic ASE plant is through
an aeroelastic coupling provided by the bending and twisting deformation produced by the
movement of the control surface. In a typical-section model, this translates into controlling
the pitch and plunge of the elastic axis by control-surface deflection. The transonic plant
model has many peculiarities that are absent at both subsonic and supersonic speeds. These
include an inherent coupling of the steady and unsteady aerodynamics to such an extent that
a small change in the steady flow conditions can completely modify the unsteady behaviour.
Consequently, a slight increase in the supercritical Mach number may decrease the control
effectiveness by as much as an order of magnitude, thereby requiring a 10-fold increase of
control deflection for maintaining a given equilibrium. When coupled with the flow separation
caused by the shock waves, leading-edge vortices and large control movements, the highly
uncertain and nonlinear transonic characteristics border on chaotic behaviour, which is nearly
impossible to model accurately. Therefore, designing an adequate control system for transonic
ASE applications has historically proved to be challenging. This is an important fact to keep
in mind while reading the present chapter, whose main objective is to investigate how an adap-
tive control system can be designed to compensate for the lack of modelling accuracy in the
transonic plant.

Advanced stability analysis by the methods presented in the later part of Chapter 6 becomes
necessary when dealing with uncertain nonlinear systems. Passivity analysis and derivation of
Lyapunov functions and Lyapunov-like functions by the Kalman—Yakubovich lemma is the
basis of nonlinear adaptive control (Chapter 10) and is the thrust of transonic ASE techniques
used in this chapter. Adaptive integral backstepping (Chapter 9) and describing functions for
oscillatory nonlinear analysis (Chapter 7) are also applied to control transonic LCOs. As for a
typical ASE plant, the transonic aeroelastic plant is also time invariant (autonomous), therefore
the design procedure in all cases is restricted to closed-loop stabilization (set-point regulation).
By guaranteeing nonlinear damping (or dissipation) due to adaptive control in various ways,
asymptotic stability is ensured. In such an approach, it is not necessary to know the exact plant
model, but only that the plant is controllable (or at least stabilizable).

11.1 Steady Transonic Flow Characteristics

Transonic flow is dominated by large pressure variations caused by mixed subsonic—supersonic
local regions, usually with shock waves embedded in the flowfield. A shock wave is a
non-isentropic, pressure discontinuity that appears when the local flow becomes supersonic.
Downstream of a shock wave, the flow speed decreases and the static pressure rises abruptly.
There are two basic types of shock waves: normal shock and oblique shock. A normal shock
is accompanied by decrease of flow speed from supersonic to subsonic and a much larger
pressure rise compared to an oblique shock of the same upstream Mach number. Which
of the two waves is actually encountered depends on the local flow geometry, wherein the
continuity of the flow demands an appropriate shock wave angle (either normal or inclined
to the upstream flow). Usually thin and sharp-edged (or pointed) bodies flying at supersonic
speeds encounter an oblique shock wave, whereas a blunt-nosed or thick object at the same
speed would have a normal shock appearing in front of it. The angle presented by the shock
wave to oncoming flow is inversely proportional to the flow Mach number for any given
object, while its strength (pressure rise) increases with the Mach number. Since transonic flow
on an aircraft wing contains a mixture of subsonic and supersonic regions on curved surfaces,
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the flow continuity requires that any shock waves appearing on a smoothly contoured airfoil
must be essentially curved, with the local inclination varying with a changing flow deflection.
Whenever flow acceleration is required in a locally supersonic region (such as over a convex
surface), the associated phenomenon is not a discontinuity, but a smooth increase of flow
speed via a series of isentropic Mach waves called an expansion fan. The reader may consult
a textbook on gas dynamics (Shapiro 1958) for a detailed description of compressible flows,
shock waves and expansion fans.

In order to understand the physical flow characteristics on a wing operating at the tran-
sonic speeds, consider an airfoil equipped with a trailing-edge flap at a high-subsonic, steady
freestream Mach number, M, and a constant angle of attack. In the subcritical case, the flow
everywhere remains subsonic and the analysis can be carried out by a linear aerodynamic the-
ory. However, as the Mach number is increased, the critical condition is reached when the local
flow speed approaches the speed of sound at a particular point on the wing (usually on the upper
surface). A further increase of M, produces supercritical flow where local supersonic regions
appear on the airfoil (Fig. 11.1). The supersonic bubbles are terminated by normal shock
waves, which may have unsymmetrical locations on the upper and lower surfaces depend-
ing on the angle of attack and the flap deflection. For a positively cambered airfoil at a small
angle of attack, the local flow acceleration is larger on the upper surface, resulting in a larger
supersonic region there, along with a higher local Mach number upstream of the shock (thus a
stronger shock wave), when compared to that on the lower surface (Fig. 11.1(a)). The super-
sonic bubbles are located near the maximum thickness point and can change in position and
extent with changes in the angle of attack, flap deflection and freestream Mach number. When
either the angle of attack is increased or the flap is deflected downwards, there is an increase
of flow acceleration on the upper surface, resulting in the upper supersonic region becoming
larger and moving further downstream (Fig. 11.1(b)). In the extreme case, the upper-surface
supersonic region may extend to beyond the flap hinge line, thereby creating an expansion
wave pattern on the convex corner, as indicated in Fig. 11.1(b). The stronger normal shock on
the upper surface can lead to an appreciable thickening and even separation of the boundary
layer on the flap, which causes a divergence of pressure distribution at the trailing edge. On
the lower surface, the decreased flow speed results in a smaller, more upstream supersonic
bubble terminated by a weaker shock wave. In an extreme case, the lower-surface supersonic
bubble can entirely vanish. If the freestream Mach number is sufficiently large, the subsonic
flow acceleration caused by the concave corner at the lower-surface hinge line can produce a
very small supersonic region astride the hinge line followed by a shock wave.

An upward flap deflection (or a reduction in the angle of attack) causes the associated super-
sonic region to move upstream and an oblique shock wave on the flap hinge line (Fig. 11.1(c)).
Of course, the oblique shock is combined with a normal shock terminating the supersonic
bubble. Such a shock formation, termed the lambda shock due to its shape, could also cause
localized flow separation near the trailing edge. The opposite tendency is seen on the lower
surface, where the supersonic flow extends further downstream, and in an extreme case could
cross the flap hinge line, resulting in an expansion fan on the convex corner, as well as a normal
shock at the downstream edge of the supersonic bubble. Clearly, the flow conditions encoun-
tered on the flap depend on the freestream conditions (Mach number, angle of attack) as well
as on the flap deflection, and are very important if the flap is to be used as a control device.

The corresponding pressure distributions typical for each of the supercritical flow conditions
encountered in Fig. 11.1 are shown in Fig. 11.2. The abrupt increase in pressure coefficient
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Figure 11.1 Supercritical flow patterns on an airfoil with a flap. (a) Cambered airfoil at small angle of
attack. (b), (c) Cambered airfoil at moderate angle of attack with flap deflection

after a shock wave and the smooth decline in pressure in an expansion fan are quite clear.
The hinge line of the flap also experiences a sharp change in the pressure in the subsonic flow
condition (lower surface, case (b)). Shock-induced separation at the trailing edge is responsible
for the flow not leaving the airfoil in the same direction on the two surfaces, which means the
Kutta condition is not satisfied. While the pressure distribution is qualitatively changed for
each flap deflection, the effect on the integrated pressure and the overall lift, pitching moment
and hinge moment is expected to be only quantitative, provided the extent of flow separation
(i.e. flap deflection) is small. This qualitative examination of steady flow characteristics in the
transonic case offers an insight into what can be expected in the unsteady case, where both
freestream conditions and flap deflection are time dependent.
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Figure 11.2  Supercritical pressure distributions corresponding to cases shown in Fig. 11.1.
(a) Cambered airfoil at small angle of attack. (b), (c) Cambered airfoil at moderate angle of attack with
flap deflection

11.2 Unsteady Transonic Flow Characteristics

When encountering unsteady flow conditions (such as due to wing vibration or a changing
flap deflection), the flow on a wing becomes time dependent. In a transonic case, the unsteady
effects can be nonlinear functions of the Mach number as well as the forcing frequency and
amplitude. When large motion amplitudes are present, there may also be a significant depen-
dence on Reynolds number due to a periodic separation and reattachment of the boundary layer.
Consequently, unsteady flow analysis in the transonic case can quickly become a nightmare
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for an aeroelastician. Fortunately, a major simplification occurs when the approximation of
small amplitude oscillations is made. Not only can the flow separation effects be neglected in
such a case but also the unsteady aerodynamic forces and moments can be approximated to
be simple harmonic. This enables the application of describing functions in the transonic ASE
plant models, as will be seen in a later section.

11.2.1 Thin Airfoil with Oscillating Flap

In order to qualitatively analyse the unsteady aerodynamic characteristics, we begin with
thin airfoils of the fighter aircraft type, either oscillating in pitch or forced by an oscillating
trailing-edge flap. For the simple harmonic flap oscillation, we have

8 =6, + 5ye', (1L.1)

where w is the forcing frequency, 6, the mean flap position and &, the flap amplitude. If a linear
relationship exists between excitation and response, the unsteady loads can also be assumed
to be harmonic. This is usually valid for thin airfoils undergoing small amplitude oscillations.
However, for thicker airfoils or in the presence of flow separation, the unsteady airloads will
have a nonlinear relationship with the flap deflection. Even in such cases, it is a good approx-
imation to consider only the primary Fourier component of the unsteady response, because it
is the component that can cause energy gain in the system at the forcing frequency, which is
the main concern in flutter and buffet response. The unsteady, non-dimensional pressure dif-
ference between the lower and upper surfaces, AC, = C,, — C,,, obtained by subtracting the
steady (mean) pressure distribution, is given by the primary harmonic component as follows:

AC, =| AC, | £+, (11.2)

where | AC, | is the magnitude and ¢ the phase difference. The essential unsteady analysis is
carried out by measuring the magnitude and phase at selected locations on the airfoil surface
for various forcing frequencies, Mach numbers, mean flap deflections and flap amplitudes.
Tijdeman (1977) reported experimental measurements for steady, quasi-steady and
unsteady pressure distributions on a NACA 64A006 symmetrical airfoil section equipped
with a 25% chord trailing-edge flap. The critical Mach number is between 0.82 and 0.85
(depending on flap deflection), and for the steady critical flow, the shock wave is located at
45% chord, which becomes stronger and moves downstream as the Mach number is increased.
The shock wave reaches the hinge line at freestream Mach number of 0.92, slightly after which
extensive flow separation takes place on the flap and a complicated flow pattern (alternating
lambda-shock/expansion fan) is observed on the hinge line. Therefore, the flap’s effectiveness
as a control device is confined to Mach numbers less than 0.92. Figures 11.3—11.5 show
unsteady pressure-difference plots for a fixed flap frequency of w = 120 Hz and flap deflection
amplitude 6, = 1.0° about 6, = 0 and @ = 0 mean position, for a subcritical Mach number 0.8
and two supercritical cases (M = 0.85,0.90). The experimental data for the plots is derived
from Tijdeman’s report (Tijdeman 1977). Since the mean flow is symmetrical, the upper
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Figure 11.3 Unsteady pressure-difference distribution over a NACA 64A006 symmetrical airfoil with
an oscillating flap, 6, = 1.0°, w = 120 Hz, about the zero mean position for subcritical Mach number 0.8
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Figure 11.5 Unsteady pressure-difference distribution over a NACA 64A006 symmetrical airfoil
with an oscillating flap, 6, = 1.0°, w = 120 Hz, about the zero mean position for supercritical Mach
number 0.9

and lower surfaces have the same pressure magnitude, but opposite phase. Therefore,
| AC, |=| C,z |=] €y |- The following trends are obvious from these figures:

1.

For the subcritical case (M = 0.8), the pressure magnitude first declines near the leading
edge because of subsonic acceleration, then increases gradually in the mid-chord region,
which is followed by a steep increase close to the flap hinge line. The peak pressure mag-
nitude is at the hinge line. The phase angle continuously increases from a negative value at
the leading edge to a smaller positive value at the trailing edge, with zero phase at the flap
hinge line.

. The supercritical cases (M = 0.85,0.90) show a change in the mid-chord region due to the

presence of a normal shock wave. The supersonic bubble before the shock is evident as
a steep pressure rise, reaching a maximum at the shock location. After the shock wave,
the pressure magnitude drops abruptly to a local minimum, then rises to a peak on the
hinge line in locally subsonic flow. The phase lag (negative phase angle) is maximum in
the supersonic bubble, then decreases by almost 180°. near the shock location, after which
the slope d¢p/dx decreases and the zero phase is crossed on the flap hinge.

. The peak in the pressure magnitude due to shock wave increases with the freestream Mach

number. In addition, its location is displaced further downstream, showing that (expectedly)
the shock wave moves downstream as the flow speed increases.

The minimum pressure magnitude in the front part of the airfoil becomes smaller and covers
a larger chordwise region as the Mach number is increased. For the supercritical cases, this
indicates an expanding supersonic bubble with the increase of flow speed.
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5. The maximum phase lag before the shock persists for a larger chordwise extent as the Mach
number is increased. This again indicates an expanding supersonic bubble with increasing
flow speed.

6. The peak in pressure magnitude and the near 180°. change in the phase close to the shock
location indicate that there may be a natural mode associated with the shock wave in the
unsteady transfer function. However, this can be confirmed only by a frequency response
Bode plot of AC,, /6 (Chapter 1). Unfortunately, data is provided at only a few frequency
points, which does not enable a systematic frequency response analysis for the pressure
distributions, which could have clearly identified the unsteady aerodynamic natural modes
due to shock wave motion.

Tijdeman (1977) compared the unsteady pressures at flap frequencies of 30, 90 and 120 Hz.
An ever-increasing peak magnitude with increasing frequency for the slightly supercritical
case of M = 0.85 is observed in Fig. 11.6. For the higher Mach number M = 0.90 (Fig. 11.7)
when the shock wave reaches the hinge line, there is no effect of the flap on the pressure
distribution upstream of the shock wave, and a flat pressure magnitude and phase are observed
in the front part of the airfoil. However, the aerodynamic natural frequency due to unsteady
shock wave is undetermined, which could have been explored by taking more frequency points
in the spectrum between 90 and 120 Hz until a peak maxima could be obtained, indicating a
natural mode. Such a frequency response analysis has not been reported even elsewhere in
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Figure 11.6 Unsteady pressure-difference distribution over a NACA 64A006 symmetrical airfoil with
an oscillating flap for various reduced frequencies for supercritical Mach number 0.85
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Figure 11.7 Unsteady pressure-difference distribution over a NACA 64A006 symmetrical airfoil with
an oscillating flap for various reduced frequencies for supercritical Mach number 0.90

the literature and prevents the aeroelastician in obtaining an accurate transfer function for
the unsteady transonic aerodynamics for the linearized case (small amplitude motion of thin
airfoils). All one could say is the unsteady shock dynamics results in a natural pitching mode
below 120 Hz.

The effect of a non-zero incidence, a, and/or mean flap angle, &, is to introduce asymme-
try into the flowfield whereby it is no longer possible to regard the upper and lower surface
pressures as being anti-symmetrical about the chord plane. Furthermore, such an asymme-
try also causes a decrease of the critical Mach number and an increase in the strength of the
shock for any particular supercritical Mach number, when compared to the symmetric case.
The chordwise integrated pressure distribution and its moments give the normal force coef-
ficient, Cy, the pitching moment coefficient, C,,, and the hinge moment coefficient for the
flap, C,,. These are plotted in Figs. 11.8—11.10 against the freestream Mach number, M, and
in Figs. 11.11-11.13 against the reduced frequency of flap oscillation, k = wc/(2U). As for
the pressure distribution, only the primary Fourier component is extracted from the frequency
domain data, resulting in the following magnitude and phase descriptions:

Cy=|Cyl pliot+oN)
Cm — I Cm | e(i(ot+¢m)
C,=|C, | ei@rton, (11.3)
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Figure 11.11 Unsteady normal force coefficient of a NACA 64A006 symmetrical airfoil with an oscil-
lating flap, 6, = 1.0°, @ = 120 Hz, about zero mean position, as a function of reduced frequency
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Figure 11.12 Unsteady pitching moment coefficient of a NACA 64A006 symmetrical airfoil with an
oscillating flap, §, = 1.0°, @ = 120 Hz, about zero mean position, as a function of reduced frequency
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The dependence of unsteady coefficients on freestream Mach number is quite significant.
The normal-force and pitching-moment coefficients increase in magnitude and decline in phase
until the critical Mach number is reached. As soon as a shock wave appears around M = 0.85,
the magnitudes | Cy |,| C,, | are seen to drop steeply with Mach number, while the phase
angles, ¢y, ¢,,, rise steeply from negative to positive values with M. The variation of the
hinge-moment coefficient is slightly different, as the increase in magnitude and decline in
phase due to supersonic bubble continues up to the Mach number at which the shock wave
reaches the hinge line. After the shock crosses the hinge line, the sudden drop of | C}, |, and
rise of ¢, with Mach number indicates a changed flow pattern on the flap due to shock-induced
separation.

The effect of the flap’s reduced frequency on the unsteady aerodynamic coefficients
(Figs. 11.11-11.13) for supercritical Mach numbers is evident in a rapid decline of the
normal-force coefficient magnitude with k, accompanied by first increase, and then decline
of the pitching-moment and hinge-moment magnitudes with frequency. For the higher Mach
number (M = 0.9), the shock wave sits either astride or slightly aft of the hinge line, therefore
an increased flap frequency has little effect on the net normal force, because pressure distur-
bances caused by the flap cannot be felt upstream of the hinge line. The imaginary part of the
pitching moment crosses the frequency axis (changes sign) for the Mach number of M = 0.85
around a reduced frequency of k = 0.15, which corresponds with the real part reaching a
maxima near approximately the same frequency. This indicates the presence of a natural
pitching mode in the unsteady aerodynamic plant due to the shock wave. However, this mode
disappears as the freestream Mach number is increased, due to the shock wave reaching the
hinge line. Unfortunately, the exact natural frequency of this shock-pitch-coupled mode cannot
be identified because of a paucity of data points at low frequencies (as remarked earlier).

11.2.2 Supercritical Airfoil Oscillating in Pitch

The transonic flow over an airfoil can produce significant self-induced oscillations due to
shock-wave/boundary-layer interaction. Such a condition was first experimentally observed
by McDevitt et al. (1976) on an 18% thick, circular-arc airfoil. Furthermore, in the 1970s and
1980s, there was a concerted design effort to produce wings that could cruise right up to and
barely under the speed of sound, without encountering any shock waves at the design angle
of attack. Such shock-free designs that delay the onset of critical flow to a higher flight Mach
number are termed supercritical airfoils, and give a significant speed advantage to subsonic
airliners without any decrease in the lift-to-drag ratio, which a conventional airfoil shape can-
not. The supercritical shapes have a larger than conventional leading-edge radius, along with
a nearly symmetrical front part and the cambered portion of the airfoil shifted towards the
trailing edge, whereby flow acceleration to the local sonic speed on the upper surface (which
normally takes place close to the leading edge) is decreased. However, this same blunt-nosed,
aft-camber design gives rise to the undesirable phenomenon of self-induced shock wave oscil-
lations in off-design conditions, with an increased possibility of interaction with rigid body
and aeroelastic modes, thereby causing buffet, limit-cycle and transonic flutter dip problems.
In contrast, symmetrical, bi-convex and conventionally cambered thin airfoil shapes have been
found to be less susceptible to self-induced shock oscillations.

Several supercritical airfoil sections have been extensively studied for their unsteady tran-
sonic characteristics, namely the NLR-7301 airfoil of the National Aerospace Laboratory
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Figure 11.14 The NLR-7301 supercritical airfoil

(NLR), Amsterdam (Tijdeman 1977), the Bauer—Garabedian—Korn (BGK) No.1 airfoil of the
National Aeronautical Establishment, (Ottawa Lee 1990) and the Royal Aeronautical Estab-
lishment (RAE) No. 2822 airfoil (Cook et al. 1979).

Consider a supercritical airfoil ((Fig. 11.14) with chord ¢ at a steady freestream Mach
number M, with a mean angle of attack, a,, mean lift coefficient, C,,, and mean pitching
moment about quarter chord point, C,,,. An oscillatory pitching motion with small amplitude,
@, and frequency, w, is now superimposed on the mean flow, such that the net angle of attack
is given by

a = a, + ag sin(wt). (11.4)

The lift and pitching moment of an oscillating airfoil at transonic speeds depend on the oscilla-
tion frequency, @, and amplitude, a), as well as the mean flow, a,. The dependence of unsteady
transonic flow on the mean flow conditions makes it very difficult to analyse, in contrast with
moderate subsonic or supersonic flows where such dependence is absent, hence linear super-
position of steady and unsteady flows is possible. Experimental investigations into transonic
unsteady aerodynamics of oscillating airfoils have revealed the following basic characteristics
(Tijdeman 1977):

1. The presence of nearly normal shock waves on the upper and lower surfaces of a wing
causes a change in the magnitude and phase of the unsteady air loads from those that are
predicted by linearized aerodynamic theories.

2. The shock wave effects on pressure distribution are nearly linear when the oscillatory
motion is confined to small amplitude about a symmetrical equilibrium condition (e.g. sym-
metric airfoil with a zero angle of attack). Such a shock dynamics is termed Type A motion
(Tijdeman 1977).
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3. When the flight Mach number is reduced slightly below that of Type A motion, there is a sig-
nificant nonlinear dependence of the shock strength on the shock-displacement amplitude.
The nonlinear displacement of the normal shock wave can be small (Type B motion) for
a moderate reduction in flight Mach number, but can become large (Type C motion) if the
Mach number is reduced further (Tijdeman 1977). However, as the nonlinear effects of the
shock wave are localized, their integrated effect on the aerodynamic forces and moments
is often quite small even in the Type C motion. Thus the dependence of the unsteady aero-
dynamic loads on the wing’s displacement remains essentially linear, as long as the mean
(steady) flow conditions are nearly symmetrical and the wing’s oscillatory motion is of rel-
atively small amplitude. However, it is difficult to predict under what precise combinations
of the mean flow conditions and motion amplitudes a particular airfoil can have nonlinear
aerodynamics.

4. If the mean flow conditions are highly unsymmetrical (e.g. a wing operating at a large
angle of attack), or the motion amplitude is large, the unsteady flow separation induced
by stronger normal shock waves results in a nonlinear relationship between the air loads
and the generalized coordinates of motion. Thus the unsteady behaviour in the nonlinear,
transonic regime is dependent on the mean flow conditions.

Either strong shock waves or large displacements of weak normal shock waves can cause a
nonlinear relationship between generalized aerodynamic forces and generalized coordinates.
Since strong normal shocks are undesirable from drag considerations, the supercritical air-
foils are designed to be shock-free (or with weak normal shocks) at steady Mach numbers
in the conventionally transonic regime where most modern airliners typically cruise. There-
fore, not only is the drag penalty associated with strong shocks avoided but also a linearized
aerodynamic relationship can be employed via the unsteady aerodynamic influence coeffi-
cients (Chapter 3) for aeroelastic analysis. In a basic ASE model, one can thus use a linearized
unsteady aerodynamic influence coefficient matrix, provided the mean flow conditions are
essentially shock-free and the unsteady motion of the shock waves is of small amplitude.

11.3 Modelling for Transonic Unsteady Aerodynamics

Accurate modelling of transonic aerodynamics is possible only by a computational fluid
dynamics (CFD) method. It was seen in Chapter 3 that the transonic small-disturbance (TSD)
model is a convenient and accurate representation of unsteady transonic aerodynamics for
ASE purposes. Not only can the TSD equation model the inherent nonlinearity associated
with the mixed subsonic/supersonic characteristics but it can also capture the unsteady
behaviour of weak, normal shock waves present at the transonic speeds. It is therefore natural
to treat the TSD equation as a basic model for unsteady transonic aerodynamics of ASE
systems, written as follows:

,  (r+ DML 2M2, M2,
1 _MOO_U—d)x ¢xx+¢zz= U—¢xt+U—2d)n, (11.5)

or, in terms of a frame convecting with the freestream velocity, as the following nonlinear wave
equation:

(y + DM, 1 D¢
¢X¢X)C =

0 = e (11.6)
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Equations (11.5) and (11.6) are alternative representations of the same equation, but indicate
two entirely different ways of attacking the TSD problem. The first (Eq. (11.5)) is the
finite-difference (or finite-volume) approximation applied in a body-fixed reference frame
using a body-fitted grid, while the second is the iterative solution of the nonlinear wave
equation with a finite-element approximation in an appropriate domain. The boundary
conditions in each case must be carefully applied in order to faithfully model the physical
flow. These include the far-field conditions, the solid wall condition on the normal velocity
component and additional conditions applied to obtain a unique and physically meaningful
solution. The latter include the Kutta condition at the trailing edge and an artificial viscosity
(or entropy) condition to introduce dissipation in an inviscid model. The grid geometry is
crucial in both the time marching of the solution, as well as in the application of the boundary
conditions. Finite-difference-type CFD solution procedures are based on structured grids,
which either conform to a changing solid boundary (body-fitted grid), or remain fixed to the
freestream flow (space-fixed grid). The application of time-marching and boundary conditions
in each case is different. An unstructured grid which can adapt itself to the time-varying
boundary is the most favoured of all, but it is very difficult to generate for a given problem.
Finite-element type solutions generally employ unstructured grids, because they do not
require a spatial marching inside the computational domain. For further details of CFD
solution procedures and grid geometries, the reader is referred to the textbooks devoted to the
topic (Hirsch 1990, Tannehill et al. 1997).

Solutions to the TSD equation can be used to derive interesting analytical results, such
as an indicial (or Duhamel’s) approximation for unsteady lift and moment coefficients, the
Volterra—Wiener method and describing functions for shock-induced LCOs. These approxi-
mate functions can be employed in either a regressive parameter identification scheme for the
self-tuning regulator (STR) (Chapter 5) or in a reference model for the model reference adap-
tation scheme (MRAS) (Chapter 8). Thus the TSD equation can be the kernel of future growth
in adaptive transonic aeroservoelasticity.

11.3.1 Indicial Method

As the rational-function approximations (RFAs) are applied in the subsonic and supersonic
small-perturbation flows to derive a linear, time-invariant (LTT) state-space representation of
the aeroelastic system, an indicial approximation can be similarly applied to derive an equiva-
lent approximation for the transonic regime. (Marzocca et al. 2005) suggest using the following
Wagner-type functions for generalized indicial transonic aerodynamics of an airfoil:

d(r) = ZAie_ﬁiT, (11.7)
i=1
whose coefficients A;, f;,i = 1, ... ,n are identified by a CFD (Euler) scheme of the finite-

volume type. The indicial functions are nonlinearly dependent on the induced downwash, w(#).
For example, the indicial lift-response function, ¢, , is the following Frechet derivative of the
downwash:

Cp(7)

Aw
_ { Crw(@) + H(¢ — o)Aw] — Cp[w()] }
= l1m ’

Aw—0 Aw

¢L[W(§)v T, 6] = AI&/IEO

(11.8)




312 Adaptive Aeroservoelastic Control

where C,(7) is the unsteady lift coefficient, whose time evolution is given by the following
nonlinear generalization of Duhamel’s integral:

CL(0) = CL(D)] oy + / j—wtbL(w(C),r,O')da. (11.9)
0 {0}

A similar indicial function, ¢,,, can be defined for the pitching moment. For the incompress-
ible flow, both ¢; and ¢,, equal Wagner’s function. The indicial approach is shown to compare
well (Marzocca et al. 2005) with the direct numerical solutions obtained by an Euler solver
(with two kinds of grid evolution) for symmetric NACA series airfoils undergoing step changes
in the angle of attack near unity Mach number. However, as might be expected, discrepancies
are observed at low reduced frequencies where the shock-induced nonlinear effects are pre-
dominant. Hence the indicial approach appears to be promising for ASE applications, except
at very low reduced frequencies.

11.3.2 Volterra—Wiener Method

The Volterra method approximates the response of a nonlinear, autonomous (time-invariant)
system as a series of convolution integrals of increasing order, with the first term being the
LTI convolution integral. The kernel of each convolution integral (called Volterra kernel) can
be identified by correlation functions derived from the Volterra—Wiener theory (Rugh 1981)
for nonlinear electrical systems. Such kernel identification schemes have been applied in the
past for separated flow aerodynamics computed by Navier—Stokes solvers, and offer a great
promise for shock-dominated flows as well.

For an illustration of the method, consider a single-input, single-output, autonomous system,
whose response to an arbitrary input, u(f), which begins to act at a time, ¢ = 0, is exactly given
by the following infinite series:

¥(t) = / h(t — t)u(r)dr + / / hy(t — 7, t — Ty u(t))u(z,)dr,dz,
0 0 Jo

topt '

+/ / . / h,(t =1, t =15, -+, t — T )u(t)u(z,) - - - u(z,)dr,dr, - - -dr,
0 JO 0

+--- (11.10)

where A(f) is the impulse response function and #,(.) denotes a symmetric kernel function of
order n with the symmetry exemplified by

hz(t—Tl,t—Tz)=h2(t—T2,t—Tl). (1111)
Since the system is causal, we have h,(t — 7|, —7,,---,t—17,) =0 if 7, <0 for any i =
1, -,n. The Volterra kernel, £,(.), denotes the response of the nonlinear system to n unit

impulses applied at n different instants. The identification of the kernels is performed by com-
paring the response with a given finite-order Volterra series with an actually computed signal.

The Volterra—Wiener method was applied by Silva (1993) to a TSD solution with a pulse-rate
change in the angle of attack for a two-dimensional airfoil, assuming only the first two terms
of the Volterra series. This amounts to a bilinear (or weakly nonlinear) approximation for the
transonic aeroelastic system. This application illustrated the feasibility of the approach, but
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more work needs to be done for identifying the nonlinear kernels for arbitrary inputs and to
test the validity of the weak nonlinearity assumption for a practical system.

11.3.3 Describing Function Method

The lift and pitching moment coefficients for a pitching airfoil in the linearized case, such as
that of Type A shock motion, can be expressed as follows:

Cf = Cfs + CfO Sin(a)t + ¢f), (1 112)
C, = C,, + C,psin(er + ¢,,), (11.13)

ms

where Cy, C,,q are the unsteady amplitudes and ¢, ¢,, the phase lag angles of lift and pitching
moment, respectively. In the unsteady case where strong shock waves are absent, the amplitude
ratios Cyo/ag, C,,0/ % and the phase lag angles depend only on the frequency w, and not on
the mean flow condition a,. Hence, the following frequency response relationship exists for the
linearized, transonic, unsteady aerodynamics of an airfoil with an oscillating angle of attack:

i(wt+py) )
{g’igii(a)t+¢:l)} = <g:;g§> age'™, (11.14)
where C@)
| Gplw) | = =22
ap
Cm(w)
| G@) | = ——, (11.15)
0]
_ -1 Im{Gm(w)}
¢, (w) = tan RG] (11.16)

By carrying out a wind-tunnel test in which the amplitude ratios and phase angles are deter-
mined at a range of oscillation frequencies, the linear transfer functions for lift and pitching
moment are derived by analytic continuation, which involves substituting the Laplace variable
by the fundamental harmonic, s = iw, in Eqgs. (11.15) and (11.16). Such investigations have
been conducted on several airfoils, such as the NLR-7301 supercritical airfoil (Tijdeman 1977)
shown in Fig. 11.14.

For nonlinear shock behaviour, such as the Type B and C motions, the assumption of linear-
ity breaks down. However, in an ASE application, the aerodynamic behaviour of an oscillating
shock wave is hardly to be seen in isolation, but must be studied in a closed loop with a struc-
tural dynamic system, as well as with a feedback control system. This fact is illustrated in
Fig. 11.15 for an ASE regulation system, where the linear structural dynamics block,

% = Ax + Bu + FQ, (11.17)

with state vector, x(¢), aerodynamic loads vector, Q(#), and coefficient matrices, A, B, F,isin a
closed loop with a nonlinear feedback regulator,

u = gx), (11.18)
and a nonlinear, transonic aerodynamics block,

0 =f(x,u). (11.19)
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Figure 11.15 Nonlinear aeroservoelastic regulation system for the transonic regime

The system of Fig. 11.15 is in the classic configuration of a nonlinear block (comprising the
aerodynamics and controller subsystems) in a feedback loop with a linear, structural dynamics
subsystem. Its stability can therefore be analysed by the circle criteria (Chapter 7), which is the
extended Nyquist stability criterion for nonlinear systems. While a control law, u = g(x), can
be designed to stabilize a known aerodynamic nonlinearity, even in the absence of the control
inputs, (u = 0), the linear, stable structural dynamics system is capable of filtering out higher
harmonic signals from the aerodynamic spectrum, resulting in only a few fundamental peaks
in the aeroelastic frequency response. Consider the following Fourier series representation of
the aerodynamic loads vector:

0 = Q)+ Y. Q, cos(ior) + Q,, sin(iwr), (11.20)
i=1

where the steady-state acrodynamic loads vector is given by

0= 1 | o (12

and the unsteady harmonic coefficients by
0, = 1 /” QO(1) cos(iwt)d(wt), (11.22)

1 7-[ _r
0, = 1 /7r Q1) sin(iwt)d(wr). (11.23)

1 7[ _r

Since the ASE applications are mainly concerned with suppressing oscillations about a given
steady state, it is reasonable to assume that the steady part of the nonlinearity, Q,, does not
contribute to the unsteady aerodynamic spectrum. Hence, Q, is dropped from Eq. (11.20),
which implies that the unsteady aerodynamic nonlinearity is an odd function of the frequency.
Furthermore, the structural dynamics subsystem is designed to be stable. Therefore, by the
circle criterion (Chapter 7), it follows that the unforced aeroelastic system is stable and all the
higher harmonics of the aerodynamics load spectrum except the first few are suppressed by
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the structural system function acting as a low-pass filter in a feedback loop. Consequently, the
output signal, x(¢), of the unforced aeroelastic system can be approximated by only the first
few (N) harmonics, given by

N
xX(t) = ) ¢;cos(ion) + d; sin(ion). (11.24)

i=1

The low-frequency TSD equation provides an excellent computational model for identify-
ing describing functions for transonic aerodynamics (Ueda and Dowell 1984). Consider the
typical-section model for an airfoil oscillating in pitch, 6(¢), and plunge, h(t), with an aerody-
namic transfer matrix, G(s), governing the linear part of the unsteady lift and pitching moment
coefficients, C; (), C,, (), as follows:

CL | _ 0(s)
{Cm(s) = G(s) hs) [ (11.25)
where s is the non-dimensional Laplace operator. For the low-frequency TSD, model the
following effective angle of attack can be defined for the airfoil:

a(t)=9+%, (11.26)

which governs the lift and pitching moment by nonlinear functional relationships, C; (@, &) and
C,,(a, @), respectively. These nonlinear aerodynamic effects can be represented by an operator,
f(@), in a feedback loop with the linear aerodynamic subsystem (Fig. 7.1). If the system is
undergoing harmonic oscillations,

0(t) = Oye™,  h(r) = hye' P, (11.27)

where k is the reduced frequency and ¢ the phase difference between pitch and plunge, the
following Fourier series expansion can be employed for the aerodynamic lift and moment

(Ueda and Dowell 1984):
= L 11.28
{ o } <DmR Dy, /k « ( )

with a = \/93 + kzhg, and
1

Dy, =— / C;(a, a) sin(kz)d(kt)

angm

1 [" .
DL1 = Oto_ﬂ /_” C(a, @) cos(kz)d(kr)

D, = %Lﬂ | Cola@sintriee)
D, =—— [ Cpla d)coske)d(k). (11.29)

Azt J_;
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The complex operator notation applied to Eqs. (11.28) and (11.29) yields the following:
Ci(a,a) = D;(ap)a, (11.30)

where
D;(ay) = DLR + iDLl, (11.31)

and so on. For a constant angle-of-attack amplitude, «, the form of these equations is iden-
tical with those for a linear system, hence a Nyquist-like stability analysis is possible. The
describing function, N(ik, &), is then defined by

f(a(t)) = N(ik, ag)a(t) = N(ik, ao)aoeik’, (11.32)

where f(a) is the operator of nonlinear aerodynamic effects. Equation (11.32) can be repre-
sented in the non-dimensional Laplace domain as follows:

@
fla(s)) = N(s, a)—"=, (1133)
s — ik
which, for k = 0, gives the following indicial response function:
%
P(s) = N(s, ap)—. (11.34)
s

The indicial response can be derived from the low-frequency TSD solution by curve fitting,
which directly yields the describing function, N(s, a;), to be used in the extended Nyquist
stability analysis (see Chapter 7). Ueda and Dowell (1984) successfully applied this method
to determine the open-loop flutter condition of a transonic airfoil by the low-frequency TSD
model. A similar application is possible for a closed-loop flutter-suppression system design.

11.4 Transonic Aeroelastic Plant

Consider the following aeroelastic equations of motion for the transonic regime:
Mg+ Cq+Kqg=Q,+ Fu. (11.35)

Here, g(?) is the generalized coordinates vector, M, C, K the generalized structural mass, damp-
ing and stiffness matrices, respectively, Q,(¢) is the generalized unsteady aerodynamic force
vector. The generalized control input vector u(f) is applied via a coefficient matrix, F. The
aerodynamic model can be assumed to be a separated into a linear aerodynamic plant and a
nonlinear shock dynamics plant given by

Q,=M;q+Cpg+Kpq+Nyx,+f(q.9), (11.36)

where M,, C,,K,, N, are the matrix parameters of the linear aerodynamic behaviour (see the
ideal aerodynamics plant above) with the associated aerodynamic state vector, x,(f), with aero-
dynamic state equation

)'cazFaxa+Fa{Z} (11.37)
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and f(q, ¢) is the nonlinear aerodynamic generalized force vector associated with the unsteady
shock motion. The overall state-space representation can then be given by the following:

x = Ax + (0,f,0)" + Bu, (11.38)
where
0 I 0
A=|-m"'k -m'C -m'N, (11.39)
Ftl Fa
and
B=(0,i"F), (11.40)

where M =M —M,,C = C — C,,K = K — K, are the aeroelastic mass, damping and stiffness
matrices, respectively, and O and / are null and identity matrices, respectively, of appropriate
dimensions.

The challenge is to design an adaptive feedback control law in the complete absence of any
mathematical model for the nonlinear aerodynamic forcing term, f(q, ¢). The methods pre-
sented above for approximating the nonlinear forcing term by an indicial function, a Volterra
integral or a describing function can be applied for the derivation of the control law. However,
even if such a functional approximation is unavailable, the nonlinear adaptation methods of
Chapter 10 could be applied directly to yield a workable adaptive control system.

11.5 Adaptive Control of Control-Surface Nonlinearity

The adaptive control of aerodynamic nonlinear behaviour caused by the presence of normal
shock waves near the hinge line of the control surfaces is an important aeroservoelastic appli-
cation. Apart from causing a nonlinear increase in the control stiffness and damping, shock
waves can excite a dynamic phenomenon called control-surface buzz. Before the vagaries of
transonic flight were understood and accounted for, the nonlinear effects of shock waves on the
control-surface hinge line often caused a ‘freezing-up’ of the elevator control in a dive, with
disastrous consequences. The solution was to remove the elevator altogether and to replace it
by an all-moving tail. This design is now in place in every high-speed aircraft designed after
the 1950s. The actuator dynamics in the presence of shock waves is nonlinear, which can be
approximated as follows:

. cs .k :
5:_755—755—k252—k353—c252+5c, (11.41)

where k,, k3, ¢, are positive, but unknown constants. A regressor form of the nonlinearity is
the following:

f(x) = 0T d(x), (11.42)
where O = (ky, k3, ¢,), @ (x) = (=2, —x3,.x%,) and x3; = §,.x35 = 6 are the actuator states.
When this model is implemented in the MRAS with ¢-modification (see Chapter 10), we have
the following adaptation law:

O =R |®()e’PB - 60| | (11.43)
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where o > 1. However, as the control-surface actuator response is usually governed by servos,
this type of nonlinearity leads to instability of the overall ASE system due to an adaptation
of the servo gains. The solution is to remove the servo gains from the nonlinear adaptation
scheme. Let us consider an application of this method to a fighter-type aircraft equipped
with elevons.

Example 11.5.1 Consider the tail-less, delta-winged fighter aircraft (Chapter 8) equipped
with elevons, a pitch-rate gyro and an accelerometer. The aircraft is statically unstable in
the manoeuvre flight condition of Mach 0.9 and standard sea level, for which an adaptive
stabilization system was designed in Chapters 8 and 10 by including the actuator and the
aeroelastic modes in the feedback law. However, as the gains of the three coupled subsystems
(rigid aircraft, actuator and aeroelastic aircraft) are evolved by a common scheme, there is a
possibility of overall instability when any subsystem behaves ‘abnormally’. This is true when
the shock-driven dynamics of the actuator becomes inherently nonlinear, while the adaptation
scheme is based on the actuator being a linear system. We first consider the response to an
initial perturbation in the pitch rate of the MRAS system designed in Example 10.5 in the
presence of actuator nonlinearity of the form given by Eq. (11.42) with k; = 0.001, k, = 0.002,
¢y = 0.0005. The results plotted in Figs. 11.16 and 11.17 show an unstable adaptive ASE
system due to a divergent rigid-body closed-loop subsystem. The coupled aeroelastic response
is also seen to be divergent (Fig. 11.17), which is particularly catastrophic. The MRAS
system fails to stabilize the rigid-body dynamics due to the dependence of the regulator gains
on the nonlinear system’s tracking error, e, from the linear reference model, which grows
without bound.
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Figure 11.16 Simulated initial response (a,q,Z,6) due to a pitch rate perturbation of a ¢-modified
MRAS system for the tail-less delta fighter at U = 306 m/s and standard sea level in the presence of
shock-induced actuator nonlinearity
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Figure 11.17 Simulated initial response of the aeroelastic modes due to a pitch-rate perturbation of
a o-modified MRAS system for the tail-less delta fighter at U = 306 m/s and standard sea level in the
presence of shock-induced actuator nonlinearity

Since the divergent rigid-body response is due to the adaptive coupling with the nonlinear
actuator dynamics, a simple solution is to change the adaptation law such that the rigid-body
regulator gains (K|, K,) adapt only with the rigid states, a(t), q(t), rather than with the tracking

error. This is carried out as follows:
K =—{“}. (11.44)

The other controller parameters are kept constant at their nominal values. The resulting
closed-loop response of the modified adaptation law, plotted in Figs. 11.18-11.20, seen to
be asymptotically stable with all the state variables settling to zero, is less than 10s. This
example illustrates the advantage of simple feedback laws over more complex ones, especially
when dealing with unknown nonlinear forcing terms.

11.5.1 Transonic Flutter Mechanism

The phenomenon of a sudden dip in the flutter dynamic pressure when traversing the sonic
regime from either the subsonic or supersonic Mach numbers is associated with the nonlinear
effects of unsteady shock waves. Since it is difficult to model the unsteady aerodynamic
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Figure 11.18 Simulated initial response («, g, Z, §) due to a pitch-rate perturbation of the modified adap-
tive scheme for the tail-less delta fighter at U = 306 m/s and standard sea level in the presence of a
shock-induced actuator nonlinearity

behaviour in the presence of strong shock waves, a self-adaptive, backstepping control is
proposed here for transonic flutter suppression. The alternative method of smoothly interpo-
lating the gain scheduler of the subsonic and supersonic speeds (see the previous section) in
the transonic region is fraught with danger due to its highly uncertain nature. Even a small
deviation from the expected interpolated behaviour can have catastrophic consequences.
The mechanisms behind single degree-of-freedom pitch or control surface flutter and the
bending-torsion flutter in the presence of unsteady shock waves have been a focus of intense
research. While both classical analysis and experiments have predicted nonlinear flutter in
transonic/low-supersonic regimes, the precise mechanism behind such an instability has
remained an object of speculation. To quote Ashley (1980):

It is the opinion of the author and others (cf. Sec. 4.2 of McGrew et al.) that
a predominant factor in these anomalies is the presence of shock waves located
part-way back along the chords of the upper, and sometimes also, the lower wing
surfaces. These shocks may move periodically in harmony with the oscillatory
angle-of-attack changes, and even at very low reduced frequencies, lag signifi-
cantly in phase behind what would be estimated on a quasi-steady basis.

Hence, a phase lag in pitch caused by shock-wave dynamics is primarily considered to be
responsible for transonic flutter. In a linearized subsonic flow, the flutter condition is caused
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Figure 11.19 Simulated initial response of the aeroelastic modes due to a pitch-rate perturbation of
the modified adaptive scheme for the tail-less delta fighter at U = 306 m/s and standard sea level in the
presence of a shock-induced actuator nonlinearity

by a phase lag in pitch due to a circulatory wake (see Chapter 4). Therefore, it can be surmised
that an oscillating shock wave interacting with a circulatory wake accelerates the flutter con-
dition, thereby causing the transonic flutter dip. A decline in the aerodynamic damping due
to the shock wave’s interaction with the circulatory flow can be calculated from the time lag
of what is termed ‘Kutta waves’ (Lee 1990) travelling back and forth between the shock and
the trailing edge, giving rise to another suggested mechanism for transonic flutter (as well as
control-surface buzz). (Ashley 1980) proposed a useful approximate model based on his insight
for flutter corrections due to the shock-wave oscillation, which has been applied by several
authors (Mabey 1980) in their own analyses of transonic flutter. He suggested a simple analyti-
cal correction in lift and pitching moment due to shock-wave oscillation, to be applied to classi-
cal solutions of the two-dimensional, oscillatory subsonic flow (cf. the low-frequency solution
of (Kemp and Homicz 1976) to Possio’s integral equation (Chapter 3)). Such a correction was
derived from the low-frequency TSD solution. Alternative subsonic methods are available (see
Appendix B) for use as the basis of such a correction. For the three-dimensional wing, Green’s
function method (Tewari 2015) appears to be especially suitable in transonic flutter analysis,
as it utilizes a similar grid geometry on the wing as the classical doublet-lattice method.
Pioneering experimental work by Tijdeman (1977), Zwaan (1985), and others at
NLR-Amsterdam, revealed that the effects of unsteady shock waves are such that a
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Figure 11.20 Simulated initial response of selected regulator gains due to a pitch-rate perturbation of
the modified adaptive scheme for the tail-less delta fighter at U = 306 m/s and standard sea level in the
presence of a shock-induced actuator nonlinearity

quasi-linear flutter model could be applicable even for thick supercritical wings. The flutter
parameters are of course the functions of the Mach number, hence the flutter analysis should
be carried out at several Mach numbers in order to obtain the decrease in flutter margin
(flutter dip) encountered at transonic speeds. Furthermore, approximate models based on the
low-frequency TSD solutions can be employed to represent the fundamental harmonic of
shock-induced dynamics. Then a Nyquist-like analysis can reveal the LCO expected at the
flutter condition.

11.6 Adaptive Control of Limit-Cycle Oscillation

An aircraft manoeuvring at a transonic Mach number is susceptible to LCO due to the pres-
ence of shock waves on the wing. This is due to a sustained oscillation in the primary wing
torsion mode, with the twist angle, 6(¢), feeding the shock-wave displacement in such a way
as to maintain a nearly constant amplitude. The precise model of such nonlinear aeroelastic
behaviour requires a sophisticated unsteady aerodynamic model based on the Navier—Stokes
equations of viscous, turbulent, transonic flow. Since it is not always possible to derive such
a model, an adaptive control system is necessary for identifying the concerned dynamics and
applying a corrective control input in order to suppress it.

Cunningham (1989) proposed a nonlinear spring model of transonic LCO involving wing
torsion based on the experimental observation of the shock-induced trailing-edge separation
(SITES) phenomenon on a variable-sweep wing with a supercritical airfoil on the F-111 tran-
sonic active controls technology (TACT) aircraft. It was seen in the experiment that SITES
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leads to the development of the self-sustained pitching motion due to a hysteresis like, nonlin-
ear dependence of the pitching moment on the sign of the pitch rate as a critical angle of attack
(twist angle) is crossed. A positive pitch rate delays the shock-induced separation, thereby
providing a negative pitching moment, which in turn results in a negative pitch rate, and hence
a subsequent onset of positive pitching moment due to SITES. A coupling of such a nonlinear
aerodynamic spring with the torsional wing mode is therefore the essential mechanism of the
LCO at a constant torsional frequency.

Example 11.6.1 We briefly discuss the basic mathematical model of LCO inspired by Cun-
ningham’s work (Cunningham 1989). Let a torsional wing mode of natural frequency, w,
and damping ratio, { > 0, be responsible for the transonic LCO. The unsteady aerodynamic
moment feeding and sustaining the LCO is due to a periodic shock-induced flow separation and
reattachment near the trailing edge (SITES) of the wing. This nonlinear aerodynamic pitch-
ing moment can be represented by an angular acceleration, a(,0), where 0(t) is the twist
angle, which is equal to the change in the angle of attack of the wing from the steady-state
equilibrium. A basic model of such an aerodynamic nonlinearity is the following:

0, <6
05(9’6])={aé 0>0 (11.45)

where a, 0 (thus a) are unknown aerodynamic parameters.
The equation of motion of the torsional LCO plant is the following:

0+ 200 + @°0 = a6, 0) + u, (11.46)

where u(t) is the angular acceleration control input provided by a trailing-edge control surface.
An adaptive control law based on pitch rate g = 0 measured by a rate gyro (Fig. 11.21) is to
be designed such that the LCO is suppressed. This control law must necessarily be nonlinear,
such as that given by

u=g(q,x), (11.47)
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Figure 11.21 Adaptive aeroservoelastic system for automatically suppressing the transonic limit-cycle
oscillation (LCO) via a pitch-rate gyro and a trailing-edge control surface input
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where g(.) is based on identification of the unknown aeroelastic plant behaviour in terms of x,
which is an estimate of the unknown nonlinear parameter a. Thus, x is the additional vari-
able necessary for feedback identification of the unsteady transonic aeroelastic behaviour
represented by a(0, q), which may also vary with the flight Mach number in an unpredictable
manner.

The plant state equations are expressed as follows:

0=gq
q=-2w¢q— a0+ a(0,q) + u,
along with the adaptive, backstepping adaptation law:
x =f(q,%), (11.48)

where f(q, x) must be determined such that the closed-loop system is asymptotically stable.
For global asymptotic stability of the closed-loop system, consider the following control
Lyapunov function:

V(6,q.x) = %aﬂe? + %qz + %[x — a0, ¢)1*. (11.49)
The time derivative of V is given by
V(0, ¢, x) = ©%00 + g + (x — a)f (¢, x) — (x — a)d. (11.50)

A sufficient condition for uniform, global asymptotic stability is given by the LaSalle—
Yoshizawa theorem (Chapter 8) as the following inequality with a positive-definite function of
the state variables, W(0, q,x) > 0,

V(0,q.%) < =W(6,¢,x). (11.51)
Thus we have the following requirement for the adaptation law:

V(G, q,x) = w29q +q[—2wq — ®°0 + a0, q) + u]
+(x —a)f (g, x) — (x—a)a < -W(0,q,x) (11.52)

or
V(G, q,Xx) = —Zquz +a(0,q9)g+ug+ (x—a) (g, x) —(x—a)a < -W(0,q,x). (11.53)

Neither the control, u, nor the adaptation law, f(q,x), must depend on the unknown aero-
dynamic nonlinearity, a(0, q), or on its time derivative, @. Such a control law is generally
difficult to derive. However, the simple nature of the torsional LCO plant enables us to obtain
a stabilizing solution in this case.

An adaptation mechanism is necessary for driving the adaptation error,

e=x—a,
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to zero, irrespective of the magnitude and sign of the nonlinear disturbance, a. This implies
that the desired adaptation error rate, ¢, must have the opposite sign to that of the error; e,
such that the error dynamics is given by

e = —ce,
where ¢ > 0. This allows us to write the unknown term in Eq. (11.53) as follows:
—(x—a)a = —ce* — xe.
On substituting this expression into the inequality Eq. (11.53), we have
V= —2w(q* + ag + ug + (x — a)f (¢, x) — ce® —xe < —W. (11.54)

Now it is a simple matter to choose an adaptation law for satisfying the sufficient stability con-
dition given by Eq. (11.54). An example is the law x = f(q, x) = q, which yields the following:

V= 220G + ag +ug + (x — a)f (¢, x) — ce* —ge < =W < 0. (11.55)

A simple choice of the stabilizing, feedback control law is the following:

u=g(g,x)=—kq—x, (11.56)
which automatically satisfies Eq. (11.55) for all k > 1/(4c) and { > 0, with the following
identity:

. _ k 1/2 q
V<-W= (q,e)<1/2 . ){e}. (11.57)

The feedback gain, k, is to be selected by trial based on the desired rate of error decay, as
c is not known a priori and could depend on the initial condition exciting the limit cycle.

However, we immediately realize that the adaptation gain, x, can be easily replaced by the
twist angle, 0, and the control law of Eq. (11.56) is none other than a linear state feedback
law (or the proportional integral control if q is the sole measured output). The adaptation
mechanism in such a case can thus be regarded as adding integral action to the linear feedback
of pitch rate, q.

The resulting closed-loop system is of second order, and is given by

b=g
§=—-w20 — Q¢ +k)qg — 0 + (0, q). (11.58)

Since the closed-loop system is guaranteed to be uniformly, globally asymptotically stable for
k > 1/(4c) by the Lyapunov stability theorem, all initial perturbations decay to zero ast — 0.
This fact is illustrated by the simulated response of the closed-loop system with w = 10 rad/s,
(=0.01,a=0.7,0=2°and k = 1 to the initial condition, 8 = 5.73°, q =0, and is plotted
in Figs. 11.22 and 11.23. The open-loop and closed-loop responses of the nonlinear SITES
aerodynamic function, a(8,q), are plotted in Fig. 11.24. Clearly, the aerodynamic torque
responsible for feeding the LCO is broken by the feedback controller in one and a half cycles,
by driving the twist angle below 0. Note that this simple self-adaptation mechanism regulates
the ASE system without any knowledge of the system parameters o, ¢, a, 0. The smallest value
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Figure 11.24 Nonlinear, aerodynamic forcing acceleration due to shock-induced trailing-edge separa-
tion (SITES) responsible for transonic LCO

of k that stabilizes the given limit-cycle is 0.036, which results in the error decaying to zero in
about 100 s.

Now consider a more sophisticated adaptation mechanism, which utilizes the structure of
aerodynamic nonlinearity given by Eq. (11.45), where the new control Lyapunov function is

now the following:
1

1l 2 2,1 2
V=c-w0"+ =g+ -(x—a). 11.59
i 4 2(x a) ( )
Here the constant, a, as well as the limiting pitch angle, 0, are unknown aerodynamic
parameters, with a to be estimated by the adaptation gain x. The time derivative of V is thus
given by _ )

V = 0?00 + qq + (x — a)f (g, x). (11.60)

For satisfying the LaSalle—Yoshizawa theorem we choose as before, W(8,q) = kq?, where
k > 0, resulting in )
V < —k¢g® (11.61)

or
V= ql—2wlq + a0, q) + u] + (x — a)f(¢,x) < —qu. (11.62)

Since the aerodynamic forcing term, a = aq, comes into play only for > 0, we attempt to
cancel it by adaptive feedback as follows:

V= aq2 +ug+ (x—aq)f(q,x) < —(k- 2(0@’)6]2. (11.63)
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Since neither the control, u, nor the adaptation, law f(q,x), must depend on the unknown
aerodynamic parameter, a, we select an adaptation law x = f(q,x) = g% which yields the
following:

V =uq+xq* < —(k = 2wl)q>. (11.64)

A likely choice of the stabilizing, nonlinear feedback control law is then the following:
u=g(g,x) =—k+x4q, (11.65)

which automatically satisfies Eq. (11.64) for all k > 0 and { > 0. The resulting nonlinear
closed-loop system is now of third order, given by

=g
g=-0"0 — Qwé + kg —0 + a0, q)
i=q. (11.66)

The asymptotically stable simulated response of the nonlinear closed-loop system with the
same parameters and initial conditions as considered above (v = 10 rad/s, { = 0.01, a = 0.7,
0=2°, k=0.1, 0 =5.73°, q=0) is plotted in Figs. 11.25-11.27. Note that the required
input magnitude is now only about half of that required by the linear adaptation and feedback
control system (Fig. 11.23). However, the nonlinear adaptation loop requires an integration of
the square of the measured pitch rate, g°, for obtaining the adaptation gain, x.
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Appendix A

Analytical Solution for Ideal
Unsteady Aerodynamics

Low-speed, unsteady flows are modelled by elementary solutions to the incompressible, irro-
tational (ideal) flow problem, which is governed by the Laplace equation for the perturbation
velocity potential, ¢(x, z, 1), given by

V2¢ =0. (A.1)

The perturbation is superimposed over the steady, uniform freestream flow of speed U far
away from the perturbing object. Unsteady, two-dimensional flow past thin airfoils is effec-
tively approximated by flow over a flat chord plane. Let x be a coordinate measured from the
mid-chord point along the flat-plate airfoil of chord 2b in the freestream direction, and ren-
dered non-dimensional such that the leading edge is at x = —1, and the trailing edge at x = 1.
The direction normal to the chord plane is measured by the non-dimensional coordinate, z, and
a complex Joukowski conformal map from the physical plane, (x, z), to the transformed plane,
(&, 1), is defined by
1 1

Z—2<§’+§>, (A.2)
where Z = x + iz and { = & + in. The conformal mapping transforms the line segment —1 <
x <1, y =0 (represented as a slit in the Z-plane) into a unit circle centred at £ = 0,1 =0,
while preserving the velocity potential, ¢(x, z, ), at the mapped points. The entire Z-plane
maps into the region outside the circle, the upper surface of the chord plane (slit) into the
upper half arc of the circle and the lower surface of the slit into its lower half arc. The origin
of the {-plane is the transform of all the points at infinity in the Z-plane. The slit being the
representation of a solid airfoil, the flow is not allowed to pass across the slit, but can only
go around it. In the process of going around the slit, a vortical flow pattern (or circulation)
is created. The time-dependent nature of the unsteady flow causes the circulation to evolve
with time. Since the flow is ideal and hence does not have a dissipation mechanism, Kelvin’s
theorem states that the circulation formed by a closed curve of fluid particles is conserved.
As the fluid particles convect downstream, they produce a wake whose net circulation must

Adaptive Aeroservoelastic Control, First Edition. Ashish Tewari.
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be equal and opposite to the circulation around the airfoil at a given time instant. Thus the
wake influences the circulation around the airfoil. If the airfoil has unsteady motion normal
to the chord plane, it causes a non-circulatory flow (normal flow or upwash), which must be
cancelled by the upwash induced by the circulation due to the unsteady wake at all points on
the chord plane.

Since the governing Laplace equation is linear, its solution can be expressed as a linear
superposition of non-circulatory (wake-independent) and circulatory (wake-induced) parts, as
follows:

¢ =y + e (A.3)

A source and a sink are placed at diametrically opposite ends of the circle in the {-plane in order
to simulate the non-circulatory (n.c.) flow pattern caused by a normal velocity disturbance,
w(a, 1), applied on an element, Aa, located at the point, x = a, on the chord plane. Note that
although the source and sink are vertically separated by a zero distance in the physical plane
at x = a, their effects do not cancel each other, because the flow cannot pass normal to the slit.
Hence they effectively represent a doublet placed at x = a with its axis parallel to the z-axis.
The change in the n.c. velocity potential at a point x on the upper surface is derived from the
doublet solution to be the following:

A (x, 1) = sz(a, HbAaf (x,a), (A4)
b4
where
1 —xa—V1-x2V1-a?
£(x,a) = 2log — 22 s a (A.5)
xX—a

The resulting n.c. pressure distribution is then given by the unsteady Bernoulli equation
(Chapter 3) to be the following:

Jd Uoad
Apnc(x, f = —2p <— + Za) Ad)nc

2 <U V1-—a? )
=-—"p| =——— | bwAa
7[ b(x—a)\/l—x2

—Ppacec, a2 (A.6)
p/1 ot

This result can also be obtained by the application of Green’s integral theorem, which is an
alternative to the conformal mapping method.

The circulatory part of the velocity potential, A¢,, is required to cancel the non-circulatory
upwash, w(a, ), by an equal and opposite induced upwash, such that there is no pressure sin-
gularity, either at the arbitrary point, x = a, or at the trailing edge, x = 1. The circulation on
the airfoil, AT, required for inducing the necessary upwash is provided by an element, Ax,,, of
the wake behind the trailing edge, located at x = x,, > 1, with a vorticity distribution, y,,(x,,, 7).
The wake is a force-free surface, hence cannot sustain a pressure difference across itself. By
either conformal mapping or Green’s integral solution with doublet (or vortex) distribution,

the circulatory perturbation potential integrated over the wake is derived to be the following:

b [* VI-x2y/x2 -1
A (x,1) = E/l Yo (X, tan ™! ————

dx (A7)

"
I —xx,
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The integration for the wake is carried out from x,, = 1 to x,, = s and is consistent with the flow
started at a previous time, r = (s — 1)b/U. The vorticity generated at the trailing edge convects
downstream with the flow, and reaches a position x = x,, after a time t = (x,, — 1)b/U, without
any change in its strength (Kelvin’s theorem). This implies that

Yw (xw’t> =Yw [1’ (xW - 1) b/U] ’

which simplifies the solution of the integral in Eq. (A.7).

The circulation around the airfoil (and the vorticity of the wake) should be such that the flow
leaves smoothly at x = 1 (Kutta condition). This condition translates into the requirement of a
finite tangential velocity component at the trailing edge,

9

0x
This results in the following integral equation to be solved for y,,(x,,, f), subject to the upwash
boundary condition w(a, t) on the solid airfoil surface:

—w(a t)Aa\/ — / yw(xw,t)‘/ (A9)

The circulatory pressure difference on the airfoil is derived from the assumption that the
unsteadiness in the velocity potential is caused only by the motion of the wake convecting
downstream with the freestream speed, U,

50=(3) 50

(Apne + AP, |,y (A8)

which results in the following:

U/ o 0
Ap (x,H)y=-2p— | — + — ) A,
P(xs 1) p b <0x 6xw> ¢
U s X+ x
= [y () —d, (A.10)
V1 —x2J1 2 =1
or
xX+x,,
./1 yW ( w? ) \/ﬂdxw
Apc(x’ t) - = AQ(a’ t)s (Al 1)
‘/l_x2/ J/ ( )\/1+Xde
1 /w Xy \/)F w
where
AQ(a. D) = Lw(a.nAay |14, (A.12)
y 1 1—a

is the forcing term in the integral equation due to the non-circulatory upwash prescribed at a
point x = a on the wing. The pressure distribution is to be derived for a given type of airfoil
motion, for which the upwash distribution on the chord plane is specified.

The discussion given here closely parallels the development by Wagner (1925) for a unit step
change in the upwash, w(a, t) = u,(f), due to an airfoil impulsively started from rest as well
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as of the development by Theodorsen (1934) for the simple harmonic (oscillatory) upwash,
w(a, t) = we'® . While Wagner’s analysis of indicial airfoil motion is relevant in the transient
aerodynamics modelling, the remainder of the discussion here is confined to the simple har-
monic motion, which is necessary for deriving the unsteady aerodynamic transfer function. In
the harmonic limit, we have

w(x, 1) = w(x)e™, (A.13)

where o is the frequency of oscillation and w(x) the (complex) upwash amplitude at a given
point (prescribed by rigid and elastic motion). Furthermore, the wake response is also har-
monic, and is given by the vorticity at a point x = x,,:

yw(xw’ I) — J—/eiw[t—(xw—l)b/U] — 7—/ei[wt—k(xw—l)]’ (A ]4)

where 7 is the complex wake vorticity amplitude and

wb
k= — A.15
U ( )

is the reduced frequency representing the number of waves in a wake length of 2z semi-
chords, b. Hence, k is the governing parameter of circulatory incompressible, irrotational flow.
In the harmonic case, the wake is assumed to have developed to its full extent (s — o) before
small amplitude perturbation, ¥, is applied. This is analogous to an infinite sheet of vortices
fixed to the wing and oscillating at the excitation frequency. A change in the vorticity of the
wake element at x = x,, affects the circulation around the wing only after time t = (x,, — 1)b/U,
therefore a phase lag is inherent in the circulatory pressure distribution. However, in the limit
s — oo, the exponential term on the right-hand side of Eq. (A.14) vanishesand Ap,. can be
expressed as follows:

Ap (x.1) = AP (x)e, (A.16)
where )
/ls x+x,, e_,kxwde
_ 2pU \/x%—l _
Ap (1) =~ ——— AD(a). (A.17)
Vi [} g,
\/x%v—l
where
AD(a) = Li@)aay [ LEL. (A.18)
V1 1—a

The main difficulty with the formulation of Eq. (A.17) is the evaluation of the improper
integrals in the limit s — oo due to the oscillatory nature of the integrands. The difficulty is
partly resolved by writing

S Xy —ikx,,
[P ek JE
[ w 1
xo—1
- l+‘; - =1- — — (A.19)
w —ikx, e w v
f] 5 =¢ wdx,, /1 —dx,, + fl v dx
A X —

Ve

which leaves the only the following problematic integral:

—_

1(k) = / G (A.20)
I 1
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In the limit s — oo, this improper integral can be evaluated by considering the reduced fre-
quency to be a complex number, such that ik = a + ib, a > 0, for which the integrand

xe—ikx xebxe—iax

\/x2—1 \/xz—l

vanishes identically in the limit x — oo. Thus we write

I(k) = =4 Zh00 = _§H§2>(k), (A.21)

i /‘°° i e—ikx dy

L T dk270
where H,(f)(.) is the Hankel function of second kind and order n. Such a method of evaluating
an improper, harmonic integral by converting the frequency to a complex number is called ana-
lytic continuation, and is equivalent to extending the simple harmonic motion to a more general
one of either a growing (ik = ¢ + ik, 0 > 0) or decaying oscillation (ik = ¢ + ik, c < 0) at the
given frequency k. Alternatively, a quasi-steady term can be added and subtracted from the
integrand, which corresponds to the assumption of the unsteady upwash being equal to its
steady-state value. The additional quasi-steady term vanishes in the limit s — oo, resulting in
a convergent integral.

The integral /(k) substituted into Eq. (A.19) yields the following:

/ls zg_l e~ikx, dxw

fs I ik, dy
1 > w
x5,—1

C(k) =
. HPw
HY (k) - il (k)

HP %) A
T HO W) +iHP () '

where C(k) is called Theodorsen’s function. This completes the derivation of analytical
lifting pressure distribution due to a prescribed upwash distribution, w(a), in the following
closed-form expression:

2 _
AP0 = —2Y (k) + x{1 = Ck)1) ADa)

VI1-—x2

_2pU _ 1+a [1-x 1
= Loi@aay | 70 1 [C(k)— 1+ :] (A.23)

A result equivalent to Eq. (A.23) was first derived by Theodorsen (1934).

A.1 Pure Heaving Oscillation

For the special case of an airfoil in a pure heaving oscillation, z = z,e/™, Biot (Fung
1955) derived the equivalent result through acceleration potential formulation. Here, the
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non-dimensional upwash amplitude is constant at all points, x = a, given by
w(a) = —ikUz. (A.24)

The total lift amplitude per unit span is

1
L= / (Apoo(¥) + Ap,(0)dx = prUyk? [1 - i%C(k)] (A.25)
-1

and the net pitching moment amplitude per unit span about the mid-chord is derived to be

1
M= _/ (AP, () + Ap(x))xdx = —ip;tUzyOkC(k). (A.26)
-1

These expressions can be verified by substituting Eq. (A.24) into Egs. (A.6) and (A.23) and
performing the chordwise integrations. From Egs. (A.25) and (A.26), it is evident that the
circulatory part of the pressure distribution (the part containing the factor C(k)) has its centroid
at the quarter-chord point, while the non-circulatory pressure is uniformly distributed about the
mid-chord location. The non-circulatory lift is seen to be independent of the flight speed, U.

A.2 Kiissner—Schwarz Solution for General Oscillation

For a general oscillation of a point, x, on an airfoil chord measured from the mid-chord given by
2x, 1) = f(x)e”, (A.27)
the upwash is expressed as follows:

0z 0z . 0z
% yZ =U<k,+—),
o T Cax T T\ oy
with the understanding that the coordinates are non-dimensionalized by the semi-chord, b. If

a Fourier cosine series expansion is employed for the upwash, given by

wix, 1) = (A.28)

w(O. ) = Ue® <P0 +2Y P, cos n9> , (A.29)

n=1

where x = cos 8 and
1 . T
P,=—¢ ' 0,1do

0= T /0 w(0,1)

P, = L ion / (6, 1) cos ndda, (A.30)
Urn 0

then the resulting chordwise lift distribution per unit span is expressed as follows:

00,1 = pUzei“” (2a0 tan g +4 z a, sin n0> . (A.31)
n=1
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Note that the Kutta condition at the trailing edge is satisfied by the lift distribution. The coef-
ficients of the lift distribution are derived by Kiissner and Schwarz (1940) to be the following:

ay=C(k)(Py+ P;) — P,
ik
an:Pn_E(PrHl_Pn—l)' (A32)

Hence, there is an equivalence between the oscillatory solution derived by Theodorsen and
that of Kiissner and Schwarz. When Eq. (A.32) is substituted into Eq. (A.31), the following
general lift distribution is obtained (Kiissner and Schwarz 1940):

20,1 = %pU/” w(o,t) { [C(k)(1 + coso) — cos o] tan g
0

+ ikS(cos 0, cos o) sin o + — 0 } do, (A33)
coso — cos
where o
sin —=
S(cos 0, cos o) = log — s (A.34)
Sin T

The integral in Eq. (A.34) is singular, hence its Cauchy principal value is taken. The final
expressions for the lift and pitching-moment amplitudes about the mid-chord point are derived
to be the following:

L=2xpU> [(P0 +P)) Clh) + % (Po —Pz)]

M= npU? {POC(k) — Pl = CH)] =Py — % (P, - P3) } . (A.35)
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Appendix B

Solution to Possio’s Integral
Equation for Subsonic, Unsteady
Aerodynamics

Subsonic, unsteady aerodynamic modelling is crucial in aeroservoelastic design, because it
provides a linearized model while capturing the essential features of the flowfield. Flutter esti-
mates of most aircraft require a subsonic model to which the nonlinear effects of shock waves
and flow separation can be added. In an ASE design, these same effects are identified and con-
trolled by an adaptive feedback scheme. Hence, it is necessary to consider simplified solution
procedures for subsonic flow, which can be utilized in a baseline model. For illustration, only
the two-dimensional flow will be considered here, as the three-dimensional subsonic unsteady
formulation is well explored by doublet lattice, doublet point and kernel function collocation
methods (Tewari 2015).

The linearized governing equation for the unsteady subsonic flow of freestream Mach num-
ber, M < 1, past a thin airfoil is expressed in terms of the disturbance acceleration potential as
follows (see Chapter 3):

2M 1
(1= MOy + v = =—=wy + Vi (B.1)

where a is the speed of sound approximated to be constant over the flowfield. The governing
equation can be transformed into the following wave equation:

1 Dy
Vig=——2| , B.2
v 2 De | (B.2)
where D ) )
— )=—0)+U—(. B.3
DtL() 20+u20) (B3)

is the Eulerian derivative representing the time derivative seen by an observer moving with the
freestream velocity, (U, 0)7. Hence, in the linearized case, the wave propagation speed is a,
the constant speed of sound.
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The integral equation relating the upwash amplitude to that of the pressure difference across
the mean surface of an airfoil oscillating in a subsonic flow is derived by Possio (1938) to be
the following:

1
00 = - / KIM. k(x — &) ABE)E, (B.4)
pU J 4

where k is the reduced frequency. In terms of the non-dimensional bound-vorticity (or
lift-coefficient) amplitude, 7(¢), and the angle-of-attack amplitude, @ = w/U, the integral
equation is expressed as follows:

1
a(x) = —k/l K[M, k(x — 5]y (5)dE. (B.5)
Thus the kernel function of the integral equation represents the important aerodynamic
influence coefficient between non-dimensional lift and angle of attack. The integral equation
must be solved for 7(§), given the angle-of-attack distribution, @(x), on the airfoil’s chord
plane. The kernel function is expressed as follows in terms of the non-dimensional variables
(Garrick 1957):

KM, k(x - &)] = —ﬁel’”@-@ {ng><,« |x—&D- iM(x‘—g)H?’m |x=&10)

[x—¢&|
_ ifPemika=8)/P <i log LF2
zf M

kx=&)/p* 5
+/ PHP (M| ADdA) 3, (B.6)
0

where f = V1 — M2,k = kM/p?, u = Mk and Hflz)(.) are Hankel functions of the second kind
and order n. The integral equation must be solved for the complex bound vorticity amplitude,
y(&), given a prescribed angle-of-attack distribution, @(x), on the wing. The Kutta condition
at the trailing edge requires that ¥(1) = 0, which is generally satisfied by selecting the bound
vorticity distribution as the following infinite series:

_ 0 - sin nf
7(x) = U <2a0 cot 5 +4 zl: a, ) , (B.7)

n

where x = —cos 6.

B.1 Dietze’s Iterative Solution

Dietze (1947) proposed that there is only a small difference between the subsonic kernel func-
tion, K(M, kr), and that in the incompressible limit, K(0, kr), where r = x — &, for the practical
range of reduced frequencies, 0 < k < 1, and for Mach numbers not in the vicinity of 1.0.
Therefore, a first-order expansion of the kernel function about the incompressible case is rea-
sonable. The incompressible kernel function is obtained from Eq. (B.6) to be the following:

K0, kr) = % {% — ike~ikr [c,.(kr) +i (Sl-(kr) + %)] } , (B.8)



Appendix B: Solution to Possio’s Integral Equation for Subsonic, Unsteady Aerodynamics 341

where C; and S; are the following cosine and sine integral functions:

Cy) = - / = du (B.9)

y

y .
S.(y) = / LLLLA (B.10)
0 u

In the steady-flow limit, kK — 0, the incompressible kernel is seen to have the following value:

P

K[O,k(x— é)] = m

(B.11)
Hence, the subsonic kernel is a well-behaved function of reduced frequency (for x # &) and
can be linearly expanded as follows (Dietze 1947):

KM, k(x — &)] = K[0, k(x — &)] + AK. (B.12)

The numerical scheme of Dietze begins with the computation of analytical vorticity dis-
tribution, ¥, for the incompressible case (discussed below) and the given angle-of-attack
distribution, @(x). This amounts to replacing the kernel function in Eq. (B.4) by K[(0, k(x — &)].
Next, the upwash distribution is corrected by writing

Y1 =70+ A¥g. (B.13)

where

1 1
Awy(x) = /1 KM, k(x — §)]A7((5)dS = /1 AKy(($)dE. (B.14)
In Eq. (B.14), the difference in the kernel function, AK, is computed by Eq. (B.12) and used
to evaluate the correction in the incompressible angle of attack, A@,, which is then prescribed
to analytically update the incompressible vorticity distribution, 7, for the next iteration. This
process is repeated until convergence is obtained in the vorticity distribution. Each successive
step should produce a smaller change in the analytical, incompressible solution. Unfortunately,
this is not always guaranteed, especially if a singularity exists in the kernel function, such
as that at the leading edge of a control surface, x = £. Furthermore, as M approaches unity,
increased number of steps are necessary for a converged solution.

B.2 Analytical Solution by Fettis

In order to avoid the problems of singularity and convergence in Dietze’s method, Fettis (1952)
modified the kernel evaluation procedure by replacing the singular part of the kernel function
by an approximate algebraic expression. Thus analytical, incompressible expressions are uti-
lized in each step without the need for any iteration. The kernel of Possio’s integral equation,
Eq. (B.5), is expressed as follows:

2
KM, k(x—&)] = ;K[O,k(x—é‘)]+ M + K[M, k(x — &)], (B.15)

V1-m 2rk(x — E)V1 — M2




342 Appendix B: Solution to Possio’s Integral Equation for Subsonic, Unsteady Aerodynamics

which (as in Dietze’s method) utilizes the availability of the incompressible kernel,
K0, k(x — &)]. The non-singular part of the kernel, K [M, k(x — &)], is approximated by the
following polynomial series:

KM, k(x — &)] = ay + ajk(x — &) + apk*(x — E)* + - - - + a k" (x — &), (B.16)

whose coefficients, g, - - -, a,,, are determined from the upwash boundary conditions. Hence,

a series expansion of the lift distribution, which is utilized in other methods, is unnecessary.
Fettis provided an alternative expansion for the non-singular kernel as follows:
f([M, k(x = &)] = ug(x) + u; (x)é + uz(x)§2 + -+ u,(x)E", (B.17)

which is more amenable to integration with respect to &. For the incompressible case, use is
made of the following solution (Kiissner 1940), to which the Kutta condition is applied:

1
fx) = _k/1 K0, k(x = &)17((£)de, (B.18)

resulting in the following incompressible lift:

1
To(x) = /l G(x, O)f (£)dg, (B.19)

_g . [1—-x [1+¢ L
G(X,Z:)—n_ llkA(x,C)+ T5x —1—C{C(k)+C—x}]’ (B.20)

with C(k) being Theodorsen’s function and

1—xt+V1-x2/1-¢2
l—xt —V1—2/T=2

A rearrangement of the integral equation after the substitution of Egs. (B.17) and (B.19)
produces the following set of linear algebraic equations to be solved for the unknown aerody-
namic load distribution from the known incompressible solution on the right-hand side:

where

A, ) = > log

1
5 (B.21)

By
AgoXo +Ag X + -+ Ap, X, =
1-M2
B,
ApXo+ApX +---+ALX, =
1-M2
Bn
AnOXO +An]X1 + - +Anan e ——— (B22)
1-M2

where

1
X, = / 7(§)&"dE, (B.23)

1
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: M:cky ' .. 1-¢ in ' ~
Ay = M — iné _cge- L iné 1 d
0=¢ n(l—M%/_le e zr/_]e cos™6de

k : —ipé
! d B.24
+m _le P(&)dE (B.24)
k b
Ag, = P (E)dE, (n>0) (B.25)
’ V1-m2J-
By = / Ty 0(€)dé (B.26)
-1
1
B, = / £ 170(E)de, (n>0) (B.27)
-1
A= 14iu-— M>CK) /l ﬂdi—iﬁ/lcos_lgdé
10 b a-m |\ T+e“ "7/,
1
+ / Po(£)dé (B.28)
1—Mm2J-
k 1
A, =i d B.29
1 m+m/_l¢1(§)é (B.29)
k 1
A, = de, 1 B.30
In \/1__2[ ¢, (5)ds (n>1) (B.30)
_ kb MC [1-¢ . in |
Ay = =15 n'(l—Mz)/ Tre 5 /5005 ¢dg
d B.31
+m/_lé¢o(§)€ (B.31)
1
Ay =1+ k / $b1(§)dS (B.32)
_M2 -1
1
A22=i§+ / Ea(E)dz (B.33)
Ay = —— / $p,(5)ds,  (n>2) (B.34)
2, Y,
M M?*C(k) _ip -1
Ay =13 (1—M2)/ V 5 e é‘ / g cos~'ede
Ey(&)dé (B.35)
e A
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k ',
Ayl = —— / &y (5)dé (B.36)
V1I-M2J-1
k b
Ap =1+ —/ &Py (&)dE (B.37)
V1-M2J-1
1
Az = i% + ﬁ /—1 E2 5 (£)de (B.38)
k b,
Ay = —— / &P, (H)dE,  (n>3), (B.39)
V1I-M2J-1
and so on, with )
kM
u= T2 (B.40)
and .
P, (x) = / G(x, Ou,,(O)ds, (m=0,1,2,---,n). (B.41)
-1
The solution vector, {X} = (X, X, - ~,Xn)T, is obtained by Gaussian elimination. Note

that X, gives the lift and X; the pitching moment about the mid-chord. The next two
higher-order solution terms, X,, X3, relate to the lift and pitching-moment contributions of
the control-surface located between & = x to £ = 1. Terms of even higher order give the
contributions of a tab on the control surface, and so on. The main advantage of Fettis’
derivation is its non-iterative application to produce the state-space coefficient matrices,
[A], [B] (see Chapter 3) for ASE applications in a baseline, subsonic condition.

B.3 Closed-Form Solution

Another non-iterative solution of Possio’s integral equation is derived by Balakrishnan (1999),
Lin and Illif (2000), which can be considered as an alternative to the formulations by Dietze
and Fettis given above. A Laplace transform of Possio’s integral equation is taken as follows:

1
a(xs S) =S / G(Ms-x - 59 S)Y(és S)dé, (B42)
-1
where s is the non-dimensional Laplace variable and

x=9)
lx—¢|

(x=8)
[ e (SMIALY L (B.43)
. 0 ﬁz

where f = V1 —-M2, k =sM/p*> u=Mx and K,(f)(.) are modified Bessel functions of the
second kind and order n. The generalized kernel, G(M, x — £, s), is analytic in the entire s-plane,

GM,x—¢&,s) = ﬁ {eﬂ@—@ [K(‘f)(x |x—¢&|)—iM KDk |x—¢ |)]
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except along the negative real axis, where the modified Bessel functions have singularities. The
special case of oscillatory motion, s = ik, results in Possio’s integral equation.
A closed-form solution to Eq. (B.42) is expressed (Balakrishnan 1999) as follows:

X X

coshk(x — o)r(o, s)do + K/ sinhx(x — o)r(o,s)do, (B.44)
-1

y(x,s) =r(x,s) + % /

-1

where
1
r(x,s) = g(x,s) — KK(K,x)/ sinh k(1 — o)r(c, s)do
-1
kA !
+ [EP(S, x) — MKK(K,X)] cosh k(1 — 0)r(o, s)do (B.45)
-1
and
[l s) =My (x, 5) (B.46)
—i l1—x l-o —MKO'a(x S)
g(x,s)—ﬂﬁ\/1+x/ \/l+0' c—X do (B.47)
e Fa ool SO
K(x,x) = %\/Q/ \/1 A R (B.48)
b4 l+x/ V1i+o oc—x

plen=—y/1=2 [t L [et 2y, (B.49)
7V 1+x /g x—o—1 c

Lift and pitching moment computed by this method are in agreement (Lin and Illif 2000)
with those calculated by the previous methods of (Dietze 1947, Fettis 1952), as well as by
the Mathieu function methods (Reissner 1951, Timman et al. 1951), which require a complex
contour integration.
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Appendix C

Flutter Analysis of Modified
DAST-ARW1 Wing

NASA-Langley’s Drone for Aeroelastic Testing (DAST-ARW 1) wing is represented here by a
trapezoidal plan form which does not include the leading-edge extension of the original wing,
and a single trailing-edge control surface (flap), shown in Fig. C.1. The original DAST-ARW1
wing has two trailing-edge control surfaces of approximately 20% chord each, one inboard, and
the other outboard. These are replaced by a single control surface with a 40% chord, spanning
the outboard 76% and 98% semi-span locations. The moment of inertia of the flap about its
hinge is I; = 0.1 kg m?, while its rotational stiffness about the hinge line is k; = 100 Nm/rad,
which implies a natural in vacuo flap mode of 31.623 rad/s. The in vacuo structural natural
frequencies and damping ratios for the first six wing modes reported by Cox and Gilyard
(1986) are listed in Table C.1.

The vertical deflection mode shapes of the six structural modes (Table C.1) at six selected
spanwise locations are listed in the following matrix:

-0.0029 -0.1437 -0.0030 —0.0793  0.0691 —0.0418
0.0442 -0.1775 0.2304 0.1076 —0.3412 —-0.3048
0.1595 -0.1179 04772  0.2880 —0.5993 —-0.5098
0.2879  0.0763  0.6381  0.5552 —0.5854 —0.6427
0.4864 03901  0.5500 0.6535 -0.3532 -0.4567
0.8081  0.8809  0.0980 0.4048 0.2284  0.1542

7=

while the corresponding mode shapes for the deflection slopes are the following:

0.0199 0.0064 -0.0211 -0.0265 0.0004 —0.0821
0.1017 0.0676 -0.0162 —0.0934 -0.2300 —0.2363
0.2032 0.1949 -0.0832 —-0.1066 —-0.3250 —0.3518
0.4406 0.4023 -0.2004 —-0.0414 -0.0047 —0.3758
0.7306 0.6987 -0.4231 -0.0319  0.5398 —0.4374
0.4692 0.5544 -0.8793 -—0.9882 —0.7417 —0.6936

dz/dx =

Adaptive Aeroservoelastic Control, First Edition. Ashish Tewari.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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Figure C.1 Modified DAST-ARW1 wing plan form geometry

Table C.1 Structural vibration modes of the DAST-ARW1 wing

Natural frequency (Hz) Damping ratio Mode type

9.3 0.00588 Symmetric bending

13.56 0.00882 Anti-symmetric bending

30.30 0.00937 Symmetric bending/torsion
32.72 0.01943 Anti-symmetric bending/torsion
38.96 0.01447 Symmetric torsion

48.91 0.02010 Anti-symmetric torsion

These are combined to yield the following modal matrix for aerodynamic influence
coefficients:
@ = ikz + dz/dx,

where k = wc/(2U) is the reduced frequency and the deflections are rendered non-dimensional
by dividing by the characteristic length (mean semi-chord), ¢/(2U).

The modal masses, stiffnesses and damping coefficients are derived as follows (Tewari
2015), in order to fit the flight flutter test data for this wing reported by Bennett and
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Abel (1982):

M = diag.(2.0967,1.9164,1.8036, 1.7360, 1.6007, 1.4429) kg

1.7861 19831 0.2042 1.1739  0.5544

1.4578 23976 -2.9320 -2.4571  3.5898

K =10° —1.3326 —4.6836 5.8085 2.6710 —8.3447

—1.4480 -1.4594 19777 2.2929 -1.8597

—0.0841 -0.1959 0.4750  0.3269 -0.4011

—-1.6214 -3.8540 4.8391 3.1149 -6.5868
3.9877  18.0085 —35.1898 —19.0859  40.9523
75.3328  50.9966 724875  66.8918 —54.2124
C= -56.3060 —-60.5175 —13.7980 -35.6402 -—14.8539
—60.9295 -38.6040 —-51.3028 —42.4412 41.6701
43764 —0.8387 17.5343  14.1483 —15.3260
—89.2669 —-66.3578 —78.0079 —80.2630  48.9853

0.4213
3.5093

—6.9302
—2.4083
-0.5714
=5.7113

N/m

42.3896
—63.2161
2.2176
42.9690
—18.6483
66.8707

Ns/m

For doublet-lattice calculations, a MATLAB code developed by Tewari (2015) is employed.
Figure C.2 is a sample plot of the unsteady pressure distribution caused by a linear combination
of the three symmetric structural modes, computed by using 30 spanwise and 10 chordwise
grid divisions. The normalization of the deflections and slopes is carried out by dividing by the
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Figure C.2 Unsteady pressure distribution on the DAST-ARW1 wing due to three bending/torsion

modes at M = 0.7 and k = 0.6
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Figure C.3 Unsteady pressure distribution (real part) on the modified DAST-ARW1 wing due to the
flap mode at M = 0.807 and k = 0.8

magnitudes | z | and | dz/dx |, respectively. Here, the pressure waviness and increased mag-
nitudes near the tip due to bending and torsion modes is evident. The effect of an oscillating
flap on the pressure distribution on the DAST-ARW1 wing is sampled in Fig. C.3 for the flap
oscillating with reduced frequency, k = 0.8, at M = 0.8. The flap motion creates large changes
in both pressure magnitude and phase at the outboard locations, and relatively smaller pressure
modifications at the inboard points. The flap hinge line has a sharp pressure discontinuity in
the chordwise direction. Detailed chordwise pressure plots for this case at selected spanwise
stations are shown in Appendix C of Tewari (2015).

A state-space representation requires an aerodynamic model by rational function approxi-
mation (RFA). The unsteady harmonic aerodynamic data computed by a doublet-lattice code
(Tewari 2015) at 30 frequency points (selected to cover the natural frequencies of the structural
modes) and a flight Mach number of M = 0.807 (corresponding to a flight speed of 250 m/s at
a standard altitude of 7.6 km) is presented in Appendix C of Tewari (2015). In order to gen-
erate rational function approximations (RFA) by nonlinear optimization of the lag parameters
for the given set of symmetric and anti-symmetric structural modes, a Simplex non-gradient
optimizer is employed for the least-squares RFA poles, b;,j = 1,- - -, N, where the number of
poles N is varied from 2 to 6. The objective function for minimization is the curve-fit error,
€, without any weighting for the frequencies. The higher-order RFAs are seen to give a bet-
ter fit at the higher values of reduced frequency (Tewari 2015), which indicates that a further
optimization is possible by employing frequency-weighting functions which can reduce the
number of poles required for a given accuracy. A sample curve fit for the RFA is shown in
Fig. C.4, while the optimized values of the lag parameters are listed in Table C.2.
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Figure C.4 Curve-fitting for element (6,6) of generalized aerodynamic transfer matrix of the modified
DAST-ARW1 wing with six symmetric and anti-symmetric modes at M = 0.807

Table C.2 Optimized lag parameters for modified
DAST-ARWI1 wing at U = 250 m/s

N

b.

J

€

2

0.020077, 414503.75

6.9187 x 1075, 3403.8425
5202.256

0.001969, 0.230118
7869.2315, 7782.0475

0.238246, 0.05157
2.03284, 813.363
8570.242, 7980.97

0.00159
0.00093

0.0008935

0.00074

For brevity, the RFA coefficient matrices are presented here for the reference condition with
only two lag parameters, whose values are the following:

b, = 107%(b/U),

b, = 1.85(b/U).

Such a choice allows for a scheduling of the lag parameters with the flight speed U — which is
necessary for conducting a flutter analysis — without having to perform a nonlinear optimiza-
tion at every speed. The aerodynamic coefficient matrices for the given flight condition are
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as follows:

—0.0439 —1.8487 —1.3809 39490  13.1090  10.1600

—1.0560 -9.4088 —12.9280 —4.3663  10.8807 —17.4327

A = —2.3908 —16.3010 —24.9145 —-19.3065 —7.4486 —50.4676 N/m
0 —4.0111 —15.5809 —28.4172 —-44.9707 —66.6647 —69.2923

—6.5650 —11.3063 —29.2660 —82.7733 —162.4312 —98.8830

—10.5992 —49.2321 —85.0047 —100.0319 —123.2653 —310.7789

0.0520 0.2624 0.5311 0.8836 1.3630 1.8723

0.0576 0.4082 0.8074 1.2481 1.8042 2.4824

A = 0.0643 0.5062 0.9901 1.4725 2.0781 3.0577 Ns/m
! 0.0793 0.5296 1.0416 1.5725 2.2962 3.6159

0.1049 0.5011 1.0036 1.6079 2.5485 4.2165

0.1318 0.4444 0.9058 1.5382 2.6537 4.7587

—0.030532 —0.15834 —0.31831 —0.52236 —0.80225 —1.142
—0.037911 —-0.22624 —0.44583 —0.69237 —1.0269 —1.5394
3] —0.046541 -0.2666 —0.52024 —0.78915 —1.1747 —-1.914
—0.059263 —0.27506 —0.53894 —0.83841 —1.3151 -2.2701
-0.077774 -0.27169 —0.53823 —0.88757 —1.5016 —2.6505
—0.095264 —0.28659 —0.56147 —0.93688 —1.6284 —2.9442

10~

B
o
Il

kg

—0.93425 -4.3053 -8.5849 -13.636 -21.377 =37.71
—1.0965 -5.0894 -10.107 -16.025 -=-25.031 —43.459
—1.2479 -5.8489 —11.583 —18.324 -28.489 —48.958
—-1.4115 -6.7693 —13.283 —-20.635 -31.657 —55.203
—-1.5679 -7.6391 —14.872 22774 -34.585 —-60.877
-1.6774 -8.1089 —15.734 —-24.037 -36.443 —63.821

-97.801 -508.18 —-1032.1 —-1717.8 —-2646.2 —-3603.9
—105.13 77373 —1549.3 -=24375 -3563 —4743
_|—-11529 -949.42 —-1888.5 -2880.3 —4142.5 -5880.7

—145.1 -980.48 —1966.5 -3042.1 —4539.5 -7127.2
—198.92 -905.88 —1853.1 —-3030.2 —4923.9 —-8493.1
—24595 —-854.23 —-1735.1 -2903.1 -5038.3 —9282.9

For the determination of the controls coefficient matrix, B, the generalized aerodynamic
forces (GAFs) and the hinge moment due to control surface are necessary. The GAF contri-
bution of the trailing-edge flap is computed by the revised doublet-lattice grid and reported
in Appendix C of Tewari (2015). Owing to the pressure discontinuity at the hinge line of the
oscillating flap, the curve fit for the control-surface GAF with a given number of lag parame-
ters is degraded (see Fig. C.5) when compared to that of the wing without the control surface.
The RFA coefficients for the control surface GAF with two lag parameters are derived from
the GAF data to be the following Tewari (2015):

Bg = (—1.1880, —1.5713, —=2.9118, —10.4382, —101.6408, —120.6015)
BIT = (1.0286, 0.8900, 0.4865, 0.2060, 0.1702, 0.2863)
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Figure C.5 Least-squares curve fit of unsteady hinge moment for the modified DAST-ARW1 wing at
M = 0.807 with two lag parameters

Bg = 1073(=0.5646, —0.5204, —0.3229, —0.1787, —0.1288, —0.1616)
B3T = (0.6953, 0.4578, 0.3557, 0.3885, 0.4454, 0.3734)
BZ = 103(=1.9612, —1.7064, —0.9540, —0.4534, —0.4078, —0.5711).

The hinge-moment RFA is computed next, with the curve fit shown in Fig. C.5 using the
same two lag parameters as those for the generalized aerodynamic forces. The average fit
error per frequency point is only 0.027%. The numerator coefficients of hinge-moment RFA
for U = 250 m/s are listed as follows:

ag=3.4524
a, =—0.0036

a, =8.6236 x 1077
ay = —0.0040

a, = 44747

When the aeroelastic data given above is substituted into the characteristic equation,
| sI—A|=0

the open-loop poles of the aeroelastic system at M = 0.807 and altitude 7.6km are the
following:

—0.00097699 + 0i
5% —0.0010173 4+ 0i
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—0.31449 + 57.797i
— 1.6542 + 100.35i
—0.4830 + 181.35i
— 55118 +£219.83i
—3.0523 + 237.59i
—6.0303 £ 305.03i
—1875.1 + 0i

— 1881.6 4+ 0i

2x — 1882 4 0i
— 1882 + 0.019859i

The aeroelastic modes and the aerodynamic lag parameters can be clearly identified in this
list. All the stable, real poles result from the aerodynamic lag states, while the complex conju-
gate pairs (except the last one) are the aeroelastic modes. When the flight speed is increased,
flutter is experienced by one of the aeroelastic modes becoming unstable. This is shown in
Fig. C.6, which shows the variation of the natural frequency, ®,, and damping ratio, ¢, of the
second symmetric bending/torsion mode (of in vacuo natural frequency 30.3 Hz) in the speed
range 250-295 m/s at 7.6 km standard altitude. This mode is seen to become unstable at a flutter
speed of 284.7 m/s, which corresponds to a Mach number of 0.9192 at the given altitude. The
flutter frequency for this mode corresponds to 28.691 Hz (181.272 rad/s) and the flutter Mach
number is 0.92, both of which are matched with the flight flutter test (Bennett and Abel 1982).

When the flight speed is increased beyond the flutter velocity to U = 295 m/s, the nature
of the RFA undergoes a transformation to a spiralling shape, as shown in Fig. C.7. This indi-
cates the need for including more intermediate frequency points for a better curve fit. The
hinge-moment RFA coefficients at U = 295 m/s (listed below) for aerodynamic damping and
aerodynamic inertia change in sign, while the lag numerator coefficients are seen to change in
sign and increase in magnitude, all of which indicate a stabilizing aerodynamic influence on
the flap rotation at supercritical speed (above the open-loop flutter speed):

ag = 4.4327
a; = 0.0047

ay = —4.3595x 107°
ay = 0.0048

a, =—11.1086

Finally, we derive the coefficient matrices for the output equation. The sensor location for
the modified DAST-ARW1 wing is shown in Fig. C.1. The outboard selection of accelerometer
gives the best resolution of individual contributions from all the relevant modes to the acceler-
ation output. The output coefficients for the given flight condition (U = 250 m/s, M = 0.807,
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Figure C.6 Open-loop flutter analysis of the modified DAST-ARW1 wing at 7.6 km standard altitude

(second symmetric bending/torsion mode of in vacuo natural frequency 30.3 Hz)
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Figure C.7 Least-squares curve fit for element (1 X 5) of generalized aerodynamics forces due to flap
mode for the modified DAST-ARW1 wing at M = 0.95 with two lag parameters
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Figure C.8 Subcritical (M = 0.8) and supercritical (M = 0.95) accelerometer outputs for initial unit
tip deflection of the modified DAST-ARW1 wing

altitude 7.6 km) are the following:

N

1.1207 x 10°
2.6638 x 10°
—3.3454 x 10°
—2.1536 x 10°
45524 x 10°
3.9455 x 10°
61.807
46.18
54.575
56.567
—32.051
—42.966
—1.1581
—5.5986
—10.863
—16.595
—-25.16
—44.061
—169.87
—589.51
—1197.4
—2003.7
—3478.1
—6409.9
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D = (=3.138 x 107>, —0.00010323, —0.00021489, —0.00037257, —0.00070238, 0.69163)

The simulated normal acceleration response to an initial unit tip deflection at a subcritical
(below flutter speed) Mach number of 0.8 and a supercritical Mach number 0.95 at 7.6 km
altitude are compared in Fig. C.8 for the first 5 s. The stable (or decaying) subcritical response
and an exponentially growing (unstable) supercritical response are evident.
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active flutter suppression, 3, 139, 147, 153,
164

actuator, 25

actuator dynamics, 133

adaptation mechanism, 15

adaptation with o-modification, 277

adaptation with e-modification, 277

adaptation with dead zone, 276

adaptation with dead zone and boundary
layer, 276

adaptive ASE stabilization, 246

adaptive control, 8, 13, 15

adaptive flutter suppression, 238

adaptive flutter suppression of a 3-D wing,
288

adjoint, 69

aerodynamic centre, 94

aerodynamic influence coefficient, 130

aerodynamic nonlinearity, 11

aerodynamic pole, 125, 129

aerodynamic state, 122

aerodynamic transfer function, 117

aerodynamic transfer matrix, 129

aeroelastic equations of motion, 124

aeroelastic state equations, 127

aeroelastic system, 6, 142

aeroservoelasticity, 1

Aizerman conjecture, 206

algebraic Riccati equation, 9, 10, 64, 71
analytic continuation, 112

angle of attack, 98

approximate factorization, 105

artificial viscosity, 100

assumed-modes method, 93

asymptotic stability, 187
auto-correlation, 54

auto-covariance, 55

autonomous system, 182
autoregressive identification, 175
autoregressive moving average control, 176

bandwidth, 39

Barbalat’s lemma, 220
baseline aerodynamic model, 106
Bayes’s rule, 53

bending moment, 94
bending-torsion flutter, 146
block-diagonal structure, 82
Bodé plot, 37, 168
body-fixed coordinates, 102
boundary conditions, 107
buffet, 11

Butterworth pattern, 49

causal system, 26

centre manifold, 189

centre manifold theorem, 189
centre of mass, 93
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certainty equivalence principle, 18, 50

characteristic polynomial, 49

chattering, 276

chordwise rigidity, 91

circle criterion, 207

circle stability criteria, 314

circulation, 331

circulatory lag, 121

circulatory lift, 113, 117

circulatory potential, 111, 332

co-state vector, 8, 65

collocation method, 111

collocation point, 89, 99

coloured noise, 55

compensator, 37

complementary sensitivity, 38, 75

complementary sensitivity matrix, 34

complete reachability, 199

computational fluid dynamics, 4, 12, 98,
310

condition number, 41

conditional probability, 53

control-surface deflection, 133

control-surface nonlinearity, 317

control-surface rotation, 94

controllability, 48

convolution integral, 29, 117

correlation, 54

Crocco’s equation, 100

cross-covariance, 55

cross-spectral density, 57

DAST-ARWI1 wing, 134, 166, 347

degree of freedom, 92

describing function, 20, 210

describing function for transonic
aerodynamics, 315

detectability, 48

direct output-feedback, 286

discretization, 93

dissipativity, 195

disturbance acceleration potential,
339

doublet-lattice calculation, 349

drag, 94

Duhamel’s integral, 114, 117, 312

eigenstructure assignment, 9, 49

elastic axis, 93

elementary solution, 108

elevon servo, 247

ensemble property, 54

ergodic process, 54, 57

error function, 54

estimated state, 50

Euler equations, 5, 99

Euler-Lagrange equations, 9, 66

Eulerian derivative, 102, 106, 339

expansion fan, 297

expected value, 52

exponential stability, 187

extended Kalman filter, 64

extended Kalman—Yakubovich—Popov
lemma, 199

extended least-squares estimation, 176

extremal trajectory, 67

feedback control system, 27

feedback loop, 33

finite dimensional model, 89
finite-difference approximation, 311
finite-element method, 93, 128, 311
flexibility influence-coefficient, 89
flight control system, 1

flutter, 3, 139

flutter mechanism, classical, 116, 139
flutter mechanism, incompressible, 119
flutter mechanism, transonic, 320
Fourier transform, 57

Frechet derivative, 311

freestream speed, 98

frequency weighting, 78
frequency-domain aerodynamics data, 130
full-potential equation, 102

gain, 26, 193

gain and phase margins, 36

gain scheduling, 14, 16

Galilean transformation, 102
Gauss-Markov process, 55

generalized aerodynamic control force, 132
generalized aerodynamic force, 92
generalized aerodynamic forces, 4
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generalized coordinates, 4

generalized damping matrix, 92
generalized force, 88

generalized mass matrix, 92
generalized matrices, 4

generalized stiffness matrix, 90
geometric nonlinear feedback, 19
Gibbs’ relation, 100

global asymptotic stability, 187

global uniform asymptotic stability, 218
global uniform ultimate boundedness, 219
gradient based adaptation, 223

Green’s function, 89, 98

H,/H, control, 11, 77
Hamilton’s principle, 92
Hamilton—Jacobi inequality, 193
Hamiltonian, 8, 66

Hankel function, 110, 335, 340
harmonic oscillation, 109

hinge moment, 97

hysteresis, 204

ideal flow, 120, 331

impulse response, 28, 31, 46

incompressible flow, 111

incompressible kernel function, 340

indicial admittance, 117

indicial aerodynamics, 112

indicial response, 32, 46

indicial transonic aerodynamics model,
311

induced upwash, 113

infinite-horizon control, 71

input strictly passive, 195

input—output stability, 27, 192, 198

input-output representation, 25

input-state stability, 194

integral adaptation, 266

integral equation, 6

integrator backstepping adaptation, 255

invariant manifold, 189

invariant set, 192

irrotational flow, 101

isentropic flow, 101

iterative kernel evaluation, 111

Jacobian, 68, 184, 188
joint probability, 53
Joukowski conformal mapping, 331

Kalman filter, 10, 62
Kalman-Yakubovich lemma, 207
Kalman—Yakubovich—-Popov lemma, 197
Kelvin’s theorem, 331

kernel function, 98

kernel function expansion, 111

kinetic energy, 91

Krasovski theorem, 191

Kutta condition, 100, 107, 333

Kutta waves, 321

lag compensation, 282

Lagrange stability, 186

Lagrange’s equations, 93

Lagrangian, 65

lambda shock, 297

Laplace equation, 331

Laplace transform, 30

Laplacian operator, 102

LaSalle global invariance theorem, 192

LaSalle local invariance theorem, 192

LaSalle—Yoshizawa theorem, 220

least-squared error adaptation, 225

least-squares curve fit, 125

least-squares estimation, 172

least-squares estimation with exponential
forgetting, 174

least-squares rational function
approximation, 129

lift, 94

limit-cycle oscillation, 186, 204, 322

linear aerodynamic operator, 98, 112

linear fractional transformation, 84, 215

linear optimal control, 8, 67, 70

linear superposition, 89, 98, 114

linear system, 28, 182

linear, quadratic regulator, 9, 70

linear, quadratic, Gaussian, 10, 74

linearized aerodynamics equation, 106

Lipschitz condition, 183

load point, 99

local linearization, 187
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loop gain, 40

loop shaping, 8, 33, 38
loop-transfer recovery, 11, 76
loss-less system, 195

low-frequency transonic small-disturbance,

105, 315
LQG/LTR method, 76
lumped-parameter model, 93
Lyapunov based adaptation, 225
Lyapunov equation, 62
Lyapunov function, 190
Lyapunov method, 20
Lyapunov stability, 186
Lyapunov stability theorem, 190
Lyapunov’s direct method, 217
Lyapunov-like stability, 218

Mach number, 101

manifold, 189

Markov process, 55

matched nonlinear perturbation, 275

matching condition, 224, 225

Mathieu functions, 111

matrix Riccati equation, 70

mean, 53

measurement noise, 8, 24, 33, 43

Meyer—Kalman—Yakubovich lemma, 197

minimum-variance control, 176

modal matrix, 129

model reference adaptation system, 18,
217

model reference adaptation, nonlinear plant,

275
modified Bessel function, 345
modified integral adaptation, 269
multiple-pole approximation, 125
multiplicative uncertainty, 81, 226

Navier—Stokes equations, 99

noise transmission, 60

noisy adaptation, 277
non-circulatory lift, 117
non-circulatory potential, 111, 332
non-conservative force, 91
non-singular kernel function, 342
nonlinear gain evolution, 228

nonlinear oscillatory system, 203
nonlinear system, 266

nonlinear, uncertain aeroelasticity, 214
normal (also Gaussian) distribution, 54
Nyquist theorem, 34

Nyquist-like stability, 205, 316

observability, 48

observer, 10, 50

observer-based output feedback, 287
online parameter identification, 172
operational method, 26

optimal control, 65

oscillating trailing-edge flap, 300
output feedback, 50

output strictly passive, 195
output-feedback adaptation, 285

parameter drift, 241

parameter estimation, 18

parametric uncertainty, 11

Parseval theorem, 39

passivity, 195, 205

perturbation velocity potential, 104, 331

piston theory, 115

pitch, 94

pitch angle, 120

pitching moment, 94

plunge, 94

pole placement, 49

Popov stability criteria, 207

positive real, 196

positive real lemma, 197

Possio’s integral equation, 110, 321, 340

power spectral density, 57

pressure difference, 98

pressure gradient, 112

pressure-upwash integral equation, 98,
109

probability, 52

probability density, 52

process noise, 6, 24, 33, 43, 275

projection algorithm, 174

pure heaving oscillation, 336

pure pitching motion, 143

pure plunging motion, 141



Index

363

quasi-steady approximation, 115

radial unboundedness, 190

rational function approximation, 6, 125,
129, 350

reduced frequency, 105, 110

reduced-order observer, 51

reference aeroelastic model, 234

reference model, 19

reference trajectory, 184

regression model, 172

regressor, 18, 172

regulator, 7

relay, 204

residual, 172

return ratio, 76

return-difference matrix, 34

rigid longitudinal flight dynamics, 246

robust control, 8, 71

robust flutter suppression, 162

robust model reference adaptation, 275

roll off, 39, 41

self-tuning regulator, 17, 171, 179

semi-active modal decoupling, 140

sensitivity, 38, 225

sensitivity matrix, 34

separated flow, 11, 204

separation principle, 50

set-point regulation, 185

shear load, 94

shock wave, 100, 296

shock-induced trailing-edge separation,
308, 322

shock-pitch coupling, 308

shock-wave oscillation, 11, 204

shock-wave/boundary-layer interaction, 308

short-period mode, 246

Single Degree-of-Freedom Flutter, 141

singular values, 41

Small Gain theorem, 27

small gain theorem, 209

solid boundary condition, 107

spectral gain, 41

speed of sound, 101, 339

stability, 47

stability robustness, 34, 40, 42, 84

stabilizability, 48

standard deviation, 53

state transition matrix, 45

state-space representation, 25, 42, 182

static longitudinal stability, 247

static nonlinearity, 203

stationary process, 54

steady transonic characteristics, 296

stochastic system, 24, 52

strain energy, 91

strictly passive, 195

strictly positive real, 197

structural modal matrix, 130

structured singular value (u) synthesis, 11,
81,213

subsonic kernel function, 110

supercritical airfoil oscillating in pitch, 308

supercritical flow, 297

supersonic bubble, 297

supersonic integral equation, 114

supersonic kernel function, 115

tail-less delta fighter, 246

terminal cost, 65

Theodorsen’s function, 112, 119, 335
thermodynamic relationship, 99
three-dimensional aeroelastic model, 128
tracking problem, 185

transfer function, 30

transfer matrix, 32, 47

transmission, 75

transmission matrix, 34

transonic active controls technology, 322
transonic aerodynamics modelling, 310
transonic aeroelastic model, 316
transonic aeroelasticity, 12

transonic aeroservoelasticity, 12
transonic flutter dip, 322

transonic small-disturbance, 104, 310
twisting moment, 94

two-point boundary value problem, 69
Type A shock motion, 309

Type B shock motion, 310

Type C shock motion, 310
typical-section model, 94
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uniform asymptotic stability, 218
uniform continuity, 220

uniform ultimate boundedness, 219
unsteady aerodynamics, 4

unsteady Bernoulli equation, 101
unsteady transonic characteristics, 299
upper triangular matrix, 157

upwash, 98, 332

variance, 53
variation, 92
velocity potential, 101
virtual coordinate, 90

virtual load, 91

Volterra kernel, 312

Volterra—Wiener transonic aerodynamics
model, 312

vorticity conservation, 107

Wagner’s function, 112, 118
wave equation, 102, 106, 339
white noise, 54

Wiener filter, 60

zero-mean, Gaussian white noise, 58
zero-state observability, 199
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